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ABSTRACT

'A program for the analytic and experimental investigation of

reconfigurable control systems is described. Its principal

objectives are to extend the theory of artificial intelligence

and to develop practical methods of applying artificial intelli-

gence heuristics, statistical hypothesis testing, and modern con-

trol theory to the reconfiguration of control systems following

sensor failures, actuator failures, power supply or transmission

failures, or unforeseen changes in dynamic characteristics.

Objectives include the definition of typical failure modes and

effects; formulation and investigation of algorithms for detec-

tion, identification, estimation, and control; numerical simula-

tion of failure and reconfiguration; and experimentation using a

microprocessor-based reconfigurable control system.
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1. INTRODUCTION 0

1.1 STATEMENT OF THE PROBLEM

Performance, reliability, and survivability are characteris-0

tics that should be possessed by control systems of all types,

* especially those used in helicopters, tilt-rotor vehicles, and

conventional aircraft. The ability to complete the mission is

essential to a military aircraft's deployment, and while the

increasing use of digital systems will do much to achieve these

goals, increased reliance is being placed upon these systems to

* perform flight critical and flight crucial functions. The penal-

ties for system failure are severe, so it is desirable to design

such systems from the beginning for fault tolerance.

As is well known, fault-tolerant systems must either be

"1robust" or "reconfigurable", if not both. In the first

instance, changes in the system's overall input-output character-

istics are reduced by feedback control, and judicious choice of

the feedback gains minimizes the system' s sensitivity to parame-

ter variations, measurement errors, and disturbance inputs. The

degree of failure that can be accomodated by a fixed control struc-

ture is necessarily more restricted than that of a variable con-

trol structure. In the second case, the system must provide

e Fault Detection

e Fault Identification

e Control Reconfiguration

to maintain acceptable (if not satisfactory) performance. A sys-

tem that is fault tolerant through an ability to reconfigure is,

in some sense, adaptive and redundant. It is adaptive because

1o
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the control structure that is best for the nominal configuration 0
.1 may have to be adjusted for off-nominal operation, as results

from loss or degradation of sensors, actuators, and power sup-

plies, damage to signal and power transmission channels, or unex-

pected alteration of the aircraft's structural and aerodynamic .0

configuration. Its redundancy can be implemented with hardware .-

or software. Hardware redundancy implies parallel measurements;

software ("analytic") redundancy implies flexible state estima-

tion and control laws. In both cases, redundancy improves reli-

ability only if the system can adjust to minimize or eliminate

"- the effects of the failure, either implicitly or explicitly.

Voting or averaging schemes overpower the failed unit implicitly,

while those that identify and remove the failed unit solve the ruc

problem through explicit knowledge of cause and effect, applying

artificial intelligence to reconfigure the system.

Intelligence -- "the general mental ability involved in calcu-

lating, reasoning, perceiving relationships and analogies, learn-

ing quickly, storing and retrieving information, using language

fluently, classifying, generalizing, and adjusting to new situ-

ations", according to The New Columbia Encyclopedia -- certainly

would appear to have its place in reconfiguring a control system

following failure, although some elements of the definition seem

more appropriate for the study of linguistics than engineering.

Nevertheless, the formalism of linguistics -- including the iden-

tification of rules of inference and the hierarchical relation-

ship between morphemes (sounds), words, syntax (structure), and

semantics (meaning) -- may have parallels that can be exploited

in the control problem. There are numerous instances in which

human pilots have applied their own intelligence to revise con-

trol strategies, having perceived system damage or failure. To

the extent that symbols and perceptions reflect knowledge and its

2
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interpretation, there is an analogy to detection, identification,

and estimation. "Artificial" intelligence (perhaps better called
-machine" intelligence) seeks to quantify the heuristic processes

of human intelligence, so the theory forms a natural bridge to

fault detection and identification in highly critiL I control

systems.

Of course, fault detection and identification are only parts

of the solution to the problem. Having attained knowledge, it is

necessary to act on that knowledge, to supplement mind with mus-

cle, so to speak. In that regard, the chosen schema for control

must have sound foundations in the physics of the problem, and

there must be sufficient control "power" to effect the solution.

Furthermore, it is necessary to demonstrate the process end-to-

end, due to the flight critical/crucial nature of control.

1.2 BACKGROUND

Research in artificial intelligence (AI) and fault-tolerant

control is relatively new, as the computational tools, sensors,

and actuators that make these concepts useful did not exist a few

. decades ago. Possible relationships between artificial intelli-

- gence, control theory, and a third field -- operations research

-- are sketched in a Venn diagram (Fig. 1) taken from (1). There

it is suggested not only that these are overlapping areas of con-

cern but that the coupling of these concepts is essential to the

effective use of any one of them. In the context of reconfigura-

ble control, the operations research function can be subsumed in

the control design function, which necessarily requires physical
modeling for the development of estimator/controller gains and

structures.

3
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Figure 1. Venn Diagram of Interdisciplinary Issues and Lxpartis&.

(from (11)

In spite of the natural affinity between intelligence and con-

trol, it appears that little, if any, attention has been directed

to applying artificial intelligence to fault tolerant control, so

independent paths must be charted in any literature search. The

principal exception to this finding is in the area of learning con-

trol (also called self-organizing or intelligent control) (2-7),

which does have a number of similarities to reconfigurable control,

and which might be distinguished from adaptive (or self-tuning) con-

trol by the implied breadth of possibilities for altering the con-

trol structure. The main distinction to be drawn between learn-

ing and reconfigurable control is that the former places emphasis0e.
on "determining how to do things right", while the latter empha-

sizes "deciding what to do when things go wrong"! There is a

difference in the time scale, dimensionality, and precision of

4 
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on "determining how to do things right", while the latte-- empha-

sizes "deciding what to do when things go wrong"! There is a

difference in the time scale, dimensionality, and precision of

objectives that should have a major effect on feasible control
structures. Nevertheless, developments in learning and adaptive

control may prove helpful in the present project.

For the most part, current writings on artificial intelligence

deal with natural language processing, expert consulting systems,

theorem proving, combinatorial and scheduling problems, percep-

tion problems, automatic programming, robotics, and data-base

retrieval (1). They elaborate on reduction of heuristic-symbolic

problem statements to algorithmic-numeric models, on search hg

algorithms, and on learning and training (8-14). Some of the

concepts that are pertinent to the reconfigurable control problem

are the following:

e Hierarchical representation, interpretation, and goal struc-

ture

* Tree search with refinement (pruning and reordering)

* Hypothesis testing, pattern recognition, and template match-

ing

* Rules of inference, default reasoning, and problem-solving

paradigms

* Propositional (or predicate) calculus

* Knowledge-based systems and corresponding symbol structures

* Adaptation and strategies for resolution

Reference to human intelligence characteristics (15-17) is an

underlying factor in many of these treatments, and the character-

ization of heuristic symbols and systems as "fuzzy sets" and

"fuzzy automata" have their parallels in stochastic optimal

.-,. 5
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Although hierarchical representations will have utility in

reconfigurable control, not all such structures and theories

apply to the problem. Conventional large-scale systems theory,

though related, really addresses different issues. Typically, a

complex system is decomposed into essentially decoupled subsys-

tems, and decentralized control algorithms are developed (191.

It is assumed that the loosely coupled controllers then operate

in parallel. Although the reconfigurable flight control system

may present a wealth of control-structural hypotheses, it is not

necessarily "large scale" in the same sense: at any given time,

the objective is to identify and execute the best single control

strategy for the entire system.*

Not surprisingly, the literature on fault-tolerant control is

more directly applicable to the problem at hand. As mentioned

previously, the notions of robustness (20-22), parallel redun-

dancy {23-30), and analytic redundancy (30-34) have been investi-

gated, and self-tuning regulators {35-39) should be added to this

list. There is not room here to address these accomplishments in

detail. Instead, we might ponder what remains to be done as an

introduction to the current program. It should be added that

improved computer reliability is a separate issue that is not

addressed here.

There appear to be seven areas of fault-tolerant control need-

ing additional analytic and experimental research:

* 0-- -- -- -- -- -- -

* The "best single control strategy" may admit the usual decou-

pling of longitudinal and lateral-directional flight control

under many circumstances.

6
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•  Aerodynamic and structural alterations due to damage or

failure

* Actuator failure

* Power supply and transmission failure

o Multiple component failure
o Intermittent failure and random bias shift

o Multi-microprocessing for real-time, on-board analytic

redundancy

o Operation in heavy turbulence

" In addition, continued development and demonstration of sensor

failure detection and identification is warranted.

The problems associated with power supply and transmission

failure are more critical than the loss of a single actuator, as

several control effectors performing different functions may be

lost at once. Nevertheless, such failures are relatively common

in non-combat service, and battle damage can induce catastrophic

loss of control in otherwise flyable aircraft. The related issue

of generic multiple failures should be studied. Concurrent mul-

tiple failures often are ground-ruled out in the planning stage,

. yet these are the type most likely to cause trouble. (Many sin-

gle-point failures are not catastrophic, allow:.ng the pilot to

continue the mission or return to base within a reduced flight

envelope.) Intermittent sensor failures and random bias shifts

should not cause instruments to be taken off line for the dura-

tion of the flight. If such units "heal" or if their new biases

are identified, they should be returned to active status, and

logic must be developed for this purpose. Fault detection and

identification of all control system elements could be affected

*adversely by heavy turbulence, so algorithms that withstand this

S-.environment are required.

7
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1.3 PROGRAM OF RESEARCH

The research program begins with a failure-modes-and-

analysis based upon helicopter and aircraft characteristi

jected for the 1990s. It will continue with the defini

AI-based multiprocessor algorithms for reconfigurable cont

with the design of experiments for such systems. These c

will be explored in all-digital and hybrid simulation. A

processor reconfigurable control system will be construc

programmed for testing in hybrid simulation. The work to

ducted can be summarized as follows:

Preliminary Development

- Specification of baseline dynamic characteristics

' Failure modes and effects analysis

* Review of applicable artificial intelligence theory

o Initial selection of fault detection and identif

(FDI) approach

* Initial selection of reconfigurable control approach

* Development of all-digital numerical simulation

* Specification of hybrid simulation experiments

. Hardware specification, assembly, and checkout

Detail Development

0 Algorithm research, development, and refinement

* System coding:

- Primary estimation and control

- Executive program and I/O interfaces

- Experimental logic

- Sensor FDI

-4
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- Actuator FDI

- Power supply and transmission FDI

- Aerodynamic and structural FDI

Multiple and intermittent FDI

Experimentation

All-digital simulation experiments

* Hybrid simulation experiments:

- Reconfigured estimation and control

- Sensor FDI

- Actuator FDI

- Power supply and transmission FDI

- Aerodynamic and structural FDI

- Control reconfiguration with sensor failures

- Control reconfiguration with actuator failures

- Control reconfiguration with power supply and transmission

failures

- Control reconfigui.aticn with aircraft and structural fail-

ures

- Control reconfiguration with multiple failures

- Control reconfiguration with intermittent failures

- Control reconfiguration in turbulence

9 S
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2. TECHNICAL DISCUSSION

This section introduces technological foundations of the

project. Expert systems, production systems, and an example are

discussed first (Sections 2.1), in order that the functions to be

implemented and evaluated can be viewed in proper perspective.

Similarly, failure modeling for computational and flight experi-

ments (Section 2.2) provides insights on the reconfigurable con-

trol system's operation. The overall system operation is dis-

cussed in Section 2.3, and a basic methodology for fault

detection and identification incorporating artificial intelli-

gence concepts appears in Section 2.4.

An overview of the baseline aircraft-control configuration is

shown in Fig. 2. The primary estimation and control logic has a con-

ventional structure, as might be found in an LQG or classical

controller-observer implementation. The same sensors that pro-

vide information for this logic drive the failure detection, identifi-

cation, and reconfiguration logic. The -pilot can request specific

tests or restart the logic, as required. This feature is neces-

sary for detecting failures in the pilot's cockpit controls, and

it provides a means of augmenting the system's artificial intel-

ligence with the human kind.

It is most appropriate to identify the subject area as knowl-

edge engineering, which Feigenbaum defines as "bringing the princi-

ples and tools of Al research to bear on difficult applications

problems requiring experts' knowledge for their solution"{40).

Specific technical issues of control are important in the defini-

tion of "intelligent agents" of the expert and/or production sys-

tems, but it is anticipated that AI formalisms will have syner-

gistic effects in control system design.

10
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PILOT

INPUT

SENSORS CONTROL EFFECTORS AIRCRAFT SENSORS::[ [ ON RO EF sCos I oo c II,

TEST,

I SPECIALSEOR
REQUEST

: :" ! FAILURE DETECTION,

IDENTIFICATION,

JL - RECONFIGURATION LOGIC

Figure 2. Overview of the Baseline Control Configuration

2.1 BASIC CONCEPTS IN ARTIFICIAL INTELLIGENCE

Expert Systems - Expert systems are knowledge-based problem-
solving programs that attempt to use heuristics and facts as
experts use them. The tasks and requirements of such systems can

-* . . . * -*.•. . . . . .... . .. , .. - . . .
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be identified as in (411: ,O

Task Requirements

" Interpretation Correct, consistent, complete

analysis of data

Diagnosis Fault finding

Monitoring Recognition of alarm conditions

Prediction Reasoning about time,

forecasting the future

Planning Defining and achieving goals

within constraints and priorities

Design Same as "Planning"

All of these are important in the context of reconfigurable con-

trol systems, but there is a need to go beyond the stated

requirements because interpretation, diagnosis, monitoring, pre-

diction, and planning must be used to redesign (or reconfigure)

the control system in "real time", i.e., with negligible delay.

The common issues of large solution spaces, tentative reasoning,

time-varying systems, and "errorful" data must be addressed using

probabilistic or pseudo-probabilistic models of the controlled

system and its failed states.

The expert system offers an improved formalism for failure

detection, identification, and reconfiguration (FDIR) through

o Use of specialized data and solution structures

* Compilation of knowledge

* Transformations of knowledge into efficient axiomatic frames

Whereas previous FDIR algorithms have used a single, generalized

representation of failure hypotheses, e.g., a bank of parallel

12
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Kalman filters, an expert system can consider diverse data

sources and subproblem abstractions. While some failure indica-

tors may be continuous variables generated by Kalman filters,

others may be discrete variables from finite-state models. Each

of these indicators can be considered the output of a "produc-

tion", as defined below. In effect, the expert system can be

tuned to accept such information in a balanced way, minimizing

the possibility of unnecessary computation.

Production Systems - A production system uses procedures (or

productions) to generate actions predicated on a data base{ll}.

Each production has a unique input-output characteristic that

produces certain goal conditions from initial conditions. In the

cleanest case, each production is independent of every other pro-

duction; however, in many situations, there is coupling between

productions. Consequently, conflicts occur and must be resolved,

sometimes requiring logic for back-tracking and reevaluation. A

production system can be considered an expert system if its pro-

ductions capture the heuristics of experts.

For an AI-based reconfigurable control system, the productions

are computer programs (or procedures or routines) that model the

normal and failed characteristics of the controlled system.

Thus, the productions may be realizations of differential, dif-

ference, algebraic, or transcendental equations that model the

sensors, actuators, power systems, and structure of the control-

led system. These, in turn, may incorporate physical modeling

and statistical estimation to generate failure metrics, which are

processed in response to requests from the executive logic.

Example of Application - A qualitative example of the reconfigu-

rable control system implementation can be given for

13



clarification. Consider a generic jet aircraft of modern design.

Its control effectors are highly redundant, including

e Elevator

* Rudder

* Ailerons

* Spoilers

• Flaps

* Slats

* Trim Tabs

& Engine Controls

e Thrust Reversers

Several sub-systems, e.g., landing gear and engine bleed air,

have control-like effects on aircraft motion when they are

deployed or engaged. Each control effector or sub-system will

have a distinctive input signature, consisting of a unique combination

of forces and moments that lead to unique translational and rota-

tional accelerations of the aircraft.

Should an effector fail, there are alternate ways of sensing

the failure, and each associated detection algorithm forms the

basis of an AI production. Knowing the aircraft's dynamic model,

the ensuing motions provide input to a production algorithm that

determines which input signature has occurred, in turn indicating

which effector has failed. The deflection of the effector itself

may be measured, leading to an algebraic (or finite-state) pro-

duction to determine if the effector responds to control com-

mands. Similar measurements can be made for the effector's power

system leading to yet another production. Because each of these

indicators is subject to failure, there is uncertainty as to

whether or not a failure actually has occurred. A

14
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knowledge-based production system then assesses the probability "

(or pseudo-probability) of a failure, and the expert system

decides what adjustments should be made to the control system

configuration. For example, if the rudder has failed to its null

position, the ailerons and spoilers may be commanded using dif-
ferent control gains or feedback paths. If a left wing slat has

failed "down" (while the right slat still is "up"), the ailerons

can be commanded to counteract the rolling torque that results.

Each failure mode of each effector is modeled by an AI produc-

tion, and other failure/damage types are treated in like fashion.

2.2 FAILURE MODES AND EFFECTS

This section describes the modeling and simulation of failures

in an aircraft's flight control system and in the aircraft

itself. For purposes of discussion, consider a nonlinear differ-
ential equation model of the baseline aircraft (to be simulated),

* (t) = 1[x(t),u(t),w'(t)], x(0), = 0 (2.2-1)

where

= [V a 0 p q r 8 0 ]T (2.2-2)

0.,
u = [61 6 ]T (2.2-3)

15.'. ,'.-
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The m control effectors represent conventional and unconventional 0

devices, and they may be redundant, i.e., more than enough to

assure complete controllability in both structural and qualitia-

tive senses. Equation 2.2-1 can include the effects of closed-

loop control, although that is neglected in this brief discus- "

sion. The system observation equation is

z(t) = h[x(t),u(t),w'(t),v'(t)] (2.3-4) -

where v'(t) represents an error process. At trimmed equilibrium,

denoted by (.)*,

0 = ftx*,u*,w'*] (2.2-6)

Perturbations from the trimmed condition, A(.), can be modeled

by linear differential and algebraic equations: p.

Ax(t) = FAx(t) + GAu(t) + LAw(t), Ax(O) = Ax0  (2.2-6)

Az(t) = CAx(t) + DAu(t) + EAv(t) (2.2-7)

0 FA* GAu* LAw* (2.2-8a)

16
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or

Ax* = -F (GAu* + LAw*) (2.2-8b)

The model can be expanded to include actuator, sensor, and compu-

tation dynamics.

The types of failures to be considered are the following:

Sensor failures

* Actuator failures

e Power supply and transmission failures

. Aerodynamic and structural damage or failures

The device and system failure modes include,

* Null failure

9 Hardover failure

* Runaway failure

* Random process failure

* Random bias failure

* Intermittent failure

while aircraft damage or failure can be modeled as a discrete

change in dynamic (FG) characteristics.

It is apparent that all of these failure types and modes can

be modeled by modifications to eq. 2.2-6 to 2.2-8. Null failures of

the sensors zero the appropriate columns of (C,D,E), while null

actuator failures zero the columns of G. The latter affects both

17
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dynamic response and trim equilibrium. Hardover, runaway, and ran-

dom failures in sensors and actuators are modeled by Av and Aw,

respectively. Power supply and transmission failures interrupt

the operation of sensor and actuator groups; therefore, a number

of matrix columns will be zeroed in this instance. Intermittent

failures simply require the above effects to be switched on and

off.

When the baseline configuration includes closed-loop control,

i.e., use of the measurements (eq. 2.2-7), the simulation is more

complex but still well-defined. The structure of the baseline

control law must be simulated, with the failures injected accord-

ingly.

2.3 PRIMARY CONTROL OPERATION AND RECONFIGURATION

The baseline configuration will be assumed to have a primary

digital estimation and control system whose gains and parameters

will be modified according to flight condition and failure state.

For discussion purposes, the primary system will consist of a

full-state estimator and a proportional-integral-filter (PIF) control law {42).

The eighth-order estimator is either block diagonal or block-

diagonally-dominant, reflecting the usual separation into longi-

tudinal and lateral-directional modes, and the number of measure-

ments depends upon the identified failure state of the system.

The estimator itself provides analytic redundancy when the opera-

tional sensors are fewer than normal. Hardware redundancy man-

agement precedes the input of measurements to the estimator,

i.e., the functions of analytic and parallel redundancy manage-
ment are handled separately. Estimator model parameters and

18
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gains are chosen for robustness. 0

" The PIF controller is inherently robust. Assuming that the

-" baseline aircraft operates with conventional command modes for

up-and-away flight, there would be four pilot inputs (longitudi-

nal and lateral stick, foot pedals, and throttle); hence, there

would be up to four integrators for the command variables.

(Assuming that pitch rate and roll rate are command variables,

only two "extra" integrators would be required (43)). Up to m

low-pass filters can be associated with the control surface com-

mands, although it is likely that the number can be reduced to

four under most circumstances, reflecting the usual number of

independent controls. Block-diagonal dominance applies, and the

number of control commands depend on the failure state.

In normal operation, gains would be scheduled with flight con-

dition; therefore, they would be continually varying. Once a

failure is detected and identified, the appropriate gains could

be selected, but a sudden switch could produce an unacceptably

large transient in the system, particularly if control settings

are large. As a consequence, the gains should be "faded" from

the old values to the new values over a period of time to be

:- .:. determined by a tradeoff of urgency and smoothness (44).

.S
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2.4 ARTIFICIAL INTELLIGENCE, FAULT DETECTION, AND IDENTIFICATION

Much of artificial intelligence (AI) relates to learning about

unknown systems from observations or other evidence in a manner

that emulates human thought processes. Tasks performed almost

unconsciously by humans can prove quite demanding for machines.

Problems deemed too difficult for individuals often are referred

to panels of experts, whose combined knowledge is used to form

solutions. The questioning of an individual or a panel of

experts is analogous to the retrieval of information from a data

base. If rule-based deduction is used, the process of finding an

answer can be called "intelligent", whether human or artificial

(11). An objective of this research is to use rule-based deduc-

tion to detect and identify failures, thereby making reconfigura-

tion possible.

Deduction implies searching a hierarchical tree of possibili-

ties. At each node there must be rules and criteria for continu-

ing along a particular branch. In the context of system fail-

ures, the probabilities of each choice conditioned by the available

observations provide a rational set of criteria, and Bayes's rule

provides a reasonable selection process. It also is necessary to -

develop logic which retains more than one possibility in the

search long enough to identify possibly subtle hypotheses and

which knows when to stop; hence, there is a need for optimal

pruning and stopping rules (45).

AI heuristics will prove most valuable in formulating FDI

hierarchical structure and in identifying faults on an inferen-

tial basis. In the first instance, all failure/damage modes and

effects must be classified and arranged in levels. For example,

the hierarchy for failure modes might be

. -*
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* System 0

* Function

e Axis

e Device

* Characteristic "

while that for failure effects might be

* Abnormal motion 'S

* Axis

o Forcing function

* Source

In the second case, rules of inference would process a number of -

observations in a production system to deduce a failure. For

example, combined loss of left aileron, loss of air data from

sensors mounted on the left wing, ana rapid roll rate could infer O

damage to the left wing. To some extent, this sort of reasoning

is invoked in operational systems {46}, although formal connec- -

tions to AI are not identified and the scope of the application

does not include aircraft damage. '

The familiar concepts of sequential probability ratio, gener-

alized likelihood ratio, and multiple model testing {31,47-55) >"'-

have potential application to the actual computations, and refer- O

ence to the general area of fault-tolerant avionics is warranted

{56-62). It is desirable that a minimum number of full-state

estimators be used, with each failure state modeled by, at most,

a low-order process or "moving window" estimate of the probabil- -

ity density function (also called the likelihood function) or its

logarithm. For example, with the Gaussian assumption, the log
K-, ,olikelihood function estimate for the A failure hypothesis based

21
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on a moving window of N data points can be expressed as

k

LA(k) = (1/N) { [Azi - (CAx. + Au. + EAi A [T -1

i=k-N+l

where Ax is the state estimate, RA is the measurement cc

matrix associated with the failure state, and cA is a c

Then the log likelihood ratio of hypotheses A and B is si

LAB(k) = LA(k) - LB(k)

and the decision rule is

e LAB(k) a, Accept Hypothesis A
AB0 a < L AB (k) < b, Accept previous hypothesis

o LAB(k) b, Accept Hypothesis B

The process is made efficient by defining failure signat

each hypothesis (311.

The hierarchical approach suggests that differing

types be processed separately and that a minimal amount o

tation be carried out at any given time. Accordingly, th

O separates sensor FDI, which can be associated with the ai

outputs, from actuator/aircraft FDI, which can be associa

control inputs and dynamic response characteristics. In

(unfailed) state, it may be sufficient to carry two hyp

22
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the system is failed or not. On detecting that an unspecified

failure has occurred, the logic excpands the number of hypotheses

to determine which aircraft axes are involved. On determining

the axes, the hypotheses associated with unfailed axes are

dropped, and more specific hypotheses related to systems and

individual components are brought on line.

All FDI results would be broadcast over a data bus so that

appropriate adjustments can be made. For example, once a partic- .

ular sensor is declared failed, this information would be used to

reconfigure the primary estimation logic and to modify the actua-

tor/aircraft FDI logic.

23

*"teae h yohssascatdwt naldae r -"

a dropped........................................ to sytmsad .



. . -- ..

3. CONCLUSION

A concept and program for applying artificial intelligence

theory to improving the fault tolerance of control systems has

been described. The concept includes both subjective and objec-

tive logic for detecting failures, identifying failed components,

and reconfiguring control paths to maintain acceptable perform-

S. ance. The program is directed at realizing the concept through

analysis, system design, hardware implementation, and experimen-

. tal evaluation. Program results will have fundamental applica-

- - tion to the formulation of future control structures.
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