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ABSTRACT

-/ An algorithm is presented for the design of systolic

arrays that implement single-input single-output time-
fnvariant digital filters. The algorithm is then specialized
to the case where the realized array consists only of
orthogonal rotational modules and delay elements inter-
.connected in such a manner as to render the circuit
pipelineable. ¢.—— =~
1. INTRODUCTION

Consider a single-input single-output linear time-
invariant discrete-time system that allows a transfer
Junction description:

2N‘z"“ N(z)
H(z) = —= = m
‘ ™+ ﬂD,-z"" D(z)
)

The system is said to be strictly stable if the function,
H(z). in the complex variable, 2, is analytic on the unit
circle, 71, and in the regon, E. where, 1z 1> 1. 1n other
words, the zeros of the palynomial, D(z) should lie in the
region D, where, |z | < 1. Lstrictly stable function is said
to be a Schur function {f it has magnitude less than or
equal to unity on 1.

In this paper, the transpose of a matrix is denoted by the
superscript, T, the complex conjugate transpose by an
over-bar, and the para-Hermitian conjugate by the sub-
script *. The para-Hermitian conjugate of a matrix rum:--
"tion 18, of course, defined as:

Afz) = A(1/%)

Given a transter function, H(z), the synthesis problem is
to obtain a hardware implementation of H(z). The qual-
ity of such an implementation using VLS technolegy is
then dependent upon the following criteria:

(1) Modularity: The circuit should preferably be a regu-
lar interconnection of sitrular processing elements.

(2) Pipelineability: The maximum throughput achiev-
able should be independent of the number of pro-
cessing clements, n, in the array

(3) Uniformity. It is desirable to design VLSI cireuts
that can implement digital filters with a variety of
transfer functions of different orders by mereiy
changing certain parameters of the circuit.
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(4) Communication: Communication between the pro-
cessing elements should be restricted to immediate
neighbours. A circuit that is modular and has only
nearest-neighbour links is said to be systotic [2].

(5) Numerical Stability: There are certain undesirable
phenomena, e.g., limitcycle and overflow oscilla-
tions, associated with the finite-precision implemen-
tation of linear systems that have been well-studied
in the literature[3]. The circuit should be free of
them. It should also be insensitive to slight varia-
tions in the multiplicative parameters in the imple-
mentation.

In the next section, a systolic array configuration is pro-
posed for the circuit that. in general. satisfies properties
(1).(3).(4). The pipelineability of such an array is con-
sidered and it will be shown that every strictly stable
transfer function can be realized in several diflerent

ways that ensure that all the above desirable criteria are
met,

2. BI-DIRECTIONAL LINEAR SYSTOLIC ARRAYS

A systolic array is said to be bi-directional if every pro-
cessing element receives input from and provides output
to each of its neighbours. (The external environment is a
neighbour to the processing elements at the corners of
the array.) The array is said to be linear in operation if
each processing element performs only linear operations
on its inputs. It is said to be linear in configuration if
each processing element has only two neighbours. A sys-
tolic array that is linear both in operation and in
configuration is linear. Such an array is time-invariant
if the z-transform of the vector output sequence, ¥ (z),
of its i processing element is related to the z-

transform of its corresponding vector input sequence,
Ui(z), by:

Yi(z) = E(2)U(z) (2)

where )'.‘.»(z) is some rational matrix function of z, neces-
sarily square, such that L, (=) has only finite elements. in
order Lo ensure causality. A linear systolic array is said
to have a ternary signature if it has either (a) two wires
flowing from right to left and one from left to right. or
(b) vice-versa. (See Fig.1)

The intent of this paper is to present a general {rame-
work for designing such arrays so that when they are
suitably terminated at both ends with constant mult;-
plier interconnections, they are realizations for /(z).
The reasons for choosing ternary signature arrays as
opposed to binary signature arrays are the following:

A pipelined orthogonal realization of #(2) in a binary
signaturc array requires, 1n general, at least 2n delay
elements and (3n + 1) elementary Civens rotationat

.
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modules for its implementation.(See [1]). On the other
hand, ternary signature arrays with n delay elements

and (2n + 1) elementary Givens rotational modules will"

be derived in what follows. Another reason is that even il
we synthesize the fllter in a binary signature array with
the attendant increase in hardware requirement, the
speed at which the array can process the input sequence
is only haif the speed that is achievable using ternary
signature arrays. Clearly, there is no tradeoff here.

Consider a linear time-invariant systolic array with a ter-
nary signature as shown in Fig.1. Suppose that for some
unknoumn constant termination at one end of the array.
say the right end, the input to output transfer at the left
end is given by: (with reference to Fig.1.)

l_[zoz(l)] - 1 Ip@

= = sy hEual) = @) uate) @

The function, ¢(z). will be referred to as the generating
Sfunction of the systolic array, for reasons that will
become clear in what follows. The degree of the function,
¢(z). is the polynomial-degree of @(z). assuming that
the greatest common divisor of @(z), P(z). R(z) is con-
stant.

For a given transfer function. H(z). there are several
possible choices of ¢(z). Suppose that the desig ur

. wishes to use

u(z) = kg (z) + kayeaz) (42)
y(z) = yolz) {ab)

such that the transfer function from u(z) to y(z) is

H(z). Then, ¢(z) should be such that P(2).Q(z).R(z)
are polynomials satisfying the relationship:

R(z) = N(z) (5a)
k,Q(z) + kaP(z) = D(z2) (5b)

Clearly, the choice of P(z) and @(2) is not unique. More-
over, the designer might wish to use different relation-
ships in eqn.(4) in order to obtain the desired input and
output termmals and the nonuniqueness is thus further
enhanced.
We will get back to this problem of the choice of the gen-
erating function later. For the present. assume that »(z)
is known.
The realization procedure, then, depends upon the solu-
tion to the following problem:
Given the (2x1) vector generating function, 3(z), of
degrece, n, obtain a linear time-invariant svstolic
array with n processing cilements and the constant
term:nation at the right end of the array in Fig. 1.
such that the i1nput to output transfer at the left

end of the array is p(z).
The following algorithm solves the above problem:

The Systolic Realization Algorithm:

It is required that the systolic array in Fig.1 with the i**
processing element defined by:

{!lu Wiz y-a}r = 21(2){1‘11 U2 u\:!}r (s)

is such that when the right end of the array is ter-
minated with

r
{u(u-n.z u(n-l).:!} = galz)yin-na )]
the signals at the left end of the array are related by:
T
[Uoz yc:} = p(2)ug(z) (8)

and that ¢, (2) in eqn.(7) is a constant vector.

Step 1: [nitialization: Let ¢e(z) = #(z).

Fori =0,1....n~1,do

Step 2: Choose the complex scalar constants, a,.8,. the
(2%2) nonsingular constant matrix, G, and the (1x2)
constant vector, mT. and obtain (we wll restrict these
choices later in order to ensure that the array is pipe-
lineable and orthogonal. For the present, assume that
they are {ree parameters subject to the designer’s fancy
and the equations below.)

Gle(z) - 0. (8]

vledz) = ¢i(al)]

such that the (3x3) constant matrix, Q,, defined by:

winlz) = p.(2) (9a)

I_, 7l
-~ |~ ‘)‘(GJ L
e‘ - l_ ﬂ‘\(ﬂl C\ (Qb)

is nonsingular,

Q, #oo (9¢)
and
pila) 2 (B) 7= (9d)
and p,(z) is chosen to be:
z - a,
PG = TSN as e (9¢)
plz) =2z~a. @ =ma = (9
Step 3: Form
i) 0 -ulta(a) = (8 WG
R Y g |
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end.

Comments: The constraint (9d) imposed in step 2 can be
relaxed in certain cases. Details can be found in {1]. Con-
straint (9b) is necessary as shown below, and (9¢} is
required to ensure causality.

Proof of the algorithm: Using eqn.(10) in eqn.(6). it can
be shown, after some simple algebra, that

[y“(z)l [\’-l(z) 0 ol [“-n(z)]
A2 = r 0 1 o] 0, lya(z) (11)
oz) 0 01f fua)
Now, if,
1
[Fﬁ:f:?] = pileune) (12)

Le.. @(2z) is the generating function for the i sub-
array that is the cascade of processing elements that
are indexed i or greater in Fig.l., then, by substituting
eqn.(12) in eqn.(11), using the defining relationship in
eqn.(9a) and the interconnecting equations displayed in
Fig.1. we have p,,,(z) is the generating function for the
(i +1)» sub-array. .

The assumption that O is invertible ensures that the
converse of this statement is true, i.e., if g;,,(z) is the
generating function for the (i +1)® sub-array and if the
i processing element has a transfer defined by
eqns(6,10), then ¢(z) is the generating function for the
i» sub-array. (The invertibility of O, is necessary in
order to state this [1].) Hence, if the right end of the
array in Fig.l is terminated according to eqn.(7). then
the input to output transfer function at the left end of
the array is (2 ) as desired.

It is easy to check that if p(z) is of degree, m,, then,
#,+1(2) is of degree n;—1 at most. It has been proved in
[1] that the degree is exactly ny~1. Eence, ¢a{z) is a
constant vector.

Comments: A remarkable property of the systolic reali-
zation algorithm is that aimost every known canonical
realization of digital filters, e.g., controller, controllabil-
ity, cascade. paralle! [5], all the different versions of the
Gray-Markel lattice filter{6], wave-digital translations of
passive analog Foster and Cauer canonical forms [7]. the
orthogonal digital filter realizations of Deprettere et
al[8]. to name a few, can be obtained by certain choices
of the various parameters used in the algorithm. More-
over, for every realization obtained using the systolic
realization algorithm. there is a dual realization that can
be obtained using the duality theorem in [1] eg. the
observer form realization is dual to the controlier form
realization, etc.

Propertics of The Systolic Realization Algorithm:

Some relevant properties of the systolic realization algo-
rithm are given below. A detailed discussion of these and
other properties together with their proofs can te found
in (1].

(1) The systolic array obtained by the algorithm s an
gencrai a non-computable cascade. lHowever. it can
always be made computable by executing bd.linear
transformations on the funcunns, ¢(2). at eace step of
the algorithm.

(2) The array leads to a computable cascade as .Li<af
(13

a, = 0 By = m, for all 1

Thas resuits inpf{z) = 2z lor ail

(3) Pipelineability: The array leads to a pipelineable
implementation if a;, 8, are chosen as in eqn.(13) [1.9).
The throughput is maximum, all other factors being the
same, if and only if this choice 1s adhered to[1]. Such

arrays will be referred to as completely pipelineable
arrays in what follows.

3. COMPLETELY PIPELINEABLE ORTHOCONAL ARRAYS

The systolic array in Fig.1 is said to be orthogonal if
every processing element can be implemented as an
interconnection of orthogonal rotational modules and
z~! blocks. [If, in addition. the array is completely pipe-
lineable, it is a completely pipelineable. orthogonal
array. It has been shown in f1] that such arrays have
very good numerical properties and therefore, satisfy ail
the desirable criteria mentioned above for VLSI imple-
mentation.

A necessary and suflicient condition for a completely
pipelineable array to be orthogonal is that the constant
matrix, [y, defined by:

T.(z) = diag[z-' 1, 1] (14)

is an orthogonal matrix for al! i. Using the definition of

orthogonality and eqn. (10), this reduces to the condi-
tions:

GG = [I = p(=)a(=)]"! (15a)
ﬁ‘rv‘f = p(=)Z (=}1 = Zel=)g(=N"" (15b)
e (0)7:(=) = 1 (15¢)

Eqn. (15) is solvable if and onty if !g(=)'<1 and
eqn.(15¢) 1s true for ¢,(z). The systolic realization algo-
rithm then reduces to the Schur algorithm{10}].

The question that now requires to be addressed is the fol-
lowing: For what chowces of the generating functisn, can
the above equations be salved for ail 1. Theorem 1,
stated below, a special case of which 1s orwginaily due to
Schur{10], clarifies the situation:

Theorem 1: A completely pipelineable orthogonal array

exists for any generating function, ¢(z), if and only 1f:

[a] ¢(z) ts composed of scalar rational Schur functions
and

[b] ¢(z) satisfies the equation:

o?
1~9e(2)e(z) = ——7r
pe(2)e(z) = Hommry (18)
where g is some real constant, and @(z) is the poly-
nomual defined in eqn.(2).

In addition, if in eqn.{16). 0 is nonzero, then the term:na-
tion, y,. 1s such that g, ¢, < 1. Else. gayp = 1.

The proof for the above theorem can be found in (1],
wherein a more general theorem is stated that defines

the conditions for the existence of orthogonal arrays as
such.

Choice of the generating lunction:

Given a (2x1) function, ¢(2), that satisfies eqn.(15), and
the restrictive chowces of the paramecters, G, a, 8, /.
as defined 1in eqn.(15), the syetolic realization aigorithm
yields a completely pipelineable orthogonal array  The
next step s to obtain this generating function g(2). from
the given scalar transfer function, /{{z). Again, there are
several ways in which this choice can be made.

{1Firetlv, the terminating conditions at the ieft rna of
the array have to be < qosen.

(2)Secondly, the constant g.1in eqn.(16) has to be chos<en,




The restrictions for making these choices and the gen-
eral properties of the resuiting arrays can be found in
[1). For the present, suppose the terminating conditions
are given as in eqn.(4.5) and that the constant 0 = 0 in
~eqn.(16). Even then, there are two constant parameters,
k .k, available to the designer, and only two particular
choices of these parameters are considered below:

(1) The Direct Embedding:
Suppose k; = 0. Then, P(2).Q(z).R(z) have to satisfy the
relationships:
R(z) = N(z) (17a)
Qz) = D(z)/ Kk, (17v)
P(z)P«(z) = D(2)D{z)/k} — N(z)N(z) (17c)

From the well-known spectral factorization theorem, it
can be derived that eqn.{17c) is solvable if and only if

1
lk,!s e fratoswsezr (179)

The resulting pipelined orthogonal array together with
some simulation results have been discussed in depth in
[11). wherein it has also been shown that the solution to
eqn.(17c) is trivially obtainable when H(z) is a Butter-
worth, or a Tchebychefl, or an Elliptic function, for
ky=1.

(2) The Darlington Embedding:

Consider the choice, k, = k, = 1. Then,

R(z) = N(z) (18a)
Q(z) + P(z) = D(z) (18b)
then, if @(z). P(z) are written as:
Q(z) = (D(z) + C(2))/2 (18¢)
Plz) = (D(z) - C(z))/2 (184)

then
C(z)D.(2) + C2)D(z) = 2N(z)N.(2z) (18e)

Eqn.(18) is precisely the one used by Deprettere et al(8}
for obtaining the generating function for their binary sig-
nature orthogonal array. The systollc realization algo-
rithm is then analogous to the Darlington synthes:s pro-
cedure for passive analog filters.

For this termination. however, the designer has to be
careful to ensure that the resulting structure is comput-
able, by scaling the transfer function such that
R(=)/ Q(=) = 0.

A general methodology for obtaining the generatirg func-
tion so that the resuiting array is orthogonal is available
in[1].

Discussion: In eqn.(15), the matrix, £, can be chosen to
be lower or upper triangular, in which case, the crocess-
ing element can be impiemented using two elementary
Givens rotational modules|1).

In [1]. a processor configuration termed the Universal
Schur Fiter has been proposcd based upon the resuits
presented here, that is capable of implementing time-
invarniant systems of arbitrary order, if the precessing
elements have sufficient memory. The arithmetic unit of
the processing clement implements the CORIIT algo-
rithm[4] and the logical unit consists of a few ccunters
and gates. The operation of the circuit is assumed to be
asynchronous, with the necessary handshaking provided
using binary semaphorcs. A description of the prozessing
element in Concurrent Pascal 1s given. A VLS! circuit
that has at least one such processing ciement :nd has

access to sufficient memory is capable of implementing
any strictly stable linear system in such a manner that
the circuit is free of limit-cycle and overflow oscillations
and has low coeflicient sensitivity. The throughput of the
circuit is then directly proportional to the number of
processing elernents in the circuit, provided this number
is an integer submultiple of n. The throughput is not
influenced by having more than n processing elements
in the circuit. The circuit is also capable of implementing
vector transfer functions of arbitrary order.
CONCLUSIONS

In this paper, the systolic realization algorithm for syn-
thesizing digital filters on a VLS| ctrcuit has been
presented. The problem of implementing digital filters
on a systolic array in a pipelineable fashion has been
solved in a numerically robust manner. For a more com-
plete treatment of the VLSI synthesis of digital filters,
the interested reader is referred to [1].
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