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Page 116.

THE TROPOSPHERIC REFRACTION OF RADIO WAVES.

G. I. Makarov, N. P. Tikhomirov.

Introduction.

This work is the continuation of our inves.igations [1, 2],

which concerned direct and reverse/inverse prohlems of diffraction on

the impedance sphere of a large radius. It is dedicated to the

-. use/application of developed ones in [1, 2) methods for the solution

of these problems taking into account the heterogeneous in the

height/altitude atmosphere. For the investigation the exponential

profile/airfoil, which is a most precise analytical approximation of

tne regular component of the atmospheric heterogeneity of the Earth

[3, 5), is selected. A question about the role of tropospheric

refraction was examined by many authors, in this case were studied

different profiles/airfoils: bil.inear [6], parabolic [7], exponential

[8) and the profiles/airfoils of more general view, of which was

required only sufficient "smoothness" [9-11].

The basic content of the mentioned works, with the exception of

-I.

6h
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[7], is confirmation of the validity of the conrept of equivalent

radius [91. The conclusion of the author [7) the fact that for the

parabolic profile/airfoil the concept of an equivalent radius is

-'-org, erroneous, as this was noted in [14].

Page 117.

The most general/most common/most total analytical results, which

relate to the consideration of tropospheric refraction, are contained

in [11]. The author examined arbitrary smooth profile/airfoil, but

were obtained for the eigenvalues hard-to-visualize expressions, the

region of applicability of which was limited by high frequencies. A
question about the role o' tropospheric refraction at the low

frequencies up to now remained uninvestigated. Furthermore, both at

low and high frequencies it is important to have simple and

sufficiently exact expressions for the eigenvalues. This would make

it possible to come to light/detect/expose the possibility of the

analytical solution o- inverse problem. The study of these problems

composes the content of this work.

Sl. Formulation of the problem.

We will be interested in the distant field of vertical ciectric

dipole o;, the impedance sphere of a iarge radius. Sphere we assume by

4~.
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"the surrounded inhomogeneous medium with tne dielectric constant E,

w. hich depends only on the radius: e=e(r). Subsequently we will

consider that the dependence e(r) corresponds to the exponential

profile/airfoil of atmospheric heterogeneity. Before extracting the

formal solution of problem, which it is possible to construct, for

example, by the method of normal waves, let us agree about the

designations: spherical coordinates (r, u, p) is derived so that the

surface of sphere coincides with the coordinate surface-of r=a, angle

0 is counted off from the polar axis, carried out through the

radiating dipole (r=b, 0=0). Emitter is characterized by the current
of amplitude i, which changes in the time according to harmonic law

"e-"", and by effective height hg Let us extract now expression for the

vertical component of electric fieldi'E,in the form of the series/row

Oef the normal waves
•;2 ."-E , = '••, r ,•,-- , . ] X

=• - -[..i. _ _

4 1 ,m h (,• ,sr) k ,2 -r. ,(. . --0
v_,__

d, k7

R v. (a) sill

Here e,(r)- relative dielectric constant of the atmosphere;

e 0 =8,.85.10"•' F/m, g.=47•i0-' H/m; ko=C•j/e.A - wave number in the

vacuum, PJcOs'l-O)- Legendre's function: R,,(r)- eigenfunctions; -

eO, the eigenvalues of radial operatorL,, which corresponds to the

" . boundary-value problem

LIl . - 0 ,(,, 1)1 , (r)= n . (2 )
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dR,
i -T , -- ik,,., ((), 2) R,,(r) L2 ra, so) when m-- 2 ),where

given surface impedance of sphere; ,,(a)

relative dielectric con-...ant on its surface.

Differetial expression /--takes the form

L,-
2 -a- k__. ' • r(3)

Con: " c +ring it carried out of the condition

let us lea,- (1) to "2. standard form

1-4 -
Iw~iJIg~ f 2 -----F- - - "- -2- e A,./(b), 0re? ()

Are here intro.uced the following designations:

excitation coefficient s-+h of the normal wave

v!2v• I )(', I)
:>.-.U (vs • + I)2,+

a (k- (I
- L I--,'. '

* the high-altitude factors

., V .,. ~ / (a),z It()

, R,,, (r)
( ' - ~r- )- r2 1- (a)

The important characteristics of normal waves is their phase

speed P-,' along the surface of sphere and attenuation factor

S

.......................... -.. . ........................
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For the s-th mode we have

,., ~ (5)

it is known that the solution of transcendental eqdation

relative to the marks of addition v,.domposes basic difficulty during

further investigation of the series/row of normal waves (4) In the

present work it is analogous how this was done in [i], we will

attempt to obtain simple analytical dependences , on impedance

frequencies w and the parameters of the heterogeneity of the ,

atmosphere. In contrast to [(1 we will be interested only in the

first approximation of the Galerkin method.

Page 119.

This method is applicable upon consideration of inhomogeneous medium,

since under the impedance conditions on the surface of sphere the

spectrum of operator -r is discrete/digital, It is assumed that the

spectrum of simple. For the realization of the Galerkin method more

conveniently to switch over from L, to integral operator which proves

to be limited. Before carrying out this transition, let us rewrite

(2), conditions 1) 2) in the new dimensionless variable

Ax k(r--a).

where k k,,l' (•), and z,,(0)=s(x)_,-- dielectric constant on the

surface of the sphere:

"" .1.k %
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, IV I)

, , R,,(.x) = (7)

o, (7

"dR.
I rI (o) 2)"

i) -_ l - -.. . ,)), 2)e when [in , k 0 k, (x)EL2  10, .).

Here •- modified impedance, which depends, as is evident, from

the value of the gradient of function' (x) yon the surface of sphere,

equal to

= " d,,,, (8)

S2. Transition from operator Lr to the integral equation.

Analogous to [1] we consider the relationship/ratio

I " I-- -()
"' [ I "'-'ka

satisfied for all x. For the case of homogeneous medium the use of

*tis relationship/ratio in (7) corresponds to transition from the

"cylindrical functions to their asymptotic representations through the

Airy's functions. The possibility of this transition for the

* examined/considered case ka>>l is proved in the work of V. A. Fok

[12]. Introducing certain initial approximation/approach , to

Z.•i unknown eigenvalue "sand taking into account (9), let us write

-.-.
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equation (7) in the form

"I.,R, (x) +-1. (x) = 0, (10)

where

x - v -- ' ('t) -. - +:,4 (12):.•'-" •/ '

(ka.)2 k

Page 120.

To differential expression (1i) is related the linear part of
func io n Cr I ",,,0) {

function ,moreover before x is set symbol •,-- Symbol 6 is10

introduced with that target in order not to write two different
0• (I)

equations for the cases, when to L, one should carry ,m(-- and when

this to make inexpediently. For the reduction of recording (11) (12)

it is convenient te introduce the designations

., ( ,, ..- I

- ka) 2  
't#;.)2

and the new variable

vAt t (na") X-I . (13)

After this we turn operator L,, by which we understand the operator,

" formed by differential expression (11) and boundary conditions 1)*,

2)*, and we obtain the integral equation

h,, (y)+ A [AR.,(t) + CR, (t) + HB?,, (t) 0. (14)

.4

•-.--,-- -.- , - -. " - " - .-. . . .. - .- .:-.- ,"-" - --.- .... . . . . . . ..""" "v -". ",, - A' , ~ .. ,' .,. %- "_'- , • _',,."' •': ,' " "• , A,( • ' e %a'" .•'. •,' •• :% " .' -• - • . .. . ... A A"','"'''% .• A N " .'- A.3"•°,. -' .'
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Through A, C and B the integral operators

A "R,, (y) - " (y t) R, (t) d(. (151

"2'% I R,

P.,.yBR) y- - -(Y ) k, A(y, t) ( (t) R(t)dt, (17)

are designated. Furthermore, the nucleus

•v i I,

- (y) [o- U , (y ) -- .,. (Y)], (19)

" (70 + I ,•:'[[[ • -_- ,12.0)
/it Ir,) + q'ti (T,)

"u, and u, - two linearly independent solutions of the equation

.+ y11 = O, (21)

moreover u,(y)EL"IL, V , and u,(y)=-u,(y).

-% Page 121.

Function F(t), entering in (17), is determined by the equality

n(t) = - I , . (0) .( 7),(t -_ -
, -() (0,)

,.. V m (0a-,•(22)

Instead of the duct/contour of integration ,, (Fig. 1) let us

introduce the equivalent to it I.' (Fig. 2), on which function u,(t)

'O0.

-------------------------------------------------

-................
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with t4- exponentially vanishes, providing the limitedness of

operators A, C and B and, consequently, also the applicability of the

Galerk.n method for find'ng the eigenvalues I,. of equation (14).

S3. General/conunon/total expressions for the eigenvalues.

Without defining concretely thus far the form of the function

W,,x),we will obtain general/common/total expressions for eigenve'ues

v. in the first approximation. We search for `tin the form

S=ka (I4 (23)

and in the same form we assign the initial approximations/approaches

Subordinating , to condition a" 1 we will have

t r - t (25)
S 

1

Setting for itself as a goal to obtain sufficiently precise and

simple analytical dependences t, on the parameters of the problem, let

us examine only two limiting cases - (I)-, when !qfl<< and (II)-, when

1q >
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S -

Ret Ret
71/3

is

Fig. 1. Fig. 2.

mo Page 122.

*1.-

"Without repeating those given in [11 reasonings relative to the
selection of initial approximations/approaches t' (j=O) for the case

"-(I), j= for the case (II), let us recall their definition:

.U; (- 0= , (26)

(s=O, 1, 2, ... )

U., (-. t;)=o. (27)
" . As the coordinate element/cell z0 we select function u1(y), which

satisfies zondition (26) in the case (I) or (27) - in (II). Then in

the first approximation, for the eigenvalues we obtain
.-. • . _ •/ _ (,*,. ;;,)-! (flu,, 7,

t- ts (A,,. ,7) +(f,,. ,) (28)

Let us turn to formulas (18)-(20), that determines nucleus K(y, t).

O It is not difficult to note that a is the high parameter both in the

first and in the second case. Actually/really, when I•<< we have

.,u, ..- ,",) ,
(2!))

q)

p-.%

,,•:<':; ,.,.~ ~. -_..... .. . .. ... .- . . .. ..... ... . . .
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"moreover the factor before 7- the order of one for several firsts 4.

"With Iq'l'(3

-. -, ((-.) _

consequently, and in this case joI>>!, since the factor before ' the

order of one. Taking into account this, K(y, t) is simplified,

disregarding in it the members of order 1/a in com-arison with one.

We will obtain

K(y, t --7,i( ,.u1 (f) with all IEI'E • (31)

Then formula (28) can be written thus:

• ..2 i ± ,,(, . (32)
... :..:Here

..j" uu (t) dt - ;,d'4(, . ") . (,33)

- ka-t''J (t-- 1") u1(t)dt.•. 2 )(.4)

.•j:.:. b,--,,,s (t) 7 (t)it (~M )

*- Page 123.

From the designations

*~~~ ,.= ------ = ka (
"2a-( )
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introduced earlier it is evident that under condition a•'NI, which is

"con'sidered carried out, Taking into account this, expression for

let us wr'.te in the form

(k""wh rI, - (36)

where i+•,(O) k•z equivalent radius, which is equal to a radius
en, (0) '2

"of sphere a for the homogeneous medium, when (0)-=. In this case
.. -Relatively ', we also assume that 2'I After returning to

>""formulas (32)-(34), we see that

,--T- " (37 )

Second term in (37) is negligibly small in comparison with one for

seve.al first numbers s by force '">I, therefore subsequently we will

assume that
+ =(38)U" Formula (32) taking into account (29) (30) and (38) is converted to

the form for (I) case

-., *•- ,4*'

a,,t ~ - -(39)

i. - I ~(40)

During the conclusion/output of these relationships/ratios it is

taken into consideration also that factors x, and".,which appear

before first terms in (39) and (40), are in effect equal to one [1].

It is obvious, first term in (39) (40) corresponds to the equivalent

"uni.form" problem, in which instead of radius a and impedance "

figure equivalent radius a, and modified impedance "..

...0-..-...-;?,-... _.:.? . ... ,,,,. - . . . . , . .- . . . . . . , . . ,. . ,.. -. . -.
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b

"Component/term/addend -_,- in (39) (40), generally speaking, appears as

a result of a diiference in profile/airfoil l',,(.r) from the linear;

however, it is not equal to zero even for the linear profile/airfoil.

The estimation of this component/term/addend with linear function

!.,,X) is conducted in the following paragraph. At conclusion of this

paragraph let us note that if we are interested in the wider range of

"chance in parameter q'.then instead of first term in (39) (40) it is

possible to substitute the appropriate expressions from (2], obtained

in the second approximation/approach of the method of moments/torques

for the homogeneous medium. For this should be use.d formulas (8) and

(9) from (2), having preliminarily replaced in them q by q..

Page 124.

S4. Lineai profile/airfoil.

For the linear profile/airfoil the proof of the concept of an

equivalent radius usually is conducted at the level of differential

_£ equation (7). In this case the assumption about the possibility to
disregard/neglect the so-called derivative of Schwarz V/m)t.d, '/t,(X)

-"ubstantially is utilized.It is considered also that upon transfer

O• from the problem with the unhomogeneous atmosphere to the the

equivalent to "uniform" the impedance of sphere does not change. In

actuality in the equivalent "uniform" problem must figure the

•0;

%-...................o- .. . -.- '
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modified impedance, which can ccnsiderably differ from t.by very low

* frequencies. It is of interest to rate/estimate the effect of the

"-'-' named factors on eigenvalues I. Since for both cases (I) and (i) in

question in the distant zone the field is determined by one normal

wave, to ",nich eigenvalue t. corresponds, we will obtain analytical

expressions only for this eigenvalue. For the same reason and for the

exponential profile/airfoil we will be interested only in zero

eigenvalue. Considering that

e. (x E m (0) + E. (0) X, 4'

entire function F, (x) is related to operator L, (11), for which we

assume/set 5=1. In this case we have

a,=.1+ a (42)

For future reference it is convenient to introduce parameter ,.,

* according to the formula

e-"m (0) (43)t.'-., 1,=- (, •( al, (43)

We will consider it its small in comparison with one: hi.II<i. Under the

conditions, characteristic for the earth's atmosphere, this

parameter, for example, has a value vi:-=O.OOG3 at the frequency f=5 kHz

.e and with an increase in the frequency decreases, vanishing with f4-.

*.._. Let us examine now coefficient of b 0 , which determines second term in

• .(39) (40) with s=0

-earl

Shb,- = Il() • )dt (44)

%,"- 
-"•

- .* . . . .-..... i k hr"~-
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Page 125.

Here
3 .1 (,V712*T (• - -- 4- (,II - , t  -T 1 (,,,i)

Let us recall that I-t1 (/-, To express integral (44) through

the known functions is impossible, but it is possible to calculate

approximately it. For this we will use smallness T:, and fact that the

basic contribution to the integral gives region small t. This follows

from the character of the behavior of function u,(t), qualitatively

depicted in Fig. 3, where X - certain complex coefficient.

Decomposing/expanding F(t) in the series/row according to degrees I,-

it is not difficult to obtain correction to eigenvalue t, due to

Schwarz's derivative. We will be restricted to the dominant

relatively ija term

A, I+ 40 (v)I. (46)

Let us turn now to the expression for @Taking into account (8) and

(43), let us write it in the form
~ 9

q q, + (47)

where

q

-. ... . . .. . . . .
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As is evident, q) in the accuracy corresponds to the concept of an

-. equivalent radius, since it is obtained from q for the homogeneous

"-" medium, replacement of radius a on a') Component/term/addend -•-' in

(47) is correction to the concept of an equivalent radius because in

the presence of inhomogeneous medium instead of impedance &I appears

modified impee.ance -

'ie.5 1*-*'

- .-
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X.U, (t)

"00

Fig. 3.

Page 126.

It is clear that this component/term/addend can prove to be essential

only in small ones ,q, We will obtain the resultant expressions for

t,, after substituting (46) (47) in (39) (40) with s=0

(z)~ ~ 0o . -- 'L+• a, •+o(,i 09)
(0) to t "- 9 .U

Thus, even with the linear profile/airfoil the concept of an

equivalent radius can be considered justified only in such a case,

when in (49) (50) the terms, which contain parameter i: are

sufficiently small. Let us rate/estimate their effect on the phase

speed and attenuation of zero normal wave. For this let us examine

the linear profile/airfoil, characteristic for the lower layers of

the earth's atmosphere

K- ~(5IEm (x) 1 -+- k. x (
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N ..

with a=6.4"10', H=7.4 km.

Latter/last component/term/addend in (49) (50), that appears due

to Schwarz's derivative, obviously, does not affect fading; it it is

possible not to consider, also, during the calculation of phase

speed, since it the second order of smallness in comparison with the

contribution due to the modified impedance. For the certainty we

assume/set Y-O. Table 1 gives values -- and do)/k without the

account and taking into account second term in (49) for several

frequencies.

- - -. --
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'Table 1.

fKZ14 - ~ - - -_ _ _ i 6 j ,i j

0.5 o,430)2 0. 12 6 82,6
5.0 0,275%11 6)25$i 4.042 4,92750 0.19JYY 0.I :398 110,617 1 u,()

Note: a) without the account; b) taking into account second term

in (49) for several frequencies.

Key: (1). kHz. (2). s.

§5. Exponential profile/airfoil.

For the exponential profile/airfoil we will examine the cases of

hign and low frequencies separately. The reason for this separation

consists in the fact that eigenvalues ', for tbese cases substantially

differ from each other. It proves to be, and this it was possible to

assume, on the basis of the physical considerations that at the high

frequencies the eigenvalues for the exponential profile/airfoil were

close to the appropriate eigenvalues for the linear profile/airfoil,

and on the low frequencies they were located near the eigenvalues of

problem with the homogeneous medium.

Page 127.

+~~~~~~~~~~~~~~~~~~~~~~~~~~. .'. .-..-. -. -. -..• ..-.-... . . . -,.. . . .. ... ...,- •. ..-, • . .- . .- - . .- . . .-. .. .. .. . .. . .' ., ... .... +.- -. -. . . , . ..c. .*'-. . .. - .. . . . . . .
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Therefore it is necessary to introduce different initial

approximations/approaches v for the high and low frequencies in order

already in the first approximation, of the Galerkin method to obtain

sufficiently precise formulas for unknown eigenvalues v,.As already

mentioned in the preceding/previous paragraph, we will be restricted

to the investigation of zero eigenvalue v,, moreover let us

disregard/neglect Schwarz's derivative. Based un the example of

linear profile/airfoil it was shown that its contribution to the

eigenvalue of second order of smallness in comparison with the

contribution of the modified impedance.

High frequencies. For the high frequencies the linear part of

function %,,.(). given by the formula

sm(x)== I -. e , (52)

it is carried to operator L,(11), assuming/setting 6=1. Coefficient

b. in this case determines correction to eigenvalue t, due to a

difference in the exponential profile/airfoil from the linear and

takes the form

/,o1 . (t• u2 (et)t' :) • •.t -,) dt, (.5:3)
44~

where

S.--, • = - )"'.
% all

4
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Equivalent radius a, is determined by formula (42). We will consider

high those frequencies, with which is fulfilled the inequality

In order to represent the real values of parameter "L: let us note that

under the conditions of the earth's atmosphere, when a26.4-10-,

H=7.4 km, we have o 0,o(( at frequency f=10 MHz. With an increase in

frequency t, it decreases, vanishing with f-•. Three times integrating

"in parts first term in (53) and utilizing smallness of parameter t' 9'it

is not difficult to obtain the approximation

•X I 0 - o(,)1. (54)

For conclusion/output (5e) 'ecursion relations (fl8)-(rIlO) of work T11

U were used, and it is taken into consideration, that u,(-Y0 )'u' 2 (-Y7)=0

. in view of the selection of initial approximation/approach. It is

obvious, with w-- coefficient b 0 -0, therefore, with w-- disappears

the d~fference between the exponential and linear profile/airfoil.

This bears out the fact that only the lower layers of the atmosphere,

where the profile/airfoil is close to the linear, rlay main role in

shaping of the distant field of high frequency.

Page 128.

Substituting (54) in (39) (40) and taking into account (47) (33), we

come to the final formulas for eigenvalue t. in the case of the high

4.,. -...-
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frequencies

(1) to + too__ 0 (1, .,) (55)
+ +-I + 2+4

(,)tt11) . .7 (tr,) 2i,. [1 + 0(jL,)!. (56)(ll) ~ q Io -t - "-1i-.- 2//I 3

Table 2 gives formulas (55) obtained with the use of the value of

phase speed and attenuation of zero normal wave when 6g=0 for the

linear and exponential profiles/airfoils.

Low frequencies. Assuming that at the low frequencies the role

of the atmospheric heterogeneity of exponential profile/airfoil is

not so/sii-h essential as on the high ones, we will search for

eigenvales in the vicinity of the eigenvalues of problem with the

homogeneous medium, in which k=ko. For this of the function , to

operator L, (11) one is carried, assuming/setting 6=0, and by k

everywhere we understand ko. Then coefficient b0 , which determines

the effect of tropospheric refraction, is written as follows:

h e "12 (t) dt. (57)

Here

112

kof! " 2  "

Low we will call those frequencies, with which is fulfilled the

inequality

U i":1. (.5O)

6rq"
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For the earth's atmosphere at the frequency f=5 kHz we have g=8.94.

"- With the decrease of frequency the parameter g increases. Three times

integrating in parts (57) and considering as that carried out

relationship/ratio (58), easily we come to the approximation

-.-

9.-.:-.

S....

0"
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"Table 2.

,- -a j 6 a u 6

20 0.02160.2 0.021741 79,41 78,16
50 ,0,016008 op 0 16064 106.47 106.84

"Note: a) for tht: linear profile/airfoil; b) for the exponential

profile/airfoil.

. Key: (1). MH.z. (2). s.

Page 129.

It is obvious, with the decrease of the frequency, when g-,

coefficient b,-0, and heterogeneity of the atmosphere in this case

- becomes apparent only through the modified impedance. After

substitution (59) in (39) (40) we obtain the approximation analytical

formulas for t., valid at the low frequencies

-,,-+"1-I + )0"°~ - [1 +o(÷ 1
S(11) to--to, = q . IL. (6.-. _- q

During writing (60) it is taken into consideration, that in this case

•. q'--q-nsince a,--a0. In formulas (60) (61) term o(l/g) is small in

"comparison with one not only because g>>!, but also due to the

"character of the behavior of integrand in the rejected integral. This

SW-.-0

s~ e --
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provides applicability (60) (61) in the wider frequency region, when

1•>I.

56. Solution of inverse problem.

In our work [21 inverse problem for the impedance sphere, which

is located in the homogeneous medium, was solved by amplitude method.

The use/application of this method for solving the inverse problem

taking into account the atmospheric heterogeneity of exponential

profile/airfoil composes the content of present paragraph. We

consider source and receiver as those arranged/located on the surface

of sphere and as in [2), we will solve problem under the assumption

of single-modality of the propagation, when

iw, ,h• - e e oe/./. (62)

Here x - given distance from the source to observation point

ka I / a \2'IIka\ l (63)

R Taking the ratio of amplitudes IE,(x1 )l and IE,(x 2 )1. measured at

frequencies ,, at two diverse points x, and x 2 , we will obtain system

of equations for the determination of the electrical parameters,

*0 which determine impedance, and the parameters of the heterogeneity of

the atmosphere

.- "Irn t pk', (,,), = 'I ,I (,',) (i. k - I, 2, , N ), (64)

.- A A
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where

(D12(wgi) In irnii ( 1, j (63)
(k)' sino102 /.1 V 2)

and ph- unknown parameters, whose number is equal to N.

"Pace 130.

With known analytical expressions I,,[);,. t,,i] the solution of system (64)

will not compose labor/work and can be obtained, for example, by

Newton- Kantorovich method [133. The necessary expressions for t 0 are

obtained in the preceding/previous paragraph in two limiting cases

"(I) and (II) both on the high ones and at the low frequencies. If

necessary it is possible to utilize also formulas (8) (9) work [2),

as already mentioned earlier.

SHere we will pause it the case, when system (64) admits

analytical solution relative to parameters a and H. let us examine

the frequency band, bounded above by condition L>-,I, and from below by

the frequencies, at which still it is possible to assume/set q:--q, so

"that

o q L
to to; a ') (66)

In the lower part of this range with A>>l the effect of tropospheric

-O refraction is negligibly small; therefore in this part of the

.. ..... ..[....
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spectrum it is possible to determine the impedance of sphere 1%.

counting the medium of uniform. This problem is solved in [2];

therefore we will consider impedance as the function of frequency

known. However, for determining a and H we will use the higher

frequencies of the range in question, when the effect of tropospheric

refraction is noticeable. Taking into account (66) from (64) we

obtain system of two equations relatively a and H

+ 11 0,) (,u,) Ui= 1, 2). (67)

Function ?(p)() is determined by the equality

112

and it is considered known. Parameter 'w>,-=-- •=Thk. The solution

of system (67) is located elementarily, and we immediately extract it

H= 1 __1 1•"- 1-/ (69))

211 q"III
2,2"

2 (70)
Hi

1

For the reduction of recording the designations

•T (a,,,) -- -i, •(,,,) - ,. (71)

are here introduced. In formula (70) the selection of mark i,

naturally, does not play role.

Page 131.

ý7-
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Pag e 2.41.

REFINEMENT OF BOOKER'S EQUATION FOR CYLINDRICAL LAYERED INI-OMOGENEOUS

ANISOTROPIC MEDIA.

V. M. Vyatkin.

The known equation of Booker [1) is obtained for the case of

plane-layered anisotropic medium. But the real ionospbzere possesses

final curvature and terrestrial magnetic field is heterogeneous.

Therefore it is of interest to refine Booker's equatioi- taking into

account. these two effects. We selected the cylindrical model of the

ionosphere, which makes it possible in the first approximation, to

consid~er the curvature of the real ionosp~here.

-... Let us introduce cylindrical coordinate system (p, cp, z) and we

will consider the ionosphere as layered inhomogeneous on p the

anisotropic medium, which occupies the region of space with p>>b. We

consider sumsequently eart.h's magnetic field heterogeneous, which

depend only on p (heterogeneity of field in the directions, the

I.I

tangents to the earth's surface, as are shown calculations, can be

disregarded/neglected).

-4"
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The general/common/total equation

rot ro: E - " (')

where k 0 =wVe/,g - the wave number of vacuum, is initial in the study

of the problem about the propagation of electromagnetic waves in the

anisotropic media, - tensor of the relative complex dielectric

"constant of medium.

The solution of equation (1) we will search for in the form of

series/row according to the reverse/inverse degrees of ko.

Substituting this series/row in equation (1) and equalizing the

coefficients, which stand in the eaual degrees of k0 , we obtain the

chain/network of the engaged equations, the first of which takes the

form

[v iri. E j Mi-r-E,- = 0. (2)

It is not difficult to show that in the case of cylindrical

* layered inhomogeneous (on p) anisotropic medium interesting us the

- vector AT has components

J. v-=( -i; 'C; C2 ), (3)

,-

where C,=cos Yo and C,=cos a, and a has the sense of the angle

"" between the direction of wave and z axis; -. can be considered as the

- angle, formed by zonal harmonic [2] (by spiral wave) of order v with

the direction, by tangent to the cylinder of radius kop,(cos

,2

3'C

.=C

-°,'

-' " . -.-. . ". .-.-.---.. .".." . • '.-. .•.,-.- ."-" . ", • ". '.. , "- _,"•-." , -,.- ',.._-,.,,,' .,- ". .; •,"•' ."' , ..
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7y=v/k 0 p.); p. - coordinate of the point of the position of the

source, which we will assume/set by that arranged/located lower than

the boundary of ionosphere (po<b).

Page 142.

For value a4l/ap=q(p) from the condition for existence of the

nontrivial solution of equation (2) the equation, which is the analog

of Booker's equation [1] in the cylindrical case

F(q) =aq'+l pql+q 2 q+ =0. (4)

is obtained.

Let us note that equation (4) is obtained from "Cartesian"

biquadraticof Booker [I] by replacement of C, by (p,/p)C,, which

follows from comparison (3) with the expression for components vir in

the flat/plane case. Therefore expressions for the coefficients a, f,

7, 6, e of equation (4) take the same form, as in flat/plane case [1]

with replacement of C, by (p./p)C,.

If we in the formulas for the coefficients of equation (4)
assume -,--:- + -- m where •=•/a (a - radius of the earth)', and to

consider that terrestrial magnetic field in the first approximation,

it carries dipole character, so that at the height/altitude • above

the earth's surface

N- 
---
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"where 7=1/a; II2,- field on the earth's surface, then expression for

the coefficients t, j3, -, 6, e with an accuracy to the values of

order n they will take the form

U= U2U_ -- Y_)-- (UV2 - I2YI) -j- 6y1 (U- IX), (6)
, =2XIY, I(Cm + C2n) - -q(7Cm +6C 2n)), (7)

2"- -- X) -- 2 xY] ± 2XU(U-X)+

"U2+ XY 2 1- + (CXm - IS Cn)'- -
",iCf [2U2 (U- X)- 2UY• + It,] - 6",S2 a (2U - X3') -

.-. - 2",XYi. Clm (C,m-C 2tn)+3 --I +(Cm + C~n)211, * (8)
=- 2XI Y(S'I+2-rC'0(Cm .-- C~n) -- S(7Cim+6Cn)), (9);''"" , --=((U -- X) [ U2 (.S-+-4 "CS) -- 2XU (S2 4- 2Y1eC) +} X=j +

"S2+ S (X 11 - (Cm + CAn)' +- 2-C,m (C,m + C~n) -
-" -- 6, I -- tc,,,, + Cn I - Uy (S2 + 2•c. 671S 2)I -!-

+ 2 yc2a IX It -(C.m -t- C.,1)1- US21, (10)
where

2 S2= C•-; C2 =C2±+C; s C, y-C2
2

.,,.-the value of gyrofrequency on the earth's surface X= ",2

plasma frequency; U==,I +i-,-- effective collision frequency; i,

m, n - direction cosines of vector with the axes of coordinates p, o,

Z.

FOOTNOTE 1 Let us note that in work (3] the coefficient i, which

considers the final curvature of the ionosphere, derived from the

"geometric examination, is obtained erroneously (2ý/a instead of s/a).

0--.
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ENDFOOTNOTE.

Page 143.

From the examination of equation (4) it is possible to obtain

the information abou'. the bias/displacement of the roots of Booker's

equation [I], caused by the presence of curvature in thE ionosphere

and by the heterogeneity of terrestrial magnetic field. Any simple

analytical expressions for this it is impossible to obtain, but

qualitatively it is possible to say that the values of the roots of

equation (4) decrease in comparison with the flat/plane case, but the

effect of the final curvature of ionosphere and magnetic bump of the

earth.'ground on the height/altitude noticeably is manifested in the

region, where approximation/approach WKB becomes inapplicable.

In conclusion I express deep gratitude to the docent of the

"departmcnt of radiophysics of LGU V. V. Novikov for the granting of

theme and direct management!manual with the execution of this work.
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