
0-R147 787 A STRIME ORGANIZATION FOR SPECIFYINO AUSTRACT 1~
INTERFACES(U) NAVL RESEARCH LAG WASHINGTON DC
P C CLEMENTS ET AL. 14 JUNI 84 NRL-9S15 SBI-AD-EM 562

UNLSSIFIED F/0 9/2 NrUnC:Fmomm mom om

iiiii 1.02.0

1.41 1 1.

lii, .- -

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 1963-A

p.

S

NRL Report 8815

A Standard Organization for
Specifying Abstract Interfaces

0PAUL C. CLEMENTS, R. ALAN PARKER,
DAVID L. PARNAS,* AND JOHN SHORE

Computer Sciences and Systems Branch
lformation Technoloy Division

*Also at UnlversiOp of Victoria,
Victoria, B.C.

KATHRYN H. BRITrON

IBM
Research Triangle Park, North Carolina

June 14, 1984

DTIC
ELECTE

JU2 04

L.J
-J
L- NAVAL RESEARCH LABORATORY

Washington, D.C.
4 -0

Approved for public release; distribution unlimited.

84 07 27 082

0

A CU$411 Yc [ASSO ICATION O/F THIS PAGE 17! ,/9 1 7
REPORT DOCUMENTATION PAGE

III REPORT SECURITY CLASSIFICATION lb REtSTRICTIVE MARKINGS

Unclassified N/A
2. SECLRITY C ASSfFICATION AUTH-ORITY 3 DISTRIBUIOON.AVAiLABILITV OF REPORT

____________________________________ Approved for public release; distribution unlimited.
2b DECLASSIFCATION DOWNGRADING SCHEDUL.E

PERFORMING ORFGANIZATION REPORT NUMBERIS) 5, MONITORING ORGANIZATION REPORT NUMBERISI

NRL Report 8815
NAME OF PERFORMING ORGANIZATION [b. OFIESYMBOL 7a NAME OF MONITORING ORGANIZATION

F~vlRsac aoao] Code 7590 ____________________

6c ADDRESS Wit, slatv and ZIP codec lb ADDRESS $('i, '.late aInd ZIP Code,

Washington, DC 20375

so. NAME OF FUNDING/SPONSORING rb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
O RGA NIZATION h'ItPIcbIP

Sc ADDRESSW.(Set,~ oId ZIP C,,deI 10____SOURCE ______OF____FUNDING_______NOS_

Washington, DC 20360 EI EN O N ON

(SeePage ii) _________________________

Clements, Paul C.; Parker, R. Alan; Parnas, David L.*; Shore, John E.; and Britton, Kathryn H.j'

*Also at University of Victoria, Victoria, B.C.0
* tIBM, Research Triangle Park, North Carolina

17 COSATI COOES 1B SUBJECT TE RMS iCotiInc on -I'PI* it ncoaroy and1 Idenflty by block numIber)

FIELD GROUP SUB OR Software specifications Abstract interfaces
ISoftware engineering Software documentationh ~ ~19 ABSTRACT ILotIliflut ei Vteite ifnectu- and identify by black numberl

NRIL's Software Cost Reduction project is demonstrating the feasibility of applying advanced
software engineering techniques to complex real-time systems to simplify maintenance. To demonstrate
the principles, the onboard software for the Navy's A-7E aircraft is being redesigned and reimplemented.
The project is producing a set of model procedures and documents that can be followed by designers and
producers of other software systems.

This document describes the format to be followed in documenting the interfaces of the software
modules.

(Continued)

20 DISTRISUTION,AVAILABILlTv Of ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASS$IFD UNLIMITED SAMEF AS RPT OTIC USERS Z Unclassified
22& NAME OF RESPONSIBLE INDIVIDUAL 22,, TELEPHONE NUMBER 122c OFF ICE SYMBOL

,InI(IE.' I - 1,a,

Paul C. Clements 202-767-3477Coe79
00FORM 1473, 83 APR EDITION OF I JAN 73IS OBSOLIETE

SECURHITY (CLA!;SlIICATION 00 f11411,; IAl- -

.

SECURITY CLASSIFICATION OF THIS PAGE

S. NAME OF FUNDING/SPONSORING ORGANIZATION 0

Naval Electronics Systems Command

11. TITLE (Include Security Clanification) (Continued)

A Standard Organization for Specifying Abstract Interfaces

19. ABSTRACT (Continued)

An abstract interface is a software module interface that remains constant, even when details of the
software implementation change. Specifying such interfaces is a key to designing software systems for
change. The format described in this report is designed to serve the author who designs a module, the
coder who implements it, designers of other modules that must make use of it, and reviewers who must
approve its design. It organizes the specification into a small number of concise, well-defined sections,
allowing readers who are searching for a particular kind of information to look in a particular section. All
module interface descriptions of NRL's Software Cost Reduction project use this format.

SECURITY CLASSIFICATION OF THIS PAGE

,-..'....

7 7

CONTENTS

* 1. INTRODUCION .--

2. DESCRIPTION OF THE STANDARD ORGANIZATION ... 2

2.1 Introduction ... 2
2.2 Intefw e Overview .. 3

2.2.1 Access Program Table .. 3
2.2.2 Events ... 6
2.2.3 Effects ... 6 ;0

2.3 Local Data Types ... 6
2.4 D ictionary .. 6
2.5 Undesired Event Dictionary .. 7
2.6 System Generation Parameters .. 7
2.7 Facilities Index ... 7
2.8 Interface Design Issues ... 7

" 2.9 Im plem entaton N otes ... 8
2.10 Assumptions Lists ... S9

2.10.1 Basic A ssum ptions ..
2.10.2 Assumptions About Undesired Events ... 8

3. NOTATION CONVENTIONS ... 8

S4. EX A M PLE ... 9

REFERENCES.. 14

Accession For

NST!S (-GRA&IDOTIC TAB
1.! V .::trinced 0

JUL 27 1984 _ t: cto.,ECT I

B A valy..ibility Codes

is-i

A STANDARD ORGANIZATION FOR
SPECIFYING ABSTRACT INTERFACES

N .. . - ./

I. INTRODUCTION

There are three major tasks in designing a software system. The first is partitioning the system
into work assignments (modules). The second is designing the interface of each module, i.e., decide
what facilities the module will provide. The third is producing the specification for each interface so
that (a) the implementers have enough information to write the software; (b) writers of other modules
have enough information to use the module; and (c) information that constrains or discloses details of
the implementation is not revealed.

NRL's Software Cost Reduction (SCR) project is a program that is investigating new approaches
to these and other software engineering problems by testing the feasibility of applying modern software
engineering techniques (such as information-hiding modules) to demanding software environments,
such as an embedded real-time avionics system. Information-hiding is the approach taken in the first
two tasks; this document explains the approach taken to solve the third.

o
Information-hiding [1) is a method of designing software to minimize the impact (and hence, the

cost) of making software changes. The method involves dividing the software into modules according
to likely changes; each module is responsible for encapsulating or "hiding! the effects of a change from
the rest of the system. The key is to design the interface of each module so that it consists only of
information about that particular module that is not likely to change. In that way, when changes that
affect a module are required, only the implementation of that module is likely to require a change. The J0
interface and all other modules that use the interface are not likely to change at all.

This interface is called an abstract Interface, because it represents an abstraction of the entire
module, in the same way that a road map of the world is an abstraction of the world. There are many
things about the world that could change (e.g., the location and number of all the buildings, trees, peo-
pie, etc.), but a user of a road map is not concerned with these things; hence, the map does not neces- _S
sarily change.

The A-7E Software Module Guide [2) documents the decomposition into modules of the SCR
software and explains how the information-hiding principle was applied to achieve the modularization ' ..
and the resulting interface designs. '

To meet the goals for module interface specifications set forth in the first paragraph, the
specification of an abstract interface should have the following properties:

* It must not disclose any of the changeable aspects (*secrets) of the module;

* It must present a concise description of the facilities available from the module, in terms
of effects that are observable to the user;

Maucrim alproved January 13, 1914.

-0--_I

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

It should be divided into sections and formatted so that a reader unfamiliar with the
module is able to find a piece of information without having to study the entire interface
specification; i.e., it should serve the quick-reference reader as well as the first-time
reader; P

* It should not provide duplication of information, which would make using and maintain-
ing the document more difficult.

The organization chosen to achieve these properties consists of the following sections: . . .

Introduction A brief prose overview of the module's facilities to help
the reader determine if this is the module he is
interested in;

Interface Overview A table of programs on the module's interface, showing
the parameters and parameter types and stating the
effects of each;

Local Type Definitions Definitions of the data types available to users from the
module;

Dictionary Definitions of any specialized terms used throughout
the specification;

Undesired Event Dictionary Definitions of any possible incorrect uses (errors) of
the module's facilities;

System Generation Parameters A list of those quantitative characteristics of the
module that are not bound until just before run-time -
(e.g., the size of a data structure);

Facilities Index A quick look-up reference of all programs and terms
defined in the specification;

Design Issues A prose section explaining why certain design decisions
were made to aid people who might make future
changes to the design;

Implementation Notes A prose section to capture information that might have
come to the designer's attention that would be of use to
the implementors; ..-

Assumptions Lists A prose section documenting the assumptions that the
users of the module are allowed to make about it. - _....

Complete descriptions of each section follow.

2. DESCRIPTION OF THE STANDARD ORGANIZATION

The format for specifying an abstract Interface consists of the following sections:

2.1 Intrietle-

This section introduces, in informal prose, the features provided by the module. It may define
basic concepts that are used in the rest of the specification.

2

.- ,. : .-.- .- . .

-. .~ -~ Y. o --. '-

NRL REPORT 815-

2.2 Interface Overview -

The interface overview section includes tables that provide an overview of facilities provided by
the module. Facilities generally fall into two categories-access programs that users may call, and 0
events that the module reports and that users may await. Readers familiar with the module interface
can use these tables to refresh their memories about particular facts without having to reread the longer
explanations in later sections. The interface overview may contain any of the following subsections:

2.2.1 Acce Program Table

Figure 1 shows the form for the access program table. This table lists all access programs pro- -

vided by the module, as well as the number, data type, and semantics of the parameters. Access pro-
grams can change or retrieve information that is stored in a module's internal storage. Access program
names begin and end with brackets that show when they can be used: + + brackets indicate programs
that may be invoked only at system-generation time; + brackets enclose programs that are executable
at run time. The access program table contains an entry for each access program provided by the

module; each entry includes the program name, parameter data, and undesired events (discussed more
fully later) associated with the program.

There are three types of access programs. Each type is characterized by the facilities offered to
user programs, the effects on other access programs provided by the module, the information required
to specify them, and the naming conventions.

Valu Programs-These programs deliver values to user programs via output parameters. A call to
a value program has no effect on subsequent calls to that program or on any other program of the same
module. Semantics of value programs are given in the dictionary definition(s) of the term(s) used to
denote the output parameter(s). Value program names usually begin with G_ for Get value.

Fffect Programs-These programs enable user programs to affect the future operation of the ' :
module by passing it information or giving it commands. Effect programs may affect the values
returned by subsequent calls to value programs, may change the values shown by display devices, or -. .
may affect the current operating state of the module. These programs do not return values themselves.
The parameter-information column in the access program table can be left blank for these programs
whenever the program effects section adequately defines the parameter meanings. The names of effect
programs usually begin with S. for Set value.

Hybrid Programs-These programs have characteristics of both value and effect programs: they
return values and affect the future operation of the module. These programs will usually be described
both by parameter-information entries in the access program table and descriptions in the effects sec-
tion.

Matching Value/Effect Program Pairs-In some cases, value and effect programs are matched so
that the value program always returns the most recent value set by the effect program. For the sake of
clarity and brevity, these programs are described together. Matching program pairs always share the
same name, except that the value program starts with G and the effect program starts with S. These
programs are defined in a single line in the access program table, with the program names given
together as +G/S_. For instance, +G/S.ADCLPROBE+ actually refers to two programs:
+GADCLPROBE+ and +S.ADCLPROBE+.

In the SCR software environment, the exact syntax for invoking an access program is given in Ch.
EC. PGM of Ref. 3.

3

* . - , , ' • - " " - ... • -A

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITrON

Proaram Name Farm type Farm info Undesired Events
+rogram1++ or ±programl± 21:type1.IK infol %%nanwl%% or %namael%

p2type2.IK info2 %%na=02%% or %kname2%

2N~typeN1.IK infoNI %%nameM%% or %nameM%

++vrogram2++ or ±programi2± ptype1kK info 1
L type2iK infb2

j2N:L"pN2IK infoN2

I +rogramG±± or ±programG± pIjype1jK info 1
~tp2,".K info2

.2N:LypNGIK infoNG

FI~ 1- Acces program table format

4

NRL REPORT NIS

Legend for Fig. I

Underscored symbols are required but without the underscores. Other names and letters are
defined as follows:

G number of programs in the group, where group is defined as a set of pro-
grams with the same entries in the undesired events column; different
groups are separated by a horizontal line in the table.

programJ name of the Ath program in the group, where J - 1,... ,G. If the name
contains ++ brackets, that program may only be invoked at system-
generation time; that is, that program will exist only in the support software
prior to the time the software is loaded onto the target machine. A name
with + brackets may be invoked at run-time; that is, that program will be
available for invocation on the target machine.

NJ number of parameters for the th program. If zero, the parameter columns

are empty for the program.

pL the Lth parameter of a program, where L - I,... NJ

typeL type of parameter pL: the name of a data type provided either by this
module or another. If provided by this module, it will be defined in the
Local Types section of the specification.

K 1, 0, 10 for input, output, and input-output parameter. Programs receive
the values of input parameters and deliver the values of output parameters.
Input-output parameters serve both purposes. Parameters are separated by
commas in the call statement.

infoL definition of the meaning of parameter pL; may be an entry in the
specification's dictionary (!+entry L+) or an expression involving other
parameters, such as pl + p2; infoL may be omitted for any parameter
whose meaning is given in the effects section, or it may be an informal
description summarizing the program effect description.

M number of UE dictionary entries defined for the group

nameE Entry E in the specification's UE dictionary, where E - 1,2,... M; the dic-
tionary entry defines the circumstances that cause a program call to be ille-
gal. If the name contains %% brackets, the UE will be detected by the
module before run-time, and the user may not provide a run-time program
to handle the UE. If the name has % brackets, the UE may not be detected
until run-time, and the user is obligated to provide a run-time UE-handling 0
program for it. Naturally, system-generation-time programs can only have
system-generation-time UEs associated with them.

A _

-f.-

: J.- .:--!

-. . - - -.. -

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON •

2.2.2 Events

This section is a table that contains a list of all of the events reported by the module. Events are
reported via access programs that do not return until the specified conditions hold. There are four
varieties of event-reporting programs:

@Tcondition This program will return when condition next changes from false to true.

@Fcondition This program will return when condition next changes from true to false.

-Tcondition This program will return when condition is true, as soon as the applicable process syn-
chronization rules permit (in the SCR software, these are documented in Ch. EC.PAR
of Ref. 3).

-Fcondition This program will return when condition is false, as soon as the applicable process syn-
chronization rules permit (in the SCR software, these are documented in Ch. EC.PAR"
of Ref. 3).

Condition is an entry in the module specification's dictionary (see Section 2.4). Event meanings are
thus defined by the associated dictionary entries.

Because one condition may correspond to four event programs with similar semantics, a shorthand
has been adopted that combines the names of the possible programs. For example, let x be a condition.
Then the string @T/@F/-T/-Fx names four programs: @Tx, @Fx, -Tx, and -Fx, each with
semantics for condition x as described above.

2.2.3 Effects

This section specifies the effects (semantics) of invoking a hybrid or effect access program. The
effects are specified completely in terms of changes or results that are completely observable by using
software or a human observer. It is basic to the information-hiding methodology that no information
about the implementation or other hidden aspects of a module be divulged in this section. Effects may
be given by specifying changes in the values that will subsequently be returned by access programs, or
in terms of events that will occur at a later time. An example of a human-observable effect is the posi-
tioning of a symbol on a display. If any run-time undesired events are enabled or disabled as a result of
invoking the program, that is also described here.

2.3 Local Data Types

For every program parameter, a type is specified in the interface overview. This section of the
specification defines the data types that are used in communicating with the module. All such data -.

types are described in this section except those that are defined in another module interface
specification, in which case a reference to that specification is to be given. Some data types are called
enumerated types'; these are described by a list of strings or a syntax that defines the list of strings eli-

gible to be passed to the program.

2.4 Dctlonary

This section of the specification defines terms that appear using the !+term+! and !Hterm!! nota-
tion in other sections of the specification.

An item of the form !+term+! is used in the access program table to name an output parameter
of a program. The dictionary definition of such a !+term+!, then defines the value returned by the .

6

NRL REPORT 8815

access program via the output parameter. This gives the semantics of the program. As in program
effects, the definition is given only in terms that can be tested by the software or a human user. A
!+term+! may also be imbedded in the name of an event-reporting program, and the definition of the
term thus defines the semantics of the event that is reported by the program.

A Ilterm!! may be used anywhere in the specification (except to describe an output parameter of a
program) to take the place of a specialized technical definition that would otherwise have to be
repeated.

The definitions are prose, given in alphabetical order by term.

2.5 Undesired Event Dictionary

An undesired event (UE) occurs when an assumption about an undesired events is violated, usu-
ally when an access program is called with an incorrect parameter or in a state in which it cannot be
executed successfully. This section defines the conditions that correspond to each undesired event
reported by the module.

A UE is considered enabled when the UE may occur and inhibited when it cannot occur. Some
UEs are always enabled. Some UEs are inhibited or enabled by access programs (user-controlled state
UEs). Some UEs are inhibited or enabled by changes detected within the module (internal state UEs),
and their status is available via access programs.

This section defines the %term% or %%term%% entries in the access program table by stating the 0
violation that each one represents. A UE of the form %%term%% will be detected at system generation
time. A UE of the form %term% may not be detected until run time. The specification describes
user-controlled state UEs in terms of the commands that inhibit or enable them and internal state UEs
in terms of the value programs that reveal whether the UE is currently inhibited or enabled.

2.6 System Generation Parameters

This section describes those externally visible characteristics of the module that can be changed by
assigning values to parameters at system generation time. Each parameter is named, its data type is
given, and its meaning is described. These parameters are denoted by #term#, and may be used as
symbolic constants by users of the module. _ O

2.7 Facilities Index

After all the submodules in the document have been specified using the foregoing scheme, an
index is provided that shows where in the document a particular name is defined. The index includes a
list of access programs, instructions, local data types, dictionary items, undesired event names, and sys-
tem generation parameters. The system generation parameter list includes a range of expected values
for each parameter.

2.8 Interface Design Issues

This prose section describes any alternative designs that were considered and records the reason
for their rejection. The section serves as a history of design decisions, so that issues are not considered . ..
repeatedly. It serves as a design rationale providing guidance to maintenance programmers revising the
program.

7

-.- A

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITYON 0

2.9 Iuplementadon Notes

This prose section contains implementation notes. During the design of the module interface,
certain facts or ideas may come to the designer's attention, ideas that would be necessary or useful to
future implementers, and these are noted in this section. As the module is implemented, the section
may be deleted, moving the information into the module implementation documentation.

2.10 Assumptlns Lists

The information in the assumptions lists is redundant. It is implied by the description of the facil-
ities specified in the rest of the section. The purpose of the assumption list is to serve as an explicit
medium for review by nonprogrammers.

This section comprises two prose subsections.

2.10.1 Basic Assumptions

These assumptions contain information that users of the module may assume will never change.
In the case of hardware-hiding modules [21, it consists of information that will remain true about the
interface even if the hidden hardware is replaced or modified. In the case of requirements-hiding
modules, it consists of information that will remain true even if the hidden requirements are changed.
In the case of software decision-hiding modules, it consists of information that will remain true even if
the hidden software decisions are changed.

The assumptions relate to the normal use and operation of the module. A basic assumption will
fall into one of two categories: implementability (an assumption that the module's facilities can be
implemented efficiently), and sufficiency (an assumption that the given facilities are all the user will
ever need). Specifically, they may concern: (a) information available from the module; (b) informa-
tion that must be supplied to the module; (c) events that can be reported by the module; (d) tasks that
can be performed by the module; (e) operating states of the module and how they affect the informa-
tion available and the information required; or (e) failure states of the module and how they affect the
information available.

2.10.2 Assumptions About Undesired Events

This section lists assumptions describing incorrect usage of the module at run-time. Violation of
each assumption is associated with a run-time undesired event. The development version of the system
will be designed to report the undesired event whenever a violation occurs. In the production version
of the system, the undesired event-handling code will be removed, and violations of the assumptions in
this section will result in unpredictable behavior.

3. NOTATION CONVENTIONS

The following table lists the notational brackets used and indicates what section(s) of an interface
specification gives relevant information.

8

NRL REPORT 1815

Notation Meaning Where to Look It Up
+ +name+ + A module access program that may only Section 2

be invoked at system generation time
+name+ A module access program that may be Section 2

invoked at run-time
+Gname+ or A value access program; does not change Sections 2,5
+ +G name+ + the state of the module, but returns a

value described in the dictionary
+S name+ or An effect access program; changes the Section 2
+ +S name + + module state as described in Section 2.

Usually returns no value.
%%name%% An undesired event that will be detected Sections 2,5

at system-generation time
%name% An undesired event that may not be Sections 2,5

detected until run-time
!+ name +! Either the name of a value produced by Sections 2,4

a module's access program, or the name of
a condition associated with an event; its
definition is given in the specification's
dictionary section.

!!name!! Used to denote a term with a specialized Section 4
definition that appears frequently in the
specification; its definition is given in
the specification's dictionary section.

@Tname The name of an access program that will Section 2 -
@Fname not return until the associated condition
-Tname is satisfied or the associated event occurs
-Fname

#name# The name of a system-generation time Section 6
parameter

4. EXAMPLE

The following is an example to illustrate the form of the first six sections of a specification of an
abstract interface. (The remaining sections of the specification, composed of an index and prose para-
graphs, are not shown.) This abbreviated example is drawn from Ref. 3; the submodule specified pro-
vides data declaration and manipulation facilities for an abstract computer.

EC.DATA

DATA MANIPULATION FACILITIES

EC.DATA.I INTRODUCTION

The Extended Computer Data module provides literals, constants, and variables. We refer to
these as entities. Literals are values appearing in programs. Constants have tiames and values; run-time
programs can read the values but not change them. Variables have names and values; the values can be
read or written by run-time programs.

9

CLEMENTS, PARKER, PARNAS, SHORE, AND SRITTON 0

Types are classes of entities. This module provides the real and bitstring type classes. Specific real
types are characterized by !trange!! and H!resolution!!. Specific bitstring types are characterized by
length. There may exist any number of specific types. The attributes of a type may not be changed
once declared.

EC.DATA.2 INTERFACE OVERVIEW

EC.DATA.2.1 ACCESS PROGRAM TABLE - DECLARING SPECIFIC TYPES AND ENTITIES

Program name Parm type Parm info Undesired events .0

+ +DCLTYPE+ + pl:name;I Name of new type %%name in use%%
p2:typeclass;I Contasining type class %%inappropriate
p3:attribute;l Attributes of type attributes%%

%%length too great%% ._- .
%%range too great%% 0
%%res too fine%%

Program Effects

A specific type that is a member of type class p2 is declared to have identifier pl. All entities of
this specific type will have the attributes given by p3. The identifier can be used as the spectype (p2)
parameter in calls on + + DCL ENTITY+ + in programs that follow the declaration.

Program name Parm type Parm info Undesired events

++DCLENTITY+4+ pl:name;I Entity name %%name is use%%
p2:spectype;l Specific type of entity %%undeclared ,
p3:convar;l When writable spectype%% .0 _
p4:constant or Initial value %%unknown initial

literal whose value%%
value is in %%wrong init
domain of type value type%%
named by p2;1 %%value too big%%

Program Effects

An entity with identifier pl, spectype p2, and initial value p4 is declared. If p3-VAR, the entity
may be used as a !!destination!! in a subsequent operation. The entities that have been declared may
be used as operands in the programs that follow. 0

EC.DATA.2.5 ACCESS PROGRAM TABLE - OPERATIONS ON REAL ENTITIES

Program name Parm type Parm info Undesired events

+EQ+ pl:real;l !!source!! %%constant destination%%
+NEQ+ p2:real;l !!source!!
+GT + p3:boolean;0 ! + destination +!
+GEQ+ p4:real;l Ifuser threshold!!
+LT+
+LEQ+

10
"" I0

NRL REPORT 8815

Program name Parm type Parm info Undesired events
+ADD+ p1 :real;I !!source!! %%constant destination%%
+MUL+ p2:real;l !!source!! %ranlge exceeded%
+SUB + p3:real;O ! + destination +!

+SET+ pl:real;I !!source!!
+ +SET+ + p2:realO !+destination +!
+DIV+ pl-real;I !!source!! %range exceeded%

p2:real;l !!source!! %divide by zero%
P3:real;l +destination+! %%constant destination%%

Program Effect

+ADD+ p3 -pI +p2
+EQ+ p3 - (pl - p)
+GEQ+ p3 - (p1 - p2)* OR (p1 - p2 is positive)
+GT+ P3 - p1 - p2 is positive and NOT (p1 -p2)*
+LEQ+ p3 - (p1 - p2)* OR (p1 - p2 is negative)
+LT+ p3 - p1 - p2 is negative and NOT (p1 p2)*
+MUL+ p3 -pl*p2
+NEQ+ p3 - NOT (p1 - p2)*
+SET+ p2 - the value of p1 before the~operation
+ +SET+ + p2 - the value of p1 before the operation .
+SUB+ p3 - pI -p2
+DIV+ p3 - p1/p2 This is the slowest divide program available on the EC.

*Definition of equality()

absv(pl - p2) is less than or equal to threshold, where threshold is MAX(p4, 1/2
MAX Wresolution!!'(pl), !!resolution!! (p2)))

EC.DATA.2.7 ACCESS PROGRAM TABLE - OPERATIONS ON BITSTRING ENTITIES

Program name Parni type Panm info Undesired events

+ AND + p1 :bitstring;I !!source!! %inconsistent lengths%
+OR+ p2:bitstring;I !!source!! %%constant destination%%
+XOR+ p3:bitstring;O ! +destination+!

+NOT+ pl:bitstring;J !!source!!
p2:bitstring;O + +destination +!

+SHIFT+ pl:bitstring;I !!source!!
p2:integer;l shift length
p3:bitstring;O ! + destination +!

Program Effects

+AND+ p3 - plAND p2
+NOT+ p2 - NOT p1
+OR+ p3 -pl OR p2
+SHIFT+ p3 - shift of p1 by p2 positions to the right (or -p2 positions to the left). The vacated

bits are set to O:B.
+XOR+ p3 -(p1 AND (NOT p2)) OR (p2 AND (NOT p1))

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON .0

EC.DATA.3 LOCAL TYPE DEFINITIONS

attribute An attribute for a bitstring is a positive integer specifying length.
A real attribute is a parenthesized list:

(lower bound, upper bound, !!resolution!!) 0
The lower bound and upper bound are often collectively called range (see
!Irange!!).

bitstring An ordered list of values, each value represented by 0 or 1. The number of such
values is called the length of the bitstring. Bits in all bitstring types are numbered
from 0 upward. We refer to bit 0 as the leftmost bit and a shift of information ,0
from higher numbered bits to lower numbered bits as a left shift. A bitstring literal
is written as a suing of Os and Is suffixed by :B, e.g.,

O:B bitstring of length 1
1011:B bitstring of length 4

boolean Bitstring of length 1. Where convenient, $trueS may denote 1:B, $false$ may
denote O:B.

convar Either ASCON (meaning constant that will not change without a reassembly) or
LOADCON (meaning constant that may be changed by a memory-loading device
while the program is not running) or VAR (meaning variable).

integer Real with !!resolution!! - 1.

name An identifier for an object created. A name must consist only of alphanumerics or
one of the following: +#%@/$()_ .

real An approximation to conventional real numbers. Real literals are denoted in the --
standard decimal notation format, e.g., 112.345, .000234, 127

spectype An identifier that has been previously declared as a type in a + +DCLTYPE+ +
operation, or the identifier BOOLEAN, representing the built-in spectype boolean.

typeclass Either BITS (meaning bitstring) or REAL. .

EC.DATA.4 DICTIONARY

Term Definition

!+destination+! A variable that will contain results of operation.

!!destination!! An 0 or 10 actual parameter to an EC access program or a user-defined EC
program.

!!range!! The set of values between (and including) the lower bound and upper bound of
a real-data type.

!!resolution!! The maximum difference between any two consecutive representatives of the
values of a real data type.

!!source!! An I or 10 actual parameter to an EC access program.

!!user threshold!! A difference that user programs specify for a comparison operation; i.e., two
numbers whose difference is less than this are considered equal.

12

NRL REPORT 8115

EC.DATA.5 UNDESIRED EVENT DICTIONARY
%%constant destination%% A user program attempted to use a constant entity as a

:!destination!!.

%divide by zero% A user program attempted to divide by zero.

%%inappropriate attributes%% The attributes given are not valid for the type class at
hand.

%inconsistent lengths% The length of the result of a bitstring operation differs
from the length of the destination variable.

%%length too great%% The length of a bitstring type exceeds the maximum
allowed.

%%name in use%% An attempt has been made to redefine a name of one
of the following: an EC access program, an EC UE,
and EC system generation parameter, or a user-defined
spectype, entity. - -

%range exceeded% The value being stored into a variable is outside the
!!range!! of the variable.

%%range too great%% The magnitude of the declared !!range!! exceeds the
maximum allowed for that typeclass, as given by a sys-
tem generation parameter.

%%res too fine%% Declared resolution (or implied resolution of a literal)
was less than the minumum allowed for that typeclass,
as given by a system generation parameter.

%%undeclared spectype%% The user has supplied an undeclared spectype in an
entity declaration.

%%unknown initial value%% A variable has been used as an initial value of a
declared entity.

%%value too big%% The value of a real entity is greater in magnitude than
that allowed, as given by a system generation parame-
ter.

%%wrong init value type%% A constant or literal used as an initial value is not in
the domain of the type of the entity being initialized.

EC.DATA.6 SYSTEM GENERATION PARAMETERS

Parameter Type Definition
#max bits length# integer The maximum number of bits allowed for a bitstring.

#max real size# real Maximum allowable magnitude for a real ascon or
literal.

#max real range# real Maximum allowable magnitude for the absv

(upper bound - lower bound) for a real type.

#min real resolution# real Minimum allowable resolution for a real entity.

13

13

CLEMENTS, PARKER, PARNAS, SHORE, AND BRrITON 4

RznlRENCES

I. DL. Paras, -On the Criteria To Be Used in Decomposing Systems into Modules,* Comm. ACM,
15 (12), 1053-1058 (1972).

2. K.H. Britton and D.L. Parnas, "A-7E Software Module Guide," NRL Memorandum Report 4702,
Dec. 1981.

3. K.H. Britton, P.C. Clements, D.L. Parnas, and D.M. Weiss, "Interface Specifications for the
(SCR) A-7E Extended Computer Module," NRL Report 4843, May 1982.

0 4

14

A -

