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-ee"Ve1k natural resonances (poles) of an object are excitation (aspect and
polarization) independent. The primary goal of this dissertation is to develop a
rational function approximation (RFA) for use in pole extraction from the measured
scattering spectrum data of broadband radar systems. Applications of the RFA are
demonstrated for a variety of simple as well as complex objects. The results obtained
are compared with those poles extracted using other methods.

To overcome noise problems, two preprocessing techniques--a sum operator and aP. zero-phase-shift digital filter are developed. The minimum signal-to-noise ratio
(additive) is explored such that reliable pole extraction is still feasible. Finally,
RFA are applied to the measured data of complex geometric targets (scale models of
aircraft).

- In addition, the uniform geometrical theory of diffraction (UTO) and equivalent
current (EC) have been applied to formulate the resonant modes of a thin circular disc

• for both broadside and edge-on incidence. An integral equation formulation and
numerical search has been applied to a circular thin loop. Poles extracted from these
results are compared to those obtained from RFA. The complex natural resonances of a

- loop are used to generate K-pulse input and response waveforms. These waveforms are,
S- in part, a test of the accuracy of the extracted poles using the methods developed in

this report. -
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CHAPTER I

- INTRODUCTION

In future generations of radar systems, the natural electromagnetic

oscillations of a radar target may be used to determine the physical

properties (size, shape, and composition) of the target. The key to

such a possible advance in radar systems is broadband signaling

waveforms. Signaling waveforms; with low-frequency content give

information about the gross size and shape of a target, and waveforms

with high-frequency content give a detailed description of isolated

N parts of the target. The interaction of electromagnetic waves and

material objects is best sunmarized by the canonical response waveforms

* of the object, i.e., the response waveforms for interrogating signals

* with impulse, step, and ramp time dependence.

Such a linear system analysis was first introduced for finite

objects by Kennaugh and Cosgriff [I] and was later formalized by

* Kennaugh and Moffatt [2]. The concept of approximating the low-

frequency scattering characteristics of an object by rational functions,

i.e., complex natural resonances, was first suggested by Kennaugh and

Moffatt [2] as

Keeping in mind that a distributed-constant representation
is exact, it should still be possible to represent the

-: -<i*-iiiIi



low-frequency properties of s-2FR(s) and the corresponding time
response [which would be FRCt)] by that of a lumped constant
network. In this case, FR(t) wo~ld be approximated by a series
of exponential terms, whereas s- FR(s) would be the ratio of
polynomials rather than the series (8)*.""

A rigorous solution to the complex natural resonance t 'a in

analysis known as the singularity expansion method (SEM) has been

suggested by Baum [3]. There is much that is correct about this complex

natural resonance approach [4,5); however, Kennaugh (6) has suggested

that the one thing that is missing from the SEM is the K-pulse --a

time-limited input waveform which produces special time-limited output

waveforms. While the main purpose of this dissertation is not to settle

this question, a K-pulse response is approximated for simple backscatter

*: (a circular loop for edge-on incidence) by using the complex natural

resonances extracted in this dissertation.

Accepting the fact that in many useful situations the transient

response waveforms of a scatterer or its corresponding frequency

response can be well approximated by lumped parameter models, the

,. purpose of this dissertation is to present various methods for obtaining

the complex natural resonances of an object using the model. Of

particular interest are methods useful with measured data which are

* contaminated by noise.

"* * The series (8) referred to above was a Rayleigh-type power series
ins.
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The complex natural resonances of an object can be obtained 4!1 analytically if the vector wave equation is separable. For finite

objects therefore there are two geometries, spherical, which was

treated by Stratton [71, and the thin circular disc [8), which has not

S,.yet been studied rigorously from a complex natural resonance viewpoint.

The complex natural resonances of all other finite objects must be found

-, by approximate methods. Perhaps the best of these is a quasi-rigorous

approach where an integral equation for the object as a scatterer or q

radiator is developed and then converted to a matrix equation. A

numerical search of the complex frequency plane is then used to find the

F complex natural resonances. Mains and Moffatt [9) used this method to

find the complex natural frequencies of bent wires and simple wire

airplane models. Unfortunately, complex geometries such as aircraft or

ships can only be handled by this approach for small electrical size. - ..

* - For simple geometries, asymptotic theories such as the Uniform

Geometrical Theory of Diffraction (UTD) can be used, as by Kennaugh [6),

to extract all but the lowest frequency resonances.

For complex geometries in the resonance region the only recourse at

this time is measured experimental data at real frequencies. Useful

methods for extracting complex natural resonances, therefore, must be

applicable to experimental data. Such data are inevitably contaminated

by some noise and clutter, which further complicates the extraction

problem. The experimental data utilized in this dissertation are

frequency domain data. To test time or other domain methods the

appropriate data are generated synthetically.

3
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Reviewed briefly in Chapter II of this dissertation are those

methods for extracting the complex natural resonances of a scatterer or

a radiator which have been suggested and shown to have some success when

applied to real or synthetic data. A rational function approximation

model is developed in Chapter III. Application of this model to

extraction of the poles of sets of simulated data for a conducting

sphere are presented. A window technique is developed for the rational

fuction approximation. The effects of uncorrelated Gaussian white noise

added to the calculated data on the location of extracted poles are

demonstrated. A sum operator and a zero-phase-shift digital filter are

used to combat noise. An estimate is made of the required signal-to-

noise ratio for which the complex natural resonances are still

extractable. In Chapter IV, an etgenanalysis model is reviewed, the

emphasis being the application of the model using real frequency data. -

The application of singular value decomposition to eigenanalysis is

studied. Presented in Chapter V are comparisons of the complex natural

resonances extracted by the models derived in this dissertation with

models and methods suggested by others.

A generalized method for extracting a set of complex natural

resonances from multiple frequency complex scattering data is described

and illustrated in Chapter VI. The scattering data are real data taken

from measurements made at the ElectroScience Laboratory and are a true

test of the methods and techniques developed. Stressed are the

techniques which can be utilized to assure that the correct approximate

44 -
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order for the system has been obtained as well as actual (as opposed to

pattern-fitting) complex natural resonances have been extracted. The

desirability of obtaining the same or very similar results using two

somewhat different approaches is discussed. It is assumed that the

available experimental data are contaminated by noise. For the

noise-free case there are a number of techniques by which the proper

complex natural resonances can successfully be extracted. An estimate

is made, based on the material of this dissertation, as to the required

signal-to-noise ratio which must be achieved by the experimental data

before extraction of complex natural resonances is feasible.

Conclusions and recommendations based on the research reported in

this dissertation are given in Chapter VII. New analytical results for

complex natural resonance prediction using asymptotic scattering

estimates and first estimates of certain K-pulse waveforms and response

are given in the appendices.

L

.L-

112 5

L



CHAPTER II

AN OVERVIEW OF RESEARCH ON THE EXTRACTION OF

COMPLEX NATURAL RESONANCES

The complex natural resonances (poles) correspond to the exterior

resonant modes of an object [4]. The exterior resonant frequencies are

complex, where the real parts account for ray divergence and bending

losses, and the imaginary parts accrunt for resonances. These poles are

.i of particular interest in the waveform feature extraction because they

are related to the physical characteristics of an object. Furthermore,

the complex natural resonances are independent of the target aspect and - -

polarization excitation [9]. These poles may form a minimum set of

parameters needed to characterize a target. Research on the extraction

of the complex natural resonances has been ongoing for a decade, and 1 -

many engineering approaches to the complex natural resonances have been

established. This chapter summarizes some of the approximate methods

discussed in the literature which have been used to extract the complex

natural resonances of a radiator or scatterer and have shown some

success.

6
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m A. SIGNAL FLOW GRAPH

Signal flow graph methods have been used extensively in network

m manalysis, for example, Circuit and System Theory written by Lago and

Benningfield. However, the application of the signal-flow-graph concept

to electromagnetic scatterers was first suggested by Bagby and Kennaugh

[10]. In general there are two kinds of scatterers being studied: thin

wire structures such as straight wires, cross wires, wire arcs, circular

loops, etc. and solid structures such as spheres, circular cylinders,

prolate spheroids, etc. Descriptions of the scattering mechanisms of

these two basic structures follow [10).

1. Thin Wire Structures

It is assumed that there are four operations on the current flowing _-A

on the wire surface. These are: a) wire path distortion and phase

delay, b) wire end and wire junction reflections, c) wire junction

L transmission and d) wire end radiation and radiation coupling. The

parameters associated with these operations are used in the signal-flow

graphs to predict the complex natural resonances. For a straight wire,

the accuracy of predicted complex natural resonances is very good for

very thin wire structure [10], i.e., wires whose length-to-diameter

ratios are greater than 1000. However, the accuracy is decreased if the

thickness of the wire is increased. Obviously, the formula used for the

current distribution should be further modified for thick wires. It is

- very hard to predict numerically the four scattering mechanisms for

7
7
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different wire configurations. The application of the signal flow-graph -

to wire arcs, crossed wires and other complex wire shapes is limited by

the accurate values of the scattering mechanisms mentioned above. The

complex natural resonances extracted using the signal-flow-graph method

may be lacking in accuracy for the reason mentioned above. .

Nevertheless, the signal graph method yields significant physical

insight into the complex natural resonances of an object.

2. Solid Structures

In recent years, the Uniform Geometrical Theory of Diffraction

(UTO) has become a very powerful tool for solving such problems as

diffraction from a straight or curved wedge, vertex, and/or curved

surface. The UTD edge diffraction field and curved surface waves

derived by Pathak and Kouyoumjian [11,121 and others have been used to

evaluate the complex natural resonances of solid structures such as

spheres, prolate spheroids, circular discs, etc., for both transverse

electric (TE) and transverse magnetic (TM) modes [10). The results are

fairly close to those obtained from the exact solution (sphere) and from

other approximate methods. It is noted that UTD is a high frequency
I

asymptotic approximation and the errors in the poles predicted at low . ..

frequencies are due to this high frequency approximation.

B. POLES EXTRACTION FROM THE TRANSIENT RESPONSE-PRONY'S METHOD

Prony's method was originally developed to solve equations which

express the relationship between the temperature and the expansion of

8
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water vapor or phenomena defining elastic fluids using experimental

data* in 1795 [13]. However, the application of Prony's method to the

S'. transient response of electromagnetic radiation or scattering data** to

extract poles and residues was first suggested by Van Blaricum in 1976

[14]. In the first application of Prony's method, numerically generated

data for the transient current on a thin dipole were used. The

.. resultant poles of the thin dipole were very close to those extracted

.. via a integral equation formulation and numerical search by Tesche [15].

Inspired by this idea, several researchers began studying Prony's method

r for other scatterers and looking also for solutions to the problems

inherent in the Prony process. E.M. Kennaugh suggested the application

- of an etgenanalysis solution (etgenanalysis was mentioned in [14] but

was not exploited) to replace Prony's method; this solution was

illustrated by Moffatt, Young, Ksienski et al. [16]. Although the

* The equations are of the form:

Ax. lAx tAx ifax
Ti "pl 24 + 1 3P3  + • • + UnPn

. - t 1 0, 1, . . M., -1, where yj and pj are undetermined constants, Ax
is an increment of the variable, M is the total number of
observation, Ti is an observation result of variable at iAx.

* ** The equations dealing with the impulse response of electromagnetic
radiation or scattering data are of the form:

Fi R1e + R2e  + R3e
3  + . . . , n i -

* t - - 0, 1, 2, ..., M-1, where At, Pi are the residues and poles, M is
the total number of the sampled data, At is the time increment, Ft
is the impulse response at time itt.

9
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complex natural resonances of an object or class of objects can be _

determined using elgenanalysis, the accuracy is seriously affected by

even moderate amounts of noise. Prony's method and many Prony's related

methods are summarized in a recent publication [171. Although Prony's

method is a useful tool for extracting the complex natural resonances

from transient data, two major problems which occur in the application

of Prony's method are: 1) the determination of the system order and 2)

the bias problem with noisy data. Many researchers have focused on

these two problems [17,18,19] in the past few years, but there is not

yet one method which is completely successful.

C. INTEGRAL EQUATION AND NUMERICAL SEARCH

The singularity expansion method [SEMI was first introduced by Baum

in 1971 as a technique for solving transient electromagnetic scattering

from conducting bodies [3]. Although, it requires a search procedure in

conjunction with a space-frequency integral equation formulation, a

recent publication showed that the idea of the singularity expansion

method can also be applied to a space-time integral equation formulation

[20). In the application of integral equation and numerical search to

determine the complex natural resonances, an integral equation for the

induced current is derived and reduced to a finite matrix equation using

the method of moments. The complex natural resonances are found using

an iterative search in the complex wavenumber plane. The complex

natural resonances of some simple scatterers were studied using this

10
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method. A thin wire structure was studied by Tesche in 1973 [15]; the

prolate spheroid was investigated by Marin in 1974 (21], and the

circular loop was done by Blackburn and Wilton in 1978 [221. The

complex natural resonances of some stick models of the Mig19 and F104

were studied by Mains and Moffatt in 1974 [9]. At the Ohio State

University, Professor J. H. Richmond's programs for backscattering

" calculations for the aforementioned airplane models were used. The

natural resonances are those complex frequencies which make the

admittances in a moment method formulation very large in magnitude. All

F. of these studies showed some success in the extraction of complex

natural resonances. However, the search procedure used has the

following weaknesses.

* 1. The search procedure cannot be used for extraction of poles of

complex structures for more than moderate electrical sizes.

2. The search procedure is time consuming in machine computing.

ILE 3. The search procedure cannot be used to process measured

scattering data.

0. POLES EXTRACTED VIA THE RATIONAL FUNCTION APPROXIMANTS

As mentioned in Chapter I, the electromagnetic scattering system

can, within some limitations, be modeled as lumped parameter system.

The canonical responses of a scatterer are the impulse response, step

response, and ramp response. In general the response of a distributed

parameter system can first be separated into a forced response as an

[: ~11 -.
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aperiodic excitation moves over the object and later a natural response

as the excitation moves beyond the body. In this dissertation, the

transfer function of the system is approximated by a rational function

N ( NE(Xt) " an xin+2/ bm Xi 1 1, 2. . . . I, (2-3) ..- :
n=O .

where Xi Is Jkia (an electrical length), a is a linear dimension of the

object, and I is the number of the sampled data points. Thus the phasor

response of a system is approximated by the the rational function E(Xi).

The first attempt to extract the complex natural resonances of a -

scatterer from multiple frequency scattering data was by Moffatt [23)

using a rational function approximation to model the transfer function

of the target. This approach was largely abandoned with the advent of

Prony's method and the improvement of Prony's method--etgenanalysis. In

radar applications, with the exception of subsurface radar, the data are

recorded using multiple frequency phasor response data [16); time

response waveforms have to be produced synthetically.

The relative advantages of pole extraction in the time and frequency

domains are not completely obvious. Assuming that the initial data are

measured frequency domain samples, avoiding approximate transforms into

the time domain seems desirable. This is clearly true if the data are

severely bandlimited and weightings must be used to avoid Gibbs and

aliasing difficulties. Also, windowing methods, i.e., examining various

portions of the measured spectrum individually, appear somewhat more

12
12
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direct in the frequency domain. A detailed discussion of the windowing

m U technique is given in Chapter III. The techniques which seek to

sequentially extract the most dominant poles are generally not useful

because pole-extraction methods are approximate and the errors will be

accumulative.

No clearly superior method for complex natural resonances

extraction from measured data has emerged in any domain. For this

reason alone, a technique utilizing rational function approximants is

deserved of some additional study.

13



CHAPTER III

RATIONAL FUNCTION APPROXIMATIONS

A. INTRODUCTION

As discussed earlier, it is assumed that with the possible

limitations mentioned the frequency-dependent electromagnetic

scattering by an object can be modeled by a passive linear two-port

system with time-invariant parameters. The (normalized) transfer

function, which corresponds to the (normalized) impulse response of the

system, can be approximated by a rational function in the frequency

domain [2]. With such a model the numerator polynomial will be aspect - -

and polarization dependent but the denominator will be excitation

invariant.

The rational function model for electromagnetic transfer functions .

is written initially as

N M
En(X1) = . a' / . bmX I = 1, 2,.. ,, I , (3-1)

n=O m=O

where En(X i) (in a phasor form) is a normalized electric or magnetic

field at frequency Xi , Xi is Jkjl (an electrical length), I is a linear

14
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dimension of the object and an' and bm ' are unknown coefficients*. I is

the number of sample data. One of the coefficients in Equation (3-1)

is completely arbitrary because the numerator and denominator can be

scaled by a common factor without changing the rational function model.

The zero order denominator coefficient in Equation (3-1) is chosen to

be normalized and accordingly the rational function model (model 1) is

- rewritten as

En(X1) = ) an X+2 /(+ brmo , (3-2)n=O m-1

where X1 is Jkja and a is a linear dimension of the object.

It is assumed that the normalized scattered field, En, is known at

a total of I real (Jkil) frequencies. The proper orders of the

denominator and numerator polynominals are unknown, as are the proper

frequencies (Jkil) to use where the scattered field is assumed to be

known. Note that Equation (3-2) is selected to yield a Rayleigh-type

dependence if the scattering data samples include the Rayleigh range.

If both sides of Equation (3-2) are multiplied by the denominator

polynominal, then I complex or 21 real linear simultaneous equations

can be generated. Four cases must be considered when both N and M are

allowed to be even or odd. There are N + M + 1 unknown coefficients

0
• For a real physical system, the impulse response (in the time domain)

is causal and real. Then the transfer function (in the frequency
domain) has the property that En(X ) = En*(x), where * denotes
complex conjugate. With this restriction, the coefficients an , in
Equation (3-1) are real. n m

15
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(an, bm) to be found, and neglecting the underdetermined case these

coefficients can be found in an exact or in a least squared error sense

* depending upon the selection of I. One would anticipate that a least

squared error approximation would usually be better. As will be seen,

however, an exact solution with or without a preprocessing technique has -

-* some advantages over a least-squared error approximation under certain

conditions.

To this point, the approximating equations given in Equation (3-2)

are no different than those recently given by Brittingham, Miller and

*Willows [24]. In fact, they are the same as those oriinally suggested

*. by Moffatt [23]. The idea of using a lumped parameter model to

* approximate a distributed parameter system goes back to Kennaugh and

* ~Moffatt [2]. They suggested such a model for low frequencies in 1965

(see Chapter I), but as is shown in this dissertation the idea can be ....

extended to rather remarkable lengths in terms of higher frequencies.

What makes the the present approach unique, however, is the use of

non-harmonically related sampling frequencies. Also, when noisy data

are considered, the methods suggested and demonstrated for minimizing

the deleterious effects of the noise are felt, to some extent, to be

new. The final step in the application of Equation (3-2) is routine

once the coefficients in Equation (3-2) are known. The zeros of the

denominator polynominal yields the poles of the system, and using the

numerator coefficients, Equation (3-2) can be rewritten as a

residue series, i.e.,

16
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1 En(X) /(X-P (3-3)
j=1

and

n(X) xn+2 M-E I anx = R (X-P ,(3-4) .:

n=O (x nP

where Rj are residues and Pj are poles. Then,

N M N( ),i:-. .- Rj a ' nXn / 11 (X-Pl) (3-5) . . .

n=O =1
i*j x. P,-I

assuming all poles are simple.

Numerous computer programs are available for the purpose of root

extraction. It was found, however, that good results require that

double precision must be used with these routines. The residues and

poles are in complex conjugate pairs for the transfer function of a

linear causal system to yield real time domain responses. It is noted

.. that the complex natural resonances are aspect and polarization

- . independent. However, the residues are aspect and polarization

" dependent. The complex data En (X) can be expressed in a phasor

form as

En(X 1) = A(XI)/- P(Xi) (3-6)

where A(Xj) is the amplitude and P(Xj) is the phase at frequency of Xt .

To measure the error between the rational function approximation and the

17
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original data, the following definitions of amplitude errors (norms) are

given:

-av { 2} / "
Eap { 1 t IA(jk 1 ) - ARFA (Jk1l) 1 (3-7)amp T 1=1 F

Emax= MAX {IA(jktl) - ARFAI(IkilI I = 1, 2, , .. , I , (3-8)

where A(Jkil) and ARFA(Jkil) are the original and fitted amplitude at
avfrequency k11, and E ap is the root mean squared error (Euclidean norm)

max
Lbetween the fitted amplitude and the original one. The quantity Eamp is

defined as the maximum error (infinite norm) between the fitted amplitude

and the original one. Similar definitions are used for the phase errors.

The dimension of the phase used here is degree.

A "best approximate solution" of a system generally will have

different solutions for different choices of the norm. The root mean

squared error and the maximun error are calculated in each run using

different data sets. From various trials and errors, the least error in

the sense of Euclidean norm or infinite norm is selected and the "best"

fit is obtained.

In applying the rational function approximants to a set of

simulated data, there are a number of parameters which must be chosen

before running the program, the orders of the system (M and N) and the

selected sample data points. Therefore, to better understand the

limitations of the unknown system orders and to gain experience in the

18 4
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selection of the data points, it is helpful to consider first the -

simulated real-frequency backscattering data of a conducting sphere

where the complex natural resonances and the corresponding residues are

well known [7, 25]. Some of the lower order true poles and residues of

a conducting sphere (see Table 3-1) [25) are used in Equation (3-9) to

generate sets of simulated data.

ES(X)= RI + Ri3-9)

where Es(X) are the simulated data and R1, Pi' are poles and

residues respectively. X is jkl and X* denotes complex conjugate.

In generating simulated data to test pole extracting procedures,

actual poles and actual residues of the sphere were used. Much too -

often researchers have assumed equal excitation of all poles (a very

unrealistic ass.umption) and correspondingly shown misleading results for

particular pole extraction techniques. In principle, the generated

simulated waveforms could be exact if many more pole-pairs were used.

* ". However even here, great care must be exercised in using residue series

summations [26).

B. EXAMPLE 1: SIMULATED SPHERE DATA USING FOUR POLE-PAIRS

In this example, only the first four pairs of poles and the

corresponding residues in Table 3-1 are used in Equation (3-9) to

generate a set of simulated scattering data. The data are generated in

19
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TABLE 3-1

TRUE POLES 4D RESIDUES* USED FOR GENERATING SETS OF-

SIMULATED DATA

Simulated Poles Simulated Residues

(true poles of a sphere) (true residues of a sphere)

-0. 500000+/-.JO.866025 -0.0946447-/+0.516674

-0.701964+1-i.80740 -0.633323 -/+0.0853256

-0.842862+/-J2.75786 -0.0802221+/-JO.733736

-0. 954230+/-j3 .71478 -0.822075 +/-JO.0767481

-1.04764 +/-J4.57641 -0.0741270-/+J0.901805

-1.12891 +/-.15.64163 -0.0664705+/-JO.223154

*The units of the poles and the residues are in ka, where k is -

the wavenumber and a is the radius of the sphere.- -

d.W
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the real frequency domain from ka of 0.2 to ka of 4 in the increment of

0.02 ka, i.e., 191 data points are generated. Then, a rational function

approximant of order (M,N) as (8,7)* is applied to the above set of

data. Since there is no Rayleigh region in this set of simulated data,

the dependence is taken out from Equation (3-2). Thus, model II is

defined as

EnN (N
EX 1) = (aX /i +I b 1 1, 2, . . . , . (3-10)

n=O m ul MX M
--

r The data points used in the rational function approximant are

arbitrary and need not be equally-spaced in frequency. A typical plot of

a rational function approximation to the above simulated data is in

* Figures 3-1 (amplitude) and 3-2 (phase) for (M, N) as (8,7) and in

Figures 3-3 (amplitude) and 3-4 (phase) for (M,N) as (20,19)"*. As can

be seen in the plots, the rational function model with the above system

orders fitted all the data points so well that the original and the

fitted curves of both amplitude and phase cannot be distinguished in the

* iplots.

* 8 is the smallest system order for the simulated data using four

pole-pairs (eight poles); N of 7, i.e., N of (M-1), is the best choice
L for the RFA to fit the original data but satisfies Equation (3-9),

i.e., the order of the numerator is one order less than that of the
denominator.

• The system order M of 20 Is chosen because the RFA programs of order
higher than 20 are close to the maximum capacity of the computer

L -(VAX 11/780) used in the calculation.
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Figure 3-1. The RFA for (?,N) as (8,7) fit to the simulated data -
using the first four pole-pairs and residues for the
sphere. The x's are the data points used for the RFA.
The amplitude plot of the RFA (dashed line) gives a good
fit to the original amplitude data (solid line). The
corresponding phase plot is given in Figure 3-2.
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corresponding phase plot is given in Figure 3-4.
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Figure 3-4. The RFA for (MN) as (20,19) fit to the simulated data

using the first four pole-pairs and residues for the
sphere. The x's are the data points used for the RFA.
The phase plot of the RFA (dashed line) aives a
good fit to the original phase data (solid line).
The corresponding amplitude plot is given In Figure 3-3.
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Besides the original curve (solid line) and the RFA (dotted line),

a third one (dashed line) is generated (see Equation (3-9)) using the

poles and residues obtained from the RFA. Actually these procedures are

routine in the RFA program to check the accuracy of the extracted poles

and residues. The approximation is such that only the solid line can be

seen in the RFA plots. The zeros, poles, residues and magnitude of

residues are listed on the amplitude and phase plots. The advantage of

these listings is to see the true poles, curve fitting poles, and the

cancellation of poles and zeros before the true poles and residues are

deduced. It is noted that only M complex data points are used to solve

the linear system equations in the exact sense. The average errors* of

the RFA to the above set of simulated data are of the order of 1.E-5 in

amplitude and 1.E-4 in the phase (in degrees). The numerical accuracy

of the entire rational function program was tested using the data in

Example I for various system orders and various input data points. In

all cases the programs were found to be very accurate. Therefore, it is

assumed that the program can be applied routinely to other scattering

data without worrying about numerical errors generated within the

program i tsel f.

The poles and the residues extracted via the rational function

approximants using different system orders M, N, and different sets of

selected data points are listed in Table 3-2 for (M,N) as (8,7) and

* Since the data are exact for these poles (residues), only trancation

contributes to the errors. Obviously the error is dependent also on
the selected sample points.
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TABLE 3-2

A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES
AND EXTRACTED RESIDUES FOR (M,N) AS (8,7); FOUR PAIRS OF POLES

AND RESIDUES* ARE USED IN THE SIMULATED DATA

Poles

True Extracted Percentage of Error

Real Imaginary -

-0.50000 +/-JO.866025 -0.50000 +/-JO.866025 O.EO O.EO

-0.701964+1-il .80740 -0.701962+/-il .80740 1.04E-4 2.07E-4

F-0.842862+/-J2.75786 -0.842859+/-J2.757866 1 .03E-4 4.97E-5

-0.954230+/-J3.71478 -0.954238+/-J3.714782 2.08e-4 4.97E-5

Resi dues

True Extracted Percentage of Error

Real Imaginary

-0.0946447+1-JO. 516674 -O.094644-/+JO.516674 1.33E-4 O.EO

*-0.633323 -/+JO.0853256 O.633320-f+JO.08533 4.76E-4 3.75E-4

0.0802221+/-JO.733736 0.08024 +/-JO.73373 2.42E-3 8.07E-4

-0.822075 +/-JO.07674781 -0.822088+/-JO.07676 1.57E-3 1.48E-3

*The units of the poles and the residues are in ka, where k is the
wavenumber and a is the radius of the sphere.
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Table 3-3 for (M,N) as (20,19). The maximum and the average discrepancy

of the fitted amplitude and the original amplitude, the fitted phase and

the original phase are listed in Table 3-4. Obviously, the smaller the

maximum amplitude discrepancy or the smaller the average amplitude

discrepancy, the closer the fitted curve is to the original one m

(similarily, for the phase error). Correspondingly, the extracted poles

are closer to the original poles. The percentage error (P.E.) is

defined for both real part and imaginary part of the extracted poles as

P. E. of real part = IReal part (Poleext.Poletrue)l , (3-11)
SIPol I-oL etrue

P. E. of imaginary part = IImag. part(Poleext.-Poletrue)l , (3-12)

etruel :2

where Poleext. is the extracted pole and Poletrue is the true pole.

Similar definitions are used for the residues. A comparison of

extracted poles, the percentage error of extracted poles and the errors - -

of amplitude and phase are also shown in Table 3-4.

As can be seen in Tables 3-2 to 3-4, various system orders of

the RFA have been applied to the same data set to see the effect of the

system order on the accuracy of the extracting poles. However, no

obvious result has been found in this simple simulated example except

that the system order should not be less than the number of simulated

system poles. For real targets there are an infinite number of
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* TABLE 3-3

A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES
AND EXTRACTED RESIDUES FOR (M,N) AS (20,19); FOUR PAIRS OF POLES
AND RESIDUES* ARE USED IN THE CALCULATION OF THE SIMULATED DATA

True Poles Extracted Poles Percentage Error

real imaginary

-0.50000 +/-J0.866025 -0.50000+/-JO..86602 O.EO 4.95E-4
-O.701964+/-Jl.80740 -O.70196+/-Jl,80741 2.06E-4 5.16E-4
-0.842862+/-J2.75786 -0.84283+/-J2.75791 1.11E-3 1.74E-3
-0.954230+/-J3.71478 -0.95421+/-J3.71492 5.22E-4 3.65E-3

rCurve fitting Poles* Curve-fitting Zeros

0. 19396+/-JO.78060 -0.19396+/-J0.78060
0.23181+/-Jl .51326 -0.23181/-il .51327

-0.39652+/-Jl .86546 -0.39649+1-il .86548
0.12284+/-J2 .97965 0.12284+/-J2.97967
0.18009+/-J3.84572 0.18008+/-j3.84573
0.43016+/-j2.16078 0.43016+/-J2.16079

Extracted Zeros

-0.38086+/-j3.01887
-0. 16461+/-JI.68440

* -1.16102+/-JO.L
1.29822+/-J0.

-l .42429+/-J0.

True Residues Extracted Residues"* Percentage Error

-O.0946447-/+JO.516674 -0.09463-/+JO.51668 2.79e-3 1.15E3
0.633323 -/+10.0853256 0.63332-/+JO.0854 4.76E-4 1.16E-2
0.0802221+/-iO.733736 O.08046+/-JO.7335 3.22E-2 3. 197E-2
-0.822075 +/-JO.07674781 0.8219 +/-10.07706 2.119E-2 3.781E-2

*The units of the poles and the residues are in ka, where k is the __

wavenumber and a is the radius of the sphere.

**All extracted residues corresponding to the curve-fitting poles are
in the order of 1.E-5 or less for both real and imaginary parts.
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TABLE 3-4

THE EXTRACTED POLES AND THE ERRORS BETWEEN
THE RATIONAL FUNCTION FIT AND THE ORIGINAL
DATA (SIMULATED DATA USED IN EXAMPLE 1)*

True poles RFA Model I Percentage Error
M = 14, N =13 Real Part Imag. Part-

-0.500000+/-JO.866O25 -0.50000 +/-JO.866O22 0.EO 2.98e-04
-0.70196 +/-J1.80739 -0.7019523+/-Ji.80743 6.06E-4 1.55E-3
-0.842849+/-J2.75786 -0.84282 +/-J2.75741 1.457E-3 1.56E-2
-0.954299+/-J3.714787 -0.9648 +/-J3.7253 0.27 0.27--

MAX. AMP. ERROR 0.19E-5
AVE. AMP. ERROR 0.2E-6
MAX. PHA. ERROR 0.1068E-3
AVE. PHA. ERROR 0.155E-4

RFA Model II Percentage Error 7
M = 14, N =13 Real Part Imag. Part

-0.499998+/-JO.86606 2.E-4 3.505E-3
-0.70196 +/-J1.80738 2.06E-4 1.03E-3
-0.84295 +/-J2.75778 3.05E-3 2..77E-3-
-0.95515 +/-J3.71550 2.4E-02 1.877E-2

MAX. AMP. ERROR 0.5E-6
AVE. AMP. ERROR O.1E-6
MAX. PHA. ERROR 0.916E-4
AVE. PHA. ERROR 0.148E-4

RFA Model I Percentage Error
M = 16, N = 15 Real Part Imag. Part

-O.499997+f-JO.866023 3.01E-4 1.97E-4
-O.701981+/-JI.80739 8.76E-4 5.16E-4
-0.84286 +/-j2.75810 7.03E-5 8.33E-3
-0.95048 +/-J3.71478 9.78E-2 0.EO

MAX. AMP. ERROR 0.19E-5
AVE. AMP. ERROR O.2E-6
MAX. PHA. ERROR 0.176E-3
AVE. PHA. ERROR 0.187E-4

*The units of the poles and the residues are in ka, where a is the
radius of the sphere and k is the wavenumber.
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singularities in the system transfer function. However, over a limited

spectral span only a finite number, hopefully small, will contribute

significantly.

C. EXAMPLE 2: SIMULATED SPHERE DATA USING SIX POLE-PAIRS

It is well known that there are an infinite number of pole pairs

now for a scatterer [4]. To generate a set of simulated data similar to the

-. real scattering ones, six pairs of simulated poles and residues (Table

S"3-1) are used in Equation (3-9). The simulated data (ka of

' 0.2(0.02),4.) are generated in the same way as that in example 1 except

that 2 more pole pairs and the corresponding residues outside the

original spectrum are used in Equation (3-9). Once again, the RFA

routine is used to extract poles from this set of simulated data. The

original data and fitted data are plotted in Figures 3-5 and 3-6. The

extracted poles are shown on Table 3-5.

The two highest frequency pole-pairs are not as close to the

original ones as as those found in example one because the two pairs of

poles outside the original spectrum have some influence on the extracted

poles, especially over the higher frequency portion of the spectrum.

This is one of the reasons why curve fitting poles are obtained when the

rational function approximants are used and the reason why the system

order should always be chosen higher than the number of poles

actually desired. The number of true poles is known in these simulated

data but the number of true poles in a set of calculated data or

L
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TABLE 3-5

A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES
AND EXTRACTED RESIDUES FOR (M,N) AS (14,13); 6 POLE-PAIRS AND THEIR

CORRESPONDING RESIDUES ARE USED IN THE GENERATION OF
SIMULATED DATA

Poles (M4 14, N =13)*
True Poles Extracted PolesPectgrr

-0.50000 +/-JO.866025 -0.499995+/-JO.866023 5.E-4 1.97E-4- -

-0.701964+/-J1.80740 -0.70203 +/-J1.80746 3.4E-3 3.1E-3 *.

-0.842862+/-j2.75786 -0.8427 +/-J2.7572 5.62E-3 2.29E-2
-0.954230+/-J3.71478 -0.9689 +/-J3.7213 0.382 0.17

Residues M74 14, N =13)
True Residues Extracted residues Pec~ag rg

-0.0946447-/+JO.516674 -0.094641-/+JO. 516647 7.05E-4 5. 14E-3
0.633323 -/+JO.0853256 0.6337 -/+JO.08573 5.8994E-4 6.328E-2
0.0802221+/-JO.733736 0.07635 +1-J0.7326 0.5246 0.154
-0.822075 +/-JO.07674781 0.924 +/-JO.07676 12.34 6.63E-2

*The units of the poles and the residues are in ka, where k is
the wavenuber and a is the radius of the sphere. Also the.
three pairs of curve fitting poles and the corresponding
residues are not shown here.
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L Figure 3-5. The RFA for (M,N) as (14,13) fit to the simulated data

using the first six pole-pairs and residues for the
sphere. The x's are the data points used for the RFA.
The amplitude plot of the RFA gives a good fit to the
original data (solid line). The corresponding phase plot
is given in Figure 3-6.
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Fi gure 3-6. The RFA for (M,N) as (14,13) fit to the simulated
data using the first six pole-pairs and residues for the
sphere. The x's are the data points used for the IRFA.
The phase plot of the RFA (dashed line) gives a good
fit to the original data (solid line). The corresponding
amplitude plot is given in Figure 3-5.
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measured data is unknown. A detailed discussion on the determination -

of the system order is given in a later section.

D. EXAMPLE 3: CALCULATED BACKSCATTERING DATA FOR A CONDUCTING SPHERE

The spectrum of a conducting sphere [27] used to test rational

function approximants is from ka of 0.2 to ka of 4 in the increment of

S -0.02 ka, i.e., 191 data points are available. To test the rational

function approximation in application to this set of calculated data, M

is set to be the number of poles where the imaginary parts are within

the given spectrum first. As discussed before, the extracted poles are -

not accurate if the system order M is less than the number of true

poles. However, a better result can be obtained if the system order is

set around twice the number of the true poles in the system.* -

After the polynomial orders (M and N) are selected for testing,

different sets of data points are used and the defined errors in

amplitude and phase are calculated. Table 3-6 is a comparison of the

. extracted poles and their percent errors. Figures 3-7 to 3-10 are plots

- of the rational function fit under two different sets of (M,N) ((14,13)

o and (16,15)). Obviously, the original curve and the fitted curve agree

so well that they cannot be distinguished in the plots of both amplitude

and phase. However, the results fit better for (M,N) as (14,13). If

different sets of selected data points are used for the RFA, the results

* Basically, the extra orders (the orders which are higher than the
number of true poles) are required for the curve fittings

-L although the curve-fitting poles have no physical meaning.
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TABLE 3-6

A COMPARISON OF EXACT POLES AND THOSE EXTRACTED* FROM
CALCULATED DATA FOR SPHERE VIA RATIONAL FUNCTION

APPROXIMATION

True Poles Extraced Poles PercentageError- -
M =4N = Real Part Imag. Part

-0.50000 +/-JO.866025 -O.500000+/-JO.86662 O.EOO 5.95E-2
-0.701964+/-Jl.80740 -0.70193 +/-Jl.8028 1.75E-3 0.237
-0.842862+/-J2.75786 -0.84244 +/-J2.76213 1.463E-2 0.148
-0.95423 +/-J3.71478 -0.9175 +/-J3.6829 0.9576 0.8312

M =16, N 15
(exact fit)

-0.50087+/-jO.86575 8.7E-2 2.75E-2
-0.71008+/-Jl .79815 0.42E0 0.48E0
-0.84535+/-J2.76718 8.63E-2 O.32E0
-0.9076 +/-J3.69581 1.22E0 0.49E0

*The units of the poles are in ka, where k is the wavenumber,

a is the sphere radius.

36



zealpart INSOMY put zel Put iwqinay part

9.4817,41 X]O 2.824622 XIO "' -7.592795 X10' 4.42Th72Y:Z, .
-1.405259 XlO °  -S.480211 X1O °  -7.59283& X1O -1 -4.427870 X:00

_ -1.40s260 X0oo S.480212 xOO -9.175043 X O-  -3.6 217 Y:320

-2.986803 X1O "1  -4.152524 XIO o  -9.17513 X1O"1  3.6a29;2 XO o

-2.986795 XlO "  4.152524 XIO o  -9.424443 XlO' -2.762!,27 XO o

-2.295278 X10-1 -2.949347 EQ0O -8.424373 X10-1 2.7621I:5 Y.100

-2.298284 X10-3 2.949347 XO O  -7.019316 X1O"1 -1.802941 Xo
-1.392493 X10-1 -1.740495 X1Oo  -7.019265 X10-1 1.802334 X10 o

-1.392492 X10-1 1.740496 XIO o  -7.112110 X10-1 -1.218378 XIOO
-1.231629 XO -7.673954 X10 -2 -7.112207 X10-3 1.216378 XIG2
-1.231829 X0O°  7.873953 X10 -  -1.340053 X1O °  -5.872938 X!3-6
-7.211325 X1O

"3 -1.209984 X1O °  -3.116686 XIOO 5.496470 X1C
S

-7.211317 X10- 1.209983 XIO o  -4.999974 XlO-3 -8.666176 Xio".
. -4.999950 X10 8.666193 X "10."

CD

M= 114
- N= 13

a:

10

C0 o 1.0 2.0 3.0 4.0 s.0 6.0

Figure 3-7. The RFA for (MN) as (14,13) fit to the calculated data
for the sphere. The x's are the data points used for the
RFA. The amplitude plot of the RFA (dashed line) gives
a good fit to the original amplitude data (solid line).

LThe corresponding phase plot is given in Figure 3-8.
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the RFA. The phase plot of the RFA (dashed line) gives a
good fit to the original phase data (solid line). The
corresponding amplitude plot is given in Figure 3-7.
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may differ somewhat, but they are still within the same order of

accuracy.

E. IDENTIFICATION OF THE TRUE POLES AND THE CURVE FITTING POLES

With proper use of rational function approximants, the polynomial

order required is always higher than the number of true poles.

Therefore, the following rules are used to help to identify the true

extracted poles and curve fitting poles in any test.

1. Pole locations found which are in the right half plane are

assumed to be curve-fitting poles. Clearly, right-half plane poles

would make the transient response unstable.

2. Poles whose corresponding residues are relatively small compared

to others obtained with that test are assumed to be curve-fitting poles. L:_
The reason is that the pole-pairs having very small residues contribute

little to the time domain response or to the frequency domain response.

Models with higher orders have too much detail about the data. The fine

detail of the data may be due to the numerical errors from the machine

computation or from using a less perfect model in the original data

calculation.

3. Poles which can be approximately cancelled by zeroes are curve

fitting poles. This type of cancellation is due to the polynomial

orders, N and N, being overdetermined (too large) both in the denominator

and numerator.
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4. Poles which have only a real part or whose real parts are very -

large compared with other extracted poles are assumed to be curve

fitting poles. Poles with large negative real parts make the

corresponding transient response decay so quickly that they make little

contribution in the total transient response.

Therefore, all of the above poles are assumed to be due to noise or

errors in the original data and are classified as curve fitting poles.

It is true that poles with only real parts exist for certain targets,

the conducting sphere is an example. A real pole showing consistently

for numerous tests would be reexamined. -

F. THE SELECTION OF DATA POINTS

If the matrix equations are solved in the exact sense, the number -

of data points used ((MIN+1)/2) or ((M+N)/2+1) is limited by the number

of unknowns (M+N+I1). Equally spaced interpolation may or may not yield

the best fit for a rational function approximation. On the other hand,

data points sampled at relative maxima and minima of amplitude are

always a good choice for the best fit. This is deduced from

observations of the applications of the rational function approximants

to numerous sets of scattering data. Furthermore, in most cases, one

additive data point chosen between the adjacent relative maximum and

minimum is helpful in making the error smaller. -

Although there is no general proof, the following technique is used

and works reasonably well. The amplitude and phase error at all the

.16J
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data points must be computed. For points where the error is large, the

sample points are moved closer together; and where the local error is

small, the samples are moved farther apart. With this new choice of

sample points, the process is repeated until the error is as small as

possible and is distributed evenly.

If the matrix equation is solved in a least squared error sense,

there is no limitation on the number of data points used in solving an

. overdetermined system. (However, the sampling rate has been shown to be

related to the accuracy of the extracted poles using the least squared

error solutions in Prony's Method £28).) The application of least

squared error solutions to pole estimation in the frequency domain using

- .the RFA will be shown in Chapter IV.

*G. LIMITATION OF THE SYSTEM ORDER M

For a large system order (for example, M greater than 20), the

rational function approximant program may fail due to overflows in the

computer during the computation. The machine used in this application,

" .VAX 11/780, has a capacity in the range of 0.29 E-38 to 1.7 E+38 for

floating point numbers in double precision. In our applications, the

overflow happens in the subroutine Opolyrt (a zero-searching routine)

during its calculation of zeros, if M is roughly greater than 20. It

seems that the overflow or ill-conditioning never happens in the

subroutine Crout (a modification of Gauss reduction to solve a set of

. linear system equations) as lonq as M is roughly less than 20 if the VAX
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11/780 machine is used. Therefore the parameter M is always taken to be

less than 20.

- H. POLES EXTRACTED VIA A WINDOW TECHNIQUE

In some situations the data available may be, 1) from too large a -

spectral span to be covered with one rational function approximation, 2)

*without low-frequency content due to difficulties in measurement, or 3)

inaccurate over the low frequency portion if calculated data are being

used because of an inherent limitation of the method, e.g., Uniform

Geometrical Theory of Diffraction (UTD). Thus, a window technique

:. (rectangular window) has been developed for extracting poles in the

above situations.

This rectangular window is generated simply by taking sample points

over a band limited region of the spectrum. Then the RFA is fitted

accurately over only that region and the extracted poles (whose

imaginary component falls in the appropriate range) are accurate. Model

* II given below is used in the window technique.

n N M
E ) = anXn /1 + I b Xm m = 1, 2, . . . , I . (3-13)

n=O m=1m i

where now an X2 in the numerator is taken out since there is no Rayleigh
i

region. It is noted that due to a truncation of data on both sides of

the window, the lowest and highest frequency of oscillation poles

l extracted via this technique are not very accurate. However, the rest

within the window are still very close to the true poles.
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Plots using this window technique applied to the backscattering

data of a conducting sphere are shown in Figures 3-11 to 3-13. These

plots show that curves within the window fit well both in amplitude and

phase. In Table 3-7, the first two pairs of poles are extracted via

window I (ka of 0.36 to 2.4), the third and fourth pairs of poles are

extracted via window II (ka of 2.1 to 4.2) and the last two pairs of

- - poles are from window III (ka of 3.9 to 5.9). Obviously, as the windows

move to higher frequencies, the percentage errors are still in the same

order. The rational function model is inherently more accurate at low

r frequencies than at high frequencies. This was initially suggested by

Kennaugh and Moffatt [2] who noted that for a distributed parameter

: .. system a lumped parameter approximation can best be utilized where the

scattering or radiation properties of the object are essentially global,

i.e., not dominated by portions of the object. A more subtle

distinction is made by examination of the K-pulse [6) which notes

something missing from the singularity expansion method [SEMI. " -_

,. The width of the window is chosen such that at least three pairs

of poles are covered in the spectrum. The first and the last pair

of poles are deleted because the truncation of data makes these poles

-. inaccurate. Also note that the poles extracted using one RFA over the

whole spectral span (one window) have almost the same order of accuracy

L [as those extracted using three RFA and three overlapped windows over the
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TABLE 3-7

A COMIPARISON OF TRUE POLES AND POLES* EXTRACTED VIA-
WINDOW TECHNIQUE

Exact Poles of Sphere Poles Extracted via RFA & Percentage Error
Windows (Three) Technique RelPr agPrt.

-0.500000+/-JO.866025 -O.5003+/-JO.86610 (WI )**

3.80E-2 7.50E-3

-0.701964+/-J1.80740 -O.7086+/-Jl.8133 (WI) 0.342 0.304

-0.842862+/-J2.75786 -.8766+/-j2.7483 (WII) 1.17 0.332

*-0.954230+/-J3.71478 -0.9277+/-J3.7388 (WII) 0.692 0.626

-1.04764 +/-J4.67641 -O.9996./-J4.6191 (WIll) 1.002 1.196

-1.12891 +/-JS.64163 -1.1338+/-J5.5328 (WIll) 8.50E-2 1.891

*The units of the poles are in ka, where k is the wavenumber and
a is the sphere radius.

**WI denotes window I.
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Figure 3-11. The RFA fit to the calculated data for the sphere -
within the frequency of interest (window I). The x's are
the data points used for the RFA. The amplitude plot of
the RFA (dashed line) gives a good fit to the original

amplitude data (solid line) within the window.
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Figure 3-12. The RFA fit to the calculated data for the sphere .-
within the frequency of interest (window II). The x's are
the data points used for the RFA. The amplitude plot of -"
the RFA (dashed line) gives a good fit to the original i
amplitude data (solid line) within the window..-.

48 J -

-. , ._ _ . . _. -



- --. 7 - a

AZ 4o

g zad put so linam gat tal ga pt JMB JGIsgty part

1.052375 X10' 1.225258 X10
"  -9.887772 X10

-1 6.25r,"€! MW .Z.

-S.331648 X10-
n 2.530583 X10

0  -9.888250 XD-1 -6.255767 X100
: -5.331650 X10 -1 -2.530b-32 X10 0  -2.607428 XiO "  4.512208 X10'

-3.008935 X10-1 4.154336 X10 0  -2.809372 X10 -1 -4.512212 XO. -
-3.008314 X10-1 -M.15430Y X100 -1.133377 X10 0  5.532500 X13 0

" -2.808141 X10-: '.512299 X10 0  -1.133761 X10 0  -5.532757 X104
-2.809772 X10-1 -M.512367 X1O 7.619740 X10 0  3.131265 X10-9
-U.571337 X10-1 6.586211 X10 0  -U.553929 X1Oa 0.000000 X100
-'1.571332 X10 -1 -6.586199 X1OD -9.996915 X1O- n  4.618969 X10 0

1.137515 X10-' 5.100283 X100  -9.995255 X10-' -1.619159 X10-
1.137699 X10-1 -5.100148 X10 0  1.137866 X10-1 5.100226 XLO.
-3.544716 X10

-1 5.360181 X100  1.137701 X10-  -5.100145 X10 -

-3.543896 X10-1 -57360293 X100  -7.591943 X10-' 3.695371 Xl0 0  A
-7.592175 X1O-3 -3.695393 X100

Window III

r (ka-3.9 to 5.9)

U!'

-.

cc" 
°

-

C

I * I I I- I *

900 1'0 2.0 3.0 '1.0 5.0 6.0

FRlEQU[NCY (kO)

Figure 3-13. The RFA fit to the calculated data for the sphere
within the frequency of interest (window III). The x's are
the data points used for the RFA. The amplitude pl ot of
the RFA (dashed line) gives a good fit to the original
amplitude data (solid line) within the window.
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whole spectral span. The detail of this application to some -I

experimental data will be demonstrated in a later chapter.

I. ADDITIVE NOISE AND ITS EFFECTS ON POLES EXTRACTED VIA RATIONAL

FUNCTION APPROXIMATIONS

Up to this point, the rational function approximation has been

applied to extract the complex natural resonances from sets of noiseless -

data. However, in any measured system noise, clutter and uncertainty

* are inevitable. Two types of pseudo-noise are considered in this

section. One type is simply the calculated data rounded to the kth

- decimal. The other type is an uncorrelated Gaussian* white noise added

to the calculated data. For the first test, both the real and imaginary

part of the calculated sphere data are rounded to the kth decimal. .- -

The rational function routine is applied to these sets of data with

system order for (M,N) as (14,13). This set of system orders is chosen

because the system with these orders works reasonable well (see Figures '--

3-7 and 3-8) for eight poles in the spectrum, i.e., about twice the

number of poles. For a general problem, an estimate of the number of

poles can be obtained from the measured amplitude spectrum. Tables

3-8 to 3-9 show comparisons of extracted poles from data rounded to the

*: 2nd, and to the 1st decimal respectively. Obviously, as k decreases,

the extracted poles move away from the true ones.

* The Gaussian random number generating subroutine-Gauss in IBM
Scientific Subroutine Package (SSP) is used.

I. ~I
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TABLE 3-8

- A COMPARISON OF TRUE POLES AND EXTRACTED POLES*
USING THE RATIONAL FUNCTION APPROXIM4ATION TO THE BACKSCATTERING

DATA OF SPHERE

True Poles Extracted Percentage of Error i
(M 16, N =15) Real Part Imag. Part

-0.50000 +/-JO.866025 -0.5398+/-JO.80699 3.98 5.903
-O.701964+/-Jl.80740 -0.8233+/-.J1.8558 6.257 2.496
-0.842862+/-J2.75786 -1.0036+/-J2.8927 5.574 4.676
-0.954230+/-j3.71478 -0.9817+/-J3.7629 0.716 1.254

(NM 14, N =13) Real part Imag. Part

-0.51964/-JO.8159 1.96 5.01
-0.77214I-j1.8882 3.617 4.167
-0.9394+/-J3.1347 3.348 13.07
-1.4014+/-J3.5855 11.65 3.37

*The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.

-~The data were rounded to 2nd decimal.

L:E
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TABLE 3-9

A COMPARISON OF TRUE POLES AND POLES EXTRACTED
USING THE RFA TO THE BACKSCATTERING DATA FOR A SPHERE*

True Pole Extracted Poles Percentage of Error
(M =16, N =15) Real Part Imag. Part

-0.500000+I-JO.866025 -0.4525+/-Jl.012 4.75 14.59
-O.701964+/-Jl.80740 -0.4898+/-j2.009 10.94 10.39 -

-0.842862+/-J2.75786 -0.3040+/-j3.2430 18.69 16.82 --

-0.954230+/-J3.71478 not located-

(M 22, N =21) Real Part Imag. Part

-0.415 +/-JO.8779 8.5 1.148
-0.5548+/-Jl.7920 7.59 0.794
-0.5674+/-J2.6454 9.55 3.899
-0.4200+/-J3.7250 13.93 0.266

*The data were rounded to 1st decimal.
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The second type of noise is uncorrelated Gaussian random noise with

zero mean and a standard deviation. Two uncorrelated Gaussian random

processes with a zero mean and a standard deviation of o which are

- generated from two different seeds are added to the real and imaginary

-_ parts respectively of the calculated data for the sphere. The

, signal-to-noise ratio is defined as

,[ N -.
S/N(dB) = 10log A J)N 12 (3.14)

where A(X1 ) is the amplitude of signal at frequency Xi, and N is the L

total number of samples used.

These noisy data are fitted by the rational function in the exact

sense. Figure 3-14 is a typical example of rational function fit to the .

noisy data, where the noise level is a of i.E-1. The extracted poles

.- under different noise levels are listed in Table 3-10. It is easy to

see that the discrepancies between the extracted poles and the true

poles are increased as the noise level is increased. Furthermore, the

rational function approximants may fail to extract the complex natural

resonances at all when the S/N is below 20 dB or so. Based on the above

characteristics of noise effects, several preprocessing techniques will

be used to preprocess the noisy data. These preprocessing techniques

t are described and are applied to several sets of noisy data for the

sphere in the following section.
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TABLE 3-10

COMPARISON OF EXACT AND EXTRACTED POLES OF SPHRE
USING THE RFA TO THE NOISY DATA FOR THE SPHERE

IPoles Extracted via RFA (in the exact sense)
True Poles a02.E-2(Run 1) a=2.E-2(Run 2)

*-O.500000+/-JO.866025 -0.5362 +/-jo .9616 -0.4386+1-J0.80129
-0.701964+/-JIl.80740 -0.4745 +/-il .9577 -O.6482+I-Jl.8509

-- 0.842862+/-j2.75786 -0.38518+/-j2.643 -0.9795+/-J2.7384-
-0.954230+/-j3.71478 -0.4745 +/-j3 .538 -0.6285+/-j3.5081

-0.439 +/-JO.5497I-0.295 +/-31.6033J
-0.2574+/-J2.784
not located

Run I and 2 used different data points.

*The units of the poles are in ka, where k is the
wavenuiuber and a is the sphere radius.

*Two Gaussian white noise generator (using two different
seeds) with standard deviation a are added to the
backscattering data for the sphere. The signal to noise

* ratio corresponding to aof 1.E-I is 18.37 dB.
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0.1 is added to the calculated data for the sphere.

Tex's are the data points used for the RFA.
The amplitude plot of the RFA is plotted as a dashed

line (SIN of 18.37 dB).
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J. PREPROCESSING TECHNIQUES

1. Preprocessing With Zero-Phase-Shift Digital Filter

In general, a digital filter is defined in the z-domain as

N anzMN -
H(z) = z' (1 + bi ) , (3-15)I=1 l 1 -1

where aj and bt are coefficients which determine the behavior of the

filter. Emphasized in this section is the design of a high order (10)

lowpass digital filter with zero-phase-shift, where the 3 dB cutoff

frequency is movable. The Butterworth approximation is used because it

is a maximally-flat amplitude approximation. In order to obtain a 10th

order zero phase shift digital filter, a 5th order lowpass Butterworth

digital filter is designed first. Then, a complex conjugate filter
* HT

H (z) is cascaded to H(z). Thus, the total filter H ( is a 10th order -.

lowpass filter with zero phase shift.

HT~z) = H(z) H*(z) = IH(z)I 2  00 (3.16)

The details of the zero phase shift digital filter and its

implementation are described in Appendix A. Comparisons of the filtered

data with a 12.35 dB S/N (see Figure 3-20 for the noisy waveform) and

the original noiseless data are plotted in Figures 3-15 (amplitude) and

3-16 (phase). The 3 dB cutoff frequency fc is set at 20 Hz, the RFA are

applied to the filtered data. The extracted poles and the percent -

* Corresponding to 6.29 TAU (diameter transit time) of the impulse
response (see Appendix A).
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- LFigure 3-15. A comparison of amplitude plots for the calculated data
L(solid line) and the filtered data (dashed line) for the-

sphere. The filtered data are obtained by filtering
the noisy data (calculated data with additive Gaussian
random noise) using a 10th order zero-phase-shift digital
filter. The 3 dB cutoff frequency "c is set to 20 Hz.
The signal-to-noise ratio is 12.35 dB before filtering.
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Figure 3-16. A comparison of the phase plots for the calculated data
(solid line) and the filtered data (dashed line) for the
sphere. The filtered data are obtained by filtering
the noisy data (calculated data with additive Gaussian
random noise) using a 10th order zero-phase-digital
filter. The signal-to-noise ratio is 12. 35 dB before
filtering.
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errors are shown in Table 3-11. Note that the extracted poles are

15 percent in error in the real part and 10 percent in error

in the imaginary part. Therefore, the minimum signal-to-noise ratio

which can be tolerated is about 15 dB.

2. Preprocessing With Sum Operator

After some initial manipulation the technique in using the rational

function approximation is to solve the matrix equation AX = B, where A

is an mxn matrix, B is an mxl matrix, and X is an nxl unknown column

rmatrix. It has been shown that the least squared error method is very
sensitive to noise and has no guarantee of convergence if an iterative

search is used [25J. As will be shown in Chapter IV , there are some

advantages to solving the matrix equation in an exact sense rather than

solving it in a least squared error sense. However, there are many data

points which contain useful information and are corrupted by noise to a

certain extent but are unused.

To extract better poles from a set of additive noise data, a major

effort is to reduce the effect of noise to a minimun. The intention

here is to use the row echelon algorithms (which are used in Gauss - -

elimination) for an overdetermined matrix equation to reduce N rows to

one, i.e., N linear system equations can be scaled arbitrarily (say 1/N)

U and added together. A detailed description of the sum operator is shown

in Appendix B. It is expected that the noise in each element of the

matrix equation is reduced by a factor of about 1/N. Assuming that X(t)

L is an arbitrary stationary random process with mean T and variance a, -
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TABLE 3-11

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION AND 10th
ORDER ZERO-PHASE-SHIFT DIGITAL FILTER.*

Extracted Poles* Percentage of Error
Real Imaginary

Run 1

-0.415 ±j 0.802 8.50 6.40
-0.364 ±j 1.526 17.43 14.51
-0.361 ±j 2.744 16.71 0.48
-0.307 ±j 3.738 16.88 0.61

Run 2

-0.637 ± j 0.798 13.7 6.80
-0.752 ± j 1.716 2.58 4.71
-0.529 ± j 2.982 10.88 7.77

Average

-0.526 ±j 0.800 2.6 6.60
-0.558 ± j 1.621 7.42 9.61
-0.418 ± j 2.863 14.73 3.65

*The original signal-to-noise ratio: 12.35 dB. The 3 dB cut-off
frequency is set at _c of 20 Hz.

SThe units of the extracted poles are in ka, where k is the the
wavenumber and a is the sphere radius.
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then the following statistics* are true:

-N-

E( X/N)=X , (3-17)
* *1=1 ,:

N-
V ( X Xj/N)= a2/N , (3-18)

t11

where E and V are the expected value and the variance respectively, N is

* "the number of samples. Thus, the variance of the noise is reduced by a

factor of 1/N.

The rational function approximant with the sum operator was defined

in this study (see Appendix B). The sum operations are made in the

matrix equation formed by the RFA instead of in the sampled data. Then

the sum operator and RFA are applied simultaneously to a set of

calculated sphere data, where two Gaussian white noise processes

generated with two different seeds are added to the real and imaginary

parts respectively. It is noted that there is a tradeoff between the

noise reduction factor and the number of samples (N) used for the sum

operation. The noise term in each element of matrix A' (see Appendix B)

is enlarged by a factor X , where X is Jk a, M is a system order. If

the N sampled frequencies X1, X2 , . . . XN used for a group summation

are assumed to be close to each other, i.e.,

-- X1 -"X2 =-X3 . . •. XN  ,(3-19)':"

• John Neter and William Wasserman, Applied Linear Statistical Models,
Richard D. Irwin, Inc. Homewood, Illinois, 1974.
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where s means for almost equal to, then the noise reduction factor is -

1/N based on Equations (3-17) and (3-18). However, if the number of

samples used in the group summation N is large and Equation (3-19) is no

longer true, then the additive noise reduction factor is no more a

factor of 1/N. Nevertheless, too many samples as well as too few

samples in the group of sum operations still reduce the additive noise

significantly. Note the sum operator developed here does not reduce any -

of the signal itself. In other words, the sum operator can be applied

to a noiseless matrix equation, the solutions with or without a sum

operator are exactly the same. --

The manipulation of a sum operator in the elements of the matrix

equation is definitely better than that in the sampled data because the

sum operator defined here does not reduce the signal at all. It should

be noted that there is an optimal N so that the noise can be reduced as

much as possible. However, the search of the optimal N is beyond the

scope of this dissertation. The number of samples (N) used in the group

summation is set optionally at 10 in this dissertation.

The plots shown in Figures 3-17 and 3-18 (for S/N as 18.37 dB),

Figures 3-19 and 3-20 (for SIN as 12.35 dB), and Figure 3-21 (for S/N

as 6.33 dB) are amplitude plots of the original noisy data (solid line)

and of the fitted curve via sum operator in the rational function fit

(dashed line). Various sets of data points are selected from the first
ELd

two noisy data sets (S/N of 18.37 dB and 12.35 dB) respectively (see

Figures 3-17 to 3-20) and then the rational function approximations and
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Figure 3-18. The sum operator and the RFA (dashed line) applied
simultaneously to the noisy data (solid line) for the
sphere, where two Gaussianly distributed random noises - .
have been added to the calculated data for the sphere.
The data points (the x's) are different from those in
Figure 3-17. The signal-to-noise ratio is 18.37 dB
(amplitude plot).
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: ~Figure 3-19. The sum operator and the RFA applied simultaneously to _._
. the noisy data (soltd line) for the sphere, where two -

:' ~Gaussianly distributed random noises have been ...
" added to the calculated data for the sphere. The x's are
~the data points used in the RFA. The signal-to-noise
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~~ratio is is 12.35 dB (amplitude plot). ,
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Figure 3-21. The sum operator and the RFA (dashed line) applied to
the noisy data (solid line) for the sphere, where two
Gaussianly distributed random noises have been
added to the calculated data for the sphere. Note the
selected data points are marked by x's. The

signal-to-noise is 6.33 d8 (amplitude plot).
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the sum operators are simultaneously used to form system matrix

equations. The extracted poles are listed in Tables 3-12 and 3-13. ..

Averaged, the real part has 13.64 percent error and the imaginary

part 4.81 percent error for the S/N at 12.35 dB. For a S/N of 18.37 dB,

the real part has 10.5 percent error and the imaginary part 2.4 percent

error. The percentage error is 18.25 percent for the real part and 9.6

percent for the imaginary part for a S/N of 6.33 dB. The corresponding -

amplitude plot using a sum operator is shown in Figure 3-21 for S/N

" ratio of 6.33 de. The imaginary parts have been improved more than the

real part using the sum operator. The fact that the real parts of the

poles are very sensitive to noise is is well known in the extraction of

poles from the transient response waveforms.

3. Preprocessing with Both Digital Filter and Sum Operator 4

The functions of both digital filter and sum operator have been

discussed in the two preceeding sections. In order to extract the

complex natural resonances individually from a set of noisy data, the

two techniques are used sequentially. In the beginning, the original

data are preprocessed with a 10th order digital filter with the 3 dB

cutoff frequency fc. Then, the rational function approximant with sum

operator is applied to the prefiltered data for a fc of 20 Hz.* Two

examples are shown in Figures 3-22 and 3-23, where the amplitude of the

* The same reason for an fc of 20 Hz is given in Section J of this
Chapter.
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TABLE 3-12

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION
- AND SUM OPERATOR

Extracted Poles* Percentage Error
-S/N=18.37 dB (o--1.E-1) Real Imaginary

Run 1 (Figure 3-17)12702

-0. 5817+/-J 1.85826.0 22
-0.6737+/-j2.7798 5.87 0.76

r-0.4253+/-j3.7322 13.79 0.454

Run 2 (Figure 3-18)
-0.4047+/-JO.7592 9.53 10.68
-0.5807+/-J1.6620 6.25 7.499
-0.4970+/-J2.7006 11.99 1.985

*-0.3379+/-j3.6641 16.07 1.321

Run 3
-0.353+/-JO.8167 14.7 4.932
-0.564+/-J1.873 7.12 3.383
-0.6478+/-J2.7828 6.76 0.865
-0.3852+/-J3.7031 14.84 0.305

Average Poles
-0.3769+/-JO.78 12.31 8.6
-0.5755+/-J1.798 6.52 0.485
-0.6062+/-j2.7562 8.21 0.057
-0.3828+/-j3.700 14.90 0.385

*The units of the poles are in ka, where k is the
wavenumber and a is the sphere radius.
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TABLE 3-13

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION
AND SUM OPERATOR.

Extracted Poles Percentage of Error-
S/N=12.35 dB Real Imaginary

Run 1 (Figure 3-19)
-O.2989+/-JO.8643 20.11 0.17
-O.2300+/-Jl.6802 24.34 6.56
-0.1827+/-j2.2712 22.89 16.88
-0.2455+/-J3.6937 18.48 0.55

Run 2 (Figure 3-20)
-0.4695+/-JO.9854 3.05 11.94

IL-0.2530+/-J2.160 23.15 18.19
-0.5323+/-J2.5157 10.77 8.397

*-0.4474+/-J3.6547 13.21 1.57

Run 3
-0.4571+/-JO.9676 4.29 10.16
-0.4727+/-J2.088 11.82 14.47
0O.2651+/-J3.296 20.03 18.66
-0.1739+/-J3.674 20.34 1.063

Average Poles
-0.405 +/-JO.9391 9.5 7.307
-0.318 +/-J1.976 19.80 8.70
-0.3267+/-J2.6943 17.90 2.20
-0.2889+/-j3.674 17.35 1.06

S/N =6.33 dB
Extracted Poles Percentage of Error

Real Imagi nary
(Figure 3-21)
-0.418 tj 0.9177 16.4 5.9
-0.173 ±j 1.903 27.3 4.93
-0.274 ±j 2.153 19.7 20.97
-0.584 ±j 3.974 9.6 6.78

Average 18.25 9.65

* *The units are ka, where a is the sphere radius.
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Figure 3-22. The sum operator and the RFA are applied simultaneously
L to the prefiltered data (solid line) for the sphere. A

10th order zero-phase-shift digital filter is used to
prefilter the noisy data, where two Gaussianly distributed
random noises have been added to the calculated data for
the sphere. The x's are the data points used in the RFA. -

The original signal-to-noise ratio is 12.35 dB (amplitude

L plot).
71

1, . - 039 I -  .8qSX~ qq87 l- 1705 l °
-|:977XO

n -. 006X~ qq9q l~ .3q7X~ -.

". 2.530 l- -280**l~ 12q7 ,.O .910Xl
o

_..



POLE

re lL pert 1inbry pert reL prt imglnr, p

S.268377 X10~'. -4.215118 X1O
°  2.598235 X10-

"  3.555334 XIO"

S.268342 X10-1 4.215117 XlO °  -2.891078 X1O' 1.675003 XIO
7

3.341878 XIOI -3.560440 XIO -5.651634 X1O' -3.001400 X10

3.341935 X10-1 3.560446 XlO
°  -5.651639 X10-1 3.001400 XIOC

6.J48721 X10-2 -2.162105 XiO °  2.598231 X10' -3.555334 XIO.

6.449073 XlO1 2.162104 X10. 2.228815 XlO
°  -1.807314 XIO e

1.299975 X10 3.582260 X10
"e  -6.639862 XIO-1 1.790383 XIOS

-1.320187 X10-1 -1.725456 XIO °  -6.639862 X10
"' -1.790383 X1O-

-1.320197 X10-1 1.725456 XIO °  7.460998 X10-
2  2.163905 XIO

-2.254793 X10-1 -2.962519 XIOa 7.460988 X10-
2  -2.163905 X1O

"-2.254843 X10-1 2.962516 X1O -5.681291 X10- 9. 150119 X10 1-
9.240991 X10- 7.802422 X10-

1  -5.681291 XIO' -9.150119 XO
"|

9.240987 XIO
t  -7.802422 X1O

"  9.447543 X1O 7.768920 X10'

- I.07707 XIO
°  0.000000 X10 9.447547 X10-

2  -7.768919 XI0 "'

2.93516 X10-1 0.000000 X100 -5.287395 X10-1 0.000000 X109
1- 2.576995 XO 2  0.000000 X100

M M=16
- N= 15

C

C
b. C;4

i--.

*.................................. . .. .. ....

1.0 2.0 3.0 4.0 5.0 6.0

ko

Figure 3-23. The sum operator and the RFA are applied simultaneously
to the prefiltered data (solid line) for the sphere. A
10th order zero-phase-shift digital filter is used to
prefilter the noisy data, where two Gaussianly distributed
random noises have been added to the calculate data for
the sphere. The x's are the data points used in the RFA.
The original signal-to-noise ratio is 12.35 dB. The data

points used are different from those in Figure 3-22
(amplitude plot).
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m filtered data (solid line) and the fitted curve using sum operator

(dashed line) in the rational function are plotted. The extracted poles

- are listed in Table 3-14. It has been shown (see Table 3-14) that the

first three pole-pairs are much improved using the digital filter and

sum operator sequentially. However, the fourth pole-pairs may not be

located at all because both digital filter and sum operator are using

-- only one sided information to predict or to smooth the data around the

high frequency end (due to the truncation of data there). The smoothed

data near the high-frequency end are therefore not accurate.

K. BRIEF SUMMARY

In this chapter, rational function approximants have been defined,

* developed and applied to noiseless and noisy data for a conducting

sphere. Two major problems, critical points in any system

identification, are the system order and the noise problem. Inherently,

the system order is not a very critical point in the rational function

fit as long as the system order M is not less than the true poles

desired. In fact the system order can be roughly determined from the

amplitude curve resonances, i.e., the order of the system is roughly

determined by the number of peaks in the amplitude data. However, some

curve fitting poles and some true poles should also be counted although

C: they are not seen clearly in the amplitude peaks (if there are

interferences from different scattering mechanisms).
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TABLE 3-14

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION
USING THE DIGITAL FILTER AND THE SUM OPERATOR (S/N =12.35 dB)

Poles* Extracted via Percentage Error- -

Digital Filter and Sum
Operator for (M,N) as (16,15) Real Imaginary

Run 1 (FIgure 3.22)
M=-14, Mull
-0.531+/-JO.926 3.10 6.037-
-O.446+/-Jl.730 13.21 3.992
-0.321+/-j2.784 18.08 0.893
-0.246+/-j3.587 18.46 3.33

Run 2 (Figure 3.23)
-0.568+/-JO.915 6.8 4.89- -

-0.664+/-Jl.790 1.96 0.89
-0.565+/-J3.001 9.63 8.43

Run 3
-0.392+/-JO.927 10.8 6.10
-0.455+/-Jl.927 12.73 6.17
-0.453+/-J3.W ~ 13.52 11.17

Run 4
-0.568+/-JO.8235 6.80 4.25
-0.789+/-J1.538 4.49 13.89
-0.455+/-J2.902 13.45 4.99

Average
-0.515+/-JO.897 1.499 3.097
-0.589+/-Jl.759 5.826 2.455
-0.429+/-J2.923 14.35 5.72

*The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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As far as the noise problem is concerned, a high-order digital

filter has been developed to prefilter the additive noise and a sum

operator is used in the rational function fit to reduce both the

additive and multiplicative noise. As shown in this chapter, the
J

poles still can be extracted and identified for a S/N ratio at 12.35

dB*, if a 10th order zero-phase-shift digital filter and a sum operator

are used. Although the study in this chapter is limited to the
A

computer generated additive Gaussian white noise. Chapter VI will

present an extension of using the 10th order zero-phase-shift digital

filter and RFA to the measured data using the reflectivity measurement

facility at the ElectroScience Laboratory.

*Although there is an example of S/N of 6.33 dB (Figure 3-21);

- L however, the percentage error is relatively high (see Table 3-13).
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CHAPTER IV -:

LINEAR LEAST SQUARED ERROR SOLUTIONS

A. INTRODUCTION

It was shown in Chapter III that the RFA with preprocessing can

extract the complex natural resonances reasonably well when the signal -.

is contaminated by additive noise. It would appear that the RFA applied

in a least squared error sense might fit the data better. In this

chapter several techniques using least squared error solutions are

Investigated.

B. EIGENANALYSIS

An imhomogeneous system of linear equations

AX =E (4-1)

where A is a real m x (n+1) data matrix of rank (n+1) and X and E are

(n+l) and m rows column vectors, respectively, is an overdetermined

system if m > (n+l). The components of X are unknown coefficients and E

is the error, assumed small. The squared error is

XTATAX-ETE , (4-2)
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where yT means the transpose of Y.

There are N+2 ways to solve the matrix equation [16). However, the

solution with the constraint

n
tail 2 = 1 , (4-3)

,=0

the elgenanalysis method [16] , is the solution to the min max problems

and yields the minimum total squared error.

- Eigenanlysis has been used to minimize the total squared error of

the matrix equation (Equation (4-1)) and has shown some success in

r .:1 simple simulated cases [16). In addition, noise remains a serious

- problem. The following procedures are used to solve the matrix equation

given by Equation (4-1).

1. Find the eigenvalues of ATA first.

2. Find the eigenvector which corresponds to the smallest

eigenvalue, this is the minimum total squared error.

3. The eigenvector corresponding to the smallest etgenvalue is the

solution X of the matrix equation in the sense that the sum of

the residuals squared is minimized.

Several efforts have been made to extract the complex natural

resonances from rational function approximants via elgenanalysis.

, [The results are not good even for a relatively low system order for

(K,N) as (6,5) and noiseless data. With noisy data, the result is even

worse. Assuming no mistake in theory, the error must be due to
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numerical calculation, in particular, the calculation of the -

elgenvalues. This will be clear in the next section on singular '-

decomposition where it is shown that better results can be obtained.

C. EIGENANALYSIS VIA SINGULAR VALUE DECOMPOSITION

Given a real m x (n+1) matrix A with m > (n+1), the matrix A can be

decomposed Into the fol l owl ng form. -

A = UEVT , (4-4.1)

where -

UTU = WT = VTV = I(n+l) (4-4.2)

and

E diag(ol, .. , 0(n+l)). (4-4.3)

The matrix U is an mxn matrix consisting of n orthonormalized

eignevectors associated with the n largest eigenvalues of AAT. The

matrix V is an (n+1) x (n+1) matrix consisting of the (n+1)

orthonormalized elgenvectors of ATA and the diagonal elements of z are

the non-negative square roots of the eigenvalues of ATA which are called

singular values. It is assumed that

01 • 02 0 03 ; W (n+>) 0 . (4-4.4)

If the rank of A is r and r is less than (n+1), then
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Or+1 UOr+2 - .. ((n+l) - 0 (4-4.5)

The decomposition of matrix A in Equation (4-4.1) is called singular

value decomposition (SVD). To compute the singular value decomposition

of a given matrix A, Householder transformations and a QR algorithm are

used in the literature.* The advantage In solving least squared error

problems using SVD** is that there is no necessity to compute ATA, which

may involve unnecessary numerical inaccuracies.

*. Singular value decomposition routines are available in the

literature.*** An application of the singular value decomposition to

find the complex natural resonances from the calculated data for a

sphere is presented in Table 4-1 and Table 4-3. Table 4-1 is a list of

singular values for the rational function fit to the sphere data for

'(M,N) as (14,13) and I as 20 (20 data points). Table 4-2 is a list of

the ratio of two adjacent singular values. Table 4-3 is a list of the

extracted poles from the sphere backscattering data via SVD.

. The smallest singualar value is of the order of 0.01. The ratios of

two adjacent singular values are all in the order of 100 to 10, i.e., no

sudden change occurs. Thus there is no clue for finding the system

order via the ratio of two adjacent singular values although the

* G.H. Gould and C. Reinsch, "Singular Value Decomposition and Least

'2 Squares Solutions", Numerical Mathematics 14, p. 403-420, 1970.

** The etgenvector of ATA which corresponds to the smallest singular
value of A is the solution of the unknown matrix X in Equation (4-1).

***C.L. Lawson and R. J. Hanson, Solving Least Squares Problems,

Englewood Cliffs, N. J., Prentice-Hall, 1974.

79

L::"



TABLE 4-1

A LIST OF THE SINGULAR VALUES USING SINGULAR VALUE
DECOMPOSITION IN THE RFA for (MN) as (14,13) TO THE

CALCULATED DATA FOR THE SPHERE

H= 14 IP 13 "
DM POI SE D 20=0lw 10
293 1 SaiXm VALUE is 0.1213032110
M 2 Sn LM VAUE IS 0.4227007109.
ME3 3 SDULM VALUE IS 0.2762580108.
WE3 4 Sfl,.,M VALLE IB 0.14714891+08

5 SSND lm VALUE iB 0.1902102B407 -

293 6 S m VALUE is 0.9058594B+06

293 8 SDGmm VALUE is 0.3740441405"
193 9 SI"JnIM VALUE is 0.13466131+05

E 10 sDGLAR VALUE IS 0.8894107B404
7 11 SIGIJM VALUE IS 0.876583403
293 12 SINWGLA VALUE IS 0.3870276103-
•93 13 SnUL VALUE ,S 0.12752541403
WE3 14 SIJLA VALUE Is 0.8262138+02
293 15 sfloJJm VALUE is 0.4379275B402
23 16 i slm VALUE is 0.2039347102
ME 17 sniRGL VALiU iS 0.1570983B+02
293 18 SinRJLm VALUE IS 0.4903873141 -
ME 19 SiNumm VALUE is 0.47779731401
" 20 SI!J LU VALUE IS 0.2413255B401
293 21 SIWZ3LM VALUE IS 0.135303,.01
-, 22 SI M VALUE ,S 0.3440572100" .
2 23 Sn=M VALUE IS 0.2936901E+00
293 24 SGUL' VALUE IS 0.1810666100
918 25 SDGJM VALUE IS 0.8229814-01,
783 26 SIMGLM VALUE IS 0.6865017B-01
78B 27 SIN3ML VALUE 1S 0.13882253-01
13 28 SWUILM VALUE 15 0.64145583-02

293 29 SZl GJM VALUE 1I 0.2125495Z-02
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TABLE 4-2

-THE RATIO OF TWO ADJACENT SINGULAR VALUES*P .-

ME1 123 SDGJLA VALE OM 211 2 713 0.286972E+01
M3 2'M SnMMLA VWAL ER ME 3 23 0.153009E+02
ME23 3711 Sn Jmm VALUE amU 23 4 2H 0.187740)+01
23 423 SIIOLR VALUE MM1 WE1 5 23 0.773612E+01

211 523m SDGLA V mmJ =7T21 6 23 0.209978B+01
233 623 SIIUJL VALU MMJ W11 7 23 0.120647E4-02
23E 773 SJXJLA VALME 09M 23E 8 23 0.200734E+01

~ 1!SIIGJLI VALUE MW M 9 23 0.277767E+01
i: 2113 921 SInCLM VMLU MU 233 10 23 0.151405D+01

233 1023 SDGJLA VAU MMU ME1 11 23 0.101432E402
* 2113 1123 SDUHAM VALU MM ME1 12 M3 0.226562E401

ME 127H SIIGJM VAU MM ME 13 23 0.3034910+01
TH13 1323 SIIGJLA VALJUE MM 232 14 23 0.1543493+01
23E .1423 SXRUJLMR VALU M 211 15 23 0.188664]D+01

213 1523 snaGlAR VALU mm 211 16 23 0.214739E4+01
* 211 1623 SDGJLAR VALU MM 23E 17 23 0.1298133+01

211 1723 SDUJLA VALE MM M 211 8 23 0.3203563+01
ME 1823 SInWLA VALU MM? M3 19 23 0.102635]D+01
233 1923 SIWZJLA VAUI MMJ W3 20 M3 0.1979893+01
W3 2023 SDIILA VALU MM 23E 21 23 0.1783583+101
M3 2123 SDIGJLA VALUE MM1 211 22 23 0.3932603+-01

* 233 2223 SIIULAR VALU MU 2113 23 23 0.117150D+01
THE 2373 SDJAR VALU MM 211 24 23 0.1622003+01
233 247H SflGfLM VALU MM 233 25 23 0.220013]D+01
233 2523 sDG3A VALU mm 211 26 23 0.1198803%+01
233 2623 SflGJM VALUE MM M3 27 23 0.4945173+01l
211 2723 SDGJLAR VALU MMJ 233 28 23 0.216418E4+01 .

211 2823 SI!GLA VAWE MmU 233 29 2H 0.3017913D+01e

*The singular values in Table 4-1 were used.

*The singular values in Table 4-1 were used.
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TABLE 4-3

A COMPARISON OF THE TRUE POLES AND THE EXTRACTED POLES*
USING RFA MODEL AND THE SINGULAR VALUE DECOMPOSITION TO -~

THE CALCULATED DATA (SPHERE, RACKSCATTER)

True Poles Extracted Poles Percentage of Error
real imagiviary

-0.500000+1-JO.8660250 -0.501176+/- JO.8552016 0.1176 1.082337

-0.701964+/-J1 .80740 -0.7111590+/-Jl .806740 0.4742292 0.0034

-0.842862+/-j2.76786 -0.8363640+/-j2.76490 0.2253303 0.2441246

-0.954230+/-j3.714780 -0.9193100+/-j3.67700 0.9104712 1.166823

*The units of the poles are in ka, wh~ere k is the wavenumber
and a is the sphere radius.
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extracted poles are very close to the true ones. The application of

singular value decomposition to noisy data fails even for small additive

noise. It was disappointing to learn that zero phase-shift digital

filter effected no improvement in the extraction of poles via singular -

value decomposition of the filtered data.

D. PSEUDO-INVERSE METHOD

* Instead of forming a matrix equation such as Equation (4-1),

where E is an error matrix for an overdetermined system, the

- other simple way of forming a matrix equation from the RFA is similar

:. to that of exact determined systems in Chapter III, i.e.,

AX = B, (4-5.1)I--
where A is an mxn matrix with m>n, X is a nxl unknown matrix, 9 is a mxl

: -matrix and the elements in B are the real and imaginary parts of the

complex data points. Then the easiest way to solve this equation is to

perform a a pseudo-inverse as

ATAX =ATB (4-5.2)

" where AT is the transpose of A. In fact this method is also known as a

least squared error solution without weight in mathematics. The

L application of this solution to the calculated data for a sphere are

given in Figures 4-1 (amplitude) and 4-2 (phase). Note that twenty

complex data points are used in this overdetermined system for (MN) as

i L (14,13) (28 unknowns). Table 4-4 is a comparison of the true poles and - .
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TABLE 4-4

A COMPARISON OF THE TRUE POLES AND THE EXTRACTED POLES*
USING RFA AND PSEUDO-INVERSE METHOD, i.e., LEAST SQUARED ERROR -
WITHOUT WEIGHT TO THE CALCULATED DATA (SPHERE, BACKSCATTER)

True Poles Extracted Poles Percentage of Error

real imaginary

-0.500000+/-jO.8660250 -0.5043270+/-jO.8679600 0.4327 0.1935

-0.701964+/-j1.80740 -0.70266 +/-j1.79561 0.03589 0.6081

-0.842862+/-j2.75786 -0.84936 +/-j2.76335 0.2253 0.1903

-0.95423+/-j3.71478 -0.92042 +/-j3.70323 0.8815 0.30115

* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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6.078599 XIOI -2.917712 XlO "7  -9.204191 XlO "I 3.703229 XIO"
-1.391740 XO -I 1.740449 XIO °  

-9.204198 XlO -  -3.703230 XiO o

-1.391742 XlO -  -1.740449 XIO O  
-8.49363S XO -I 2.763350 XIO o

r: -1.200745 X10 5.580223 X1OD -8.49363S XO -I -2.763350 XlO0
K -1.200746 XlO o  -5.580222 XIOO -7.026555 X1O-I 1.795610 X109

-2.992245 XlO -1 4.153576 X100 -7.026555 X1O-  -1.795610 X o04
-2.992242 XIO-I -4.153576 XIOG 1.717934 X10 0  1.087607 XIO o

1.718133 X1O0 1.087670 XIO °  
1.717934 X1O -1.087607 X1O o

1.718133 XIOo -1.087670 XlO -7.769776 XlO -1 4.480850 X1O0

-2.298296 X10 -  2.949380 XIO o  
-7.769775 XO -I -4.480848 XIO O

-2.298291 X10-  -2.949379 XIO -S.043270 XIO-I 8.679571 X1O-'
-1.296468 XIO o  8.343870 XO -I -5.043270 XO -I -8.679572 XO -n

.
-1.296468 XIO o  -8.343870 XIO'- -1.756604 XlO o  0.000000 X1O o

0.000000 X10 0.000000 X100 -1.029366 XIO 0.000000 XO o8
0.000000 XIO O  0.000000 XO O

-

CL

C

C-

0O.O 1.0 2.0 3.0 4.0 S.0 6.0

FREQUENCY ( ko )

Figure 4-1. The RFA applied to the calculated data for the sphere in

the sense of least squared error without weight. Note
twenty complex data points are used (amplitude plot).
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-2.885144 XIOn 2.9493119 Xi0n 4.12S859 X1On
-2.88S1115 X100  -2.9119358 XIOC 1.125867 X1OO
2.I171 XI00  3.669074 M1OO 4.253S47 XIOO
2.151M7 XI06 -3.669073 XIOa 4.253546 XI00
2.868279 X109 -3. 122501 XI10' 2.885225 XIOO
2.868279 X10O 3. 122519 XI10' 2.885225 X1OO
1.4891511 X101  7.516471 X10'S 1.668099 X10O"
1.11891511 XI10v -7.5161177 X1O-4  1.668099 X10-11
-9.326031 XID'I -1.218709 X100  I.S311601 X100
-9.326016 X10'I 1.218716 X100  1.5311606 X100
-3.001210 X10'I -1.810827 X1O 1.811076 X10'
-3.001225 X10'I 1.810827 XIOO 1.811076 XIOO
0.312219 XIOG 1.113897 X10* 8.312219 X10O
-4117518 X104 -3.929819 X10-7  1.417519 XI0O
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the extracted poles using this method. The extracted poles are very -

close to the true ones in the noiseless situation.

The intentions to use more data points have been made but the

results are even worse due to the numerical errors in the computation of

large matrix. An attempt to extract poles using the pseudo-inverse

method from sets of noisy data falls even for small additive noise,

e.g., signal to noise ratio at 30 dB. Without doubt the bias problem is

. :serious in this method as well as the other two methods mentioned

earlier.

E. SUMMARY

- . All techniques discussed in this chapter concerned methods for

solving the matrix equation in the least squared error sense. They are -

-- " egenanalysis using the eigenvalues or singular values and a

pseudo-inverse method. The elgenanalysis using singular values works

well if there is no noise; however, the method generally fails even

- for slightly noisy data. Ein lanalysis would appear to be the best of

these unweighted solutions. The anticipation of better fits from least

squared error solutions using more data points is not true due to the

accumulation of numerical errors and the bias problem.
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CHAPTER V

AN INVESTIGATION OF THE COMPLEX NATURAL RESONANCES --

OF VARIOUS OBJECTS

A. INTRODUCTION

It was shown in Chapter III that the RFA could be applied

successfully, for pole extraction, to the calculated data for the sphere

with or without additive noise. Furthermore, it was shown in Chapter IV .

that the RFA used for pole extraction in a least squared error sense

* were very sensitive to noise. An approximate method which can be -

utilized to extract the complex natural resonances of a particular

target may or may not be precisely applicable to other targets.

Therefore, various sets of backscattering data for different targets

should be tested to see the general applicability of the method. In

this chapter, the complex natural resonances of some simple* conducting

scatterers such as a circular disc, loop, thin wire, finite circular

waveguide, semi-infinite circular wave-guide, and one stick model of a

F104 aircraft are extracted via the rational function approximations

* Applications to geometrically complex targets are given in Chapter VI

(measured data).
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- l. (RFA) in the exact sense. The results (poles) are compared in some

cases with those obtained using different approximate or exact (sphere)

methods. The approximate methods (in addition to RFA) which were used

in this study are the Uniform Geometrical Theory of Diffraction (UTD)

-.[11] for a disc and an integral equation formulation and numerical

search for a loop.

B. CONDUCTING SPHERE .

1. Analytical Method

For convenience, the first few complex natural resonances of a

: conducting sphere as taken from Stratton are listed again in Table 5-1

for both the transverse electric (TE) and the transverse magnetic (TM)

modes. Both TE and TM modes are excited at the same time. The

oscillations of the electric mode are independent of the magnetic mode

oscillations.

2. Signal-Fl ow-Graph Method

Using the differential attenuation and phase shift of a surface

wave on a spherical surface given by Pathak and Kouyoumjian [11,12), -4

Kennaugh [10) derived two characteristic equations for a geodesic path

around the sphere. The roots of these two equations are the poles of

.2 the sphere. The first 4 pole-pairs for the electric mode via

.  signal-flow graphs [10] and rational function approximation are compared

in Table 5-2. The low order poles extracted via the rational function
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TABLE 5-1

POLES* OF SPHERE EXTRACTED VIA ANALYTICAL M'ETHOD_ 1

Electric Mode Magnetic Mode

-1.60+/-JO. -1. +/-JO.
-O.50+/-JO.86 -1.5 +/-JO.86
-2. 17+1-jO .87
-0.70+1-il .81 -2.26+/-JO
-0.83+/-J2.77 -1.87+/-Jl.75 Z..

Ld

*The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.

LL
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TABLE 5-2

- A COMPARISON OF THE POLE-PAIRS* FOR A

CONDUCTING SPHERE EXTRACTED USING DIFFERENT METHODS

True Poles [25] Signal Flow Graphs Rational Function

*-U.50000 +I-J0.5b0Z5 -0.4968+/-J0.B759 -0.49999+7-jO.Bbbb

-0.701964+/-Jl.80740 -O.7008+/-Jl.8130 -0.7019 +/-J1.8028

-0.842862+/-J2.75786 -0.8422+/-J2.7618 -0.8424 +/-J2.7621A

-0.954230+/-J3.71478 -0.9538+/-J3.7178 -0.9175 +/-J3.6829

*The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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approximants are more accurate than those extracted via the

signal-flow-graph method but the asymptotic approach obtains the high

frequency poles with greater accuracy.

3. Rational Function Approximation

The results of applying the rational function approximations to the

backscattering data of sphere [27] have been shown in Figures 3-7 and

3-8 for a system order for (M,N) as (14,13). Fourteen data points

(marked by x's) are used in the RFA in the exact sense. A comparison of

the true poles [25) and those extracted via the rational function

approximations and the signal-flow-graph approach are listed in Table

5-2. The data used for the rational function approximant are from

ka of 0.2 to ka of 4, i.e., the data are truncated at ka of 4.
Therefore, it is not surprising that the real part of the last pole-pair

is not as accurate as the others,

C. DISC

1. Introduction

The diffraction of a plane electromagnetic wave by a thin,

circular, metallic disc remained unsolved until the rigorous solution

obtained by Meixner and Andrejewski in 1950*. The disc is treated

J. eixner and W. Andrejwski, "A Rigorous Theory on the Diffraction of
Plane Electromagnetic Waves by a Perfectly Conducting Circular Disc
and by a Circular Aperature in a Perfectly Conducting Plane Sheet,"
Aner. der Phys., Vol. 7, p. 157, 1950.
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S . .

-- as a limiting surface in an oblate spheroidal coordinate system using an . .
etgenfunction solution. Numerical results of fourteen discrete

frequencies were subsequently obtained by Andrejewski in 1952 [30).

Flammer [31] derived another solution using oblate spheroidal vector

wave functions in 1953. Hodge [32] presented Meixner's solution in

in terms of the notation introduced by Flammer [31) and the far field

amplitude and phase scattering data (ka of 0.2(0.2)15.2) for plane wave

incidence at broadside were calculated using his development of an

efficient method of computing the spheroidal eigenvalues [32). Using

Hodge's computer programs, J. L. Li of the ElectroScience Laboratory at

The Ohio State University compiled the backscattering data (ka of

0.2(0.2) 10.) of the disc at angles off broadside incidence

(e of 15(15°)90*) for the incident electric field in both e and .

polarizations (see Figure 5-1). The results of applying the RFA to

these sets of data and UTD approximations to the resonant modes of the

disc are presented in the following section.

2. Broadside Incidence

Rational function approximants have been developed and applied to

the calculated backscattering data of a circular disc. The data sets

ire in the range of ka of 0.2 to ka of 15.2 for broadside incidence.

Cases with both the incident electric field and the incident magnetic

field parallel to the plane of the disc are included. These data sets

are fitted with the rational function approximants in the exact sense.
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Figures 5-3 through 5-6 show several examples of applying the rational

function approximation (RFA) program to the real frequency data of the

disc for plane wave incidence at broadside. Appendix C gives a detailed

list of the coefficients of the RFA using system order for (M,N) as

(14,13) (Table C-1) and the corresponding zeros, poles and residues

(Table C-2) by applying RFA to the disc backscattering data at broadside

for plane wave excitation. Note the coefficients of the RFA at higher

orders become smaller and smaller. In order to estimate the accuracy of

the rational function coefficients for the disc backscattering data for

a plane wave incidence at broadside, a long division of the rational '

function approximant with the coefficients listed in Table C-i was - -

performed with the result in the form of

n k is-i
En(X - cX ,(5-1)

where X is jka and a is the radius of the disc, is shown in Equation

(C-1). It approximates closely the result in Equation (C-2), the low

frequency approximation given by Boersma* (see Appendix C). Figure 5-3,

which is similar to that obtained by D.B. Hodge, is the RFA to the first

resonant region [33]. The order (M,N) for the system as (3,2), i.e.,

only three input samples (marked with x's in Figure 5-2) are used in the

RFA. Figure 5-3 and 5-4 are excellent fits of the RFA to the entire

data region with a system order of (M,N) as (14,13). Poles, zeros, and

• Boersma, J., aBoundary Value Problems in Diffraction Theory and
Lifting Surface Theory," Thesis, Grominger, Holland, 1964.
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real Plmgmg prt real part imginary part

-3.937129 XlO °  1.977370 XIO -4.025044 XIOO 2.0013048 X10'
-3.937129 XIOO -1.977369 XIO' -4.025046 X1Oo  -2.001847 XIO'
-1.281795 XLOO -1.434566 XIO' -1.284660 X10 0  -1.440915 X10
-1.281795 XIO °  1.434566 XlO' -1.284662 XlO o  1.440913 XO'
-1.241245 XlO -1.119711 XlO' -1.241248 XO -1.128542 X10'
-1.241246 XlO 1.119711 XO' -1.241250 XO 1.128544 X310'
-1.162094 XIO °  -7.982498 XlO O  -1.163499 XlO o  -8.106087 X0oo

-1.162093 XlOO 7.982495 XlO o  -1.163497 XlO o  8.106080 X10
-1.524350 XO0 -1.553103 XO o  -4.906894 X10-1 -1.231033 XIO o

-1.S24349 XlO' 1.553103 XO o  -4.906893 X10-1 1.231033 XO.
-1.035533 X10G -4.665735 XIO -1.04S793 X3O -4.873465 XlO
-1.035535 X1O 4.666736 XO o  -1.04S794 XlO o  4.873467 XO o

-2.109441 XO 0.000000 X10 -1.5898so X10 -1.757181 X30_
-1.589850 X100 1.757181 XO

0
* M= 14
- N= 13

cc

0

* ".

0
ka

N= 13 The .)-

Figureodsde 5T.TeRA(ahe line or tMN dapos 14e13 fint the RA

L The last input sample is at ka of 14.8 (amplitude plot).
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Figure 5-6. A comparison of the poles of a disc extracted using RFA
(c,) and UTO (A) for broadside excitation.
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real put iaginry [art real put imaginary [art

-q,.588581 xiO n  9.54S024 xEOt -5.136516 XiO -9.723&3 X:O n

-04.588586 X10 0  -9.540520 XIO O  -5.136525 XlO o  9.729801 XIO o

-1.147251 XlO O  8.001202 X108 ,  6.064494 XlO-3  4.090105 XI0 o

-1.147256 XIO -8.00120q X100 6.071571 X1O' '!.090107 X1O
-2.959823 XIO 5.158536 XIO °  -3.006657 X1O °  -5.328921 XIOO
6.072063 XIO2 -4.090106 XlO -3.006629 X10 0  1.328900 X1O.
6.071192 XiO -  4.090109 X1o -1.135383 X1O o  8.119683 XI0o  -.

-2.959807 X1O -5.158528 X1Oo  -1.135389 X1O °  .'.119688 X10 0

-1.045099 XIO o  4.680569 X100  -1.043285 XlO1 -4.888601 X0o
-1.010567 XIO -1.927570 XIO °  -1.043308 X1O °  4.888618 XIO"
-1.010567 X1O o  1.927570 X1O o  -2.209201 XO O  -1.656605 X10o

- -1.045106 XlO o  -4.680579 X1Oo  -2.209198 X1O °  1.656607 XO-
6.973723 X10 -  0.000000 X1O o  -1.010578 XlO o  -1.927627 X10 3

-1, 4061S XlO o  -1.046664 X1O o  -1.010577 XlO o  1.927627 X0O"
-1.4061S XIO °  1.046664 X1O °  -4.917520 X1O-  -1.228591 X0 o

.
-3,,29002 XiO °  0.000000 X10 0  -4.917522 X10-1 1.228591 X1O0

-1.443699 X10 -1 0.000000 XlO °  6.973706 X10- 0.000000 X10 0  " i
-1.443693 XlO -t  0.000000 X10

F 4 M= IS

- N= 17

ak

pont usd Th.oidln.ih cluatddt

an the dotdln steRA oetels nu

--
A

I

°0.0 3.0 6.0 9.0 12.0 15.0 18.0

i::(ka)

i_

Figure 5-5. The RFA for (M,N) as (18,17) ftt to the backscattering
data for the disc at broadside. The x's are the data
points used. The solid line is the calculated data

• , and the dotted line is the RFA. Note the last input
L sample of the RFA is at ka of 7.2 (amplitude plot).
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residues are all shown in the amplitude and phase plots in Figures 5-3
and 5-4. With a system order at M of 14, 7 pole-pairs are extracted.

However, only 5 out of these 7 pole-pairs are the true system poles (see

the criteria in Chapter III). -

The result shown in Figures 5-5 is to extract more poles from a

shorter frequency range to see if secondary dominant poles may appear.

Unfortunately, the poles of the second layer are too weakly excited to

be extracted via RFA using these real frequency data. However, as was

discussed in Chapter III, the overdetermined system order does not

influence the extraction of the real physical poles. In addition, the - --

UTD [111 and an Equivalent Current approach (EC) [29) can be used to

predict the complex natural resonances of the disc at broadside. A

detailed description is given in Appendix 0. A list of the poles

extracted via the RFA and those via the UTD method for the disc at

broadside are presented in Table 5-3. Figure 5-6 is a comparison of

poles of disc for broadside using RFA and UTO. The poles of string I in

Table 5-3 from the RFA are an edge diffraction mode. The one pole pair

of the string II in Table 5-3 is the lowest frequency pole of the

*creeping wave mode. This can be identified because the imaginary part

is around ka of 1, i.e., 2ia of X. The poles of the disc at broadside

from these two methods are very close to each other except for the two

lowest frequency pole-pairs. It is known that UTD will not properly

L
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:: predict low frequency poles because it is an asymptotic high frequency

approximation. The oscillatory parts of the poles (string I) occur in

:*': increments of around ka of 3 (which is very close to i, i.e., 2a of X),

"* because the diameter (2a) should be close to (n + 1/2) wavelength at the

resonances of the edge diffraction at broadside. A list of the first 26 -

. pole-pairs for the disc at broadside excitation (edge diffraction mode)

is shown in Appendix D. Note the first three low frequency pole-pairs

come from the rational function approximation to the backscattering

calculated data for the disc at broadside. The higher order poles for

broadside excitation are obtained using UTD approximation. The UTO

Equivalent Currrent Concept (EC) [29) has been used because of the -'

caustic field. A detailed discussion is presented in Appendix D. From

the UTD approximation for broadside excitation, it has been shown (see

Appendix B) that the equivalent current of more than the second order

diffraction (included) forms a geometric series. Obviously, this is the

edge diffraction mode. However, the first order diffraction which is

dominant and is not included in the geometric series forms the lowest -

resonant mode of the disc. The first order equivalent current on the

rim is shown in Equations (D-2) and (D-3) of Appendix D. Apparently,

both the equivalent electric and magnetic currents have only one period

of variation on the rim, i.e., 2wa of A. Therefore, the imaginary part

of the poles (-0o.49+/-J1.21) is around one unit of ka, where a is the

radius of the disc and k is the wavenumber.
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TABLE 5-3

A LIST OF POLE-PAIRS* FOR THE DISC BACKSCATTERING AT BROADSIDE
USING THE RFA AND UTO APPROXIMATIONS

String I RA String II UDmto

1. -2.22+/-Jl.656 -0.49+/-Jl.23

2. -1.04+/-j4.87 -1.04 +/-JS.0542

F3. -1.16+/-J8.10 -1.1616+/-J8.2116

4. -1.24+/-J11.28 -1.2418+/-J11.3611

5. -1.27+/-J14.4 -1.3024+/-J14.5075

*All poles are in units of ka, where a is the radius of
disc and k is the wavenumber.
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3. Poles of the Disc at Oblique Incidences -"-

Here the RFA is applied to the calculated backscattering data of

the disc at e of (150 (15°) 90) with * polarization (electric field
parallel to the disc). The angle e is measured from broadside incidence.

The first dominant pole-pair (see Table 5-4) is exactly the same

as that obtained at broadside,i.e., 0.49+/-Jl.23. However, there

are more poles extracted in this string at oblique incidence (in-

stead of only 0.49+/-Jl.23 for the broadside excitation). The oscilla-

tory parts of this string have an increment of approximately one ka

unit. Obviously, the dominant string of poles (edge diffraction mode)

at broadside is not strongly excited for off-broadside incidences.

A calculation of the caustic distances for waves multiply diffracted

at Q1, Q2 (see Figure D-4) is presented in Appendix D. The caustic ____

distance for the Nth order diffraction is

ON * -a(1+2Nsine) . (5-2) .N ],+Z (N+I)sine "

Obviously, the caustic distances of each multiple diffraction is not the

same at oblique incidences. There is no way to form a geometrical

series at angles off-broadside incidence. However, the caustic -

distances are the same for all diffractions at broadside (theta of 0

degrees). Actually the caustic distances are -a for any order of

diffraction at broadside. Therefore, the resonant modes are not the

same for broadside and angles off-broadside incidence.
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U TABLE 5-4

A LIST OF POLES* FOR THE DISC AT ANGLES OFF BROADSIDE
INCIDENCE (BACKSCATTER) USING THE RFA AND SENIOR'S

CREEPING WAVE AT EDGE-ON INCIDENCE

Rational Function Approximation

e=30*

-0.49+1-J1.23 -O.49+/-Jl.23
-0.64+/-J2.33 -0.61+/-j2.32
-1.38+/-J3.3 -1.39+/-J3.1
-0.98+/-J4.82 -0.95+/-J4.52

F =450 e=60* 0:900

-0.492+/-J1.23 -0.49 +1-J1.23 -0.49 +/-J1.23
-0.62 +/-J2.32 -0.687+/-j2.31 -0.614+/-j2.31
-0.66+/-J3.20 -0.71+/-j3.39 -0.688+/-J3.36
-0 .67+/-J4 .22 -0.74+/-J4.40 -0.763+/-J 4.42

-0.83+/-J5.43 -0.848+/-J5.40
* -1.04+/-j6.43 -0.925+/-j6.42-

-0.92+/-J7.43 -1.08 +/-J7.43
-0.99+/-J8.50 -1.27 +/-J8.53

Senior's creeping wave mode

IL 0900

-0. 506+/- 1. 23
-0.603+/-J2.28
-0.675+/-j3.33
-0.733+/-J4.37
-0.78 +/-35.40
-0.83 +/-J6.43
-0.87 +/-J7.46
-0.90 +/-J8.48
-0.94 +/-j9.50
-0.97 +/-310.52

*The units of poles are in ka, where k is the wavenwitber and
a is the radius of the disc.
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The creeping wave around the rim of the disc is not an easy-

problem. Two papers [34,35_ which specifically deal with the creeping

wave on the rim of the disc can be found in the literature. In this

study, the creeping wave formula developed using both the Geometrical

Theory of Diffraction (GTD) and measured technique in [34) is used.

After some manipulation, the normalized electric field (i.e., the

squared root of the normalized Radar Cross Section (RCS), the RCS

normalized to the area of the disc) is

5w/6
y -1/2 -1/3 j 1/3

El =2(1 P- e exp[-lr +-ii J , (5-3)
cw w 2

where y is 0.8w (actually a trial value), p is Jka, and a is the radius

of the disc (see Appendix E). The complex natural resonances are

obtained by imposing a selfconsistent condition on the creeping waves

which revolve around the rim of the disc, i.e., after one revolution

these fields should exhibit phase coherence with the fields at the

starting points. Consequently, the zeros of the following equation (see

Appendix E) are the poles of the creeping mode of the disc.

P1/3.2wu
e w  (5-4)

where i is jka and a is the radius of the disc. A list of the dominant

string of poles at angles off broadside incidence extracted from RFA

and those extracted via Senior's creeping wave mode [34] are listed in

L
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Table 5-4. The details of the extraction of poles using Senior's

creeping wave mode are presented in Appendix E. A comparison of the

scattering by the disc at edge-on incidence between Senior's analytical

method and Hodge's calculated data is presented in Appendix F.

Table 5-5 is a list of poles using the RFA to the calculated data

for the disc at several aspect angles (00(150)900) and two polarizations

-- (e and *), the natural resonances are indeed independent of the

incidence and the field polarization. For angles off-broadside

incidence, it is the creeping wave mode which is dominant for resonance.

L A detailed list of the first 30 pole-pairs of the disc using Senior's

creeping wave formula for edge-on excitation is shown in Table 5-6.

Figure 5-7 is a plot of the poles of the disc for broadside using RFA

to the calculated data, and the poles of creeping wave mode using

Senior's analytical method. This set of poles (Figure 5-7) may be

used to generate a K-pulse waveform [6] for the backscattering of the

disc.
L

4. Andrejewski's Magnetic Near Field Data of the Disc

Backscattering at Broadside

In Andrejewski's dissertation [30), fourteen normalized scattered

magnetic field data points for the disc backscattering at broadside were

L: plotted in the complex plane. Here, the normalized magnetic scattering

data at these 14 points are reproduced at ka of 0.5(0.5),4. and

ka of 4.(1.),1o. Details of the calculation are shown in Appendix G.

These data are shown fitted with a RFA in Figure 5-8. The extracted
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TABLE 5-5

A LIST OF POLES* FOR THE DISC USING THE RFA TO THE CALCULATED
DATA FOR DIFFERENT ASPECT ANGLES AND POLARIZATIONS. THE RFA

ARE FITTED TO ka of 0.2 to 6 (30 SAM4PLES)

Rational Function Approximation
poles

* Polar- PI, P2 P3 P4
ization

0. -1.04+/-34.87 -1.16+/-J8.10 -1.24+I-J11.28
-0.49+/-J1.23

15. -0.4941-31.23 -0.64+/-32.33 -1.38+/-33.30 -0.98+/-34.82
30. -0.49+/-J1.23 -0.61+1432.32 -1.39+/-33.71 -0.95+/-34.52
45. -0.49+1-J1.23 -0.62+/-J2.32 -0.67+/-33.40 -0.75+/-J4.30
60. -0.49+1-31.23 -0.63+/-32.30 -0.97+/-33.80
75. -0.49+/-31.25 -0.61+/-2.33 -0.73+/-J3.35 -0.67+/-34.50-
90. -0.49+1-31.23 -0.60+/-32.31 -0.74+/-J3.42 -0.65+/-J4.28

e Polar-
ization

15. -0.49+/-J1.22 -0.64+/-j2.27 -1.08+/-J3.30 -0.82+1-J5.02
30. -0.49+/-31.23 -0.62+/-j2.33 -1.23+/-J3.52 -0.94+/-34.57
45. -0.49+1-31.23 -0.64+1-32.34 -0.87+1-32.90 -0.86+1-J4.80
60. -0.49+1-31.23 -0.62+1-32.32 -0.65+/-J3.21 -1.52+1-35.40
75. -0.49+/-31.23 -0.63+/-32.32 -0.64+/-J3.24 -1.26+/-J5.80

*The units of poles are in ka, where a is the radius of the disc
and k is the wavenumber.
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TABLE 5-6

POLES* OF DISC USING SENIOR'S CREEPING WAVE MODE

n Poles

1. (-0.5057350,±1.208781)
2. (-0.6030402,±2.282039)
3. (-0.6746498,±3.331739)
4. (-0.7328901,±4.370643)
5. (-0.7826892,±5.403155)
6. (-0.8265909,±6.431364)
7. (-0.8660754,±7.456467)
8. (-0.9021299,±8.479179)
9. (-0.9354153,t9.499999)

10. (-0.9664097,±10.51928)
11. (-0.9954736,±11.53727)
12. (-1.022884,±12.55416)

*13. (-1.048859,±13.57012)
14. (-1.073574,±14.58525)
15. (-1.097172,±15.59966)
16. (-1.119781,±16.61343)

*17. (-1.141471,±17.62662)
18. (-1.162356,±18.63929)

*19. (-1.182501,±19.65149)
20. (-1.201968,±20.66326)
21. (-1.220811,±21.67463)
22. (-1.239077,±22.68564)
23. (-1.256811,±23.69632)
24. (-1.274049,±24.70668)
25. (-1.290820,±25.71675)
26. (-1.307164,±26.72656)
27. (-1.323088,±27.73611)
28. (-1.338675,±28.74543)
29. (-1.353844,±29.75452)
30. (-1.368698,±30.76340)

*Units of ka, where a is the radius of the disc.
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Figure 5-8. The RFA (dashed line) fit to Andrejewski's data (magnetic
near field denoted by the x's) for the disc at broadside.
The x's are data points used, and the dashed line is the
RFA (amplitude plot).
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poles are listed in Table 5-7. The resultant poles are very close to -

those obtained from the RFA to Hodge's data for the disc (electric

field), also given in Table 5-7 and plotted in Figure 5-9. The great

discrepancy of the third pole-pairs is due to the truncation in

Andrejewski's data at ka of 10. The extracted complex natural

resonances, are accurate using the RFA both for electric far field or

magnetic near field. ..-

5. Summary

Two strings of poles for backscattering from discs have been found.

One is the resonant mode due to the multiple diffraction at the edges

(rim) of the disc, the other is the creeping wave mode formed by the

wave creeping around the circumference of the disc. For broadside

incidence, the dominant string of poles is the edge diffraction mode.

Simultaneously, the creeping wave mode also exists. However, only the

first pole-pair of the creeping wave mode can be extracted by RFA at

broadside incidence. A detailed discussion is presented in Appendix D.

The extracted poles are independent of the angle of incidence and

polarization (see Table 5-5). This conclusion comes from applying the

RFA to the calculated data for the disc at angles off broadside

excitation.
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TABLE 5-7

- A COMPARISON OF THE COMPLEX NATURAL RESONANCES* FOR A DISC
USING RFA TO HODGE'S DATA AND ANDREJEWSKI'S DATA

(BACKSCATTERING FOR BROADSIDE)

RFA to Hodge's Data RFA to Andrejewskl's Data
(Electric Far Field) (Magnetic Near Field)

-O.49+/-Jl.23 -O.547+/-Jl.19
*-1.04+/-J4.87 -0.998+/-J4.62

-1.16+/-J8.10 -1.38 +/-J8.14
-1.24+/-J11.28 data up to ka-1O.
-1.27+/-J14.4
data up to ka=15.2

*The units of the poles are in ka, where k is the wavenumber and
a is the disc radius.
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D. WIRE SCATTERERS

1. Introduction

The electromagnetic resonances of thin wire scatterers have been -

studied for a long time [15J. Kennaugh solved the problem using a

signal-flow-graph method [10]. The results were compared with those from

- an impedance method by Richmond* with excellent agreement. Since the

poles of the thin wire scatterers are well known and they may be the

basic building elements for more complex targets, it is wise to apply

the rational function approximations to the thin wire scatterers and

compare the results with the known poles.

2. Data Sets For Thin Wire and Thick Wire

Computed values of backscattering (and bistatic scattering as well

as induced current distributions) for thin wire and thick wire** were

made in 1964, using a program developed by J. Richmond, for L/k from 0.1

to 1.4 at the increment of 0.1 (14 data points) for plane wave

incidences at broadside and 300 from end-on. (L is the wire length and

o is the wire diameter.) These sets of phasor signals were fitted with

RFA using system orders for (M,N) as (12,11) i.e., 12 out of the 14

data points were used in the approximations. The selection of the data

* J.H. Richmond,"Digital computer solutions of the rigious equations

for scattering problems", IEEE, v. 57, pp. 796-804, August 1965.

** The wire length (L) to wire diameter (D) ratio are 20 and 2000 for
. .thick wire and thin wire respectively.
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points is very arbitrary; however, the set of data points which can

yield a smooth interpolation is used because there are some errors in

the data sets. These errors may be due to numerical calculation or

imperfect modelling. The amplitude plots of the fits to the thin wire

scatterers are shown in Figures 5-10 to 5-13 for both broadside and 300

from end-on incidence. Fifty data points are reproduced in Figure 5-10

to 5-13 using the coefficients of the RFA fitted to the 14 samples of - -

the wire scatterers in each case. These are good examples of using the

RFA for complex data interpolation as well as pole extraction. The

pole-pairs extracted via the RFA and those extracted via other methods -

are listed in Table 5-8. As is well known, at broadside incidence only

even modes are excited. However, for 30* off broadside, both even and

odd modes are excited. -
4-

E. CIRCULAR LOOP

1. Introduction

Complex natural resonances of a circular metallic loop are

extracted using a space-frequency integral equation and numerical

computation. Then, the backscattering data for the loop were generated

for broadside incidence (ka of 0.2(0.2)10.) and for edge-on incidence

(ka of 0.2(0.04)5.2). Using these sets of data, poles were extracted byo

applying the RFA to the calculated data and the results are compared

with those obtained from the integral equation formulation.
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TABLE 5-8

A LIST OF POLES FOR A THIN-WIRE AND A THICK-WIRE
EXTRACTED USING RFA, INTEGRAL EQUATION AND NUMERICAL SEARCH

* AND SIGNAL-FLOW GRAPHS FOR BROADSIDE AND 300 OFF END-ON
- EXC ITAT ION (BACKSCATTER)

Poles*

Richmond Rational Function Approximants
L/D=2000 L/D=2000

Broadside Theta=30*

-- 0.0128+/-JO.2398 -O.0128+/-JO.239 -0.0128+/-JO.2399
-0.0175+/-JO.4881 -O.0174+/-JO.4884
-O.0208+/-JO.7366 -0.018+/-JO.743 -O.01998+/-JO.735

F -0.0234+/-JO. 9854
-O.0255+/-J1 .2344

* . -O.0273+/-J1 .4835
-0. 48588+/-JO.2825

Signal Flow Graphs
L/0=2000
(Bagby and Kennaugh)

-O.0123+/-JO.2389
-0.0112+/-J0. 4872

L -O.0204+/-JO .7360
-0.0229+1-jo. 9850
-0.0249+/-Jl .2341
-0.0266+/-JIl.4834

Rational Function Approximants
L /0=20
Broadside Theta=300.

-O.03086+/-JO.2149 -O.03015+/-JO.21495
I-0.04958+/-JO.4469

-0.052128+/-JO.677 -0.05349+/-J0.6881

L is the wire length, 0 is the wire diameter, and a is 411 the
units of the poles are in ka, where k is the wavenuniber.
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Figure 5-10. The RFA for (M,N) as (12,11) fit to the backscattering data
for the thin-wire with a wire length-to-wire diameter ratio
of 2000 at broadside excitation. The x's are the data
points used in RFA. The dashed line is the rational
function approximation (amplitude plot).
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Figure 5-11. The RFA for (M,N) as (12,11) applied to the
backscattering data for the thin-wire with a wire
length-to-wire diameter ratio of 2000 at 300 from end-on
incidence. The x's are the data points used in RFA. The

, dashed litne is the RFA (amplittude plot).
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Figure 5-12. The RFA for (M,N) as (12,11) applied to the backscattering
data for the thick-wire with a wire length (L)-to-wirediameter (0) ratio of 20 for broadside excitation. The-- --

xls are the data points used in RFA. The dashed linetis .
the RFA (amplitude plot). The peak in the amplitude of
the first resonance can be seen in the RFA, because more - -
data points (50) are reproduced using the coefficients of -
the RFA. 120

C;I-



real part 1 bgimzry part real Part 1mglxnary purt
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.Figure 5-13. The RFA for (M,N) as (12,11) applied to the

backscattering data for the thick-wire for a
wire-length (L) to wire diameter (D) ratio of 20 at
30 from end-on incidence. The x's are the data points
used in RFA. The dashed line is the RFA (amplitude
plot).
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2. Integral Equation and Numerical Search
I(

Because of the rotational symmetry of the circular loop (Figure

5-14), the induced currents I(*) can be expressed in terms of In ejnf,

where In are constants. Using Harrington's* impedance matrix formulation

for the circular loop

Zmn O lm*n) , (5-5) _

and

L Znn jinkb [1 Kn1 + 1 Kn+ 1 - (n) 2 Kn ]  (5-6)

where

2w e-jkb ¢4sin * + (,a)Y - --?
K = e o 7s r e - n  d . (5-7) .n 0

[4i 2 . + C a)2]y i :..
[4sin.

A program was written to find the zeros of Znn in Equation (5-6)

using Muller's method of iteration and Simpson's rule of integration.

All poles found with this program are consistent with those found in

[221. Table 5-9 is a list of poles of the first layer** at different

wire to loop ratios. A plot of those poles (Table 5-9) is shown in

* R.F. Harrington, Field Computation by Moment Method, New York,
Macmillan, 1968.

•* The classification of Layers are shown in Figure 5-17.
J -
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TABLE 5-9

-A LIST OF POLES* (LAYER I) OF LOOPS AT THREE DIFFERENT
WIRE TO LOOP RADIUS RATIOS. THE INTEGRAL EQUATION AND

NUMERICAL SEARCH IS USED TO FIND THE POLES.

Poles

a/b (.5E-3) x ir(2.E-3) x Ur(.E-3) x vi

-.109 +/-J1.0485 -0.086 +/-J1.04 -O.073317+/-J1.03822

[-.164 +/-J2.066 -0.125 +/-J2.058 -0.10591 +/-J2.05176

-.2085 +/-J3.079 -0.1562+/-J3.068 -0.130826+/-J3.06151

-.248 +/-J4.085 -0.1825+/-J4.078 -0.151932+/-J4.(16949

I-.2845 +/-J5.095 -0.2068+1-J5.06 -0.17066 +/-J5.0764

-.3185 +/-J6. 11 -0. 2288+/-j6.09 -0.187729+/-J6.0826

*The units of the poles are in kb, where k is the wavenumber and
b is the loop radius. w ris 3.14159 and a is the wire radius.)
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Figure 5-15. Figure 5-16 is a plot of poles for wire radius to the loop

radius ratio of 3.14159E-3.

The numbers shown with the locations of poles in Figure 5-17 are

n's of Znn. The poles in Figure 5-17 are divided into layers. Table

5-10 is a list of poles for the circular loop via integral equation and

numerical search at wire radius to the loop radius ratio of 3.14159E-3.

- Figure 5-18 is a plot of all poles showing constant n results in Znn.

From the result of applying RFA to the backscattering data for the loop,

it will be seen that layer I poles are found at edge-on incidence and

r layer II poles are found at broadside (also the first one of layer I).

Layer III poles are not found using RFA approach either at broadside or

at edge-on incidence. However, this does not mean that they are not

there.

3. Rational Function Approximation

The backscatter of the loop for broadside and edge-on (TE case)

incidence (Figures 5-19 and 5-20) were calculated using Kouyoumjlan's

equations in his report*. The backscatter of both broadside and edge-on

incidence are shown in Figures 5-19 and 5-20 individually.

The variational method has been used to determine the radar cross

section (RCS) of a perfectly-conducting, thin, circular loop by R.G.

* R.G. Kouyoumjian, "The Backscattering from a circular loop (antenna),"

Bulletin No. 162, The Ohio State University, The Engineering
L Experiment Station, November 1956.
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TABLE 5-10

A LIST OF POLES* OF A LOOP (a/b** of 3.14159E-3) EXTRACTED
USING INTEGRAL EQUATION AND NUMERICAL SEARCH

Poles
layer 1 layer J layer 2

-O.073317+/-J1 .03822
-0. +/-JO. -1.48611 +1-JO. -1.47916 +/-J1.54327
-O.073317+/-J1.03822 -1.47916 +/-J1.54327 -1.25879 +/-J5.0763
-0.105910+/-J2.05177 -1.6727 +/-J2.76692 -1.31026 +/-J8.3208

*-0.130827+/-J3.06151 -1.82195 +/-J3.90846 -1.34771 +/-J11.5139
-0.15193 +/-J4.06950 -1.9425 +/-J5.01545
-0. 170661+/-J5.0769 -2.048715+/-J6. 10285
-0. 187729+/-J6.0826
-0.203555+/-J7.0883 layer 4

-2.15481+1-JO.
-2.70814+/-J1 .0550
-3. 12022+/-J2 .05139
-3.45635+/-J3 .02946
-3. 74378+/-j 3.99996
-3 .99684+/-j4. 96701

layer 5
-3.50331+/-JO.
-4.10168+1-JO. 97958
-4.59325+/-J1 .93514
-5.0157 +/-J2.88079

layer 6
-4.84712+/-JO.
-5.4633 +/-JO.94868
-5.9950 +/-J1 .88392
-6.4665 +/-J2.81279
-6.8921 +/-J3.73865

layer 7
-6.1859+/-JO.
-6.817 +/-JO.93148
-7 .3681+/-J1. 85427

*The units of the poles are in kb, where k is the wavenumber and b is
the loop radius.

**a is the wire radius.
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Figure 5-17. A plot of the poles for a circular loop (a/b of
3.14159E-3). The poles are extracted via the integral
equation and numerical search.* The numiber around the
location of each pole is the n of Znn. Three types of
poles are defined.
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broadside. The wire-radius to the loop radius ratio is
3.14159E-3. The x's are the data points used in the RFA.

131

o............



zeal part ZRB Imaty prt real put ra immagly put .

9.093IS7 X10'I -5.3335:3 X100 -1.S73718 X10-1 5.Oa3,4'4 ;-,06
9.092196 X1- 5.339510 MOO0  -1.879747 X10-I -5.08214qg XIG 0

5.S57 76 XI00  -1.985174 XIO0' 1.695386 X100  -3.9925"3 XE13
2.304& 66 XIO0' -2.801795 X10 0  1.695806 X10' 3.992648 X100

2.305 36 X10'I 2.801810 X1O -1.770321 XI00  -2.025050 X1I.0

2.628 2LI X10' -4.102598 XIOO -t.770321 X10 0  2.026049 XIOO
2.629314 X10'I '.102255 X10D 2.154596 XI00  -1.912053 X100

-6.03 113 XI10' -4.286512 X(100 2.1514596 3(10' 1.912053 X100
-6.031865 X10I 4.2664173 X1O 1.713832 X10'S -3.099755 XIOG
9.612 89 10-4 -q.199132 X(100 -1.671175 X10'S 3.099739 X100

1.132 Oil X 10-3 '.199545 3(10' -2.487884 XlOa 0.000000 X100
-4.71 Q483 X10'I -2.833646 3(10' 2.269944 3(10' -1.590533 X10' -

-4.71 157 XIO0' 2.833650 3(10' -1.314712 XIO0' -3.061251 3(10' A
1.7Q11113 X10'V -3. 100153 3(10' -1.314476 X10'I 3.061272 3(10'
-5.4429 XIO-S 3.100109 3(10' -1.527180 X10-I -4.072685 3(10'
-146'4 506 XI10' -1.693563 3(10' -1.526632 X10'1 4.072699 3(10'
-1.514 495 X10'1 1.693558 X(100 2.571348 X10-5 -4.202686-X10'
5.25 .09 X10-3 -1.414843 X1OO -2. 154853 X10'S 4.202674 3(10'
5. 254 17 X 10-3 1.414845 3(10' -1.061955 X10'I -2.051208 3(100

-- 061953 3(10- 2.051209 X1OO
M=2350814 X10' -1.038382 X(100

N= 271. 350816 X10' 1.038382 -3(10

0

(ka I

(sli lie fo thopaeg-nicdec._bi

3.14159E-3, where a is the wire radius and b is the loop
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* Kouyoumjian at the Ohio State University. The equivalent source of the

scattered field is approximated by the current

IC. =W (cncosno + dnsinno) *(5-9)

where I(* is assumed to flow parallel with the axis of the wire. Good

- agreement between the calculated (broadside and edge-on) and measured

values were obtained. More data points are necessary to test the RFA.

Therefore, the following formula were used to calculate additional

r backscattering data (TE case) in this study.

En(kb) =2 2 w~kb)2I~~k ie
Ik~b2K (kb,a)

- ). Jn-l(kbsine) - n+l(kbsine))2
+ wr(1) n-1
n-1 kzbz[K n-1 b, a) + K n(kb, a] 2nZK n(kb, a) (5-10)

* and at broadside

En(kb)= 2 2w(kb)2  (5-11)
IkZbz[K (kb,a) +X2 (kb,AJ ZK1(kb,al2

L
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where A-a/b, and

cosnf exp{-ikb[4sin 2# + (1 1 }
Kn(kb a) z d# (5-12)

[2sin2* + 1 (8)2)1/2

En is the normalized backscattered amplitude and phase, i.e., the

squared root of the normalized (wa2 ) RCS, and Jn is the Bessel

function of the first kind and order n.

The backscattering data for the loop at broadside and

edge-on (TE case) incidences were calculated using Equations (5-10) to

(5-12). It is noted that the Kn of Equation (5-12) were integrated byL .i h.

Simpson's rule for 5000 points in [0,i]. Also, three unequal

subsections were divided in [0,w], i.e., more data points were put in

the steepest region of Kn. Thus, more accuracy of Kn can be reached -

without much more effort in the integration. Fifty data points (kb of

0.2(0.2)50) were calculated using the Equation (5-11) for the broadside

excitation.

More effort is involved in the calculation of backscattering data

for the loop at edge-on incidence. There is a summation of an infinite

series in Equation (5-10). The infinite series was truncated at the

point where five more successive terms made little contribution

to the total sum at that point. Thus, the backscattering data of

the loop at edge-on incidence were calculated at ka of 0.2(0.1)10. -

Figures 5-19 and 5-20 show the application of the RFA to the

backscattering data for the loop at broadside and edge-on respectively

(amplitude plots).
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m p The RFA is not only an excellent approximation in finding the -

complex natural resonances but is also a good approach for complex data

interpolation. Here is a good example of using the RFA for the data

interpolation because the calculated data are very expensive and

time-consuming to obtain. For broadside excitation the dominant string

of poles was extracted using RFA (Figure 5-19). Table 5-11 is a list of

- poles (layer 1) at broadside via the integral equation (using numerical

- search) and RFA. It is interesting to note that all of these poles are

the same as those searched at Z11 via the integral equation and

2 r numerical search. From the RFA viewpoint, only one pair of poles (the

lowest frequency ones) belong to layer I. The rest belong to layer 1I.

The pole-pairs of a loop at broadside are similar to the pole-pairs
* jof a disc at broadside. For edge-on incidence (Figure 5-20), the

dominant string of poles is shown on Table 5-12. They belong to the

family Zl1, Z22, Z33, ,.., etc. respectively. This string of poles has

the same spacing in the imaginary (oscillatory) part as that of creeping

wave mode of disc.

Some of the pole-loci of a loop are similar to those of a disc,

because some of the scattering mechanisms are the same. One is due to

the creeping wave around the circumference of the scatterer, the other

is due to the multiple diffractions of the thin wire (diffractions

12 across the center of the loop). A Table of 25 pole-pairs of the first

layer via the integral equation and numerical search are also shown in

Table 5-13. Figure 5-21 is a comparison of the poles extracted using

RFA and integral equation with numerical search for the loop.
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TABLE 5-11-

A LIST OF POLES OF A LOOP (a/b* of 3.14159E-3) EXTRACTED USING --

THE RFA AND INTEGRAL EQUATION AND NUMERICAL SEARCH FOR
BROADSIDE EXCITATION.

Poles-

Integral Equation
and Numerical Search Rational Function Approximation

Layer I

-O.073317+/-J1 .03822 -O.073548+/-J1 .03834

Layer II

-1 .47916+/-J1 .54327 -1.475459+/-J1 .540965
U-1 .25879+/-J5.0763 -1 .261053+/-JS.07532 J K -

-1. 31026+/-J8. 3208 -1. 305286+/-J8. 33954
-1.34771+/-11.5139

I *The units of the poles are kb, where k is the wavenumber,
b is the loop radius, and a is the wire radius.

L4
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TABLE 5-12

-POLES OF A CIRCULAR LOOP AT EDGE-ON INCIDENCE WITH
a/b* of 3.14159E-3

integral Equation
and Numerical Search Rational Function Approximant

Layer I

-O.73317E-1+/-Jl .03822 -0.7354E-1+/-J1.03834
-1.05310E-1+/-J2.05176 -1.0628E-l+/-J2.0515
-1.30826E-1+/-J3.06151 -1.308 E-1+/-J3.06

Layer 11

-1.47546+/-J1.540965 -1.62 +/-JI.69

*The units of the poles are kb, where k is the wavenumber,
b is the loop radius, and a is the wire radius.
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TABLE 5-13

A LIST OF THE POLES AND THE CORRESPONDING RELATIVE IMPEDANCE
(Znn) FOR THE LOOP (a/b* of 3.14159E-3). THE IMPEDANCE (Znn)

MAY BE AS HIGH AS 1.0 E3 FOR THE LOCATION SLIGHTLY AWAY FROM THE
POLE LOCATIONS.

N POLES(2kb) Z (NN)

0 (0.,O) 1.78470E-5
1 (-1.46634E-1,±2.07644) 1.13116E-4

L2 (-2.11820E-1,±4.10353) 3.79588E-4
3 (-2.61653E-1,±6.12302) 3.21737E-4A
4 (-3.03864E-1,±8.13899) 6.98320E-4
5 (-3.41321E-1,±1O.1528) 5.67344E-4
6 (-3.75458E-1,±12.1652) 2.01817E-5
7 (-4.07110E-1,±14.1765) 3.44889E-4
I8 (-4.36814E-1,±16.1869) 7.8755SE-4-
9 (-4.64939E-1,±18.1967) 2.44959E-5
10 (-4.91752E-1 ,±20.2058) 7.70241E-4
11 (-5.17453E-1,±22.2145) 7.71799E-4
12 (-5.42195E-1 ,±24.2228) 6.32431E-4
13 (-5.66101E-1,±26.2307) 7.59797E-4
14 (-5.89269E-1,±28.2382) 9.36263E-4
15 (-6.11779E-1,±30.2455) 3.61295E-5
16 (-6.33699E-1,±32.2525) 1.81433E-3
17 (-6.55086E-1 ,±34.2593) 8.89091E-4
18 (-6.75987E-1 ,±36.2658) 5.91972E-4
19 (-6.96445E-1 ,±38.2722) 5.83594E-4
20 (-7.16494E-1,±40.2783) 8.52026E-5

*The units of the poles are 2kb, where k is the wvaenumber
and b is the loop radius. (a is the wire radius.)
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i From the backscattering data of a loop for broadside incidence, an

impulse response in the time domain (Figure 5-22) can be found using an 

inverse Fourier transform of the data. Figure 5-23 is a plot of the

impulse response of the loop for broadside where the specular return of

the waveform has been removed. Figure 5-24 is a comparison of the

impulse response waveforms for a loop and a disc. Obviously, the loop

is a high Q scatter compared to the disc. Figure 5-25 is a ramp response

of the loop using the first 10 harmonics for Fourier synthesis. The

duration of the response is longer than 15 TAU (2b/c, i.e., the loop

diameter transit time ) although the plot only shows up to 15 TAU.

Landt and Miller have calculated the short pulse response of a loop (the "J

derivative of a Gaussian pulse) using a time domain approach (space-time

integral equation). The convolution of the impulse response obtained

here with a short pulse yields a result very similar to that of Landt

and Miller's short pulse response [36]. A comparison is shown in Figure

5-26.

A plot of the individual contribution of each pole-pair and the

corresponding residues of the impulse response for a loop (backscatter)

at broadside is shown in Figure 5-27. More transient response waveforms

for the loop at broadside and edge-on incidence are shown in Appendix H.

The dominant string of poles of a loop at edge on incidence belong to

layer I (see Figure 5-17). Only one pole belonging to layer II was

found using a RFA. Other poles were too weakly excited for extraction

using RFA.
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LFigure 5-22. The impulse response (with the specular term to be
removed) for a loop (backscatter) at broadside. The
specular return is seen around the time origin.
a/b is 3.14159E-3, where a is the wire radius and b
is the loop radius.
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Figure 5-23. The impulse response (with the specular return removed)
for a loop at broadside (backscatter). a/b is 3.14159E-3,
where a is the wire radius and b is the loop radius.
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TAU=2b/c
b is the loop radius

o3 .C0 0 B

t(TAt CDw

(a) fist par of oles second pair of poles
(a) irstPairOf ples(-l.47916+/-jl.543)(-O.0733+/-jl.038)

o 0

0 '1.0 8. .

t (TAIJ) tT

(C) third pair of poles (d) fourth pair of poles
(-l.259+/-j5.076) (-l.310+/-j8.321)

Fi gure 5-27.* The individual contribution of each pol e-pai r and the
corresponding residues to the impulse response for a
loop backscatter for broadside. L
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F. FINITE AND SEMI-INFINITE OPEN CIRCULAR WAVEGUIDES

- The frequency domain axial backscattering for the semi-infinite*

circular waveguide has been studied and computed, in the resonance

region, using exact Wiener-Hopf solution by Johnson and Moffatt [37).

Later, a UTD approximation was done by Huang [38). Axial backscatter

- from finite circular waveguides** with the far end shorted or opened have

been computed using the UTO approximation, and a comparison has been made

to a moment method solution [38, 39). Geometrical descriptions of the

finite and semi-infinite waveguides are shown in Figure 5-28.
Figures 5-29 to 5-34 show plots of RFA fits to portions of the

* .scattering data in the frequency domain obtained using a moment method

solution. Table 5-14 is a list of poles extracted from RFA and the window

l technique developed in Chapter III for these three objects. Figure 5-35

is a plot of the extracted poles for the three geometries. Note that the

poles of the finite open waveguides are very close for both the far end

shorted or opened, and definitely more pole-strings exist for the the

finite waveguides than for the the semi-infinite guide because of

* For the semi-infinite circular waveguide the data are 0/A of 01(.01).7

from Johnson and Moffatt's exact solution. The data 0/A of 1.(.01)2.6
are the GTD high frequency approximation. The rest of the data are
fitted and predicted by the rational function approximation. 0 is the
diameter of the waveguide.

' For the finite circular waveguide with the far end shorted or opened
.. ' the data 0/A of .01(.01)1.20 are from Huang's UTO solution. r) is the

the diameter of the waveguide,
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TABLE 5-14

A LIST OF POLES* OF FINITE AND SEMI-INFINITE WAVEGUIDE OBTAINED ,

USING THE RFA TO THE BACKSCATTERING CALCULATED DATA.

Finite Waveguide Finite Waveguide Semi-infinite
The Rear End Open Both Ends Open Waveguide

-0.22+/-30.54 -0.22+/-J0.55
-0.20+/-J0.82 -0.21+/-JO.82
-0.21+/-J1.06 -0.19+1-J1.04
-0.19+1-J1.29 -0.16+1-J1.28 -0.95+1-J1.36
-0.15+/-J1.51 -0.13+1-J1.53 -

-0.19+/-J1.63 -0.17+1-J1.62 -0.33+/-J1.79
-0.10+/-Jl.81 -0.1I+/-Jl.90
-0.02+/-J2.08 -0.01+1-J2.05
-0.05+/-J2.22 -0.10+/-J2.21
-0.08+/-J2.42 -0.17+/-J2.45
-0. 30+/-j2. 57 -0.47+/-J2.57
-0.10+/-j2.64 -0 .22+/-J2.69
-0.13+/-J2.88 -0.31+/-j2.82
-0.13+/-j3.04 -0.21+/-J3.04 -

-0.11+/-J3.14 -0.20+/-J3.14
-0.13+/-j3.26 -0.19+/-J3.24 -0.40+/-J3.31

-0.86+/-J4.95
-0.80+/-J6.14
-0.53+/-J7.89

*The poles are in the units of ka, where a is the radius of the
circular waveguide and k is the wavenumber.

148



I.

-10

L- lo

I (a)

OPEN CIRCULAR WAVEGUIDE
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SHORTED OPEN CIRCULAR WAVEGUIDE
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SEMI-INFINITE CIRCULAR WAVEGUIDE

LZ

Figure 5-28. The geometries of finite waveguides with both ends open
(a), the rear end shorted (b), and semi-infinite
wavegulde (c).
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Figure 5-29. The RFA for (M,N) as (14,13) (dashed line) fit to the:
axial backscattertn9 data (solid line) for the finite
waveguide (both ends open) within the window of interest.
The x's are data points used in RFA (amplitude plot).
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Figure 5-32. The RFA for (MN) as (10,9 (dashed line) fit to the axial
backscattering data (solid line) for the finite circular
waveguide (the rear end shorted) within the window of
interest. The x's are the data points used in RFA (phase
plot).
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Figure 5-33. The RFA for (MN) as (16,15) (dashed line) fit to the

axial back-scattering data (solid line) for a
semi-infinite circular wavequide. The x's are the data
points uised in the RFA. D is the diameter of the circular
waveguide (amplitude plot).
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basically dipole-type modes. This can be seen either in the plot of

poles in Figure 5-35 or in Table 5-14.

The complex natural resonances of finite waveguides and

semi-infinite waveguide are compared Figure 5-35. The complex natural

resonances are very close for the finite waveguides with the far end

opened or closed (as least in the interesting spectrum used for the

-,RFA). The major resonant modes (dipole modes) of the finite guides are -

nearly the same as can be seen in either Figure 5-35 or Table 5-14.

The edge diffraction and rim creeping modes are dominant for the

F, semi-infinite waveguide and the dipole modes are dominant for the finite

waveguide. However, the scattering mechanisms due to the front rim for

any of the open waveguides are the same for all three cavities.

The window technique was used with the RFA to the calculated data

for the finite waveguides, therefore the poles due to the resonant modes

- 'from the front rim were missed for both finite waveguides. If the rim

resonances were to be extracted, a very wide window could be needed.

G. AIRCRAFT F104

Table 5-15 shows calculated data for the F104 aircraft. (A stick

, . model obtained at the ElectroScience Laboratory by E. Lin [40).) The

simplest wire-grid airplane model utilizing 8 wire segments was used in

the claculation. The stick model shown in Figure 5-36 is not the wire

. .grid model used by E. Lin; it only shows the orientation. This set of

low frequency backscattered data at 8 of 0 and * of 0* for horizontal
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TABLE 5-15

THE CALCULATED DATA OF F104 AIRCRAFT MODEL*
AT 1 to 12 MHz

"Aspect" 6=00 , *u0 E polarization

Frequency(MHZ) Normalized Echo Signal
1 .010591-JO .001060
2 .044214-JO.009941

3 :107527-JO .025901
4 .186288-J .06 1203
5 .281474-J.119757
6 .390186-J.208745-

K 7 .508891-i. 337996
8 .632569-J .522298
9 .751477-J .783962

10 .843199-il .163223
11 .842512-il .698540
12 .612234-j2.4278484

*The fuselage length is 16.69 m and the wing length is 6.68 mn.

L4
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71-1

(*) polarization as fitted by the rational functional approximant is .

shown in Figures 5-37 and 5-38.

An extracted pole is listed in Table 5-16 and is compared with that

found by Moffatt and Chuang [41] using Prony's method for the same data. J

The reason that only one pole-pair was extracted is that the data points

available were limited to the Rayleigh region. Basically, the wire

model used for the aircraft is really a very simple one in the

calculations for these data. This example shows that complex natural

resonances can sometimes still be extracted even if the imaginary parts

of the poles are outside the spectrum of the available data. - ..
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TABLE 5-16

THE DOMINANT POLES* OF F104 EXTRACTED VIA-
THE RATIONAL FUNCTION APPROXIMANT AND PRONY'S METHOD 4

Rational Function Prony s Method
(Moffatt & Chuang)

-0.475+/-J2.526 -0.545+/-j2 .62

*The units of the poles are ka, where k is the wavenumber and a is
one half length of the fuselage.
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* Figure 5-37. The RFA for (M,N) as (12,11) fit to the calculated
backscattering data (solid line) for the F104 aircraft
at 0 of 0% # of 0* incidence and E+ polarization. The
x Is are the data points used in-the RFA (amplitude plot).
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CHAPTER VI

EXTRACTING COMPLEX NATURAL RESONANCES-

FROM MEASURED DATA

A. INTRODUCTION

The primary goal in this chapter is to describe in some detail a

relatively general method for extracting complex natural resonances by

applying the RFA to measured scattering data*. Because of the

complexity of the target geometry for objects such as aircraft or ships,

it is difficult (if not impossible) to formulate and solve the0;

scattering problem even approximately using analytical methods. Thus

measured data on some complex targets are necessary, particularly if

4. ,

broadband results are needed. In this chapter, measured data of two

conmmercial passenger aircraft scale models are used. Sufficient detail

*The scattering data on complex targets were obtai ned from measurements
being made on a noncooperative target recognition (NCTR) program in
progress at the El ectroScience Laboratory. The targets are primarily
fighter or other aircraft. Since no existing complex natural

*resonances are available for comparison for these targets, we shall
only identify them by type, e.g., aircraft A, B etc. The analysis
methods are adequately explained in applircations to simple targets.
This approach will circumvent any possible future classification
problems while in no way diminishing the application results.
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of RFA applications have been given on the simple targets, but it is

* important that the techniques developed herein be applied to measured

* '.i data on real complex (geometry) targets. At the same time,

classification problems are avoided by not specifically identifying the

- targets.

B. AMPLITUDE AND PHASE PLOTS

An advanced state-of-the-art broadband radar reflectivity

- measurement facility is under development at the ElectroScience

Laboratory of the Ohio State University [42). Detailed procedures for

the measurement and data processing are not discussed here but it is

. :helpful to present some of the scattering data as a function of frequency

for the scale model targets. The coordinate system and the target

" orientation (aircraft shown in stick form only) which were used in the

measurements are shown in Figure 6-1. The aircraft is aligned with wings

and fuselage in the xy plane (nose in the positive x with direction and

vertical stabilizer in the z direction). Vertical polarization is

identified as measurements with the electric field polarized in the z

direction and horizontal polarization as measurements with the electric Z".

field polarized in the xy plane.

For horizontal polarization, the complex data were taken in the

. frequency band of 1.5 GHZ to 6.5 GHZ in 500 steps for aircraft A. Also

measured data in 1-2 GHz, 2-4 GHz, and 4-6 GHz bands (200 steps in each

band) were taken for vertical polarization for aP--.raft A and 1.0 to 6.5
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Figure 6-1. The scattering coordinate system of a transportation
aircraft aligned with the fuselage along the x axis
(nose in the x direction) with wings in xy plane.
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t

GHz (550 steps) for aircraft B. Figures 6-2 and 6-3 (amplitude plots)

and Figures 6-4 and 6-5 (phase plots) are the spectrum at aspect angles

of 0, 20, 30, 45, 50 off the nose for horizontal polarization for

aircraft A. Figures 6-6 and 6-7 are amplitude and phase plots for

vertical polarization at aspect angles of 00, 150, and 300 off nose-on

for aircraft A, and Figures 6-8 to Figure 6-11 are plots (Figure 6-8 and

6-9 amplitude, Figure 6-10 and 6-11 phase) for vertical polarization at --

0, 300, 60, 900, 1350, 1800 off nose-on for aircraft B. The amplitude

is Y-and is in the units of cm, where a is the radar cross section (RCS)

r on a linear scale. (The RCS is in the units of cm2 .)

The plots of the spectra are shown here because the number of peaks

in the amplitude plots are clues for determining the system order.

Furthermore, as will be seen later, the imaginary part of the extracted --

poles are near most of those peaks. A comparison of the amplitude plots

of the measured data for aircraft A at horizontal and vertical

polarizations from nose-on is shown in Figure 6-12. All of these plots

shown in this Chapter have been smoothed by the zero-phase-shift digital

filter given in Appendix B.

It is difficult to smooth noisy data precisely (without any

distortion of the signal) because the transient responses vary in length

for various targets, aspects, and polarizations. However, strongly

K: .excited poles will not be influenced much as long as the

cut-off frequency of the zero-phase low-pass digital filter is properly

designed.
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polarization.
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, Normally 4 TAU width for the time-domain window (TAU is 2a/c, where

a is a characteristic target length) is a good choice for most targets.

Some targets however should have windows (the 3 dB cut-off frequency of

the digital low-pass filter) wider than 4 TAU. Such targets have

resonances with small damping such as, e.g., the circular loop. The

cut-off frequency of the filter in the plots of Figures 6-2 to 6-8 is

a set to 23 Hz; and the sampling rate of the digital filter is assumed to

be 500 Hz. The folding frequency is 250 Hz. The corresponding

time-domain window width is therefore roughly 4 TAU for this cutoff

frequency of 23 Hz. The sampling intervals in the spectra are 10 MHz.

Typical examples of oversmoothing using zero-phase-shift digital filters

are shown in Figures 6-13 to 6-16. The 3dB cut-off frequency is set to

fc of 11.5 Hz, i.e., 2 TAU lengths in the time domain. It has been | .

found that some of the true poles were missed if oversmoothed data are

used in the rational function approximation. Typical plots of the

oversmoothed data for aircraft A are shown in Figures 6-13 and 6-14

(horizontal polarization), and in Figures 6-15 and 6-16 (vertical

polarization) at nose on incidence. Obviously, these plots show that

higher order scattering was filtered out. Oversmoothing results in

loss of some weak resonances. To filter out noise and clutter, plots of

the impulse response are necessary. The impulse response helps select

C fc, the 3 dB cutoff frequency, of the digital filter as will be shown in

section D of this chapter.
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C. EXTRACTING THE COMPLEX NATURAL RESONANCE FROM THE MEASURED DATA

After RFA have been developed, it is relatively routine to apply

the programs to measured data. The following features should

be noted:

1. The measured data sets are smoothed by a low pass 10th order

zero phase digital filter. The 3dB cutoff frequency of the low ___

pass digital filter is movable.

2. The window technique is used with the RFA. This window is

generated simply by taking sample points over a band limited _

region of the spectrum. The window used for the RFA is a very

powerful tool for extracting the poles, because there are

usually too many resonances within the spectrum to be covered

by one RFA.

3. The system order is set at around twice the number of

amplitude peaks in the spectrum covered by the window.

4. Several different sets of data points and system orders are

tested at each window, and only the poles which are unchanged

for more than two selected data sets are considered as

candidate poles.

S. The window is chosen such that the magnitude of the fitted

data lying outside the window is as small as possible. Thus,

both end points of the window should be at relatively minimum.-

amplitudes or at least on a portion of the negative slope.
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1. Aircraft A•.

The complex natural resonances of the transportation aircraft A at

0, 300, 450, 600, 900 , 1200, 1500, 1650, and 1800 aspect angles as

• iextracted from the backscattering data in the 1-2 GHz band for

horizontal polarization are given in Table 6-1. The 1-2 GHz and 2-4 GHz

"'. bands are treated individually because the measured data sets for these

bands were taken separately. Table 6-2 lists the extracted poles from

the backscattered data at 0%, 150, 300, 45, 600, 75, 105, 165, and

1800 aspect angles for the aircraft A and for the horizontal

polarization in the 2-4 GHz band. However, the rational function

approximation windows are set at 2-3 GHz only. The pole locations found

are relatively aspect independent.

Table 6-3 shows the extracted poles for horizontal polarization at

aspect angles of 00, 100, 200, and 30* as found using 1.5 to 6 GHz band

data. In order to compare with the other polarization (vertical

polarization) only data in the 1.5 GHz to 3.0 GHz band were used. The

extracted poles are relatively aspect independent. Note that more poles .'-

are excited for horizontal polarization than for vertical polarization.

2. Aircraft B

The complex natural resonances of aircraft B were extracted using

the RFA and window techniques for data at 00, 900, and 135* from nose-on

in the 1 to 2 6Hz band. The extracted poles are listed in Table 6-4.

L The poles are relatively aspect independent and the pole sets for the

185

I-L



TABLE 6-1

THE COMPLEX NATURAL RESONANCES* FOR COMMERCIAL-
AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION-
APPROXIMATION TO THE MEASURED DATA (BACKSCATTER,

VERTICAL POLARIZATION. 1-2 GHz).

1-2 G1z4

Do. 300 450
-0.082 +/-Jl.082 -O.104+/-J1.034 -O.O5./-Jl.07

A"not located -0.093+/-Jl .16 -0.06+/-Jl .18
-0.092 +/-J1.318 -0.116+/-J1.338 -0.10+/-Jl.33
-0.783 4/-J1.588 -0.085+/-Jl.554 -0.07+/-Jl.52
-0.645 +/-J1.765 -0.045+/-JI.73 -0.09+/-Jl.71
-0.0755+/-JI.916 -0.05 +/-J2.06 -0.14+/-J1.95

6009 1200
-O.068+/-jl.077 -0.035+/-il .057 -0.039+/-Jl .03WI
-O.082+/-Jl.187 -0.031+/-Jl.171 -0.06 +/-J1.11 4 .
-0.102+/-Jl.34 -0.11 +/-Jl.39 -0.10 +/-Jl.33
-0.082+/-Jl.53 -0.15 +/-J1.574 -0.07 +/-Jl.54
-0.056+/-Jl.71 -0.0634/-JI.775 -0.08 */-Jl.77
-0.091+/-Jl.956 -0.11 +/-J1.95 -0.0739/-J1.934

1500 1650 1800
-0.051 +/-Jl.053 -0.53 +/-Jl.036 -0.0584/-Jl.05
-0.052 +f-Jl.18 -0.057+/-Jl.141 -0.062+/-Jl.161
-0.092 +/-Jl.351 -0.056+1-J1.383 -0.084+/-J1.324 -

-0.09 +/-J1.559 -0.057+/-JI.572 -0.057+/-JI.512
-0.0936+/-Jl.72 -0.055+/-J1.726 -O.040+/-J1.749
-0.093 +/-J1.959 -0.11 +/-J1.94 -0.029+/-Jl.405

*The units of the poles are in GHz.
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TABLE 6-2

- THE COMPLEX NATURAL RESONANCES* FOR C OMM ERCIAL
AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION

APPROXIMATION TO THE MEASURED DATA (BACKSCATTER,
VERTICAL POLARIZATION, 2-3 GHz).

2-3 GHz

Aspect Angle 00 Aspect Angle 15* Aspect Angle 300

[ -0.02 +1-J1.996 -0 .008+/-J2 .019
-0.108+/-J2.328 -0.146+/-J2.291 -0.068+/-J2.20
-0.07 +/-J2.681 -0.107+/-J2.665 -0.10 +/-j2.51
-0.068+/-J2.974 -0.100+/-j2.967 -0.08 +/-J2.72

-0. 192+/-J3.0

450 600 750
-0.05 +1-j2.13 -0.047+1-J1.94 -0.053+/-J2.109
-0.09 +/-J2.37 -0.091+/-J2.22 -0.127+/-J2.317
-0.027+/-J2.65 -0.09 +/-J2.49 -0.08 +/-J2.593
-0.047+/-J2.94 -0.12 +/-J2.79 -0.097+/-J2.922

-0.10 +/-J2.93

1050 1650 1800
-0.051+/-J2.019 -0.099+/-J2.089 -0.117+/-J2.16
-0.079+1-J2.36 -0.128+/-J2.21 -0.105+/-J2.29
-0.07 +/-J2.61 -0.016+/-J2.362 -0.09 +/-J2.47
-0.047+/-J2.86 -0.037+/-J2.62 -0.09 +/-J2.88
-0.06 +/-j2.97 -0.032+/-J2.97 -0.16 +/-J3.00

*The units of the poles are in GHz.
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TABLE 6-3

THE COMPLEX NATURAL RESONANCES* FOR COMMERCIAL
AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION

APPROXIM4ATIONS TO THE MEASURED DATA (BACKSCATTER,

HORIZONTAL POLARIZATION, 1.5-3 GI~z).

*0 00100 20* 30
(-0.12,1.55) (-0.13,1.58) (-0.057,1.513) (-0.08,1.52)
(-0.14,1.69) (-0.12,1.69) (-0.12,1.67) (-0.056,1.65)
(-0.11,1.75) (-0.12,1.73) (-0.11,1.79) (-0.086,1.78)
(-0.10,1.81) (-0.13,1.801) (-0.14,1.85) (-0.095,1.88)

IL (-0.08,1.93) (-0.12,1.95) (-0.10,1.93) (-0.052,1.93)
(-0.24,2.00) (-0.14,2.02) (-0.10,2.06) (-0.046,2.03)
(-0.08,2.16) (-0.09,2.18) (-0.07,2.17) (-0.098,2.15)
(-0.15,2.22) (-0.10,2.27) (-0.57,2.21) (-0.063,2.23)
(-0.10,2.34) (-0.13,2.34) (-0.11.2.36) (-0.16,2.37)
(-0.07,2.57) (-0.16,2.52) (-0.05.2.54) (-0.123,2.55) -

(-0.09,2.63) (-0.23,2.62) (-0.19.2.67) (-0.03,2.66)
(-0.10.2.76) (-0.104,2.80) (-0.57,2.86) (-0.06,2.79)
(-0.14,2.99) (-0.13,2.98) (-0.14,2.94) (-0.03,3.04)

*The poles are in the units of GHz
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-- F-~TBL 6-4--- .

PMN

II..THE COMPLEX NATURAL RESONANCES* OF AIRCRAFT B ATA
* 00, 900, and 1350 FROM NOSE-ON INCIDENCE

FOR VERTICAL POLARIZATION

100 900 135*

-0.073+/-il .095 -0.21+/-Jl .097 -0.165+/-il .023

* -.19+/-J1.232 -O.26+/-J1.25 -0.183+/-J1.214

L-0.24+/-Jl.450 -O.19+I-Jl.47 -0.129+/-Jl.437

-O.48+/-JI.628 -0.19+/-J1.66 -0. 51+/-jl.65
-O.07+I-jl.88

-0.21+/-il. 956 -0.18+/-J1.953

*The poles are in the units of GHz. The RFA fit in the 1-2 GHz
band.

189



two aircraft are not the same. Therefore, it would appear that the pole

sets could be used for the purpose of classification. :2 €

One of the characteristics of the complex natural resonances,

polarization invariance, can be tested by comparing Table 6-1 to 6-3.

It is well-known that the complete set of complex natural resonances of '

an object may not be optimally excited for one polarization or for one

aspect angle. For example, a wire for broadside incidence has only even

modes excited; at other aspects both even and odd modes are excited.

But the total resonances of the wire include both even and odd

resonances. Similarly, if the target has poles which are more strongly . __

excited with horizontal polarization than with vertical polarization

then more poles are extracted from the measured aircraft data for

horizontal polarization. Portions of the extracted poles are nearly the

same for both polarizations.

0. IMPULSE RESPONSES OF THE AIRCRAFT

Our purpose here is to plot some of the band limited impulse

response waveforms of the aircraft using Fourier synthesis. We use an

inverse Fast Fourier Transform (IFFT) to implement the Fourier synthesis

and a smoothing window is used to eliminate the Gibbs' phenomenon. The

window (W(n)) used here is

190 
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si n (N) 2 qu

"2; Z for n not equal N/2
W(n) - (N . n2  .

U~ () ~2(6-1)

1/2 for n of N/2

where N is the total number of samples. Study of the transient response

waveforms for the aircraft is not for the purpose of target

identification but rather for deciding the 3 dB cutoff frequency for the

digital filter. Then, the noise and clutter can be reduced from the

frequency domain measured data using a digital filter with proper cutoff

frequency. Typical impulse responses for a transportation aircraft at

some different aspect angles and for both polarizations are shown at the

end of this section. The rough geometry of the aircraft is sketched

indicating aircraft orientation and incident wave polarization for each

impulse response waveform.

E. BRIEF SUMMARY AND DISCUSSION

In this dissertation no effort is made to relate features of the

impulse response waveforms shown to geometrical features of the

aircraft. To do so might compromise the actual identity of the targets .

and is not essential for any purpose. Both aircraft show response

waveforms which ring for relatively long times, indicating that signals

are bouncing between various structures. Given the actual size and

shape of the aircraft, most of the dominant scattering mechanisms

can be identified. For our purpose, it is also clear that an

191
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-.1
examination of the response waveforms is essential for selection of the

best digital filter. OPP

The ultimate goal in the chapter- extracting the complex natural

resonances from the measured complex shape targets - has been

accomplished for two passenger transportation aircraft. The

applications of the RFA were limited to 1 to 3 GHz in order that the

.- poles for many aspect angles and two polarizations could be extracted
A

and compared easily. The number of complex natural resonances extracted

is somewhat influenced by the 3 dB cut-off frequency of the digital

rfilter. It is for this reason that the impulse response waveforms for

the two aircraft were synthesized. The impulse response waveform with

zero-phase-shift digital filter is shown in Figure 6-32. The horn

antenna coupling, long path multiple scattering, target return

reflector, system noise, and back wall are also displayed and clearly

seen. The result of filtering the measured data using a zero phase

low-pass digital filter (fc of 15 Hz) is shown in Figure 6-33. One of

the advantages of using the digital filter directly in the frequency

domain is an inverse Fourier transform is not required. Therefore

possible distortion due to the transformation can be avoided.

The exact 3 dB cut-off frequency of the lowpass filter should be

different for various targets, aspect angles, and polarizations. The

impulse responses for the aircraft are valuable in the determination of

the 3 dB lowpass filter.

The RFA and the preprocessing techniques developed in this study

L can be applied to obtain the complex natural resonances of a complex
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shape using measured data. The complex natural resonances obtained

from the measured data are relatively aspect and polarization

independent.
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CHAPTER VII

CONCLUSIONS

An analytical model in the form of a rational function

approximation (RFA) for fitting available complex spectral data has been

developed. The available data which may be measured or calculated

correspond, in principle, to any portion of the spectrum. The interest

r in this study is in scattered electromagnetic signals and in the

extraction of complex natural oscillations (poles) from the fitted

model.* The methods developed could have much wider

applicability--to radiated as well as to scattered signals, for

exampl -, and to seismic and acoustic as well as to electromagnetic data.

(ither methods for extracting complex natural resonances from

* data have been briefly reviewed, and the differences and advantages of -

the present technique explored. It is also demonstrated that rational

function models can be used to supplement and complete an analytical

*The rational function approximation developed here is also an
excellent tool for complex data interpolation. The application of
the RFA to data interpolation has been made for thin wires and
thick wires. The results have been shown to be very accurate when
compared with the calculated data. A typical example can be seen in
Figure 5-12, where the first resonances is not shown in the original
data, but is plotted in the RFA (dotted line).
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model (the K-pulse [61) useful for relatively simple objects at high

frequencies.

The RFA developed here has three main features: low-pass filtering

to combat noise and clutter effects, windowing procedures to eliminate

so-called -urve fitting poles, and a sum operator which permits most of

the available data to be used and is usually more effective than least

squared error techniques (at least against an additive Gaussian white "

noise). There is, admittedly, little original in the generation of a

system of linear, simultaneous equations for fitting complex, multiple

frequency data. Yet the method of solution of the main data points and -

in the preprocessing of the data (fitting, sum operator) before pole

extraction are new. Although the final step, i.e., pole extraction via

of the zeros of the denominator of the rational function approximant is "

routine, it requires using double precision on a digital computer to

illuminate near pole-zero cancellations.

Application of the RFA has been demonstrated for a variety of "-

.* simple and complex objects, and, where possible, the results (complex

natural resonances) have been compared to those obtained by other

methods. Included here are spheres, discs, loops, thin wires, and

finite and semi-infinite circular waveguides. Numerous tests of

applications to a conducting spherical scatterer have been made. It

must be stressed, however, that these methods have been tested against

true poles with true residues (but finite in number) in an additive

Gaussian white noise model. Tests of a parameter extraction procedure

where equal excitation of parameters is assumed, albeit in noise, are
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relatively meaningless. The RFA has also been applied to measured _

wide-band scattering data obtained using a new reflectivity facility

being developed at the ElectroScience Laboratory [42]. The targets in

this case are of complex geometry and of sufficient tactical importance

-. to warrant classification (security) problems. Stressed, therefore, is

the stability of results of RFA, and neglected is the precise

identification of the scatterers for these cases. Excellent pole --

extraction has been demonstrated for both simple and complex geometries.

Certain far-reaching conclusions can be drawn from the results of the

research reported in this study.

1. Complex natural resonances can be successfully extracted from

additive noise contaminated data with signal-to-noise ratios as

I low as 15.0 dB or lower.

2. For signal-to-noise ratios significantly lower than 15 dB, it

does not appear that reliable pole extraction methods are

U feasible. Unless, of course, some new breakthrough is made.

3. From 2 above it has been concluded that pole extraction

procedures from full scale, field-measured data are generally

not feasible and should not be attempted. Roughly,

signal-to-noise ratios of 13 to 15 dB are necessary for

- -successful pole extraction. This does mean that pole

L extraction from controlled data, i.e., from laboratory

measurements is feasible. The new ElectroScience Laboratory
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reflectivity measurement facility or other careful "

measurements easily satisfy this requirement.

4. While this study does not explore target recognition, it must

be stressed that pole extraction from real time radar data -

is not necessary for target recognition using

prediction-correlation processing. The nearest neighbor

decision rule [43] using the complex natural resonances can

also be used. The rule is to identify a set of extracted

poles {Pi}, as a member of the pole set of the known targets

in a library, Cr, to which its nearest neighbor belongs. - --

Therefore, noise and clutter problems do not negate this

form of target recognition at least as far as pole

extraction is concerned.

S. Parameter extraction for the complex natural resonances is

not, at this stage, an exact science using the procedures

of this study. Experience, in processing and in realizing

what is and what is not reasonable in terms of electromagnetic

reverberations, is indispensable. A completely foolproof

automatic procedure cannot be devised at this time.

Using both RFA and asymptotic estimates, new and significant

results have been obtained for the complex natural resonances of the

thin circular loop. Of particular importance is the fact that poles

from RFA which are most precise at lower frequencies show a region of

overlap with poles obtained from asymptotic methods. Therefore, from a
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combination of the two methods relatively lengthy (>30 or 40) pole-pair

strings can be obtained. Such long pole strings are precisely what are
needed to obtain a K-pulse waveform using one particular approach [441.

A thin-wire circular loop has also been used to test RFA for

complex natural resonances extraction. In this case, comparisons are

made with existing poles obtained from an integral equation formulation i...'.

and numerical search; good agreement is obtained. A K-pulse for the

circular loop using Just those poles corresponding to creeping wave type

modes is obtained, and the backscatter response of the loop to this

K-pulse for edge-on incidence has been derived. Derivation of

K-pulse-response waveform pairs for a particular target is beyond the

scope of this study but these initial results do show the utility of

RFA. In the course of this study, new canonical response waveforms

have been shown for the thin-wire loop and for cross-polarized responses

of the circular disc.

As noted above, RFA has been used to extracted complex natural

. .resonances of several relatively complex target geometries. The

- broadband scattering data for these applications were measured on the

new compact reflectivity measurement facility at the ElectroScience

Laboratory. In this dissertation a number of band-limited impulse

response waveforms, generated from these measured data, have been shown.

These waveforms vividly demonstrate the tremendous diagnostic potential

of time domain response waveforms. The response from various

. . -geometrical features of the targets as well as possible reverberations

" Lbetween various features are easily seen. This aspect of the response
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waveforms has not been stressed here for obvious reasons but one must

perceive the future significance of what might be termed "scattering

reflectometry.-

The most immediate application of the tools developed in this

dissertation is to extract complex target poles for target recognition

using prediction-correlation [451. In this regard it is noted that the

poles of complex target geometries as extracted using RFA do not show

precise excitation invariance, particularly with respect to the damping

of a given pole. The reason--weak excitation of a particular

resonances at a given aspect or polarization--is obvious. As a -

practical matter, however, it is clear that a single complex geometry

target will have to be treated as several targets (somewhat different

pole damping) in prediction-correlation processing. Research on this

aspect of the problem using the RFA tools developed here has already

been initiated.
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APPENDIX A

A ZERO PHASE SHIFT LOWPASS DIGITAL FILTER

The goal in this Appendix is to design a 10th order zero-phase-shift

lowpass digital filter. The first step here is to design a 5th order

lowpass Butterworth digital filter in terms of a 5th order analog filter

[46). Then, two 5th order filters, H(z) and H*(z) (H*(z) is the complex

conjugate of H(z)) are cascaded to make a 10th order zero-phase-shift

digital filter. A block diagram of 5th order digital filter is shown in

Figure A-1. The transfer function of the 5th order Butterworth analog

filter [46) with a 3 dB cutoff frequency at I radian/second is given by

* "G(s)= Ao (A-i)
Bo + B1s + 82sZ + B3s

3 + B4s4 + Bss5

where

• ° :A o  Bo -1 ,(A-2.11)?.

B1 = 3.236068 , (A-2.2)

B2 = 5.236068 , (A-2.3)

83 - 5.236068 , (A-2.4)

B4 - 3.236068 , (A-2.5)
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and

B5 = 1 (A-2.6)

If the transfer function of the digital filter is written as

--- 2 -3 -4 -5
H(z) a° + a1z + a2 z  + a3z + + a5z ' 5  (A-3) -

1 + b1z-1 + b2z-Z + b3 z-3 + b4 z- 4 + az5 
"

the following relationships are true [45).

A = B0 + B1C + B2 c2 + B3C
3 + B4C4 +B5C5  (A-4.1)

ao =Ao/A , (A-4.2)

al =5Ao/A , (A-4.3),- -

a 10A0/A *(A-4.4)

a3 = 1OAo/A , (A-4.5)

a4 = 5Ao/A , (A-4.6)

a5 - Ao/A , (A-4.7)

b= (SBo + 3B1C + B2C 2 - B3C3 - 3B4C4 - 5BC 5)/A , (A-4.8)

b2 = (lOBo + 2BiC + 2B2C 2 - 2B3C
3 + 2B4C

4 + 10B5C5)/A , (A-4.9)

b3 = (lOBo + 2BiC + 2B2C2 + 2B3C3 + 2B4C4 - 10BsCS)/A , (A-4.10)

b4 = (SBo - 3BIC + B2C2 + 83C3 - 3B4C4 + 5B5C5)/A , (A-4.11)

b5 = (Bo - B1C + B2C
2 - B3C3 + B4C

4 - BSCS)/A , (A-4.12)

and

C cot( fC (A-4.13)
rot(To-

The remaining undefined parameters are:
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mr is the 3 dB cutoff frequency for the analog filter (assuming
that Xr is 1 rad/sec for the analog filter given by Equation (A-1)), fo

is the folding frequency, i.e., one half of the sampling frequency, fc

is the 3 dB cutoff frequency for the digital filter.

Assuming that the sampling frequency is fixed at 500 Hz, i.e.,

fo of 250 Hz, the only variable that still has to be determined is the 3

dB cut-off frequency fc. Then all of the unknown coefficients in

Equation (A.3) can be obtained using Equations (A-4.1) to (A-4.13). The

implementation for the transfer function of the fifth order digital

filter is shown in Figure A-I. The implementation of H*(z) is to input

the data backward through the filter H(z) and reverse the output

sequence.

In the application of the 10th order zero-phase-shift digital

filter to the noisy data, the 3 dB bandwidth of the filter is chosen to

cover the target size and transient response. The transient response

waveforms are aspect and target dependent. However, a plot of the

impulse response may help to decode the effective transient length.

Normally, 4 to 5 TAU (target length transit time) is a good choice of

the 3 dB bandwidth for most targets.

An example of the determination of the 3 dB cut-off frequency fc

for the calculated data for the sphere (Aka of 0.02) is shown here.

Since the data for the sphere are sampled in the frequency domain, the

corresponding impulse response is periodic with a period tp given by
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tp a /Af -157.25 (TAU) ,(A-5)

where Af is the frequency increment between successive samples, TAU is

2a/c, a is the radius of the sphere, and c is the speed of light in a

free space. The corresponding 3 dB cutoff frequency fc (in terms of

target length transit time) for the digital filter is

f 157.256B (TAU). (A-6)

*where BW is the desired 3 dB beamwidth for the digital filter in Hz.

A f is (0.02/0) c for Aka of 0.02.
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L Figure A-i. A block diagram of the 5th order digital filter.
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APPENDIX B

A SUM OPERATOR

As mentioned in Chapter III, an overdetermined system of linear

equations is obtained after some manipulation of the rational function -

approximation (Equation (3.2)). Assuming the RFA has a system order of

for (M,N) as (3,2), a system of linear equations can be written as

AX = B , (B-l)

where A is an 18x6 data matrix (assuming that 9 complex data points are

used) and X and B are 6 row column vectors, i.e., 6 unknown

coefficients. Thus
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F2 3BX 2 0 -ij8 1 _x _1 1  X41

28x 3~x 0 -3 0 ..

23 2 0 _4
j 22 Q22 1 2 x2  _x2  21

AI isx2 3 0 -x3  0
I2X j 2X2  a2X2  2

I3 _x2 0 _X4

siqXg cs9X9  J09 x9  X9  9,

I ~ 2  3x 0 -X.3 01 (8-2)
qg9 9 9 9 I

-18 x6

* 1b21
Ib3
IaoI

Ial I

I a~ I I(B.3)

231



I _j

B=I
It-J02 1

I -J 03

I Ij0
I (B.4)

i iR i i i (B.S)

-where xiR isd il are the resal parited konpsut radtondm

* ~are- therelptan imaginary part of the inutdta ielteos data a h

Th marxeuto o-diieniei

A'X B (B-6

ithefreqec

= (GR ' iR~ i(81 +2325



2- -22 3-3 2 I0
IiOiXi+itiixi MIX +JOXiBX +JjlX _X 0 _X

2 22 3-3 3I
aIc~X+ -iRXl jJ01X +Jtiix MIX +ZiRX 0 -X o0

I 1 1 1 1 j
- 22 3-3 2 41

Ii82X2+itj1IX2  cz2X +tiRX J02X +jtj1x -X 0 -X I
1 2 2 2 2 2 2

2 -2 2 3-3 3 I
A' = Ic2X2+liRX2 iB2X +JzjX ci2X +1i RX 0 -X 0 1,(8-7)

12 2 2 2 2

3 -- 3 3 2 41
lJ0gXg+JtijXg agX9+ZiRX9 J09X +Jj1 X -X 0 -xj 9

2 -2 2 3-3 3 I
Ia9Xg+yLiRXq jogX +Jtj1X ctgxXi RX 0 -X 0I

I_9 9 9 9 9 I
-1

18x6

and

1b2 1

1b31

b 1

233



I -a2- 

I -. aS-L tI1

1 i - - til

1 - I

-j0 ~2 iR I

- I
I~--3LiR

S-11 x 1 jI
-I - , I 

di v by .I --

appl i -9 ad1 1 rI-l=9 - LtR '

-- --18 x 1

In order to reduce the addtive noise In each element of the mtrix A'--• --_J

and B', a sum operation is used. Each element of matrix A'.::.:-::i:

and mtrix B' in the same column of rows 1, 3 and 5* are added and then ::..: :

divided by 3. Thus, a new row is obtained. The same procedure is -. S

applied to rows 7, 9, and 11, rows 13, 15 and 17, rows 2, 4,and 6,

• . . and rows 14, 16 and 18. The following new matrix equation results

from the above procedure -

A"X = B" (B-10)

• Choosing the odd rows to be a group and the even rows to be a group,
then the summation will be limited to the real part domain and
imaginary part domain respectively.
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where A" is a 6x6 data matrix and X and B" are 6x1 column vectors in

this example. The matrix equation in Equation (B-10) is exactly

determined. Thus, this matrix equation can be solved in the exact

sense. The variance of the noise is reduced by a factor of about 3 in

this example. Similarly, the sum operation can be applied to a higher

order system that utilizes more data points. The basic reason for the

noise reduction is an averaging as shown in Equations (3-18) and
p

(3-19).

It should be noted that there is a limitation on the number of

r samples (N) used for the sum operation, because the noise in each

element of the matrix A' has been magnified by a factor of X (see

Equation (B-7)), where X = jkta and n is an integer. For small N and

small frequency increments (xi - x(t1 1 ). it is true that

1= X2 X3 = • = XN (B-11)

so that the reduction factor is N. However, for larger N, the

assumption is no longer even approximately true. Therefore, the noise

reduction factor is less than N. Considering the sum operation in the

above section of this Appendix, it is possible to define a sum

operator, S, in general for a matrix equation. Given a matrix equation

CX =D , (B-12)
L

where
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11 C12 C13 ... Cin-I

IC21  C22  C23 ... C2nI

ICmi Cm2  Cm3 ... Cmnl
K.I ( B-13)

mxn

I n I

I- In xl 1 (B-14)

and

F- -I

1d21

The sum operator S is defined as an average of I elements in the same

column but in I different rows. Basically, there is no limitation

in the selection of those I rows needed in group summation. However, in

the application of a sum operator to a matrix equation that results from

a RFA, the I group of rows are the ones nearest to the new desired row.
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Moreover, the S operator can be applied repeatedly. Thus, in general,

* the new matrix equation using one S operator is

C'X D' ,(B-16)

where

ISCii SC12  SC13  .. SCm 1

i- I:

SC21  SC22  SC23  ... SC2n

ISCrn1 SCm2 SCm3 ... SCmnI
I'"' = (B-17)

mxn

urn and

ISd1I

ISd2 I

..

* ISdmI
L _Im x 1 (B-18)

Note again here that the sum operator is manipulated in the matrix

equation; and the sum operation in the matrix equation is basically

j L similar to row echelon algorithms used in the Gauss elimination, i.e.,

any row can be multiplied by a constant and can be added to other rows.
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The sum operator itself does not filter out any of the signal*; however,

the noise is indeed reduced by using the sum operator. -

*When the sum operator and the RFA are applied together to a set of
noiseless data, the result is exactly the same as that using only the
RFA to the noiseless data.
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APPENDIX C

m A COMPARISON OF THE RAYLEIGH-STEVENSON EXPANSION

AND THE EXPANSION FROM RFA FOR A DISC AT BROADSIDE

In this Appendix, a list of the unknown coefficients for the

rational function approximation with system order for (M,N) as (14,13)

to the backscattered data for the disc at broadside excitation is shown

in Table C-1. The corresponding poles, zeros and residues are listed in "

Table C-2. A synthetic division of the rational function approximation

(Equation C-i)) using the coefficients listed in Table C-1 agrees

i closely with the low ferequency power series expansion (Equation (C-2)) I- ._

for the disc at broadside given by Boersma [471 in powers of X(Jka) up

to the 10th order. The rational function yields

2 34

En (X) = .8486751X2 + 0.000437X3 - 0.4542859X4 + .2433949X5

.1253862X5  .2085668X7 + .0445261X8 + .0943268X9

0 0.0782452X10 + . . (C-1)

Compared to Boersma's result of

L SI
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2 3 4 5-.-

E MX .84882636X2  OX3 -45270739X
4  .24016873X5

n- -

+ .2934976 -. 21134848X7 +.04495919X 8

+ .09588391X 9 - 0.07943693X1  + ... .(C-2)

Thus, it seems that the RFA is a fairly accurate model for the spectrum

data in the low frequency range.
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TABLE C-i

- A LIST OF THE COEFFICIENTS OF RFA FITTED TO THE
CALCULATED BACKSCATTERING DATA FOR THE DISC AT

BROADSIDE FOR (MN) as (14,13) (ka of 0.2(0.2)15.2)

bl 1.320147094030905 0.00000003400
b2 1.357353646716751 0.0000000z+00
W3 0.7226181L666170916 0.00000009M0
bf 0.275799540340761 0.00000000-
b5 6.3846B843847730-02 0.00000003400
b6 1.39351666015423993D-02 0.00000003&W
b7 1.7769530024114173-03 0.0000000300W
bS 2.53784996330093504 0.00000003&0
b9 2.9459354102258490"-5 0.00000000
blO 1.91575823424014373-06 0.00000000
bll 6.67693132108662713-08 0.00000003400
b12 5.894096535908266B3-09 0.0000000340
b13 1.29048252327416853-10 0.0000000E400
b14 5.660624815012401-12 0.00000000
30 0.8486743429354422 160.0000
al 1.120820652271342 180.0000-
a2 0.6982300296585792 180.0000
a3 0.25758601110092 180.0000
M4 6.43968169552300953-02 180.0000
&5 1.341L247689723332"-2 180.0000
&6 1.80790771418965893-03 180.0000
47 2.47308357698554293-04 180.0000
a$ 1.9834766776258864B-05 18D.0000-
a9 1.8791577250462169B-06 180.0000
a10 8.845994331558812-08 180.000
aln .5.80549765a1957603-09 180.0000
a12 1.31554607644330032-10 180.0000
& 13 5.59335688772242773D-12 180.0000
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TABLE C-2

A LIST OF POLES, ZEROS, AND RESIDUES* WHICH
CORRESPOND TO THE RFA COEFFICIENTS IN TABLE C-1.

E-l.25447207450567,-14J574010S502V
(-1.X944=9m329v4.577137U0)
f-.2IO4O5O445557,-21UM4IK6572S
(-1.2020545,U.19106293,,31,,N-

(-1 .03352l94m,-4.f65477535)
(-1.GJ577G41355,.G41D59 675)
(-1 .5577762005v-1 .4805K53556=37)
(-2.145771540533,-757705369U724U-0)-

mmmmmon
(-4.5503216UK62,19.500442933050) (-1 .3574670471uma.02,-2.602721 U13U3634)
(..4.59SO4305S61.-13.530O451OO75S1 4*3574307oM7M&C,2Aomag6.aa2o3
(41.7O233U71S4S414.M97I76WNU (..4.2a2g3OMbU7.O,S.4I6452O3323O4)

*(-270227)30416P,-14.4197053730U (-.24lmb2ogssu34su1-o,-.m27o1ue1o7m0-4)
(-1 .24350570030541 .2pfm2MS53) (-7.59762063UU-.1J63650040460243.03)
(-1.2423S5l1246U.#-UJ7672WMM (-7.U7003u35716u-.16319647rnMua-) 4
(1.64SM67463076.610U16365771) (41.45227902U55302,3.63G249073)Uj15I43)
(-1 "45M53O7)25-8.1O433W?7O) (4j45m 533-o2-37Ms.2u533.

* (-1.0443m2u75433.4.372493253404) (43.6524574B421.4ff705 3331.02)
(-1 .0443K04N657 -4.172443741770) (..10693050716313402,-.4M7U.5596g623.0)
(-1.f3556M4M@W2,-.69NM"259M7U ) 4.4225U34U04s 3.0,-g.224530372361..02)
(-1 A3S5610B157241.69M41499363 (-e-412721713-0,.23527ag3NDrnoa
(-04074341 30451 .3303G25) (4O.407651eS4U ,0J363U41sa36ss

(4 4374901o29071.mglR 009)(.4.4V7640M63Q03.4.35 3 372232)

*The units are in ka, where k is the wavenuniber and a is the disc
radius.
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APPENDIX 0

THE COMPLEX NATURAL RESONANCES OF THE DISC

Keller's scalar diffraction coefficients [11 for the edge at

normal incidence are given by

-j ir/4
D5  *," -e [sec (~I);sec(4*) (D1)

• Where Ds is edge diffraction coefficient associated with the soft

(Dirichlet) boundary conditions, Dh is the edge diffraction associated

... with the hard (Neumann) boundary condition, *' is the incident wave

angle and * is the diffracted wave angle as shown in Figure D-1.

It should be noted that Keller's formula is good if the field point

m is not close to a shadow or reflection boundary.

As the field point is close to the shadow or reflection boundary

(transition regions), the Uniform Theory of Diffraction (UTD) derived by

Kouyoumjian and Pathak [11) should be used instead of Keller's formula.

The UTO edge diffraction coefficients for curved edge or straight edge

-* in a plane screen at normal incidence are
L:
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Figure D-1. The coordinate system for the incident wave diffracted
by a half plane.
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S= eik/4 { FE2kLcos2(-*,')/2] F[2kLcos 2 (*+*')/21 }, (D-1.21"'" h 2V w Cos (_ + Cos + ::

where

11.1 -J 2D13
F(x) = 2j vx e- x J eiT dT . (D-1.3)

/W

A Fresnel integral, and

L + S) PI PI (D-1.4)
4i(PI + s)(4i + S)

a distance parameter, where p 1  p2 are the principal radii of curvature

of the incident wavefront at the point of reflection, p e is the radius

of curvature of the incident waveform at the diffraction point taken in

the plane containing the incident ray and the edge, and s is the

distance from the diffraction point to the observation point.

The equivalent edge currents concept was proposed in (291 to solve

the field in the caustic direction using the available diffraction

coefficients. The equivalent electric and magnetic edge current I1 and

M1, respectively are positioned on the circular edge of the disc. They

are given by [291.

11W) - Yo 8W Ds(*,*'Mi.''  , (D-2)

I.I=j01 -ZoJ/8itDh(*,*')(Hi..') (0-3)
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AA

where * is the unit tangent vector to the circular edge of the disc, #'
and i are interpreted as the incident and diffracted ray angles as shown

in Figure D-2 and D-3. It follows that

_bsl -JkR 21r
H (e=0) = Jka y e f (xsin#' - ycos*)Md *' (D-4)

where

" Dh e-j v/4 (D-5)

Note Dh in Equation (D.1-b) should be used for Equation (D.5) due to the

field point at the reflection boundary. Similar first order scattering

electric field using the equivalent electric current concept can be

obtained. Furthermore, the doubly and triply diffracted field (only

exist for hard case in this example) can be formulated.

-jkR 2wHbs 2 (eO) = Jka y e J (x sin,' - y cos*') t2 d*' , (D-6)

where

M2 = - Dh( =0, e= ) -,I / (0-7)
L "- ,o- h::

7

H ,H .sin,.' Oh(,, = , ,= 0) P 2i ka (D8)

and

p is -a
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LL Figure 0-2. On-axis backscattering from the circular metallic disc.
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(b)

Figure D-3. The singly, doubly and triply diffracted mechanisms of the
the backscattering from the circular metallic disc.
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Furthermore,

ika -jkR 2w
HbS3(O0 ) = yka 0 J (x sino' - y coso') M3d*' , ..o:

where
-

N3 =• (D-11)

i "H •Dh(*' =O., *= 0) • ____ e-2 'ka  (D-111 f.

3 *2 h a p+aT

and

p-a.

Therefore, it is clearly here that

M3  W O, ) --. ,ka . (D-12)
3- h •~ -p-75

4 Dh(O =0, ,) e 2  M3  (D-13)
M4 'h ai p+ZIT

-M5 =Dh(' = 0, =O) * _ e-2Jka M 4 (D-14).
"" ai p"za-

:;7

Thus, the total high order backscattered field is

h -JkR 2w-
HbSt(eO) Jka y e J (x slno' - y coso') M do', (D-15)0: tTW- --T-

IL
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where _

Mt = M2 + M3 + M4 + .

= M2 (1+ Y Y 2 + • • • )

= M2/1.y , (0-16)

and - .

Y Dh(*( 0) e 2 k p=-a

-j n/
= -e J * . e"2Jka -d

2a

• ir/4 -2jka (0-17)
ee e -

Consequently,

.+ e r w/4 e.-2jka

j i/2 -2z
l+ e e-

= 1 + j exp(-2z)/(4rz) 
1/2  (0-18)

where z = jka.

• Keller's formula.

250



Equation (D-18) is the charasteristic equation for the edge

diffraction mode for the disc at broadside excitation. The 26 pairs of

poles have been extracted using a zero searching routine for this

equation. They are listed in Table D-1. Note the first 3 pole-pairs

listed are from the RFA to the backscattering data for the disc for

broadside excitation because the GTO is not accurate in the

low-frequencies. Also the induced current on the rim due to the singly

diffracted field (see Figure 0-3) corresponds to the lowest frequency

pole-pairs of the creeping wave mode because the variation of the current

along the rim is exactly one period. For the off-axis illumination, the

higher order diffracted field is due to the multiple diffractions at Q1

and Q2 (see Figure 0-4). Several efforts have been made to find a closed

form for the resonances similar to the one derived for the broadside

incidence but without success. Once again Keller's edge diffraction

coefficients are used here. And the following formula is introduced for

the calculation of the caustic distance.
Pi

A 
.A.1. 1-ne (51' -5s) *(0-1g9)

where e is the radius of curvature of the incident waveform at QE taken

in the plane containing the incident ray and the edge; ne is the

associated unit normal vector to the edge directed away from the center

of the curvature, the unit vector s' is in the direction of incidence at
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TABLE D-1

A LIST OF 26 POLE*-PAIRS FOR THE A DISC FOR BROADSIDE 7
EXCITATION (BACKSCATTER)

Pole Number Real part (+/-)Imaginary Part

1 -0.49069 1.23103
2 -1.04579 4.87347
3 -1.16349 8.10608
4 -1.24179 11.36106
5 -1.30243 14.50748
6 -1.35120 17.65236
7 -1.39201 20.79634
8 -1.42709 23.93976
9 -1.45784 27.08279
10 -1.48523 30.22556
11 -1.50991 33.36812 -

12 -1.53238 36.51053 4
13 -1.55299 39.65282
14 -1.57203 42.79502
15 -1.58972 45.93715
16 -1.60625 49.07920
17 -1.62175 52.22122
18 -1.63634 55.36318 :
19 -1.65013 58.50512
20 -1.66320 61.64701

21 -1.67562 64.78889
22 -1.68746 67.93073
23 -1.69875 71.07256

24 -1.70956 74.214,37
25 -1.71992 77.35616
26 -1.72987 80.49794

• The unit of poles is ka, where k is the propagation constant bid

a is the radius of the disc.
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z

0 2

Figure 0-4. The coordinate system and the higher order ray paths for
L the disc at angles off broadside excitation.
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the edge and s is the direction of diffraction, ae is the radius of 1
curvature of the edge at QE.

The following caustic distances are obtained using Equation (D-19)

the multiple diffraction at Q1 and shown in Figure D-4. -

0 = ~ = -a . 10-20)

1l= -a[l+2sine] (D-21)
P PO-2-1 = +ssine

2 -a[1+4sine] (0-22)

P0212 l+ITslne '

N = -a[1+2Nsine] (0-24)
0-2-1-2-1-2 IT I-ZNIijsine

Although the diffraction coefficients are the same in each order, .

the caustic distance P associated with each diffraction is not the same.

Consequently, the factor Dh * aP is different in each order of . -

h z aI. -. .
diffraction. Therefore, there appears to be no way to form a

geometrical series similar to that for the broadside case. .
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APPENDIX E

- THE POLES FOR A CIRCULAR METALLIC DISC AT EDGE-ON -A.

INCIDENCE

The analytic form for the creeping wave around the circumference -

of a disc at edge-on incidence is given by Senior [341 as follows:

5CW (168 -eu@ Ika 2/3 e-j2ka+3r,4 (E-1)

expl-iwka(l NO e-a21  e /)I

*where SCW is the scattering amplitude defined in £341, y is a trial

value, for example, y may equal O.8*PI. In terms of SCM, the normalized

scattering amplitude is given as

E ECWl 2 Scw/ka (E-2)
n

or

ECWl 1 - 1/2 eiO.06 8% (ka )2/3 ei2ka+j3r/4
n Ta i

exp{-iirka(l - 1 (ka)-2/3 eijW/3)} (E-3) '

or substituting u for jka
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ECWl 2(1...1)- 1/2 U-1/3 -2u ei5it16 ex[1/3)4 (E-4)-

If the phase reference point is shifted from the front end of the disc

to the center of the disc

E CW =2(1-y-] 2 u -13 e~ exp[-ri w iu(-5

n

If we also consider the creeping wave due to an additional time around

the disc, then,

5w
EC 2(1-Y U" i 1 e~ exp[-wi + wt u13n

expE-2wji ewu~l/31 (E-6)

Obviously, successive contributions need an additional phase form of

p(u).expL-2iu + 1/33 (E-7) -

The complex natural resonances are obtained by imposing the phase

coherence at the starting points after one or more revolutions.

In order to obtain a pole string for the creeping wave at edge on

incidence, set

1/3
-2vu + ir = ±j2ni (E -8)

then

1/3P -2u ±J2n ,(E-9)

Let
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z ka ,(E-10)

and

z y (E-11)

- Then,

2JZ =±J2n (-12)

or

j1 Y2JY3=kj2n (-13)

Si nce

l e ±,(E-14)

The principle values of (j)1/3 are obtained from (E-14) at n-0,1,2

i,/6 j~w/ 6 , j 9IT/6

i.e., e *e e

jw/ 6  j~w/ 6

or e ,e -

Any of the three principle values can satisfy (E-14). We choose

MY)3- -j .(E-15)P

Then,

-jy- 2jy3 *±j2n (E-16)

or
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y3 +Y n 0 (E-17)

The zeros of Equation (E-17) are related to the poles of the disc

due to the creeping wave mode by Equation (E-8). The zeros of Equation

(E-17) can be found by using the DPOLYRT Routine (a zero searching A

routine for a polynomial) for any integer n. A pair of complex

conjugate zeros and one real zero are obtained. However, only the

complex conjugate poles are meaningful when they are substituted into

Equation (E-10) and (E-11). Pure imaginary resonances could imply

internal resonances. A list of the first thirty pole-pairs using

Equation (E-17) at n =1, 2,... 30 are listed in Table 5-6.

6.
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APPENDIX F

A COMPARISON OF EXACT AND APPROXIMATE BACKSCATTERED FIELDS .
FOR THE CIRCULAR DISK FOR EDGE-ON INCIDENCE

The backscattered field for the disc at edge-on incidence using 0 .

exact calculated data from Hodge [32) and Senior's Geometrical theory

of diffraction (GTD) result [34] are compared in amplitude and phase in

Figures F-1 and F-2 respectively. The GTD result is not good at low J

frequencies due to the asymptotic nature of the GTD approximation.

However, the amplitude plots at high frequencies, as shown in Figure

F-i, agree well except that there is a phase lag In the GTD result. .

Figure F-2 is a comparison of the phase plots both from GTD and the

exact result. There is a phase difference between the calculated data

and Senior's approximation. The comparison made here suggests that S

additional improvement could be made in the asymptotic model.
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APPENDIX G

A REPRODUCTION OF ANDREJEWSKI'S NEAR FIELD DATA OF THE DISC

The normalized magnetic scattered near field for the disc is

reproduced using Andrejewski's formula. From Andrejewski, the

normalized magnetic near field (H) is calculated as

H 1 + 1 Wo(O,y,O)*o(1,y) . W (1,yO) (G-1)
= +_ o(O,Y)+W2O,Y) 0

where y is ka, and the parameters are listed in the following Table

(Table G-l). Using Equation (G-l) and Table G-1, 14 data points (ka of 4

0.5(0.5)4. and ka of 4.(1.),10.) are reproduced. The data points are

then approximated by a rational function in Chapter V.

2 -
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TABLE G-1

THE 140, *o, *I2 LISTED IN ANDREJEWSKI'S DISSERTATION.

--

0.5 1.024 + 1 0,3169 0,5 0.1053 - 1 0, 2"
1 1,097 # 1 0,6230 0.469 - 1 0. if4
log 1,220 1 0,M0? Is 1,25 - 1 0.13?

2 1,381 * 1 1.154 2 2.71 + 1 0,494
2.5 1,594 * 1 1.304 2.5 5,13 + 1 1.35r 1,691 + 1 1.425 3 6,63 * 1 2.06
3.5 1.73 + 1 1,53 I's 15.0 # 1 2.63
4 1,63 6144 4 18,1 + 11."9
5 2,067,11,94 26.4 -, 10,910

6 2.204 .1 2,091 6 37.3 - 1 4.65
7 2.451 + 1 2.254 1 45,6 - 1 3,60
6 2,555 # 1 2,491 a 56,3 .1 0,576
9 2,739 + 1 2,592 9 76.3 1 5,61

10 2,675 + 1 2,727 1 10 104 .1 6.19

STY o;r r A, rd
OS -0,0005 L 0,0000 0,5 0,9605 * 1 0.3039 0.5 0.1006- 0,3265

1 -0,21391 1 0,001 1 0,6232 * 1 0,5266 1 037 - 1 0696a
'1 4 05393 1 0,0204 1,5 0,2279 .10,6106 1,5 0.31 - -11162

-054' ,5 L 0.02% 2 -0,1976 * 0,5365 2 1,445 - 1 1,76

,,-a 0,.06 2, 5 -056 1 0,32" 2,5 2,075 - 1 2,465

2. -0.6169 - 1 0,2224 40.7567 1 0,0336 3 2,72 - 1 3.211

5 4 ,7652 1 0,"o 5.5 .76 - 1 027 ,15 3,40 - 1 3.67
3.5 -05790 41 0.54" 4 -0.5769 - 1 0.5177 4 4IO - 1 4,797

*4 -0,196-1 0,6199 5 0,13867- 10,6067 5 6,026 -1I6,61
5 0.4157 - 0,462 6 0,7375-1 0,1393 6 7,96 -1 6,419

6 0,1701 41 0,025S 7 0,6165 +1 0,4613 7 1005 - l-,6-

7 0,4665 - 1 0,5742 6 ,0443 + 1 0,6449 6 12.31 - 115.01

a -,2327 *1 0.5093 9 -0.6625 1 0,2361 9 14,65 - 115,69

9 -0,7 4 1 0,093 1 -06606 - 1 0,913 10 17,35 -118,30

o -0,576 - 1 0,49M-
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APPENDIX H

SOME TRANSIENT RESPONSES

In this Appendix, several transient response waveforms are

presented. The impulse response and the ramp response of the loop at

edge-on incidence are presented in Figure H-1 and Figure H-2. The ramp

response of the loop for broadside* excitation is shown in Figure H-3.

All of these plots are obtained using Fourier synthesis of the

" calculated spectral data for the loop at edge on and broadside

* excitation. All of the plots shown in this Appendix are limited to 30

transit times for the loop diameter. The actual waveform durations I

* are somewhat longer than those. Singly stated that circular loop (like

the wire) is a high Q scatterer.

Figure H-4 shows ramp response waveforms for the circular disc at S

several aspect angles (cross polarization) where 10 harmonics have been

used in the synthesis of the ramp response.

K

* The impulse response of the loop for broadside excitation

has also been shown in Chapter V.
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Figure H-1. Impulse response for a loop for edge-on incidence.
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APPENDIX I

K-PULSE WAVEFORM FOR THE THIN CIRCULAR LOOP

The K-pulse waveform for an object, as defined by Kennaugh [6], is

a single tim-limited excitation waveform Which will elicit unique time

limited response waveforms from the object at arbitrary aspects. One

method for generating the K-pulse involves a weighted product of the

complex natural resonances of the object [44], i.e.,

I - n

5 jul

where e is an arbitrary positive number, and Pj are the poles of the

object. Then, Ei(s) has a finite duration inverse Laplace

transformation of length (n + 1):. Having formulated the K-pul so input

spectrum, the K-pulse input waveform is generated by the Fourier

synthesis of the spectrum. Note the weighting function,

W(n) * .sin 2wn/N . (N./2)2
MIN/ (17 ,-n (1-2)

where N is the number of sampled data, is used to avoid Gibbs

If n is N/2, W(n) is 1/2.0
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phenomenon. Since the K-pulse and response waveforms must be time

limited, the K-pulse actually should have exactly maximum time length of

(n + 1)e as specified, these waveforms are an excellent test of complex

natural resonances locations (poles) deduced using approximate methods.

That is, the generated K-pulse and response waveforms will indeed be

time-limited if the pole locations are accurate. Some allowance must be

made of course for truncated pole products used to obtain the K-pulse.

The most simple application of these ideas involves a single string

of poles (one resonant-type mode). If more than one type of resonance

is possible the K-pulse becomes more complicated. For the loop at

edge-on incidence, resonance is confined to the creeping wave mode and

represents an excellent test.

The first 10 pole-pairs listed in Table 5-6 (creeping wave poles

for circular loop) were used to obtain the K-pulse spectrum (amplitude

and phase) and waveform for the loop shown in Figure 1-1, 1-2 and Figure

1-3 respectively. Figure I-1 (amplitude) and Figure 1-2 (phase) are the

K-pulse input spectrum. Figure 1-3 is the K-pulse input waveform. Note

the K-pulse length Is assumed arbitrarily to be w TAU (loop diameter .

transit time). The ringing shown is primarily associated with

* truncation, and not inaccuracies of the poles.* Response to the K-pulse -

shown in Figure 1-3 is shown In Figure 1-4. Clearly there is some

slight ringing and the response waveform is not precisely time-limited.

• Unpublished results by Kennaugh confirm this postulate. Using 20
pole-pairs deleted most of the ringing.
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Figure 1-1. The K-pulse input spectrum (amplitude plot) generated from
Equation (1-1) using the first 10 pole-pairs of the
circular loop at edge of Incidence (TE mode). The pulse
duration is confined to v TAU, where v a 3.141S9 and TAUJ
is the loop diameter transit time. Note the spectrum
is spread over all the frequency, however, as shown
above, the amplitude is small for kb greater than 10.
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Figure 1-2. The K-pulse input spectrum (phase plot) generated from
(1-1) using 10 pole-pairs for the circular loop (TE mode).
The pulse duration at edge-on is confined to w TAUl, where

w3.14159 and TAUl is the loop diameter transit time.
The data are truncated at ka of 10 because the
corresponding amplitude is small for kb greater than 10. .
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Figure 1-40 A K-pulse output waveform for a loop for edge-on incidence.
The duration is longer than w TAU, where wis 3.14159.
This Is due to both the truncation of poles and spectrum.
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Figure 1-4 is generated using Fourier synthesis of the K-pulse output

spectrum, which is the product of the K-pulse Input spectrum and the

transfer function of the target. All the spectra are generated in the

region up to kb of 10, where b is the loop radius. The result shown in
bO

Figure 1-4 is similar to the result shown by Kennaugh [6] for a finite

thin-wire scatterer. Also the K-pulse response is about i TAU lengths

as expected. Therefore, the pole locations found from RFA or integral

equation formulation and numerical search are reasonably accurate. More

importantly, it would appear that it is feasible to obtain K-pulse

waveforms from pole locations found from measured data.

At this stage we are admittedly not in a position to discuss the

K-pulse and response waveforms for the loop (edge-on incidence) in the

same fashion as could be done, for example, for the transmission line

by Kennaugh [6]. The cancellation ideas are less direct, but

still occur. A more detailed study of the loop, involving general

aspects and diffraction as well as creeping wave resonances, would

appear to be a fruitful area for future study.
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