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(4) Communication: Communication between the pro-
* cessing elements should be restricted to immediate

neighbours. A circuit that is modular and has only
nearest-neighbour links is said to be systolic [2].

AB-rRACT (5) Numerical Stability: There are certain undesirable

An algorithm is presented for the design of systolic phenomena. e.g., limit-cycle and overflow oscilla-
arrays that implement single-input single-output time- tions. associated with the finite-precision implemen-
invariant digital filters. The algorithm is then specialized tation of linear systems that have been welt-studied S
to the case where the realized array consists only of in the literature[3]. The circuit should be free of
orthogonal rotational modules and delay elements inter- them. It should also be insensitive to slight varia-

,connected in such a manner as to render the circuit tions in the multiplicative parameters in the imple-
pipelineable. --- _ mentation.

1. INTRODUCTION In the next section. a systolic array configuration is pro-

Consider a single-input single-output linear time- Dosed for the circuit that. in general. satistles properties
invariant discrete-time system that allows a transfer (I).(3).(4). The pipelineability of such an array is con-
function description: sidered and it will be shown that every strictly stable 

transfer function can be realized in several different
2N, ". ways that ensure that all the above desirable criteria are

H(z) = _== NW (1) met.

z + 2Dz,_t  D(z) 2. BI-DIRECTIONAL LINEAR SYSTOLIC ARRAYS
i.1 A systolic array is said to be bi-directional if every pro-

The system is said to be strictly stable if the function. cessing element receives input from and provides output
i(z), in the complex vanable, z. is analytic en the unit to each of its neighbours. (The external environment is a
circle. fl, and in the region. E, where, z > I. In other neighbour to the processing elements at the corners of
words, the zeros of the polynomial, D(z) should lie in the the array.) The array is said to be linear in operatian if
region D, where, I z I < 1. A strictly stable function is said each processing element performs only linear operations
to be a Schur function i it has magnitude less than or on its inputs. It is said to be linear in configuration if
equal to unity on 1I. each processing element has only two neighbours. A sys-

In this paper, the transpose of a matrix is denoted by the tolic array that is linear both in operation and in
superscript, T, the complex conjugate transpose by an configuration is linear. Such an array is time-invariant
over-bar, and the para-Hermitian conjugate by the sub- if the z-transform of the vector output sequence. Y(z).
script P. The para-Hermitian conjugate of a matrix fun- , of its VA processing element is related to the z-
tion is, of course, defined as: transform of its corresponding vector input sequence.

[ "A.(z) = .4(1/9) Uj (z ). by:

Given a transfer function. H(z), the synthesis problem is rt( z ) = Ei()ut) (2)

to obtain a hardware implementation of H(z). The qual- where E(z) is some rational matrix function of z. neces-
C; ity of such an implementation using VLSI technology is sarily square, such that Ej(-) has only finite elements, in

then dependent upon the follow'ng criteria: order to ensure causality. A linear systolic array is said
(I) Modularity: The circuit should preferably be a regu- to have a ternary signature if it has either (a) two wires

jjJ lar interconnectLion of similarprocessing elements. flowing from rieht to left and one from left to right, or

(2) Pipelineability: The maximum throughput achiev- (b) vice-versa. (See Fig.1)

able should be independent of the number of pro- The intent of this paper is to present a general frame-
eessing elements, n, in the array work for designing such arrays so that when they are

(3) Uiformity. It is desirable to design VLSI circuits suitably terminated at both ends with constant multi-
that can implement digital filters with a variety of plier interconnections, they are realizations for I(z).
transfer functions of diaerent orders by merely The reasons for choosing ternary signature arrays as
changrng certain parameters of the circuit opposed to binary signature arrays are the following:

A pipelined orthogonal realization of H(Z ) in a binary
t7 iLs worA w-s .rjppor-ted in part by the De'ense Resea.rc, .rojecs

AFency nder eo.tract NI)AfO-71+C-C3I, by S --r 7 lesea-c.' signature array requires, in general. at least 2n delay
01T.ce. under Cws-'.ract 3AAG2'3-7--0.-Oib. and zy 'ie A~r o-ce 01.,e o! elements and (3n + 1) elemcntary Givens rotational
e~cen: Ic Flei.-cM, A-- Force Syp erns C rrarrind .Lder C -. :ac: AF49-

- - 7dC-O trpprove, f rr pi3mt.



...... , .1

modules for its implementation.(See [1]). On the other end of the array is P(z).
hand, ternary signature arrays with n delay elements
and (2n + 1) elementary Givens rotational modules will e following algorithm solves the above problem:
be derived in what follows. Another reason is that even if
we synthesize the filter in a binary signature array with The Systolic Realization Algorithm:
the attendant increase in hardware requirement, the It is required that the systolic array in Fig.1 with the it"

speed at which the array can process the input sequence processing element defined by:
is only half the speed that is achievable using ternary IF I
signature arrays. Clearly, there is no tradeof here. 3, Ys 3 I Et(z) lui u2 u (6)

Consider a linear time-invariant systolic array with a ter-
nary signature as shown in Fig.1. Suppose that for some is such that when the right end of the array is ter-
unknown constant termination at one end of the array. a w
say the right end. the input to output transfer at the left ( U(

end is given by: (with reference to Fig. 1.) = (7)

602(z)1 I JP the signals at the left end of the array are related by:

os(z)] LR u0 ( f2 3 cFl= iP(Z)uCi(z)

The function. p(z). will be referred to as the generating and that ro,(z) in eqn.(7) is a constant vector.
function of the systolic array, for reasons that will Step 1: Initiaizatin. Let ic(z) =c(z).
become clear in what follows. The degree of the function.
So(z). is the polynomial-degree of Q(z). assuming that For i = 0. 1.... n-1. do

the greatest common divisor of Q(z). P(z). R(z) is con- Step 2: Choose the complex scalar constants. ct,.o, the
stant. (2x2) nonsingular conotant matrix, C,. and the (1x2)

For a given transfer function. H(z). there are several constant vector. vi
, and obtain (we will restrict these

possible choices of c(a). Suppose that the desig v.r choices later in order to ensure that the array is pipe-

wishes to use lineable and orthogonal. For the present. assume that
they are free parameters subject to the designer's fancy

u(z) = ktucl(z) + k 23 1 0 (z) (4a) and the equations below.)

y(z) = Vo(s) (4b) ) 1[0,(z)- ,Oe,)].(z) (9a)

such that the transfer function from u(z) to V(z) is Vi( 
= ',,(z) - 'P 00 ) 1

H(z). Then, s(z) should be such that P(z).Q(z).R(z) such that the (3x3) constant matrix. 0. defined by:
are polynomials satisfying the relationship:

R(x) = N(r) (5a), - 1  (Sb

k 1 Q(z) + k 2 P(z) = D(s) (5b) S, =-Cs(a.) J(9b)
Clearly. the choice of P(x) and Q(z) is not unique. More- is nonsingular.
over. the designer might wish to use difTerent relation-
ships in eqn.(4) in order to obtain the desired input and a. (9c)
output terminals and the nonuniqueness is thus further and
enhanced.

We will get back to this problem of the choice of the gen- '0(00. (9d)

erating function later. For the present, assume that ;P(z) and p,(z) is chosen to be:
is known. - a,

The realization procedure, then. depends upon the solu- p,(z) = - ' a,. , -. (9e)

tion to the following problem:
Given the (?xl) vector generating function. :(z), of p,(z) = a -a,. , = .a, # - (9f)

degree. n. obtain a linear time-invariant systolic Step 3: Form
array with n processing elements and the constant S 3

t terrn~nation at the right end of the array in Fig.l1. 1 (z) 01 1 v,?(-.00,(o,) rq,
such that the input to output transfer at the left 0 t ) C



and. (3) Pipeline ability: The array leads to a pipelineable
Comments: The constraint (9d) imposed in step 2 can be implementation if a,. 6, are chosen as in eqn.(13) [1.91.

relaxed in certain cases. Details can be found in (1]. Con- The throughput is maximum, all other factors being the
straint (9b) is necessary as shown below, and (9c) is same. if and only if this choice is adhered to[lI]. Such

-required to ensure causality, arrays will be referred to as completely pipelsneabte
arrays in what follows.

Poroof of thie algorithm: Using eqn.(l0) in eqn.(6). it can 3. COMPLgEY PIPEUNEABLE ORTIIOCONAL ARRAYS
be shown, after some simple algebra, that The systolic array in Fig.1 is said to be orthogonal if

0"z 01 !h (z every processing element can be implemented as an
~ 1~a 1 , y~~z)

1 interconnection of orthogonal rotational modules and
II 0 0i 1 ( z-1 blocks. If. in addition, the array is completely pipe-

'(z) 2 
1

')Ilineable. it is a completely pipetineable. orthogonal

Now, if. array. It has been shown in (1] that such arrays have
I very good numerical properties and therefore. satisfy ali

= ~~(zu.~(z)(12) the desirable criteria mentioned above for VLSI imple-
mentation.4

Le.. qpjz) is the generating function for the V4 sub- A necessary and sufficient condition for a completely
array that is the cascade of processing elements that pipelineable array to be orthogonal is that the constant
are indexed i or greater in Fig. 1., then, by substituting matrix. 17, defined by:

eqn.(12) in eqn.(l1). using the defining relationship in E()=da~-.1 ),(4
eqn.(9a) and the interconnecting equations displayed in ~()=da~' .1r,(4

Fig. 1, we have ;o 1 ,(z ) is the generating function for the is an orthogonal matrix for all i. Using the definition of

(i + 1)" sub-array. orthogonality and eqn. (10). this reduces to the condi-

The assumption that %~ is invertible ensures that the tions:

converse of this statement is true, i.e.. if rj,,(z) is the = --i1-~')~ (15a)
generating function for the (te'1)"' sub-array and if ther 1)
toh processing element has a transfer defined by <,, ~o)' Ih

eqns(6. 10). then rpj(z ) is the generating function for the ~e() ~) I(15c)
i
1 1

' sub-array. (The invertibility of 9, is necessary in

order to state this (1].) Hence, if the right end of the Eqn. (15) is solvable if and only if ic()< I and

array in Fig.1 is terminated according to eqn.(
7
). then eqn.(l5c) is true for i,(z). The systolic realization algo-

the input to output transfer function at the left end of rithm then reduces to the Schur algor ith m[101.

the array is iPz s) as desired. The question that now requires to be addressed is the fol-

It is easy to check that if ;Pt(z) is of degree. n, then, lowing: For wvhat choices of the 37erierrtiii2 fuinction', can

jp.~)is of degree n1 -l at most. It has been proved in the abov~e equatwis be SOLted for oil 0. Theoremr 1,

[1] that the degree is exactly ns,-1. Hence. -:,(z) is a stated below, a special case of which is originally due to

constant vector. Schur[ 10]. clarifies the situation:

Comments: A remarkable property of the systolic reali- Theorem 1: A completely papelaneable orthoconal array
zation algorithm is that almost every known canonical exists for any generating function, ;c(z ). sf and ontly if:

realization of digital filters. e.g.. controller. controllabil- (aI p(oo) is composed of scaler rational tchur functions
ity, cascade, parallel [5]. all the different versions of the and
Cray-Markel lattice tllter[6]. wave-digital translations of [b] (;(z) satisfies the equation:
passive analog Foster and Cauer canonical forms [7]. the
orthogonal digital filter realizations of Deprettere et - ( Q( ;-(Z z (15)
al[B]. to name a few, can be obtained by certain choices . "Qz
of the various parameters used in the algorithm. More- where a is some real constant. and Q(z) is the poly-
over, for every realization obtained using the systolic nomial defined in eqn.(3).
realization algorithm, there is a dual realization that can I diin ti q.1) snneo hntetria
be obtained using the duality theorem in [Ia]. e q., the i diin fi q. 6.osnneo hntetria

observer form realization is dual to the control:er form tion. ;s,, is such that _, ;n <. Else. a1.

realization. etc. The proof for the above theorem can be found in [i
Properties of The Systolic Realization Algorithm: wherein a more general theorem is stated that dc' nes

0. the conditions for the existence of orthogonal arrays as
Some relevant properties of the systolic realization alga such.
rithm are given below. A detailed discussion of these and
other properties together with their pro ofs can be found Choice of the generating function:
in (11. Given a (2x 1) function. ;;(?). that satisfies eqn.(15). and

(1) The systolic array obtained by the algorithn- is in the restrictiveC choices of the parameters. C',. a, 8, .

general a non-computable cascade. lowever. it can as defined in eqn.l 15), the svetolic rralization algnirithmn

always3 he made computable by ew'-utir. b.!:ricar yields a complet-ely pipelineate orthoronal drrav rhe
tran5 formadtio ns on the fiarictinras. ;,(Z ). it step. f nest step is to obtaiin this eneraiting function ; (z ). from

the algorithim, the given scilir transfer furirtion. 11 (- ) Again, there are

(2) The array lea,id% to ta computable cascaide ais,: if several ways; in which this choice cmn be mile.
O~f'rtLiv. the terminiit ang conditions at the left 'tvo of

a,=0 : for all i (131 the arr iv hivvbe ha*oscri.

This rusalats ni p,(z ) z for ail t.()cral. the c'onstamnt a am.eJr., 3 has to be ceno~en.

vS



The restrictions for making these choices and the gen- access to sufficient memory is capable of implementing

eral properties of the resulting arrays can be found in any strictly stable linear system in such a manner that

[1]. For the present, suppose the terminating conditions the circuit is free of limit-cycle and overflow oscillations

are given as in eqn.(4.5) and that the constant a = 0 in and has low coefficient sensitivity. The throughput of the

eqn.(16). Even then. there are two constant parameters, circuit is then directly proportional to the number of

k1 .k2 available to the designer, and only two particular processing elements in the circuit, provided this number

choices of these parameters are considered below: is an integer submultiple of n. The throughput is not
influenced by having more than nt processing elements

(1) The Direct Embedding: in the circuit. The circuit is also capable of implementing

Suppose k 2 = 0. Then. P(z).Q(z).R(z) have to satisfy the vector transfer functions of arbitrary order.
relationships: CONCLUSIONS

R(z) = N(z) (17a) In this paper, the systolic realization algorithm for syn-

Q() = D(z)/Ik, (17b) thesizing digital filters on a VLSI circuit has been
presented. The problem of implementing digital filters

P(z)P.(z) = D(z)D.(z)/k, -N(z)N.(z) (I7c) on a systolic array in a pipelineable fashion has been

From the well-known spectral factorization theorem, it solved in a numerically robust manner. For a more com-

can be derived that eqn.(17c) is solvable if and only if plete treatment of the VLSI synthesis of digital filters,
the interested reader is referred to [I].
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In [I], a processor configuration termed the Universal
Schur FlIter has been proposed based upon the resuits
presented here, that is capable of implementing tme-
invariant systems of arbitrary order, if the processing
elements have suticient memory. The arikhmetic "-it of
the processing element implements the CORZ:= al o-
rithm[4] and the logical unit consists of a few ccunterq
and gates. The operation of the circuit is assume! to be
asynchronous, with the necessary handsnaking pr.v~dcd
using binary semaphores. A description of the prr,'?,ssnkng
Plement in Cuncurrent Pascal is given. A VLSI :rcu~t
that has 'it e.ast one such processing cemuit .id has
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