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- 3-6. The RFA for {M,N) as (14,13) fit to the simulated

-, data using the first six pole-pairs and residues for the

~ sphere. The x's are the data points used for the RFA.

o The phase plot of the RFA (dashed line) gives a good

> fit to the original data (solid 1ine). The corresponding
amplitude plot is given inFigure 3-5 . . . . . . . . . .

3-7. The RFA for (M,N) as (14,13) fit to the calculated data
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The corresponding phase plot is given in Figure 3-8 . . . 37
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The K-pulse input spectrum (phase plot) generated from
(I-1) using 10 pole-pairs for the circular Yoop (TE mode).
The pulse duration at edge-on is confined to » TAU, where
* = 3,14159 and TAU 1s the loop diameter transit time.
The data are truncated at ka of 10 because the
corresponding amplitude is small for ka greater than
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A K-pulse input waveform for a loop for edge-on incidence

(TE mode). The ringing is due to the truncation of

poles (10 pole-pairs used here). The duration {is

confined to » TAU, where » 1s 3.14159 . . . . . .. . . . 273

A K-pulse output waveform for a loop for edge-on incidence.
The duration is longer than » TAU, where = {s 3,14159.

This is due to both the truncation of poles and
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2 o CHAPTER I
. - INTRODUCTION o

In future generations of radar systems, the natural electromagnetic
oscillations of a radar target may be used to determine the physical 7‘“**
properties (size, shape, and composition) of the target. The key to o

such a possible advance in radar systems is broadband signaling

waveforms. Signaling waveforms with low-frequency content give
information about the gross size and shape of a target, and waveforms
with high-frequency content give a detailed description of isolated
parts of the target. The interaction of electromagnetic waves and
material objects is best summarized by the canonical response waveforms
of the object, i.e., the response waveforms for interrogating signals
with impulse, step, and ramp time dependence.

Such a 1i{near system analysis was first introduced for finite
objects by Kennaugh and Cosgriff [1] and was later formalized by
Kennaugh and Moffatt [2]. The concept of approximating the low-

frequency scattering characteristics of an object by rational functions,

f.e., complex natural resonances, was first suggested by Kennaugh and

Moffatt [2] as :,f;!

*Keeping fn mind that a distributed-constant representation N 7
is exact, 1t should still be possible to represent the R
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low-frequency properties of s’zFR(s) and the corresponding time

response [which would be Fp(t)] by that of a lumped constant

network. In this case, Fg?t) woyuld be approximated by a series

of exponential terms, whereas s~“Fp(s) would be the ratio of

polynomials rather than the series (8)*."

A rigorous solution to the complex natural resonance i’~a in
analysis known as the singularity expansfon method (SEM) has been
suggested by Baum [3]. There is much that is correct about this complex
natural resonance approach [4,5]; however, Kennaugh [6] has suggested
that the one thing that is missing from the SEM is the K-pulse --a
time-1imited input waveform which produces special time-limited output
waveforms. While the main purpose of this dissertation is not to settle
this question, a K-pulse response is approximated for simple backscatter
(a circular loop for edge-on incidence) by using the complex natural
resonances extracted in this dissertation.

Accepting the fact that in many useful situations the transient
response waveforms of a scatterer or its corresponding frequency
response can be well approximated by lumped parameter models, the
purpose of this dissertation is to present various methods for obtaining
the complex natural resonances of an object using the model. Of

particular interest are methods useful with measured data which are

contaminated by noise.

* The series (8) referred to above was a Rayleigh-type power series
in s.
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The complex natural resonances of an object can be obtained
analytically if the vector wave equation is separable. For finite
objects therefore there are two geometries, spherical, which was
treated by Stratton [7], and the thin circular disc [8], which has not
yet been studied rigorously from a complex natural resonance viewpoint. f;i-:1
The complex natural resonances of all other finite objects must be found

by approximate methods. Perhaps the best of these is a quasi-rigorous

approach where an integral equation for the object as a scatterer or f'i-FS
radiator is developed and then converted to a matrix equation. A l-ﬁ;if
numerical search of the complex frequency plane is then used to find the é;:;ij
complex natural resonances. Mains and Moffatt [9] used this method to ﬁ,“§,§
find the complex natural frequencies of bent wires and simple wire e
airplane models. Unfortunately, complex geometries such as aircraft or R
ships can only be handled by this approach for small electrical size. Eﬁ;jﬁ%
For simple geometries, asymptotic theories such as the Uniform T
Geometrical Theory of Diffraction (UTD) can be used, as by Kennaugh [6], R
to extract all but the lowest frequency resonances. fff#-j
For complex geometries in the resonance region the only recourse at i
this time is measured experimental data at real frequencies. Useful .
methods for extracting complex natural resonances, therefore, must be f“"“!
applicable to experimental data. Such data are inevitably contaminated
by some noise and clutter, which further complicates the extraction ‘
problem. The experimental data utilized in this dissertation are Ffffi
frequency domain data. To test time or other domafn methods the E: ﬁ';
appropriate data are generated synthetically. : f'*
-1
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Reviewed briefly in Chapter II of this dissertation are those
methods for extracting the complex natural resonances of a scatterer or
a radiator which have been suggested and shown to have some success when
applied to real or synthetic data. A rational function approximation
model is developed in Chapter I11. Application of this model to
extraction of the poles of sets of simulated data for a conducting
sphere are presented. A window technique is developed for the rational
fuction approximation. The effects of uncorrelated Gaussian white noise
added to the calculated data on the location of extracted poles are
demonstrated. A sum operator and a zero-phase-shift digital filter are
used to combat noise. An estimate is made of the required signal-to-
noise ratio for which the complex natural resonances are still
extractable. In Chapter IV, an efgenanalysis model is reviewed, the
emphasis being the application of the model using real frequency data.
The application of singular value decomposition to eigenanalysis is
studied. Presented in Chapter V are comparisons of the compiex natural
resonances extracted by the models derived in this dissertation with
models and methods suggested by others.

A generalized method for extracting a set of complex natural
resonances from multiple frequency complex scattering data is described
and {1lustrated in Chapter VI. The scattering data are real data taken
from measurements made at the ElectroScience Laboratory and are a true
test of the methods and techniques developed. Stressed are the

techniques which can be utilized to assure that the correct approximate
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order for the system has been obtained as well as actual (as opposed to
pattern-fitting) complex natural resonances have been extracted. The
desirability of obtaining the same or very similar results using two
somewhat different approaches is discussed. It is assumed that the
avajlable experimental data are contaminated by noise. For the
nofse-free case there are a number of techniques by which the proper
complex natural resonances can successfully be extracted. An estimate
is made, based on the material of this dissertation, as to the required
signal-to-noise ratio which must be achieved by the experimental data
before extraction of complex natural resonances is feasible.
Conclusions and recommendations based on the research reported in
this dissertation are given in Chapter VII. New analytical results for
complex natural resonance prediction using asymptotic scattering
estimates and first estimates of certain K-pulse waveforms and response

are given in the appendices.
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CHAPTER II

AN OVERVIEW OF RESEARCH ON THE EXTRACTION OF
COMPLEX NATURAL RESONANCES

The complex natural resonances (poles) correspond to the exterior
resonant modes of an object [4]. The exterior resonant frequencies are
complex, where the real parts account for ray divergence and bending
losses, and the imaginary parts accrunt for resonances. These poles are
of particular interest in the waveform feature extraction because they
are related to the physical characteristics of an object. Furthermore,
the complex natural resonances are independent of the target aspect and
polarization excitation [9]. These poles may form a minimum set of
parameters needed to characterize a target. Research on the extraction
of the complex natural resonances has been ongoing for a decade, and
many engineering approaches to the complex natural resonances have been
established. This chapter summarizes some of the approximate methods
discussed in the 1iterature which have been used to extract the complex
natural resonances of a radiator or scatterer and have shown some

success.
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A. SIGNAL FLOW GRAPH

Signal flow graph methods have been used extensively in network

analysis, for example, Circuit and System Theory written by Lago and

Benningfield. However, the application of the signal-flow-graph concept
to electromagnetic scatterers was first suggested by Bagby and Kennaugh
(10]. In general there are two kinds of scatterers being studied: thin
wire structures such as straight wires, cross wires, wire arcs, circular
loops, etc. and solid structures such as spheres, circular cylinders,
prolate spheroids, etc. Descriptions of the scattering mechanisms of

these two basic structures follow [10].

1. Thin Wire Structures

It 1s assumed that there are four operations on the current flowing
on the wire surface. These are: a) wire path distortion and phase
delay, b) wire end and wire junction reflections, c) wire junction
transmission and d) wire end radiation and radiation coupling. The
parameters associated with these operations are used in the signal-flow
graphs to predict the complex natural resonances. For a straight wire,
the accuracy of predicted complex natural resonances is very good for
very thin wire structure [10], i.e., wires whose length-to-diameter
ratios are greater than 1000. However, the accuracy is decreased {f the
thickness of the wire is increased. Obviously, the formula used for the
current distribution should be further modified for thick wires. It {s

very hard to predict numerically the four scattering mechanisms for
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different wire configurations. The application of the signal flow-graph
to wire arcs, crossed wires and other complex wire shapes is limited by
the accurate values of the scattering mechanisms mentioned above. The
complex natural resonances extracted using the signal-flow-graph method
may be lacking in accuracy for the reason mentioned above.

Nevertheless, the signal graph method yields significant physical

insight into the complex natural resonances of an object.

2. Solid Structures

In recent years, the Uniform Geometrical Theory of Diffraction
(UTD) has become a very powerful tool for solving such problems as
diffraction from a straight or curved wedge, vertex, and/or curved

surface. The UTD edge diffraction field and curved surface waves

1.1
e

derived by Pathak and Kouyoumjian [11,12] and others have been used to
evaluate the complex natural resonances of solid structures such as
spheres, prolate spheroids, circular discs, etc., for both transverse
electric (TE) and transverse magnet:ic (TM) modes [10]. The results are
fairly close to those obtained from the exact solution (sphere) and from
other approximate methods. It {s noted that UTD is a high frequency
asymptotic approximation and the errors in the poles predicted at low = T

frequencies are due to this high frequency approximation.
B. POLES EXTRACTION FROM THE TRANSIENT RESPONSE-~PRONY'S METHOD - q

Prony's method was originally developed to solve equations which
express the relationship between the temperature and the expansion of

8
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water vapor or phenomena defining elastic fluids using experimental
data* in 1795 [13]. However, the application of Prony's method to the
transient response of electromagnetic radiation or scattering data*™* to

extract poles and residues was first suggested by Van Blaricum in 1976

[14]. 1In the first application of Prony's method, numerically generated
data for the transient current on a thin dipole were used. The

i _ resultant poles of the thin dipole were very close to those extracted
via a integral equation formulation and numerical search by Tesche [15].
Inspired by this idea, several researchers began studying Prony's method

for other scatterers and looking also for solutions to the problems

inherent in the Prony process. E.M. Kennaugh suggested the application

of an efgenanalysis solution (efgenanalysis was mentfoned in [14] but

was not exploited) to replace Prony's method; this solutfon was

11lustrated by Moffatt, Young, Ksienski et al. [16]. Although the

* The equations are of the form:
fax, ~ fax  dax fax
T4 = ﬂlpl “zpz + ll303 + e o o + unpn
1{=0,1, . . ., M-1, where p§ and pj are undetermined constants, Ax

1s an increment of the variable, M is the total number of
observation, t4y is an observation result of variable at 1ax.

** The equations dealing with the impulse response of electromagnetic
radiatfon or scattering data are of the form:

pliAt pziAt p31At pniAt

1t=0,1, 2, ..., M-1, where A{, pi are the residues and poles, M is
the total number of the sampled data, At is the time increment, Fy
{s the impulse response at time iAt.
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complex natural resonances of an object or class of objects can be
determined using eigenanalysis, the accuracy 1s seriously affected by
even moderate amounts of noise. Prony's method and many Prony's related
methods are summarized in a recent publication [17]. Although Prony's
method is a useful tool for extracting the complex natural resonances
from transient data, two major problems which occur in the application
of Prony's method are: 1) the determination of the system order and 2)
the bias problem with noisy data. Many researchers have focused on
these two problems [17,18,19] in the past few years, but there fs not

yet one method which is completely successful.
C. INTEGRAL EQUATION AND NUMERICAL SEARCH

The singularity expansion method [SEM] was first introduced by Baum
in 1971 as a technique for solving transient electromagnetic scattering
from conducting bodies [3]. Although, it requires a search procedure in
conjunction with a space-frequency integral equation formulation, a
recent publication showed that the idea of the singularity expansion
method can also be applied to a space-time integral equation formulation
[20]. 1In the application of integral equation and numerical search to
determine the complex natural resonances, an integral equation for the
induced current is derived and reduced to a finite matrix equation using
the method of moments. The complex natural resonances are found using
an iterative search in the complex wavenumber plane. The complex

natural resonances of some simple scatterers were studied using this

10
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method. A thin wire structure was studied by Tesche in 1973 [15]; the
prolate spheroid was investigated by Marin in 1974 [21], and the

-

circular loop was done by Blackburn and Wilton in 1978 [22]. The
complex natural resonances of some stick models of the Migl9 and F104
were studied by Mains and Moffatt in 1974 [9]. At the Ohio State
University, Professor J. H. Richmond's programs for backscattering

:: calculations for the aforementioned airplane models were used. The
natural resonances are those complex frequencies which make the
admittances in a moment method formulation very large in magnitude. Al}
of these studies showed some success in the extraction of complex
natural resonances. However, the search procedure used has the

following weaknesses.

.‘ 1. The search procedure cannot be used for extraction of poles of
complex structures for more than moderate electrical sizes.
2. The search procedure s time consuming in machine computing.
[ & 3. The search procedure cannot be used to process measured

scattering data.

D. POLES EXTRACTED VIA THE RATIONAL FUNCTION APPROXIMANTS

As mentioned in Chapter I, the electromagnetic scattering system
can, within some 1imitations, be modeled as lumped parameter system. N 1
The canonical responses of a scatterer are the impulse response, step ____J,
response, and ramp response. In general the response of a distributed

parameter system can first be separated into a forced response as an

11




aperiodic excitation moves over the object and later a natural response
as the excitation moves beyond the body. In this dissertation, the

transfer function of the system is approximated by a rational function

E(X{) = '{ an X1""2/Q+M). bm X{") i=1,2,...1, (2-3)
n=0 m=1

where Xj is jkja (an electrical length), a is a 1inear dimensfon of the
object, and I is the number of the sampled data points. Thus the phasor
response of a system is approximated by the the rational function E(Xy).

The first attempt to extract the complex natural resonances of a
scatterer from multiple frequency scattering data was by Moffatt [23]
using a rational function approximation to model the transfer function
of the target. This approach was largely abandoned with the advent of
Prony's method and the improvement of Prony's method--efigenanalysis. In
radar applications, with the exception of subsurface radar, the data are
recorded using multiple frequency phasor response data [16]; time
response waveforms have to be produced synthetically.

The relative advantages of pole extraction in the time and frequency
domains are not completely obvious. Assuming that the initial data are
measured frequency domain samples, avoiding approximate transforms into
the time domain seems desirable. This is clearly true if the data are

severely bandlimited and weightings must be used to avoid Gibbs and

aljasing difficulties. Also, windowing methods, f.e., examining various

portions of the measured spectrum individually, appear somewhat more

12 "'_ﬂ
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direct in the frequency domain. A detailed discussion of the windowing
technique is given in Chapter III. The techniques which seek to
sequentially extract the most dominant poles are generally not useful
because pole-extraction methods are approximate and the errors will be
accumulative.

No clearly superior method for complex natural resonances
extraction from measured data has emerged in any domain. For this
reason alone, a technique utilizing rational function approximants is

deserved of some additional study.

13
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CHAPTER III
RATIONAL FUNCTION APPROXIMATIONS

A. INTRODUCTION

As discussed earlier, it is assumed that with the possible
limitations mentioned the frequency-dependent electromagnetic
scattering by an object can be modeled by a passive linear two-port
system with time-invariant parameters. The (normalized) transfer
function, which corresponds to the (normalized) impulse response of the
system, can be approximated by a rational function in the frequency
domain [2]. With such a model the numerator polynomial will be aspect
and polarization dependent but the denominator will be excitation
fnvariant.

The rational function model for electromagnetic transfer functions
is written initially as

N M
') = L anx™2 ) el ie1,2, 00,1, (3D

n=0 " m=0 " L
where E"(X,) (in a phasor form) is a normalized electric or magnetic
i

field at frequency Xj, Xj is Jkj1 (an electrical length), 1 is a linear

14




dimension of the object and ap’ and bp' are unknown coefficients*. I {s
the number of sample data. One of the coefficients in Equatfon (3-1)
is completely arbitrary because the numerator and denominator can be
scaled by a common factor without changing the rational function model.
The zero order denominator coeffictent in Equation (3-1) is chosen to
be normalized and accordingly the rational function model (model I) is

—_— rewritten as

M
E"(X,) = ) 2, x'i"'2 /<+ zl by x'}') , (3-2)
nZo

where Xi is jk{a and a 1s a linear dimension of the object.

It s assumed that the normalized scattered field, E", is known at
.' a total of I real (jki1) frequencies. The proper orders of the
denominator and numerator polynominals are unknown, as are the proper
frequencies (jki1) to use where the scattered field is assumed to be
known. Note that Equatton (3-2) is selected to yield a Rayleigh-type
dependence if the scattering data samples include the Raylefgh range.
If both sides of Equation (3-2) are multiplied by the denominator

polynominal, then I complex or 2I real linear simultaneous equations

can be generated. Four cases must be considered when both N and M are

allowed to be even or odd. There are N + M + 1 unknown coefficients

* For a real physical system, the impulse response (in the time domain)

is causal and real.

Then the tran

domain) has the property that EN(X™)

ife

r function (fn the frequency
= EN*(X), where * denotes

complex conjugate. With this restriction, the coefficients a , b in

Equation (3-1) are real.
15
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(ap, bm) to be found, and neglecting the underdetermined case these
coefficients can be found in an exact or in a least squared error sense
depending upon the selection of I. One would anticipate that a least
squared error approximation would usually be better. As will be seen,
however, an exact solution with or without a preprocessing technique has
some advantages over a least-squared error approximation under certain
conditions.

To this point, the approximating equations given in Equation (3-2)
are no different than those recently given by Brittingham, Miller and
Willows [24]. 1In fact, they are the same as those orizinally suggested
by Moffatt [23]. The idea of using a lumped parameter model to
approximate a distributed parameter system goes back to Kennaugh and
Moffatt [2]. They suggested such a model for low frequencies in 1965
(see Chapter 1), but as is shown in this dissertation the idea can be
extended to rather remarkable lengths in terms of higher frequencies.

What makes the the present approach unique, however, is the use of
non-harmonically related sampling frequencies. Also, when noisy data
are considered, the methods suggested and demonstrated for minimizing
the deleterious effects of the noise are felt, to some extent, to be
new. The final step in the application of Equation (3-2) is routine
once the coefficients in Equation (3-2) are known. The zeros of the
denominator polynominal yields the poles of the system, and using the
numerator coefficients, Equation (3-2) can be rewritten as a

residue series, i.e.,

16
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M
E"(X) =} R/(X-P
J=1
and

N M
EMX) = ) anx“*"’/ (x-py) ,
n=0 j=1

where Rj are residues and Pj are poles. Then,

M
I
i=1
i#j

N
Rj = )' anXm'z/

(X-P,) s
n=0 i I

X =P

assuming all poles are simple.

Numerous computer programs are available for the purpose of
double precision must be used with these routines. The residues

linear causal system to yield real time domain responses. It is
that the complex natural resonances are aspect and polarization
independent. However, the residues are aspect and polarization
dependent. The complex data En(xi) can be expressed in a phasor

form as
EN(Xy) = AMxg) L PXg) ,

where A(X4) 1s the amplitude and P(Xj) is the phase at frequency

To measure the error between the rational function approximation

17

(3-3)

(3-4)

(3-5)

root

extraction. It was found, however, that good results require that

and

poles are in complex conjugate pairs for the transfer function of a

noted

(3-6)

of Xi.
and the
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original data, the following definitions of amplitude errors (norms) are

given:

amp

I 1/2
B = L1 1 AR = mpgy (k1) 13T (3-7)

, max _ =
- where A(jkil1) and Agpal(jkil) are the original and fitted amplitude at

av

amp is the root mean squared error (Euclidean norm)

frequency kil» and E

max
between the fitted amplitude and the original one. The quantity Eamp fs

and the orfiginal one. Similar definitions are used for the phase errors.
The dimension of the phase used here is degree.

A "best approximate solution” of a system generally will have
different solutions for different choices of the norm. The root mean
squared error and the maximun error are calculated in each run using

different data sets. From various trials and errors, the least error in

the sense of Euclidean norm or infinite norm is selected and the "best"
fit is obtained.

In applying the rational function approximants to a set of
simulated data, there are a number of parameters which must be chosen
before running the program, the orders of the system (M and N) and the
selected sample data points. Therefore, to better understand the

Timitations of the unknown system orders and to gain experience in the
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defined as the maximum error (infinite norm) between the fitted amplitude
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selection of the data points, it is helpful to consider first the
simulated real-frequency backscattering data of a conducting sphere
where the complex natural resonances and the corresponding residues are
well known [7, 25]. Some of the lower order true poles and residues of
a conducting sphere (see Table 3-1) [25] are used in Equation (3-9) to

generate sets of simulated data.

ES(X) = ? (R4 R1*) s (3-9)
j=1 X-Py X-P¥

where ES(X) are the simulated data and Ri’ Pi’ are poles and

residues respectively. X is jk1 and X* denotes complex conjugate.

In generating simulated data to test pole extracting procedures,
actual poles and actual residues of the sphere were used. Much too
often researchers have assumed equal excitation of all poles (a very
unrealistic as«umption) and correspondingly shown misleading results for
particular pole extraction techniques. In principle, the generated
simulated waveforms could be exact if many more pole-pairs were used.
However even here, great care must be exercised in using residue series

summations [26].
B. EXAMPLE 1: SIMULATED SPHERE DATA USING FOUR POLE-PAIRS

In this example, only the first four pairs of poles and the
corresponding residues in Table 3-1 are used in Equation (3-9) to

generate a set of simulated scattering data. The data are generated in

19




TABLE 3-1

TRUE POLES AND RESIDUES™ USED FOR GENERATING SETS OF
SIMULATED DATA

v
AN
. (AR N A

_. Simulated Poles Simulated Residues

= {true poles of a sphere) (true residues of a sphere)

?‘ -0.500000+/~j0.866025 -0.0946447-/+0.516674

3 -0.701964+/-3j1.80740 -0.633323 -/+0.0853256
-0.842862+/-j2.75786 -0.0802221+/-30.733736
-0.954230+/-33.71478 -0.822075 +/-3j0.0767481
-1.04764 +/-3j4.57641 -0.0741270-/+j0.901805
-1.12891 +/-j5.64163 -0.0664705+/-30,223154

* The units of the poles and the residues are in ka, where k is
the wavenumber and a is the radius of the sphere.

20
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the real frequency domain from ka of 0.2 to ka of 4 in the increment of
0.02 ka, 1.e., 191 data points are generated. Then, a ratfonal function
approximant of order (M,N) as (8,7)* is applied to the above set of
data. Since there is no Rayleigh region in this set of simulated data,
the dependence is taken out from Equation (3-2). Thus, model II fis

defined as

E"(x)=§ax“/1+'fbx i=1,2 1 (3-10)
L ) oLy Omt .

The data points used in the rational function approximant are
arbitrary and need not be equally-spaced in frequency. A typical plot of
a rational function approximation to the above simulated data is in
Figures 3-1 (amplitude) and 3-2 (phase) for (M, N) as (8,7) and in
Figures 3-3 (amplitude) and 3-4 (phase) for (M,N) as (20,19)**. As can
be seen in the plots, the rational function model with the above system
orders fitted all the data points so well that the original and the
fitted curves of both ampl{tude and phase cannot be distinguished fn the

plots.

*M =8 is the smallest system order for the simulated data using four
pole-pairs (eight poles); N of 7, f.e., N of (M-1), is the best choice
for the RFA to fit the orfginal data but satisfies Equation (3-9),
f.e., the order of the numerator is one order less than that of the
denominator.

** The system order M of 20 is chosen because the RFA programs of order
higher than 20 are close to the maximum capacity of the computer
(VAX 11/780) used in the calculation.
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Figure 3-1.

The RFA for (M,N) as (8,7) fit to the simulated data
using the first four pole-pairs and residues for the
sphere. The x's are the data points used for the RFA,
The amplitude plot of the RFA (dashed line) gives a good
fit to the original amplitude data (solid 1ine). The
corresponding phase plot is given in Figure 3-2.
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ESIU MGIITIDE OF NESIDUES

-3
real part imaginary part

-8.2258381 X310-' 7.875¢887 x1)-°

- -8.220881 XiD-' ~7.676030 X10-*
. - 8.02:058 X302 7.337325 X10°
_ 8.02u037 X10-? ~7.337308 X10-

. 6.333205 X10"' ~8.532918 X10-?
8.333198 X10" 8.532750 X10-
-9.464421 X10- ~S.166736 X10-
-9.464430 X10-? S5.166742 X10°

.255¢us x10-
.256541 X10°
.381070 x10°
.881053 X]0°%
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. 390421 x310°
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Figure 3-2. The RFA for (M,N) as (8,7) fit to the simulated data
using the first four pole-pairs and residues for the
sphere. The x's are the data points used for the RFA.
The phase plot of the RFA (dashed line) gives a good fit
to the original phase data (solid line). The corresponding
amplitude plot is given in Figure 3-1.
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real part

-1.646081 Xx10!
-1.161019 x10!
-1.645097 x10-!?
§.301634 X310}
N.301649 X)0-?
-1.424296 Xx10°
1.298220 x10°

-3.964823 X10"!
-3.964941 Xx10!
-3.808550 x10°!
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imginary part

1.684404 X100
3.401250 X107
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imaginary part

-3.71477¢ X109
3.714798 Xx10°
2.1607B0 X10°
-2.160780 x10°
2.757886 X10°
-2.757881 Xxi10°
3.845727 Xx10°
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2.979648 X10°
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1.865436 x10°
-1.865433 Xx10°
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I: Figure 3-3. The RFA for (M,N) as (20,19) fit to the simulated data
- using the first four pole-pairs and residues for the N
- sphere. The x's are the data points used for the RFA. R
- The amplitude plot of the RFA (dashed line) gives a good S
- fit to the original amplitude data (solid line). The T
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real part

-8.221192 X107
-8.220752 X107!
-2.288067 X)10-%
2.298225 X107
8.019796 X102
8.020413 X10°*
-9.347083 X10-*
-2.136122 Xx10-°
-5.326118 Xx10°*
7.056907 X10-®
-5.032626 X103
-1.166051 X103
6.334225 X10°!
6.333988 X10°!
-1,235762 X10-*
-1.016205 X107
-9.464732 X102
-9,464674 X102
-6.815718 X10-*
-1.35‘1200 X10-¢

-

L]
imaginary part

-7.668856 X107
7.6673u8 X107t
-3.089844 X107
-1.051067 X10-¢
7.3379982 Xx10°!
-7.338169 x10°!
6.184270 x10-¢
-8.8968026 X10-¢
0.914798 X10-*
-8.376256 X10-®
-1,654818 X108
-1.975285 x10-*
-8,.5208059 X10-2
8.535620 Xx10°?
-5.211915 x107?
-6.314587 Xx10°?
-5.166819 X10°!
5.166803 X10°!
2.013025 X10-¢
-3.616981 Xx10®

MAGNTTUDE OF RESIDUES

8.256894 Xx10-!
8.256432 Xx10-!
2.308635 x10°®
1.075900 x10°®
7.381686 X10°!
7.381871 X107t
1.038640 X103
9.150840 Xx10-¢
1.038569 X103
1.0953%9 x10-
§.297712 X103
2.293760 X103
6.391376 xi10-!
6.391242 x10°!
1.341175 X10-¢
6.395834 X107
5.252793 X10-!
§.252776 Xx10-!
7.106778 x10-*
3.936762 x10°°

™

~180.0

3.'0
ka

The RFA for (M,N) as (20,19) fit to the simulated data

using the first four pole-pairs and residues for the
The x's are the data points used for the RFA.

sphere,

The phase plot of the RFA (dashed 1ine) aives a

good fit to the original phase data (solid line).

The corresponding amplitude plot fs given in Figure 3-3.
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Bestdes the original curve (solid line) and the RFA (dotted line),
a third one (dashed 1ine) is generated (see Equation (3-9)) using the
poles and residues obtained from the RFA. Actually these procedures are
routine in the RFA program to check the accuracy of the extracted poles
and residues. The approximation is such that only the solid 1ine can be
seen in the RFA plots. The zeros, poles, residues and magnitude of
residues are 1isted on the amplitude and phase plots. The advantage of
these listings is to see the true poles, curve fitting poles, and the
cancellation of poles and zeros before the true poles and residues are
deduced. It 1s noted that only M complex data points are used to solve
the linear system equations in the exact sense. The average errors* of
the RFA to the above set of simulated data are of the order of 1.E-5 in
amplitude and 1.E-4 in the phase (in degrees). The numerical accuracy
of the entire rational function program was tested using the data in
Example 1 for various system orders and various input data points. In
all cases the programs were found to be very accurate. Therefore, it is
assumed that the program can be applied routinely to other scattering
data without worrying about numerical errors generated within the
program {tself.

The poles and the residues extracted via the rational function
approximants using different system orders M, N, and different sets of

selected data points are Tisted in Table 3-2 for (M,N) as (8,7) and

* Since the data are exact for these poles (residues), only trancation
contributes to the errors. Obviously the error is dependent also on
the selected sample points.
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AND EXTRACTED RESIDUES FOR (M,N) AS (8,7);

True

-0.50000 +/-30.866025
-0.701964+/-31.80740
-0.842862+/-32.75786
-0.954230+/-33.71478

TABLE 3-2 LA
A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES f;ﬁ;}jl
$ FOUR PAIRS OF POLES SRRt
AND RESIDUES™ ARE USED IN THE SIMULATED DATA DR
.. _“ '.‘_ -
» . g
Poles
Extracted Percentage of Error _
Real Imaginary » ¢
-0.50000 +/-3j0.866025 O0.EO 0.E0
-0.701962+/-j1.80740 1.04E-4 2.07e-4
-0.842859+/-j2.757866 1.03E-4 4.97€-5
-0.954238+/-33.714782 2.08e-4 4.97e-5

True

Residues

Extracted

Percentage of Error

Real Imaginary

-0.0946447+/-3§0.516674
-0.633323 -/+j0.0853256
0.0802221+/-30.733736
-0.822075 +/-30.07674781

* The units of the poles and the residues are in ka, where k is the
wavenumber and a is the radius of the sphere.

-0.094644-/+30.516674
0.633320-/+30.08533
0.08024 +/-30.73373

-0.822088+/-30.07676
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1.33e-4 0.E0

4.76E-4  3.75E-4
2.42e-3 8.07E-4
1.57e-3  1.48E-3
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Table 3-3 for (M,N) as (20,19). The maximum and the average discrepancy - ;ii:;
! of the fitted amplitude and the original amplitude, the fitted phase and E f_;—j
‘ the original phase are listed in Table 3-4. Obviously, the smaller the .
maximum amplitude discrepancy or the smaller the average amplitude
! discrepancy, the closer the fitted curve is to the original one - ;—._1;
(similarily, for the phase error). Correspondingly, the extracted poles
are closer to the original poles. The percentage error (P.E.) is

l defined for both real part and imaginary part of the extracted poles as -

ERETS DullV UL

P. E. of real part = IReal part (Poleaxt,-Polegpye)l | (3-11) -
|P°1etrue| -
5 P. E. of imaginary part = |IM2g. part(Poleext,-Poletryell , (3-12)
A lPo]etrue1 =
where Polegxt, is the extracted pole and Polegpye is the true pole.
Similar definitions are used for the residues. A comparison of
l extracted poles, the percentage error of extracted poles and the errors =

of amplitude and phase are also shown in Table 3-4.

As can be seen in Tables 3-2 to 3-4, various system orders of
the RFA have been applied to the same data set to see the effect of the
system order on the accuracy of the extracting poles. However, no
obvious result has been found in this simple simulated example except
~ that the system order should not be less than the numher of simulated

system poles. For real targets there are an infinite number of
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TABLE 3-3

A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES

AND EXTRACTED RESIDUES FOR (M,N) AS (20,19); FOUR PAIRS OF POLES

AND RESIDUES™ ARE USED IN THE CALCULATION OF THE SIMULATED DATA

True Poles

Extracted Poles

Percentage Error

-0.50000 +/-30.866025

-0.701964+/-31.80740
-0.842862+/-32.75786
-0.954230+/-33.71478

~0.50000+/-30.86602
-0.70196+/-31.80741
-0.84283+/-32.75791
-0.95421+/-33.71492

Curve fitting Poles*

real imaginary
0.EO0 4,956-4
2.06E-4 5.16E-4
1.11E-3 1.74E-3
5.22E-4 3.65E-3

Curve-fitting Zeros

0.19396+/-30.78060
0.23181+/-31.51326

-0.39652+/-31.86546

0.12284+/-32.97965
0.18009+/-33.84572
0.43016+/-32.16078

-0.19396+/-30.78060
-0.23181+/-31.51327
-0.39649+/-31.86548
0.12284+/-32.97967
0.18008+/-33.84573
0.43016+/-j2.16079

Extracted Zeros

True Residues

Extracted Residues™*

-0.38086+/-33.01887
-0.16461+/-31.68440
-1.16102+/-30.
1.29822+/-30.
-1.42429+/-30.

Percentage Error

-0.0946447-/+30.516674
0.633323 -/+30.0853256
0.0802221+/-30.733736

-0.822075 +/-30.07674781 0.8219 +/-30.07706

* The units of the poles and the residues are in ka, where k is the

-0.09463-/+30.51668

0.63332-/+3j0.0854
0.08046+/-30.7335

2.79%e-3 1.15E3
1.16E-2
3 L] 197E-2
3.781E-2

4.76E-4
3.22E-2
2.119E-2

wavenumber and a is the radius of the sphere.

** A1l extracted residues corresponding to the curve-fitting poles are

in the order of 1.E-5 or less for both real and imaginary parts.
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TABLE 3-4

THE EXTRACTED POLES AND THE ERRORS BETWEEN
THE RATIONAL FUNCTION FIT AND THE ORIGluAL
DATA (SIMULATED DATA USED IN EXAMPLE 1)

True poles

RFA Model I P?rcentage Error
M=14, N = Rea

-0.500000+/-J0.866025
-0.70196 +/-J1.80739
-0.842849+/-J2.75786
-0.954299+/-13.714787

13 Part Imag. Part
-0.50000 +/-30.866022 0.E0 2.98e-04
-0.7019523+/-J1.80743 6.06E-4 1.55E-3
~0.84282 +/-J2.75741 1.457E-3 1.56E-2
-0.9648 +/-J3.7253 0.27 0.27

MAX. AMP. ERROR 0.19E-5
AVE. AMP. ERROR 0.2E-6
MAX. PHA. ERROR 0.1068E-3
AVE. PHA. ERROR 0.155E-4

RFA Model_l{3 Percentage Error

M=14, N = Real Part Imag. Part
~0.499998+/-J0.86606 2.E-4 3.505E-3
-0.70196 +/-J1.80738 2.06E-4 1.03E-3
~-0.84295 +/-J2.75778 3.05E-3 2.77E-3
-0.95515 +/-J3.71550 2.4E-02 1.877e-2

MAX. AMP. ERROR 0.5E-6
AVE. AMP. ERROR 0.1E-6
MAX. PHA. ERROR 0.916E-4
AVE. PHA. ERROR 0.148E-4

RFA Model I Percentage Err

M =16, ﬁ = 15 Real Partg I;agt Part
~0.499997+/-30.866023 3.01E-4 1.97€-4
-0.701981+/-31.80739 8.76E-4 5.16E-4
-0.84286 +/-3j2.75810 7.03E-5 8.33E-3 -
-0.95048 +/-j3.71478 9.78E-2 0.EO

MAX. AMP. ERROR 0.19E-5

AVE. AMP. ERROR 0.2E-6

MAX. PHA. ERROR 0.176E-3

AVE. PHA. ERROR 0.187E-4 -

* The units of the poles and the residues are in ka, where a is the
radius of the sphere and k is the wavenumber.
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singularities in the system transfer function. However, over a limited

spectral span only a finite number, hopefully small, will contribute

significantly.
FI - C. EXAMPLE 2: SIMULATED SPHERE DATA USING SIX POLE-~PAIRS
E; _ It is well known that there are an infinite number of pole pafrs
- ;; for a scatterer [4]. To generate a set of simulated data similar to the
F. real scattering ones, six pairs of simulated poles and residues (Table

3-1) are used in Equation (3-9). The simulated data (ka of
r; 0.2(0.02),4.) are generated in the same way as that in example 1 except

that 2 more pole pairs and the corresponding residues outside the

M i IR
T -, P

original spectrum are used in Equation (3-9). Once again, the RFA

routine is used to extract poles from this set of simulated data. The
original data and fitted data are plotted in Figures 3-5 and 3-6. The
extracted poles are shown on Table 3-5.

The two highest frequency pole-pairs are not as close to the
original ones as as those found in example one because the two pairs of
poles outside the original spectrum have some influence on the extracted
poles, especially over the higher frequency portion of the spectrum.
This 1s one of the reasons why curve fitting poles are obtained when the
rational function approximants are used and the reason why the system
order should always be chosen higher than the number of poles
actually desired. The number of true poles is known in these simulated

data but the number of true poles in a set of calculated data or
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3 TABLE 3-5

’. A COMPARISON OF TRUE POLES AND EXTRACTED POLES, TRUE RESIDUES -
= AND EXTRACTED RESIDUES FOR (M,N) AS (14,13); 6 POLE-PAIRS AND THEIR JoooUnlk
' CORRESPONDING RESIDUES ARE USED IN THE GENERATION OF R

SIMULATED DATA A

Poles (M = 14, N = 13)*

True Poles Extracted Poles Pe ceqtage Err?r

ea Imaginary
-0.50000 +/-30.866025 -0.499995+/-30.866023 5.E-4 1.97e-4 s
-0.701964+/-j1.80740 -0.70203 +/-31.80746 3.4e-3 3.1E-3 wl
-0.842862+/-32.75786 -0.8427 +/-32.7572 5.62E-3 2.29E-2 NN,
-0.954230+/-33.71478 -0.968% +/-33.7213 0.382 0.17 R
4 -
Residues ( M = 14, N = 13) S
True Residues Extracted residues Perce?tage Err?r S
Rea Imaginary c
-0.0946447-/+30.516674 =0,094641-/+30.516647 7.05E-4 5.,14E-3 Nl
0.633323 -/+j0.0853256 0.6337 -/+j0.08573 5.8994E-4 6.328E-2 oo IR
0.0802221+/-30.733736 0.07635 +/-30.7326 0.5246 0.154 RS
-0.822075 +/-j0.07674781 0.924 +/-3j0.07676 12.34 6.63E-2 :

* The units of the poles and the residues are in ka, where k is L
the wavenumber and a is the radius of the sphere. Also the e
three pairs of curve fitting poles and the corresponding
residues are not shown here.

32

Y I NP Py wpery i o . s - - - e el B ke a -




" AMPL I TUDE

Figure 3-5.
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~-1.554450 X109
5.117474 X109
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- -4,999948 Xx10-!
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-5.0:0844 X10°
5.010547 X10°
4.3391C5 ¥10°
-4.339154 X100
3.721324 x10°
-3.721268 X10°
2.757222 x10°
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T
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FREQUENCY ( ka
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4.0
)

The RFA for (M,N) as (14,13) fit to the simulated data

using the first six pole-pairs and residues for the
The x's are the data points used for the RFA.
The amplitude plot of the RFA gives a good fit to the

sphere.

original data (solid line).
is given in Figure 3-6.

The corresponding phase plot
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Figure 3-6. The RFA for (M,N) as (14,13) fit to the simulated
data using the first six pole-pafrs and residues for the
sphere. The x's are the data pofnts used for the RFA.
The phase plot of the RFA (dashed 1ine) gives a good
fit to the original data (solid Yine). The corresponding
amplitude plot is given in Figure 3-5.
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measured data 1s unknown. A detailed discussfon on the determination

of the system order is given in a later section.
D. EXAMPLE 3: CALCULATED BACKSCATTERING DATA FOR A CONDUCTING SPHERE

The spectrum of a conducting sphere [27] used to test rational
function approximants is from ka of 0.2 to ka of 4 in the increment of
0.02 ka, 1.e., 191 data points are available. To test the rational
function approximation in application to this set of calculated data, M
is set to be the number of poles where the imaginary parts are within
the given spectrum first. As discussed before, the extracted poles are
not accurate if the system order M is less than the number of true
poles. However, a better result can be obtained 1f the system order §s
set around twice the number of the true poles in the system.*

After the polynomial orders (M and N) are selected for testing,
different sets of data points are used and the defined errors in
amplitude and phase are calculated. Table 3-6 is a comparison of the
extracted poles and their percent errors. Figures 3-7 to 3-10 are plots
of the rational function fit under two different sets of (M,N) ((14,13)
and (16,15)). Obviously, the original curve and the fitted curve agree
s0 well that they cannot be distinguished in the plots of both ampl{tude
and phase. However, the results fit better for (M,N) as (14,13), If

different sets of selected data points are used for the RFA, the results

* Basically, the extra orders (the orders which are higher than the
number of true poles) are required for the curve fittings
although the curve-fitting poles have no physical meaning.
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TABLE 3-6

A COMPARISON OF EXACT POLES AND THOSE EXTRACTED* FROM
CALCULATED DATA FOR SPHERE VIA RATIONAL FUNCTION

APPROXIMATION
True Pole Extracted P P tage _Error
r otes M =rig,eN =01§s Rea?rsggtag Im;g. Part
-0,.50000 +/-30.866025 -0.500000+/-3J0.86662 0.E00 5.95E-2
-0.701964+/-3j1.80740 -0.70193 +/-j1.8028 1.75E-3 0.237
-0.842862+/-32.75786 -0.84244 +/-32.76213 1.463E-2 0.148
-0.95423 +/-33.71478 -0.9175 +/-33.6829 0.9576 0.8312
M=16, N=15
(exact fit)
-0.50087+/-30.86575 8.7E-2 2.75E-2
-0.71008+/-31.79815 0.42E0 0.48E0
-0.84535+/-42.76718 8.63E-2 0.32E0
-0.9076 +/-33.69581 1.22E0 0.49E0

* The units of the poles are in ka, where k is the wavenumber,
a is the sphere radius.
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I8 ’ FOLES
real part imaginary part real part imaginary pert
AR 9.481741 X210 2.824622 X107 -7.582796 X10°'  §.427672 ¥:150
- -1.405259 X100 -5.480211 X109 -7.592834 X107  -4.427370 x:9°
I - -1.405260 X10° 5.4yBD212 X10° «9.175043 X10°%  -3.662517 v:23°
= -2.286303 X10-! -4,152524 X109 -9.175143 X10-!  3.632%:2 Y100
N -2.986795 X10°!' 4.152524 X100 -8.424441 X107'  -2.762127 X130
T -2.295278 X10°'  -2.949347 x10° -8.424373 X107 2.762135 x10°
-2.29828Y4 X10-! 2.9493y7 X10° -7.019316 X10°! -1.802941 Xi3°
-1.392493 X10°' -1.7404y95 X100 -7.019265 X10-!  1.802834 x13°
-1.392492 X10-' 1.740496 X100 -7.112110 X10°'  -1.2)8273 X12°
-1.231828 Xi0° -7.873354 X10-! -7.112207 Xi0-'  1.218378 xig?
-1.231828 X109  7.873953 X107 -1.340053 X10° -5.872938 x:3-9
-7.211325 X107 -1,209984 X109 -1.116686 X10°  S.496470 «1C*?
-7.211317 X10°'  1,209983 X100 -4.999974 X10*! -B.666176 Xig™!
° -4.999950 X10-! B.666134 XiD-!
°—
o

o R
- S
© 1
o oL T
°' ¥ T T Lg 4 | B Y T Y v T 1 4 T ) B T | S :
0.0 1.0 2.0 3.0 4.0 5.0 6.0 R
( ka) .

- Figure 3-7. The RFA for (M,N) as (14,13) fit to the calculated data
B for the sphere. The x's are the data points used for the
g RFA. The amplitude plot of the RFA (dashed line) gives

, a good fit to the original amplitude data (solid 1ine).
[: The corresponding phase plot is given in Figure 3-8.
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magintude of residues

Lt o
- 3]
y e \J g g 6.93:345 %:3°?
. j 6.8344335 wig
K 2.735C47 Y9
i 2.735105 »:3°
_ o 4.851738 X10°}
K n ¥.BG1F23 Xi0-!
- bt 7.604205 110!
- . 7.604324 Xi0°t
- 5.3192¢8 X102
" 5.316372 X10°
2 o 7. 744491 X109
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g Figure 3-8. The RFA for (M,N) as (14,13) fit to the calculated data
g for the sphere. The x's are the data points used for
: the RFA. The phase plot of the RFA (dashed 1ine) gives a
g good fit to the original phase data (solid 1ine). The
L corresponding amplitude plot is given in Figure 3-7.
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IECS
real psrt

7.102981 Xx:i0!

-1.245875 X10°
-1.245875 x10°
-2.984059 x10°!
-2.984064 X10°!
-2.298105 x10°!
-2.298093 xt0~!
-3.241807 x10°}
-3.241827 x10°!
-1.352788 X107
-1.392783 X10°!
-1.147611 Xx10°
-1.147611 X100
1.961505 X10°

a..goaxlm‘

imagirary part

-2.9%2931 x10°7
-5.475637 Xx10°
5.475538 x10°
-4,.153725 X100
§.153725 X10°
-2.949361 X109
2.549361 Xx10°
-1.962527 Xx10°
1.862527 X10°
-1.740481 x10°
1.740483 Xx10°
-6.915483 Xx10°!
6.916483 X100
0.000000 X100
0.000000 x10°

XLES
real part

-7.435583 x10°!
-7.439592 x10-!
-9.076006 x10°!
-9.076023 x10°!
~8.453510 x10°!
-8.453512 x3107!
-3.238230 x10°!
-3.238292 x10°!
~7.100863 x10!
~7.1060788 x10°!
~5.008748 x10°!
~5.008748 x10°!
1.861218 Xx10°

8.258358 X10-?

-1.108586 X10°
-1.108586 X10°

imaginary part

§.YES733 X10°
~4.469731 X109
-3.695808 x10°
3.695808 X10°
-2.767184 X109
2.767176 Xx10°
-1.952551 Xx10°
1.962556 Xx10°
-1.798:45 x10°
1.733145 X107
-8.657454 X10-!
B8.65745S Xx10!
0.000000 X10°
0.090000 Xx10°
2.115911 x10°!
-2.118511 X191

LA SRR SR LA | L AR \J Y T . Y T L AN A |

.
0.0 1.0 2.0 3.0 4.0 5.0 6.0
( ka)

Figure 3-9. The RFA (M,N) as (16,15) fit to the calculated data for
the sphere. The x's are the data points used for the RFA.
The amplitude plot of the RFA (dashed 1ine) gives a good
fit to the original amplitude data (solid 1ine). The
corresponding phase data is given in Figure 3-10.
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Figure 3-10. The RFA for (M,N) as (16,15) fit to the calculated data
for the sphere. The x's are the data points used for the
RFA. The phase plot of the RFA (dashed 1ine) gives a
good fit to the original phase data (solid line).
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may differ somewhat, but they are still within the same order of

accuracy.
E. IDENTIFICATION OF THE TRUE POLES AND THE CURVE FITTING POLES

With proper use of rational function approximants, the polynomial
order required is always higher than the number of true poles.
Therefore, the following rules are used to help to identify the true
extracted poles and curve fitting poles in any test.

1. Pole locations found which are in the right half plane are
assumed to be curve-fitting poles. Clearly, right-half plane poles
would make the transient response unstable.

2. Poles whose corresponding residues are relatively small compared
to others obtained with that test are assumed to be curve-fitting poles.
The reason is that the pole-pairs having very small resfdues contribute
1ittle to the time domain response or to the frequency domain response.
Models with higher orders have too much detail about the data. The fine
detail of the data may be due to the numerical errors from the machine
computation or from using a less perfect model in the original data

calculation.

3. Poles which can be approximately cancelled by zeroes are curve S
fitting poles. This type of cancellation is due to the polynomfal . ‘
orders, M and N, being overdetermined (too large) both in the denominator

and numerator.
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i 4. Poles which have only a real part dr whose real parts are very
large compared with other extracted poles are assumed to be curve
fitting poles. Poles with large negative real parts make the

i corresponding transient response decay so quickly that they make 1ittle
contribution in the total transient response.

Therefore, all of the above poles are assumed to be due to noise or

i errors in the original data and are classified as curve fitting poles.

It is true that poles with only real parts exist for certain targets,

the conducting sphere is an example. A real pole showing consistently

for numerous tests would be reexamined.

KR i YROEPERUR A

F. THE SELECTION OF DATA POINTS
i If the matrix equations are solved in the exact sense, the number
of data points used ((M+N+1)/2) or ((M+N)/2+1) is 1imited by the number
of unknowns (M+N+1). Equally spaced interpolation may or may not yield
l the best fit for a rational function approximation. On the other hand,
?; data points sampled at relative maxima and minima of amplitude are
?i always a good choice for the best fit. This is deduced from
Eﬁ observations of the applicatiens of the rational function approximants
- to numerous sets of scattering data. Furthermore, in most cases, one
?5 additive data point chosen between the adjacent relative maximum and
ii minimum is helpful in making the error smaller.
}i Although there is no general proof, the following technique s used
ﬁ; and works reasonably well. The amplitude and phase error at all the
i:
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data points must be computed. For points where the error is large, the
sample points are moved closer together; and where the local error is
small, the samples are moved farther apart. With this new choice of
sample points, the process is repeated until the error is as small as
possible and is distributed evenly.

I1f the matrix equation is solved in a least squared error sense,
there is no limitation on the number of data points used in solving an
overdetermined system. (However, the sampling rate has been shown to be
related to the accuracy of the extracted poles using the least squared
error solutions in Prony's Method [28].) The application of least
squared error solutions to pole estimation in the frequency domain using

the RFA will be shown in Chapter IV.
G. LIMITATION OF THE SYSTEM ORDER M

For a large system order (for example, M greater than 20), the

rational function approximant program may fail due to overflows in the

computer during the computation. The machine used in this application,

VAX 11/780, has a capacity in the range of 0.29 E-38 to 1.7 E+38 for ]

floating point numbers in double precision. In our applications, the

overflow happens in the subroutine Dpolyrt (a zero-searching routine)

during its calculation of zeros, if M is roughly greater than 20. It

seems that the overflow or il1l1-conditioning never happens in the

subroutine Crout (a modification of Gauss reduction to solve a set of ""‘!q

1inear system equations) as long as M is roughly less than 20 if the VAX
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11/780 machine is used. Therefore the parameter M is always taken to be
less than 20,

H. POLES EXTRACTED VIA A WINDOW TECHNIQUE

In some situations the data available may be, 1) from too large a
spectral span to be covered with one rational function approximation, 2)
without low-frequency content due to difficulties in measurement, or 3)
inaccurate over the low frequency portion if calculated data are being
used because of an inherent limitation of the method, e.qg., Uniform
Geometrical Theory of Diffraction (UTD). Thus, a window technique
(rectangular window) has been developed for extracting poles in the
above situations.

This rectangular window is generated simply by taking sample points
over a band 1imited region of the spectrum. Then the RFA is fitted
accurately over only that region and the extracted poles (whose
imaginary component falls in the appropriate range) are accurate. Model

IT given below is used in the window technique.

E"(x)='§ax"/1+'§'b X7 i=1,2 I (3-13)
i nso "1 meg M >

2

where now an X1 in the numerator is taken out since there is no Rayleigh

region. It is noted that due to a truncation of data on both sides of
the window, the lowest and highest frequency of oscillation poles
extracted via this technigque are not very accurate. However, the rest
within the window are sti1l very close to the true poles.
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Plots using this window technique applied to the backscattering
data of a conducting sphere are shown in Figures 3-11 to 3-13. These
plots show that curves within the window fit well both in amplitude and

phase. In Table 3-7, the first two pairs of poles are extracted via

:? window I (ka of 0.36 to 2.4), the third and fourth pairs of poles are
extracted via window II (ka of 2.1 to 4.2) and the last two pafrs of
;: poles are from window III {(ka of 3.9 to 5.9). Obviously, as the windows
ff move to higher frequencies, the percentage errors are still in the same
Ti order. The rational function model s inherently more accurate at Jow
ﬁi r: frequencies than at high frequencies. This was initially suggested by

Kennaugh and Moffatt [2] who noted that for a distributed parameter

system a lumped parameter approximation can best be utilized where the

scattering or radiation properties of the object are essentially global,
f.e., not dominated by portions of the object. A more subtle
distinction 1s made by examination of the K-pulse [6] which notes
something missing from the singularity expansion method [SEM].

The width of the window is chosen such that at least three pairs
of poles are covered in the spectrum. The first and the last pair
of poles are deleted because the truncation of data makes these poles
inaccurate. Also note that the poles extracted using one RFA over the

whole spectral span (one window) have almost the same order of accuracy

as those extracted using three RFA and three overlapped windows over the
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: TABLE 3-7
hl A COMPARISON OF TRUE POLES AND POLES™ EXTRACTED VIA
- WINDOW TECHNIQUE

Exact Poles of Sphere Poles Extracted via RFA & Percentage Error
Windows (Three) Technique

Real Part Imag. Part N },71
-0.500000+/-30.866025 -0.5003+/-j0.86610 (WI)** = ﬁfff
3.80E-2  7.50E-3 e
-0.701964+/-§1.80740  -0,7086+/-j1.8133 (WI) 0.342 0.304 o .
-0.842862+/-§2.75786  -0.8766+/-§2.7483 (WII) 1.17 0.332 f’
-0.954230+/-33.71478  -0.9277+/-§3.7388 (WII)  0.692 0.626 R

-1.04764 +/-j4.67641 -0.9996+/-34.6191 (WIII) 1.002 1.196
-1.12891 +/-35.64163 -1.1338+/-35.5328 (WIII) 8.50E-2 1.891

* The units of the poles are in ka, where k is the wavenumber and
a is the sphere radius.

** WI denotes window I.
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Figure 3-11,

SENCS
resl part

-3.8938521 Xx10°
-3.899521 Xx10°
«2.715840 X10-!
~2.715848 X10-!
-~3.392556 X10+!
=3,.392551 X10-
6.431926 X102
-1.081773 X100
~1.091773 xi00
6.451857 X102
~y.355227 Xx10-2
~4.355223 x10-2
4.498780 X102
0.00CC20 Xx10°
0.000000 x10°

1.0
L

i

AMPLITUDE

imagiracy part

1.231743 xi0'
-1.231748 x10!
2.945470 X100
-2.845968 Xx10°
1.740500 X100
-1.740499 X10°
2.067845 X10°
-8.239071 x10-}
8.239073 X107
-2.067848 X10°
#.653695 X10°!
-8.663596 X10°!
0.000000 X10°
0.000026 Xx1G°

0.000G00 X10° -

resl part

6.432034% X10°?
6.431817 Xi0-2
-6.786652 X10-!
-6.786652 X10-!
-7.065919 x10-!
-7.085877 X10-}
-1.957764 X10°
-1.9857765 X10°
-4.355239 X10-?
-4.355229 Xi0-2
-1.072975 XxiQ®°
¥.499001 X1p-2
-5.003769 X10-!
-5.003782 X10°!

Window 1I
(ka=0.36 to 2.4)

ssgirary pert

2.057850 Xx10°
-2.067B50 X10°
2.729713 Xxt0°
-2.729713 X100
1.613268 x10°
-1.813269 x10°
7.542527 x10°!
-7.542531 X10°?
8.663692 Xx10-!
~-8.663532 X104
4.255478 X10°7
0.0060D0 X10°
-B8.561069 x10°!
8.55107y X10°!

v Y

r
2.0

FREGUEN

0 4.
CY({ ka)

s ] -

o

The RFA fit to the calculated data for the sphere

within the frequency of interest (window I). The x's are

the data points used for the RFA.
the RFA (dashed 1ine) gives a good
amplitude data (solid line) within
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AMPLITUDE
1.0

real part

-8.253189 Xx10-
-8.253201 Xxip-!
-1.u406261 xi0-!
-1.406267 x30-!
5.606i60 X102

5,.604859 X102

-2.298664 x10-!
~3.002870 x10°!
~3.002915 x:0°!
~-5.548292 xi0°!
~-5.548382 X107}
~2.298u6% x10-}
3.944065 X10°!

Rt IRria Sl

PLANCI o ra—

SB05
imaginary part real part imaginary part
-4.801¢€27 x10°0
1.068570 x10°?
y.601%23 X100
-3.662331 Xx10°
3.662330 x1¢°

-7.344205 X10!
-2.175842 Xx10!
-7.2w4286 x10°!
5.605201 X10-2
S.604627 x10°2

§.583209 x10°
-5.583209 Xx10¢
1.744352 X100
-1.744350 X100
3.662305 x10°

-3.662317 X109 -8.277147 X10-'  -3.738760 X10°
2.949363 X10° -8.276904 X19-%  3.738773 X10°
-4.155033 X100 -8.766138 X10-' -2.7u8281 X10°
2 4.155044 X10° -8.766202 X10-'  2.748300 X10°
2.616053 Xx10° -5.556495 X10-! -2.619233 Xj00
-2.616055 X100 -5.556539 X10°! 2.518272 x!0°
-2.949357 X100 -6.738217 Xi0"'  -1.718831 X10°
©.000000 X10° -6.738215 X10-'  1.718931 X10°
-1.268851 X10°  0.00CGCO X:0®
Window IX

(ka=2.1 to 4.2)

Figure 3-12.

Y X

2}0 3?0 MjD 5
FREGUENCY ( ka )

The RFA fit to the calculated data for the sphere

within the frequency of interest (window II). The x's are
the data points used for the RFA. The amplitude plot of
the RFA (dashed 1ine) gives a good fit to the original
amplitude data (solid 1ine) within the window.
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real part

1.052375 x10'

~5.331648 X10°!
~5.331650 Xi0°!
+3.008935 X10-!
-3.008314 X10-!
-2.808144 X10-}
-2.809772 X10-!
-4.571337 X10-!
-4.571332 X10-!
1.137515 x10°!
1.137699 X10-!
~3.544716 X10°
-3.543896 X10-!

AMPL 1 TUDE
1.0

imagirary part

1.225258 x1077
2.530583 X109
-2.530%32 X100
4.154336 X10°
-Y4. 154304 Xx10°
4.512299 X100
-4.512367 X10°
6.586211 X10°
-6.586199 Xx10°
5.100265 X10°
-5.100148 xj0°
5.36018) X10°
-57360293 x10°

KLEs
real part

-5.887772 X107
-9.888250 Xx30-!
~2.607423 X10-!
-2.809372 X10°?
-1.133377 x:0°
-1.133761 X10°
7.619740 Xx10°

~4.553928 Xx10°
-8.996915 X10-!
-8.995255 X10-!
1.137866 x10°!

1.137701 Xx10°!

~7.591943 Xx10-!
~7.59217S X10-!

imginary part

€.2557€1 Xig"
-6.255767 X10°
¥.512208 X107
-y.532212 X10°
5.532500 X190
-5.532757 X10°
3.131265 X10°
6.000000 X10°
4.618969 X10°
-4.618159 X10°
5.100226 X10°
-5.100145 X10°
3.695371 X10°
-3.695393 Xi0°

Window III
(ka=3.9 to 5.9)
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T
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0
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Figure 3-13.

The RFA fit to the calculated data for the sphere

within the frequency of interest (window III). The x's are
the data points used for the RFA. The amplitude plot of
the RFA (dashed 1ine) gives a good fit to the original
amplitude data (solid 1ine) within the window.
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whole spectral span. The detail of this application to some
experimental data will be demonstrated in a later chapter.

I. ADDITIVE NOISE AND ITS EFFECTS ON POLES EXTRACTED VIA RATIONAL
FUNCTION APPROXIMATIONS

Up to this point, the rational function approximation has been
applied to extract the complex natural resonances from sets of noiseless
data. However, in any measured system noise, clutter and uncertainty
are inevitable. Two types of pseudo-noise are considered in this
section. One type is simply the calculated data rounded to the kth
decimal. The other type is an uncorrelated Gaussian* white noise added
to the calculated data. For the first test, both the real and imaginary
part of the calculated sphere data are rounded to the kth decimal.

The rational function routine is applfed to these sets of data with
system order for (M,N) as (14,13). This set of system orders is chosen
because the system with these orders works reasonable well (see Figures
3-7 and 3-8) for eight poles in the spectrum, i.e., about twice the
number of poles. For a general problem, an estimate of the number of
poles can be obtained from the measured amplitude spectrum. Tables
3-8 to 3-9 show comparisons of extracted poles from data rounded to the
2nd, and to the lst decimal respectively. Obviously, as k decreases,

the extracted poles move away from the true ones.

* The Gaussian random number generating subroutine-Gauss in IBM
Scientific Subroutine Package (SSP) s used.
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C
> TABLE 3-8
- A COMPARISON OF TRUE POLES AND EXTRACTED POLES*
’ USING THE RATIONAL FUNCTION APPROXIMAILON TO THE BACKSCATTERING
DATA OF SPHERE
= True Poles Extracted Percentage of Error
(M =16, N = 15) Real Part Imag. Part
-0.50000 +/-j0.866025 -0.5398+/-30.80699 3.98 5.903
-0.701964+/-31.80740 -0.8233+/-j1.8558 6.257 2.496
-0.842862+/-32.75786 -1.0036+/-j2.8927 5.574 4.676

-0,954230+/-33.71478 -0.9817+/-33.7629 0.716 1.254

(M =14, N = 13) Real part Imag. Part

-0.5196+/-30.8159 1.96 5.01
-0.7721+/-31.8882 3.617 4.167
-0.9394+/-33.1347 3.348 13.07 RS
-1.4014+/-33,5855 11.65 3.37 R

* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.

** The data were rounded to 2nd decimal. LT
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TABLE 3-9

A COMPARISON OF TRUE POLES AND POLES EXTRACTED
USING THE RFA TO THE BACKSCATTERING DATA FOR A SPHERE™

! True Pole Extracted Poles Percentage of Error
L (M = 16, N = 15) Real Part Imag. Part
" -0.500000+/~-30.866025 -0.4525+/-31.012 4,75 14.59
- -0.701964+/-31.80740 -0.4898+/-32.009 10.94 10.39
b_ -0.842862+/-32.75786 -0.3040+/-33.2430 18.69 16.82
< -0.954230+/-33.71478 not located
h (M =22, N=21) Real Part Imag. Part
= -0.415 +/-§0.8779 8.5 1.148
- -0.5548+/-§1.7920 7.59 0.794
- -0.5674"'/-12.6454 9.55 3.899
-0.4200+/-33.7250 13.93 0.266

* The data were rounded to 1st decimal.
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The second type of nofse 1s uncorrelated Gaussian random noise with

zero mean and o standard deviation. Two uncorrelated Gaussian random
processes with a zero mean and a standard deviation of o which are
generated from two different seeds are added to the real and imaginary
parts respectively of the calculated data for the sphere. The

signal-to-noise ratio is defined as
N .2
S/N(dB) = 10V0g [[i)'lA (X,)/N]/Zaz] . (3.14)

where R(Xi) is the amplitude of signal at frequency X;, and N is the
total number of samples used.

These noisy data are fitted by the rational function in the exact
sense. Figure 3-14 is a typical example of rational function fit to the
noisy data, where the noise level is o of 1.E-1. The extracted poles
under different noise levels are listed in Table 3-10. It is easy to
see that the discrepancies between the extracted poles and the true
poles are increased as the noise level is increased. Furthermore, the
rational function approximants may fafl to extract the complex natural
resonances at all when the S/N is below 20 dB or so. Based on the above
characteristics of nofse effects, several preprocessing techniques will
be used to preprocess the noisy data. These preprocessing techniques
are described and are applied to several sets of noisy data for the

sphere in the following section.
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TABLE 3-10

l COMPARISON OF EXACT AND EXTRACTED POLES* OF SPHERE
- USING THE RFA TO THE NOISY DATA FOR THE SPHERE

l Poles Extracted via RFA (in the exact sense)

True Poles 0=2.E-2(Run 1) 0=2.E-2(Run 2)
-0.500000+/-j0.866025 -0.5362 +/-j0.9616 -0.4386+/-j0.80129

-0.701964+/-31.80740 -0.4745 +/-31.9577 -0.6482+/-31.8509

- -0.842862+/-32.75786 -0.38518+/-32.643 -0.9795+/-32.7384

!, -0.954230+/-33.71478 ~0.4745 +/-33.538 -0.6285+/-33.5081

> 0=10E'1

"-‘ . -0.439 +/-j0.5497

| -0.295 +/-31.6033

-0 02574+/-j2 . 784
not located

. Run 1 and 2 used different data points.

* The units of the poles are in ka, where k is the
wavenumber and a is the sphere radius.

** Two Gaussian white noise generator (using two different -
seeds) with standard deviation o are added to the
backscattering data for the sphere. The signal to noise
ratio corresponding to o of 1.E-1 is 18.37 dB.
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Figure 3-14.
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The RFA applied to a set of noisy data, where the Gaussfan

random noise with zero mean and a standard deviation of
0.1 is added to the calculated data for the sphere.

The x's are the data points used for the RFA.

The amplitude plot of the RFA is plotted as a dashed
1ine (S/N of 18.37 dB).
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ii J. PREPROCESSING TECHNIQUES

E’ 1. Preprocessing With Zero-Phase-Shift Digital Filter

In general, a digital filter is defined in the z-domain as

1

M -
) by 2 ) , (3-15)

1=1
where ajy and by are coefficients which determine the behavior of the

N -4
H(z) = ) a, z '/ (1 +
i=1

filter. Emphasized in this section is the design of a high order (10)
lowpass digital filter with zero-phase-shift, where the 3 dB cutoff
frequency is movable. The Butterworth approximation is used because it
is a maximally-flat amplitude approximation. In order to obtain a 10th
order zero phase shift digital filter, a 5th order lowpass Butterworth
digital filter is designed first. Then, a complex conjugate filter
H*(z) is cascaded to H(z). Thus, the total filter HT(z) is a 10th order

Towpass filter with zero phase shift.

W (2) = W(z) . H'(2) = (22 o0 (3.16)
The details of the zero phase shift digital filter and its
implementation are described in Appendix A. Comparisons of the filtered
data with a 12.35 d8 S/N (see Figure 3-20 for the noisy waveform) and
the original noiseless data are plotted in Figures 3-15 (amplitude) and
3-16 (phase). The 3 dB cutoff frequency f. is set at Zo*Hz, the RFA are
applied to the filtered data. The extracted poles and the percent

* Corresponding to 6.29 TAU (diameter transit time) of the impulse L
response (see Appendix A). RSN
M | .__J!
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Figure 3-15. A comparison of amplitude plots for the calculated data ,
(solid 1ine) and the filtered data (dashed line) for the ) —
sphere. The filtered data are obtained by filtering S
the noisy data (calculated data with additive Gaussian
random noise) using a 10th order zero-phase-shift digital
filter. The 3 dB cutoff frequency f. is set to 20 Hz.
The signal-to-nofse ratio is 12.35 dB before filtering.
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Figure 3-16. A comparison of the phase plots for the calculated data _
(solid 1ine) and the filtered data (dashed 1ine) for the -
sphere. The filtered data are obtained by filtering

the noisy data (calculated data with additive Gaussian

random noise) using a 10th order zero-phase-digital

filter. The signal-to-noise ratio is12.35 dB before

filtering.
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errors are shown in Table 3-11. Note that the extracted poles are
15 percent in error in the real part and 10 percent in error
in the imaginary part. Therefore, the minimum signal-to-noise ratio

which can be tolerated is about 15 dB.

2. Preprocessing With Sum Operator

After some initial manipulation the technique in using the rational
function approximation is to solve the matrix equation AX = B, where A
is an mxn matrix, B is an mx1l matrix, and X is an nxl unknown column
matrix. It has been shown that the least squared error method is very
sensitive to noise and has no guarantee of convergence if an iterative
search is used [25]. As will be shown in Chapter IV , there are some
advantages to solving the matrix equation in an exact sense rather than
solving it in a least squared error sense. However, there are many data
points which contain useful infarmation and are corrupted by noise to a
certain extent but are unused.

To extract better poles from a set of additive noise data, a major
effort is to reduce the effect of noise to a minimun. The intention
here is to use the row echelon algorithms (which are used in Gauss
elimination) for an overdetermined matrix equation to reduce N rows to
one, 1.e., N 1inear system equations can be scaled arbitrarily (say 1/N)
and added together. A detailed description of the sum operator is shown
in Appendix B. It is expected that the noise in each element of the
matrix equation is reduced by a factor of about 1/N. Assuming that X(t)
fs an arbitrary stationary random process with mean X and variance o,

59

EEER N SN A S




TETT R TIE TR T TR T T T Ty T —y —_— »
E TN I ML A O A T VR ML et et .t Gl e T UL P

’ ,'l-“ .i.f ‘,' ’,

TABLE 3-11

II POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION AND 10th
ORDER ZERO-PHASE~SHIFT DIGITAL FILTER.*

- Extracted Poles® Percentage of Error
. Real Imaginary
E_: Run 1
= -0.415 + j 0.802 8.50 6.40
o -0.364 + j 1.526 17.43 14.51
~-0.307 + § 3.738 16.88 0.61
Run 2
-0.637 £ j 0.798 13.7 6.80
-0.752 £ § 1.716 2.58 4,71
~-0.529 + j 2.982 10.88 7.77
Average
-0.526 + § 0.800 2.6 6.60
-0.558 £ j 1.621 7.42 9.61
-0.418 £ § 2.863 14.73 3.65

* The original signal-to-noise ratio: 12.35 dB. The 3 dB cut-off
frequency is set at f; of 20 Hz.

** The units of the extracted poles are in ka, where k is the the
wavenumber and a is the sphere radius.
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then the following statistics™ are true:

N -~

E() Xy/N) =X , (3-17)
i=1
N -~

v (1)‘1 X{/N)= o2/N (3-18)

where E and V are the expected value and the variance respectively, N is

‘the number of samples. Thus, the variance of the noise is reduced by a

factor of 1/N.

The rational function approximant with the sum operator was defined
in this study (see Appendix B). The sum operations are made in the
matrix equation formed by the RFA instead of in the sampled data. Then
the sum operator and RFA are applied simultaneously to a set of
calculated sphere data, where two Gaussian vhite noise processes
generated with two different seeds are added to the real and imaginary
parts respectively. It is noted that there is a tradeoff between the
noise reduction factor and the number of samples (N) used for the sum
operation. The noise term in each element of matrix A' (see Appendix B)
is enlarged by a factor Xr , Where xi is jkia, M is a system order. If
the N sampled frequencies X;, X2, . . . Xy used for a group summation

are assumed to be close to each other, i.e.,

xl ] xz 2 X3 o o o 2 XN » (3-19)

* John Neter and William Wasserman, Applied Linear Statistical Models,
Richard D. Irwin, Inc. Homewood, ITTinois, 1974.
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2. where = means for almost equal to, then the noise reduction factor is

1/N based on Equations (3-17) and (3-18). However, if the number of

éé samples used in the group summation N is large and Equation (3-19) is no o
Eb longer true, then the additive noise reduction factor is no more a . i;:;
factor of 1/N. Nevertheless, too many samples as well as too few o ‘%
samples in the group of sum operations still reduce the additive noise

significantly. Note the sum operator developed here does not reduce any ;i ;;;;
of the signal itself. In other words, the sum operator can be applied ?ffg
to a noiseless matrix equation, the solutions with or without a sum ;t;ﬁ
operator are exactly the same. gs E;;i
The manipulation of a sum operator in the elements of the matrix " :ir};
equation is definitely better than that in the sampled data because the f gﬁga
sum operator defined here does not reduce the signal at all. It should - ;L:;
be noted that there is an optimal N so that the noise can be reduced as g :T;%
much as possible. However, the search of the optimal N is beyond the : :?lii
scope of this dissertation. The number of samples (N) used in the group - :12:
summation is set optionally at 10 in this dissertation. =? 77?{
The plots shown in Figures 3-17 and 3-18 (for S/N as 18.37 dB), _ ._Zé;
Figures 3-19 and 3-20 (for S/N as 12.35 dB), and Figure 3-21 (for S/ T
as 6.33 dB) are amplitude plots of the original noisy data (solid line) -??;
and of the fitted curve via sum operator in the rational function fit
(dashed 1ine). Various sets of data points are selected from the first ;; ;c-}
two noisy data sets (S/N of 18.37 dB and 12.35 dB) respectively (see . R

Figures 3-17 to 3-20) and then the rational function approximations and ;{ ;
P

62 i




2808 roLES
real pert {msgtinary part resl pert {maginery pert
-3,219773 X10-%  3.818755 X100 -4.253798 x10°! ~3.732206 X10°
«3.219773 X10°% -3.919754 X10° -4.253798 x10- 3.732207 x10°
6.431612 x10° -1.699179 X107 -3.655687 x10-? 1.531806 x100
-2.219895 X10-! 2.94y4112 x10° -3.655697 X10-? -1.531806 x10°
1.821979 x10° 1.547945 x10°7 -6.737158 X10°? 2.779822 x10°
-2.219896 X10-! -2.944112 X10° -6.737154 X107t -2.779823 x10°
-3.208515 X10-? 1,533100 Xx10° -5.817472 X130} 1.858214 x}0°
-1.476556 X10-' -1,774S88 X10° -5.817479 x10-! -1.8%8213 x10°

-1.476556 X10-!
-3.208522 X102
7.666840 X10°!
=3.946160 X10-2
-3.946162 X102

(=3
° T

.Y i
o~

1.20
1 N 1

AMPL ITUDE
0.80

1.774589 X10°
~1.533100 X10°
2.491958 x10-*
$.912038 Xx10-!
-5.912037 X107

6
A
o
-

1.027473 x10°
1.027473 x10°
-3.738658 x10°!
-3.738658 x10~!
-4.594510 Xx10-2
-4.594509 X102

4.635614 x10°!
-4.635614 Xx10°!
7.643278 X107}
-7.643277 x10°!
5.751686 x10°!
-5.751686 x10°!

Figure 3-17.

0.0 1.0 2.0 3.0 4.0 5.0 €.0

The sum operator and the RFA applied simultaneouly to
the nofsy data (solid 1ine) for the sphere, where two
Gaussianly distributed random noises have been

added to the calculated data for the sphere.

The x's are the data points used for the RAF. The
cignal-to-noise ratfo is 18.37 dB (amplitude plot).
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Figure 3-18. The sum operator and the RFA (dashed 1ine) applied
simultaneously to the noisy data (solid 1ine) for the
sphere, where two Gaussianly distributed random noises
have been added to the calculated data for the sphere.
The data points (the x's) are different from those in

w Ty WO aliry v
R N R AR A

Figure 3-17. The signal-to-noise ratio is 18.37 dB
(amplitude plot).
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Figure 3-19.

L k4 ' ¥ ¥ ' k4 LA '
1.0 2.0 ?.0 4.0 S.0 6.0
( ka)

The sum operator and the RFA applied simultaneously to
the noisy data (so1id line) for the sphere, where two
Gaussianly distributed random noises have been

added to the calculated data for the sphere. The x's are
the data points used in the RFA. The signal-to-noise
ratio is 1s 12,35 dB (amplitude plot).
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Figure 3-20.

The sum operator and the RFA are applied simultaneously
to the noisy data (solid 1ine) for the sphere, where

two Gaussfanly distributed random noises have been added
to the calculated data for the sphere. The selected

data points (the x's) used in the RFA are different from
those in Figure 3-19. The signal-to-noise ratio is 12.35
d8 (amplitude plot).
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Figure 3-21.

( ka)

The sum operator and the RFA (dashed line) applied to

the noisy data (solid 1ine) for the sphere, where two
Gaussfanly distributed random noises have been

added to the calculated data for the sphere.

Note the

selected data points are marked by x's. The
signal-to-nofse is 6.33 dB (amplitude plot).
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the sum operators are simultaneously used to form system matrix
equations. The extracted poles are listed in Tables 3-12 and 3-13.
Averaged, the real part has 13.64 percent error and the imaginary

PAEAPAL REN

part 4.81 percent error for the S/N at 12.35 dB. For a S/N of 18.37 d8,
}} the real part has 10.5 percent error and the imaginary part 2.4 percent

»
el

error. The percentage error 1s 18.25 percent for the real part and 9.6
&) percent for the imaginary part for a S/N of 6.33 dB. The corresponding
amplitude plot using a sum operator is shown in Figure 3-21 for S/N
ratio of 6.33 dB. The imaginary parts have been improved more than the
real part using the sum operator. The fact that the real parts of the
poles are very sensitive to noise is is well known in the extraction of

poles from the transient response waveforms,

o 3. Preprocessing with Both Digital Filter and Sum Operator

The functions of both digital filter and sum operator have been
discussed in the two preceeding sections. In order to extract the
complex natural resonances individually from a set of noisy data, the
two techniques are used sequentially. In the beginning, the original
\ 1 data are preprocessed with a 10th order digital filter with the 3 dB
cutoff frequency fc. Then, the rational function approximant with sum
operator s applied to the prefiltered data for a f. of 20 Hz.* Two
JQ examples are shown in Figures 3-22 and 3-23, where the ampl{itude of the

Z * The same reason for an fo of 20 Hz is given in Section J of this
<" Chapter.
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- TABLE 3-12 '_;1?,7';,‘;-?7-_;‘«
POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION -——-—-—-—
- AND SUM OPERATOR ’ . .4
Extracted Poles® Percentage Error .;1'3_’.';'{:{1
- S/N=18.37 dB (o=1.E-1) Real Imaginary i-—-—-u’
T Run 1 (Figure 3-17) s
e -0.373+/-J0.764 12.7 10.2 L
-0.5817+/-21,.8582 6.20 2.62 R
e -0.6737+/-32.7798 5.87 0.76 e
r -0.4253+/-J3.7322 13.79 0.454 i-—--——‘-
Run 2 (Figure 3-18) ol
-0.4047+/-J0,7592 9,53 10.68
-0.5807+/-31.6620 6.25 7.499
) -0.4970+/-J2.7006 11.99 1.985
. -0.3379+/-03.6641 16.07 1.321
Run 3
-0.353+/-J0.8167 14.7 4,932
-0.564+/-J1.873 7.12 3.383
-0.6478+/-J2,.7828 6.76 0.865
- -0.3852+/-33.7031 14.84 0.305
g Average Poles
-0.3769+/-J0.78 12.31 8.6
-0.5755+/-J1.798 6.52 0.485
-0.6062+/-J2.7562 8.21 0.057
-0.3828+/-J3.700 14.90 0.385
* The units of the poles are in ka, where k is the
wavenumber and a is the sphere radius.
-
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TABLE 3-13

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION
AND SUM OPERATOR.

F. Extracted Poles Percentage of Error - ——
o $/N=12.35 dB Real Imaginary o
(0=2E-1) L

Run 1 (Figure 3-19)

-0.2989+/-J0.8643 20.11 0.17 SRR
-0.2300+/~J1.6802 24.34 6.56 -
-0.1827+/-J2.2712 22.89 16.88 S
-0.2455+/-33.6937 18.48 0.55 R
Run 2 (Figure 3-20) SR
-0.4695+/-30.9854 3.05 11.94 e
-0.2530+/-J2.160 23.15 18.19 -
-0.5323+/-32.5157 10.77 8.397 A
-0.4474+/-33.6547 13.21 1.57 TLoemt
Run 3 e
-0.4571+/-J0.9676 4.29 10.16 R
-0.4727+/-J2.088 11.82 14.47 R
-0.2651+/-J3.296 20.03 18.66 - T
-0.1739+/-J3.674 20,34 1.063
Average Poles )
-0.405 +/-00,9391 9.5 7.307 e
-0.318 +/-J1.976 19.80 8.70 -y -
-0.3267+/-J2.6943 17.90 2.20 =
-0.2889+/-J3.674 17.35 1.06 ’
S/N = 6.33 dB
Extracted Poles Percentage of Error - =7
Real Imaginary

(Figure 3-21)
-0.418 tj 0.9177 . 16.4 5.9
-0.173 +j 1,903 27.3 4.93
-0.274 +§ 2,153 19.7 20.97
-0.584 +j 3,974 9.6 6.78

Average 18.25 9.65

* The units are ka, where a is the sphere radius.
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real pers

-1.297710
=3.319606
=3,297717
«2.053504
=-3.680136
«=9.680132
«3.025977
~31.025967

Xt0-' -

x10t

x10-!
x10-!
Xt10-?
X10-!
x10-1
X101
x10-!

2.281609 x10°!
2.201609 X107t
-4.721890 Xx10°
4.925702 x10

fmaginary part

1.70294s x10°
-2.038285 X107
-1.702046 x10°
2.88049S x10°
-2.880494 X100
3.633183 x10°
-3.633184 X100
1.974989 x10°
-1.974990 X10°
9.023890 x10~!
-§.023890 X10-!
0.000000 Xx10°
0.000000 Xx10°

resl part

-2.461260
-2.461263
-4.458549
-4.458572
-1.234172
-1.234140
-3.213453
-3.213464

xto-
x1g-!
Xx10-!
X101
X10-!
x10-!
X10-t
xio-t

2.431422 xi0-t

2.431422 x10

-5.314038 x107!
-5.314038 Xx10-!
-5.990435 Xxi0-!
=6.941624 X10-2

imginary part

-3.587156 x10°
3.587155 x10°
1.730457 X109
-1.730457 x10°
1.991303 x10°
-1.991303 x10°
2.783686 x10°
-2.783684 X100
9.107757 x10°!
-9.107756 x10°!
9.264346 x10°!
-9.264344 X10°?
0.000000 x10°
0.000000 X100

P

1.20
L

o

L

AMPL 1 TUDE
0.80

Figure 3-22,

[ NS ST Vol S

Ll T v v v L ‘l L] v ‘ L) v . ¥ v j
1.0 2.0 3.0 4.0 S.0 6.0

( ka)

The sum operator and the RFA are applied simultaneously

to the prefiltered data (solid 1ine) for the sphere. A
10th order zero-phase-shift digital filter is used to
prefilter the noisy data, where two Gaussianly distributed
random noises have been added to the calculated data for
the sphere. The x's are the data points used in the RFA.
The original signal-to-nofse ratio is 12,35 dB (amplitude
plot).
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resl pert {saginary part
§.268377 X10°'. -4,.215118 x10°
$.2683u2 x10°! 4.215117 X100
9.341878 x10°! ~3.560440 X10°
$.341935 x10°! 3.560446 X10°
6.448721 X102 ~2.162105 X10°
6.449073 X102 2.162104 X109
1.299875 x10° 3.582260 X10-¢

«1,.320187 x10°!
-1.320197 x10°!
-2.254793 X107}
- «2.254843 X107}
©.240991 X102
©.240987 x10°2
«3.207707 x10°
2.1B83516 X107
'\:'ﬂ

1.20

AMPLITUDE ¢
0.80

~1.725456 X10°
1.725456 X100
~2.962519 X10°
2.962516 Xx10°
7.802422 X10°
-7.802422 Xx10-
0.000000 X10°
0.000000 X10°

POLES
real pert

2.598235 x10°
-2.891078 X10!
-5.651634 X10-!
-5.651639 X107
2.598231 X10°!
2.228815 X10°
-6.6339862 X10°!
-6.639862 Xx10-!
7.460998 X10-2
7.460988 X1072
-5.681291 Xx10-!
-5.681281 Xx10-!
9.447543 X102
9.447547 X102
-5.287395 x10°!
2.576995 X102

jmaginary part

3.555334 X10°
1.675003 X107
-3.001400 x1Q¢
3.001400 X10%
-~3.555334 X109
-1.807314 x10-°
1.790383 x10°
-1,790383 x10°
2.16390S5 x10°
-2.163%0S Xx10°
9,.150119 X10°!
-9.150119 x10-?
7.768920 xi0-¢
-7.768919 x10°}
0.000000 X10°
0.000000 Xx10°

T T T v T

T v ' 1
S.0 6.0

Figure 3-23.

ka

The sum operator and the RFA are applied simultaneously

to the prefiltered data (solid 1ine) for the sphere. A
10th order zero-phase-shift digital filter is used to
prefilter the noisy data, where two Gaussianly distributed
random noises have been added to the calculate data for
the sphere. The x's are the data points used in the RFA.
The original signal-to-noise ratio is 12.35 dB. The data
points used are different from those in Figure 3-22
(amp1itude plot).
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filtered data (solid 1ine) and the fitted curve using sum operator
(dashed 1ine) in the rational function are plotted. The extracted poles
are listed in Table 3-14. It has been shown (see Table 3-14) that the
first three pole-pairs are much improved using the digital filter and
sum operator sequentially. However, the fourth pole-pairs may not be
located at all because both digital filter and sum operator are using
only one sided information to predict or to smooth the data around the
high frequency end (due to the truncation of data there). The smoothed

data near the high-frequency end are therefore not accurate.
K. BRIEF SUMMARY

In this chapter, rational function approximants have been defined,
developed and applied to noiseless and noisy data for a conducting
sphere. Two major problems, critical points in any system
identification, are the system order and the noise problem. Inherently,
the system order is not a very critical point in the rational function
fit as long as the system order M is not less than the true poles
desired. In fact the system order can be roughly determined from the
amplitude curve resonances, i.e., the order of the system is roughly
determined by the number of peaks in the amplitude data. However, some
curve fitting poles and some true poles should also be counted although
they are not seen clearly in the amplitude peaks (if there are

interferences from different scattering mechanisms).

73

. .. “1

r




et et ae

s e T,
e

TABLE 3-14

POLES EXTRACTED VIA RATIONAL FUNCTION APPROXIMATION -
USING THE DIGITAL FILTER AND THE SUM OPERATOR (S/N = 12,35 dB) -

Poles* Extracted via Percentage Error -
Digital Filter and Sum
Operator for (M,N) as (16,15) Real Imaginary
Run 1 (Figure 3.22)
M=14, N=1 .
-0.446+/-31.730 13.21 3.992 wd
-0.321+/-j2.784 18.08 0.893
-0.246+/-33.587 18.46 3.33
Run 2 (Figure 3.23)
-0.568+/-j0.915 6.8 4.89 —
-0.664+/-3j1,790 1.96 0.89 3
-0.565+/-33.001 9.63 8.43 ”
Run 3
-0.392+/-30.927 10.8 6.10
-0.455+/-j1.927 12.73 6.17
~0.453+/-33.0¢ 13.52 11.17 =
Run 4 _
-0.568+/-30.8235 6.80 4.25
-0.789+/-31.538 4.49 13.89
<0.455+/-32.902 13.45 4,99
Average
-0.515+/-30.897 1.499 3.097
-0.429+/-32.923 14.35 5.72 -
* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
P
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As far as the noise problem is concerned, a high-order digital '
filter has been developed to prefilter the additive noise and a sum -

operator is used in the rational function fit to reduce both the

additive and multiplicative noise. As shown in this chapter, the S

poles still can be extracted and identified for a S/N ratio at 12.35

dB*, if a 10th order zero-phase-shift digital filter and a sum operator DAY
.. are used. Although the study in this chapter is limited to the o
computer generated additive Gaussian white noise. Chapter VI will

present an extension of using the 10th order zero-phase-shift digital

y
-

E filter and RFA to the measured data using the reflectivity measurement i
. facility at the ElectroScience Laboratory.
K —
!
EI‘-. '
:'_ ) * Although there is an example of S/N of 6.33 dB (Figure 3-21); o
k re however, the percentage error is relatively high (see Table 3-13). '
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CHAPTER IV
LINEAR LEAST SQUARED ERROR SOLUTIONS

A. INTRODUCTION

T - >
. . 2,., DA
RN A N Y A

It was shown in Chapter III that the RFA with preprocessing can
extract the complex natural resonances reasonably well when the signal
is contaminated by additive noise. It would appear that the RFA applied
in a least squared error sense might fit the data better. In this

chapter several techniques using least squared error solutions are

investigated.

* o N
o Ve

B. EIGENANALYSIS

An imhomogeneous system of linear equations

PR PN
LN .‘-- ." »".' S

AX =E (4-1) S ‘}j;ﬁ

where A is a real m x (n+l) data matrix of rank (n+l) and X and E are

(n+1) and m rows column vectors, respectively, is an overdetermined _
system if m > (n+tl). The components of X are unknown coefficients and E A

is the error, assumed small. The squared error is

XTATAX=ETE . (4-2)
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where YT means the transpose of Y.
There are N+2 ways to solve the matrix equation [16]. However, the
solution with the constraint

n
1X0 lagl2 = 1 . (4-3)

the eigenanalysis method [16]1 , is the solution to the min max problems
and yields the minfmum total squared error. :i;;_
Eigenanlysis has been used to minimize the total squared error of
the matrix equation (Equation (4-1)) and has shown some success in
simple simulated cases [16]. In addition, noise remains a serious
problem. The following procedures are used to solve the matrix equation

given by Equation (4-1).

1. Find the efgenvalues of ATA first.

2. Find the eigenvector which corresponds to the smallest

efgenvalue, this is the minimum total squared error.

3. The eigenvector corresponding to the smallest eigenvalue is the
solution X of the matrix equation in the sense that the sum of

the residuals squared is minimized.

Several efforts have been made to extract the complex natural
resonances from rational function approximants via eigenanalysis. E}?QZ
ié L$ The results are not good even for a relatively low system order for 5 e
(M,N) as (6,5) and nofseless data. With notsy data, the result is even : ?:f:!

worse. Assuming no mistake in theory, the error must be due to
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numerical calculation, in particular, the calculation of the
eigenvalues. This will be clear in the next section on singular

decomposition where 1t is shown that better results can be obtained.
C. EIGENANALYSIS VIA SINGULAR YALUE DECOMPOSITION

Given a real m x (n+l) matrix A with m > (n+l), the matrix A can be

decomposed into the following form.

A = uzvT , (4-4.1)
where

UTy = wT = VTV = 14y, (4-4.2)
and

L = diagloy, ..., o(p+1)). (4-4.3)

The matrix U is an mxn matrix consisting of n orthonormalized
eignevectors associated with the n largest eigenvalues of AT, The
matrix V is an (n+l) x (n+l) matrix consisting of the (n+l)
orthonormalized eigenvectors of ATA and the diagonal elements of & are
the non-negative square roots of the eigenvalues of ATA which are called

singular values. It 1s assumed that
01 > Q > 03 P see P 0(“+1) » 0 . (4'4.4)

If the rank of A is r and r is less than (n+l), then
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Optl 20ps2 ™ ooy O(nel) = O . (4-4.5)

The decomposition of matrix A in Equation (4-4.1) 1s called singular
value decomposition (SYD). To compute the singular value decomposition
of a given matrix A, Householder transformations and a QR algorithm are
used in the l{terature.* The advantage in solving least squared error
problems using SVD™ is that there is no necessity to compute ATA, which
may involve unnecessary numerical inaccuracies.

Singular value decomposition routines are available in the
literature.™* An application of the singular value decomposition to
find the complex natural resonances from the calculated data for a
sphere is presented in Table 4-1 and Table 4-3. Table 4-1 is a list of
singular values for the rational function fit to the sphere data for
(M,N) as (14,13) and I as 20 (20 data points). Table 4-2 is a list of
the ratio of two adjacent singular values. Table 4-3 is a 1ist of the
extracted poles from the sphere backscattering data via SVD.

The smallest singualar value is of the order of 0.01. The ratios of
two adjacent singular values are all in the order of 100 to 10, i.e., no
sudden change occurs. Thus there is no clue for finding the system

order via the ratio of two adjacent singular values although the

* G.H. Gould and C. Refnsch, "Singular Value Decomposition and Least
Squares Solutions", Numerical Mathematics 14, p. 403-420, 1970.

** The eigenvector of ATA which corresponds to the smallest singular
value of A 1s the solution of the unknown matrix X in Equatfon (4-1).

***C.L. Lawson and R. J. Hanson, Solving Least Squares Problems,
Englewood C1iffs, N. J., Prent!ce-Ha%1, 1974,
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TABLE 4-1
I A LIST OF THE SINGULAR VALUES USING SINGULAR VALUE

DECOMPOSITION IN THE RFA for (M,N) as (14,13) TO THE

CALCULATED DATA FOR THE SPHERE

I M=14 N= 13
) DATA FOINT = 20TNCREMENT= 10
: THE 1 SINGULAR VALUE IS 0.1213032E+10
THE 2 SINGULAR VALUE IS 0.4227007E+09
THE 3 SINGULAR VALUE IS 0.2762580E+08
THE 4 SINGULAR VALUE 1S 0.1471489E+08
‘ THE 5 SINGULAR VALUE 18 0.1902102E+07
. THE 6 SINGULAR VALUE IS 0.9058594E+06 s
) THE 7 SINGULAR VALUE IS 0.7508329B+05 el
THE 8 SINGULAR VALUE IS 0.37404418+05 A
. THE 9 SINGULAR VALUE IS 0.1346613B+05 e
i THE 10 SINGULAR VALUE IS 0.8894107E+04 Ry
" THE 11 SINGULAR VALUE IS 0.8768583E+03 ,
| THE 12 SINGULAR VALUE IS 0.3870276E+03
: THE 13 SINGULAR VALUE I8 0.1275254E+03 T
) THE 14 SINGULAR VALUE IS 0.82621388+02 T
: THE 15 SINGULAR VALUE IS 0.4379275B+02 L]
; THE 16 SINGULAR VALUE I8 0.2039347E+02 S
i THE 17 SINGULAR VALUE IS 0.1570983E+02 "
. THE 18 SINGULAR VALUE IS 0.4903873B+01 ~—9
: THE 19 SINGULAR VALUE IS 0.4777973E+01 DR
: THE 20 SINGULAR VALUE IS 0.2413255E401 e
) THE 21 SINGULAR VALUE IS 0.1353038E+01 N
: THE 22 SINGULAR VALUE IS 0.3440572E+00 SRRAT
- THE 23 SINGULAR VALUE IS 0.2936901B+00 " d
- THE 24 SINGULAR VALUE 1S 0.1810666E+00 —
' THE 25 SINGULAR VALUE IS 0.8229814E-01
THE 26 SINGULAR VALUE 18 0.6865017E-01 R
THE 27 SINGULAR VALUE 1S . 0.1388225e-01 I
; THE 26 SINGULAR VALUE 18 0.6414558E~02 R
’ THE 29 SINGULAR VALUE IS 0.2125495E-02 v g
) -—9
b ] -
0
o
- S
- !
; “4-.‘]‘
) e
4 .
| ]
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TABLE 4-2

.

THE RATIO OF TWO ADJACENT SINGULAR VALUES™

1TH SINGULAR VALUE OVER THE 2 T 0.286972E+01
2TH SINGULAR VALUE OVER THE 3 TH 0.153009E+02 L
3TH SINGULAR VALUE OVER THE 4 TH 0.187740E401 > o
4TH SINGULAR VALOE OVER THE 5 TH 0.773612E+01 o)
S5TH SINGULAR VALUE OVER THE 6 TH 0.209978E+01 S
6TH SINGULAR VALVE OVER T™HE 7 TH 0.120647E+02 R
7TH SINGULAR VALUE OVER THE 8 T 0.200734E+01
8TH SINGULAR VALUE OVER THE 9 ™ 0.277767E+01 RS
9TH SINGULAR VAILUE OVER THE 10 TH 0.151405E+01 » 4
10TH SINGULAR VALUE OVER THE 11 T™H 0.101432E+02 SR
11TH SINGULAR VALUE OVER THE 12 ™ 0.226562E+01 PR,
12TH SINGULAR VALUE OVER THE 13 TH 0.303491E+01 L]
13TH SINGULAR VALUE OVER THE 14 TH 0.154349E+01 RN
14TH SINGULAR VALUE OVER THE 15 T 0.188664E+01 R
15TH SINGULAR VALUE OVER THE 16 T™H 0.214739E+01 i‘""‘j
16TH SINGULAR VALUE OVER THE 17 TH 0.129813E+01 T
17TH SINGULAR VALUE OVER THE 18 TH 0.320356E+01 S
18TH SINGULAR VALUE OVER THE 19 TH 0.102635p+01 S
19TH SINGULAR VALUE OVER THE 20 TH 0.197989E+01 T ]
20TH SINGULAR VALUE OVER THE 21 ™ 0.178358E+01 o ]
21TH SINGULAR VALUE OVER THE 22 TH 0.393260E+01 Y ”i
22TH SINGULAR VALUE OVER THE 23 ™ 0.117150E+01 -
23TH SINGULAR VALUE OVER THE 24 T™H 0.162200E+01 L]
24TH SINGULAR VALUE OVER THE 25 TH 0.220013E+01 e
25TH SINGULAR VALUE OVER THE 26 TH 0.119880E4+01 -
26TH SINGULAR VALUE OVER THE 27 ™ 0.494517E+01 SR
27TH SINGULAR VALUE OVER THE 28 TH 0.216418E+01 ‘® d
26TH SINGULAR VALUE OVER THE 29 ™ 0.301791E+01 —
* The singular values in Table 4-1 were used. N '
) _.q
* The singular values in Table 4-1 were used. .
s 9
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TABLE 4-3

A COMPARISON OF THE TRUE POLES AND THE EXTRACTED POLES*
USING RFA MODEL AND THE SINGULAR VALUE DECOMPOSITION TO

THE CALCULATED DATA (SPHERE, BACKSCATTER) o
True Poles Extracted Poles Percentage of Error g u,m,!
real imaginary RSN
-0.500000+/-30.8660250 -0.501176+/~ j0.8552016 0.1176 1.082337 Tz
-0.701964+/-51.80740  -0.7111590+/-31.806740  0.4742292 0.0034 :: ;i;ii
-0.842862+/-32.75786  -0.8363640+/-32.76490 0.2253303 0.2441246 . f‘ :ijﬂ

~0.954230+/-33.714780  -0.9193100+/~33.67700 0.9104712 1.166823

* The units of the poles are in ka, where k is the wavenumber
and a 1s the sphere radius.
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extracted poles are very close to the true ones. The application of
sfngular value decomposition to noisy data fails even for small additive

noise. It was disappointing to learn that zero phase-shift digital

filter effected no improvement in the extraction of poles via singular E;;;i

value decomposition of the filtered data. ifff;i
D. PSEUDO-INVERSE METHOD E’_.f.i_iff?
:_;_;
Instead of forming a matrix equation such as Equation (4-1), ‘
where E is an error matrix for an overdetermined system, the
other simple way of forming a matrix equation from the RFA is similar ;;4;;
to that of exact determined systems in Chapter III, i.e., i[;f?
AX = B, (4-5.1) ;‘.-v:":}{;'?
where A is an mxn matrix with m>n, X is a nxl unknown matrix, B is a mxl 7'i“5
matrix and the elements in B are the real and imaginary parts of the ;'iﬁii
complex data points. Then the easiest way to solve this equation is to ﬁ_fg;
perform a a pseudo-inverse as Tfi_;
ATAX = AT, (4-5.2) o
where AT is the transpose of A. In fact this method is also known as a fff“!
least squared error solution without weight in mathematics. The
application of this solution to the calculated data for a sphere are :
given in Figures 4-1 (amplitude) and 4-2 (phase). Note that twenty Tfjff
complex data points are used in this overdetermined system for (M,N) as ij}fﬁ
(14,13) (28 unknowns). Table 4-4 is a comparison of the true poles and ~i;;;
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TABLE 4-4

A COMPARISON OF THE TRUE POLES AND THE EXTRACTED POLES* -
USING RFA AND PSEUDO-INVERSE METHOD, i.e., LEAST SQUARED ERROR -
WITHOUT WEIGHT TO THE CALCULATED DATA (SPHERE, BACKSCATTER) s

!l True Poles Extracted Poles Percentage of Error -
. real imaginary

i:‘ -0.500000+/-j0.8660250 -0.5043270+/-j0.8679600 0.4327 0.1935
A -0.701964+/-31.80740 -0.70266 +/-j1.79561 0.03589 0.6081

| § B

-0.842862+/-j2.75786 -0.84936 +/-j2.76335 0.2253 0.1903 ~-
-0.95423+/-3j3.71478 -0.92042 +/-3j3.70323 0.8815 0.30115 - 3?
.
* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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The RFA applied to the calculated data for the sphere in
the sense of least squared error without weight.

twenty complex data points are used (amplitude plot).
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Figure 4-2. The RFA applied to the calculated data for the sphere in
- the sense of least squared error without weight. Note .
E that twenty complex data points are used (phase plot). S
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the extracted poles using this method. The extracted poles are very
close to the true ones in the nofseless situation.

The intentions to use more data points have been made but the
results are even worse due to the numerical errors in the computation of
Targe matrix. An attempt to extract poles using the pseudo-inverse
method from sets of noisy data fails even for small additive notse,
e.g., signal to noise ratio at 30 dB. Without doubt the bias problem is
serfous in this method as well as the other two methods mentioned

earlier.
E. SUMMARY

A11 techniques discussed in this chapter concerned methods for
solving the matrix equation in the least squared error sense. They are
eigenanalysis using the eigenvalues or singular values and a
pseudo-inverse method. The eigenanalysis using singular values works
well 1f there is no nofse; however, the method generally fails even
for slightly nofsy data. Ein tanalysis would appear to be the best of
these unweighted solutions. The anticipation of better fits from least
squared error solutions using more data pofnts is not true due to the

accumulation of numerical errors and the bias problem.
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CHAPTER V
AN INVESTIGATION OF THE COMPLEX NATURAL RESONANCES
OF VARIOUS OBJECTS

A. INTRODUCTION

It was shown in Chapter III that the RFA could be applied
successfully, for pole extraction, to the calculated data for the sphere
with or without additive noise. Furthermore, it was shown in Chapter IV
that the RFA used for pole extraction in a least squared error sense
were very sensitive to noise. An approximate method which can be
utilized to extract the complex natural resonances of a particular
target may or may not be precisely applicable to other targets.
Therefore, various sets of backscattering data for different targets
should be tested to see the general applicability of the method. In
this chapter, the complex natural resonances of some simple* conducting
scatterers such as a circular disc, loop, thin wire, finite circular
waveguide, semi-infinite circular wave-guide, and one stick model of a

F104 atrcraft are extracted via the rational function approximations

* Applications to geometrically complex targets are given in Chapter VI
(measured data).
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(RFA) in the exact sense. The results (poles) are compared in some
cases with those obtained using different approximate or exact (sphere)
methods. The approximate methods (in addition to RFA) which were used
in this study are the Uniform Geometrical Theory of Diffraction (UTD)

[11] for a disc and an integral equation formulation and numerical ;qii
search for a loop. fﬂﬁf
B. CONDUCTING SPHERE .S

1. Analytical Method e

For convenience, the first few complex natural resonances of a -
conducting sphere as taken from Stratton are listed again in Table 5-1 ;iﬁﬁ
for both the transverse electric (TE) and the transverse magnetic (TM) .;ffif
modes. Both TE and TM modes are excited at the same time. The e

oscillations of the electric mode are independent of the magnetic mode

oscillations.

2. Signal-Flow-Graph Method

Using the differential attenuation and phase shift of a surface
wave on a spherical surface given by Pathak and Kouyoumjian [11,12],
Kennaugh [10] derived two characteristic equations for a geodesic path
around the sphere. The roots of these two equations are the poles of
the sphere. The first 4 pole-pairs for the electric mode via
signal-flow graphs [10] and rational function approximation are compared

in Table 5-2. The low order poles extracted via the rational function
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TABLE 5-1

POLES™ OF SPHERE EXTRACTED VIA ANALYTICAL METHOD -

Electric Mode Magnetic Mode ;j ?“'*4

"1.60"’/"30. ‘10 +/"j°-
-0.50+/-30.86 -1.5 +/-j0.86
-2.17+/-30.87

-0.70+/-31.81 -2.26+/-30
-0.83+/-32.77 -1.87+/-31.75

S e
N v T
M
PREPLIFSIPARE DR
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S

* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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TABLE 5-2

A COMPARISON OF THE POLE-PAIRS* FOR A
CONDUCTING SPHERE EXTRACTED USING DIFFERENT METHODS

True Poles [25] Signal Flow Graphs Rational Function
=U. +/-30. = +/-30. -0. +/-J0.
o -0.701964+/-31.80740 -0.7008+/~j1.8130 -0.7019 +/-31.8028
;; C -0.842862+/-32.75786 -0.8422+/~32.7618 -0.8424 +/-32.7621
2 -0.954230+/-j3.71478 -0.9538+/~-33.7178 -0.9175 +/-33.6829

* The units of the poles are in ka, where k is the wavenumber
and a is the sphere radius.
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approximants are more accurate than those extracted via the
signal-flow-graph method but the asymptotic approach obtains the high
frequency poles with greater accuracy.

3. Rational Function Approximation

The results of applying the rational function approximations to the
backscattering data of sphere [27] have been shown in Figures 3-7 and
3-8 for a system order for (M,N) as (14,13). Fourteen data points
(marked by x's) are used in the RFA in the exact sense. A comparison of
the true poles [25] and those extracted via the rational function
approximations and the signal-flow-graph approach are listed in Table
5-2. The data used for the rational function approximant are from
ka of 0.2 to ka of 4, i.e., the data are truncated at ka of 4.
Therefore, it is not surprising that the real part of the last pole-pair

is not as accurate as the others.
C. DISC
1. Introduction

The diffraction of a plane electromagnetic wave by a thin,
circular, metallic disc remained unsolved until the rigorous solution

obtained by Meixner and Andrejewski in 1950*. The disc is treated

* J. Meixner and W. Andrejwski, "A Rigorous Theory on the Diffraction of
Plane Electromagnetic Waves by a Perfectly Conducting Circular Disc
and by a Circular Aperature in a Perfectly Conducting Plane Sheet,"”
Aner. der Phys., Yol. 7, p. 157, 1950.
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as a 1imiting surface in an oblate spheroidal coordinate system using an
eigenfunction solution. Numerical results of fourteen discrete
frequencies were subsequently obtained by Andrejewskf fn 1952 [30].
Flammer [31] derived another solution using oblate spheroidal vector
wave functions in 1953. Hodge [32] presented Meixner's solution in

in terms of the notation introduced by Flammer [31] and the far field
amplitude and phase scattering data (ka of 0.2(0.2)15.2) for plane wave
incidence at broadside were calculated using his development of an
efficient method of computing the spheroidal efgenvalues [32). Using
Hodge's computer programs, J. L. Li of the ElectroScience Laboratory at
The Ohio State University compiled the backscattering data (ka of
0.2(0.2) 10.) of the disc at angles off broadside incidence

(6 of 15°(15°)90°) for the incident electric field in both o and ¢
polarizations (see Figure 5-1). The results of applying the RFA to
these sets of data and UTD approximations to the resonant modes of the

disc are presented in the following section.

2. Broadside Incidence

Rational function approximants have been developed and applied to
the calculated backscattering data of a circular disc. The data sets
are in the range of ka of 0.2 to ka of 15.2 for broadsfde incidence.
Cases with both the incident electric field and the incident magnetic
field parallel to the plane of the disc are included. These data sets

are fitted with the rational function approximants in the exact sense.

93




Ly r -
.............................

Figure 5-1.

The coordinate system for a circular metallic disc.
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real part imeginary part teal part imaginary part
-1. 66 X10" 6.735340 x10 -4.896136 x10°! -1.22366S Xx10%
-i.:gggsa X109 -6.735328 X10-! -2.466722 x109 1.036491 x10-7
-4.896136 X10-! 1.229665 x10°
S
°-
~

Figure 5-2.

The RFA for (M,N) as (3,2) fit to the backscattering data
for the disc at broadside. The x's are the data points
used. The solid 1ine 1s the calculated data and the dotted
line is the RFA (amplitude plot). The 3 input samples are
in the Rayleigh region and are marked with x's.
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Figures 5-3 through 5-6 show severa) examples‘of applying the rational

function approximation (RFA) program to the real frequency data of the
disc for plane wave incidence at broadside. Appendix C gives a detafled o :_'
i list of the coefficients of the RFA using system order for (M,N) as = ;ﬁ;;
(14,13) (Table C-1) and the corresponding zeros, poles and residues -f “f‘ﬂ
: (Table C-2) by applying RFA to the disc backscattering data at broadside ”‘ o
. for plane wave excitation. Note the coefficients of the RFA at higher __ -]

orders become smaller and smaller. In order to estimate the accuracy of - 57*1!

the rational function coefficients for the disc backscattering data for o

a plane wave incidence at broadside, a Tong division of the ratfonal

. P}. ‘,_- P '“..‘..‘ '_. .‘4.

function approximant with the coefficients listed in Table C-1 was

SR § I
e
..:'."’ i'..' “I .'

performed with the result in the form of

K
[ | E'(X) = c,.x""1 , (5-1)
n=1

where X is jka and a 1s the radius of the disc, is shown in Equation

(C-1). It approximates closely the result in Equation (C-2), the low

7 frequency approximation given by Boersma* (see Appendix C). Figure 5-3,

which 1s similar to that obtained by D.B. Hodge, fs the RFA to the first

E; resonant region [33]. The order (M,N) for the system as (3,2), {.e.,

2 only three input samples (marked with x's in Figure 5-2) are used in the P
ES RFA. Figure 5-3 and 5-4 are excellent fits of the RFA to the entire a ;fi;i
E% data region with a system order of (M,N) as (14,13), Poles, zeros, and ;; :

* Boersma, J., "Boundary Value Problems in Diffraction Theory and
Lifting Surface Theory,” Thesis, Grominger, Holland, 1964.
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real imaginary part real part imaginary part
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-3.937129 xi0° -1.977369 x10! -4.02S046 x10° -2.001847 x10!
-1.281795 X109 -1.434566 Xx10!? ~1.284660 x10° -1.440915 x10!
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~-1.524349 x10° 1.553103 xi09 -4.906893 x10-! 1.231033 x10°
-1.036533 X10% -4.665735 X10° -1.045793 x10° -4.873465 Xx10°
-1.035535 x10° 4.666736 X10° -1.045794 X109 4.873467 x10°
-2.109441 X10° 0.000000 x10° -1.589850 x10° -1.757181 X109

o -1.589850 x10° 1.757181 Xx10°

°—

~

Figure 5-3. The RFA (dashed 1ine) for (M,N) as (14,13) fit to the
backscattering calculated data (solid 1ine) for the disc at
broadside. The x's are the data points used in the RFA.
The last input sample is at ka of 14.8 (amplitude plot).
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A comparison of the poles of a disc extracted using RFA
(c) and UTD (a) for broadside excitation.
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Figure 5-5,

RSN, ol
- PRV IR P L -

The RFA for (M,N) as (18,17) fit to the backscattering
data for the disc at hroadside. The x's are the data
points used. The solid line is the calculated data
and the dotted 1ine is the RFA. Note the last fnput
sample of the RFA is at ka of 7.2 (amplitude plot).
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Figure 5-6. A comparison of the poles of a disc extracted using RFA
(@) and UTD (A) for broadside excitation.
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residues are all shown in the amplitude and phase plots in Figures 5-3
and 5-4, With a system order at M of 14, 7 pole-pairs are extracted.
However, only 5 out of these 7 pole-pairs are the true system poles (see
the criteria in Chapter l11).

The result shown in Figures 5-5 is to extract more poles from a
shorter frequency range to see if secondary dominant poles may appear.
Unfortunately, the poles of the second layer are too weakly excited to
be extracted via RFA using these real frequency data. However, as was
discussed in Chapter 111, the overdetermined system order does not
influence the extraction of the real physical poles. In addition, the
UTD [11] and an Equivalent Current approach (EC) [29] can be used to
predict the complex natural resonances of the disc at broadside. A
detailed description is given in Appendix D. A 1ist of the poles
extracted via the RFA and those via the UTD method for the disc at
broadside are presented in Table 5-3. Figure 5-6 is a comparison of
poles of disc for broadside using RFA and UTD. The poles of string I in
Table 5-3 from the RFA are an edge diffraction mode. The one pole pair
of the string II in Table 5-3 is the lowest frequency pole of the
creeping wave mode. This can be identified because the imaginary part
is around ka of 1, i.e., 2na of XA, The poles of the disc at broadside
from these two methods are very close to each other except for the two

lowest frequency pole-pairs. It 1s known that UTD will not properly
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predict low frequency poles because it is an asymptotic high frequency
approximation. The oscillatory parts of the poles (string I) occur in
increments of around ka of 3 (which is very close to n, f.e., 2a of 1),
because the diameter (2a) should be close to (n + 1/2) wavelength at the
resonances of the edge diffraction at broadside. A 1ist of the first 26
pole-pairs for the disc at broadside excitation (edge diffraction mode)
is shown in Appendix D. Note the first three low frequency pole-pairs
come from the rational function approximation to the backscattering
calculated data for the disc at broadside. The higher order poles for
broadside excitation are obtained using UTD approximation. The UTD
Equivalent Currrent Concept (EC) [29] has been used because of the
caustic field. A detailed discussion is presented in Appendix D. From
the UTD approximation for broadside excitation, it has been shown (see
Appendix D) that the equivalent current of more than the second order
diffraction (included) forms a geometric series. Obviously, this is the
edge diffraction mode. However, the first order diffraction which is
dominant and is not included in the geometric series forms the lowest
resonant mode of the disc. The first order equivalent current on the
rim is shown in Equations (D-2) and (D-3) of Appendix D. Apparently,
both the equivalent electric and magnetic currents have only one period
of variation on the rim, i.e., 2ra of A. Therefore, the imaginary part
of the poles (-0.49+/-31.21) is around one unit of ka, where a is the

radius of the disc and k is the wavenumber.
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P TABLE 5-3

- - A LIST OF POLE-PAIRS* FOR THE DISC BACKSCATTERING AT BROADSIDE
SR USING THE RFA AND UTD APPROXIMATIONS

i - RFA UTD method
_ String I String 11
7 1. -2.22+/-31.656 -0.49+/-j1.23
S 2. -1.04+/-34.87 -1.04 +/-35.0542
k r 3. -1.16+/-38.10 -1.1616+/-38.2116
t:‘. 4. -1.24+/-311.28 -1.2418+/-3§11.3611
a 5. -1.27+/-514.4 -1.3024+/-§14.5075
()

* Al11 poles are in units of ka, where a is the radius of
disc and k is the wavenumber.

-
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3. Poles of the Disc at Oblique Incidences

Here the RFA is applied to the calculated backscattering data of
the disc at 6 of (15° (15°) 90°) with ; polarization (electric field
parallel to the disc). The angle 8 is measured from broadside incidence.
The first dominant pole-pair (see Table 5-4) is exactly the same
as that obtained at broadside,i.e., 0.49+/-jJ1.23. However, there
are more poles extracted in this string at oblique incidence (in-
stead of only 0.49+/-j1.23 for the broadside excitation). The oscilla-
tory parts of this string have an increment of approximately one ka
unit. Obviously, the dominant string of poles (edge diffraction mode)
at broadside is not strongly excited for off-broadside incidences.

A calculation of the caustic distances for waves multiply diffracted
at Q1, Q2 (see Figure D-4) is presented in Appendix D. The caustic
distance for the Nth order diffraction is

oy = -a(1+2Nsino) . (5-2)

sTn
Obviously, the caustic distances of each multiple diffraction is not the
same at oblique incidences. There is no way to form a geometrical
series at angles off-broadside incidence. However, the caustic
distances are the same for all diffractions at broadside (theta of 0
degrees). Actually the caustic distances are -a for any order of
diffraction at broadside. Therefore, the resonant modes are not the

same for broadside and angles off-broadside incidence.

104

£

lat

Cld

M U NN At M A T ol bl i oo et g il gt ity "bun ity Siont e St b “Sun Gs 0in g i 0r 2 i Bt Sty Se Bap e s e g gt ain o TTYTP T T
L

N

-
-

P

IR o

Pl
f_\-ff'b.ﬂ



P R N L ROl A T i i A e e T AN R N P G )

h N TABLE 5-4 e

A LIST OF POLES* FOR THE DISC AT ANGLES OFF BROADSIDE

Senior's creeping wave mode

INCIDENCE (BACKSCATTER) USING THE RFA AND SENIOR'S AR
CREEPING WAVE AT EDGE-ON INCIDENCE T
RS
Rational Function Approximation L'j.j
6=15° 6=30° S
-0.49+/-§1.23 -0.49+/-31.23 - q
-0.64+/-32.33 -0.61+/-32,32 L)
-1.38+/-33.3 -1.39+/-§3.71 R
-0.98+/-34.82 -0.95+/-34,52 C
=45° 6=60° 6=90° Ce
-0.492+/-§1.23 -0.49 +/-§1.23  -0.49 +/-§1.23 : '
-0.62 +/-j2.32 -0.687+/-§2.31  -0.614+/-§2.31 o
-0.66+/-33.20 -0.714/-33.39  -0.688+/-33.36 o
-0.67+/-34,22 -0.74+/-34.40  -0.763+/-34.42 s
-0.83+/-§5.43  -0.848+/-§5.40
-1.04+/-36.43  -0,925+/-36.42 —d
-0.92+/-j7.43  -1.08 +/-§7.43 m—
-0.99+/-38.50  -1,27 +/-§8.53
|

6=90°

-0.506+/-31.23
-0.603+/-32.28
-0.675+/-33.33
-0.733+/-34.37
-0.78 +/-35.40
-0.83 +/-3J6.43
-0.87 +/-37.46
-0.90 +/-38.48
-0.94 +/-39.50

-0.97 +/-310.52

..o

* The units of poles are in ka, where k is the wavenumber and

a is the radius of the disc. ,
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The creeping wave around the rim of the disc is not an easy

problem. Two papers [34,35] which specifically deal with the creeping

ISRVANAN] ATRCORLAIRS

wave on the rim of the disc can be found in the literature. In this

PR

i study, the creeping wave formula developed using both the Geometrical
) Theory of Diffraction (GTD) and measured technique in [34] is used.

After some manipulation, the normalized electric field (i.e., the

i squared root of the normalized Radar Cross Section (RCS), the RCS
N normalized to the area of the disc) is
- 5%/6
: (12 s g . 173
- g" = 2(1 - -) u e expl-mp + -n 1 , (5-3)
1 (] " 2
where vy is 0.8x (actually a trial value), u is jka, and a is the radius
i of the disc (see Appendix E). The complex natural resonances are

obtained by imposing a selfconsistent condition on the creeping waves
which revolve around the rim of the disc, 1.e., after one revolution
these fields should exhibit phase coherence with the fields at the
starting points. Consequently, the zeros of the following equation (see
Appendix E) are the poles of the creeping mode of the disc.

173

g M =2mu = , (5-4)

Bl TR

e

where u is jka and a is the radius of the disc. A list of the dominant
string of poles at angles off broadside incidence extracted from RFA

and those extracted via Senior's creeping wave mode [34] are listed in

!
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Table 5-4. The details of the extraction of poles using Senifor's
creeping wave mode are presented in Appendix E. A comparison of the
scattering by the disc at edge-on incidence hetween Senior's analytical
method and Hodge's calculated data 1is presented in Appendix F.

Table 5-5 is a 1ist of poles using the RFA to the calculated data
for the disc at several aspect angles (0°(15°)90°) and two polarizations
(; and ;), the natural resonances are indeed independent of the
incidence and the field polarization. For angles off-broadside
incidence, it is the creeping wave mode which is dominant for resonance.
A detailed list of the first 30 pole-pairs of the disc using Senior's
creeping wave formula for edge-on excitation is shown in Table 5-6.
Figure 5-7 is a plot of the poles of the disc for broadside using RFA
to the calculated data, and the poles of creeping wave mode using
Senfor's analytical method. This set of poles (Figure 5-7) may be
used to generate a K-pulse waveform [6] for the backscattering of the

disc.

4. Andrejewski's Magnetic Near Field Data of the Disc

Backscattering at Broadside

In Andrejewski's dissertation [30], fourteen normalized scattered
magnetic field data points for the disc backscattering at broadside were
plotted in the complex plane. Here, the normalized magnetic scattering
data at these 14 points are reproduced at ka of 0.5(0.5),4. and
ka of 4.(1.),10. Datails of the calculatfon are shown in Appendix G.
These data are shown fitted with a RFA in Figure 5-8. The extracted
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TABLE 5-5
A LIST OF POLES™ FOR THE DISC USING THE RFA TO THE CALCULATED

DATA FOR DIFFERENT ASPECT ANGLES AND POLARIZATIONS. THE RFA
ARE FITTED TO ka of 0.2 to 6 (30 SAMPLES)

Rational Function Approximation

poles

¢ Polar- P1 P2 P3 P4
1zation
0. -1.04+/-J4.87 -1.16+/-J8.10 -1.24+/-J11.28

-0.49+/-J1.23
15, -0.49+/-J1.23 -0.64+/-J2.33 -1.38+/-J3.30 -0.98+/-J4.82
30. -0.49+/-J1.23 -0.61+/-J2.32 -1.39+/-J3.71 -0.95+/-J4.52
45, -0.49+/-J1.23 -0.62+/-J2.32 -0.67+/-33.40 -0.75+/-04.30
60. -0.49+/-J1.23 -0.63+/-J2.30 -0.97+/-J3.80
75. -0.49+/-J1.25 -0.61+/-2,33 ~0,73+/-J3.35 -0.67+/-J4.50
90. -0.49+/-J1.23 -0.60+/-J2.31 -0,74+/-J3.42 -0.65+/-J4,28
6 Polar-
ization
15. ‘0-49+/’J1022 -0.64+/-JZ.27 -1008'.'/'\]3-30 "0.82"’/'\]5-02
30. -0.49+/-31.23 -0.62+/-32.33 -1.23+/-J3.52 -0.94+/-J4.57
45, -0.49+/-J1.23 -0.64+/-J2.34 -0.87+/-J2.90 -0.86+/-J4.80
60. -0.49+/‘Jl.23 -0162+/-Jz-32 ‘0065+/'J3021 -1.52+/-JSo40
75. -0.49+/-J1.23 -0.63+/-J2,32 -0.64+/-J3.24 -1.26+/-J5.80

* The units of poles are 1n ka, where
and k is the wavenumber.

P TR S
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TABLE 5-6
- POLES™ OF DISC USING SENIOR'S CREEPING WAVE MODE
; n Poles
- 1. (-0.5057350,+1,208781)
2. (-0.6030402,+2.282039)
3. (-0.6746498,+3.331739)
4. (-0.7328901,:4,370643)
5. (-0.7826892,15,403155)
g 6. (-0.8265909,+6.431364)
r 7. (-0.8660754,+7.456467)
8. (-0.9021299,+8.479179)
9. (-0.9354153,+9.499999)
10.  (-0.9664097,+10.51928)
11. (-0.9954736,+11.53727)
) 12. (-1.022884,+12,55416)
B 13.  (-1.048859,+13.57012)
: 14. (-1.073574,+14.58525)
15. (-1.097172,+15.59966)
16.  (-1.119781,+16.61343)
17.  (-1.141471,+17.62662)
18. (-1.162356,+18.63929)
= 19. (-1.182501,+19.65149)
20. (-1.201968,+20.66326)
21. (-1.220811,+21.67463)
22. (-1.239077,+22.68564)
23. (-1.256811,+23.69632)
24, (-1.274049,+24.70668)
25. (-1.290820,%25.71675)
26. (-1.307164,+26.72656)
27. (-1.323088,+27.73611) o
28. (-1.338675,+28.74543) RS
29. (-1.353844,+29,.75452) o
¥ 30. (-1.368698,%30.76340) L
-
* Units of ka, where a is the radius of the disc. . ;
L 109 "“4!
1
- Y
T TN, SN ——— — - ]




™
(8.0

o

<

Figure 5-7. The complex natural resonances of the disc for ,
broadside (D) and edge-on (A) incidences. ]
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SERCS JOLES q
real part imagirary part real part imaginary part .
2.831635 x10° -9.27C221 xig" -1.377459 x1G° B8.1452751 x107 B
~1.567997 Xx10° 8.248971 x10° -1.377450 X109 -8.142750 x10°
2.891695 X10? 9.270620 X100 1.636559 xi0~! 3.654007 x19° BRI
~1.567997 x10° -8.248970 x10° 1.636552 X10! -3.654007 x10°
1.656605 x10-! 3.658574 Xx:0° -9.973624 x107! 4y.524791 ¥1p00° ——
- ~8.031586 X10°! -4.618158 Xx10° -9,978915 x10-! -4.524730 x109 Q
-8.031594 X19°' 4,618159 x10° 2.872C97 x10° 9.213258 x10° '
1.656599 x10-¢ -3.658573 xt10¢ 2.872098 x10? -9.213258 x10°
. -4.460859 x10°! 1.821242 x10° -4.655014 x10°! -1.841680 x10°
~9.592589 X10°' ~1.453554C x10° -4,855015 xi0-! 1.841630 xi0?
-9,592589 x10°! 1.4505456 Xx10° -5.474505 Xx10-! 1.190756 x10°
) - -4.us0861 Xx10°? -1.€821242 xt0° -5.47450S x10! -1.190755 x13° —— ]
5.666817 x10-! 0.000000 x1Q° 7.992367 X10-? 1.023446 x1Gt q
o 7.992368 x10-? -1.023446 x%10°!? S
o .
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@ M= 14 .4
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!
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Figure 5-8. The RFA (dashed 1ine) fit to Andrejewski's data (magnetic
near field denoted by the x's) for the disc at broadside.
The x's are data points used, and the dashed line is the
RFA (amplitude plot).
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poles are listed in Table 5-7. The resultant poles are very close to
those obtained from the RFA to Hodge's data for the disc (electric
field), also given in Table 5-7 and plotted in Figure 5-9. The great
discrepancy of the third pole-pairs is due to the truncation in
Andrejewski's data at ka of 10. The extracted complex natural
resonances, are accurate using the RFA both for electric far field or

magnetic near field.
5. Summary

Two strings of poles for backscattering from discs have been found.
One is the resonant mode due to the multiple diffraction at the edges
(rim) of the disc, the other is the creeping wave mode formed by the
wave creeping around the circumference of the disc. For broadside
incidence, the dominant string of poles is the edge diffraction mode.
Simultaneously, the creeping wave mode also exists. However, only the
first pole-pair of the creeping wave mode can be extracted by RFA at
broadside fncidence. A detailed discussfon is presented in Appendix D.
The extracted poles are independent of the angle of incidence and
polarization (see Table 5-5). This conclusion comes from applying the
RFA to the calculated data for the disc at angles off broadside

excitation.
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TABLE 5-7

A COMPARISON OF THE COMPLEX NATURAL RESONANCES® FOR A DISC [
- USING RFA TO HODGE'S DATA AND ANDREJEWSKI'S DATA B
N (BACKSCATTERING FOR BROADSIDE) !
$ !
. - RFA to Hodge's Data RFA to Andrejewski's Data "‘"'i
b (Electric Far Field) (Magnetic Near Field) o
3 -0.49+/-J1.23 -0.547+/-31.19
S -1.04+/-34.87 -0.998+/-34.62
. i -1.16+/-38.10 -1,38 +/-38.14

- -1.24+/-311.28 data up to ka=10.

. -1.27+/-314.4
& data up to ka=15.2
ﬁ . * The units of the poles are in ka, where k is the wavenumber and
SO a is the disc radius.
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Figure 5-9. A comparison of the first 3 pairs of poles of the disc -
for broadside using RFA to H. ige's calculated data (C) T

and Andrejewski's data (A). Note third pole-pairs using
__ Andrejewski's data is not very close to those using

o Hodge's data, because Andrejewski's data is truncated

- at ka of 10.
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D. WIRE SCATTERERS —_
1. Introduction

The electromagnetic resonances of thin wire scatterers have been »;;
studied for a long time [15]. Kennaugh solved the problem using a
signal-flow-graph method [10]. The results were compared with those from

an impedance method by Richmond™ with excellent agreement. Since the ;ﬁ;

poles of the thin wire scatterers are well known and they may be the
basic building elements for more complex targets, it is wise to apply
EE ia the rational function approximations to the thin wire scatterers and ;L;

- compare the results with the known poles.

2. Data Sets For Thin Wire and Thick Wire

Computed values of backscattering (and bistatic scattering as well
S as induced current distributions) for thin wire and thick wire** were
ii '- made fn 1964, using a program developed by J. Richmond, for L/A from 0.1 ;»‘
S to 1.4 at the increment of 0.1 (14 data points) for plane wave
. incidences at broadside and 30° from end-on. (L is the wire length and
ﬁi ' D is the wire diameter.) These sets of phasor signals were fitted with
RFA using system orders for (M,N) as (12,11) , 1i.e., 12 out of the 14

data points were used in the approximations. The selection of the data

R R
|

* J.M. Richmond,"Digital computer solutions of the rigious equations
for scattering problems", IEEE, v. 57, pp. 796-804, August 1965.

Y
P

D4
LN

** The wire length (L) to wire diameter (D) ratio are 20 and 2000 for
thick wire and thin wire respectively.
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points is very arbitrary; however, the set of data points which can -
yield a smooth interpolation is used because there are some errors in
the data sets. These errors may be due to numerical calculation or
imperfect model1ing. The amplitude plots of the fits to the thin wire
scatterers are shown in Figures 5-10 to 5-13 for both broadside and 30°
from end-on incidence. Fifty data points are reproduced in Figure 5-10
to 5-13 using the coefficients of the RFA fitted to the 14 samples of ;;
the wire scatterers in each case. These are good examples of using the

RFA for complex data interpolation as well as pole extraction. The

pole-pairs extracted via the RFA and those extracted via other methods

i

are listed in Table 5-8. As is well known, at broadside incidence only
even modes are excited. However, for 30° off broadside, both even and

odd modes are excited.

et
+ R

E. CIRCULAR LOOP
' 1. Introduction

i, Complex natural resonances of a circular metallic loop are

extracted using a space-frequency integral equation and numerical

computation. Then, the backscattering data for the loop were generated
for broadside incidence (ka of 0.2(0.2)10.) and for edge-on fncidence

(ka of 0.2(0.04)5.2). Using these sets of data, poles were extracted by
applying the RFA to the calculated data and the results are compared

with those obtained from the integral equation formulation.
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TABLE 5-8

PR PR St Siealieie 16 2 Saen Sune Ao

A LIST OF POLES FOR A THIN-WIRE AND A THICK-WIRE
EXTRACTED USING RFA, INTEGRAL EQUATION AND NUMERICAL SEARCH
AND SIGNAL-FLOW GRAPHS FOR BROADSIDE AND 300 OFF END-ON

Richmond
L/D=2000

Poles*

EXCITATION (BACKSCATTER)

Rational Function Approximants

L/D=2000
Broadside

Theta=30°

~0.0128+/-J0.2398
-0.0175+/-J0.4881
~0.0208+/-J0.7366
-0.0234+/-J0.9854
~0.0255+/-J1.2344
-0.0273+/-J1.4835

Signal Flow Graphs

L/D=2000

(Bagby and Kennaugh)

-0.0128+/-J0.239
-0.018+/-30.743

-0.0128+/-J0.2399
-0.0174+/-30.4884
-0.01998+/-J0.735

-0.48588+/-J0.2825

-0.0123+/-30.2389
-0.0172+/-30.4872
-0.0204+/-30.7360
~0.0229+/-30.9850
-0.0249+/-31.2341
-0.0266+/-31.4834

Rational Function Approximants

L/0=20
Broadside

Theta=30°.

-0.03086+/-J0.2149 -0.03015+/-30.21495

-0.04958+/-J0.4469

-0.052128+/-J0.677 -0.05349+/-J0.6887

* L is the wire length, D is the wire diameter, and a is ;&=; the
units of the poles are in ka, where k s the wavenumber,
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Figure 5-10.

oA

ZERQS
real part

2.797493 x10°
-2.019997 Xx10°?
-2.019974 X1072
-7.912046 X107!
1.345144 X107

4.842520 X102

4.842655 X10-

-2.264184 X10[!
~-2.264185 X10%!
-1.265844 X10p2
-1.266014 Xlﬂl‘

imaginary part
0.000000 Xx10°

-7.056151 X107,

7.058157 %10
1.130402 x10°¢
1.294453 X107
-5.656703 x10-!
5.656698 x10°!
-2.540803 x10-!
2.540801 X107
-5.383627 X10°!
5.383630 X10-!

POLES
real part

-1.809151 x10-2
-1.809154 Xx10-2
-2.264807 Xx10-!
-2.264923 x10°!
4.900108 X102

4.900350 x10-?

-2.178326 Xx10°
1.346160 Xx10-!

-1.268742 X102
-1.269085 x10-2
-1.278342 X102
-1.277847 X102

imaginary part

7.430205 x107!
-7.430201 x10°!
-2.529815 x10*!
2.529823 x10°!
-5.647540 x10°!
S.647646 x10°!
-3.752479 x10°*
-1.218951 x10-¢
-5.375866 x107!
5.379865 x10°!
-2.399404 x10°!
2.399400 x10°!

"
~
s |
3 M= 12
&7 | N= 11
wn
= \‘
£l |
aTa
S
4
"
2.
Q
z v v L4 v l T l v L r Li L L] A l
0.0 0.3 0.6 0.9 1.2 1.5 1.8
. L
C&

points used in RFA.

function approximation (amplitude plot).

The RFA for (M,N) as (12,11) fit to the backscattering data
for the thin-wire with a wire length-to-wire diameter ratio

of 2000 at broadside excitation. The x's are the data

The dashed line is the rational
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ZERQS

real part

-2.546238 x10°!
-9.533646 X10°
-2.546237 x107!
2.111327 xio0+t
2.111327 x107!
-2.025455 x10™!
-2.025456 x10-!
3.379026 X10°!
7.571635 X102
1.715105 X10°!
1.715108 X107

T

imaginary part

-6.539576 X10-!
-3.646274 Xx10-*
6.539577 x10°!
-6.525048 X10-!
6.525049 X10°!
-3.511854 xt0-!
3.511855 X107
1.344978 Xi0-*
-2.210319 Xx10-°
-3.619670 x10-!
3.619670 X10-t

FOLES
real pact

-1.998074 x10-?
-1.998077 X10-2
-4.8508857 x10°!
-4,858856 x10°!
-1.743243 x10-?
-1.743243 xi0-?
2.984970 x10°!
7.617970 X102
-1.277893 X102
-1.277893 x10°?
4.003515 x10°!
4.003515 x10°!

imaginary part

-7.353433 x10°!
7.350500 x10°!
-2.825011 x10°!
2.825012 x10°!
~-4.883759 Xx10°!
4.883759 x10°!
-1.605218 x10°®
0.000000 X100
~2.399448 x}10°!
2.399449 X1D0°!
~3.509493 X10°!
3.5094%3 x10°!

Figure 5-11.

M= 12

N=11

T | B R A A
a.9 1.2 1.5 1.8

wb

ame

The RFA for (M,N) as (12,11) applied to the
backscattering data for the thin-wire with a wire
length-to-wire diameter ratio of 2000 at 30° from end-on
incidence. The x's are the data points used in RFA. The
dashed line is the RFA (amplitude plot).
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real part

-5.116426 x10-?
-9.013577 Xx10-!
-5.116372 x10°?
2.341402 X107
2.340881 Xx10?
6.967597 x10°2
-2.588707 x10-2
3.569557 x10-%
3.569557 xj0-"
3.929780 Xx10°?
3.929780 X109

izaginary part

-6.485783 Xx10°!

0.000000 x10°
6.485785 x10°!
-6.060614 x10°!
6.060612 x10°!
~1.418668 Xx10-?
1.9676807 X107
-3.62597¢ X107
3.625974 Xx30°!
-1.381514 x10-?
1.381514 X107

real part

-5.212809 Xx10-?
-5.2126819 x10-?
2.498298 x10-?
2.498520 x10-9
6.291840 Xx10-2
-2.37805S Xx10-?
4.086252 x10-"
4.136693 x10-¢
3.880811 x10°?
3.838670 x10-?
-3.086281 Xx10-2
-3.086281 x10-2

imaginary part

6.75632C x10°!
-6.766923 X10-!
-6.060710 x30-!
6.060717 x10°!
4.658803 X10°S
~5.614741 x10°3
-3.625245 Xx10°!
3.625232 x10°!
-1.396824 x10'!
1.396930 x10!
-2.148990 x10°!
2.14893%0 x10-!

|

g - .
& 4
. -
°_ M= 12 -]
e N= 11 <]
. 1\\ %
2 ]
o | -
a . ;:;j
cmd — s,
c ]
n .
: - :.-_?
g .
°‘ v ) 2 ' L v l v v l T T l v v l v v ' ’
0.0 0.3 0.6 0.9 1.2 1.5 1.6

Figure 5-12. The RFA for (M,N) as (12,11) applied to the backscattering
data for the thick-wire with a wire length (L)-to-wire
diameter (D) ratio of 20 for broadside excitation. The
x's are the data points used in RFA. The dashed line is ..
the RFA (amplitude plot). The peak in the amplitude of SR
the first resonance can be seen in the RFA, because more A
data points (50) are reproduced using the coefficients of ]

the RFA.
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Figure 5-13.

ZERCS
real part

3.071277 x10°!
-2.350138 x10%
3.071278 x10°!
-2.350139 X10°!
5.080303 X10°3
6.1313u6 x10°?
6.131326 X102
5.090288 X10°?
~2.970992 x10-!
1.822763 x10°!
1.822763 x107!

iragirary part

-7.692284 Xx10°!
3.546965 Xx10°!
7.692285 x10°!
-3.546966 Xx10~
1.412906 Xx107!
-4.964998 Xx10-!
4.964598 Xx10°!
-1.412905 Xx10°!
2.0u2244 x10°®
-3.731297 x10°!
3.731297 x10°!

POLES
real part

-5.349543 X102
-5.349545 Xx10-2
-1.854181 X107
2.2535988 x10°!
§.561443 X107
§.561443 X102
-4.957892 x10-?
-4,.957892 X102
5.332153 X107
$.332153 X10°?
-3.01449S X1072
-3.014495 X102

imaginary part

6.886854 x10°!
-6.886554 X10°!
0.000000 x10°¢
-2.921569 x10-Y
-4.874077 X107
4.874077 x10-!
-4.469082 x10-?
4.469083 Xx10°!
-1.429911 x10°?
1.429911 x10°!
-2.149508 x10-?
2.149509 X107

2 | M= 12
e N=11
N
,—
o
a b
&3
o
J
T "
0.9 1.2 55 1.8
wtL
ame

The RFA for (M,N) as (12,11) applied to the

backscattering data for the thick-wire for a
wire-length (L) to wire diameter (D) ratio of 20 at

30 from end-on incidence.
used in RFA.

plot).
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The x's are the data points
The dashed line is the RFA (amplitude
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2. Integral Equation and Numerical Search

Because of the rotational symmetry of the circular loop (Figure

5-14), the induced currents I(4) can be expressed in terms of I, elneé,

where I, are constants. Using Harrington‘s* impedance matrix formulation

for the circular loop
Zmn =0 (m*n) ’ (5'5)

and

- 2 -
Zop = kb [%' Kn-1* % Knel = 1’;‘-5) Kp] g (5-6)

-

where

2n  _-jkb’, . 2 &+ (3)2
K =1 [ &  4in 7 5 eIt 44 . (5-7)

1
n 7w,

1
[4sin2 ;_+ (%)2]7

A program was written to find the zeros of Znn in Equation (5-6)
using Muller's method of iteration and Simpson's rule of integration.
A11 poles found with this program are consistent with those found in
[22]. Table 5-9 is a list of poles of the first layer™ at different
wire to loop ratios. A plot of those poles (Table 5-9) is shown in

* R.F. Harrington, Field Computation by Moment Method, New York,
Macmillan, 1968.

** The classification of Layers are shown in Figure 5-17.
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TABLE 5-9
A LIST OF POLES™ (LAYER I) OF LOOPS AT THREE DIFFERENT

WIRE TO LOOP RADIUS RATIOS. THE INTEGRAL EQUATION AND
NUMERICAL SEARCH IS USED TO FIND THE POLES.

Poles

..... —

a/b (.56-3) x = (2.E-3) x = (1.£-3) x =
-.109 +/-01.0485 -0,086 +/-J1.04 -0.073317+/-J1.03822
-.164 +/-J2.066 -0.125 +/-02.058 -0.10591 +/-J2.05176
-.2085 +/-33.079 -0.1562+/-J3.068 -0.130826+/-J3.06151
-.248 +/-04.085 -0.1825+/-J4.078 -0.151932+/-J4.06949
-.2845 +/-95.095 -0.2068+/-05.06 -0.17066 +/-J5.0764
-.3185 +/-J6.11 -0.2288+/-36.09 -0.187729+/-J6.0826

* The units of the poles are in kb, where k is the wavenumber and
b is the loop radius. ( = is 3.14159 and a fs the wire radius.)
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Figure 5-14,
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The coordinate system for a circular metallic loop.
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Figure 5-15., Figure 5-16 is a plot of poles for wire radius to the loop
radius ratio of 3.14159E-3.

The numbers shown with the locations of poles in Figure 5-17 are
n's of Znn. The poles in Figure 5-17 are divided into layers. Table
5-10 is a 1ist of poles for the circular loop via integral equation and
numerical search at wire radius to the loop radius ratio of 3.14159E-3.
Figure 5-18 is a plot of all poles showing constant n results in Znn.
From the result of applying RFA to the backscattering data for the loop,
it will be seen that layer I poles are found at edge-on incidence and
layer II poles are found at broadside (also the first one of layer I).
Layer III poles are not found using RFA approach either at broadside or
at edge-on incidence. However, this does not mean that they are not

there.

3. Rational Function Approximation

The backscatter of the 1oop for broadside and edge-on (TE case)
incidence (Figures 5-19 and 5-20) were calculated using Kouyoumjian's
equations in his report*. The backscatter of both broadside and edge-on
incidence are shown in Figures 5-19 and 5-20 individually.

The variational method has been used to determine the radar cross

section (RCS) of a perfectly-conducting, thin, circular loop by R.G.

* R.G. Kouyoumjian, "The Backscattering from a circular loop (antenna),"
Bulletin No. 162, The Ohio State University, The Engineering
Experiment Station, November 1956.
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TABLE 5-10

A LIST OF POLES* OF A LOOP (a/b** of 3.14159E-3) EXTRACTED
USING INTEGRAL EQUATION AND NUMERICAL SEARCH

Poles
Tayer 1 layer 3 Tayer 2
-0.073317+/-J1.03822
-0. +/-30. -1.48611 +/-J0. -1.47916 +/-11.54327

-0.073317+/-31.03822
-0.105910+/-J2.05177
-0.130827+/-33.06151
-0.15193 +/-34.06950
-0.170661+/-35.0769
-0.187729+/-36.0826
-0.203555+/-37.0883

* The units of the poles are in kb, where k 1s the wavenumber

the loop radius.

** a is the wire radius.

-1.47916 +/-J1.54327
-1.6727 +/-J2.76692
-1.82195 +/-33.90846
-1.9425 +/-35.01545
-2.048715+/-J6.10285

layer 4
-2.15481+/-J0,
-2.70814+/-J1.0550
-3.12022+/-J2.05139
-3.45635+/-J3.02946
-3.74378+/-33.99996
-3.99684+/-J4.96701

layer 5
-3.50331+/-J0.
-4,10168+/-J0.97958
-4,59325+/-31.93514
-5.0157 +/-J2.88079

layer 6
-4.84712+/-J0.
~-5.4633 +/-J0.94868
-5.9950 +/-J1.88392
-6.4665 +/-J2.81279
-6.8921 +/-J3.73865

layer 7
-6.1859+/-J0.
-6.817 +/-J0.93148
-7.3681+/-J1.85427
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-1.25879 +/-J5.0763
-1.31026 +/-08.3208
-1.34771 +/-J11.5139
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PI=3.14159

- . B
........

6.0

71 v v T 0
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Figure 5-15. A plot of the complex natural resonances (layer 1) for
the Toops at different wire to loop radius ratios using

the integral equation and numerical search to find

the poles.
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Figure 5-16.

12.0

1 T 7
10.0

————T T ' .
-10.0 -8.0 -6.0 -4.0 -2.0 0.0

A plot of the poles for a circular loop at the wire radius
to the loop radius ratio of 3.14159E-3. The integral
equation and numerical search fs used to find the poles.
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o (LAYER 1)

A (LAYER 2) I rﬁ
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Figure 5-17. A plot of the poles for a circular loop (a/b of
3.14159E-3). The poles are extracted via the integral
equation and numerical search. The number around the
location of each pole is the n of Znn. Three types of
poles are defined,
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Figure 5-18. A plot of the poles for a circular loop (a/b of
3.14159E-3 extracted via the integral equation and
- numerical search. The number around the location of each
: pole is the n of Znn. The poles which are extracted from
the same Znn are identified by a solid line.
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real part

-2.30328;

-2.30320

ZEROS

imaginary part
X107  -9.374827 x10"
X109  9.37u828 Xx10°

-1.Us042% x10!
3.393324}[x10"}

3.393321
-3.0881¢
-3.08812
~3.50944
~3.50844
-3.72242
-3.72243
1.053206
1.053206

o
o

o~ ]

4

AMP
1.20 1.60
1

0.80

0,40

-9.941060 x10-®
-4, 776880 X10°

10-t 4.776880 Xx10°
X10°  -6.758524 X10°
X10® 6.758523 Xx10°
X109 -4.054730 X10°
X109  4.054733 x10°
%100  -1.3u9339 X109
Xi0° 1.349838 x10°
k100 -1.879119 x10°
X100 1.879119 X1i0°

POLES
real part

-2.€63581 Xx10"
-2.663581 x10°
-1.305296 Xx10°
-1.305287 x109
3.392779 X107

3.392771S x10-t

-1.261054% X10°
-1.261053 x10°
-1.475459 x10°
«1.475456 X10°
1.053177 x10¢

1.053177 X100

-7.354872 Xx10-?
-7.354871 x10-?

imaginary part

1.155523 %10'
-1.185528 xI0Q!
-8,333540 x10°
8.339542 X100
-4, 776625 X1U0
4.776826 xiyu®
-5.075328 Xx10°
5.075329 X100
-1,540365 ¥1C*
1.540385 %3i0°
-1.876299 x10°
1.8788%23 x10°
-1.038343 x10°
1.038343 x10°

Figure 5-19.

L —

T B v ]
15.0 18.0

The application of RFA for (M,N) as (14,13) to the

backscattering data (solid 1ine) for a circular loop at
The wire-radfus to the loop radius ratio s
The x's are the data pofnts used in the RFA.

broadside.
3. 14159E'30
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L4 -_1
real part imaginary part real part imaginary part b '
9.093257 X10-?  -5.2225:3 X10° -1.873718 X10-'  5.032%%4 :i0° O
8.082996 X102  5.339510 X10° -1.879747 X10*'  -5.0824%3 Xig? SRS
5.557376 X10° -1.985174 X10-? 1.695386 X10° -3.992553 x1¢? SRR
2.304466 x10-! -2.801795 Xx10° 1.695386 X10¢ 3.992648 X109 N
2.305835 x10'  2.801810 X10° -1.770321 Xi0®  -2.025050 X1C° —
2.628924 X10-'  -4.102598 X1Q° -1.770321 X10°  2.026049 X10° -
2.629014 X10-!  4.102255 X1Q° 2.154596 x10° -1.912053 Xx10° T
-6.03§113 X10-' -4.266512 X10° 2.154596 X10° 1.812053 x10° -
-6.034865 X10-' 4.266473 X10° 1.713832 X10*%  -3.099755 XiQ° Lo
9.612989 X10™%  -4.1§3132 X10° -1.671175 X108  3.035733 Xi0®° Lo
1.132304 X10?  4.19954S X100 -2.487884 X10°  0.000000 X19° R
-4.71Q483 X10-' -2.833646 X10° 2.269944 X10° -1.590553 X109 - elia
: -4.714157 X107 2.833650 X10° -1.314712 X10"'  -3.061251 X1Q° . q
- 1.764213 X10-*  -3.100153 X10° -1.314476 X10°' 3.061272 x10° Lo
. -Sg24u29 X103 3,100109 X10° -1.527180 X10"*  -4,072685 X10° S
- -1.618506 X10°! -1.693563 X10° -1.526632 X10!'  4.072699 X10° AR
-1.549495 X10-' 1.693558 X10° 2.571348 X105  -4.202686-X10° -
5.254009 X10Y  -1.4lugu3 X1Q° -2.154853 X10-%  4.202674 X10° ) e
5.254717 X10-2  1.41y8yS X100 -1.061855 X10'  -2.051208 X100 ; P
‘ : -1,061953 X10!  2.051209 X10° =
= 21350814 X102 -1.036392 X10° . |
N= 27.350816 X102  1.038382 X10° S
. .
N-
- -
| - .
¢ ]
o L.
Te
(-] .
b -
] - ]
o -
4 [ LU
- =4 ) .
8 V )
Q. T T ¥ L T ™ '4_1 v Y T Y v T "y 1 »_ -._’!
0. 3.0 6.0 9.0 12.0 15.0 18.0
(ka) -
-
Figure 5-20. The RFA (dotted 1ine) fit to the backscattering data
(so1id 1ine) for the loop at edge-on incidence. a/b is
3.14159E-3, where a is the wire radius and b is the loop
radius, The x's are the data pofnts used in RFA.
132 . R |

NP Y PPN Ty




Kouyoumjian at the Ohio State University. The equivalent source of the

scattered field is approximated by the current

1(¢) = ;; (cpcosné + dpsinng) (5-9)
n=

where I(¢) is assumed to flow parallel with the axis of the wire. Good

ii - agreement between the calculated (broadside and edge-on) and measured
E values were obtained. More data points are necessary to test the RFA.
Therefore, the following formula were used to calculate additional

Ft rf backscattering data (TE case) in this study.

E"kb) = 2 2 (kb)? ' Jf(kb sine)
" ' kzbixl(kb,%)

o Y [In-1(kbsine) - Jn+1(kbsine)]2 |
+) (-1)n g;lz 1
n=1 kEHELK,_, (kb, &) + K, (kb, )] - 2nZK_(kp, 3T (5-10)

and at broadside

EN(kb) = 2 2x(kb)?2 (5-11)
IkZbZ[K_{kb,a) +K2 (kb,a] - Ki(kb,a12
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_ e
' where A=a/b, and s - - ‘
x cosné exp{-ikb[4sin®¢ + (2)21 "}
Kn(kb»%) = 3/2 b d¢ (5-12) . 1
i n [2s1n2.g_ + %_ (%)2] i ___
E {s the normalized backscattered amplitude and phase, i.e., the $
. squared root of the normalized (wxaZ) RCS, and J, is the Bessel .
' function of the first kind and order n. , - ..___;
- The backscattering data for the loop at broadside and - »-11{:
edge-on (TE case) incidences were calculated using Equations (5-10) to 11_1
: (5-12). 1t is noted that the K, of Equation (5-12) were integrated by = :--;
B Simpson's rule for 5000 points in [0,x]. Also, three unequal
subsections were divided in [0,x), i.e., more data points were put in Ij-'_i ,‘
i the steepest region of Kn. Thus, more accuracy of Kp can be reached - P
without much more effort in the integration. Fifty data points (kb of . :j
_ 0.2(0.2)50) were calculated using the Equation (5-11) for the broadside 4
l excitation.
More effort is involved in the calculation of backscattering data ﬂ
for the 1oop at edge-on incidence. There is a summation of an infinite g 4
E serfes in Equation (5-10). The infinite series was truncated at the - -_"
. point where five more successive terms made 1ittle contribution :
to the total sum at that point. Thus, the backscattering data of
i.' the loop at edge-on incidence were calculated at ka of 0.2(0.1)10. _
: Figures 5-19 and 5-20 show the application of the RFA to the
backscattering data for the loop at broadside and edge-on respectively
t (amplitude plots). N
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The RFA is not only an excellent approximation in finding the
complex natural resonances but is also a good approach for complex data
interpolation. Here is a good example of using the RFA for the data
interpolation because the calculated data are very expensive and
time-consuming to obtain. For broadside excitation the dominant string
of poles was extracted using RFA (Figure 5-19). Table 5-11 is a list of
poles (layer 1) at broadside via the integral equation (using numerical
search) and RFA. It is interesting to note that all of these poles are
the same as those searched at Zjj) via the integral equation and
numerical search. From the RFA viewpoint, only one pafr of poles (the
lowest frequency ones) belong to layer I. The rest belong to layer II.

The pole-pairs of a loop at broadside are similar to the pole-pairs
of a disc at broadside. For edge-on incidence (Figure 5-20), the
dominant string of poles is shown on Table 5-12. They belong to the
family 211, 222, 7233, ..., etc. respectively. This string of poles has
the same spacing in the imaginary (oscillatory) part as that of creeping
wave mode of disc.

Some of the pole-loct of a loop are similar to those of a disc,
because some of the scattering mechanisms are the same. One is due to
the creeping wave around the circumference of the scatterer, the other
is due to the multiple diffractions of the thin wire (diffractions
across the center of the loop). A Table of 25 pole-pairs of the first
Tayer via the integral equation and numerical search are also shown in
Table 5-13. Figure 5-21 is a comparison of the poles extracted using
RFA and integral equation with numerical search for the loop.
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TABLE 5-11

~l, A LIST OF POLES OF A LOOP (a/b* of 3.14159E-3) EXTRACTED USING -

- THE RFA AND INTEGRAL EQUATION AND NUMERICAL SEARCH FOR .

- BROADSIDE EXCITATION.

.'_ Poles -
Integral Equation {.:-'
. and Numerical Search Rational Function Approximation o
i __ : 1
X Layer 1 = i
N -0.073317+/-31.03822 -0.073548+/-31.03834 N
Layer II
i -1.47916+/-31.54327 -1.475459+/-J1.540965 - el
" ~1,25879+/-J5.0763 -1.261053+/-05.07532 S -
. -1.31026+/-J8.3208 -1.305286+/-J8.33954 IR
-1.34771+/-11.5139 s
l. * The units of the poles are kb, where k is the wavenumber, =

B b is the loop radius, and a is the wire radius. -

N

' -

. K
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TABLE 5-12 BRI

POLES OF A CIRCULAR LOOP AT EDGE-ON INCIDENCE WITH L
a/b™ of 3.14159E-3 BN

Integral Equation S
and Numerical Search Rational Function Approximant g,\_.g

Layer I :
-0.73317E-1+/-J1.03822 ~0.7354E-1+/-J1.03834 ill?ﬁ;

-1.05310E-1+/-J2.05176 -1.0628E-1+/-J2.0515
~-1.30826E~-1+/-J3.06151 -1.308 E-1+/-J3.06

Layer 11
~1.47546+/-J1,.540965 -1.62 +/-J1.69

* The units of the poles are kb, where k is the wavenumber,
b is the loop radius, and a is the wire radius.
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: TABLE 5-13

l A LIST OF THE POLES AND THE CORRESPONDING RELATIVE IMPEDANCE
o (Znn) FOR THE LOOP (a/b* of 3.14159E-3). THE IMPEDANCE (Znn)
= MAY BE AS HIGH AS 1.0 E3 FOR THE LOCATION SLIGHTLY AWAY FROM THE
- POLE LOCATIONS.

- N POLES(2kb) Z (NN)

- 0 (0.,0) 1.78470E-5

o 1 (-1.46634E-1,+2,07644) 1.13116E-4

X 2 (-2.11820E- 1,:4 10353) 3.79588E-4

B 3 (-2.61653E-1,%6.12302) 3.21737e-4

L 4 (-3.03864E-1,+8.13899) 6.98320E-4

- 5 (-3.41321E-1, -£10.1528) 5.67344E-4

L 6 (-3.75458E-1,%12,1652) 2.01817€-5

- 7 (-4.07110E-1,+14,1765) 3.44889E-4

ii 8 (-4.36814E-1, 1416 1869) 7.87555E-4

3 9 (-4.64939E-1,+18,.1967) 2.44959E-5

- 10 (-4.91752E- 1,120 2058) 7.70241E-4

= 11 (-5.17453E-1,122,2145) 7.71799e-4

iy 12 (- 5.421955-1,:24.2228) 6.32431E-4

- - 13 (-5.66101E-1,+26.2307) 7.59797€-4

] 14 (-5.89269E-1,+28.2382) 9.36263E-4

- 15 (-6.11779E-1,+30.2455) 3.61295€-5

-/, 16 (-6.33699E-1,+32,2525) 1.81433E-3

S 17 (-6.55086E-1,+34,2593) 8.89091E-4

o 18 (-6.75987E-1,+36.2658) 5.91972e-4

- 19 (-6.96445E-1,+38,2722) 5.83594E-4

3 20 (-7.16494E-1,+40,2783) 8.52026E-5

B * The units of the poles are 2kb, where k is the wvaenumber
5 and b is the loop radfus. ( a is the wire radius.)
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From the backscattering data of a loop for broadside incidence, an
impulse response in the time domain (Figure 5-22) can be found using an
inverse Fourier transform of the data. Figure 5-23 is a plot of the
impulse response of the loop for broadside where the specular return of
the waveform has been removed. Figure 5-24 is a comparison of the
impuise response waveforms for a loop and a disc. Obviously, the loop
is a high Q scatter compared to the disc. Figure 5-25 is a ramp response
of the loop using the first 10 harmonics for Fourier synthesis. The
duration of the response is longer than 15 TAU (2b/c, i.e., the loop
ciameter transit time ) although the plot only shows up to 15 TAU.

Landt and Miller have calculated the short pulse response of a loop (the
derivative of a Gaussian pulse) using a time domain approach (space-time
integral equation). The convolution of the impulse response obtained
here with a short pulse yields a result very similar to that of Landt
and Miller's short pulse response [36]1. A comparison is shown in Figure
5-26.

A plot of the individual contribution of each pole-pair and the
corresponding residues of the impulse response for a loop (backscatter)
at broadside is shown in Figure 5-27. More transient response waveforms
for the loop at broadside and edge-on incidence are shown in Appendix H.
The dominant string of poles of a Toop at edge on incidence belong to
layer 1 (see Figure 5-17). Only one pole belonging to layer II was

found using a RFA. Other poles were too weakly excited for extraction

P using RFA.
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Figure 5-26. The derivative of a short Gaussfan pulse response for a
loop. {a) is obtatned using the convolution of the
impulse response and the input short pulse. (b) is
calculated using the time domain moment method [36].

Note that wire to the loop radius ratfo is 0.00314 in (a).
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Figure 5-27. The individual contribution of each pole-pair and the
corresponding residues to the impulse response for a .
loop backscatter for broadside. - ’
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F. FINITE AND SEMI-INFINITE OPEN CIRCULAR WAVEGUIDES

The frequency domain axial backscattering for the semi-infinite*
c¢ircular waveguide has been studied and computed, in the resonance
region, using exact Wiener-Hopf solution by Johnson and Moffatt [37].
Later, a UTD approximation was done by Huang [38]. Axfal backscatter
from finite circular waveguides*™ with the far end shorted or opened have
been computed using the UTD approximation, and a comparison has been made
to a moment method solution [38, 39]. Geometrical descriptions of the
finite and semi-infinite waveguides are shown in Figure 5-28.

Figures 5-29 to 5-34 show plots of RFA fits to portions of the
scattering data in the frequency domain obtained using a moment method
solution. Table 5-14 is a list of poles extracted from RFA and the window
technique developed in Chapter III for these three objects. Figure 5-35
is a plot of the extracted poles for the three geometries. Note that the
poles of the finite open waveguides are very close for both the far end
shorted or opened, and definitely more pole-strings exist for the the
finite waveguides than for the the semi-infinite guide because of

** For the finite circular waveguide with the far end shorted or opened
the data D/A of .01(.01)1.20 are from Huang's UTD solutfon. N {s the
the diameter of the waveguide.

K
K * For the semi-infinite circular waveguide the data are D/A of 01(.01).7 R
, from Johnson and Moffatt's exact solution. The data D/X of 1.({.01)2.6 R
- are the GTD high frequency approximation. The rest of the data are 5
- - fitted and predicted by the rational function approximatfon. D is the RS
F diameter of the waveguide. q
2 -
2
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TABLE 5-14

A LIST OF POLES™ OF FINITE AND SEMI-INFINITE WAVEGUIDE OBTAINED
USING THE RFA TO THE BACKSCATTERING CALCULATED DATA.

Finite Waveguide
The Rear End Open

-0.22+/-30.54
-0.20+/-30.82
’0021"’/-\11 .06
-0.19+/-31.29
-0.15+/-31.51
-0.19+/-31.63
-0.10+/-j1.81
-0.02+/-32.08
-0.05+/-j2.22
-0.08+/-32.42
-0.30+/-32.57
'0. 10+/-32 064
-0.13+/-32.88
-0.13+/-33.04
-0.11+/-33.14
-0.13+/-33.26

Finite Waveguide

Both Ends Open

-0. 22"'/-\100 55
-0.21+/-30.82
-0.19+/-31.04
-0.16+/-31.28
<0.13+/-31.53
"00 17+/"jl 062
-0.11+/-31.90
-0.01+/-J2.05
-0,10+/-j2.21
-0.17+/-J2.45
-0.47+/-32.57
-0.22+/-§2.69
-0031+/-j2 082
-0.21+/-33.04
-0.20+/-33.14
-0.19+/-§3.24
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Semi-infinite
Waveguide

-0.95+/-31.36
-0.33+/-31.79

-0.40+/-§3.31
-0.86+/-34.95
-0.80+/-j6.14
-0.53+/-37.89

* The poles are in the units of ka, where a is the radius of the
circular waveguide and k is the wavenumber.




CIMCMEN G il aiees aus aren ad it ’
[P P P N T R e e L T R T A e AL BN

[ -l RAFR

S0

v
I 1

PRSI e
A e . St
S e T T T
AL USRS T R T
RN SNy
P J_Ih Lt L,

-
l L [1 10 [o :’
- \/ « ‘

OPEN CIRCULAR WAVEGUIDE
- o lo . .‘o
K L : ;\ (b) L
A y ‘-} “’4

SHORTED OPEN CIRCULAR WAVEGUIDE

: B "j 4

;o SEMI -INFINITE CIRCULAR WAVEGUIDE

I

SE O
9

Figure 5-28. The geometries of finite waveguides with both ends open
o (a).gthe rear end shorted (b), and semi-infinite

waveguide (c).

[T i O

149

B | ¥ o
o re




[l

TeTeTa cwww .
.
‘

-8. 144565 X10-?
-8.144583 X102
-2.172532 X109
-2.172588 X109
3.279553 x10°?
3.204794¢ Xx10°?
2.984661 X102
2.984142 X102
1.371537 x10!
9.261737 x10°?
3.261563 Xx10-9
-3.695567 Xx10-2
-3.695567 x10-2

|

-1.340101 Xx10°
1.340101 x10°
-1.248706 X109
1.2u8706 X100
-9.392838 Xx107!
9.392836 Xx10°!
-9.17G6457 x107!
9.170455 x10°!
-1.843840 Xx10-?
6.291685% x107!
-6.291680 x10°
$.250802 Xx10-!
-5.250802 x10°t

POLES

-1.62014S x10-'
-1.620296 Xx10°!
-6.577510 X102
-6.575880 X102
-1.069637 X10-?
-1.069825 x10-}
2.892429 X10-2

2.893159 X10-2

-1.775159 Xx10°!
-1.775075 Xx10-!
-1.577187 Xx10-!
~-1.577168 x10-!
-2.964783 Xx10-2
-2.964783 X10-?

1.080S€0 x10"
-1.080546 x10°
1.3588290 Xx10°
-1.358809 x10°
1.272292 x10°
-1.272317 x10°
9.150275 x10°t
-9.150392 x10°!
08.749970 x10°!
-8.749830 x10°!
6.847922 x10°!
-6.84794S x10°!
S.443450 x10-!
=-S.443449 x10-?

(-]
e
- | ﬂ
2 1 (Il |
P-q '
S 1
& T
X
a
s |
~“~"“--.~_
e v
.0 2.0 4.0 6.0 8.0  10.0  12.0
FREQUENCY( ka)

Figure 5-29,

The RFA for (M,N) as (14,13) (dashed 1ine) fit to the
axial backscattering data (solid 1ine) for the finite
waveguide (both ends open) within the window of interest.
The x's are data points used in RFA (amplitude plot).
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E Figure 5-30. The RFA for (M,N) as (14,13) (dashed line) fit to the
- axfal backscattering data (solid 1ine) for the finite
o wavegu:ide (both ends open) within the window of interest.
; L The x's are the data pofnts used in RFA (phase plot).
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FREQUENCY (ka)

The RFA for (M,N) as (10,9) (dashed 1ine) fit to the axial
backscattering data (solid line) for the finite circular
wavequide (the rear end shorted) within the window of
interest. The x's are the data points used in RFA
(amplitude plot).
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Figure 5-32.

The RFA for (M,N) as (10,9) (dashed 1ine) fit to the axial
backscattering data (sotid 1ine) for the finite circular
waveguide (the rear end shorted) within the window of

interest. The x's are

plot).
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Figure 5-33.

The RFA for (M,N) as (16,15) (dashed line) fit to the

axial back-scattering data (solid 1ine) for a
semf-infinite circular wavequide.

points used in the RFA,

wavequide (amplitude plot).
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The RFA for (M,N) as (16,15) (dashed 1ine) fit to the

axfal backscattering data (solid line) for a
semi-infinite circular waveguide.

points used in the RFA,

The x's are the data

D is the diameter of the
circular waveguide (phase plot).
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basically dipole-type modes. This can be seen either in the plot of
poles in Figure 5-35 or in Table 5-14,
The complex natural resonances of finite waveguides and

semi-infinite waveguide are compared Figure 5-35. The complex natural

resonances are very close for the finite waveguides with the far end
opened or closed (as least in the interesting spectrum used for the

RFA). The major resonant modes (dipole modes) of the finfte guides are —

nearly the same as can be seen in either Figure 5-35 or Table 5-14,
The edge diffraction and rim creeping modes are dominant for the 5f§ﬁﬂ
semi-infinite waveguide and the dipole modes are dominant for the finite AR

waveguide. However, the scattering mechanisms due to the front rim for
any of the open waveguides are the same for all three cavities. S

The window technique was used with the RFA to the calculated data 'l;i;;
for the finite waveguides, therefore the poles due to the resonant modes

from the front rim were missed for both finite waveguides. If the rim

model obtained at the ElectroScience Laboratory by E. Lin [40].) The

resonances were to be extracted, a very wide window could be needed. e
G. AIRCRAFT F104 lfﬁ;
)

Table 5-15 shows calculated data for the F104 aircraft. (A stick : f*&
i

simplest wire-grid airplane model utilizing 8 wire segments was used in

the claculation. The stick model shown in Figure 5-36 is not the wire
grid model used by E. Lin; 1t only shows the orientation. This set of

low frequency backscattered data at 6 of 0° and ¢ of 0° for horizontal

157




T
]
,
-
.
3

v
ity

..........

‘‘‘‘‘

TABLE 5-15

THE CALCULATED DATA OF F104 AIRCRAFT MODEL*

“ASpeCt“ 0=0°

Frequency(MHZ)

¢$=0°,

AT 1 to 12 MHz

E4 polarization

Normalized Echo Signal
.010591-j0.001060
.044214-30.009941
.107527-30.025901
.186288-3.061203
.281474-3.119757
.390186-j.208745
.508891-j.337996
.632569-3.522298
.751477-3.783962
.843199-31.163223
.842512-j1.698540
.612234-3§2.427848

N Mo

* The fuselage length is 16.69 m and the wing length is 6.68 m.
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Figure 5-36. The scattering coordinate system for the F104 aircraft.
Note the stick model here shows the orientation
E only, not the real model used in the calculation.
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(¢) polarization as fitted by the rational functional approximant is :7

shown in Figures 5-37 and 5-38.
An extracted pole is listed in Table 5-16 and is compared with that

found by Moffatt and Chuang [41] using Prony's method for the same data. -
The reason that only one pole-pair was extracted is that the data points

available were limited to the Rayleigh region. Basically, the wire

model used for the aircraft is really a very simple one in the

calculations for these data. This example shows that complex natural :
resonances can sometimes still be extracted even if the imaginary parts Z?iﬁé
of the poles are outside the spectrum of the available data. - :éfii
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= TABLE 5-16

= THE DOMINANT POLES* OF F104 EXTRACTED VIA ]
K THE RATIONAL FUNCTION APPROXIMANT AND PRONY'S METHOD L4

] -~
b
o
3
X ~ o (
4
;
‘ {

Rational Function Prony's Method
(Moffatt & Chuang) b -4

-0.475+/-32.526 -0.545+/-32.62

l
I

* The units of the poles are ka, where k is the wavenumber and a is
one half length of the fuselage.
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Figure 5-37. The RFA for (M,N) as (12,11) fit to the calculated D
backscattering data (solid 1ine) for the F104 aircraft L
at 6 of 0°, ¢ of 0° incidence and E4 polarfzation. The T

x's are the data points used 1n the RFA (amplitude plot).
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. Figure 5-38. The RFA for (M,N) as (12,11) fit to the calculated S
backscattering (solid 1ine) for the F104 aircraft at

. 8 of 0°, ¢ of 0° incidence and E, polarization. The S
[: x's are the data points used in zhe RFA (phase plot). R
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CHAPTER VI

EXTRACTING COMPLEX NATURAL RESONANCES -
FROM MEASURED DATA

A. INTRODUCTION = T A

The primary goal in this chapter is to describe in some detail a

relatively general method for extracting complex natural resonances by

(B

applying the RFA to measured scattering data*. Because of the
complexity of the target geometry for objects such as aircraft or ships,

it 1s difficult (1f not impossible) to formulate and solve the
scattering problem even approximately using analytical methods. Thus
measured data on some complex targets are necessary, particularly if

broadband results are needed. In this chapter, measured data of two

commercial passenger atrcraft scale models are used. Sufficient detail

* The scattering data on complex targets were obtained from measurements S
being made on a noncooperative target recognition (NCTR) program in |
progress at the ElectroScience Lahoratory. The targets are primarily oo
fighter or other ajrcraft. Since no existing complex natural
resonances are available for comparison for these targets, we shall
only identify them by type, e.g., aircraft A, B etc. The analysis -
methods are adequately explained in applications to simple targets. g
This approach will circumvent any possible future classification
problems while in no way diminishing the application results.
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of RFA applications have been given on the simple targets, but it is

important that the techniques developed herein be applied to measured

data on real complex (geometry) targets. At the same time,

classification problems are avoided by not specifically identifying the

targets. fﬁfﬁﬁg
B. AMPLITUDE AND PHASE PLOTS S
An advanced state-of-the-art broadband radar reflectivity :;g;sﬂ

measurement facility is under development at the ElectroScience :
Laboratory of the Ohio State University [42]. Detailed procedures for ;;:;j
the measurement and data processing are not discussed here but it is

helpful to present some of the scattering data as a function of frequency

for the scale model targets. The coordinate system and the target

orientation (aircraft shown in stfck form only) which were used in the
measurements are shown in Figure 6-1. The aircraft is aligned with wings
and fuselage in the xy plane (nose in the positive x with direction and
vertical stabilizer in the z directfon). Vertical polarfzation is

identified as measurements with the electric field polarized in the 2z

direction and horizontal polarization as measurements with the electric
field polarized in the xy plane.

For horizontal polarization, the complex data were taken in the :gf?TA
frequency band of 1.5 GHZ to 6.5 GHZ in 500 steps for aircraft A. Also ' |
measured data in 1-2 GHz, 2-4 GHz, and 4-6 GHz bands (200 steps in each E—

band) were taken for vertical polarization for ai-craft A and 1.0 to 6.5
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Figure 6-1. The scattering coordinate system of a transportation
afrcraft aligned with the fuselage along the x axis
(nose in the x direction) with wings in xy plane.
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GHz (550 steps) for aircraft B. Figures 6-2 and 6-3 (amplitude plots)
and Figures 6-4 and 6-5 (phase plots) are the spectrum at aspect angles
of 0°, 20°, 30°, 45°, 50° off the nose for horizontal polarization for
aircraft A. Figures 6-6 and 6-7 are amplitude and phase plots for
vertical polarization at aspect angles of 0°, 15°, and 30° off nose-on
for aircraft A, and Figures 6-8 to Figure 6-11 are plots (Figure 6-8 and
6-9 amplitude, Figure 6-10 and 6-11 phase)} for vertical polarization at
0°, 30°, 60°, 90°, 135°, 180° off nose-on for aircraft B. The amplitude
is Yo and is in the units of cm, where o is the radar cross section (RCS)
on a linear scale. (The RCS is in the units of cm?.)

The plots of the spectra are shown here because the number of peaks
in the amplitude plots are clues for determining the system order.
Furthermore, as will be seen later, the imaginary part of the extracted
poles are near most of those peaks. A comparison of the amplitude plots
of the measured data for aircraft A at horizontal and vertical
polarizations from nose-on is shown in Figure 6-12. Al1 of these plots
shown in this Chapter have been smoothed by the zero-phase-shift digital
filter given in Appendix B.

It is difficult to smooth noisy data precisely {without any
distortion of the signal) because the transient responses vary in length
for various targets, aspects, and polarizations. However, strongly
excited poles will not be influenced much as long as the
cut-off frequency of the zero-phase low-pass digfital filter is properly

designed.
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Figure 6-2. The backscattered amplitude for commercial transportation
afrcraft A at 0°, 10°, and 20° from nose-on for horizontal

polarization.
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Normally 4 TAU width for the time-domain window (TAU is 2a/c, where
a is a characteristic target length) is a good chofce for most targets.
Some targets however should have windows (the 3 dB cut-off frequency of
the digita) low-pass filter) wider than 4 TAU. Such targets have
resonances with small damping such as, e.g., the circular loop. The
cut-off frequency of the filter in the plots of Figures 6-2 to 6-8 is
set to 23 Hz; and the sampling rate of the digital filter 1s assumed to
be 500 Hz. The folding frequency is 250 Hz. The corresponding
time-domain window width is therefore roughly 4 TAU for this cutoff
frequency of 23 Hz. The sampling intervals in the spectra are 10 MHz.
Typical examples of oversmoothing using zero-phase-shift digital filters
are shown in Figures 6?13 to 6-16. The 3dB cut-off frequency 1s set to
fc of 11.5 Hz, 1.e., 2 TAU lengths in the time domain. It has been
found that some of the true poles were missed {f oversmoothed data are
used in the rational function approximation. Typical plots of the
oversmoothed data for aircraft A are shown in Figures 6-13 and 6-14
(horizontal polarization), and in Figures 6-15 and 6-16 (vertical
polarization) at nose on incidence. Obviously, these plots show that
higher order scattering was filtered out. Oversmoothing results in
loss of some weak resonances. To filter out nofse and clutter, plots of
the impulse response are necessary. The impulse response helps select
fc, the 3 dB cutoff frequency, of the digital filter as will be shown in
section D of this chapter.
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Figure 6-13. An amplitude plot of the backscattering data for
commercial transportation aircraft A at nose-on.
The measured data are oversmoothed by a
zero-phase-shift digital filter.
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f{
A phase plot of the bhackscattering data for commercial
transportation aircraft A at nose-on. The measured
data are oversmoothed by a zero-phase-shift digital
filter.
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Figure 6-15. An Amplitude plot of the backscattering data for
commercial transportation aircraft A at nose-on for
vertical polarization. The data are oversmoothed by the
zero-phase-shift digital filter.
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Figure 6-16.

A phase plot of the backscattering data for commercial
transportation aircraft A at nose-on for vertical
polarization. The data are oversmoothed by the
zero-phase-shift digital filter.
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o
C. EXTRACTING THE COMPLEX NATURAL RESONANCE FROM THE MEASURED DATA - gii;
el e
After RFA have been developed, it s relatively routine to apply Eiig
the programs to measured data. The following features should E; Ef}?
be noted: -
1. The measured data sets are smoothed by a low pass 10th order
zero phase digital filter. The 3dB cutoff frequency of the low 2o
pass digital filter is movable. ~ ;t‘“

2. The window technique is used with the RFA. This window is
generated simply by taking sample points over a band 1imited
region of the spectrum. The window used for the RFA is a very
powerful tool for extracting the poles, because there are

usually too many resonances within the spectrum to be covered

by one RFA.
3. The system order is set at around twice the number of

amplitude peaks in the spectrum covered by the window.

4, Several different sets of data points and system orders are
tested at each window, and only the poles which are unchanged
for more than two selected data sets are considered as
candidate poles.

5. The window is chosen such that the magnitude of the fitted

data lying outside the window 1s as small as possible. Thus,
both end points of the window should be at relatively minimum

amplitudes or at least on a portion of the negative slope.
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. 1. Afrcraft A

The complex natural resonances of the transportation aircraft A at
0°, 30°, 45°, 60°, 90°, 120°, 150°, 165°, and 180° aspect angles as
extracted from the backscattering data in the 1-2 GHz bhand for
horizontal polarization are given in Table 6-1. The 1-2 GHz and 2-4 GHz

i: bands are treated individually because the measured data sets for these
bands were taken separately. Table 6-2 1ists the extracted poles from
the backscattered data at 0°, 15°, 30°, 45°, 60°, 75°, 105°, 165°, and

Eé 180° aspect angles for the aircraft A and for the horizontal

polarization in the 2-4 GHz band. However, the rational function
approximation windows are set at 2-3 GHz only. The pole locations found
are relatively aspect independent.

Table 6-3 shows the extracted poles for horizontal polarization at
aspect angles of 0°, 10°, 20°, and 30° as found using 1.5 to 6 GHz band
data. In order to compare with the other polarfization (vertical
polarization) only data in the 1.5 GHz to 3.0 GHz band were used. The
extracted poles are relatively aspect independent. Note that more poles

are excited for horizontal polarization than for vertical polarization.
2. Afrcraft B

The complex natural resonances of aircraft B were extracted using

n .

the RFA and window techniques for data at 0°, 90°, and 135° from nose-on
in the 1 to 2 GHz band. The extracted poles are listed in Table 6-4.

The poles are relatively aspect independent and the pole sets for the
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TABLE 6-1

.....

THE COMPLEX NATURAL RESONANCES™ FOR COMMERCIAL
AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION
APPROXIMATION TO THE MEASURED DATA (BACKSCATTER,

1-2 GHz

o°.

-00082 +/-110082
not located
-0.092 +/-31.318
'00783 +/‘Jlo§88
-0.645 +/-31.765
-0.0755+/-31.915

60°
-0.068+/-31.077
-0.082+/-31.187
'0-102+/-11034
-00082+/‘j1053
-00056+/-J1071
-0.091+/-31.956

150°

-0.051 +/-31.053
-0.052 +/-j1.18

-0.092 +/-31.351
-0.09 +/-31.559
-0.0936+/-31.72

-0,093 +/-31.959

30°
-0.104+/-31.034
'0.093+/'jl.16
-0.116+/-31.338
-0.085+/-31.554
-0.045+/-31.73
-0.05 +/-32.06

900
-0-035+/-j1p057
-0.031+/-j1.171
-0.11 +/-31.39
-0.15 +/-31.574
-0.063+/-jl.775
-0.11 +/-31.95

165°

-0053 +/'Jloo36
-0.057+/-31.141
-0.056+/'310383
-0.057+/-31.572
-0.055+/-31.726
-0.11 +/-§1.94

* The units of the poles are in GHz.
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VERTICAL POLARIZATION, 1-2 GHz).

45°

-0.05+/-31,07
-0.06+/-31.18
-0.10+/-31.33
-0.07+/-j1.52
-0.09+/-31.71
-0.14+/-31.95

120°
-0.039+/-31.03
'0-06 +/'31011
-0.10 +/-31.33
-0.07 +/-3J1.54
-0.08 +/'j1077
’0.073*/-310934

180°
-0.058+/-J1.05
-0.062+/-§1.161
-0.084+/-310324
’00057+/'j1-512
-0.040+/-31.749
-0.029+/-§1.905
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TABLE 6-2

THE COMPLEX NATURAL RESONANCES™ FOR COMMERCIAL
AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION
APPROXIMATION TO THE MEASURED DATA (BACKSCATTER,

2-3 GHz
Aspect Angle 0°

-0.02 +/-§1.996
-0.108+/-j2.328
-0.07 +/-J2.681
-0.068+/-§2.974

45°

-0.05 +/'jz-13
-0;09 +/-32.37
"0 . 027+/-‘12 . 65
-0.047+/-32.94

105°
-0.051+/-32.019
-0.079+/-32.36
-0.07 +/-J2.61
-00047+/-12.86
-0,06 +/-32.97

.........
PRI ST

Aspect Angle 15°

-0.146+/-§2.291
-0.107+/-32.665
-0.100+/~32.967

60°

'0.047+/'Jl-94
-0.091+/-32.22
'0-09 +/-32049
<0.12 +/-32.79
-0.10 +/-32.93

165°
-00099#/'32.089
-0.128+/-32.21
-0.016+/-32.362
-0.037+/-32.62
-0.032+/-32.97

* The units of the poles are in GHz.
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VERTICAL POLARIZATION, 2-3 GHz).

Aspect Angle 30°

-00008+/-320019
-0.068+/‘32.20
‘0010 +/-32.51
-0.08 +/-32.72
'0.192+/-j3000

75°

-0 3 053"'/‘32 . 109
~0.127+/-32.317
-0.08 +/-32.593
~0.097+/-32.922

180°

-00117+/-32016
-0.105+/~32.29
~0.09 +/-j2.47
-0.09 +/‘Jz.88
-0016 +/-j3coo




TABLE 6-3
THE COMPLEX NATURAL RESONANCES™ FOR COMMERCIAL

AIRCRAFT A OBTAINED FROM THE RATIONAL FUNCTION
APPROXIMATIONS TO THE MEASURED DATA (BACKSCATTER,

HORIZONTAL POLARIZATION, 1.5-3 GHz).
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(-0008’1052)

(-0.056,1.65)
-0.086,1.78)
-0.095,1.88)
-0.052,1.93)
-00046.2-03)
-0.098,2.15)
-0.063,2.23)
-0.16,2.37)
-0.123,2,55)

30°

{
(
(
(
(
(
(
(
{
(
{

.93)
6)
7)
1
6
7
6
4

'0014,1.85)
1
2
2
2
2
2
2
2
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TABLE 6-4

= THE COMPLEX NATURAL RESONANCES* OF AIRCRAFT B AT -4
0°, 90°, and 135° FROM NOSE-ON INCIDENCE R
FOR VERTICAL POLARIZATION

' S 0° 900 135° ? ‘\ﬂ*
-0.073+/-§1.095  -0.21+/-J1.097  -0.165+/-31.023 S
. l:‘ -0.19+/-§1.232 -0.26+/-31.25 -0.183+/-31.214 ]

L; "0-24+/‘Jl o450 -0.19+/‘jlo47 '0.129‘.'/-11 0437 : .-, ..

-0.48+/-31.628 -0.19+/-31.66 -0.51+/-31.65
-0.07*’/-.11.88
-0.21+/~31.956 -0.18+/-31.953

* The poles are in the units of GHz. The RFA fit in the 1-2 GHz
band.
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two afrcraft are not the same. Therefore, it would appear that the pole
sets could be used for the purpose of classification.

One of the characteristics of the complex natural resonances,
polarization invariance, can be tested by comparing Table 6-1 to 6-3.
It is well-known that the complete set of complex natural resonances of
an object may not be optimally excited for one polarization or for one
aspect angle. For example, a wire for broadside incidence has only even
modes excited; at other aspects both even and odd modes are excited.
But the tota) resonances of the wire include both even and odd
resonances. Similarly, if the target has poles which are more strongly
excited with horizontal polarization than with vertical polarization
then more poles are extracted from the measured aircraft data for
horizontal polarization. Portions of the extracted poles are nearly the

same for both polarizations.
D. IMPULSE RESPONSES OF THE AIRCRAFT

Our purpose here is to plot some of the band 1imited impulse
response waveforms of the aircraft using Fourier synthesis. We use an
inverse Fast Fourfer Transform (IFFT) to implement the Fourier synthesis
and a smoothing window is used to eliminate the Gibbs' phenomenon. The

window (W(n)) used here is
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sin?{!'. (;)2
— y —y—— for n not equal N/2
u(n) = T (N) - nz
2— » (6"1)

1/2 for n of N/2

where N is the total number of samples. Study of the transient response
waveforms for the afrcraft is not for the purpose of target
jdentification but rather for deciding the 3 dB cutoff frequency for thg
digital filter. Then, the noise and clutter can be reduced from the
frequency domain measured data using a digital filter with proper cutoff
frequency. Typical impulse responses for a transportation aircraft at
some different aspect angles and for both polarizations are shown at the
end of this section. The rough geometry of the aircraft is sketched
indicating aircraft orientation and incident wave polarization for each

impulse response waveform,
E. BRIEF SUMMARY AND DISCUSSION

In this dissertation no effort 1s made to relate features of the
impulse response waveforms shown to geometrical features of the
aircraft. To do so might compromise the actual identity of the targets
and §s not essential for any purpose. Both aircraft show response
waveforms which ring for relatively long times, indicating that signals
are bouncing between varfous structures. Given the actual size and
shape of the afrcraft, most of the dominant scattering mechanisms

can be {dentfified. For our purpose, it is also clear that an
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Figure 6-17. Backscattered impulse response waveform of commercial
transportation aircraft A at nose-on incidence for
vertical polarization.
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transportation afrcraft A at 15° from nose-on for vertical

[: polarization.
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Figure 6-21., Backscattered impulse response waveform of commercial
transportation afrcraft A at 20° from nose-on for

horfzontal polarization.
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transportation aircraft B at 135° from nose-on for
vertical polarization.
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examination of the response waveforms is essential for selection of the
best digital filter.

The ultimate goal in the chapter - extracting the complex natural
resonances from the measured complex shape targets - has been
accomplished for two passenger transportation aircraft. The
applications of the RFA were limited to 1 to 3 GHz in order that the
poles for many aspect angles and two polarizations could be extracted
and compared easily. The number of complex natural resonances extracted
is somewhat influenced by the 3 dB cut-off frequency of the digftal
filter. It 1s for this reason that the impulse response waveforms for
the two aircraft were synthesized. The impulse response waveform with
zero-phase-shift digital filter is shown in Figure 6-32. The horn
antenna coupling, long path multiple scattering, target return
reflector, system nofse, and back wall are also displayed and clearly
seen. The result of filtering the measured data using a zero phase
low-pass digital filter (f. of 15 Hz) is shown in Figure 6-33. One of
the advantages of using the digital filter directly in the frequency
domain §s an inverse Fourier transform is not required. Therefore
possible distortion due to the transformation can be avoided.

The exact 3 dB cut-off frequency of the lowpass filter should be
different for various targets, aspect angles, and polarizations. The
impulse responses for the aircraft are valuable in the determination of
the 3 dB lowpass filter.

The RFA and the preprocessing techniques developed in this study
can be applied to obtain the complex natural resonances of a complex
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shape using measured data.

The complex natural resonances obtained

from the measured data are relatively aspect and polarization

independent.
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Figure 6-32.

The {impulse response of aircraft A at nose-on
for horizontal polarization. The whole range is
shown here.
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CHAPTER VII o
CONCLUSIONS .

An analytical model in the form of a rational function .
approximation (RFA) for fitting available complex spectral data has been .
developed. The available data which may be measured or calculated
correspond, in principle, to any portion of the spectrum. The interest
f? in this study is in scattered electromagnetic signals and in the ®

extraction of complex natural oscillations (poles) from the fitted
model.* The methods developed could have much wider
. applicability--to radiated as well as to scattered signals, for .
B examplz, and to seismic and acoustic as well as to electromagnetic data. :
(ther methods for extracting complex natural resonances from
] data have been briefly reviewed, and the differences and advantages of 9..._
the present technique explored. It is also demonstrated that rational i

function models can be used to supplement and complete an analytical

* The rational functfon approximation developed here is also an
excellent tool for complex data interpolation. The application of
the RFA to data interpolation has been made for thin wires and

thick wires. The results have been shown to be very accurate when .

e compared with the calculated data. A typical example can be seen in Py
Figure 5-12, where the first resonances is not shown in the original
data, but is plotted in the RFA (dotted line).
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ii model (the K-pulse [6]) useful for relatively simple objects at high L;;
frequencies.

The RFA developed here has three main features: low-pass filtering ~
to combat noise and clutter effects, windowing procedures to eliminate a i:;;

so-called :urve fitting poles, and a sum operator which permits most of

r,".'.ff....

the available data to be used and is usually more effective than least
squared error techniques (at least against an additive Gaussian white o

noise). There is, admittedly, 1ittle original in the generation of a

P T

e 0 o e,?

Lt LR N
r

system of linear, simultaneous equations for fitting complex, multiple
frequency data. Yet the method of solution of the main data points and
in the preprocessing of the data (fitting, sum operator) before pole

B J Do
(1

extraction are new. Although the final step, i.e., pole extraction via

of the zeros of the denominator of the rational function approximant is

CTeTiew s
IR R
L

e Py
. b S
LI PR

routine, it requires using double precision on a digital computer to
1{1luminate near pole-zero cancellations.

Application of the RFA has been demonstrated for a variety of

[. RE

simple and complex objects, and, where possible, the results (complex
natural resonances) have been compared to those obtained by other
methods. Included here are spheres, discs, loops, thin wires, and
finite and semi-infinite circular waveguides. Numerous tests of
applications to a conducting spherical scatterer have been made. It
must be stressed, however, that these methods have been tested against
true poles with true residues (but finfte in number) in an additive
Gaussian white nofse model. Tests of a parameter extraction procedure
where equal excitation of parameters is assumed, albeit in noise, are
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relatively meaningless. The RFA has also been applied to measured
wide-band scattering data obtained using a new reflectivity facility
being developed at the ElectroScience Laboratory [42]. The targets in
this case are of complex geometry and of sufficient tactical importance
to warrant classification (security) problems. Stressed, therefore, is
the stability of results of RFA, and neglected is the precise
jdentification of the scatterers for these cases. Excellent pole
extraction has been demonstrated for both simple and complex geometries.
Certain far-reaching conclusions can be drawn from the results of the

research reported in this study.

1. Complex natural resonances can be successfully extracted from
additive noise contaminated data with signal-to-noise ratios as
Tow as 15.0 dB8 or lower.

2. For signal-to-noise ratios significantly lower than 15 dB, it
does not appear that reliable pole extraction methods are
feasible. Unless, of course, some new breakthrough is made.

3. From 2 above it has been concluded that pole extraction
procedures from full scale, field-measured data are generally
not feasible and should not be attempted. Roughly,
signal-to-noise ratios of 13 to 15 d8 are necessary for
successful pole extraction. This does mean that pole
extraction from controlled data, i.e., from laboratory

measurements is feasible. The new ElectroScience Laboratory
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reflectivity measurement facility or other careful o

measurements easily satisfy this requirement.

4. While this study does not explore target recognition, it must

be stressed that pole extraction from real time radar data - -Zﬁ?ﬂ

" -y g
c IO L
S A2 e P
o

{s not necessary for target recognition using

‘g v

prediction-correlation processing. The nearest neighbor
il dectsion rule [43] using the complex natural resonances can ;; o
also be used. The rule is to identify a set of extracted

poles {Pj}, as a member of the pole set of the known targets

ii in a library, C', to which its nearest neighbor belongs. ii 1
f Therefore, noise and clutter problems do not negate this -;;fﬂ
form of target recognition at least as far as pole Z;:t{

extraction is concerned. - i;::

5. Parameter extraction for the complex natura) resonances {is ~ ?ffe

not, at this stage, an exact science using the procedures . E;?::

of this study. Experience, in processing and in realizing | ;i;;

what 1s and what is not reasonable in terms of electromagnetic = ffff

reverberations, 1s indispensable. A completely foolproof ?:;Z;

automatic procedure cannot be devised at this time. ;1535

—1

Using both RFA and asymptotic estimates, new and significant ;A_f

results have been obtained for the complex natural resonances of the ?f‘ff

thin circular 1oop. Of particular importance is the fact that poles - i;;;!

from RFA which are most precise at lower frequencies show a regfon of %:,;2

overlap with poles obtained from asymptotic methods. Therefore, from a ?T{i%

4
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h . combination of the two methods relatively lengthy (>30 or 40) pole-pair —

9

strings can be obtained. Such Tong pole strings are precisely what are
ﬁ i needed to obtafin a K-pulse waveform using one particular approach [44].
A thin-wire circular loop has also been used to test RFA for

complex natural resonances extraction. In this case, comparisons are R

made with existing poles obtained from an integral equation formulation ;f?g;;
and numerical search; good agreement is obtained. A K-pulse for the ;;;;:
circular loop using just those poles corresponding to creeping wave type fyl{f’
modes is obtained, and the backscatter response of the loop to this EE;;Z;
K-pulse for edge-on incidence has been derived. Derivation of ;:;;_J

K-pulse-response waveform pairs for a particular target is beyond the

scope of this study but these initial results do show the utility of

RFA. In the course of this study, new canonical response waveforms
have been shown for the thin-wire loop and for cross-polarized responses
of the circular disc.

As noted above, RFA has been used to extracted complex natural
resonances of several relatively complex target geometries. The '“—_ﬁ
broadband scattering data for these applications were measured on the : )

new compact reflectivity measurement facility at the ElectroScience

'l"rlfff;,
Aj.A;T"F'7J

Laboratory. In this dissertation a number of band-limited impulse
response waveforms, generated from these measured data, have been shown.
These waveforms vividly demonstrate the tremendous diagnostic potential

of time domain response waveforms. The response from various

. Jn S

geometrical features of the targets as well as possible reverberations

between various features are easily seen. This aspect of the response s
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waveforms has not been stressed here for obvious reasons but one must
perceive the future significance of what might be termed "scattering
reflectometry."”

The most immediate application of the tools developed in this
dissertation is to extract complex target poles for target recognition
using prediction-correlation [45]. In this regard it is noted that the
poles of complex target geometries as extracted using RFA do not show
precise excitation invariance, particularly with respect to the damping
of a given pole. The reason--weak excitation of a particular
resonances at a given aspect or polarization--is obvious. As a
practical matter, however, it is clear that a single complex geometry
target will have to be treated as several targets (somewhat different
pole damping) in prediction-correlation processing. Research on this
aspect of the problem using the RFA tools developed here has already

been initiated.
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APPENDIX A

A ZERO PHASE SHIFT LOWPASS DIGITAL FILTER

The goal in this Appendix is to design a 10th order zero-phase-shift
lowpass digital filter. The first step here is to design a 5th order
lowpass Butterworth digital filter in terms of a 5th order analog filter
[46]. Then, two 5th order filters, H(z) and H*(z) (H*(z) is the complex
conjugate of H(z)) are cascaded to make a 10th order zero-phase-shift
digital filter. A block diagram of 5th order digital filter is shown in
Figure A-1. The transfer function of the 5th order Butterworth analog
filter [46] with a 3 dB cutoff frequency at 1 radian/second is given by

G(s) = Ao . (A-1)
B, * B;S + §;§?7+ Bys3 + B,s% + BsS
where
Ao =Bp=1 |, (A-2.1)
B; = 3.236068 , (A-2.2)
Bp = 5.236068 (A-2.3)
B3 = 5.236068 (A-2.4)
Bg = 3.236068 (A-2.5)
225

VAN Y W R S U VEN Y N Sy S RN VSRS S A YOI SN S VI G S S S S A

b -

-———



W

MDA e o
PR AN -
ot Attt

-

[ S N
and ___
Bs = 1 (A-2.6) -' v
If the transfer function of the digital filter is written as
Hiz) = % * azl vap? el vzt vz | (aa L
1+ b,z=1 + bzz“‘ﬁ byz=3 + byz- + agz=> B
the following relationships are true [45]. ¥
A = By + BiC + BoC2 + B3C3 + BaC4 +85C5 (A-4.1) ‘
3 = Ao/A (A-4.2)
ap = 5Aq/A (A-4.3) R
a2 = 10A0/A (A-4.4) Y e
a3 = 10A/A (A-4.5) .::55’;'
ag = 5Ag/A (A-4.6) . ___
a5 = Ag/A (A-8.7) A e
by = (5Bg + 3B1C + BpCZ - B3C3 - 3B4C4 - 5B5C5)/A (A-4.8)
bp = (10Bg + 2B1C + 2BpC2 - 283C3 + 2B4C4 + 10BsCS)/A ,  (A-4.9) " ~
by = (10By + 2B1C + 2B5C2 + 2B3C3 + 2B4C% - 1085C5)/A ,  (A-8.10) 2 —
bg = (58 - 3B1C + BoC2Z + B3C3 - 3B4C4 + 5BsCS)/A (A-4.11)
bs = (By - BIC + BaC2 - B3C3 + BaC4 - BsCS)/A (A~4.12) )
and
C = A, cot( ,";.:% ) (A-4.13) s
The remaining undefined parameters are: - "—
226 4 —

o e mm wl oalowt oAla e T o




N i3

A\p 1s the 3 dB cutoff frequency for the analog filter (assuming
that A, is 1 rad/sec for the analog filter given by Equation (A-1)), f,
is the folding frequency, i.e., one half of the sampling frequency, f¢
is the 3 dB cutoff frequency for the digital filter.

Assuming that the sampling frequency is fixed at 500 Hz, i.e.,
fo of 250 Hz, the only variable that still has to be determined is the 3
dB cut-off frequency fc.. Then all of the unknown coefficients in
Equation (A.3) can be obtained using Equations (A-4.1) to (A-4.13). The
jmplementation for the transfer function of the fifth order digital
filter is shown in Figure A-1. The implementation of H*(z) 1s to input
the data backward through the filter H(z) and reverse the output
sequence,

In the application of the 10th order zero-phase-shift digital
filter to the noisy data, the 3 dB bandwidth of the filter 1s chosen to
cover the target size and transient response. The transient response
waveforms are aspect and target dependent. However, a plot of the
impulse response may help to decode the effective transient length.
Normally, 4 to 5 TAU (target length transit time) is a good choice of
the 3 dB bandwidth for most targets.

An example of the determination of the 3 dB cut-off frequency f¢
for the calculated data for the sphere (Aka of 0.02) is shown here.
Since the data for the sphere are sampled in the frequency domain, the

corresponding impulse response {is periodic with a period tp given by
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where Af {s the frequency increment between successive samples, TAU is

2a/c, a 1s the radius of the sphere, and ¢ is the speed of 1ight in a

e

free space. The corresponding 3 dB cutoff frequency f. (in terms of -

target length transit time) for the digital filter is

” - BN . Co
h f, = 167.25 BH_(Tau). (A=6) - —

where BW {s the desired 3 dB beamwidth for the digital filter in Hz.
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Figure A-1. A block diagram of the 5th order digital filter.
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APPENDIX B
A SUM OPERATOR

As mentioned in Chapter III, an overdetermined system of linear - ij,;
equations is obtained after some manipulation of the rational function - i;*;i
approximation (Equation (3.2)). Assuming the RFA has a system order of Eiff}
for (M,N) as (3,2), a system of linear equations can be written as ;;jf
A =8, (B-1) |
where A is an 18x6 data matrix (assuming that 9 complex data points are ;

used) and X and B are 6 row column vectors, f.e., 6 unknown

coefficients. Thus
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— ——

18 x 1

where xi is jkja, af are the real part of the known input data and Bj
arc the imaginary part of the input data. Given the noisy data at the
ith frequency

Ey = agp + 2gp) + 3087 + 24p) (8.5)

where ;1R and ;11 are two Gaussianly distributed pseudo random
noise processes with zero mean and standard deviation o. ajp and 84]
are the real part and imaginary part of the noiseless data.

The matrix equation for additive noise is
A'X =B' (B-6)

where
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and

~ 2~ 2
JsiX+iti X1 a1X1+21RX

1

~ 2 ~ 2 3~ 3
ajX1+ 24pX1 j81X1+jz11Xl a1 X +21RX1

~ 2
iBaXo+isq1X2 a2X +L4RX

1
2‘\
2 2

X +R~. X je X2+j;. X2 X3+;, X3
a
2A2FL{RA2 2 2 il 2 2 ) iR 2

~ ~ 3 ~ 3
JBgXgtjLiiXg agXg+eipXg 189X9+jz1 IX9

~ 2 ~ 2
agXg+L{RrXaq ngX9+3211X

3

3~
X +24pX
0‘99'|R9

9
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3 ~ 3
B1X +j241X
3113111

js x3+j; x3
2 2 il 2

2 4
=X 0 -X|
1 1
3 |
0 X 01
1 |
2 4l
=X 0 -X_|
2 2|
3 |

0 -X_ 0 },(8-7)
2 I
|
. |
. |
. |
|‘
2 4

=X 0 =X
9 o
0 X3 0 %
X |
_
18 x 6
[ (8-8)
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= ~91 - R = 1;-:;<f;£ii
| -381 - duntl
| -0z - 14p | Sl
| ~ | ECI
} -j8p - jzil‘ S
| -a3 - 2ip | R
B' = | ~ . (8-9) ]
| | .o 4
. | T
| . | o]
l L4 | ‘.'.‘ " . :1
} ~ = ) L
a9 - L{R -
| ~ | " . ."
: -89 - 241 { >
- “m8x1
In order to reduce the additive noise in each element of the matrix A' . L] J
and B', a sum operation is used. Each element of matrix A’ Zfﬂ;fiﬂfﬁ
and matrix B' in the same column of rows 1, 3 and 5* are added and then

divided by 3. Thus, a new row is obtained. The same procedure is
applied to rows 7, 9, and 11, rows 13, 15 and 17, rows 2, 4,and 6,

« « « and rows 14, 16 and 18. The following new matrix equation results

from the above procedure

A"X = B" ’ (8-10)

* Choosing the odd rows to be a group and the even rows to be a group,
then the summation will be limited to the real part domain and
imaginary part domain respectively.
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where A" is a 6x6 data matrix and X and B" are 6x1 column vectors in —_—
this example. The matrix equation in Equation (B-10) is exactly
determined. Thus, this matrix equation can be solved in the exact

sense. The variance of the noise is reduced by a factor of about 3 in

this example. Similarly, the sum operation can be applied to a higher

order system that utilizes more data points. The basic reason for the

-~

i1 = iz = i3 =, . .=XyN (B-11)

| ;; noise reduction is an averaging as shown in Equations (3-18) and ;l;;;;

| (3-19). >
' It should be noted that there is a 1imitation on the number of

rC samples (N) used for the sum operation, because the noise in each :lQ__i

element of the matrix A' has been magnified by a factor of X? (see i:ii]

Equation (B-7)), where X, = jk,a and n {s an integer. For small N and iii'?F

Il small frequency increments (x1 - x(i-l))' it is true that é;;;:T

so that the reduction factor is N. However, for larger N, the
assumption is no longer even approximately true. Therefore, the noise
reduction factor 1s less than N. Considering the sum operation in the

above sectfon of this Appendix, it is possible to define a sum

® (
operator, S, in general for a matrix equation. Given a matrix equation
CX =D , (8-12) : _
| i
| where L
L .

L 0 .



Ci1t C12 C13 ... C1p
Co21 C22 C23 ... C2q

- —le Cm2 Cm3 ... Cmn_ ’ (B-13)
ﬁ mn
. B
-
froe X
A X=] 2}
'j- | . I
‘ ' . |
= | xp |
- L Inx1 . (B-14)
F? and
: e |

| & |

p=1 .|

[ .

| 4 |

| imx1 . (B-15)

The sum operator S is defined as an average of I elements in the same

-
L
b
[ X

column but in I different rows. Basfically, there is no limitation
- in the selection of those I rows needed in group summation. However, in
?} the application of a sum operator to a matrix equation that results from
;i a RFA, the I group of rows are the ones nearest to the new desired row.
o 236
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Moreover, the S operator can be applied repeatedly. Thus, in general, ]

the new matrix equation using one S operator is
c'X =D s (B-16)
where ;:g.,;

I~ sC11 SC12 SC13 «.. SCip
SC21 SC22 SC23 ... SC2p

, (B-17) i-q

mxn

and

mx1 . (B-18)

Note again here that the sum operator is manipulated in the matrix

equation; and the sum operation in the matrix equation is basically

similar to row echelon algorithms used in the Gauss elimination, i.e.,

any row can be multiplied by a constant and can be added to other rows.
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The sum operator itseif does not filter out any of the signal*; however,

the noise is indeed reduced by using the sum operator.

* When the sum operator and the RFA are applied together to a set of
noiseless data, the result is exactly the same as that using only the
RFA to the noiseless data.
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APPENDIX C
A COMPARISON OF THE RAYLEIGH-STEVENSON EXPANSION
AND THE EXPANSION FROM RFA FOR A DISC AT BROADSIDE

In this Appendix, a 1ist of the unknown coefficients for the
rational functfon approximation with system order for (M,N) as (14,13)
to the backscattered data for the disc at broadside excitation is shown
in Table C-1. The corresponding poles, zeros and residues are listed in
Table C-2. A synthetic division of the rational function approximation
(Equation C-1)) using the coefficients listed in Table C-1 agrees
closely with the low ferequency power series expansion (Equation (C-2))
for the disc at broadside given by Boersma [47] in powers of X(jka) up
to the 10th order. The rational function yields

2 3 4 5

En(X) = .8486751X" + 0.000437X~ - 0.4542859X" + .2433949X

6 7 8 9

- .1253862X" - .2085668X" + .0445261X" + .0943268X

- 0.0782452x10 + . . . (c-1)

Compared to Boersma's result of
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E, (%) = .84882636X2 + OX3 - .45270739x% + .24016873x°
+ .12934497x5 - .21134848x’ + .04495910x8

+ .00588391x7 - 0.07943693x10 + . . . . (c-2)

Thus, it seems that the RFA is a fairly accurate model for the spectrum

data in the low frequency range.
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TABLE C-1

- A LIST OF THE COEFFICIENTS OF RFA FITTED TO THE » | -
CALCULATED BACKSCATTERING DATA FOR THE DISC AT
BROADSIDE FOR (M,N) as (14,13) (ka of 0.2(0.2)15.2)

1.320147094030905

1.357353646716751
0.7226181666170916
0.2757995040340761
6.3846844894384773p-02
1.3935166601542399p-02

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

1.7769530024111417p-03  0.0000000E+00
2.5378499633009358e-04 0.0000000E+00
1.9459354102256490p-05 0.0000000E+00
1.91575823424014372-06 0.0000000E+00
8.67693132108662712-08 0.0000000E+00
5.8940965359082686p-09 0.0000000E+00
1.2904825232741685e-10 0.0000000E+00
5.66062481501240182-12 0.0000000E+00
0.8486743429354422 - 180.0000
1.120820652271342 180.0000
0.6982300296585792 180.0000
0.2575860119100928 180.0000
6.4396816955230095p~02 180.0000
1.34124768927233328~02 160.0000
1.8079077141896589E-03  180.0000
2.47308357698554298-04 180.0000 -
1.9834766776258864E-05 180.0000 —
1.8791577250462169e-06 180.0000 -
6.8459943315528812e-08 180.0000
5.80549765419457692-09 180.0000
1.31554607644330032-10 180.0000
5.5939568877224277p-12 180.0000 p

FYSTSY
.« b,

AA 444 14§14 4442
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SRERE
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TABLE C-2 o 4
A LIST OF POLES, ZEROS, AND RESIDUES* WHICH - -4
CORRESPOND TO THE RFA COEFFICIENTS IN TABLE C-1. RN
g 5.41 .»'.
. A
m ‘."."_ W
€=4.4236 85331170900 ,~19.2050137 8551 249)
(=4.4236 85770208095 ,19.285013 41 £72798) e
€=1.269447207 450867 ,-14.357446380950928) KRS
€~ .2694464921 95129,14.35743713378906) IR
(=1 .242004050445557 ,~11 .1 990489955716 &) - ]
(=1.242005242538452,11 .19906139373779) o
(=1.163004398345947,~7.981 97221 755981 4) sl
(=1.163003087043762,7.981 966972351070
(=1.033520023988342,~4.66654777526 8555) Do
(~1.033529201616211 466654777526 8555) e 1
(=1.551777601242065,~1 . 48059153556 8237) Fl
(=1.551777720451355,1 . 480591654777527) PRIy
(=2.148778915405273,~7.35757056961972492-20) - ——
(0.00000000000000002+00 ,0 . 0000000000000000200) -
j (0.00000000000000008+00 ,0 .00000000000000001+00) Lo
2 (=4.550921600966512,19,53004429733050) ST :
5 . - . 0 "l o/
& (~4.550824052305061,-19.53004510079551) 3357473076081 1140-00.2 6036252 29996 B316-00)
o (~1.270233392715454,14.41974067667988) (-¢.24112095308848578-03,5.84836495201621328-04)
(=1.270227313040687,~14.4197053790203) (4,241 25260966873462-03 ,~5. 8527048240107 889E-04) Sl
. (=1.242350578308105,11 .28768062591553)  (~7.59766206 2366820003 ,1 . 5636508040 5460242-03) . T4
. (=1.24235451 221 4661 ,~11 . 20767204204668)  (-7,.5970085358471 856203 ,~1.56315936 47531 5842~03) B '
& (=1.164548754652078,8.105841636657715) (-1.452279685280 +3.7634124907381 91 58-03) C
& (=1.164549350738525,-8.105848312377930) (-] .45236056821 205838~02,~3 . 76356595296 5306 28-03) S
(=1.044392585754395,4.872451305389404) (-3.80685294507049542-02,1 . 44967058999935318~02) AR
(=1.044391 870490657 ,~4.072449874877930)  (=3.00681 93050171631 2-02,~1. 449871 K155096962P-02) N
(=1.63556521 4620062,~1 . 69906 4625930786)  (-§.42128589348004690-03 ,~8.2351 4530372973612-02) S
- (=1.635569095611572,1 .699064149053628)  (-9.42123 4276128171003 ,8.2351 287952638226R-02) v
P‘ (-0.490740941 8983459,1.230299234390259)  (-0.40768516551 01451 ,0.395321 BAL053265) q
(=0.4507450015029907 ,~1 . 2302991151 80969) (0, 4076 852409537003 ,~0.3953216537022632) -
¥ ' T
M "4
* The units are in ka, where k is the wavenumber and a is the disc
radfus.
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APPENDIX D SR
THE COMPLEX NATURAL RESONANCES OF THE DISC : . |
- N ) ,J
?i Keller's scalar diffraction coefficients [11] for the edge at
! ) normal incidence are given by . :’
: (9] = e " Lsec (o) (¥4')] (D-1-1)
B D, = (¥,9') == sec (¥-Y) 7 sec , -1
h o > 2027k Z Z

Where Dg is edge diffraction coefficient associated with the soft

(Dirichlet) boundary conditions, Dy fs the edge diffraction associated
with the hard (Neumann) boundary conditfon, y' is the incident wave
angle and ¢ is the diffracted wave angle as shown in Figure D-1.
It should be noted that Keller's formula {s good if the field point
is not close to a shadow or reflection boundary.

As the field point is close to the shadow or reflection boundary

(transition regions), the Uniform Theory of Diffraction (UTD) derived by

Kouyoumjian and Pathak [11] should be used instead of Keller's formula.
The UTD edge diffraction coefficients for curved edge or straight edge

in a plane screen at normal incidence are . -
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Figure D-1. The coordinate system for the incident wave diffracted
by a half plane.
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D, =& { FL2kLcos2(y-y')/2] : FL2kLcosZ(v+y')/2] 3, (D-1.2)
Y.~ - ¢ + U
ho 27K cos (iL1rJ£_) cos (iLTFJL')
where
B PO G pu
F(x) = 2j /x e | e dr (D-1.3)
'3

A Fresnel integral, and

L = sted + ) o o} (D-1.4)

62(61 +5)(p} + 5)

a distance parameter, where p{, p; are the principal radii of curvature

of the incident wavefront at the point of reflection, p; is the radius

of curvature of the incident waveform at the diffraction point taken in
the plane containing the incident ray and the edge, and s is the
distance from the diffraction point to the observatfon point.

The equivalent edge currents concept was proposed in [29] to solve
the field in the caustic direction using the available diffraction
coefficients. The equivalent electric and magnetic edge current I1 and
M1, respectively are positioned on the circular edge of the disc. They

are given by [29].

1106') = = Yo /8% Ds(v,v' NET+o") (0-2)
3
M) = - 2o 0 DnCe,v' )i o4) (0-3)
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where ¢ is the unit tangent vector to the circular edge of the disc, ¢'
and vy are interpreted as the incident and diffracted ray angles as shown

in Figure D-2 and D-3. It follows that

bsl ska e-ij 12“ ST .
H (8=0) = 'Ii'YO‘“1T" 0 (xsing' - ycosd )M1d¢ . (D-4)

where

< -eeh .
My 2 Dh(w'

= o 8 . -j “/4 . (D-S)
=l 3av=3 /; e

Note D in Equation (D.1-b) should be used for Equation (D.5) due to the
field point at the reflection boundary. Similar first order scattering
electric field using the equivalent electric current concept can be
obtained. Furthermore, the doubly and triply diffracted field (only
exist for hard case in this example) can be formulated.

-JkR  2x -
bs2(g=0) . jka e vl ' ' (D-6)
H = Y, e OJ (x sing' - y cose') My do'

where
= -;'.Hl D ' = 0 = ") m -j 1‘/4 (D"7)
Mz T— h“’ s ¥ - /—.E.E e ’
n ~. ] . Ve g e S -2jka (D-8)
Hy = ¢'H - sin¢ Dh(w u v = 0) STTE e R
and
o is -a.
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Figure D-2. On-axis backscattering from the circular metallic disc.
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Figure D-3. The singly, doubly and triply diffracted mechanisms of the
the backscattering from the circular metallic disc.
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Furthermore,
-JkR 2n - -
bs3 =| = Jka e LI ' ' (D-g)
H >?(6=0) %‘;-Yo L 01 (x sing' - y cose') Myd¢' ,
where
M, = -;'R; D (w‘ =0 V= 7") w e-j “/4 . (0-10)
3 ~Yo h * Z AKX
M K . - = 0) - P -2jka (D-11)
H3 ) H2 Dh(‘” 0, v=0) AT e .
and
[+] = - a.

Therefore, it is clearly here that

s = -2jka (D-12)
= t oz = . (4] . . .
My Dh( v =0, v =0) /,‘!__a(_p_+ =T e M,
= t =2 = ] [ ) -zjka [ ) [ D-13
My = D (%' =0, ¥ =0) /m-f;’mr e My (D-13)
= 4 = = 3 7 "—-.‘No -ija L3 . D-14
Mg = D (v' =0, y =0) ,/a’:‘rngZET e My ( )
- Thus, the total high order backscattered field {s
c JkR 2~ -
: bst o0y = JK i " - D-15
% H >"(8=0) %Tré_vo S_R__ 0] (x sing' - y cosé*) Mtd¢' , | )
. 249
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where

My + M3 + Mg + . ..

=
o
]

M (L+y+y2+...)

MZ/I'Y ’

and

"
—
+

(1)

1-v

L]
—
+

m

1/2

1 + § exp(-2z)/(4n2)

where 2z = jka.

* Keller's formula.
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Equatfon (D-18) is the charasteristic equation for the edge
diffraction mode for the disc at broadside excitation. The 26 pairs of
poles have been extracted using a zero searching routine for this
equation. They are listed in Table D-1. Note the first 3 pole-pairs
1isted are from the RFA to the backscattering data for the disc for
broadstide excitation because the GTD is not accurate in the
low-frequencies. Also the induced current on the rim due to the singly
diffracted field (see Figure D-3) corresponds to the lowest frequency
pole-pairs of the creeping wave mode because the variation of the current
along the rim {s exactly one period. For the off-axis 11lumination, the
higher order diffracted field is due to the multiple diffractions at Q1
and Q2 (see Figure D-4). Several efforts have been made to find a closed
form for the resonances similar to the one derived for the broadside
incidence but without success. Once again Keller's edge diffraction
coefficients are used here. And the following formula is introduced for

the calculation of the caustic distance.

121 _Ne-(s'-s) (D-19)
[+ pl de
e
where p: {s the radius of curvature of the incident waveform at QE taken

in the plane containing the incident ray and the edge; ne is the
associated unit normal vector to the edge directed away from the center

A~

of the curvature, the unit vector s' is in the direction of incidence at
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TABLE D-1

A LIST OF 26 POLE*-PAIRS FOR THE A DISC FOR BROADSIDE
EXCITATION (BACKSCATTER)

a {s the radius of the disc.

Pole Number Real part (+/-)Imaginary Part
1 -0.49069 1.23103
2 -1.04579 4.87347
3 -1.16349 8.10608
4 -1.24179 11.36106
5 -1.30243 14.50748
6 -1.35120 17.65236
7 -1.39201 20.79634
8 -1.42709 23.93976
9 . =1.45784 27.08279
10 -1.48523 30.22556
11 -1.50991 33.36812
12 -1.53238 36.51053
e 13 -1.55299 39.65282
o 14 -1.57203 42.79502
s 15 -1.58972 45.93715
" 16 -1.60625 49,07920
- 17 -1.62175 52.22122
V 18 -1.63634 55.36318
r 19 -1.65013 58.50512
ti 20 -1.66320 61.64701
Pf. 21 -1.67562 64.78889
I 22 -1.68746 67.93073
L; 23 -1,69875 71.07256
P., 24 -1.70956 74.21437
= 25 -1.71992 77.35616
. 26 -1,72987 80.49794
r."'~
e
P— * The unit of poles 1s ka, where k is the propagation constant
o
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the edge and s is the direction of diffraction, ag 1s the radius of

curvature of the edge at Qg.

The following caustic distances are obtained using Equation (D-19)
the multiple diffraction at Q1 and Q2 shown in Figure D-4,

0= 2 -2 -

® P27 rete ' (b=20)
1, = -a[1+2sine D-21
o = Pg_p.1 al is;n 1 . (p-21)
2 = = - +4 ) - 2
o = py.p.1.p = ALLtAsine] . (D-22)
3. = -a[1+6sino -23
0" " P gp-1-p-y” ZALyESInE . (0-23)
N = — + 0 -

M = 9g.p.1-0.1.2 = ALLiNsine] (D-24)

Although the diffraction coefficients are the same in each order,

the caustic distance p associated with each diffraction is not the same.

Consequently, the factor Dh . 23T%¥25T is different in each order of

diffraction. Therefore, there appears to be no way to form a

geometrical series similar to that for the broadside case.

254

P AN it vty Sute . o

FECTES

— e
{ {
i .

LT

le_i oy



1

o

APPENDIX E
THE POLES FOR A CIRCULAR METALLIC DISC AT EDGE-ON
INCIDENCE

The analytic form for the creeping wave around the circumference

of a disc at edge-on incidence 1s given by Senfor [34] as follows:

S5 (g - %)-1/2 o-10.068x, \2/3 -j2ka+i3n/s (E-1)

. QXP{"'ﬂka(l - %. (ka)'2/3 e'j“/3)}

where SCW is the scattering amplitude defined in [34], vy is a trial
value, for example, y may equal 0.8*PI. In terms of SCW, the normalized

scattering amplitude is given as
or

)
Eﬂ

2 (1 - 3717 o710-088n(ya)2/3 gnl2karidnya

« exp{-ivka(l - ,é_(ka)"zl3 e'j"/3)} , (E-3)

or substituting u for jka
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”
Eﬁ"l = 2(11%3'1/2 ul/3e=2u oI57/6 oyplmy + ;,u1/3] . (E-4) _; s
T

I1f the phase reference point is shifted from the front end of the disc

to the center of the disc

137 —_
ng - 2(1__:9-1/2 w13 & F exp[enu + : RIS (E-5) = !
If we also consider the creeping wave due to an additional time around IS

the disc, then,
12 -1/3 322 1/3
Eﬁ" = 2(1-Y)" /2 -1378 exp[-mu + T y / ]
n Z
s expl-2mu + mul/3] . (E-6)

Obviously, successive contributions need an additional phase form of

P(u)=expl-2mu + 1/3] | (E-7)

The complex natural resonances are obtained by imposing the phase

T
o e

LN A e
A et i gy
.‘..’.'.‘.’.'.'.

coherence at the starting points after one or more revolutions.

;1 In order to obtain a pole string for the creeping wave at edge on
x incidence, set

-

F 2 + ml/3 a gonn (E-8)
i

o then

?fii w3 oo s ngen (E-9)
iﬁ

rr Let

e
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z = ka (E-10)

R _

and

- z=13 (E-11)

Then,

or

13y - 23v3 = sy2n (E-13) DR

Since
/3
[ t2n i
13, e J':' " (E-14)

The principle values of (j)1/3 are obtained from (E-14) at n=0,1,2

i.e., ej'/s, ean/G’ Rl

or ejn/G ’ eJSw/G -

Any of the three principle values can satisfy (E-14). We choose

1
g=-35 . (E-15) !.._.___» |

Then,

-§Y - 25Y3 = zj2n (E-16)

or S
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v3+}zzn=o . (E-17)

The zeros of Equation (E-17) are related to the poles of the disc
due to the creeping wave mode by Equation (E-8). The zeros of Equation
(E-17) can be found by using the DPOLYRT Routine (a zero searching
routine for a polynomial) for any integer n. A pair of complex
conjugate zeros and one real zero are obtained. However, only the

complex conjugate poles are meaningful when they are substituted into

Equation (E-10) and (E-11). Pure imaginary resonances could imply

internal resonances. A 1ist of the first thirty pole-pairs using

Equation (E-17) at n =1, 2, . . . 30 are 1isted in Table 5-6.




_‘
’
4
.
.
k
.
,
K
‘1
<
g
4
.
4
,
,
1
1
-
<
L

~~~~~~

o rat bt dt e —————
L : [RRVIIRREY & S
1= PR ! 3

.

[

R APPENDIX F

- A COMPARISON OF EXACT AND APPROXIMATE BACKSCATTERED FIELDS .0 ‘ .‘ T
( FOR THE CIRCULAR DISK FOR EDGE-ON INCIDENCE

v

The backscattered field for the disc at edge-on incidence using 0 4
exact calculated data from Hodge [32] and Senior's Geometrical theory _:f:fff;
of diffraction (GTD) result [34] are compared in amplitude and phase in {~v¥1fﬁ

Figures F-1 and F-2 respectively. The GTD result is not good at low o . A

frequencies due to the asymptotic nature of the GTD approximation.

However, the amplitude plots at high frequencies, as shown in Figure

F-1, agree well except that there is a phase lag in the GTD result.
Figure F-2 is a comparison of the phase plots both from GTD and the f§=}ﬁ}fﬁ
exact result. There is a phase difference between the calculated data PO

and Senfor's approximation. The comparison made here suggests that

additional improvement could be made in the asymptotic model. S
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Figure F-1. A comparison for the backscattering data for the disc
at edge-on incidence (amplitude plot), dotted line--Senfor's
GTD mode, solid 1ine--Hodge's calculation.
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APPENDIX G
A REPRODUCTION OF ANDREJEWSKI'S NEAR FIELD DATA OF THE DISC

The normalized magnetic scattered near field for the disc is
reproduced using Andrejewski's formula. From Andrejewski, the

normalized magnetic near field (H) is calculated as

H=1+1 W00,v,000(l,v) (5 ) 0) . (6-1)
po A () £ () I

where v is ka, and the parameters are listed in the following Table
(Table G-1). Using Equation (G-1) and Table G-1, 14 data points {(ka of
0.5(0.5)4. and ka of 4.(1.),10.) are reproduced. The data points are
then approximated by a rational function in Chapter V.
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TABLE G-1

THE W, Vo, ¥2 LISTED IN ANDREJEWSKI'S DISSERTATION.

401, M0, p;00, W4 y; 03, W (y: 0,00,

263

v |AEWeir.e) v | Wi

0,5 | 1,02¢ + 1 0,3169 0,5 0,105 - 1 0,286

1 1,097 + 10,6238 t 0,469 - ¢ o'm

1,5 | 1,220 + 1 0,9037 1,5 1'25 -1 0'131

2 1,381 ¢ § 1,134 2 z'-n .t o'qu

2,5 ] 1,594 ¢ 2 1,304 2,8 s'u .1 1'”

3 1,691 ¢ & 1,428 3 o'u .1 z'oo

35 [ 1,73 + 11,5 3,5 u'o .1 2.63

4 1,803 + 1 1,644 4 u'a .1 l.”

5 2,067 + 4 1,894 H n'c -1 o's'o

6 2,204 + 4 2,091 6 31:§ -1 4'05

7 2,431 ¢ 1 2,25 7 45,86 -1 !.eo

[] 2,555 ¢ 1 2,491 [} 58,3 +1 o'sn

9 2,739 ¢+ 1 2,592 9 78,3 +1 5.31

10 12,875 + 12,727 10 104 .1 c:u

r

v | %o v |« Bl v %N
0,5 | -0,0805 = ¢ 0,0000 0,5 | 0,9005 ¢ 3 0,3039 0,5 0,1008 - 1 0,3285
1 -0,2091 = 4 0,0018 ] 0,6232 « 1 0,5268 1 0,397 = 1 0,63682
1,5 | -0,5363 ~ 10,0208 1,5 | 0,2279 + 1 0,6106 s 0,8631 - 1 1,162
.6 | ~0.5841 ~ 3 0.02%2 2 =0,1976 + 1 0,5365 2 1,445 -1 "m
2 v, 7361 = 1 0,3396 2,5 | -0,5346 ¢ 1 0,3266 2,5 | 207 - 12,488
2,3 | -0,8169 ~ 3 0,2224 3 -0,7587 ¢ 4 0,0336 3 2,72 =14 3:231
3 -0,7652 ~ 1 0,7538 3,51 0,789 -1 0,273 5,5 3,40 -1 3,87
3,3 | -0,5790 - 1 0,5499 4 =0,5769 ~ & 0,5177 4 4,185 « 1 4,797
[} =0,1998 ~ 1 0,6199 H 0,1387 - 1 0,6067 L 6,028 - 1 §,561
H 0,4157 ~ 1 0,4692 6 0,7375 = 1 0,1393 6 7,968 -1 68,419
M 0,7701 + 4 0,002% 7 0,6165 + 1 0,4613 7 10,05 -~ 110,65
v 0,4665 ¢ 1 0,5742 ] <0,0443 ¢ 1 0,6449 L] 12,33 = 113,00
[ -0,2327 + 1 0,5893 9 «0,662% + 1 0,2381 9 14,03 - 115,69
9 =0,7¢14 ¢ & 0,09%% 10 «0,66080 -~ 4 0,3913 10 17,33  =118,%0
10 0,576 =~ 1 0,4907 : :

-
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APPENDIX H
SOME TRANSIENT RESPONSES

In this Appendix, several transient response waveforms are
presented. The impulse response and the ramp response of the loop at
edge-on fncidence are presented in Figure H-1 and Figure H-2. The ramp
response of the 1oop for broadside* excitation is shown in Figure H-3.
A1l of these plots are obtained using Fourier synthesis of the
calculated spectral data for the lbop at edge on and broadside
excitation. A1l of the plots shown in this Appendix are limited to 30
transit times for the loop diameter. The actual waveform durations
are somewhat longer than those. Singly stated that circular Toop (1ike
the wire) is a high Q scatterer.

Figure H-4 shows ramp response waveforms for the circular disc at
several aspect angles (cross polarization) where 10 harmonics have been

used in the synthesis of the ramp response.

* The 1mpulse response of the loop for broadside excitation
has also been shown in Chapter V.,
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Figure H-3. The ramp response for a loop for broadside excitation.
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Impulise response for a loop for edge-on incidence.
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APPENDIX 1
K-PULSE WAVEFORM FOR THE THIN CIRCULAR LOOP

The K-pulse waveform for an object, as defined by Kennaugh [6], s
a single time-1imited excitation waveform which will elicit unique time

1imited response waveforms from the object at arbitrary aspects. One

u method for generating the K-pulse involves a weighted product of the
complex natural resonances of the object [44], {.e.,
n
el(s) « Lee Jnl [0 - ec(s-Py)y (1-1)

where ¢ is an arbitrary positive number, and Py are the poles of the
object. Then, Ef(s) has a finfte duration inverse Laplace
transformation of length (n + 1)e. Having formulated the K-pulsg {nput
spectrum, the K-pulse input waveform {s generated by the Fourier

synthesis of the spectrum. Note the weighting function,

W(n)* = sin 2ea/M . (N/2)2

where N is the number of sampled data, 1s used to avoid Gibbs

* 1f n is N/2, W(n) 1s 1/2.
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phenomenon. Since the K-pulse and res;onse waveforms must be time
VTimited, the K-pulse actually should have exactly maximum time length of
(n + 1)e as specified, these waveforms are an excellent test of complex
natural resonances Jocations (poles) deduced using approximate methods.
That {s, the generated K-pulse and response waveforms will indeed be
time-1imited if the pole locations are accurate. Some allowance must be
made of course for truncated pole products used to obtain the K-pulse.

The most simple application of these ideas involves a single string
of poles (one resonant-type mode). If more than one type of resonance
is possible the K-pulse becomes more complicated. For the loop at
edge-on incidence, resonance is confined to the creeping wave mode and
represents an excellent test.

The first 10 pole-pairs 1isted in Table 5-6 (creeping wave poles
for circular 100p) were used to obtain the K-pulse spectrum (ampl{itude
and phase) and waveform for the 1oop shown in Figure I-1, I-2 and Figure
Figure I-1 (amplitude) and Figure 1-2 (phase) are the

Note

1-3 respectively.
K-pulse input spectrum. Figure I-3 {s the K-pulse input waveform.
the K-pulse length is assumed arbitrarily to be x TAU (loop dfameter
transit time). The ringing shown 1s primarily associated with
truncation, and not inaccuracies of the poles.* Response to the K-pulse

shown in Figure 1-3 is shown in Figure I-4. Clearly there is some

slight ringing and the response waveform is not precisely time-limited.

* Unpublished results by Kennaugh confirm this postulate. Using 20

pole-pairs deleted most of the ringing.
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: (1-1) using 10 pole-pairs for the circular loop (TE mode).
The pulse duration at edge-on is confined to » TAU, where
% = 3,14159 and TAU {s the loop diameter transit time.
The data are truncated at ka of 10 because the
corresponding amplitude is small for kb greater than 10.
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confined to = TAU, where = {s 3.14159,
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274




:
¢
:
Al
o
y
R
fd
“\
N

ST

¥

LA A,
ND

-

4
't b
Y

»

Ea it ot e o

L
AN SRR Lot

RN ANDCORSRYE ANy
TR S0 (SR P -t

,

'.'. Yttt iy vt L

PR e s

[RFAERTAY AL ARR S i
e - .

)
3
8
‘t.

v e

A

h G, T -y M 2t Sl p—
RSN SN M S A -, LS A N At A TRk St i Bt S it S S SISt eny e hebc i e

Figuré I-4 {s generated using Fourier synthesis of the K-pulse output
spectrum, which is the product of the K-pulse input spectrum and the
transfer function of the target. A1l the spectra are generated in the
region up to kb of 10, where b is the loop radius. The result shown in
Figure I-4 is similar to the result shown by Kennaugh [6] for a finite
thin-wire scatterer. Also the K-pulse response is about » TAU lengths
as expected. Therefore, the pole locations found from RFA or integral
equation formulation and numerical search are reasonably accurate. More
importantly, it would appear that it is feasible to obtain K-pulse
waveforms from pole locations found from measured data.

At this stage we are admittedly not in a position to discuss the
K-pulse and response waveforms for the loop (edge-on incidence) in the
same fashion as could be done, for example, for the transmission 1ine
by Kennaugh [6]. The cancellation ideas are less direct, but
sti1l occur. A more detailed study of the loop, involving general
aspects and diffraction as well as creeping wave resonances, would

appear to be a fruitful area for future study.
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