
D-R143 763 METHODOLOGY FOR SOFTWARE MAINTENANCE(U) NORTHWESTERN 1/4,
UNIV EVANSTON IL S S YAU FEB 84 RADC-TR-83-262

U~cLssIIED F30602-80 C 8139 FG92 N

INCLASmEDmosomm

mhEEomhhmhEEEEE
mhhhhmhhEEmhEI
mEEmhhhohEmhEI

EEmmhhhhhEohE

. N 7

,, .- ,

- 512 12.51J

• ... - £i

EEJ* -2A 1112.

,,',6

110.

11111125 Wl4 f~[

MICROCOPY RESOLUTION TEST CHART

NATINAL ROFA N A NDA

V .

I.w

S.ll '

RADC-TR-83-262
Final Technical Report
February 1964

(V)

METHODOLOGY FOR SOFTWARE
1MAINTENANCE

Northwtstern University

Stephen S. You

76 APPROVED FOR PUBLIC RELESE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441 '

. - ' • i . . , . . °i . -. - ,. -, - i . - •. . . . - -. • - . . .'.' . .E

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-262 has been reviewed and is approved for publication,

JOSEPH P CAVANO

Project Engineer

APPROVED:

RONALD S. RAPOSO
Acting Technical Director
Command and Control Division

FOR THE COI MER:

JOHN~ A..I

Acting Chief, Plans Office

01
If your address has changed or if you wish to be removed from the RADC --
mailing list, or if the addressee is no longer employed by your organization,
please notify RAvC (COEE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices -
on a specific document requires that it be returned.

UNCLASSIFIED
S9CuRITY CLASSIFICATION OF T041S PAGE Mhe, 0414 Euw.,wild) READ____ INSTRUCTIONS______

REPOT DOUMETATIN PAE BEFORE COMPLETING FORM
I REPORT NUMICR .GOT1CI "g EIIEVCALG1UMLP

RAC-TR-83-262 _______________

5.TTE(n ulte . TYPE OF REPORT & PERIOO --OVEREO.

- Final Technical Report
METHDOLOY FR SOTWAR MANTENNCEApr 80 - Sep 82

64. PERFORMING FOG. REPORT HUNGER

N/A
7. AUTNOR(ii) 4. CONTR ACT OR GRANT NUM111111l')

Stephen S. Yau F30602-80-C-0139

.PERFORMING ORGANIZATION 14AME AND ADDRESS 10. PROGRAM ELEMENT.PROJECT. TASK(

AREA & WORK UNIT HUNUEIRS
* Northwestern University

Evanston IL 60201 62702F

IC3NTROLi.NG OFFI!CE NAME ANO ADDRESS 12. REPORT DATE

* Romne Air Development Center* (COEE) 4ebuar19 84
* C~riffiss AFB NY 134413.ILM OPAS

312
14I MONI1TORING AGEN4CY NAME AAOORESSI'I different from Controlling Offie) 15 SECORITY CLASS 'at !his roponr)

UNCLASSIFIED
Same 'So OEC..ASSII~CA'-N OOWNGRAOING

N/A Sc,4EDuLE

* IS. GISTRISUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

17. DISTRI11UTIONi STATEMENT (01of .bOU,.fCt entred .n Block 20. it different from Report)

Same

* I41. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COFE)

IS. KEY WORDS (Continue ont, bweeo side it nocsiery,7 and Idenfy by block Auiber)

software modification software testing
software maintenance
software measurement
software metrics
logical ripple effect analysis'

20. AISTRACT (Countinue on ,.,ma.s old* it necesaryv ad Identify~ b block umbot)

Improved techniques for specifying and implementing software modifications
were developed including logical ripple effect analysis, logical and

* performance stability measures, and effective testing for software mainten-
ance. An experiment was performed to analyze logical stability measurements. .,

00 't~"Oii 1473 to- room op 1 Nov6 los oSsoETEa UNCLASSIFIED

SECURITY CLASSIFPICArION OF THIS PAGE (when Does enteresto

% w

--. . . . " r

ABSTRACT

This report documents the research performed under RADC
Contract No. F30602-80-C-S139 by Northwestern University for
developing effective methodologies for software maintenance.
This contract is a follow-on to Contract No. F30602-76-C-0397
and focuses on refining• expanding and automating software
maintenance concepts and techniques developed under the previous .-. , contr act. ::.

During this contract period, significant progress was made "
in developing techniques for specifying and realizing software
modification proposals, logical ripple effect analysis and
module revalidation after modification. These techniques and
the performance ripple effect analysis technique developed
during the previous contract period were demonstrated using a
DEC VAX 11/780 computer. In addition, a number of software
metrics related to modifiability, such as measures For logical
and performance stability, module strength and coupling, were
developed. Limited experiments for validating the logical
stability measures were performed.

In this report, research results which were presented in
published papers are summarized, and unfinished and unpublished .-.
work is presented in detail. Publications, and technical
personnel related to this project are also summarized.
Published papers presenting the work supported by this contract
are included in the Appendix.

Keu Words - Software maintenance, maintenance methodology,
specification and realization of software modification
proposals, logical and performance ripple effect analysis,
program revalidation, techniques, software metrics, stability,
module strength and coupling, validation experiments.

Accession For

- NTIS GRA&I
DTIC TAB T.
Unannounced

..- Justificatio

* Distribution/

Availnbility Codes
Avil nnd/or

Dist Special

..............

Page ~iTABLE OF CONTENTS2

ABSTRACT......................

LIST OF ILLUSTRATIONS................v

LIST OF TABLES...................vii 2
1.0 INTRODUCTION..................... 1

2.0 SOFTWARE MAINTENANCE PROCESS AND ASSOCIATED QUALITY
FACTORS........................ 3

2.1 The Ac tivities Of Software Maintenance 3
2.2 Tools And Techniques For A Softw~are Maintenance

Environment.....................
2.3 Quality Factors Affecting Software Maintenance 1

3.8 SPECIFICATION OF SOFTWARE MAINTENANCE PROPOSALS 13
3.1 A Model Of Software Systems For Software

Maintenance.....................16
3.1.1 Background 18IM
3.1.2 Graph Rewriting Systems...............20
3.1.2.1 Graph Rewriting 2
3.1.2.2 Definition Of A Labelled Gr &ph 24
3.1.3 The Intraphase Model...............24
3.1.3.1 Software Components................25
3.1.ji.2 Component Interfaces 36
3.1.4 The Interphase Model................40

*3.2 Construction Of The Software Model.........45
3.2.1 Construction Of The Intraphase Model........45

* 3.2.1.1 Definition Procedure 47
*3.2.1.2 An Example For Constructing An Intraphase Model

(An RSL Subset)...................46
3.2.1.3 Implementation Of The Intraphase Model. 51
3.2.2 Construction Of The Interphase Model. 52
3.2.2.1 Definition Of The Interphase Model 55
3.2.2.2 Implementation Of The Interphase Model. 56
3.3 A Technique For Specifying Software Modification

Proposals......................7
3.3.1 Intraphase Tracing................56
3.3.1.1 An Example Of RSL Modification 61

*3.3.1.2 Assertions To Control Intraphase Tracing 63
3.3.2 Interphase Tracing................65
3.3.2.1 An Example Of Interphase Tracing 65

*3.4 Discussion And Future Work 71

4.0 REALIZATION OF SOFTWARE MAINTENANCE PROPOSALS . 75
4.1 Overview.....................75
4.2 The Program Representation 79
4.2.1 Data Flow Extensions To The Basic Representation 81

Page i i i

4.2.2 The Construction Of The Representation. 84--
4.3 The Program Slicer.................85
4.3.1 The Concept Of Program Slicing.......... 5
4.3.2 Algorithms For Syntax-Directed Program Slicing . 9 0
4.3.3 Enhancements 95
4.4 The Syntax-directed Editor.............96
4.4.1 Incremental Editing.................8
4.4.2 Legitimate Operations...............99
4.4.3 Incremental Analysis................100
4.4.4 Incremental Update Of Data Flow Information .. 164
4.4.5 Interactive Pretty-printing...........106
4.5 Software Development................106
4.6 Discussion And Future Work.........*.11

5.0 RIPPLE EFFECT ANALYSIS.................113
5.1 Logical Ripple Effect Analysis Technique . . . 113
5.1.1 Intramodule Error Flow Model
5.1.1.1 Block Error Characteristics...........120
5.1.1.2 Construction Of Intramodule Error Flow Model .124

.45.1.1.3 Intramodule Error Flow Tracing...........125
5.1.2 Intermodule Error Flow Model...........132
5.1.2.1 Module Error Characteristics. 134
5.1.2.2 Generation Of Module Error Characteristics . .. 138
5.1.2.3 Update Block Error Characteristics 140
5.1.3 Logical Ripple Effect Identification 143
5.1.3.1 Error Flow Tracing.................144
5.1.3.2 Intermodule Error Flow Tracing...........145
5.1.3.3 Error Flow Tracing Algorithm............146
5.1.3.4 Logical Ripple Effect Derivation. 150
5.1.4 Logical Ripple Effect Analysis Technique 153
5.1.5 Experiments......................156
5.1.6 Discussion And Future*Work..............159
5.2 The Performance Ripple Effect AaIs Tehnique 160
5.2.1 Experimentation.................161
5.2.2 Discussion.....................163 .

6.0 EFFECTIVE TESTING FOR SOFTWARE MAINTENANCE 165
6.1 The Module Revalidation Technique 166
6.1.1 Derivation Of The Input Partition 166
6o2 Reusability Of Original Test Cases 172
6.3 Assignment Of Original Test Set To The Input

Partition Classes..... 173
6.4 Selection Of Original Tet Cae Fo Exection .174
6.4.1 Necessary Information For Test Selection 175
6.4.2 Overview Of Selective Test Execution 176
6o4.3 Algorithm To Select Test Cases.
6.4.4 An Example.....................181
6.5 Test Case Generation And Execution 185
6.6 Output Validation Phase.............186 .

6.7 Debugging.....................187 .*

6.8 Discussion And Future Work............189

07

Page i v

7.0 METRICS RELATED TO SOFTWARE MAINTENANCE 92

7.1 Logical Stability Measure 193
7.1.1 Logical stability measure for modules193
7.1.2 Logical stability measure for programs 195
7.2 Performance Stability Measure 196
7.3 Design Stability Measure198
7.4 Module Strength and Coupling 20
7.4.1 Estimating Data Object Interaction201
7.4.2 Definition of Intra-Module Strength Metric ,. . 204
7.4.3 Definition of Inter-Module Coupling Metric . . 205
7.5 Validation of the Logical Stability Measure 2 209
7.5.1 Experimental Procedures 209
7.5.1.1 Program Selection 210

.--... " 7.5.1.2 Modification Proposal Generation 210
7.5.1.3 Quantification of the Realized Modifications , 211

7.5.1.4 Actual Ripple Effect Estimation and
- - Normalization 211

7.5.1.5 Statistical Methods Used in Analysis of the

Results 213
7.5.2 Analysis of the Experimental Results214
7.5.3 Discussion 215
7.6 A Unified and Efficient Approach for Logical

Ripple Effect Analysis Used in Metrics
Calculat ion 225

7.6.1 Formalization of Logical Ripple Effect Analysis 227
- 7.6.2 Logical Ripple Effect Analysis for Metrics

Calculation 230
7.6.2.1 No Control Flow - No Sharing 231
7.6.2.2 No Control Flow - Sharing 233
7.6.2.3 Control Flow - Tracing 236
7.6.3 Conclusion237
7.7 Discussion and Future Work 238

6.0 REFERENCES 239

9.8 PUBLICATIONS AND PRESENTATIONS246
9.1 Papers 246
9.2 Presentations 247
9.3 Technical Reports 248
9.4 Dissertation And Theses 248

10.0 TECHNICAL PERSONNEL250

11.0 APPENDIX 251

0 S

.. ,. .

Page v

LIST OF ILLUSTRArIONS

Figure 2.1. The software development process 4
Figure 2.2. The software maintenance methodology 8

Figure 3.1. The users, view of a software system 13
Figure 3.2. The programmers' view of the same software

system 15 .

Figure 3.3. Equivalence preserving requirements for
reliable software modification 16

Figure 3.4. An example for rewriting a string 22
Figure 3.5. An example for rewriting a graph 23."...
Figure 3.6. An example of the control flow representation 26
Figure 3.7. Notational abbreviations for the standard

graph patterns 29
Figure 3.8. Abbreviated representation of the previous

example shown in Figure 3.6 38
Figure 3.9. An example of data flow representation. . .. 32
Figure 3.19. An example of data structure representation 34
Figure 3.11. An example of a component interface graph

with no PARAMETERS subcomponent 46
Figure 3.12. A process structure using Jackson's design

methodology 42
Figure 3.13. The model representation of the JDM design

shown in Figure 3.1243
Figure 3.14. Part of the interphase model between

requirements and design44
Figure 3.15. RSL RNet and associated alphas 62.-.-
Figure 3.16. The MODEL representation of control flow of

the RSL example 63
Figure 3.17. Consequences of possible combinations of good

and bad code with good and bad assertions . 64
Figure 3.18. The abstract graph representing a software

system 66
Figure 3.19. Tracing rules between two phases of an

abstract software system. 66
Figure 3.26. The next phase of the abstract software

system. 67
Figure 3.21. A new right-hand side for rule R4.69
Figure 3.22. An alternative right-hand side for rule R4 71

Figure 4.1. The procedure for incremental program
modification 76

Figure 4.2. The structure of the system for incremental
program modification 78

Figure 4.3. (a) Portions of the program to be modified,
(b) portions of the slice constructed for the
variable COUNT 88

0 .-0

................... -.-.-.

. .

Page vi

Figure 4.4. A part of a legitimate operation table . . . 101
Figure 4.5. Insertion of a local variable 103
Figure 4.6. An example to show a sequence of cursor

movements 107
Figure 4.7. The communication pattern of the integrated

tools 109

Figure 5.1. An example program 126
Figure 5.2. The error characteristics of the blocks in.

rroots in the example program shown in '
Figure 5.1 12"

Figure 5.3. Intramodule error flow tracing in rroots in
the example program shown in Figure 5.1 . 131

Figure 5.4. The module error characteristics of rroots
in the example program shown in Figure 5.1 148

Figure 5.5. Error flow tracing in the example program
shown in Figure 5.1149

Figure 6.1. An overview of module revalidation 167
Figure 6.2. The cause/effect graph specification of an

example program 170
Figure 6.3. The source code of the example program with

the specification shown in Figure 6.2 171
Figure 6.4. Original test cases prepared for the program

in Figure 6.3 174
Figure 6.5. The program graph with reaching set

information for the program in Figure 6.3 182
Figure 6.6. Result of test selection on the program in

Figure 6.3 with test cases in Figure 6.4: (a)
symbolic execution trees and (b) contents of
test information table 183

Figure 6.7. Decision table containing partition classes
derived from the specification in Figure 6.2
and the program in Figure 6.3 188

*. * .* . *. .*,* .

* .~t~~t. ~ t.*. *~**.* **4 - •-.

.0 Page vi i

LIST OF TABLES

Table 7.1. Logical stability measures for each module
of the target programs used in the
experiment....................216

-. Table 7.2. Correlation analysis on logical stability
for individual modules.............222

-Table 7.3. The summary correlation analysis of logical
stability for all modules in the experiment .224

* •

Page £ 4

t.13 INTRODUCTION

This report summarizes the research performed under 0

Contract No. F38602-88-C-8139 by Northwestern University for

Rome Air Development Center during the period from April 23,

1988 to November 38, 1982. 0

The original objective of this effort was to conduct

exploratory development of techniques for the design, .

implementation, validation and evaluation of .i. ble and

maintainable software systems. This effort was i .ded to be

a follow-on to Contract No. F30602-76-C-0397, 'f-Metric

*. Software" EYAU8Oa, 88b, 80c3, and would focus on refining,

expanding and automating software maintenance concepts and

techniques developed under the previous contract.

V
The original effort was planned for a period of three

years, starting April 23, 1980. However, because of some

difficulty in continued funding, this project was re-scoped in

September, 1981 and had a lower level of funding starting FY82.

This project starting October, 1981 was re-directed as follows:

to complete the development of those techniques which could be

completed in FY82, and to complete the development and perform

some preliminary validation of the logical stability measures .

of programs for measuring the resistance of the programs to

logical ripple effect due to modifications. In this report,

-.-

",.'" -",' ' ' ? ' '" '" ' ,-°i -" ." ," " , i- .- '. . .'' .. ,-. '. " ',i ° - 2-""- . . ', " . -" ." "- • '. . " . . ,

Page 2 0

re,;earch results Which . e been presented in previous papers

and irtcim technical reports are summarized, and unfinished
S

and unpublished work is presented in more detail.

Publications, presentations and technical personnel related to

this project are also summarized.

During this contract period, we have made significant

progress in developing techniques for specifying and realizing

software modification proposals, logical ripple effect analysis

and module revalidation after modification. These techniques

and the performance ripple effect analysis technique developed

during the last contract period have been demonstrated using a

DEC UAX l1/780 computer. In addition, we have developed a

number of software metrics related to modifiability, such as

measures for logical and performance stability, module strength

and coupling. Limited experiments for validating the logical '

stability measures have also been performed.

m-- B.

I -

4 6

0 Paqe 3

2.0 SOFTWARE MAINTENANCE PROCESS AND ASSOCIATED QUALITY

FACTORS

The software maintenance phase is the most time-consuming

and costly part of the software life cycle EBOEH73], [ZELK78],

[L.IEN8]. However# the activities carried out during this

phase are deeply affected by the process of software

development, since the purpose of software maintenance is to "

modify the products of the software development process.

2.1 The Activities Of Software Maintenance

We conceive the software development process as shown in

Figure 2.1. The first activity of software development is to

study the application area and define the requirements for a

new software system for the particular application problem.

This activity involves the participation of representatives

from both the users of the software system and from the

software development organization. The second activity (or set

of activities) is known as software design. This activity may

involve the definition of several intermediate stages during

which a system is being developed to meet its requirements.

These intermediate stages may be known as, for example, --1
architectural design, subsystem design and module design. This

activity is normally carried out exclusively by members of the. 0

software development organization, although some user

4

.k - t

P "age 4

Requ irements
Analysis "

Software
Des i gn

Cod i ng

Test ing

Oper at ions
and

Maintenance

Figure 2.1. The software development process.

organizations may continue their involvement through various

stages of design. The next activity of software development is

to organize the software system design into one or more related Z-

programs, together with associated data files. This activity

is known as the programming or coding phase. The final

activity of software development is to test the implementation -

of the software system which has resulted from the software

-. . -.

o'. -.,- - ,- .. . , -. '- - - ' - -'/ - , , -' • . .- , . ,' - ° - " -'" • , '.., . - -,

' Page 5

development process. These last two activities are exclusively

carried out by members of the software development

organization, although they are frequently performed by people

who were not involved in the previous activities of preparing

software requirements and design. When the system has been

tested "successfully", it is released to the users and enters

an "operational" phase. To the programmers who must work with

the system, this phase is more commonly known as the

"maintenance" phase.

The software maintenance phase is in some sense a

repetition of the activities of the software development Ir

process. Although maintenance objectives include improving

software performance, correcting errors, transferring software

syqtems to new computer system configurations and deleting .

obsolete features, the most frequent objective is to increase

system functionality by adding new features or by improving

existing features. Thus, it is again necessary to discuss the

requirements for the software system with the users; it is

again necessary to perform software design; and, finally, it

is again necessary to perform coding and testing. However,

there is one fundamental difference in these activities when

they are carried out during the software maintenance phase:

these activities must now be carried out in the context of an

existingp operational software system. It is important for the

- " o

" ".

* Page b

software maintenance personnel to have an understanding of the

process which was used to develop the software system. They

must know not only what the operational system is and does, but

also how and why it does so, since they will have to change the

requirements, redesign the software, modify the programs and -.

test the new implementation based on various demands. The

traditional approach to providing information to assist with

. these tasks is by means of "system documentation". Many

techniques have been developed to document software systems,

but they tend to be incompatible and not sufficiently

comprehensive to describe the entire software development

process (e.g. HIPO [STAY76]). We have developed a model which

is suitable for describing software systems' requirements,

designs and programs. In addition, this model also permits

individual software requirements to be traced through the -"

intermediate levels of software design to the final programs of

the system. This tracing capability is essential for the

maintainer of a software system, who must be able to understand

and modify the system rapidly and correctly.

Although it is important to identify the correspondence

- . between the requirements which are to be changed and the code
.-. :-.

. which must be changed as a result, there are several tasks ..-

which must be performed by the maintenance personnel before the

. modified software system can be made operational again. These

* S-

* -1

.+ . o .' " " " ,, *. " - - . . * . " + - . • ,o - o . ' . .% .- . ,

"0

Page 7

tasks constitute our software maintenance methodology CYAU78,

80a, 80e, 82c3, and they are shown in Figure 2.2. After

determining which parts of the software system must be changed

in order to affect the modification request# software changes

must actually be carried out, their consequences must be

analyzed, and the modified system must be retested.

In the following sections we will describe our approaches

to each of these problems of software maintenance. In Section

3, we will describe a software system model which may be used

to trace the correspondence between the software requirements,

software designs and programs of large-scale software systems.

In Section 4, we will then summarize our approach for improving

the reliability with which the program code can be modified -

using a program slicer to assist in locating the code to be

modified and a structure-oriented editor to make the

modifications free from syntax errors. In Section 5, we will

summarize our ripple effect analysis technique, which is used

to analyze the effects of the program modifications on the

behavior of the program. This static analysis technique allows

potential logical and performance changes to be identified.

The final phase of our methodology is to retest the modified

system. In Section 6, we will summarize our module testing

technique, which reuses existing test cases whenever possible

0
to reduce the retesting effort.

I.0

• .• . .- -

-° *. " - o° , . _ • . •. ..

Page 8

Construction of a
Multi-Level

Software System
Descr ipt ion

Specif ication Phase I

ofProgr am
Modification

Pnalosis

Tnreest l Phase 2

Riol Passe

Figre .2 The stare maiteace mehdl4

No~ Pas

*Testing

Ye
* Sde

Figure ~ ~ ~ 2..Tesfwaemitnne.ehdlg

7- ,-

....

Page 9-

2.2 Tools And Techniques For A Software Maintenance

Environment Ol

The techniques for realizing program modification

proposals, ripple effect analysis and module testing have been .

demonstrated by implemented programs running on a DEC

VAX-11/780 computer under the VMS operating system. The

technique for defining and tracing the correspondence from

software requirements, via software design to program code was

not implemented during the time available.

Tools for software maintenance should be able to share a

common program representation. This integration of tools

provides maintenance programmers with a standardized

environment for performing maintenance activities. We have

developed a formal program representation to support the tools

described in Section 4, which permits an efficient

implementation of our tools for program modification. In

addition, we have developed efficient representations of

programs for implementing each of the ripple effect analysis

techniques. While this approach to implementing software tools At.

is sufficient to demonstrate the validity of individual

techniques, software tools based on these techniques will be of

greater practical value if they share a common model of the

program. A more flexible program model, such as the

• ---O..

~~~~~~~~~~~~~~. ."./'.".- .= .........° -"..... . . -...-.. .... •......1.. ....



Page 18

Hierarchical Graph model [YAU80d, 8la, 82b], provides the means

for combining different software tools into an integrated

software maintenance environment. Like the model used by our

syntax directed editor, this model is based on the abstract

parse tree of programs. Since it also includes detailed

information about data flows in the program, it appears to

provide a suitable basis for integrating our individual

software maintenance techniques into a set of practical,

cooperating tools.

The ripple effect analysis techniques have been developed

to perform exhaustive analysis in the sense that they are

capable of identifying all blocks of a program which may be

affected by a program modification [YAU78, e8a, 80b, 8Oc]

[HSIE82]. However, to implement such a technique as a

practical tool requires that we allow the maintenance

programmer to restrict the tracing of ripple effec.s in

accordance with his/her own understanding of the software

system. Our implementation of the the logical ripple effect

analysis technique permits the programmer to interact with the

analysis program to select certain procedures for analysis and

to remove others from consideration. Additional effort on the

interface to these tools would be needed to improve their .-

practical effectiveness.

0

.- ..*
. . . . . . . . . .. .

,'2 -; -. 'T'..- -""''''7'.'" " . . .. .. '- .... .'." -.. . . ". . . . ."" ." - .", . "



+ -k

Page 11

Although our work has been to develop techniques for

software maintenance, they are also useful during certain

stages of software development. Our approach to realizing

software modification proposals, for example, uses a syntax

directed editor - a tool which is also very useful for the

initial writing and debugging of programs. Furthermore, the

activities involved in debugging a program require the

identification of two types of code: the first may cause

certain unintended effects (bugs), the second may be affected '"

because of changes made to repair bugs. However, the program

slicer (Section 4) has been developed to identify code of the

first type, while ripple effect analysis (Section 5) is

intended to identify code of the second type. In practice, we

would expect these tools to be used even more effectively in

the development phase, since the development programmer can

take advantage of his/her familiarity with the program under

development.

2.3 Qualit. Factors Affectinq Software Maintenance

One important concept which runs throughout the entire -1

software maintenance methodology is the use of software

metrics. Our long term goal is to develop a software metric

for modifiability - to provide a quantitative indicator of the

amount of effort required to make changes to particular
S.nn

... 6l



Page t2

programs or modules, and we have already developed some

measures of certain attributes of modifiability, which will be -_0 01
-- described in detail in Section 7. The earliest measures which

we have developed are those for the logical stability of

programs and modules [YAU6ee]. These are based on our ripple ]
effect analysis technique, and have been proposed as indicators

of the resistance of a program or module to ripple effects as a

* result of changes made to it. We have also developed a measure

for the logical stability of program design CYAU82c] since we

recognize the value of an early indication of deficiencies in

the quality of a software system. However, a metric will not

really be useful until it has been shown to correlate with the :

phenomenon which it is supposed to measure. We have,

therefore# devoted some additional effort to the validation of

our proposed stability metrics, and the preliminary results of -

our validation experiments will also be presented in this

report.

% S,

0''

I. "

"-2 - .. . . .- -. .- -. ... . . .. -. . . . . .. . . ... - -
"- " -." -. ". " i'-' - .-'-.-, ',- -.,-" - ." .." -. -'. -' . . . - ", -''" . - . "'-°- .,.-" - "" . - - • - .--A--

' . " " '" , "' '" • '""" "'" -"- .- ' "" " . " -" "" "-". -""."- . . " . . A *" "*--' ' . - "-" ,- "
-' * '" -" ." " ' '' r', 

" ' - '
' '' " % - .. " A . .-. '- A ''*A " *' '' " ".' . " - " . " . "



0 -. 0.Page 13 .1
3.0 SPECIFICATION OF SOFTWARE MAINTENANCE PROPOSALS

As reported by Lientz and Swanson [LIEN80, the most 0

frequent and most costly activity under the heading "software

maintenance" is system enhancement in response to user requests

for change. The view of a software system as seen by its users

'" is shown in Figure 3.1.

Environment (Application Area)

Software System

User
Interface

Other SoftwareL_. USER Manua
Sytms1 Systems

- -. 

- .1

Figure 3.1. The users' view of a software system.

The users know the application area - the environment in

which the system operates - and they know something about what

the system requires as input# and what it is capable of

producing as output. However, it is only rarely the case that

they know anything about the internal organization of the

system. Under these circumstances, user requests for change

are inevitably stated with reference to the application area.

* . .o . -- -o. -



Wo -- Wi.

Page 14

These requests usually refer to the interface which already

exists between the software system and its operating 0

environment. It is with such change requests that the process

of specifying software maintenance proposals begins.

In order to correctly modify a software system, it is S

necessary to understand the relationship between the change

requests and the programs which make up that system. Since

this requires a clear understanding of both the behavior of

those programs and the effects of the requested changes, a vast

amount of effort or prior experience with the system is

necessary. in the absence of such effort or experience, the

most logical alternative is to record information which

describes the relationships between the program code and the

software system's application area.

The programmers' view of the same system is shown in

Figure 3.2. During the maintenance process, these two views of

the same software system (the users' view and the programmers'

view) must be reconciled in such a way that the enhancements

requested by the user are implemented. This requires changes

to be made in both the users' and the programmers' views of the

system and these changes must continue to be compatible with

* each other.

.° ..



Page 15

Environment (Computer System)

Software
System

Subsystem Subsystem

Subsystem Subsystem

Interface.-

Figure 3.2. The programmers' view of the same software system. -

Figure 3.3 shows the "semantic equivalence" relationship

which exists between the two views of the original software

system, and which must be preserved during the maintenance

process. In addition, the users' new view of the system must

represent the incorporation of the modification request into

their old view of the system. In order to ensure this, the
40

modification proposal which is implemented by the maintenance

2 ...



Page 16 .04

*programmers must preserve a "semantic equivalence" between the

users, new view and the programmers' new view.
01

Users' Old Users' New
View W View

Modif ication
Request ,

Semantic Semantic 0

Equivalence Equivalence

Programmers' Old Programmers' New
I-',ZView View '

Modif ication

Figure 3.3. Equivalence preserving requirements for reliable
software modification.

So far we have only discussed the problem of specifying a

software maintenance proposal in a very abstract manner. Now,

we would like to consider some of the practical problems,

especially those involved in providing automated assistance for

the maintenance personnel who must make the "semantic -.0

equivalence preserving" modification.

The first problem is to describe software systems using

formal notations or formal descriptions. Since we cannot

expect any automated assistance in dealing with informal

notations or descriptions, we must ensure that all notations

used to describe the software system have been formalized as _

much as possible. In dealing with the programmers' view of the

S"-S

* • * . . . . • . .. . -



Page 17 ,

system, we are on fairly solid ground with respect to formal

notation, since all programming languages must at least have a

well-defined syntax - to allow automatic elimination of some

programs which are clearly incorrect. In addition, all

programming languages must have a semantic definition so that

the programmer can predict the behavior of the code being

written. However, these semantic definitions are frequently

informal, are often subject to implementation constraints and

occasionally permit several interpretations. When dealing with

the users' view of a software system* we cannot expect that a

very formal notation is being used. The best we can hope for ..- '

is that parts of the system have been defined in a notation

such as RSL [ALF077], SADT CROSS773 or SA CDEMA78], which have

varying degrees of formalization. If we do not have such a

S
description of the system, one must be developed; otherwise,

we will be unable to have any precise idea of what a change

request entails until we have found the relevant program code

which must be changed. One major problem with this approach is

the likely existence of (though perhaps minor) discrepancies

between the users' actual concept of the system operation and

the programmers' description of that concept. However, given -

formal descriptions of these two views of the software system,

we can proceed to study the effects on the one of changes made

to the other. In order to deal with these issues, we will 0

develop formal models of the different views of the software

" ho "
r

S



Page i.

system and proceed by working With these models.

3.1 A Model Of Software Sustems For Software Maintenance

The most important questions to answer when we decide to

model the processes and products of software maintenance are

what to model and how to model it. We now describe how we have

approached these problems, and explain the reasons for our

choices. We will then present the details of our modelling

approach.

3.1.1 Background

The major activity of the software maintenance process is

to make changes to existing documents which describe a software

system. These changes may be trivial or substantial, optional

or essential. They may be carried out by a single person or by

several independent groups of people. Since these documents

are interdependent (for example, the design document is derived

from the requirements document), we must also be able to model

the process of cr.anging a document in response to changes in

another document. It is frequently necessary to retain several

- .versions of each document, and therefore we must also control

modifications so that they are made to the correct version and

S in the correct sequence. Thus, we have identified the

following three major activities for which our model is needed:

- • -- . -- i*

- - ,.-o-...



"O Page 19

1) Modifications to a single software document, by either (a)

a single programmer or (b) several independent programming

* groups.

2) Replacement of portions of a software document in response

to changes made to its source document. 0

3) Control of different versions of individual documents and -

their interdependencies.

In practice, the software documents which must be modified

may exist in either a textual or graphical form. However, in

both cases there is a substantial amount of context sensitive

information present in the document. Due to the limitations of

the descriptive power of strings (and even trees) when

modelling context sensitive information, some other approach is

required. Therefore, we have chosen to use graphs# with their

greater descriptive power, to directly show context sensitive

properties.

Having adopted the graph as the basic representation for

software documents, we must express changes to these documents O

. . as graph modifications. Graph modifications are commonly

described by means of graph rewriting systems. Using existing

-. methods for studying graph rewriting, it is possible to control

concurrent access to a software document, since tests have been

'.: . . , - . . . .. . . .

. .- • + + . = . . ++ . . . . . . + .. • . .. . ++ * * +** ,~** *** -.. . • + . . + .r . - +



- ..- ; - J V*- -T--7 i -~

Page 20

developed to check if two separate modifications to a single

graph are sequential independent (may be executed in either

sequence) or parallel independent (may be executed

concurrently). These checks are necessary when several groups

work together to modify a large software system. When the

modifications are interdependento these tests may be used to

identify the interface (or interaction) region of the two

modifications on the graph.

3.1.2 Graph Rewriting Sustems

Graph rewriting systems have become a topic for research

in recent years ECLAU793, primarily as a result of the great

significance which graphs and graph theoretic concepts have

assumed in computer science and engineering. Since we wish to

model the processes of software maintenance, and to do so in a

very abstract manner, it is natural to examine the use of such

an abstract tool, particularly in view of the preponderance of

graph representations for software requirements and design.

3.1.2.1 Graph Rewriting

To rewrite a graph means that we will apply a set of

rewriting rules to the graph# one by one, in some sequence, to

construct another graph. A rewriting rule corresponds so

closely to a production rule of a grammar for a language that

"0

* S



Page 21

graph rewriting systems are also known as "graph grammars".

Each graph rewriting rule has a left-hand side and ai0

right-hand side, each of which is a graph. To apply a

rewriting rule with the left-hand side L and the right-hand

side R to a graph G, it is first necessary to locate an '

instance of the graph L as a subgraph of G. If no such

instance exists# then the rewriting rule cannot be applied. If

such an instance does exist, then it should be (conceptually)

deleted from Go giving rise to the graph G - L, and then the

graph R should be (conceptually) added to G in its place,

giving rise to a new graph H (G - L) + R. V"O

The most difficult part of the entire process is to embed

the right-hand graph R into G in place of L. When strings are

being rewritten# this embedding of the right-hand side is made

obvious by the implicit left to right ordering of the

characters in the string. This is illustrated in Figure 3.4.

In Figure 3.5 we show the difficulty involved in embedding

a graph within a graph. The rewriting rule shown there

requires that we replace the node labelled "a" by a subgraph

consisting of three nodes (labelled "b", "c" and "d") and two

arcs (from "b" to "c" and from c" to "d"). Clearly, the

rewritten graph must contain five nodes, labelled b", "c",
FO'

"d", "e" and "f. In addition, it must contain arcs from "b" ..

,-9

p. - . .

..... .-.... .'-. - .U - , .. . .... .I.... .. . ...... +.. ..... .. ' .



W- W7 -7

* Page 22
+'. . •

Ru 1 e

a => bcd (Replace "a" by "bcd")
O

Appl ications

.- If the original string is "baabe" then the following applications

of the rule may be made.

i) baabe => baabe => bbcdabe => bbcdabe

2) bbcdabe => bbcdabe => bbcdbcdbe => bbcdbcdbe

Figure 3.4. An example for rewriting a string.

to "c" and from "c" to "d". However, what should be done with

the arcs in the original graph from "a" to "e" and from "a" to

"f"? That is, how should the new subgraph be embedded into the

original graph? The approach which we have adopted is to

assign integer labels to certain nodes or arcs in the rewriting

rule, with the constraint that any integer which appears on the

left-hand side of the rule must also appear on the right-hand

side. The interpretation of this assignment of labels is that

when a rule is applied, any node labelled "i" on the left-hand

side is considered to be replaced by the node labelled "i" on

the right-hand side so that any arcs incident to (or from) that

node in the original graph should be incident to (or from) the

replacement for that node in the graph on the right-hand side.

In Figure 3.5, there is only one node to be replaced (labelled

"a") and its replacement node is the node labelled "c" (as O

shown by the integer label "1"). Thus, the rewritten graph is

- . ... .

,.-,, . -

O. O. ..

" .- * * •



Page 23

* the one Shown at the bottom of that figure.

I (Replace node "a" byj a
=> ().-)--.d)graph with nodes "b",,

"C " and "d")

Applic at ions

If the original graph is

then the following (partial) application of the rule may

be made.

Tihe final (rewritten) graph is

Figure 3.5. An example for rewriting a graph.



0O Page 24

. 3.1.2.2 Definition Of A Labelled Graph..

60 To formalize the graph representations for software

systems, we define a labelled graph as follows: A labelled

graph is an 8-tuple1

G = (N, A, LN, LA, sN, tN, nL, aL),

where N is a set of nodes,

- A is a set of arcs,

LN is a set of node labels, '

LA is a set of arc labels,

sN, tN : A -> N are functions which map each arc to

its source and target nodes (respectively),

nL : N -> LN is a function which maps each node to -

its label,

aL A -> LA is a function which maps each arc to - S

its label.

3.1.3 The Intraphase Model ,.

The software documents used to describe each phase of the

software development process will each be modelled by a set of

interconnected components of the software system. We represent

each component by its control flow, data flow and data

structures, and also by its relationships to other components. -

Its interface with other components is stated in terms of

objects required from other components and objects provided for

-
r-0

t . K- *

. -.. ' .. .

• + .. - - -- ,- - - - . -. , ° ..- . - ° . . - . .F - • .~ . . , *p. *o, . - - +



* - -\ .w'. -['O; *Page 25

- -other components. A software system is simply a collection of

such components* with a distinguished initial (or master)

component.

3.1.3.1 Software Components

A software component is an executable object which

contains several subcomponents. These subcomponents are:

- a control flow structure (in a form to be described).

- a set of data structure graphs (of a similar form),

- a set of data flow triples# whose executable objects are
S"leaves" of the control flow graph and whose (input and

output) data objects are data structure graphs, and

- a set of distinct object names, each of which refers to a

data structure graph or module which defines the structure

Sof that object.

3.1.3.1.1 Control Flow

The following notation will be used to describe the

control flow of a software system component. Since it

emphasizes only the relative ordering of activities, this

notation is independent of the particular notation being used

to describe the component. We have confirmed that it can be

used to describe most of the control flow properties of a

. requirements definition in RSL or a program in PASCAL. This

notation uses the formalism of a labelled graph, using nodes to

* 21-
* 6

..-..+ , U' *, *.... . .. , . .. ....... ,.- -,. . . . -..',, -'.+-. .,,-. .,,*,.,-., ,.-,. ., -.+ ..
. 2 + ++ • 4 + + i l • . , ~ +" .. . . . . ' i I

. . . . . . . . . . .. . . ** U U ** - U * U U U * ,



0 Page 26

represent "activities" and arcs to represent relationships

between these.

Let us now introduce our notation. First of all we

specify the basic notation completely, and then describe the

remainder of the notation informally.

A basic, structured, sequential control flow description

is a labelled graph with

LN = (TASK, LOOP, AND, OR} U Z+ U {el,

LA Z+ U Ce,'

where Z+ denotes the positive integers (1, 2, 3, . . and e

denotes the empty string.

The use of these symbols is now explained informally: The

graph is a rooted tree structure, directed downwards. Nodes

labelled by LOOP, AND or OR are referred to as structured

nodes. E-labelled nodes are referred to as primitive nodes.

Nodes and arcs labelled by e are referred to as e-labelled.

.*- .. Nodes and arcs labelled by a positive integer are called .-

" iZ-labelled. Structured nodes are always nonterminal nodes in

the tree. Primitive nodes are always terminal nodes (leaves)
".4.,..

of the tree. All leaves of the tree are e-labelled. All nodes

and arcs of the tree are labelled by a label from LN or LA.

1) Form: The software component has a single, distinguished 6

node, labelled TASK. This node is the root of the tree.

'0 S

-" 5. ~:/,,. " " .. . -. ". . . . .*- ** * . *. -.. . ... . . . ..... ..... ... ... ....
L '" ,"". "' ''" " -' -'' ". " - -. " . ". ..' "-1 - .--. ". " - , ".~ . ". - - - _ _. . : • . . . _ - "



-777 77-7 ' 7- 75 -7 C- 7 77 . -

Page 27

Interpretation: The subtree of which this node is the root

represents a separately defined, executable software component.

2) Form: A LOOP node always has a single child.

Interpretation: The activity represented by the subtree rooted

at the child of the LOOP node is to be executed a number of

times, ranging from zero to a finite number to be decided

within the LOOP node in an (as yet) unspecified manner.

3) Form: An AND or OR node always has a single child, which

must be an Z-labelled node.

Interpretation: An AND node indicates that the children of its

Z-labelled child must all be executed, while an OR node

indicates that one child of its Z-labelled child must be

executed.

4) Form: Any Z-labelled node, with label n, must also have

outdegreee n, and its parent in the tree must be labelled by .

either AND or OR. The arcs of which this node is the source

must be labelled by the positive integers fl, 2, 3, ... n1.

Interpretation: The value of the arc label indicates the order

in which the activity should be executed. The activity

labelled i should be executed before the activity labelled i+1.

In summary, AND represents the execution of a sequence of

(n) activities, OR indicates the selection of 1 (of n)

activities, and LOOP represents the repeated execution of an

activity.

* -S

. . . .,... .. ,

. . . . . .++. . .+ , . . . . . ...... . . . ., .. ..... . ..* A .. . . ./.-



Page 20

3.1.3.1.1.1 Conditional Expressions

Our current approach to the expressions which control

selections and iterations is to restrict them to be of one of

* two types: they may have the form of either a range of values

or a condition (or boolean expression). Figure 3.6 shows an

* . example of an RSL statement and its graph representation.

RSL statement

IF FOUND TRUE
ALPHA: At

OTHERWISE
ALPHA: A2

END

Control flow representation

OR -

2
1 2

El T

Al®

Figure 3.6. An example of the control flow representation.-

*-0



0.. Page 29

3.1.3.1.1.2 Notational Extension

lot As a notational convenience, we may represent the tree S

structured graphs in the following manner. This simple

convenience presents the graphs which make up the model in a

more pleasing manner. We will use abbreviations for the 0

standard graph patterns as shown in Figure 3.7. The control

flow representation given in the previous section would appear

as shown in Figure 3.8.

OR OR

appears as

n Al An
n

Al An

AND AND

appears as Al

n *
1n n

* . An
Al An

3)
LOOP LOOP

appears asA

A 0 _ _

Figure 3.7. Notational abbreviations for the standard graph
patterns.

o.°- -,

. . ... -. .

-. -. .-.'- • .--.-'. , '- -. - -, ---. -".- - '-. --. --'-- .-" ."-- -- ". ",""o- " '... . . . . . .. . . . . . . . ... .'.. . . . . ...--.. .-.. . . .--..-.--.-.. ,- -- --- -,,



Paqe 30

Al T2

Figure 3.8. Abbreviated representation of the example shown
in Figure 3.6.

3.1.3.1.1.3 Extensions To Other Control Structures

Extensions to this basic form of control flow description

have been defined to describe (unstructured) jumps and

concurrency or nondeterminism. Jumps are included as directed

arcs between two nodeso the arc being specially labelled to

distinguish it from the arcs representing structured control

flow. Concurrency or nondeterminism are included by permitting .

Z-labelled nodes to be the source of e-labelled arcs. This

removes the ordering concept described in Form 4) discussed

before, and so permits nondeterminism. A further extension has

been defined to support inclusion of separately defined

software components within another component. This represents

both the SUBNET concept of RSL and the procedure concept of

programming languages, such as PASCAL. With these extensions

the graph is no longer a tree structure, but the non-tree arcs

are distinctively labelled. --. "

I.0 . .



Page 31

Using such an abstract view of control flow, it is

possible to construct, for example, the skeleton of a PASCAL

program from the control flow requirements of an RSL

specification. In addition, the theory of graph modification

[CLAU79] provides us with a foundation for defining

modifications formally, and for relating this formal definition

to modifications which are to be made to software systems'

descriptions in notations which are currently in use.

3.1.3.1.2 Data Flow

Data flow information has also been added to our model.

This information may be viewed as a set of triples of the form:

<EO, 1O, 00>

where EO is an executable object (such as a statement or

prouedure), and 10 (the input object) and 00 (the output

object) are data objects (such as program variables). Such a

triple has the interpretation that EO may use the value of 10

- .-to alter the value of 00. In its graphical form# each such

triple denotes the existence of an arc from activity EO,

labelled 00, to some other activity, and from some other

activity to activity EO, labelled 10.

*' j

" I
S.



Page 324

For example, the activity Alp written as an ALPHA in RSL,

appears as:

ALPHA: Al.
*INPUTS: DATA: D1.

OUTPUTS: DATA: D2
DATA: D3.

and would be representedi as:

(Al, Dl, D2>
(At., Dlp D3>

unless further information is available. Howeverp if we have

information that D3 is being assigned a value in Al which is

independent of Dip then we would represent Al as:

(Alp Dl, D2>
<Al, K, D3>

Where K is some relevant constant or other independently

*defined data object. Figure 3.9 shows the graphical

representation of this latter case.

DK -K D3

Figure 3.9. An example of the data flow representation.

0 S



0- Paye 33

3.1.3.1.3 Data Structures

In the previous section we described a graph

representation for control flow, and indicated that we have

also developed a very similar representation for data

structures. We will use our data flow information to connect ,

representations of data structures (which we call "input data

objects" or "output data objects") to representations of

control flow structures (which we call "executable objects").

The graph representation of data structures resembles that used

to describe executable activities, in that sequences of

heterogeneous data objects are represented by trees rooted with ..

an AND node, selections of one of several data objects are

represented by trees rooted with an OR node, while collections

of several homogeneous objects are represented by trees rooted

with a LOOP node. For example, the data item Di, written in

RSL as:

DATA: D1.
INCLUDES: DATA: DI-PI

DATA: D1-P"
DATA: D1-P3.

would be represented as shown in Figure 3.10. In the event

that the subcomponents of D1 are also structures, then their

structure will also become a substructure of Di.

-0 0.

* -0,

°-."



Page 34

SEQ

D1-P3

DI-P3

Figure 3.10. An example of data structure representation.

3.1.3.1.4 Data Dictionaru

Within the description of each component is a data

dictionary. As is customary, this dictionary contains a

definition of each element of this component, excluding those , .

which belong to other components, but are used within this

component. There are three types of elements which exist in

any component - activities' data and structures.-7---4

Activities are defined by the data items which enter them

or leave them. They also describe the operations which are

performed on that data. These operations include operations

defined by the language, notation or operating environment# and .x .---

those carried out by other components of the system. Examples

are the "+" operation of a PASCAL program# which probably .0

refers to a hardware dependent addition instruction, and the :..

' ; -. ... '-'



Page 35

PASCAL "sin" (sine of an angle) function, which probably refers

to a function in the system's standard library of functions.

Data are defined only by their structure and external

name. The structure of a data item may be defined by the

language, notation or (less often, but hardware dependent)

operating environment, or by other components of the system.

Examples are the standard file "input" of a PASCAL program,

which refers to a standard system input file (usually the S.

terminal keyboard), and the PASCAL constant "maxint", which has

the value of the largest integer available to PASCAL programs

in a particular computer system.

Structures are defined in terms of connected

sub-components, which are themselves either data items or other

structures. Subcomponents may refer to structures defined by

the language, notation or (less often, but hardware dependent)

operating environment, or by other components of the system.

Examples are the standard types "text" and "integer" of PASCAL

programs. "Text" refers to the system's implementation of

sequential files of characters, while "integer" is affected by

* . the available word length and precision of the computer system.

The data dictionary is a sub-structure indexed by an

internal object name, denoting a particular activity, structure 0

or piece of information. When the object is a named activity,

i ~~~~~~~~.................. i+ ,....,. .. ............ ........ +..-. ..... .... .. .... +. .... i

i°." - - ' -'. + . , --. '-+. -" ,-' - - -..-- .- - " - '- -+" -- "-. .. ' .'-'-. -.- ." - .',,. " -. -'.A .' -, ' . -. - . + -- - -'



Page 36

the index leads to another software component. When the object

is an unnamed activity, the index leads to a description of the

activity (which may be in a formal or informal notation). When

the object is a structure, the index leads to a description of

the form of that structure. The lowest level structures are

those defined by the computer installation. When the object is

* .,.- a piece of information, the index leads to the definition of -

the structure which is contained in the piece of information.

For instance, the previous examples would give rise to the

following data dictionary entries:

<DI, DSt> where DSI is the structure shown in Figure 3.10, 
<Di-Pi, DS2>
<DI-P2, DS2>
<DS-P3, DS2>
<A1, CSl> where CS1 is the control flow structure shown in

Figure 3.8.

Furthermore, DS1 and DS2 are the names of data structures to be

found within other components# and D2, D3 and K are also "°-

assumed to be defined within other components.

3.1.3.2 Component Interfaces

Any software component is a separately defined activity in . S

an overall software system. In order to act in a coordinated

manner, the components must share information with each other

* and provide services for each other. We would like to "

-.-. represent the interdependencies between components in a

. . .-.

. . .. . . . . ..

" . . . . . . . . .



-~~7 W - . .

Page 37

disciplined fashion, in a way that permits modifications to be

analyzed and to match the representation of software

components. Our approach to this problem is to associate an

interface subcomponent with each software component. Within

this interface are defined all of the objects which appeared

outside the current component, and also all of the objects

which appeared inside the current component, but may be used by

other components. These objects are further distinguished

between those which are directly linked to external components -

and those which are indirectly linked (as parameters). -

The interface graph can be formally defined as follows:

An interface graph is a labelled graph

G (N, A, LN, LA, SN, tN, nL, aL) V.'.....-..... -C'

where

*-. LN {INTERFACE, GLOBALS, PARAMETERS, IMPORTS, EXPORTS>

U Z+ U Ce-

and LA =e}

The graph is a rooted, acyclic, directed graph (acyclic

"digraph"). Nodes labelled by GLOBALS, PARAMETERS, IMPORTS and

EXPORTS are referred to as structured nodes. Nodes and arcs S

labelled by e are referred to as e-labelled. E-labelled nodes

are referred to as primitive nodes. Nodes and arcs labelled by
a positive integer are called Z-labelled. Structured nodes are .

always nonterminal nodes in the tree. Primitive nodes are

. o-_

i- i .- 2 .-. 2. . .. '-- ~~~~~-...... . ---- "--.,,.. -. . ..... -



"@" Page 38 -0

always terminal nodes (leaves) of the tree. All leaves of the

tree are e-labelled. All nodes and arcs of the tree are

labelled by a label from LN or LA.

1) Form: The component interface has five distinguished nodes,

labelled INTERFACE, GLOBALS, PARAMETERS, IMPORTS and EXPORTS.

The INTERFACE labelled node is the root of the digraph. The

other four distinguished nodes are immediate descendants of the

root node. No other node is directly connected to the root

node

": Interpretation: The subgraph of the root node represents the

interface between this component and other components. All

references to or from other components are forced to pass

through this subgraph. This subgraph includes all names and

structural information which is required to complete the

interface with any external component.

2) Form: The primitive nodes of the interface digraph are

directly connected to exactly one of the following nodes

CGLOBALS, PARAMETERS).

Interpretation: The primitive nodes represent the interface

objects. If a node is connected to GLOBALS, then the object

represented by that node may be accessed directly. If a node

is (instead) connected to PARAMETERS, then the local object

represented by that node provides indirect access to another

object# and this relation between the local object and the

o. ." .%

)O -..

. -...

... , ,

- ..* . . . . .. . - . . . 0 . ., - . . . .



Page .39

other object may be altered by execution of the system of

components.

3) Form: The primitive nodes of the interface digraph are

directly connected to at least one of the following nodes

{IMPORTS, EXPORTS) (connection to both of these is possible).

Interpretation: The primitive nodes represent the interface

objects. If a node is connected to IMPORTS, then the object

represented by that node may be examined and used, but may not

be altered. If a node is connected to EXPORTS, then the object

represented by that node may be altered.

For the previous example, the interface must include all 0

of those objects which did not appear in the local data

dictionary, i.e. DS1, DS2, D2, D3 and K. Since RSL will not

permit data structures to be altered within the system, DSt and_ ,

DS2 must be connected to the IMPORTS node alone. In addition,

since RSL has no facility for parameter passing, all five

objects must be connected to the GLOBALS node alone. The data .

objects, D2 and D3, are both altered witl'in the component, and

hence they should be connected to the EXPORTS node alone. The

constant K is defined externally, and cannot be altered in this .

component, and therefore it should be connected to the IMPORTS

node alone. The interface graph is shown in Figure 3.11.

* S

o" - ~~~~~..... .-.......................-- "- ........ o-......... .. -

.'. °. - .. ' . . .- ' . .% .• . ", .,', . . . . .. . -. .; . ' ,- , . . . .- , . . , , ', ',- , . . . ..- ., . . . .. . ", , .. .. - - . .... ..



Page 40 AN

GLOBALS

IMPORTS

DS1

EXPORTS

D2

D3

Figure 3.11 An example of a component interface graph with
no PARAMETERS subcomponent.

3.1.4 The Interphase Model

Although our comparison between the features of different

languages (for writing programs, designs and specifications)

and the abilities of our model to represent such features has

shown that we still have many limitations (e.g. no scope

rules, no parameter passing rules), we think that our current

model is suitably complete for us to study properties of

interest when software modifications are proposed.

* S"

... " .. ..... . .-.
." , , " ," ,,: .' " "¢' " " '¢ ' ',i '-.- -,-- - - - - -,"-- - - --- -.- ".- -.-- - -.- -..-. •. . . - .



Page 41 0

- We now develop a method for expressing "equivalence"

relationships between objects in two different evels of

description. We have already indicated that these

relationships Should be expressed as relationships between

graph structures, and have made a preliminary study of methods
'0

to achieve this. It is these equivalence relationships that

provide us with the ability to analyze the effects of

modifications to one level of description on the behavior of

the other.

The interphase model is composed of a set of graph

rewriting rules described before. On the left-hand side of .0

each rule is a subgraph of the graph model of the software -

system at the end of a particular phase. On the right-hand

side of each rule is a subgraph of the graph model of the .

system at the end of the next phase. The rules record the fact

that the subgraph on the left-hand side is to be replaced by ..-

the subgraph on the right-hand side. Thus, if a change is made .

to a particular part of a software system, we can identify its

potential impact on the next phase by locating all rules with

that part of the system in its left-hand side, and identifying

all of the subgraphs in the corresponding right-hand sides.

.0

0



'4 Page 42

In order to constrain possible ripple effects, an

effective restriction on the software development process is to

require that each node of a graph model of a software system

should appear on the left-hand side of exactly one rule. The

effect of adopt ng this rule is to create a process closely

resembling the "stepwise refinement- process advocated by many

authors (e.g. [WIRT71), but applied to the refinement also of

* data flows and data structures, whereas stepwise refinement is

involved primarily with control flow and executable activities.

For example, given a process structure, using the notation of

Jackson's design methodology [JACK753 shown in Figure 3.12, we

have the model representation shown in Figure 3.13. '

PSS

P1~ P2 P

0 0,°. 
''

Figure 3.12 A process structure using Jackson's design
methodology

In this case, the interphase model would contain the rules

shown in Figure 3.14. These rules show how the design

structure may be derived from the requirements structure. Of

-le

0.,



0 Page 43

AND

P I

2
OR

20

E2

P212

20

P211

3
OR

1 2 *

E3

* 31

Figure 3.13 The model representation of the 3DM design
shown in Figure 3.12.



0 Page 440

coursep other derivations are possible, and the record should

show the derivation that was actually used.

1)OR AND0

2 3
1 21

3 2

E 3 T PI OR OR

3 2
E2 E3

2) AND

2

P211 P212

3) (2 P1

Figure 3.14. Part of the interphase model between
requirements and design.

0

-I



Page 45

3.2 Construction Of The Software Model

In this section we will present a general technique to "

enable the software model in the format described above to be

constructed for any software system. We will first describe

the approach for constructing the model for a particular phase,

and then the approach for constructing the interphase model.

3.2.1 Construction Of The Intraphase Model -

The intraphase model describes control flow, data flow and

data structure. Not every method of system documentation

possesses all of these attributes. Nonetheless, these

attributes, which refer to the sequence of activities, the flow

of information and the form of information are present in all
" O

systems and relevant to all system descriptions.

Since we will use our model for many different notations

to cover several phases, it is necessary to base the '

construction of our model on some properties which are

independent of these individual notations. The properties

chosen are based on semantic rather than syntactic properties.

on the assumption that this basis will be sufficiently broad to

support the general aims of the model. For this reason,

construction of the intraphase model for a particular notation

must be preceded by preparation of a semantic definition of

*- 0



.-.- '~.-~~rx :~-.;'-. 1V.~- -~-' - -. - -- - -. -...---..-.- ,. -* ... ]

Page 46

that notation.

Regarding the control flow, the execution sequence is O

emphasized. For example, let us consider the BNF production

rule for the PASCAL syntax construct <compound statement>. The

definition is: 0

<compound statement>

begin <statement> C ; <statement> a end

For the purposes of having a semantic model however, we are

more interested in the fact that the list of statements is to

be executed in their order of appearance than in the use of

"begin", "end" and ";" as delimiting tokens of this construct. -6

Therefore, we would "abstract away" from such a construct to

give:

<compound statement>

<statement> f -- > <statement> }, -

where S1 -- > S2 denotes that SI should be executed before S2.

Data flow properties are mainly associated with the

assignment statements. For example, a PASCAL assignment

statement and its data flow properties can be expressed in the

following manner:

<assignment statement> ::: <variable> := <expression>

<variable> ::= <identifier>: <identifier> E <index list> )

<index list> <index> { <index> 3
<index> ::= <expression>

-4
AS ::: I -- > 0 (I = V.I U E.I; 0 = V.0 U E.0)
V.0 ::: (id) U IL.0, V.I ::- IL.I
IL.I ::: ind.I { U ind.I }, IL.0 ::: ind.0 C U ind.0 

4 -0



-. - -o-' . -

* Page 47

.'."i" ind.l : E.I, indl. O : E.O0-~il

To display data structure properties, we note that they

come from the structure of declared objects. In PASCALP for

example, an array structure has the following representation:

< array declIarat ion > ::..,-

arrau C <index range list> 3 of <type>
* -<index range list>

<index range> C , <index range> I

. .with the interpretation:

<type> <type> . . . <type>

<index> -- >(succ)-> <index> -- > -> <index> "

Therefore, definition of the intraphase model for a

particular notation is largely a manual procedure. The

notation must be analyzed to identify the features determining

the order of events, the flow of information and the form of

information. These features of the notation must be

characterized in terms of the basic elements of the model.

3.2.1.1 Definition Procedure

1) For each construct in the language definition which

corresponds to a distinct activity# define an entity.

K O1

. -. --

-. . .

. .. . . .



• •Page 48

2) For each construct in the language definition which defines

a sequencing relationship between other constructs, define
6!

a relational entity.
. -.. "

3) For each construct in the language definition which defines z

information flow into or out of an activity, define a o

triple <activity, I-set, 0-set>.

4) For each construct in the language definition which defines

the form of a piece of information, define a <name,

structure> pair, where <structure> is derived from the form

of the information.

3.2.1.2 An Example For Constructino An Intraphase Model (An

RSL Subset)

Here we describe the construction of a model for a subset

of the Requirements Statement Languages (RSL) CALF077]. In the

following definition, the nonterminal symbols are delimited by

"<" and "", optional symbols are delimited by "C" and "3,.

choices to be made between symbols are delimited by . and

symbols to be repeated are delimited by "C" and "}, with 6

preceding and succeeding integers to denote the lower and upper

bounds respectively on the number of iterations. The

definition of the subset of the language now follows:

, -.

. . . .



" Page 49

<new element definition>
" {DEFINE] element-type-name element-name [comment].

Of [INSERT] <element definition sentence> >n

<element definition sentence>
<attribute declaration>
<relation declaration>
<structure declaration>

<attribute declaration>
attribute-name If value-name ' number text-string }1-
(comment].

<relation declaration>
relation-name [relation-optional-word]
If (element-type-name] element-name (comment) >n.

<structure declaration> : :
STRUCTURE 2C <node> )n END (comment].

<node>
<element node> 0
<terminator>
<and node>
<or node>
<for-each node>

<element node> : .
[element-type-name] element-name (comment]

<terminator>
TERMINATE (comment]
RETURN (comment]

<and node>
DO [comment) <branch>

I AND <branch) -n
END

<branch>
If <node> >n

<or node>
IF (comment] <conditional branch>

Of OR <conditional branch> }-n
OTHERWISE (<branch>]
END

.* S

,.-.. , -..... . .._~ ~~~~~~~.......-....-...-.......-...... ......-.-............ ... ,....-...... ..-...-.......-..... •..... ....-..



* Page 50

- <conditional branch>
* (Cunsigned-integer] <Condition> <branch>j

<for-each node>::0
FOR EACH (FILE) file-name (RECORD)

* (SUCH THAT (condition>)

DO comment)].
lf (ALPHA] alpha-name (comment)

(SUBNET) subnet-name (comment]

END

(condition> :=(<Boolean expression>)

Now., following the definition procedure given in the last

section, we have the following steps:

1) Construct an entity for each ALPHA and SUBNET and STRUCTURE2

* in the software system's requirements.

-. 2) Construct relational entities for each <and node>.,*

<terminator>, <or node> and <-for-each node>.

*3) Define triples <alpha-name, I-set, 0-set>,. <subnet-name,

I-set, 0-set> and <structure-name, I-set, 0-set> for each

ALPHAP SUBNET and STRUCTURE.

4) Define pairs <data item name, Structure> from the

definitions for DATA items.



Page 51 .

3.2.1.3 Implementation Of The Intraphase Model

"
. Since the intraphase model is based on a semantic

definition of a notation# it is clear that construction of the

model should proceed from semantic analysis. Semantic analysis

is most commonly carried out by a compiler (or an interpreter), S

in conjunction with a parser, which constructs the necessary

syntax constructs with which semantic rules are associated.

This is the approach which we will adopt for construction of

the intraphase model.

To implement the intraphase model for a particular

notation, the first step must be to develop a Parser for that

notation. Obviously this is only possible when the notation

has been formally defined. If no formal definition is

available, then one must be defined, or the parsing process

must be replaced by a manual inspection process.

When we have developed a parser to recognize the notation

in question, we will then modify it to produce the nodes and

arcs of our model. The first step is to identify those

constructs which constitute the primitive activities of the -S

system from the definition of the notation. Now identiftj the

syntax constructs which control the sequence of primitive

activities and determine their effect on the activity sequence.

Next, identify by what rules these activities can use or alter

* -". S

...S-



. Page 52

the objects of the system. Now modify the parser in the

following manner:

1) When the construct is a primitive activity, produce a

.. "primitive activity" node.

2) When the construct is a program object, produce a "program

object" node.

3) When the construct combines several activities, produce a 6

"combinator" node and connect it to the primitive -

* . activities.

4) When the construct is a "callable" entity, produce a

"component" node and connect it to its activities.

5) When the construct refers to a "callable" entity, produce a

"primitive activity" node, but connect it to the

"component" node.

3.2.2 Construction Of The Interphase Model

By the nature of the interphase model, it is clear that it

depends on the notations used at each phase. Nonetheless,

* - certain general principles provide general assistance in its

construction. 0

LO S

:................................................

.. . . . ... . ... .. . . . .. . . . .. _.. :..-. ...



w....-:.. . , .*-. . . :/ .. - . r r. : : - :' . -vx.. 
r  . . . . . . .r r -.. w . . t w J . "- * - . '. . 47 ' . .E - . " . .

Page 53

The form of an interphase model is simply the form of a

graph rewriting systems in which the previous intraphase model

plays the part of the initial (axiom) graph. For each

rewriting rules the left-hand side must include nodes and arcs

which are part of the axiom graphs while no right-hand side may

include any node or arc from the axiom graph except that if the

same node or arc also appears in the left-hand side of the

rule.

The interphase model should be constructed by the software

development team# and must be updated by software maintenance

personnel who modify the system. In the event that no such 0

model exists to support the software maintenance personnel,

they must construct it from the existing documentation of the

system. Heninger CHENI793 has described a successful

maintenance project in which the software requirements for a

complex flight control system were constructed by examination

of existing documentation and discussion with users and

developers of the system. The interphase model can be

constructed by following that procedure and recording the

relationships identified between the requirements derived and

the code being examined.

................... ... • ..



K' Page 54

Of course the simplest way to define graph rewriting rules

to replace a graph G by another graph H is simply to use a

single rule G ::> H. While this is both accurate and

permissible, it is of little use to maintenance personnel

because this is already an assumed rule, used by any

maintenance programmer who trusts the software documents from

which G and H were constructed.

On the other hand, if we define graph rewriting rules so

that each left-hand side has exactly one node, then we are

placing restrictions on the developer of H, since certain

permissible graph structures cannot be constructed using this

restriction [JANS8G], although we are greatly assisting the

maintenance programmer in performing tracing throughout the ..

system. This phenomenon is further extended if we permit the

node on the left-hand side to have only a single representative

node on the right-hand side, by restricting the possible growth

of node interconnections.

While it may appear to be undesirable to restrict the

range of possible solutions available to the developer, a .'.

discipline in the use of development processes does assist the "

maintenance programmer. In addition, since the number of arcs

in the graph is a measure of the degree of interconnection of

1 the graph, it is an indicator of both the complexity and the

stability of the system. Therefore, given McCabe's measure of

-'

V .- .-- *. .



0 Page 55 0

cyclomatic number for program complexity IMCCA76] and our

jM experience with the effects of interconnectivity on program and

design stability [YAUBOe, 82c], any development process which

... "raises this degree of interconnectedness must be considered a -

source of increasing system complexity and instability.

3.2.2.1 Definition Of The Interphase Model

In order to construct an interphase model, it is necessary -

that two phase models already exist. We will refer to these as

the source and target intraphase models, and we will say that

the target model is derived from the source model. Having thus -

defined our terminology, we now state the definition procedure.

1) For each node in the source model, assign it to the

left-hand side of one rule.

2) For each rule, assign a sub-graph of the target model to

its right-hand side.

3) For each node in the left-hand side which is part of the

interface between the subgraph and the complete graph . .

model, indicate to the user any arcs by which it may be

connected to the rest of the model. According to the AN

user's response, select one of the following steps.

3a) If the arc is not to appear in the next phase, the

developer must enter an explanation for this omission.

-0
*. S

. . . . 2=S"



[.. . - - - -

Page 56

3b) If the arc is to be represented in the next phase, the

developer must identify the node or nodes of the right-hand
SI

side which "represent" the node under consideration. Each :..

such node on the right-hand side should be given a unique

label. The node on the left-hand side should be given a .

list of labels, made up of all of the labels which were

just assigned to the right-hand side.

3c) If, in attempting to obey the instructions in the previous

step, it is found that the arc is not represented by an arc

or simple set of arcs during the next phase, then we should

add the arc to the left-hand side, decide if the left-hand

side can be divided into simpler subgraphs, and modify the -

right-hand side in a corresponding fashion.

3.2.2.2 Implementation Of The Interphase Model

Since the interphase model is merely a collection of graph

rewriting rules describing the process of deriving one S

intraphase model from another, implementation of the interphase

model should consist merely of recording the development .

process as it is carried out. To do this, we will require that

the development team uses the discipline of recording the fact

that a certain portion of a milestone document is to be

replaced by a certain portion of a later milestone document.

It is then necessary for a software tool to translate the

• .

• .":. _ .2-i- -, .- • - - "- -- - -,, - - -.- - -. -. - - -



*O- Page 57 •

portions of the two documents into subgraphs of the interphase

models of these two documents. This requires an ability to

recognize the relationship between a software document and its

model, but this recognition is achieved via the tools which

implement the intraphase model. We have already demonstrated
0

an implementation of this concept at the program code level, in

which the text of the program and its internal representation

are kept in step by means of a syntax-directed editor and an

interactive prettyprinter. By analogy with that system, to

record the fact that two subgraphs may be used to form one rule

of the interphase model demands that we select the portions of

the documents which correspond to each subgraph, then extract

the portions of the internal representations which have been

selected, and finally record the results as a part of the

interphase model.

3.3 A Technique For Specifuina Software Modification Prooosals

In this section we will describe how to identify all items

of a software system which may need to be changed as a result

of a change request. At first we will describe how these items

may be identified within the description of a particular phase

("intrapase tracing"), then we will describe how these items

may be identified within the description of other phases

("interphase tracing"). A software modification proposal

* S



'0 Page 58

consists of a list of all items which need to be changed, and a

description, prepared by the maintenance programmer, of the

change which must be made to each item. 0

3.3.1 Intraphase Tracing

The model of the system at each phase describes the

control flow, data flow and data structures of the system

during that phase. We are interested in tracing the effects of

changes made to this phase of the system on other portions of

the system. The problems are largely identical to those which

-* we have already worked on for program modification, whose

solutions we have called "logical ripple effect analysis"

[YAU88b] and "performance ripple effect analysis" [YAU8Gc,

80f3. For that reason, we may use substantially the same

approach for tracing the effects of changes during other

phases. In fact, the problems of performing ripple effect

analysis at the program level are reduced during other phases

since the complex problems of aliasing and recursion are less

likely to arise. In addition, the likely reduction in the size

of the model to be traced makes ripple effect analysis

techniques even more attractive. In developing our measure for

design stability, we have already discussed the use of ripple

effect analysis techniques at the design level. Hence, it will

not be difficult to use that technique to detect potential

Ki -0d

p * ,.........



0 Page 59 S

ripple effects for that phase. In addition, since the

intraphase model has a similar structure, independent of any

particular phase, the approach will also be independent of the

phase at which it iS applied.

In all of our previous work on analyzing the effects of

program modifications, it has always been the case that we nave

restricted our definition of logical ripple effects to those

potential changes in program behavior which may result from a S

change in the values of data items in the program. We have

been able to identify which values may change by performing

logical ripple effect analysis. Our later work on realizing 0

program modifications helped us to identify another differe.it,

though relatively minor, type of ripple effect - the effects on

the syntactic correctness of the program being modified. While

those effects would be detected by a compiler# the ability of

our program editor to detect them at the time the modification

is being made is of great value to the maintenance programmer.

For example, the ripple effects of a modification may lead to

undeclared identifiers, bacause their declaration has been

deleted. This kind of effects is to be handled by the

syntax-directed editor which will be discussed in section 4.4.

I~e S

-*_-

* 5



*' Page 60

This raises the question, then, whether there are other

ripple effects of program modification which we are not yet

able to detect. If so, how can we extend our approach to cover

all of these effects? Furthermore, how can we be certain that

no other types of modification effect can exist? Our response

to these questions has been the development of a semantic model

- with the intention of modelling all of the semantic

properties of the system. By comparing our semantic model for

a particular notation with the standard semantic definition for

that notation, we can at least determine the completeness of

our model for that notation. Thus, if no semantic changes must

be made to our model of a system in this notation, we can

deduce that no semantic changes will occur in the system.

Since the "semantics" of a system is synonymous with its

"logical behavior", it follows that no other logical ripple

effects may occur. It is not so clear however, that no other

performance ripple effects may occur. In addition, the proof

of completeness must be carried out independently for each

notation under consideration, and the notion of "completeness"

must be understood to be limited by the completeness of the

standard semantic definition of the notation (for example,

certain decisions may be left to the implementors of tre

notation).

0 .

'C -*- -



Page 61

However, the fact that intraphase tracing is being

performed in a multi-phase context makes it more probable that

the results of tracing within a phase are reflections of

similar tracing results at a previous phase. Therefore, these

effects should be anticipated. Other results of the tracing

.- phase will not have been anticipated; these are the effects

due to the approach used in the implementation of this level.

While it is clear that certain effects at one phase follow

inevitably from changing a previous phase, these other effects

appear to be less desirable - since they are not a consequence

of the problem, but a consequence of the development process.

These effects reduce the maintainability of the system as a

Whole and require the maintenance programmer to study more of

the system before modifying it.

3.3.1.1 An Example Of RSL Modification

This example shows an RSL RNet being modified. The RNet . •

is shown in Figure 3.15, and its MODEL representation is shown

' in Figure 3.16.

Now let us change ALPHA Al to be

ALPHA: Al.

INPUTS: DATA: D1
DATA: D4.

OUTPUTS: DATA: D2
DATA: D3
DATA: D4.

VS

............................................ .-.--.....-. ". -



' Page 6z-

RNET: RN88l.
STRUCTURE:

INPUT_-INTERFACE: 11
ALPHA: At

DO ALPHA: A2
AND ALPHA: A3

ALPHA: A4
END

ALPHA: AS
OUTPUTINTERFACE: 01

END.

ALPHA: Al.
INPUTS: DATA: D1.
OUTPUTS: DATA: D2

DATA: D3.
ALPHA: A2.

INPUTS: DATA: D2. -
OUTPUTS: DATA: D4.

ALPHA: A3.
INPUTS: DATA: D3.
OUTPUTS: DATA: D4.

ALPHA: A4. , . -

INPUTS: DATA: D4.
OUTPUTS: DATA: D4.

ALPHA: AS. .
INPUTS: DATA: D4.
OUTPUTS: DATA: D5.

Figure 3.15. RSL RNet and associated alphas. 0

: Then intraphase analysis should implicate activity Al and data 0

items CD2, D3, D43. It may also be necessary to implicate the

activities which provide the value of D4. These should then go

on to implicate additional elements which use these implicated e

elements, as given in the data flow triples.

* - °

e S

' " ", :'-: ' "," i " m ' ''m ; "\ " ,- " ' 'i ', " "* .. 4.. ":, ''" " "-".,:. . ,.. -"



Page 63

(MODEL) _ _ __ _ __ _

TASK RNBSS.

SEQ

AND

SEQ
A2 A3

A4

Figure 3.16. The MODEL representation of control flow of the
RSL example.

3.3.1.2 Assertions To Control Intraohase Tracing.

We may indicate assertions to the programmer which have

been implicated# and let the programmer decide if any effects

can propagate. These assertions should automatically be

derived from the previous phase# and hence the effects on

assertions may (perhaps) be derived or deduced from the effects

observed at the earlier level. Of course, some assertions matq

* 9

..................... ........................



" " , -. . '"" . . U-- "U " r "" "".1-" " -' .' " "" " -" -r a" - - - --r-- -- " ""-a-r'- w .-r-- - U ... r . .. .

Page 64 :O

, relate more to the implementation approach than to the problem.-

area.

Now, since modifications are being made to the systems the

assertions - since they state what the system state should be

at a certain point in its execution - must also be changed.

Hence we have the chart of possibilities shown in Figure 3.17.

. When the assertion is initially placed in the systems we will

generally assume that it is correct - that it is easier to .

state the assertion than to write the program (segment). When

the program is being modified, it is essential that all

assertions be reexamined, since any "wrong" assertions will :.-

destroy all attempts to draw any conclusions about the program

(see Figure 3.17).

Code
OK Wrong

A
s
s OK Pass Fail
e
r
t
i Wrong Pass/Fail Pass/Fail
0

,0* n --

Figure 3.17. Consequences of possible combinations of
good and bad code with good and bad assertions.

a. °S

. ~ V .- - _



Page 65 9

.- Even here, some interpretation of the terms "OK" and

"Wrong" is necessary. Thus, an assertion may be passed by some

segment of code# and the assertion may be guaranteed by the

code# although the assertion which was needed to ensure the

correctness of the program should have been stronger, and is

not guaranteed by the code. We would have to consider such an

assertion to be wrong because it does not accurately state what

was required by that segment of code.

3.3.2 Interphase Tracing

We first illustrate our approach to interphase tracing -- O

with an abstract example, we then go on to define the procedure

to be used for each type of "primitive" modification activity,

and finally illustrate this with an example.

3.3.2.1 An Example Of Interphase Tracing

We will show how the effects of changes made to the

software system shown in Figure 3.18 using the tracing rules of

Figure 3.19 can be traced to the next level of system

decomposition, shown in Figure 3.20. Note that, in the set of

rules given in Figure 3.19, each node of the system appears on

the left-hand side of exactly one rule. We follow this set of

rules throughout our approach, since other rules involve more

complexity both for design and tracing of the software system.

•-0 •



Page 66

A B C

* Figure 3.18. The abstract graph representing a software system.

N

M P

2)

0) ST

4) Q)x W

vS

* Figure 3.19. Tracing rules between two phases of
an abstract software system.



Page 67 "O
* , . .". -

* Pag 6?

Tl U

...

-...

Figure 3.20. The next phase of the abstract software system.

Now. we would like to consider the effects of

modifications to the original structure of the system.

3.3.2.1.1 Simple Modification

Consider to modify the node labelled C shown in Figure

3.18. This node seems to be fairly localized in the original

graph and hence its ripple effect should not be too large. Let

- . us show the detailed steps.

o.... . . . . . .

,. . . .. . . . . . . . . "-'.'-



0 Page 68

1. Local ripple effect analysis would require us to examine

the nodes B and E (primarily E) because they are directly

connected to node C. Let us assume that B and E need not

be changed.

2. The tracing rules in Figure 3.19 show that the node 0

labelled C appears in R4, being traced to a subgraph on the

right-hand side of rule R4.

3. Now, we must determine what parts of the right-hand side of

R4 must be changed. Let us assume that we decide to

replace it by the alternate right-hand side of R4, which is

Sshown in Figure 3.21, which we may consider to be the

. addition of a new feature (Y) together with the

modification of an existing feature (V). Now, we must do ...

some local ripple effect analysis of this new right-hand

side of R4, as a result of the insertion of the node

labelled Y and the modification of the node labelled V to

I U'. However, we anticipate that the right-hand side of a

rule should be small enough to do the analysis thoroughly,

perhaps even by hand.

4. Now, no further ripple effect analysis of the modified

rewritten software system is needed, since the node

labelled X is the only embedding item in the rule. Hence,

if local ripple effect analysis has been done on node X (in

-li-

"* S



- -- oP *-. U - - -

Page 69

0 o V,. 5

~X

Figure 3.21. A new right-hand side for rule R4.

Step 3, the last step), no further ripple effects can

occur.

5. Trace the effects to the next level.

. - The modification to the node labelled V can be handled in

this same way like the modification to the node labelled C

at the previous level.

- The insertion of the node labelled Y must be handled

differently, since one of the reasons is that there is no

rule established for the new node (Y)."

3.3.2.1.2 Insertions

This procedure should be followed for newly inserted nodes.

1. For each neighbor of the new node, determine if its rule

(as before, we are assuming that there is only one rule for

each node) should include the new node. If the node should

be included, modify the left-hand side of the rule, and

proceed as before for modifications to nodes (as for B and

***,..*.-.*..- .---

* . .. . . , . . . .. . . . . . . . . . **~&*.*'.-. , • ..



Paqe 70 0

U before). Otherwise, go to Step 2.

2. Define a new tracing rule, whose left-hand side is the new S

node, and whose right-hand side is a refinement of the

semantic definition of the new node.

3. Determine how the right-hand side should be fitted into the .

new level. (The embedding problem).

4. Perform ripple effect analysis at the new level, to make -

sure that the new right-hand side "fits". Make new

modifications as required.

5. Repeat the process for inserted and modified nodes at the

next level.

3.3.2.1.3 Deletions

This procedure should be followed for nodes which are to be

deleted. We will use the same example, with a new substitution

for R4 to illustrate this procedure.

1. Let us assume that the alternate right-hand side of R4 is

instead shown in Figure 3.22. Again, we should do some -

local ripple effect analysis of this graph. In this case, -

there is not much to inspect. 0

. .*• ..



Page 71 o

W' 0

Figure 3.22. An alternative right-hand side for rule R4.

- 2. In addition (as before), since the node labelled X, the

0
gluing item, is not affected, no further ripple effect

analysis can occur.

3. Trace the effects to the next level. O

Now, at the next level, we must first deal with the

tracing rule involving the deleted node, labelled V. If the .

rule is a node replacement rule, then that rule may he deleted.

Alternatively, since that rule will no longer be applicable, it

may be left alone -- for "garbage collection". At this point?

-* our strategy depends on whether we store the descriptions

* statically or store the tracing rules and allow the

descriptions to be generated dynamically (the standard

space/time tradeoff).

3.4 Discussion And Future Work

The results presented here deal with problems which have

been largely ignored in the area of software engineering in

general, and the a-ea of software maintenance in particular.

Yet, it is clear that we are dealing with problems which must

* .So

0 0.•



Page 72

* . be resolved by software maintenance personnel if they would

improve their productivity. This work is most closely related

to that of software configuration management, in which the

ability to trace software elements between different phases is

-. emphasized, with the aim of improving the quality of a

delivered software product. Our results represent a

considerable improvement over software configuration management

approaches, since we trace not only software elements, but also

Stheir interrelationships. This is particularly valuable to

software maintenance personnel, who must eliminate all

undesired side-effects of their modification activity.

--. The value of these results is limited by the absence of

practical experience in using the approach with any software

system. The effort needed to implement tools to support this

approach would undoubtedly be considerable, even if these tools

were restricted to particular well-defined notations for

requirements, design and coding. In addition, we have not

dealt with the question of the adequacy of representing only

the control flow, data flow and data structures of a software

system. Our model is a semantic model for software systems,

most closely related to operational semantic definitions.

Existing operational approaches have been used for software

requirements ZAUE81, 823, design HAY74 ] and programming

language definition LEE72 1 , PAGA81. Hence , the success

• .° "0"

* °°

* .



Page 73

achi eved in these areas suggests that our approach is

sufficient.

While some analysis of the approach remains to be

performed, new questions have been raised by the results

already obtained. First of all, it is clear that the approach 0

has implications for the software development process.

Currently, it is not customary for developers to record any

information regarding the process of refining a system between S

different phases, although this information is clearly

available. Using our interphase model this refinement process

can be recorded, so that the maintenance personnel can make use .0

of it. This leads us to ask if this information can be

automatically extracted using other software tools in a

software engineering environment. In addition, the realization

that the refinement process will become a part of the system

documentation should encourage software developers to consider

how this process should be carried out. It is clear that tne

refinement process affects the quality of the final software

system. Bowles [BOWL83] has shown that the complexity of a

software design may be used to predict the complexity of a

program developed from that design, under certain assumptions

about the refinement process. His results may be considered

together with our work to study the effects of different

processes and the degree to which they permit additional

,- .

• , , S



0 Page 740

complexity to be introduced. Further studies might consider

the effects on stability EYAUB~ep 82c].

.0



Page 75

4.0 REALIZATION OF SOFTWARE MAINTENANCE PROPOSALS

Realizing a program modification proposal can be an O

expensive and unreliable process. We have developed an

approach to program modifications more quickly and more %

accurately. Our approach uses a syntax-directed editor which '

operates on a formal model of the program. Using this editor

ensures that modifications will always leave the program in a

syntactically correct state. If a modification results in a -

syntactic inconsistency, this editor will advise the programmer -.

of that fact and indicates where further modifications would be

needed. -

As an aid to the maintenance programmer, our approach will

also use a program slicer [WEISBI, 82] in conjunction with the

program editor to display those sections of the program which

may affect the program code under investigation.

4.1 Overview

The overall procedure for our approach to this incremental

process of program modification is shown in Figure 4.1. We

assume that the programmer has made a preliminay decision as

what types of changes must be made, based on a given

modification request. Examples of the type of information

which the programmer should have are the particular functions

• • ..



- - . 71

0 Page 76

Identify the Code Slicer and Editor
Relevant to the

Changes

Edit the Code Editor
to Complete
the Changes

Figure 4.1. The procedure for incremental program
mod if icat ion

- to be changed, the data values which are in error, or the

* additional functions required of the program. Our approach for

- the programmer to make the modification can be summerized as

f ollIows:

-V.A



Page 77

(1) Based on the information obtained during the preliminary

analsis of the proposed Change locate the program Modules 0

to which modifications must be made.

(2) Use an interactive "program slicer" to identify the portion

of the program which directly affects the program code and . 0

data values to be changed.

(3) Decide what changes must be made to the code selected by

the program slicer.

(4) Use a syntax-directed editor to make the modifications to

the program code. This editor will guarantee that the p O

changes preserve the syntactic correctness.

In order to support this approach, we have developed a p ,

system which incorporates two major software tools: the

program slicer and the syntax-directed editor. Figure 4.2

shows the organization of this system. The editor consists of

three basic modules: an interactive pretty-printer for

displaying the status of the program being modified, an --

incremental analyzer for analyzing the legitimacy of the - e

modifications being made to the program and for updating data

flow information, and a recursive-descent parser for parsing

user-supplied textual information. A small routine, the
"

"manager", is created for supervising the control flow of the '. i.--

* .* . .. . . - - . . . ..



Page 783

olId/new
specification USER

0

I ILCR EIO
PP IAR

BP DME CONVERTER --

source listing of
listing nodes eitn

progr ams

- -- -contra, I4 d at a

00 data

BPP -Batch Pretty-Pr inter
PP -Pretty-Printer

IA -Incremental Analyzer
RP -Recursive-descent Parser

Figure 4.2. The structure of the system for incremental
program modification



6 Page 79

system. Upon receiving slicing commands from the user, the

manager invokes the program slicer. Upon receiving editing

commands from the user, the program editor will be invoked. A

number of utility programs have been attached to the system: a

converter for converting existing programs to our program

representation (i.e. program model), a dumper for sequentially

listing the nodes contained in the representation, and a batch

pretty-printer for producing a well-indented source code

listing.

4.2 The Program Representation

Most existing syntax-directed editing environments store

the syntactic information of programs in the form of abstract

syntax trees. Depending on the level of abstraction, there may

exist a variety of abstract syntax trees. The hierarchical

structure of a program is thus represented by the syntax tree.

We feel that a program representation to be used in an

interactive syntax-directed programming environment must meet

the following criteria:

1) The representation must be formally defined, based on a

formal specification.

A 0

. . " . o"*

***." .. -

A~~AA Ak~k2 A X-



* .. '. .w. r r r r rrr;-.-.-- - - - -r-r - -~A :j.Page Go

*11
2) The representation must be constructed without losing any

of the syntactic information contained in the program.

3) The representation must present all features of the

language in a uniform manner, so that a variety of tools

can be easily integrated EWASS823.0

4) The representation must support incremental program

modification. That is, whenever a modification is made to

a program, only part of the program needs to be updated and

re-analyzed.

We have developed a tree-like representation for programs,

which is based on the BNF notation frequently used for formally

describing particular programming languages, and resembles the

parse tree used by compilers. Our tree representation consists

of a well-defined set of node tuPes, each of which corresponds

to a syntactic construct of the language. Definition of the

representation for a particular programming language can be

-* done using a procedure which operates on an annotated BNF

description of the language.

4.2.1 Data Flow Extensions To The Basic Representation

In addition to recording the abstract syntax and static

0 S



Page 81 0

semantics of a program, the program representation has been -

extended to include some data flow information. This data flow

information takes the form of two attributes which list,

respectively* the set of variables whose values may be used in

that statement and the set of variables whose values may be

defined by that statement. This data flow information can be

constructed from the BNF notation for a simple PASCAL-like

language as shown below, where the used variables are referred

to by the attribute I (denoting input) and the defined

variables are referred to by the attribute 0 (denoting output).

(1) <block> begin <statements> end

Here, a block can be the program main routine, a procedure
or a function body.

<block>.I = <statements>.I - ( x:x is a local variable I
<block>.O = <statements>.O - C x:x is a local variable I

(2) <statements> <statement>

<statements>.I = <statement>.I
<statements>.0 = <statement>.O

(3) <statements>' ::= <statements>' ; <statement>

<statements>'.I <statements>'.I + <statement>.I
<statements>'.O = (statements>".0 + <statement>.O

(4) <statement> <assignment> <procedure statement>
<for statement> <while statement> : <repeat statement>
<if statement> : <case statement> : <compound statement>

In this case, all the attributes are preserved.

- * **-.

*........... **. -*
. . . . . . . . . . .



* . -7.7.

* Page 82

*(5) (assignment> id <expression>

<assignment>.I <expression>.I
< assignment>.O =<expression>.o + C id a

(6) <procedure statement> id (<actual parameters>

In this case, let <block> be the corresponding procedure
body, then

(procedure statement>.I
C x :for each element y in <block>.I, if y is a formal
parameter then x is used in the corresponding actual
parameter, otherwise, x= yo a global variable3
(procedure statement>.O =
t x :for each element y in <block>.O, if y is a formal
parameter then x is the corresponding actual parameter,
otherwise, x y,. a global variable

(7) <for statement> :=for id <expression>' (to:downto)
<expression>" do <statement>

(for statement>.I = <expression>'.I + <expression>".I +

*< -st atement >. I
<for statement>.O <expression>'.O + <expression>".O +.-
<statement >.O

(8) <while statement> While <expression> do <statement>

<while statement>.I = <expression>.I + <statement>.I
<while statement>.O = <expression>.O + <statement>.O

(9) <repeat statement> repeat <statements> until
<expression>

* <repeat statement>.I = <statements>.I + <expression>.I
<repeat statement>.O = <statements>.O + <expression>.O

*.(10) <if statement> if <expression> then <statement>' I
else <statement>" I

<if statement>.I =<expression>.I + <statement>'.I + I
<statement)".I I)
<if statement>.O <expression>.O + <statement>'.O + E
<statementY'.O I



*O. -Page 83 01

(11) <case statement> case <expression> of <cases> end

<case statement>.I = <expression>.I + <cases>.I
<case statement>.O = <expression>.O + <cases>.O

(12) <cases>' <one case> I ; <cases>" 3

<cases>'.I = <one case>.I I + <cases>".I 3
<cases>'.O = <one case>.O [ + <cases>".O 3

-13) <one case> <constants> <statement>

<one case>.I = <statement>.I
<one case>.O = <statement>.O

(14) <compound statement> begin <statements> end

* <compound statement>.I = <statements>.I
<compound statement>.O = <5tatements>.O

(15) For <expression>, if it does not involve any function
call, then <expression>.I will be the set of variables -

used in the expression and <expression>.O will be empty.
If a function call is involved, then the equations for -
<procedure statement> can be used to derive data flow
information for that function call. The resulting data

flow information will be the union of these two parts.

The minimum requirement for data flow analysic is that

these attributes are attached to the nodes denoting conditional -

" 
.~~~ C%.J""

expressions or assignment statements. However, the -

representation described here is able to greatly reduce tree

traversal, since we can immediately determine if a structured

statement contains any references to a particular variable.

-* 2

* -o

* S,

.................................................... .-.-i";



-~~~~~~~~~~~~~.. . ... ..... "..i , ,w 
-

-- ;:- . .-.". - . . . •. . ."... . .""" - . .•°. . ."- - •

'0 Page 84 0

As a result of this extension to the basic program

representation, a corresponding extension has been made to the

0:
editor's incremental analysis procedure, in order to keep these

%, J

data flow attributes up-to-date while the program is being

modified. Although we have only used these data flow

attributes for performing program slicing, they can also be

used for data flow analysis of a more general kind. -*-.

.4

4.2.2 The Construction Of The Representation

For existing programs, a compiler-like process needs to be -

initiated to form the representation by generating a tree node

for each language construct as soon as it is recognized by the

parser. This process should present no problem, since existing

syntactically and semantically correct. The compiler or the

interpreter of a particular programming language can be

modified for this type of conversion. This conversion is,

however, a one-time batch process. After the conversion has

been carried out, the program representation is subject to

modification, but this can then be handled by a syntax-directed

editor. The editor is suitable not only for introducing new

code into existing programs, but also for developing new .

programs.
* 0

0 0.

t



-".r

Page 85

4.3 The Program Slicer

4.3.1 The Concept Of Program Slicing

The purpose of "slicing" a program is to automatically

extract sections of the program which are closely related to

each other, with the aim of providing the information on which

the programmer wishes to concentrate by removing those sections

of the program which are not considered relevant to the - .

modification task.

The term "program slicing" was first introduced by Weiser

CWEIS81]. The interrelationships of program sections in a 0

program slice were restricted to those which can be detected by

data flow analysis. We also follow this restricted definition.

A program slice can be constructed as follows: 0

1) Locate the statement in the program at which program

slicing should s t.

2) Decide which variables are of interest to the programmer.

3) Use data flow analysis techniques to identify all of the

program which may affect the values of the selected

var i ab I es.

Thus, the input to the program slicer consists of a program, a

distinguished program statement, and a set of proqram

4 S>

- --



I .
Page 36

variables. The output consists of a set of statements of the I
program. The program slicer itself depends on data flow

analysis techniques. The behavior of the statements selected

by the program slicer will be partially equivalent to the

behavior of the original program with respect to the selected

variables and initial statement. Under the assumption that no

non-terminating loop exists in the program, the behavior of the

program slice and that of the original program with respect to

the selected variables and initial statement are total ly

equivalent [WEIS81].

Weiser [WEIS81, 82] has shown that slices constructed in I 0

this way were recognized by subjects who, under experimental

conditions, were asked to perform modifications to several

programs. This result indicates that the subjects had I

(mentally) constructed program slices relevant to the -

modifications in order to modify the programs. However, the .

program slicer was not available for use by the subjects of the I. -

experiment. Furthermore, this program slicer operated on a

conventional form of data flow graph [HECH77] (i.e. a directed

graph whose nodes represent the condition- and assignment S

statements of the program and whose edges represent possible

control flow paths between them). Such a program slicer

produces program slices with incomplete syntactic information

to display a slice as a syntacticallt, correct program.

I.S

. . . . .. ... 55 ,, -



RD-R143 763 METHODOLOGY FOR SOFTWARE MRINTENANCE(U) NORTHWIESTERN 2/4
UIY EVANSTON IL S S YAU FEB 84 RADC-TR-83-262
F3@602-80-C-0139

IUCRSFEDFG92 N

mh. hhEhhI



2.2

1111111112.0

111111 I.235111 .

MICROCOPY RESOLUTION TEST CHART



Page 87

In an interactive programming environment, the slicer must

prisent the programmer with a view of the program which

corresponds to that presented by other tools in the programming

environment. In this case, and in normal practice, this means

that the text of the code in the slice must be displayed. -.

Although tne program slice has been defined in terms of data

flow analysis and the selection of statements, in many

programming languages, data declarations play a very important

role. In such programs, it is necessary that program slices

also include those declarations which declare all the objects

. used in those slices. Our program slicer meets these

requirements, interactively constructing the text of partial

. programs which are made up of the subsets of declarations and

S. . statements of the original program which satisfy the slicing

criterion and form a legal program. To achieve this, we

extended a program representation, which we had developed to

describe both the syntax and semantics of programs, to include

the data flow information needed by the program slicer. Figure -

4.3 illustrates the program slicing technique when applied to a

small program.

Our current approach is based on an intramodule program

slicer, which selects that portion of a module (i.e. procedure

or function) which satisfies the slicing criterion, and

includes declarations of objects inside or outside the module

*-.

• . ,*~ ...•

.*- 5'.



fr Page 88

tube
applerecord

record appletype: (goldeno Smith);
rotten: boolean; order: integer;
cost: dollars

vr end i_ .

i1 count: I . 29; accum: integer;
average: real;
apple: arrau CL.. 293 of applerecord;

count :=*a:
for j : 1 to 20 do

with appleCi3 do
if. not rotten then
begin count := count + 1;

accumi := accum + order

ifcount > 0 then average ::accum -count3

(a)

app lerecord
record rotten: boolean; order: integer;
end

var...
i. count: 1.. 201;
apple: array El. 283 of applerecord;

count ::01
for i :I 1a to20do

with appleC i3d
jf. not rotten then count :count + 1;

(b) S.'

Figure 4.3. (a) Portions of the program to be modified
(b) Portions of the slice constructed for the

variable COUNT.



Page 89

which are necessary to ensure that the slice is indeed a -
* o0

syntactically correct program. In PASCAL EJENS743 these

objects include labels, constants, types, variables, procedures .. t;

and functions.

4.3.2 Algorithms For Suntax-Directed Program Slicing

To perform "syntax-directed" program slicing, we have ., -

developed the following algorithm, which operates on the parse

* tree of the program, to attach data flow sets to each statement

and expression node of the tree.

The inputs to the program slicer are the augmented parse

tree of the program, the point at which slicing should start

(specified by the current position of the "cursor" within the

parse tree) and a set of variables to be used to construct the

slice.

The behavior of the algorithm depends on the particular

statement type# based on the possible data flow paths which are

permitted by the semantic definition of the statement type.

The basic "generic" statement types are seauence, s election and -.

iteration. In PASCAL-S, these are represented respectively by

the compound statement type, the if and case statement types,

and the while, repeat and for statement types. Other statement

types may be collectively referred to as assignment statements.

* .2 ,

.. -. ,* " , , . .. . . . .(



: j J1 . y * ' 7. ,?..."

Page 90

.- The basis of the slicing algorithm may be written as

follows: 0

-"', procedure slice (St: statement ;
- -: __var SV: set of variable names) ;

comment
This procedure identifies the statement type of St, and uses
the value of SV to determine if any statements within the
parse tree rooted at St should be included in the slice.
The value of SV is updated to reflect the effects on the
possible data flow of the behavior of St.

end comment

if SV riSt.Output 1 0 then
case St.statement type of

SEQUENCE: slice sequence (St, SV)
SELECTION: slice selection (St, SV) ;
ITERATION: sliceiteration (St, SV) ;
ASSIGNMENT: sliceassignment (St, SV) ;

end case
includestatement (St)

end if ;

end procedure

where the sub-procedures are defined as follows:

I) slice sequence (St: statement ;

var SV: set of variable names) ;
slice (youngest -unslicedchild_of (St), SV) -m

while St has more unsliced children do
slice (youngest unsliced child of (St), SU)

end while

,- '"@.1

Vll ., -."'"

4

7...

,.... ....-...,



Page 91

2) sliceselection (St: statement
var SU: set of variable names) ;

OSV := SV ; T ::OSV;
slice (lastunslicedchoiceof (St), T) ; S
NSV := T;
while St has more unsliced choices do

T" T:= OSV
slice (youngest unsliced choice of (St), SV)
NSU := T U NSV

end while ; "
SV := NSV U Expr.Inputs ;
include_expression (Expr)

3) sliceiteration (St: statement ;
var SV: set of variable names)

OSU := T ; T := OSV ;
slice (body_of (St), SV) ;
NSU :=T T :=T - OSV U Expr.Inputs
while T 0 do

OSU OSV U T 3
slice (bodyof (St) SU) ;
NSV := NSU U T ; T T - OSV

end while ;
SV := NSV ;
include-expression (Expr)

4) slice-assignment (St: statement -
var SU: set of variable names) ;

SU SV - St.Outputs -
S: SV U St.Inputs ;

The slicing algorithm progresses by traversing the parse

tree in an order which visits the statement nodes which precede

the initially chosen statement node (according to the program's

control flow) in reverse control flow order. When structured

statements are encountered, they are considered in a top-down

.- . order, being considered only while their output data set (the

:- variables affected by that statement) overlaps with the current

set of "slice variables". .°,-

V .~ . .- .



Page 92 - 0

All statements chosen by the slicing algorithm are

included" in the resultant slice of the program. To ensure

. the correctness of the syntax of the slice, declarations of any

objects used in the included statement must also be included in

the slice. These "objects" include named constants and

variables, and their associated type definitions, as required.

In the case of our intramodule slicer, we must also devise .. %v

an approach to deal with calls to other modules. When such .

calls are included, we have adopted the convention of including

'. an empty version of the called procedure in the slice. This

version of the procedure includes its names type (if any) and

formal parameter list, together with an empty declaration part

and an empty compound statement for its body. This is

sufficient to satisfy the syntactic requirements of the

language.

Since block structured languages such as PASCAL permit

access to "objects" declared at any one of several upper

levels, we have chosen to preserve the upper levels in the body

of the slice. Thus, the slice will include "empty" versions of

all procedures which contain the module being sliced. Within

each of these procedures will also appear the declarations of

any objects which were previously declared in that procedure,

and which are needed within the slice. Clearly, the inclusion -0

of declarations within the slice is important For helping

- . . -

aA.. A h. .- ',



. . . . . . . . . . . . . . .. . . . . . . . . . . . .-

Page 93

program modification.

The nodes which are included within a slice form a subset 0

of the nodes in the parse tree of the program. However, they

can be rejoined to form another parse tree# using the edges

which existed in the original tree as a guide. The new parse

tree constructed in this way is used to display the text of the

slice identified by the slicing algorithm.

However, these algorithms are not sufficiently general to

allow the programmer to select statements arbitrarily. For

instance, if the programmer selects a statement from the center

of a sequence of statements, the "slicesequence" procedure

must be altered to start slicing from the selected statement,

instead of starting from the last statement in the statement

sequence. To handle this and similar cases involving

"sliceselection" and "sliceiteration', we have written

modified algorithms to perform slicing on partial parse trees.

First of all* it is necessary to construct a list L of all

statements which enclose the selected statement. This list can

be constructed in a straightforward manner from the parse tree,

by visiting the "parent" of each node until the body of the

module is reached. The following algorithm, a modified form of

the "slice" procedure, is used:
* .

. . .-.. . . .

• .. . • . . . .- . .... . . . . .

- - •. - . . -- . . . . . . . . . . . . . . . . . . . .. . . . . . . .-.. . . . . . . . . . . .



'4 Page 94

procedure part slice (St: statement
L: list of statements;
var SV: set of variable names) 1

if L is empty then slice (St, SV)
elsif SV flSt.Output then

case St.statement type of
SEQUENCE: slicepartsequence (St, L, SV);
SELECTION: slice.part selection (St. LP SV) ;
ITERATION: slicepart-_iteration (St,. L,. SV) ;
ASSIGNMENT: slice assignment (St,. SU)

* end case
* include-statement (St)
* end if

end procedure

As an illustration, we show the modified form of the

* procedure "slice-sequence". Similar modifications must be done

* to "slice-_selection" and "slice-iteration".

slicepart sequence (St: statement

L: list of statements ;F

var SV: set of variable names);

*part-slice (head (L)o tail (L), SV)

while St has more unsliced children

preceding head (L) do

slice (youngest unsliced elder sibling.of (head (L))#. SV)

end while

The initial call to start slicing will be: '
patslc (ha@1~ al(LpS)



,*O ... .. .

S.Page 95

4.3.3 Enhancements

To improve the usefulness of this program slicer as a

2 programming aid, we have added the options of further applying

S.: the slicer to existing slices of a program to obtain a more

refined picture of program behavior and of combining slices

(possibly those of distinct modules) into more comprehensive

- units. We have defined the following operations for combining

program slices into larger units, including statements taken O

from several modules:

UNION: Given two slices, Si and S2, construct a third

slice S3 which contains all the statements and declarations

which appear in either S1 or S2.

INTERSECT: Given two slices, S1 and S2, construct a third

siice S3 which contains all the statements and declarations

- which are common to both Si and S2.

.By the definition of a program slice, each of these

operations will always ensure that the slice S3 satisfies the

requirements of a program slice, and also ensures that it will

be syntactically correct. Since a program slice can be

considered as a parse tree, or even as a set of nodes taken

from a parse tree, these operations are readily implemented

using well-known algorithms for set operations. e

........................................
..................................

-. *.



.o..--

Page 96

4.4 The SLuntax-directed Editor

We can make the following observations on existing

syntax-directed editors: They are designed specifically for

program development, emphasize the creation of programs in a ...

top-down fashionp are based on the abstract parse tree, i

incorporate an incremental semantic evaluation mechanism, and

are highly experimental in nature.

m'.4

One major contribution made by existing syntax-directed
,K:-.

editors is that a program is treated as a well-formed

collection of suntactic units (language constructs), not just

text. The actions carried out by these editors can be

classified as suntactic editing operations because the

syntactic structure of the program will be affected as an

immediate result of these operations. The programmer using

these "syntactic" editing operations should, however, expect

"semantic" effects as well. Most program editors do perform

semantic checking, which is enforced in conjunction with the

syntactic editing operations. -.

In this section we briefly describe a new type of program

editor which also supports incremental analysis and update

* using a tree representation of programsp and displays program

text using a screen-oriented pretty-printer. The editor, O

however, is based on the class of editing operations which are

4 . .

m... . . . . . . . . .



Page 97

-' termed semantic editinq operations, in the sense that not only

the syntactic structure of the program is affected, but also

each of these operations has a meaning (semantics) which is "

defined by the context in which the operation is performed.

For example, suppose that the cursor is positioned over a'S

constant definition. The programmer can add a new constant

definition, appearing after the current one, by issuing an

insert operation. The programmer does not have to explicitly -

specify the intention to insert a new "constant" definii n.

Knowledge of the immediate semantic effects of the ed; ing

operation is therefore shared between the programmer and c , .

system. More complicated semantic effects# such as

multi-declarations, are still subject to tracing by the system

alone.

There are at least two major advantages in using this kind

of editing operations:

1. Since the programmer is made aware of the structures of the

programming language, modifications are performed as

operations on these structures, rather than as operations

on a piece of text. We believe this to be a more reliable

and informative way of modifying programs, although certain

textual operations are still valuable.

oil
* o

-- . . . .*. ± . -. . - * - -



. ..- -_.

Page 98 .

2. Less information needs to be provided by the programmer

because the cursor position helps the editor to determine
I S

the meaning of each operation.

We have defined three classes of commands, basic -

modification commands, cursor movement commands, and extended

modification commands. Programmer's modifications can be

translated in the underlying operations for each command. The
S'0

programmer's view of the editing operations, however, uses a

more friendly notation than the commands described in that

paper. I, *'*'*

4.4.1 Incremental Editing

Very often one may prefer, at intermediate stages of

program editing, some syntactic structures of a program to be

temporarily incomplete. Therefore- the concepts of

"templates", "placeholders" and "phrases", as described in the -

Cornell system [TEIT81], are also used in our system. These

concepts are illustrated in the following example:

insert a "while" statement after the "for" statement

for i :: 1 to 20 do appleCi] : pieCi];

while <<condition>> do <<statement>>;

"while" template placeholders

(construct) (components of construct)

.. o. °



Page 99

"Phrases", which we call "primitive strings", are subject

to parsing. A simple "recursive descent" parser is included in

our system to perform this limited parsing. The process is "

incremental only in the sense that, after parsing# the

resulting subtree is included in the existing program tree.

The set of basic modification commands is suitable for

updating programs in i more incremental manner, while the set

of extended modification commands takes advantage of the

existing program constructs.

4.4.2 Leqitimate Operations Q -6

Not all types of editing commands can be applied to each

language construct. For example, in PASCAL, the DELETE

operation can be applied to the "ELSE" part of the IFTHENELSE

construct to delete the keyword ELSE and all the statements of

the "ELSE" body. The operations however, may not be applied to -

the "THEN" part of the IFTHENELSE construct. Note that all

the statements of the "THEN" part can be deleted to leave an

empty "THEN" part.

We have defined a Legitimate Operation Table which

records, for each language construct, the type of semantic -

editing operations that can be applied. Figure 4.4 shows part

of the table for the programming language PASCAL. Whenever the

0.

! - -I
4- S



Page 100 At

programmer specifies an operation to be performed, the editor

must consult the table to determine the legitimacy of the

intended operation. . 61 1

4.4.3 Incremental Analusis

The major function of incremental analysis is to perform

incremental evaluation of the static semantics of programs.

According to the characteristics of the operation, the current

cursor position in the program representation and the new

information to be included in the case of ADD, INSERTA, INSERTB

and CHANGE operations, consistency checks of the static -

semantics of the program being modified must be made.

For each entry in the Legitimate Operation Table, certain

semantic "hooks" may be defined. These semantic hooks trigger ' S

the invocation of related semantic checking routines, when the

entry indicates that the operation is legitimate. For example,

the command to change an assignment statement "a b+c" to

"a b+d" may be hooked to three semantic checking routines:

1. Check whether the variable "d" has been declared or not.

2. Check whether the variable "d" can be used as an operand in

this statement# according to its type.

-%E

N

. . . . . . . . . . . . . . . . . . . . .. ,



'0 Page 101

Operations ADD INSERTA INSERTB CHANGE DELETE

Langu age
Constructs

CONST X 0 0 0 0

VAR X 0 0 0 0

PROCEDUREP.ALL 0 0 0 X 0

ACTUALPARM X 0 0 0 0

BEGINEXND 0 0 0 X 0

IF THEN ELSE 0 0 0 X 0

THEN 0 0 X X X

*ELSE 0 X X X 0

WHILE 0 0 0 X 0

EXPRESSION X X X 0 X

TEMPLATE X X X 0 X

0 : legitimate operation
X : illegitimate operation

Figure 4.4. A part of a legitimate operation table.



* . . .. "

0e Page 102

3. Perform type coercion.

i Since temporary semantic inconsistency at intermediate

stages of the program modification activity Should be

tolerated, the language constructs involved may be highlighted

to indicate the violation until it is removed. For example, if

a variable declaration is deleted, a list of usages to this

variable in the program will remain, in which each element

represents a semantic inconsistancy (i.e. an undeclared

variable). The system should assist the programmer in

identifying this list of semantic inconsistencies.

Figure 4.5 shows a more complex case, in which a new

variable is introduced into a procedure B which is nested

within another procedure A. The original variable CURSOR was

declared in procedure A, and used in both of the procedures A

and B. If a new variable CURSOR is declared in procedure B,

this will override the previous declaration. A very likely . -

consequence is that the usages in procedure B of the original

variable CURSOR will also become invalid. .

This may be because the attributes of the two variables

are total ly different. Even if these two variables have

identical attributes, the programmer's intention is still -K ..
o S



.. . - . . .. . . - + . . . ,. , -. . .*. * *_.
..- . . . . . . . . . . . . . . . .-.. . . . . .

Page 103 .i.i

Procedure A;
Var CURSOR integer;

Procedure B.

begin C1 procedure B -)

( CURSOR used I

end; (8 procedure B 8)

begin procedure A 8) -

C CURSOR used Y

Ind ( procedure A 8)

Figure 4.5. Insertion of a local variable.

unknown. If these two variables have identical attributes, a

compiler must take into account the new declaration, and apply

it to all the "usages" of the variable CURSOR declared in

procedure B. However, since the programmer was making

modifications to an existing program, he might not be aware of

the existence of another variable of the same name. Compilers

are obviously ineffective in detecting this kind of

("injected") error.

- . *,: .. ' -. .I



Page 104

By comparison# a highly responsive program editor can

assist programmers in detecting them at the earliest possible

,, stage. We do, therefore, feel that it is the responsibility of o .

the editor to inform the programmer about such dangers, and to

require the programmer to resolve the ambiguity.

4.4.4 Incremental Update Of Data Flow Information

Once a modification is made to a node of the tree model,

the data flow equations are used to update the data flow

information for that node. Since the data flow information for

most nodes is derived from its children, changes will be

propagated to the ancestors of the modified node as far as

possible. If we let the propagation of changes proceed each

time a modification is made, we will find that there are two

immediate disadvantages. First, this propagation for

large-scale software systems may continue for a long time, if

the next modification is made to a descendant node of the

current node, this propagation of changes is not only wasteful,

but also unnecessary. . g,.£,

Since the cursor movement along the parse tree is

continuous# we realize that updating data flow information for

the current node should be done only when the next move is to a

sibling node or to the parent node. This scheme reduces the

response time significantly and still guarantees that data flow

* C-.,,'.

. .~~ *. . . . . . . . . .~..:.. ........



Page 105

Sinformation is ready whenever the subtree rooted at the current

node is referenced. Whenever a slicing command is entered,

propagation will be performed until the propagation reaches the

root of the tree or stops at some node which has no change in

its data flow information.

One of the major assumptions of the above scheme is that

*. we assume that only the nodes which lie on the path from the

root of the current block to the current node have incorrect

data flow information. Otherwise, we assume that the data flow

information of descendant nodes and sibling nodes is correct at

any instant, even when procedure statements or function calls

exist. This is not true if we do not update the data flow -.

information of procedure statements and function calls when the ..

data flow information of the corresponding block changes. We '

consider these changes as side effects which are created when

the data flow information of a block is changed. In this case,

all the procedure statements or function calls which refer to

this block must also be updated, and we must propagate the

change in data flow information as far as possible.

. . . -.-...-

. . . . . . . . . . . . . . . . . .. . ..--.- ',

...............- ,



,. ,Page 1.6

4.4.5 Interactive Prettu-printing

The function of the screen-oriented pretty-printer is to0

allow the programmer to view the portion of the program being

edited. The programmer first uses the cursor commands to

examine the program, then uses the editing commands to modify

the program. The pretty-printer responds to cursor commands,

and rebuilds the screen display according to program changes,

by examining the program representation. As a result# the

pretty-printer provides instant visual feedback to assist the

programmer in perceiving program changes in an interactive

manner. Figure 4.6 shows the various cursor positions

resulting from a sequence of cursor movements.

4.5 Software Development

We are currently completing an implementation of a

prototype version of the system shown in Figure 4.2. The

system has been written in PASCAL and runs on our VAX-11/780

computer. Our choice for the first target programming language

is PASCAL-S, a subset of PASCAL EWIRT75]. The program

representation is implemented as a set of fixed length PASCAL

records# each of which corresponds to a construct in the

PASCAL-S language.

*,.' ."-0-
,.5. - -

.* . " . .. . . . .

.... . , -.---.-.. ..'' .. .tS"3-""o-.. a--f +,3".?" . fl S+ / .,'. .. . . -.... .. . ... . .S, ' + .



Page 107

procedure sort;3
*7.

va counterp pointerp temp :integer;

counter :=293
while counter > I do

beg in
pointer ::13

while pointer <counter do
*2 *3

*4
if listtpointer3 listCpointer.13 then

bea in
temp := listCpointer3;
listCpointer3 := list~pointer+13
1 istEpo inter.13: :temp;

pointer :pointer + 1;

*6J -

counter ::counter -1;

end;
end;

position *1 to position *2 : DOWN
*2 *3 : RIGHT
*3 *4 : DOWN
*4 *5 : RIGHT
*5 *6 : DOWN
*6 *7 : DIAGONAL

Figure 4.6. An example to show a sequence of cursor movement.



. .-- . . . . .

Page 10e L..•

To convert existing PASCAL-S programs to the program 0

representation, we have modified the PASCAL-S interpreter by ""- -

Wirth EWIRT75] so that we can use the syntax-directed editor to -

modify the program. Of course# the editor can also be used for .

new program development. Our implementation of the

pretty-printer has been enhanced by using an "extended cursor"

[TEIT81] to highlight an entire programming language construct. r ,

The program slicer is now operational on individual modules.

However, using the operations UNION and INTERSECTION of program

slices it is possible to construct program slices using

intermodule data flow.

These software tools (modules) communicate with one

another through updating and examining the value of the current ...

position indicator in the tree, given by a global variable

TREECURSOR. Figure 4.7 shows the communication pattern. The

utility programs described in Section 4.1 have also been -

implemented, and they are often used as off-line tools. To

provide the programmer with more information about the program

and the status of the modification, we use a multi-display

system. Two CRT terminals are used simultaneously one for

displaying program fragments and the other for user interface.

4 This will allow functions such as issuing commands, entering

character strings (primitive information) and receiving system

...... .....5



Page 109

* messages.

Syntax-directed Editor
(modification)

Progam SicerPretty-printer
(criterion) (adjust ing

display)

TREE__CURSOR

- ROOT

0 0 0 0

Figure 4.7. The communication pattern of the integrated tools.

By integrating these tools using our program

representationp we have provided an environment in which

* different activities involved in program modification may be



W . T. 7.

'0 Page 110

coordinated and treated as parts of a single task. Our

experience based on testing early versions of these modules

(such as the program slicer and the pretty-printer) indicates

that our approach is feasible. Consistently using the tree

operations defined on the program model as editing operations
0

has been shown to be practical.

4.6 Discussion And Future Work

We have presented an approach to incremental program

modification using a set of well-integrated software tools. We

have also presented a tree-like program representation which

contains sufficient information about the program structure and

static semantics with data flow extension to facilitate various

analysis.

In order to use this approach, the following improvements

need to be made:

1. Programmers are allowed to move freely to any spot in the

program by means of the structured cursor movement

commands. It is found that the correspondence between the

position in the representation and the user's view of the

position in the text is troublesome, and that different

nodes within the tree representation-often correspond to

the same piece of text. This would confuse the user as to

d,..

-' ., -

2-..>>> -. . -- -. 2-2



Page III

-. the exact location of the cursor in the program. Our

solution to this problem will be to refine our 0

implementation so that movement commands automatically skip

certain nodes which do not correspond to a distinct

*construct in the user's view of the text.

2. The extended cursor provides a visual cue for the

programmer by clearly highlighting the current construct.

Movement commands with even larger spans are still needed O

for the programmer's convenience.

3. The set of editing commands is complete in the sense that

it allows any kind of modification. However, in order to

achieve greater efficiency, this set must be extended. For

example, multiple buffers can be introduced to facilitate

more powerful refinement actions (such as combining two

sections of code into a single construct).

From the previous discussion, it is clear that further

research is needed to have a better environment for program

modification. For instance, in order to use this approach to

different programming languages, the construction of the

program representation should be at least semi-automated. This

should be feasible because the program representation and the

operations on it are formally defined. Furthermore, since

separate compilation is a very important and useful feature of



Page 112

programming languages, a practical syntax-directed programming

* system should have facilities to support this feature. In "-

addition, the program modification system should easily

incorporate many other software tools, such as ripple effect

analyzer, which will be discussed in the next section.

A:
" +S

.- i~



Page 113 9

5.0 RIPPLE EFFECT ANALYSIS

One of the most serious problems facing the maintenance -

programmer is to accurately determine the consequences of

making a particular program modification. While visual -

inspection can be successful, automated analysis techniques are

likely to be more reliable. We have developed an approach to

perform automated analysis of the ripple effects of program

modification, and this approach has been demonstrated using

PASCAL programs on a DEC VAX-11/780 computer. The analysis

technique may be used to identify potential ripple effects on

both the logical and performance aspects of program behavior. 0

The logical ripple effect analysis technique is a significant

improvement over that previously demonstrated for JOVIAL

programs EYAU78, 88a, 88bl and is able to deal with the t .

problems of recursion and dynamic aliasing. In this section,

we will present both our logical and performance ripple effect

analysis techniques. "-,5

5.1 Logical Riople Effect Analusis Technique

The logical ripple effect analysis technique presented

here is to statiscally analyze the changes to the data flow of -

the program introduced by an initial program modification.

When the value or attribute of a variable in one portion of the

program may be changed after an initial program modification,

.-."

- -A -A -~ -~- . . ~ - - .-



Page 114

the variable may cause potential errors when it is used. Thus,

this variable is identified as a Potential error source. As a

- .simple example, consider the following program segment:

" SI x x + 1;

%S

-2 y x + z;

Suppose that the expression on the right-hand side of the first

assignment statement S1 is modified in an initial program

modification, then the assignment of y in S2 may become

logically inconsistent with the initial modification.

Similarly, when a control condition, e.g. if (x > Y), is 

changed in an initial program modification, potential errors

may be introduced to the program since the execution and hence

the result of the program may be changed. ...

"*-- A potential error source can be a primary or a secondary

error source. A primaru error source is a variable or control

condition whose value or attribute is modified by an initial

program modification. A secondaru error source is then a

variable or control condition whose value or attribute may

become inconsistent with the initial program modification. In -

the above examples x in S1 is called a primary error source,

while y in S2 a secondary error source. The propagation of the

potential error sources will be referred to as potential error

flow.

*%
* ..



Page 115

: . ro identify the potential error flow, our logical ripple

effect analysis technique identifies and utilizes the @

definition and usage information commonly used in data flow

analysis techniques rALLE74], [LOME77], rBART78], CROSE79],

EARTH81]. In the above example, our logical ripple effect .0

analysis technique will identify y as a secondary error source

based on the information that the definition of y in S2 uses x,

* which is a primary error source. Hence, the scope of logical

ripple effect which can be identified using our technique is

bounded by the canabilities of its underlying data flow

analysis technique.

Our logical ripple effect analysis technique is similar to

those program analysis tools, such as DAVE EFOSD763 and program

slicing technique WEISB13, in that they are all based on data.."...

flow analysis of the program. However, they differ in their

applications of the data flow information. For example, DAVE .-

is concerned with identifying the data flow anomalies of a

program, while program slicing technique is focused on

identifying an executable "slice" of a program which may result

in the definition of a variable at one point of the program.

Both DAVE and program slicing technique are not applicable in

*"* identifying the logical ripple effect of an initial program

-. modification, because they do not identify the changes to the 0,

data flow of the program after an initial program modification.

* ,,

, - .-



Page 116

Our technique, on the other hand, provides a trace of the

program segments which may be affected by the logical ripple

effect of an initial program modification.

In this section, only the framework of our logical ripple

effect analysis technique is presented through the development

of abstract models. These models can be applied on sequential

programs written in high level languages such as FORTRAN,

PASCAL, etc. Implementation or language specific details are

not discussed here.

Our technique performs logical ripple effect analysis in

two stages. The first stage is the error flow model

construction stage, during which an intramodule error flow

model and then an intermodule error flow model will be

constructed to characterize how potential error sources can

propagate within the modified version of the program. The

intramodule error flow model characterizes how potential error

sources can propagate within the modules in the program. The

intermodule error flow model characterizes how potential error

sources can propagate between the modules in the program. The

construction of the intramodule error flow and the intermodule ,

• error flow models have approximately the same level of

complexity as the intramodule and intermodule data flow

-*, analyses, respectively. '

*.- - - •

--: - .



Page 117

The second stage of our logical ripple effect analysis is

the logical ripple identification stage which concerns with

identifying the potential error sources implicated by an

initial program modification. This stage can be performed in

two phases. During the first phase, the primary error sources

are identified based on the initial program modification and

the error flow models of the modified program. Then, in the

second phase, the logical ripple effect will be traced - '

utilizing the primary error sources and the error flow models.

The logical ripple effect analysis technique presented

here is capable of providing exhaustive tracing of the logical 6

ripple effect. It can be tailored to support other strategies

for logical ripple effect tracing. For instance, an

implementation of the technique may provide only intramodule .

error flow tracing which can be sufficiently effective in an

environment where intramodule error flow dominates, while the

cost of applying this technique can be greatly reduced.

Another example of an implementation of this technique is to

identify only the error sources directly implicated by the

primary error sources. .

A prototype logical ripple effect analyzer for PASCAL

programs has been developed. This analyzer provides an

@
6 interactive environment for tracing the logical ripple effect. .

The extent of the logical ripple effect tracing can be -

- ,%

-,........-:.......-..• .....-..- ~~........-•........ ... o..... .-.-.-.-. .. .... ... -.. ... ... . ....-..-..- -.,, -. -: - - --.- -: ° --.-.. - .--. - - .- .." . -'.- -- " -- .- . . . - . . . . . . , 5 - .--: - . ".°. -" -* . - ,--..



Page 118

controlled by the software maintenance programmer such that he

can choose the program areas of his interests to be examined by

the logical ripple efFect tracing scheme. Also, the software

maintenance programmer can eliminate some modules or variables

from the logical ripple effect tracing, which are not affected

by the initial modification based on his understanding of the

program. Thus, our logical ripple effect analysis technique

can identify the program areas which will require additional

maintenance effort. Some experimental results of our logical

ripple effect analysis technique for PASCAL programs will also

be presented.

5.1.1 Intramodule Error Flow Model

In this section, we will present the intramodule error t .

flow model, and show how the propagation of potential error

sources within the modules in a program can be modelled by the

model. Before we present these, we need to make a number of

definitions.

A program module is defined to be a separately invokable

piece of code having a single entry and a single exit.

". Practically speaking, a module can correspond to a SUBROUTINE

or PROCEDURE, etc. To reduce complexity# a program module is

further represented as a set of program blocks. A lrooram

block can be either a local block or an external block. It

I...... A -,



Page 119

Will be seen later that there is a sequence of three blocks in --

the invoking module for each module invocation, which can be a
I I 0

procedure call statement or a function reference; and these

three blocks for each module invocation are called external

program block. A local program block contains an expression

which provides a control condition, or a simple statement other

than a procedure call statement. Each program block has a

single entry and a single exit. However, a program block may

reach or be reached by several program blocks. For example, a -

program block containing an "if" clause may reach two program

blocks corresponding to the "then" and "else- parts of the "if" .--. ''..'

statement.

The flow of control among the program blocks of a module

can be represented by a control flow graph associated with this . *
module. The control flow graph associated with a module m can

-be expressed as a quadruples CFG~mJ = (VP BP up v), where V is

the set of vertices representing the set of program blocks in

* the module mp B is the set of branches which are ordered pairs

lnof vertices representing the flow of control from the exit

point of a program block to the entry point of another program

* blocks u is an element of V representing the entry block of the

module m, and v is an element of V representing the exit block

of the module m. Note that the entry and exit blocks of m are

used to trace the error flow into and out from m. They do not ... .1

0 -,

D- 5.-e



• ;Page 120

correspond to any executable statements in m.

The intramodule error flow analysis can be simplified by 0

decomposing the error flow within a module into the error flow

which occurs within a program block and the error flow which

occurs between program blocks in a module. In order to analyze "

the error flow within program blocks and between program

blocks, it is necessary to develop a characterization for a

program block which reflects how potential error sources may

flow within the program block.

5.1.1.1 Block Error Characteristics

The basis for the characterization of a program block

requires the identification of all data items and control items

in the program block. A data item is a member of the set of 77

minimal information units which describe the program. They

basically consist of the program's variables. The control

items are artificially created in our logical ripple effect

analysis to provide a basis for linking the data flow and

control flow information together in the program. A control

item is created for each control condition which determines the " "-

* execution of a statement or a group of statements. For

examples the predicate in a conditional "if" statement provides

a control condition which determines the outcome of this

decision point, and hence a control item is created to

..

................................ :. .

~~~~~~~~... ....-. .--.....- ;. ..... .. ............ ,,-....... ... . i. -.-.. .;--'. . -. -- ,


| .--

Page 121

represent the predicate. A FORTRAN "do" statement which

establishes a controlled loop also provides one type of control

item. A control item can be created in such a manner that it

will not generate any erroneous error flow in the program by

assigning to it a symbolic name Which is guaranteed to be

distinct from any identifier in the program and from any other

control item. A definition is an item whose value is modified

or read in a part of a statement, or whose associated control

condition is defined in an expression. A usage is an item .

whose value is referenced in a part of a statement, or whose

associated control condition can affect the execution of the

statement.

It is assumed in our error flow analysis that all data

items have a unique memory address and that this memory address t S

can be symbolically determined prior to program execution.

This implies that the variables with the same name but

different scopes are treated as different data items. It also -- ,

implies that all the elements in a data structure are

represented by the data structure itselF. Due to the static -

nature of our analysis, it is infeasible to trace the exact g

error flow for programs which contain data structures. -.

However, the worst-case error flow can be computed by treating "

a data structure as a single data item. Thus, if an element in

a data structure is affected by the error flow, the whole data

4 - .

. "

.................

Page 122

structure is considered to be affected by the error flow.

a Asimple data item; t w i is said to employ implii t i

as.. data item ; otherwise,-, is said to employ mplicit

addressing. An example of implicit addressing of data items is

the arr ay data structure. A control item is treated as

employing explicit addressing although there is no memory

address corresponding to it.

The characterization of the potential error behavior of a

block can be formally defined as follows:

Definition 5.1. The block error characteristics of a block b 0

consists o f two sets C~b] and P~b3, and a mapping FM~b3. The

source capable set C~b) of b is the set of items which can

become error sources due to an execution of b. A subset of'S

CCb consisting of the elements in Cb which employ explicit

addressing is called the explicit source caoable subset of b

and denoted by ECEb . The Potential propagator set PEbt of b

is the set of items which can implicate some secondary error

sources due to an execution of b. The flow mapping FMCb of b-

is a function from the set PEb3 to the power set of CEb3. For S

each element p of the set P~bJ, the subset of C~b3 which is the

image of p under the flow mapping FMEb is defined as

*FMlb3(p) -C c C C~b3 p can implicate c as a secondary

* S.

,-, The characerro sorc due totenta exeutorneao of "--

- AD

looy a. . . . ,

.

Page 123

The error characteristics of a local block characterize

the potential error behavior of the statement or expression - O

contained in the block. On the other hand. the error

-- characteristics of a sequence of three external blocks for a

module invocation characterize the potential error behavior of

the module invocation.

It is clear that the potential propagator set and the

source capable set are needed for modelling the potential error

behavior of a block. The flow mapping, which provides the

relationships between the two sets of items, is also needed

because the sets of secondary error sources implicated by the

elements of the potential propagator set can be different when

the block is an external block used to model the potential

error behavior of a module invocation, or when multiple ..

-i-. assignment in a simple statement is possible for the source

-. language of the program to be analyzed. Furthermore, the block

error characteristics defined above are sufficient to '

characterize the potential error behavior of a block because

the source capable set provides the set of items which can

become an error source, and the potential propagator set and -

the flowing mapping together provide the set of items which can

implicate some secondary error sources as well as their

" implicated secondary error sources due to an execution of the

block.

..- ,1

* -01

S]

..- ..-. -...-. . .. -................ . ,-
o , + - . + . • ., • . .

; Page 124

- . 5.1.1.2 Construction Of Intramodule Error Flow Model

The construction of the intramodule error flow model for a •

program is similar to the identification of the local data flow

information in data flow analysis techniques EALLE74], 3...]

[LOME77J, EBART78], [ROSE791, EARTH811. For a local block b, 1
the source capable set C~bJ basically corresponds to the MODIFY

i set which is commonly used in data flow analysis techniques.

This is because each definition x in b can become an error S

source either due to an initial program modification to the

definition of x in b, or x is defined in b with some usages

which are error sources. The potential propagator set Ptb]

basically corresponds to the USE set in data flow analysis

techniques because each usage y in b is used to define some

definition x in b. Hence, y can implicate x as a secondary ;0

.. error source if y is an error source flowing into b. Note that

the control definitions and usages are included in the block

error characterization. Furthermore, the block error

characteristics sets of the entry and exit blocks are specified

as empty sets because they do not correspond to any executable

statements.

In the intramodule error flow model construction process,

only control usages are identified in the block error

characteristics of the external blocks in the program. These

block error characteristics will be updated when the

S -

0' '.

Page 125

intermodule error flow model is constructed.

The intramodule error flow model can be constructed by an

extended parser EAHO723 of the source language of the program

to be analyzed. The intramodule error flow model construction '

process can be described quite formally using an attributed 0

grammar EAH0723 of the source language.

Example 5.1. Consider the PASCAL program given in Figure 5.1.

This program computes the roots of a quadratic equation a*x*x +

b*x + c 0. The block error characteristics of the blocks 1

to 6 which are constructed in the procedure rroots are shown in

Figure 5.2. The control flow in the procedure rroots is

sequential.

"01

5.1.1.3 Intramodule Error Flow Tracing

Now, let us consider the tracing of the error flow within

a module. The error flow can be described in terms of the .-

propagation error source sets of the blocks as defined below.

Definition 5.2. The Prooagation error source set ES~b] of a

program block b consists of the set of error sources which

reach the exit point of the block b.

*, W

* -"... . ..

S Paqe 1260

Block Source code

program example(input, output);0
var a, b, c.- xrl, xr2.. xi: re al;

procedure roots(aap bbP cc: real)
var xl, xr, xs, disc: re al;

procedure rroots(rrootsdisc, rrootsxi);0
var rrootsx2 r real;

I begin
2 rrootsx2 :=sqrt(rrootsdisc);
3 xrt.: rrootsxl +- rrootsx2;
4 xr2 :rrootsxI - rrootsx2;
5 xi::0

*6 end;

procedure iroots(irootsdjsc, irootsxi);
var iraotsx2 :real;

7 begin
a irootsx2 := sqrt(-irootsdisc);0
9 xrl: irootsx1;

10 xr2 irootsxl;
Ii xi :~irootsx2

*12 end;

13 begin
14 xl - bb / (2.0 *aa);
Is 1*xr :xI* xi;
16 xs cc / aa;

*17 disc :=xr - xs;
Is if disc >= 0
19,20,21 then rroots(disc, x1) -

*22,23,24 else iroots(dise, xt)
25 end;

26 begin
27 read(a, bp c);

*26 if a <> 0 then
begin

29,30,31 roots(a, b, c);-
* .32 writeln(xrl, xr2, xi)

end
33 else writeln('Not a quadratic equation')

*34 end.

Figure 5.1. An example program.

* 0p

Page 127

CEI] 0;
PE13 0;

CC23 = C rrootSX2 3;
PE23 = k rrootsdisc 3;
FM[23(rrootsdisc) C rrootsx2 1;

CE33 C xri 1;
PE33 C rrootsxl, rrootsx2 1;
FME33(rrootsxi) FME33(rrootsx2) C xrl 3;

CE43 = (xr2 3;
PC43] C rrootsxI, rrootsx2 3;
FMC43(rrootsxl) FMC33(rrootsx2) t xr2 >;

CE53 =C xi 1;
PE53 =0;

CE63 0;
PE63 = 0;

Figure 5.2. The error characteristics of the blocks in rroots
in the program shown in Figure 5.1.

Given the error source set ESa3 of a block a, the sets of

error sources which reach the exit points of the immediate

successor blocks of a can be determined based an the set ES~a)

- C[2 = {rroosx2loo--

and the block error characteristics of these immediate

successor blocks. A tracing function f(a, b) is defined below

to derive the set of error sources which reach the exit point

of a block b, given the propagation error source set ES{ax of

. - ,.

L.'.i

• •°.0

Page 128

an immediate predecessor bloc k a of the block b. An error

source x will flow out of block b as a result of the incoming

error source set ES[a] if one of the following two conditions

p. - holIds: ,".

1 x is implicated in b as a secondary error source by an
o

element of ES[a], or

(2) x is an incoming error source which passes through b.

Thus, the tracing function f(a, b) is defined as the union

of the two sets of error sources, each of which contains all of

the error sources satisfying one of the above two conditions.

Under Condition (1), each element x in the intersection of Ptb]

and ES[a] is capable of implicating a set of secondary error

sources in b because x is an incoming error source and it can

propagate potential errors to some items in b. The set of

secondary error sources implicated by x in b can be obtained by

the flow mapping on x, i.e. FM~b](x). Hence, FMtb](PCb] .-

, ESEa]) is the set of all secondary error sources implicated in

b by the incoming error source set ES[a]. Under Condition (2),

an incoming error source x cannot pass through b if it employs

explicit addressing and it is redefined in b. In other words,

x cannot pass through b if it is an element of the explicit

source capable subset ECb of the block b. Hence, (ESa -"

EC~b]) is the set of incoming error sources which passes

through b. Therefore, we have

"* -S"

+ - - + . . • " .-. . -- - - - - - - - - - - . . • . - . , -.

Page 129

f(a, b) = (ESCa] - ECb]) U FM[b](PEb] C ES~a]).

The intramodule error flow from the points of initial S

program modification to other areas in the module can then be

traced utilizing this tracing function along with the error

characteristics of the module's blocks and the control flow •

graph of this module. The tracing function can be applied on a

block-immediate successor block basis to form an algorithmic

technique to trace the intramodule error flow. Applying the ,

tracing function on a block-immediate successor block basis

means that errors are propagated from an initial error source -

block s to all immediate successor blocks t of s, and then from *. .

t to all immediate successor blocks of t, etc. Application of

the tracing function repeatedly in this mannrr identifies the

propagation error source set ESEi] of a block i in a stepwise l*. .

manner with all the error sources flowing from an immediate

predecessor block of i to i contributing to the final ES[i].

The tracing function is applied in this manner while new

secondary error sources are identified.

This intramodule error flow tracing scheme can be

formalized as an algorithm. It is assumed in this algorithm ! -•I

that the propagation error source sets in the module m are

initialized according to some initial error flow condition.

Also assumed is an initial error source bloc.. -it IBtm] of m S

consisting of the blocks in m which have non-empty initial

.

. ,....

Page 130

propagation error source sets. This algorithm is given below.

AlQorithm 5.1. Intramodule Error Flow Tracing

Step 1. If I9(m] is empty, then terminate. Otherwise, select .
'

an element from IB1m) and then delete it from IB[m]. Let b

denote the selected block.

Step 2. For each immediate successor block b" of b, f irst,

check if f(b, b') is a subset of ES~b']. If it is not, then

let ESb'] = ES[b') U f(b, b'), and insert b' into IBEm].

After all the immediate successor blocks of b have been

examined, go to Step 1.

The proof that algorithm 5.1 correctly identifies the

intramodule error flow in m implicated by the initial

propagation error source sets of the blocks in m can be found

in rHSIE82]. Now, we would like to give an example to

illustrate this algorithm.

Example 5.2. Consider the procedure rroots in the program

given in Figure 5.1. Assume the initial error flow in the

procedure rroots is given as IBrroots] = 1 }, where ESE13

t rrootsdisc I and ES[b] = f for the remaining blocks b in

rroots, i.e. the input parameter rrootsdisc is the only error

source in the procedure rroots flowing out of the entry block 1

of rroots. The intramodule error flow tracing for the

procedure rroots is then illustrated in Figure 5.3.

.o *-.

* Page 131

*Input. ESC13 f rrootsdisc 1.
ESEi3 0, for i =2 to 6.

CStep 1. Since IB~rroots3 1 1 , select block 1 from
IB~rroots3, and let Ifl~rroots3 0.

*Step 2. Block 2 is the only immediate successor of block 1:

Since f(I, 2) C rrootsdisc, rrootsx2 3is not a subset -

of ES123 =9S let ESE23 rrootsdiscp rrootsx2 1, and 0
Ifl~rroots] C 2 Y.

*Step 1. Select block 2 from IB~rrootsj, and let Ifl~rroots3 0.

*Step 2. Block 3 is the only immediate successor of block 2:

Since f(2, 3) =C rrootsdisc, rrootsx2, xrl I is not a
subset of ESC33 = O let ESE33
C rrootsdiscp rrootsx2, xrl >P and IfErroots3 C 3 3.

Step 1. Select block 5 from Ifl~rroots3, and let IB~rroots3 a.

Step 2. Block 6 is the only immediate successor of block 5:

Since f(So 6) =C rrootsdisc, rrootsx2o xr1P xr2 > is not a '
subset of ESE63 = Sp
let ESE63 C rrootsdisc, rrootsx2, xrl, xr2 >,
and IBCrroots3 S.

Step 1. Select block 6 from IBErroots], and let IBErroots3 0.

*Step 2. Since block 6 does not have any immediate successors#
go to Step 1.

Ste I~S. . Since IB~rroots3 Op terminate.

The final propagation error source sets of the blocks in the -

* procedure rroots are given as follows:

ESE 13 =C rrootsdisc 1.- -

ESE23 =C rrootsdiscp rrootsx2 1.
ESE33 =C rrootsdisc, rrootsx2, xrl I,
ESC43 C rrootsdisc, rrootsx2, xrip xr2 I3.

4ESE53 =C rrootsdiscp rrootsx2, xrl, xr2 1.
ESE63 C rrootsdisc, rrootsxz, xrI, xr2 >.

Figure 5.3. Intramodule error flow tracing in rroots in
the program shown in Figure 5.1.

'0i Page 132

The intramodule error flow model and the intramodule error

flow tracing scheme together model and trace the potential -J
0

- error flow within a module.

5.1.2 Intermodule Error Flow Model

In this section, the intermodule error flow model is

presented. The intermodule error flow model models how

potential error sources can propagate between the modules in

the program. Error sources can propagate between the invoking

and invoked modules through parameter passing or data sharing

via module invocation.

A program can be considered as a collection of program

modules. There exists one and only one module in the program

which starts program execution upon invocation by the operating

system. This module is called the main module. Upon

" invocation, a module is executed and then the module returns

* control to the invoking module at the invocation site upon exit

from the module. The invocation relationships among the

-- modules in the program can be represented by a call arafh of

the program [ALLE74]. . ,

Recentlyp much effort has been devoted to the development

0 -0O

- o-

0" Page 133

of intermodule data flow analysis techniques with applications

primarily to compiler optimization and static program analysis 0

"- [ALLE74], CLOME77], [BART78], [ROSE79], EARTHe13. Intermodule

.. data flow information that is used at the point of module

invocation has been called summaru data flow information

[ALLE741. With each module invocation, a summary of the

variables which may be modified, used, or preserved due to this

module invocation will be generated for data flow analysis. ' :

In our logical ripple effect analysis, the intermodule

error flow is modelled utilizing an approach similar to usual

intermodule data flow analysis techniques. The summary error -0

flow information of a module is called the module error

characteristics of the module, and will be generated to

represent the potential error flow properties of the module..

In order to model the intermodule error flow which occurs

at a module invocation, a sequence of three blocks is

constructed in the invoking module for this invocation. The

first block in the sequence* called an input parameter mapping

block, is used to establish the error flow from the actual

.. input parameters to their corresponding formal input parameters

of thp invoked module. The second block in the sequence,

called an invocation block, is used to reflect the potential

error flow properties of the invoked module represented by the

• ,-.--.". ."

~. J ~ A * . A ~ **' -* . . .-. '.*-.-*%"

.7L 7'7- . - .

K:: .."Page 134

module error characteristics of the invoked module. The third

. IMblock in the sequence, called an output parameter mapping 0 .

block, is used to establish the error flow from the formal

output parameters of the invoked module to their corresponding

actual output parameters. The error characteristics of the

three blocks can be updated, after the error characteristics of

the invoked module have been generated# based on the invoked

module's error characteristics and the parameter passing

information associated with this invocation.

5.1.2.1 Module Error Characteristics

To define the module error characteristics of a module m,

it is first necessary to identify the data interface of m

consisting of the items which can interact with the global

environment of m. The data interface of m is represented by

the parameter set of m which is formally described by the

following definition:

Definition 5.3. The parameter set PSEm] of a module m consists

of the formal parameters of m, the item representing the return

value of the module if m is a function, and the data items

which are global to m and are referenced in m or any of m's

invoked modules.

Le

. . * .. . * .. . *..$

.i ../ i. .- - . . . '. rb. .. -- >. .-. .. - -.. . -'.. : .- , ...' - . . l "V- . ..-'
- . -- -- ' - ..- ,--

0.

Page 135

The module error characteristics of a module m can be

formally defined as follows: 0

Definition 5.4. The module error characteristics of a module m

consists of two sets MCCm] and MP~m], and a mapping MFM~m].

The module source capable set MCrm] of m consists of the items 0

in the parameter set PS~mJ of m each of which can become an

error source due to an invocation of m. The module potential

Propagator set MP~m] of m consists of the elements in PSEm] ,

each of which can implicate some elements in PSrm] as secondary

error sources capable of affecting the global environment of m

due to an invocation of m. The module flow mapping MFM~m] of a 0

module m is a function from the set MP~m] to the power set of

MCCm]. For each element p of the set MPEm], the subset of

MC~m] which is the image of p under MFM~m] is defined as .

MFMCmj(p) fC c E MCEm] p can implicate c as a secondary

error source due to an invocation of m 3.

The module error characteristics of a module m provide the

set of items which can become error sources capable of -.

affecting the global environment of m, and the set of items

which can propagate potential error sources from the global

environment of m to implicate some secondary error sources

capable of affecting the global environment of m as well as

their implicated secondary error sources due to an invocation

of m. It is clear that the module error characteristics of a

-- --1 -

. ..-...

• . . o - o . * • . -* . . . a * . .* -* . . .° .. " %

Page 136 .0

module are necessary for modelling the potential error flow

behavior of the module. To show that they are sufficient, it

0'
is not necessary to include the items which are not elements of

the parameter set PSEm] of a module m in the module error

* characteristics of m because they cannot interact with the

global environment of m. Furthermore, it is not necessary to

* include an item x, capable of implicating some elements in -.-

-- PS[m] as secondary error sources none of which can affect the

S-.global environment of m, in the module propagator set of m

because the error sources implicated by x cannot affect the

global environment of m. Therefore, the module error

characteristics are sufficient to model the potential error

flow properties of a module.

The order in which the error characteristics of the
p 0

modules in the program are generated is very important because

the error characteristics of an invoked module can affect those

of its invoking modules. In nonrecursive programs, there is

some ordering, called the reverse invocation order which has

the property that when modules are examined in this order,

invoked modules are always analyzed in advance of the modules

which invoke them [ALLE74]. Therefore, the error

characteristics of the modules in a nonrecursive program can be
", -.

generated following the reverse invocation order. In the case

of recursive programs, there is no ordering with such a

'

.- ..-

* -: , - . - - -• -. . . . , ,/ - , : ' .,.''- ,i . , .. " ;.. _? ,' 2,-," ,, ''..o-"-" -' .7/ .'

Page 137 .

property. Furthermore, the local variables of a recursive

module may exhibit different error flow properties in different
I S

activations of the module because recursive activations of the

module will create separate copies of the module's local

variables, called incarnations of the variables.

Intermodule error flow is also complicated by dunamic

aliasino, which is a problem that occurs when syntactically

distinct names are used to represent the same or overlapping I •

storage areas at run time. In the presence of dynamic

aliasing, the error characteristics of the modules must be

generated with the consideration of dynamic aliasing •

conditions. Dynamic aliasing can be caused by reference .

parameters.

, ..
Our approach to model the intermodule error flow for

nonrecursive programs which do not have any dynamic aliasing

anomalies will be described here. By a dunamic aliasinq "

anomalu we refer to the problem where either a variable is

passed by reference to more than one formal parameter of a

module, or a global variable which is referenced in a module is -

also passed by reference to a formal parameter of that module.

In the presence of a dynamic aliasing anomaly, the formal

reference parameters of the module cannot be treated as

independent entities. Dynamic aliasing anomalies tend to

complicate testing of programs, and hence modern programming

- -." -. .. -

. . .' - . -. ."".- -'. . i - "- -- .. -? '- - . . • - - - -.-. • " - "-. i.

* Page 130

practices advocate the elimination of dynamic aliasing

anomalies LWASS8G], LICHB79]. An approach to handle programs

which have recursion or dynamic aliasing anomalies can be found -

in [HSIE82].

For a nonrecursive program without any dynamic aliasing

anomaly, the error characteristics of the modules in the

program can be generated following the reverse invocation

order. Each module has to be analyzed only once. After the

error characteristics of a module have been generated, the

error characteristics of the external blocks for invocations of

the module are then updated.

5.1.2.2 Generation Of Module Error Characteristics

The error characteristics of a module m can be generated .

by the following algorithm based on the parameter set PS~m] of

m and the error characteristics of all the blocks in m.

Algorithm 5.2. Identification of Module Error Characteristics

Step 1. Initialize the set MP~m] to be empty.

St _2. Calculate the set MCtm] by computing (PS~m]) (U C~b] -

I b is a block in m)).

Step 3. Obtain a set T by computing (PS~m] C (U P[b] b is a

block in m)).

Lep__4. If T is empty, then terminate. Otherwise, select an

'i,..

•- . . " . . " - . " . - . 1
" - ,t'' '-' '," "" " "" "' '" '"" " ""."".. .".. ."".. '-_ -> , .. :

-. .
.

E.-

Page 139

element from T, and then delete it from T. Let x denote the

selected element.

Step 5. Let IB[m] k u), where u is the entry block of m.

Let ES~u] - x }, and ES[b] 0 6 for the rest of blocks in m.

Step 6. Apply Algorithm 5.1 to trace the intramodule error

flow in m.

St_ 7. Check if (ES~v] f) MCEm]) is empty, where ES[v] is the

propagation error source set of the exit block v of m. If it

is not, then insert x into the set MP[m], and let MFM[ml(x) -

(ES~vJ (N MC[m]). Go to Step 4.

The proof that Algorithm 5.2 correctly identifies the

error characteristics of a module is given in [HSIE82]. Now,

we would like to give an example to illustrate this algorithm.

Example 5.3. Consider the procedure rroots given in Figure

5.1. The parameter set PS[rroots] of the procedure rroots can

be easily identified as PS[rroots] C (rrootsdisc, rrootsxl,

xrl, xr2, xi }. The identification of the module error

characteristics of the procedure rroots is illustrated in

Figure 5.4.

" "1

W

7

* Page 140

Step 1. MPtrroots] 0.

Step 2. MC~rroots] (rrootsdisc, rrootsxl, xrl, xr2, xi 3,

t rrootsx2, xrl, xr2, xi I S

(xri, xr2, xi }.

Step 3. T = rrootsdisc, rrootsxl, xrl, xr2, xi I
C rrootsdisc, rrootsxi, rrootsx2 .

= C rrootsdisc, rrootsxl }.

Step 4. Select rrootsdisc from T, and then let T = C rrootsxl I.

Step 5. Let IB~rroots] = I >, ESCI] = f rrootsdisc >, and
ES~i] = 0, for i from 2 to 6.

Step 6. The set ESE63 obtained by Algorithm 1 is 1

ESC63 = C rrootsdisc, rrootsx2, xrl, xr2 }.

Step 7. ES[63 MC[rroots] C xrl, xr2 3.
Therefore, let MPErroots] = C rrootsdisc }, and

MFMErroots](rrootsdisc) = C xrl, xr2 3.

Step 4. Select rrootsxl from T, and then let T = 0.

Step 5. Let IBErroots) = t I), ESEI] = C rrootsxl 3, and

ESCi] 0, for i from 2 to 6.

Step 6. The set ES[6] obtained by Algorithm I is

ES[6] = C rrootsxI, xrl, xr2 >. S

Step 7. ES[6) MC~rroots) = C xrl, xr2 3.
Therefore, let MPErroots) = C rrootsdisc, rrootsxl >,

and MFM[rroots3(rrootsxl) = C xri, xr2 3.

Step 4. Since T is empty, terminate.

The error characteristics of the procedure rroots identified by

Algorithm 2 are as follows: """"

* MC~rroots] = C xri, xr2, xi ; dl
MPErroots) = C rrootsdisc, rrootsxl };
MFM[rroots](rrootsdisc) MFMrroots](rrootsxl)

. C xrl, xr2 3.

Figure 5.4. The module error characteristics of rroots in

the program shown in Figure 5.1. S

• °:

0@

.. .* ... '

0:. Page 141

S5.1 2.3 Update block Error Characteristics

Let i, j, and k be a sequence of three external blocks in

a module n for an invocation of m. For the first block i in

the sequence, i.e. the input parameter mapping block, each

formal input parameter x of m should be inserted into the

source capable set C[i] of block i. Each data item y which has

positional correspondence to x in the actual parameter list of

this invocation should be inserted into the potential

propagator set Pi] of block i, while x is inserted into

FM i] (y).

For the second block j in the sequence, i.e. tie

invocation block, each element of the module source capable set

MC~m] of m should be inserted into the source capable set C~j]i0
of block j. Also, each element x of the module potential

. propagator set MP~m] of m should be inserted into the potential

propagator set P[j] of block jP while each element of MFM[m](x)

is inserted into FM(jJ(x).

- For the last block k in the sequence, i.e. the output

parameter mapping block, each formal output parameter z of m

should be inserted into the potential propagator set P[k] of

block k. For each formal output parameter z of m, let w be the

data definition and X be the set of usages in the actual

* -e0

* . ".°;

- - . - . . , , -- - , - . -- . . .- . .- , , -- ..y - . -- -

0 Page 142

parameter list associated with this invocation which have

positional correspondence to z. Then, w should be inserted

into both the source capable set C[k] of block k and FM[k](z).

[urthermore, each element x of the set X should be inserted

into the potential propagator set PEk] of block k, while w is

in,erted into FM[k](x).

furthErmore, for each control usage in the potential

, ,p iator set of each block in the sequence identified by the

-3,nodule error flow model construction process, the flow

n r ;. on the control usage is updated to be the source

,,paroe set of the block.

F-or some programming languages, such as JOVIAL, a formal

p irameter of a module can be identified as an input or output

formal parameter based on the syntax rules of the languages.

For other programming languages which cannot distinguish

syntactically between the formal input and output parameters, a

formal parameter x of a module m is an input formal parameter

. if x is an element of the module potential propagator set MPEm'

of m. A formal parameter y of m is an output formal parameter

"*@ if y is an element of the module source capable set MCEm] of mo o

Example 5.4. Consider the invocation of the procedure rroots

-_ in the program shown in Figure 5.1. Blocks 19 to 21 are the

external blocks constructed for this invocation. Let c.1

-04

*. -S"

[.
"' " ' -" " "* - '

:-. . .- -. " ' - >

0 Page 143

denote the control item representing the predicate (disc > 0).

The block error characteristics of the three blocks identified

by the intramodule error flow construction process are given as

fol lows:

C1193 = ; P1193 = c.1 2;FMC19J(c.1) =0
C[203 = 0; P1203 = C c.1 1; FM120J(c.i) = 0;
C1213 0; P1213 = (c.1 FME213(c.1) =80

-. Based on the module error characteristics of the procedure

rroots described in Figure 5.4, the error characteristics of

the three blocks can be updated as follows:

C1193 f rrootsdisc, rrootsxI 2';
P19] f disc, x1 , c.1 1;
FM193(disc) = C rrootsdisc 2;FM[193(xl) =C rrootsxi 2

FM[193(c.1) -CE193.0

CE203 C xri, xr2p xi 1;
P[203] C rrootsdisc, rrootsxi, c.1)';

FM[203(rrootsdisc) =FMC203(rrootsxi) Cxrlp xr2 }
FMC20](c.1) =Cr20].

C[213 = 0; P1213= c.1 1;
FME21)(c.1) CE2iJ.

5.1.3 Logical Ripple Effect Identification

In this section, the identification of the logical ripple

effect of an initial program modification is described. The

S logical ripple effect can be identified in two steps. The

first step is the error flow tracing step which traces the

error flow in the modified program implicated by the primary

error sources. The second step is the logical ripple effect

* derivation step which derives the logical ripple effect of the

*-

" Page 144 40

initial program modification based on the error flow in the "

• . -program.

5.1.31 Error Flow Tracinq

. ~'... -

The error flow tracing requires the tracing of error flow

both within modules and between modules. Potential error

sources can propagate from a module m to the modules which

invoke m, and to the modules which are invoked by m. When

there exists error flow from module m to the modules invoked by

m, error sources are said to propagate in a downward direction

with respect to module m. Similarly, when there exists error ..O

flow from module m to the modules which invoke m, error sources

are said to propagate in an upward direction with respect to m.

It is apparent that the downward intermodule error flow with

respect to m must be identified before the upward intermodule

-"..' error flow with respect to m is identified; otherwise, the -

latter cannot be completely characterized.

Let PRIMESET be the primaru error source set of a program# ..- -.

- in which each element (m, b, x) denotes that x is a primary

* ... error source at block b in module m. The error flow tracing •

identifies the modules, blocks, and items which are implicated

.* by the error flow caused by the primary error source set

O PRIMESET.

," -2

- • " i - .- : . - ,.

Page 145

5.1.3.2 intermodule Error Flow Tracing

The existence of the upward intermodule error flow from a .

module n can be identified as follows: A module n can

propagate error sources upward to each module which invokes n

1 via each invocation of n if and only if (MC~n] n\ ES[v]) 0 6, 0

where ES~vJ is the propagation error source set of the exit "

* "block v of n and MC~n] is the module source capable set of n.

The elements of (MC~n] 0 ESEv]) are used to update the

propagation error source set of each invocation block

constructed for an invocation of n such that the error flow

implicated by these upward intermodule error sources can be

traced.

The presence of the downward intermodule error flow from a

module m to an invoked module n via an invocation of n can be 77-

identified as follows Suppose that a module m is invoked in

a module n and b is the input parameter block constructed in n

for this invocation. Given the propagation error source set

ES~b] of b, n can propagate potential errors to m via this

invocation if (ES[b] A MP[mJ) 7 O, where MP~m] is the module

potential propagator set of m. The elements of (ES[b] 03 MP[mJ)

are used to update the propagation error source set of the

entry block of module m such that the error flow implicated by

these downward intermodule error sources can be traced. _

I ..• 01

....,, - . . *. . -.... .: ,. :.. -.-. .:: -; .::.. - : .*. : ; . . : . .

Page 146 .

5. 1. 3.3 Error Flow Tracing Algorithm

The areas in a program which are implicated by the error I

flow in the program is identified in a stepwise manner. The

primary error source set PRIMESET is used to initialize the

propagation error source sets and the initial error source I

block sets. The intramodule error flow in the modules involved

in initial modification is then traced based on the initial

propagation error source sets of the blocks in the modules. 1. 0

After the intramodule error flow in a module m stabilizes, the

intermodule error flow originating at m implicated by the error '"-

flow is then identified based on these propagation error source k .

setsp and used to update the propagation error source sets of

the blocks in the modules to which the intermodule error flow

is propagated. The modules which are implicated by the , .

intermodule error flow are then analyzed. This process

continues until the error flow stabilizes, i.e. no new error

sources are identified.

An algorithm has been developed for identifying the

program areas which are implicated by the error flow caused by

the primary error source set PRIMESET. Let AFFECTM be the set

of modules which are implicated by the error flow. In this

algorithm, a set UPM is used to contain the modules potentially

affected by the upward intermodule error flow, and a set DOWNM I

is used to contain the modules potentially affected by the

..-

I..° '-" .

0 Page 147 .

- downward intermodule error flow. This algorithm is given

be low.

Algorithm 5.3. Error Flow Tracing

Step 1. Initialize the sets AFFECTM and UPM all to be empty.

For each module m in the program, initialize the set IB[m] to

be empty. For each block b in the program, initialize the set "

ES~bJ to be empty.

Step 2. For each element (m, b, x) of the set PRIMESET, insert

x into the set ES[b]. Furthermore, insert b into IB[m], and m .

into the sets AFFECTM and UPM.

Step 3. If UPM is empty# then terminate. Otherwise, select a

module from UPM and delete it from UPM. Let n denote the

selected module.

Step 4. Identify the intramodule error flow in n utilizing ' ;

Algorithm 5.1.

Step 5. Calculate T (ESCv] (MCln]), where v is the exit

block of n. If T is not empty, then for each invocation block

b in a module k constructed for an invocation of n, check if T --

is a subset of the propagation error source set ES~b) of b. If

it is not, i.e. new error sources flow out of n upward to k -s
via this invocation, then insert k into AFFECTM and UPM, and b

into IB1k]. Furthermore, let ES~b] (ES~b] f) T).

Step 6. Let DOWNM 0. Then, for each input parameter mapping

block b in n for an invocation of some module m, calculate a

: - ,. ..' :.,- -- -. ,. -. -. • -..- . . *.. .-. . - . , . ., .. -.. . . . ,. - *. -

.-. -.....,. .,. ;..:. :..:..: :.- :-_-

Page 148

* set T (ES[b) (MP[m)). Check if T is a subset of the

propagation error source set E.S~u] of the entry block u of

- module m. If it is not, i.e. new error sources flow into m,

then insert m into AFFECTM and DOWNM, and u into IBm].

. Furthermore, let ES~u] (ES[u] U T).

-. Step 7. If DOWNM is not empty, then select a module from DOWNM

and delete it from DOWNM. Let j denote the selected module. --

Repeat Steps 4 and 6 with j substituting n to trace the

intramodule error flow in j and the downward intermodule error

flow propagated from j. This process continues until the set

DOWNM becomes empty. i.e. the error flow implicated by the

downward intermodule error flow originating at n stabilizes.

Then go to Step 3 to trace the error flow implicated by the

upward intermodule error flow from the modules in the set UPM.

The proof that Algorithm 5.3 correctly identifies the

areas in a program which are implicated by the error flow in

the program caused by the primary error source set PRIMESET is

given in [HSIE82]. Now, let us give the following example to

illustrate this algorithm.

Example 5.5. Consider the program shown in Figure 5.1. Assume .

that the initial modification corrected the definition of xi in

the procedure rroots, i.e. the primary error source set of the
• .--°

program is given by PRIMESET t (rroots, 5, xi) }. The error S

flow tracing by Algorithm 5.3 is illustrated in Figure 5.5.

• .-. i°..

19.
•i.

"" =' - " ' ". ' 0 =" S" ,". ." " ' ' - "" ,-"' - " , . ', . .

S Page 149

Step 1. Let AFFECTM Or and UPM 0.
Let ESCi3 be empty# for each block i.

-- Stop 2. Let ESC53 C xi 1, 1BCrroots3 C 5 1, and
UPM =C rroots I* AFFECTM zC rroots I.

Step 3. Select rroots from UPM, and then let UPM 0.

Step 5. Since (ESCGJ MCCrroots3) C xi I, let
UPM t roots Is AFFECTM C rroots, roots 3.,
ESC203 t xi I, and rB~rocts3 C 20 1.

Ste" . Since rroots has no immediate successors,
go to Step 3.

Step 5. Since CESE253 MCtroots3) C xi I# let
UPM =C example I# IBtexample3 C 30 1#
AFFECTM t rroots, roots* example >, and
EE303 C xi 1.

Step 6. Since no downward intermodule error flow from roots,
go to Step 3.

Step 3. Select example from UPH, and then let UPM 83.

*Step 5. Since no upward intermodule error flow from examples
UPM = 0.

Step 6. Since no downward intermodule error flow from example,
go to Step 3.

Step 3. Since UPM is empty, terminate.

The result of error flow tracing is as follows:

AFFECTPI C example, roots# rroots 1;

Figure 5.5. Error flow tracing in the program shown in j*
Figure 5.1.

t*

r. - . .- ~~~~~~-a - T' W r -r--- Vrw 7. 7 . - .

Page t5'.

5.1.3.4 Logical Ripple Effect Derivation

We will use RIPPLE[b] to denote the set of items in a

block b which are affected by the logical ripple effect,

RIPPLEB[m] the set of blocks in a module m which are affected

by the logical ripple effect, and RIPPLEM the set of modules in "

a program which are affected by the logical ripple effect.

To derive the logical ripple effect from the error flow,

it is first observed that a block may not be affected by the

logical ripple effect even though the propagation error source

set resulted from the error flow is not empty. This can be

true if the elements in the propagation error source set are

error sources which just pass through this block. Furthermore,

it can easily be shown that -an item x is affected by the

logical ripple effect in block b only if x E (ES[b] f C[b]).

Given the set AFFECTM and the propagation error source

sets which are derived in the error flow tracing step, the

first step in logical ripple effect derivation is as follows:

For each module m in the set AFFECTM, first initialize

RIPPLEB[m] to be an empty set. Then, for each block b in m,

check if (ES[b] (' C[b)) is empty. If it is not, then let

RIPPLE[b] (ES[b] (C[b]), and insert b into RIPPLEB[m].

* %.

*0 --I

Page 151

Next, it is observed that a module m may not be affected

by the logical ripple effect despite the fact that m is

implicated by the error flow. rhis can happen when all the

error sources in m are just passing through m to the modules

invoked by m without internally generating error sources in m.

It is obvious that a module m is not affected by the logical

ripple effect, if all the blocks in the set RIPPLEB[m] are

external blocks. Therefore, the next step in the logical

ripple effect derivation is to identify the subset RIPPLEM of

the modules in the set AFFECTM which have at least one local '.

block in their RIPPLEBEm] sets.

In an analogous manner, a block b with a nonempty set

RIPPLE[b] may not be affected by the logical ripple effect, if

the block is an external block constructed for an invocation of -.

a module which is not an element of the set RIPPLEM.

Therefore, the final step in the logical ripple effect

derivation is, for each module m in the set RIPPLEM, to remove

the blocks b in the set RIPPLEB[m] which are constructed for

invocations of modules which are elements of the set (AFFECTM -

RIPPLEM). "

* - -. '-...--..:-- "-*--.-

.. . ***

* . ..-- .' . . .

Page 152 0

Now, the set RIPPLEM gives the set of modules in a program

which are affected by the logical ripple effect. For each
0

module m in the set RIPPLEM, the set RIPPLEB[b] gives the set

of blocks in m which are affected by the logical ripple effect.

For each block b in the set RIPPLEB[m], the set RIPPLE[b] gives

the set of error sources in b which may cause logical

inconsistencies with the initial modification.

Example 5.6. Consider the program shown in Figure 5.1. The :1
result of error flow tracing in the program has been shown in

Figure 5.5. Since the only block in the procedure roots is an

external block, the procedure roots is not affected by the

logical ripple effect. Hence, the procedure roots is not

included in the set RIPPLEM. Furthermore, block 38 in the main

module example is constructed for an invocation of the

procedure roots which is not affected by the logical ripple

effect. Hence, block 30 is eliminated from the set

RIPPLEBlexample]. The logical ripple effect is thus given as
f 0 1 laws

RIPPLEM - example, rroots }.

RIPPLEB[example) = (32 3.

RIPPLEBErroots] =-C 5

RIPPLE[32] C output }.

RIPPLE[5] t xi }.

S,.1

L" . -:, :.,.._-.. .. ,• *. j 7 .* .. . *. . ,..

Paqe 153 .

-i In this section, a scheme to identify the logical ripple

effect based on the set of primary error sources has been 0

presented. Note that this scheme illustrates the concept of

logical ripple effect identification. A more efficient

algorithm can be found in [HSIE82].

The intramodule error flow model, the intermodule error

flow model, and the logical ripple effect identification scheme

together provide a model based on which the logical ripple

effect can be identified. In the next section, the overall

logical ripple effect analysis technique will be presented.

5.1.4 Louical Ripple Effect Analisis Technique

The logical ripple effect analysis technique can now be

summarized as follows:

Step_ 1. Construct the intramodule error flow model as

described in Section 5.1.1.

Step 2. Construct the intermodule error flow model as

described in Section 5.1.2.

Step 3. Identify the primary error source set PRIMESET based

on the initial program modification.

Step 4. Identify the logical ripple effect of the initial

program modification as described in Section 5.1.3.

*0

b . . *,.w...........................

0 Page 154 ,

Steps 1, 2, and 4 of the logical ripple effect analysis

technique can be automated without diFficulty. However, the

identification of primary error sources is more complicated,

and the automation of this process is not simple. We will now

discuss this step in more detail.

The primary error sources are identified to transform the

initial program modification into the changes to the error flow

of a program. To illustrate the identification of the primary

error sources, let us consider the following types of initial

program modifications:

(1) Suppose that a control condition was modified by changes

to the data usages, relational operators, or constants in this . -

control condition. The control definition associated with this

control condition is then specified as a primary error source

at the block which contains the control condition.

(2) Suppose that a data definition was changed or added in a

block. The definition is then specified as a primary error

source at the block.

(3) Suppose that a data definition was deleted. The

definition is then specified as a primary error source at the

blnck to which the original definition transferred control.

Furthermore, if any definition in the block is defined with a

usage of the deleted data definition, then the definition is

also specified as a primary error source at the block.

0

* S

S S,

'* Page 155 S

(4) Suppose that an actual parameter x was replaced by y in a

module invocation. If the corresponding formal parameter f is

- an input parameter, then f is specified as a primary error

source at the input parameter mapping block for this

invocation. If f is an output parameter, then x and y are both

specified as primary error sources at the output parameter

mapping block for this invocation.

(5) Suppose that a module invocation which invokes a newly

added or an existing module was inserted into the program. The

elements of the module source capable set of the invoked module

are then specified as primary error sources at the invocation

I block for this newly added module invocation. -

(6) SupposL that a module invocation n was deleted from a

module m. The elements of the module source capable set of the

invoked module with the formal output parameters substituted by

their corresponding actual parameters in the deleted module

invocation are then specified as primary error sources at the

block to which the deleted module invocation transferred

control.

(7) Suppose t~iat an unconditional goto statement sl which

4 branches to a iatement s2 was deleted from the program. Let

s3 be the statement which followed the statement si in the

original program. The data definitions which could reach s2

before the deletion of sl but cannot reach s2 after the S

deletion of sl are identified as primary error sources flowing

. -• °.

"-" ". * .*... .. :

. , - - - - . . - - . -. - -" " L -

Page 156

into the statement s2. Furthermore, the data definitions which

could not reach s3 before the deletion of sl but can after the

deletion of sl are identified as primary error sources flowing

into the statement s3.

Our current logical ripple effect analysis technique

requires the maintenance programmers manually identify the

primary error sources. Further work is needed to automate this

process.

5.1.5 Experiments

A prototype system to perform logical ripple effect

analysis on PASCAL programs has been developed. This system

consists of three subsystems: an intramodule error flow

analyzer, an intermodule error flow analyzer, and a logical

ripple effect identification subsystem. The identification of

primary error sources should be performed manually by the

maintenance programmers.

The intramodule error flow analyzer is developed by

modifying an existing standard PASCAL compiler, while the other

two subsystems are newly developed. The prototype system is

currently running on a DEC VAX-i1/780 computer under the VMS

operating system. The system is primarily written in VAX-11

PASCAL, while some file handling routines are written in VAX-li

-6

'0 Page 157 .

FORTRAN. ihe intramodule error flow analyzer and the

intermodule error flow analyzer are run in batch mode, while

the logical ripple effect identification subsystem can be run

in either batch or interactive mode. The program sizes of the

intramodule error flow analyzer, intermodule error flow

analyzer, and logical ripple effect identification subsystem

are 643, 198, and 238 disc blocks, respectively, where each

disc block under the UMS operating system consists of 512

bytes.

During the logical ripple effect identification step, the

user can specify the modules whose internal error flow will not

be traced. For such a module, the upward error flow

originating at this module will still be traced, but the

downward error flow originating at this module will not be

traced. Also. during interactive logical ripple effect

identification, the user can remove an item from the error flow

at a block such that further error flow implicated by this item

would not be traced. This feature enables the user to control

the scope of error flow tracing. For example, he can choose to

" trace only the intramodule error flow of a module which is

involved in an initial program modification. Also, it can be

used to reduce the scope of error flow tracing, and hence

provide the user with more precise information about the

potential logical inconsistencies. One example of a module

* S,

.. - -•-- - - - - - -

' Page 158

which is not traced can be an output routine which converts a

data item from one format to another, while the routine itself

is not modified. There are certain messages displayed on the

terminal which can help the user better understand the error

* flow in the program implicated by the initial program

. modification.

We have applied our logical ripple effect analysis

technique on PASCAL programs with sizes ranging from about 50

* to 5080 lines of program statements and declarations. Based on

' our experiments, the execution time needed for the error flow

analysis of a program depends on the program size. However,

the response time for the interactive logical ripple effect

identification is not significantly affected by the program

size, but by the size and complexity of the modules in the

program because the logical ripple effect identification is

performed on a module-by-module basis.

Our experiment indicates that our logical ripple effect .

analysis technique can be very effective for scientific

programs, which require extensive numerical computation. The

logical ripple effect of an initial program modification -

follows very closely the data flow in this type of program.

For other types of program the effectiveness of this technique

is limited by the underlying data flow analysis technique. For

example, since the data flow an a I ys i s cannot distinguish

:::-:0

.S::,, ,' ?

.....................

0 0

Page 159

distinct components of a complex data structure, the whole data

structure is treated as modified if a particular component in

the data structure is modified. This implies that all the '

program blocks which use different components of the data

structure would be identified as affected by the ripple effect

of the modification to a particular component in the data

structure.

5.t.6 Discussion And Future Work

Our current logical ripple effect analysis technique

requires the maintenance programmer manually identify the 0

primary error sources and requires the program to be reanalyzed

after each initial program modification to construct the error

flow model of the modified program. The efficiency and ease of .

use of the logical ripple effect analysis technique can be

". improved by developing a scheme which can incrementally update

the error flow model of the program and a scheme which can ..

automatically identify the primary error sources.

The error flow model of a program can be incrementally

updated in two steps: updating the intramodule error flow -

model and the intermodule error flow model. Since the

intramodule error flow model can be constructed by an extended

parser of the source language, the changes to the intramodule

error flow model can be identified by an extended incremental

-- - - - - - -- - - °~* . . -.

*'• Page 160

-. attributed grammar evaluator [DEME83 which performs

incremental attribute reevaluation. An incremental attribute

grammar evaluator can function together with a syntax-directed

* - editor which can incrementally reevaluate the syntactic

* information of the program. The intermodule error flow model

can then be incrementally updated by modifying the construction

step of the intermodule error flow model to eliminate the

* analysis of the module error characteristics of a module if the

module and each successor of the module is not involved in the

initial program modification.

5.2 The Performance Ripple Effect Analusis Technique

Since a large-scale program usually possesses both

functional and performance requirements, the ripple effect of

program modifications must be analyzed from both a functional

and a performance point of view. In many large-scale programs,

the violation of a performance requirement is equivalent to a

system error and thus requires further corrective action

'BOYD78 1 , EWEGN78], [SWAN76], EBELF77]. Consequently, in the

maintenance process it is important to fully understand the

potential effect of a modification to the system in terms of

the performance of the parts of the system directly involved in

the modification, as well as those that may be affected

indirectly. The change in performance of these parts may then

,'- .

-~~~~~.- ..-..-..,.°.-°

Page 161

have an impact on the performance of the other parts of the

system.

In the previous contract, we developed a performance

- ripple effect analysis technique which was reported in detail

in CYAU80c, Bf]. This technique is based the identification

of performance attributes, critical sections, performance

. propagation mechanisms, interdependency relationships among

modules as well as the relations between user performance 6

requirements and module performance attributes. Algorithms for

identifying those items have been established and an algorithm

for tracing the performance ripple effect has been established. 0

During this project period, we have constructed a prototype

system for the demonstration of our performance ripple effect

analysis technique. In the following section, we will discuss

our experimental results.

5.2.1 Experimentation

This prototype system, which has been developed to

demonstrate our performance ripple effect analysis for PASCAL

* 'JENS743 programs, is made up of two subsystems: a program

text analyzer, which constructs a model of the program for I
tracing performance ripple effects, and a performance ripple

0. effect tracing subsystem. Since PASCAL programs involve no 0

concurrent operations, not all of the performance attributes,

-01

e Z

* .* .'.--. .--

f •* .-.: * , ~ -..- ****- ---

*"O Page 162 0

critical sections, virtual performance attributes and the

relationships among them could be shown. Therefore, the

..*. program text analyzer constructs only those portions of the

";-" model which are relevant to PASCAL programs, although the

subsystem to trace the effects of program changes can also

trace these effects on programs which include those portions of

the model which are associated with concurrent operations. -

The program text analyzer was developed by modifying an

-'-- existing PASCAL compiler and consists of over 700 lines of

PASCAL code, while the tracing subsystem was newly developed

and consists of about 258 lines of PASCAL code. The prototype

system is currently running under the VMS operating system on a

DEC VAX-11/780 computer. This system is written entirely in

VAX-l1 PASCAL. Both subsystems run without user interaction,

the first constructing the performance ripple effect model of -

" the program, and the second tracing the effects of a

modification through the entire program.

Since the logical correctness of a software system is at

. least as important as its abi l ity to meet performance

requirements# we will assume that an analysis of logical ripple

effects precedes that of performance ripple effects. This

allows us to take advantage of the data flow analysis performed

by the logical ripple effect identification subsystem. 0

"'* S. """

* .; S;;- ;

Page 163

To assist us in validating the results of our performance

ripple effect analysis we developed a technique to estimate the "

execution time of arbitrary paths in the programs being

modified. This technique was described in [YAUSIb]. We -

compared the estimated execution times of all critical sections

of the program, before and after the modification, and observed

that all quantitative changes in estimated times appeared in

critical sections that were implicated by our performance

ripple effect analyzer.

5.2.2 Discussion

During the early stages of the maintenance process, the

performance ripple effect analysis technique can be used as an

aid in developing criteria for maintenance personnel to O

-evaluate proposed program modifications from a performance

perspective. Basically, this involves the worst-case .-.-

identification of performance requirements which might be ... 5

affected by the program modifications.

After a program modification has been selected and

completely implemented, the performance ripple effect analysis

' technique can substantially refine its analysis and determine .

more accurately which performance requirements may have been

affected by the program modifications. These performance

requirements can then become the targets for retesting. This

* -0

. . . "- .*-

.-... - .. -,,. • ... - . . - -.-°.-- , --- *.* .*.*

*0
w% r. "

Page 164 -

is accomplished by determining whether or not a performance

attribute is actually affected before implicating other
A

performance attributes involved in a performance dependency

relationship with the given attribute. In other words# if a

dependency relationship exists between performance attributes x

and y, performance attribute y does not need to be examined for

changes if it has been determined that performance attribute x

-s not affected by the maintenance activity. Thus, the -4

preliminary results of some of the early retesting efforts may

be decisive in determining the scale of retesting which remains

to be done. The use of program assertions concerning the

execution time of performance attributes would play an

important role in determining if a performance attribute has

been affected by a modification.

,.. S%

-0

0,

. - -- - . -.-...

S* ~ . °

-. -.

I
o

-

Page 165

6.0 EFFECTIUE TESTING FOR SOFTWARE MAINTENANCE

Despite the use of automated tools to assist the

maintenance programmer in making modifications correctlyp the

possibility of error remains, and so the modified program must

still be retested. Nonetheless, we would like to avoid .

retesting the entire program if only a minor modification has

been made.

mS
We have developed a module testing approach which makes

use of existing test cases whenever possible, and uses the

input partition method [RICH81] for constructing new test cases

when they are required. Actual testing is done by symbolic

, execution [KING76], but we make use of real test case data to

select the control flow paths to be executed. We have

demonstrated an implementation of our approach using ANSI

FORTRAN by modifying the ATTEST system [CLAR76]. Our method is

effective in testing programs with mathematical computations

whose specifications can be given in the cause/effect manner

EMYER76], EGOOD75], EHALL78], CHENI80], such as control

programs for aircraft control systems and nuclear power plant

control systems. Although our method has been demonstrated for

programs written in FORTRAN, it can easily be modified for

programs written in block-structured languages, such as PASCAL,

PL/1 and ALGOL. The application of this method will also be

discussed.

* - _

.-. ,S

" . . " " _ " ' '' . ' • ' . , • , . . . - " ". ". " - , 2 _ " ' " " " " V '

*O Page 166 0

* . 6.1 The Module Revalidation Technique

In this section, we will present our module revalidation 0

technique during the maintenance phase. The smallest unit in . -'

the program we consider here as a modified section is a program

section which is a maximal set of ordered statements of a 0

program that can only be executed as follows: its execution

starts from the first statement, terminates at the last

statement, and all of its statements are executed in the given -

order. In addition, we assume that each module in the program

has one entry and multiple exits. Our technique is applied -

only after all the necessary modifications of the module are -

completed. It is assumed that the module before the

modification has been tested by the test set T =

Ctl,t2,...,tn}, where T was generated by any test generation -

- method, each test case ti vl,v2,...,vm}, i:l,2,...n, and vj,

j=IZ m, is an input value for the jth input variable of

the module. Furthermore, we assume that the specification of -

each module is correct and given in the form of a cause/effect

graph [MYER761.

The module revalidation technique can be summarized in the

flow-chart shown in Figure 6.1. To start with, the derivation

of the input partition for the modified module will be done to

: 5 -
• . reflect the changes in the program code and/or specification.

Then, the original test cases of T which are still correct -

* -o,

* 5

i- Page 167

Derive the input partition

for the modified module

4I
Keep correct test cases in T
and discard other test cases

Assign correct test cases to
the input partition classes for

the modified module -

No Is the criterio Yes
satisfied0

Generate additional
test cases to satisfy

the criterion

Execute all the newly generated test
cases and previous test cases whose

execution exercises any modified
section of the modified module

Output validation

Debugg ing

Figure 6.1 An overview of module revalidation.

* . .,.

,.e .

C 7

Page 168

inputs for the modified module are kept and all other original

test cases of T are discarded. If the use of the test cases in

T does not satisfy the criterion of the input partition method,

additional test cases are generated to satisfy the criterion.

After the criterion is satisfied, all the newly generated test

cases and the original test cases whose execution leads to any

modified portion of the module are executed, and the results of

the execution are examined. When the existence of errors is

detected, debugging of the module will be performed. In the

remainder of this section, we will discuss each of these

processes in detail.

6.1.1 Derivation Of The Input Partition

The input partition P used in our method is derived by

intersecting two input partitions Ps and Pc, which are

generated from the program specification and code respectively, S

and our testing criterion is to have at least one test case in

each partition class of P. This input partition has also been

considered by Weyuker and Ostrand [WEYU8G], who used English

for the program specification, and Richardson and Clarke

CRICH81], who used a Program Design Language (PDL) type

specification. As mentioned before, we used the cause/effect

graph to represent the program specification. The partition Ps

,S 0 .

Page 169

can be generated by considering all possible combinations of

input conditions from the cause/effect graph and each

combination corresponds to a partition class. The partition Pc . .

can be generated by considering that each distinct executable

path in a module corresponds to a distinct partition class,

except that those paths which differ only in the iteration

number of the same loop belong to the same class.

To illustrate the input partition method, let us consider S

the program which computes the average of a given array of

numbers and returns its absolute value. The specification of

: the program is given in the cause/effect graph shown in Figure

6.2. Its code, together with the program graph information, is

- shown in Figt:re 6.3. The cause/effect graph is used to give

the input/output relations of the module. Circles on the left

correspcnd to causes, which denote input conditions ,or the

module, and circles on the right correspond to effects, which

denote outputs of the module. Circles in the middle denote

intermediate nodes, which are used to specify combinations of

causes by means of logical relations, such as (AND), (OR) and

-(4OT). Causes (or combinations of causes) and effects are

connected if there exist relations: if causes (or combinations

- - of causes) are given in the module, the effects are returned by

the module.

0

'0 Page 170

1! 0
I< I< ,'R = (Z A(i))/I

EI
7.0

YA(i) > 0 -R : -(7_A(i))/l i?

Figure 6.2. The cause/effect graph specification of an
example program.

" ;0.

Suppose that the maintenance programmer has corrected two

errors: R was not initializedo and "GO TO 48" was "GO TO 50".

Let S be A(i). Then the input partition for this program is "7.

derived as fol lows: to generate Ps, we first find the

following causes of this example from its cause/effect graph:

I<8, 1<I<5 and S>O. However, causes I<0 and 1<I<5 cannot occur -

at the same time, as indicated in the cause/effect graph by the

symbol "E". Similarly, causes I<O and S>8 cannot occur at the

same time. Therefore, the only possible combinations of causes

are I<O, 1I<5 and S>8, and l<I<and S<8, each of which

* -S

* 1

.-- .

Page 171

Program Block No. Statement No. SOURCE

--

1 SUBROUTINE SUBI CAI,R,IERR)
I I DIMENSION A(5)
--

2 IERR = 0 '
2 3 IF (I .LE. 6)
--

13 4 S GO TO 10
--
3 5 IF (I .LE. 1)

---------------- ---- --- --- --- --- ---- --- --- --- ---
12 6 S GO TO 20
--

7 R 0
4 DO 06L 1,I

5 9 30 R = R + A(L)

6 10 R = R/I
--
7 11 40 IF (R .GT. 0)

11 12 S$G0 TO

813 R -R

14 50 WRITE (6,180) R
166 FORMAT (X, F3.2)

9 15 GO0T060
- - - - - - - - - - - - - -- -

16 20 R =A~l)
12 17 GO TO 40
--
13 16 10 IERR 1
--

*10 19 66 RETURNS

Figure 6.3. The source code of the example program with the
specification shown in Figure 6.2.

* S

WS

Page 172 0

represents a partition class of Ps, and Ps (I<) U (1<I<5 and.-

S>8) U (1<I<5 and S <0). To generate Pc, we first find the

following five different kinds of paths in the program: the

path to handle the case I<, the path to handle the case I=1

and S<, the path to handle the case that Iz: and S>O, the

paths to handle the case 2<I<5 and S<, and the paths to handle

the case 2<I<5 and S>8. Based on this grouping of paths, Pc

can be derived as follows: Pc = (I<6) U (2<I<5 and S>O) U

(2<I<5 and S<0) U (I=1 and S>0) U (I=i and S<).

By taking P Ps Pc, we obtain all the partition classes

of P as follows: -

class 1. I<

class 2. 1:1 and S>"

class 3. I=1 and S<

class 4. 2<I<5 and S>'

class 5. 2<I<5 and S<O

6.2 Reusabilitu Of Original Test Cases

* The changes made to the module may make the application of

the original test cases to the modified module invalid. Hence,

* it is necessary to determine whether the original test cases

are correct inputs to the modified module. To do this, we need

- to examine the total number of input values necessary to invoke

S, . .4

* -S

-, -. . , i ,-- ..-. ,,* i . . , . , . . . ,- . -.. .. ., i i , -

'0 Page 173 0

the modified module and the order of these values. For

example, because of the modification, another input may be

needed to invoke the modified module correctly. In such a

* case, after the modification, the original test cases are no

longer valid to test the modified module and must be discarded.
o0

In the case of a modification for error corrections the input

which detected the existence of errors should be included in T.

lei

6.3 Assignment Of Original Test Set To The Input Partition

Classes

When original test cases are correct inputs to the ,

modified module, we should use them in order to generate fewer

new test cases. This is done in our method because it is much

easier to see if a given test case satisfies a given input

* - class domain than to generate a new test case which satisfies a

* given input class domain. As long as some t in T which

satisfies the domain constraint of the jth partition class, we

assign it to the jth partition class. A similar idea was also

used in CASEGEN [RAMA76]. To illustrate this, let us consider

a set of original test cases shown in Figure 6.4 for the

program shown in Figure 6.3. Since test case I satisfies the

domain constraint of partition class 1, we assign test 1 to

partition class 1. Similarly, test cases 2, 3 and 4 are

assigned to partition classes 2, 5 and 4 respectively.

.o. .1
----- --------.... ",

Page 174 0

Test case (I, A(1), A(2), A(3), A(4), A(S))

Test case 1 O p 8, 0.8, 8.8, 0.8, 8.9, 8.0) -

Test case 2 = (1, 4.3, 8.8, 8.0, 0.8, 8.8)

Test case 3 = 2 o, -7.89, 2.8, .8, 8.0, 8.8)-

Test case 4 = C 3, 1.58, 6.32, -7.34, 8.9, 8.8)

Figure 6.4. Original test cases prepared for the program in
Figure 6.3.

6.4 Selection Of Oriqinal Test Cases For Execution

We only need to execute those original test cases which

exercise any modified program blocks of the modified module

because execution of the rest of the original test cases will

only follow the same sequence of the same statements as they

did before the module was modified and the same test execution -

results are generated. Fischer EFISC773 developed a method to

select the test cases whose executions exercise the

modification, but his method is only applica~le to those .

modifications which do not change the control structure of the

program. In this section, we will present a heuristic method,

which can be applied to any kind of modifications, including -

the case where the control structure of the module is changed.

Because it is an unsolvable problem to determine which sections

.- '-°..

."", ,• '.: - _,"." " ",L o,,.. " . .. - -
K_''' '.""' +'_ , ' . * . " "_ -" % ' "'','." "'% % '/ ".' '. ', ' " "•"" '. , . " .- . ."- " . ',

° Page 175

- of a module will be traversed for given test cases before their

execution, we can determine whether a given test case will

traverse any modified portion of the module only during or

after its execution. We will first discuss what information is

needed to select test cases, and then present the selection

algor ithm.

6.4.1 Necessaru Information For Test Selection

Let us define a path in a program graph as a sequence of

nodes and branches. A module path is a path which starts from

a node corresponding to the modUle entry and ends at a node '

". corresponding to a module exit. The reaching set of a node X

in the program graph is a set of all possible paths that start

from the entry node and end at the node X. The reaching set of _

a given node in the program graph is identified by using the

depth-first search algorithm. We store the reaching sit -

information in the program graph by markina every branch which ..

belongs to some path in the reaching sets of the modified

nodes. The reaching set information stored at each branch in

the program graph is used to select test cases.

We would use the symbolic execution tree [KING76] to keep

track of the test execution information. Each node in the

symbolic execution tree corresponds to an execution of a

statement. We modify the definition of the symbolic execution

S?.-0

. .- --

Page 176 0

tree so that each node in the tree corresponds to an execution -

of a Decision-to-Decision Path (DD-path) [HUAN75]. A DD-path

0
is a path in a flow-chart which satisfies the following

conditions: 1) its first edge starts either from an entry node

or a decision box; 2) its last edge terminates either at a -

decision box or an exit node; and 3) there are no decision

boxes on the path except at both ends. This modification

reduces the storage requirements without losing the necessary

test selection information. At each node of the modified

symbolic execution tree, the information called STATE is

stored. STATE is a triple {V, LC, PC}, Where V is a vector - -

containing all the values for the variables in the program, LC

points to the last statement of the DD-path, and PC stores the

constraint to execute the path so far traced.

As the execution proceeds, V, LC, and PC are updated in .

accordance with the result of the execution. PC is originally

assigned to a value of "TRUE" and is updated whenever the

execution has gone through a decision point and selected an

outcome of it. The new PC is computed by taking an

intersection of the old PC and the constraint needed to be

satisfied in order to take the selected outcome. Therefore, PC

stored at a given node in the symbolic execution tree contains

the path constraint for the path between the root node and this

node. Note that PC does not change during the execution of a

*°.

t* S

.. - .;7 - ° ,"7 . ;" ,. -]7-{] -77 -. -.

Page 177 .

DD-path. On the other hand, V may change during execution of a

DD-path. A value of a variable is changed when a statement 0

assigning some value to this variable is executed. During the .

execution of a DD-path, possibly existent assignment statements

in the DD-path may be executed, changing the values of

variables. V stored at a node of the symbolic execution tree

contains the values of variables after execution of the - -

sequence of statements corresponding to the path stating from

the root node and ending at this node. Note that the V stored

at each node as a part of the STATE information is the one

computed after the execution of the last statement of the

corresponding DD-path.

In addition, we need a table called test information

table. This table is needed to keep the test selection O

information, and it has three columns. The first column is

used to store a test case identification, the second column is

used to store a symbolic execution tree node identification to .-

show where the test case specified in the first column stopped

being executed, and the third column is used to store the

information of whether the test case specified in the first -

column was selected.

* -O0

* -S

Page 178 O

6.4.2 Overview Of Selective Test Execution

Our method is developed by utilizing the reaching set

information and the symbolic execution tree.

The selective execution using the reaching set of modified

nodes can be described as follows: any execution is continued

as long as it follows any path in the reaching sets of modified

nodes. This is because such a path eventually leads to the

execution to a modified node. The execution is terminated as

soon as it is found out that the execution does not follow any

A path in the reaching set of modified nodes. Since all the , -

branches belonging to the paths in the reaching sets of

modified nodes are marked, one can tell whether or not the

current execution still follows any path in the reaching set of

-. modified nodes by observing if the outcome selected by the

* execution at each decision point is marked. If the execution

so far followed a path in the reaching sets of the modified

nodes and a marked branch is selected, we know the execution is

still following a path in the reaching sets of the modified

nodes. On the other hand, if an unmarked branch is selected,

one can tell that the execution no longer follows a path which

' leads to the execution to a modified node. The execution is

continued for the former case while the execution is terminated

* for the latter case.

*"-• - -'

; . ., * .

+ + + . . - w r. r . .

L Page 179

The symbolic execution tree is used in order to process

more than one test case at one time. The symbolic execution

tree is constructed as the data-driven symbol ic execution

proceeds. Initially, all test cases are stored in

Current-Test-Cases (CTC) which holds test cases relevant to the

execution. When a decision point of the module is encountered,

we must choose an outcome of the predicate because not all the

test cases in CTC necessarily evaluate the predicate to the

same outcome, and not all outcomes lead to the execution of

modified nodes. Based on the selective execution previously

,*+- described, we have set the outcome selection criterion as

follows: When no modified node has been traversed by the

execution, select an outcome whose constraint can be satisfied

by at least one test case in CTC and whose corresponding branch

in the program graph is marked; once one modified node has

been traversed, select an outcome whose constraint can be

satisfied by at least one test case in CTC. -0

After the outcome is determined, the test cases in CTC

" which did not select this outcome are removed and stored in the

" current tree node. The execution is continued towards the

selected outcome of the predicate by adding a new tree node.

Note that at that time test cases in CTC are the ones which

choose the selected outcome. When the execution is terminated
-* 6

because it has reached an exit point of the module or because

* 0- * .. *:..< .•.

~ • .-.

Page 180

no outcome can be selected, the test selection result is stored

in the test information table, using "selected" status for the

former and "not selected" for the latter case. Then, the

symbolic execution tree is followed backward from the node

where the execution was stopped to the root node. When the

first tree node containing test cases is found, a new execution

*. is started by assigning the test cases stored in that node to

CTC and using the STATE information stored in that node. When

no such node is found, the algorithm terminates. Now, let us

present the algorithm to select the test cases.

* 6.4.3 Algorithm To Select Test Cases

SStep 1. Set CTC to the original test cases, from which the

test cases are selected. Set a counter for the number of

traversed modified program blocks, COUNT to O, the statement

pointer ST to the first executable statement, and the tree

pointer TN to the root of the symbolic execution tree.

Step 2. If a modif.ed block is traversed, increment COUNT by

one. If ST is an exit statement, store the test cases in CTC

in the test information table with the status "selected" and go

to Step 4. If ST is a decision statement, go to Step 3. . -

Otherwise, set ST to the next statement and repeat Step 2.

Step 3. Select an outcome of a decision statement based on the

* -,

0Page 181

outcome selection criterion by using tests in CTC. If no

outcome can be selected, all the test cases in CTC are stored

* .in the test information table with the status "not selected"

and go to Step 4. Otherwise, store the test cases in CTC which

*do not satisfy the constraint of the selected outcome in TN and
0

remove these test cases from CTC, Store COUNT in TN. Generate

a new tree node as a successor of TN and set TN to this node.

Set ST to the next statement and go to Step 2.

Step 4. Trace the tree from TN towards the root. Set TN to

- the first tree node encountered which holds test cases and go

- to Step 2. If no such nodes exist, terminate.

6.4.4 An Example

To illustrate the test selection algorithm, let us

consider the program shown in Figure 6.3 again. The program

graph for this program with the reaching set (program sections

4 and 12 are modified' - shown in Figure 6.5. The addition of

R:6 is done in program section 4, and the correction of "GO TO

50' to "GO TO 40" is done in program section 12. The original

test cases are shown in Figure 6.4. Figure 6.6 (a) and (b)

show the symbolic execution tree and the test information table

after the execution is over. The tree nodes are numbered as

they are generated and attached to the tree. Initially, CTC

contains four test cases 1, 2, 3 and 4, and th2 symbolic

* S.

, .--. . ., -. , o - .. - , .-. - - - _• .- *. , .t; .,: . . . i i - - . . - .. , _ . , - . ,- . . -

Page 182 .

"- execution tree consists of only the root node.

3 3 0
13

4

4 12

6

7 0

Figure 6.5. The program graph with the reaching set information " -
for the program shown in Figure 6.3.

An execution is started from the first executable

statement. When the first decision point, -F (I.LE.0), is

encountered, we try to select an outcome using the first part

of the outcome selection criterion because no modified node has | 4

been traversed ygt. Since the False outcome of this decision

I6

D-R43 763 METHODOLOGY OR SOFTWHRE MRINTENANCE(U)
NORTHWESTERN 3/4

UNIY EVANSTON IL S S YRU FEB 84 RRDC-TR-83-262

UNC LASSIIE F06280E D13 FG92

111.0 Vw _281.

-11M

MIROOP REOLTIN ES CAR

uui1I~ Rtk 3l 3bJN)A~

--A 'm-

Page 183

3 is

I >2 ACl) > 8

4 It

I <3 1> 3

5 7

CACI)+A(2))/l 0 1 4

6 a 1i

CA(1)+AC2)+A(3))/1 > 8

9

(a)

Test case Tree node selection status

3 6 Selected

49 Selected

2 1 Selected

I Hot selected

(b)

Figure 6.6. Result of test selection on the program Shown in
Figure 6.3 with test cases given in Figure 6.4: @
(a) symbolic execution tree, and (b) contents of
test information table.

Page 194 4

point corresponds to a marked branch from program section 2 to

program section 3 and this outcome can be selected by test S

cases 2P 3 and 4, the False outcome is chosen. First, test

case 1 is removed from CTC because it did not choose the

selected outcome and gets stored at the root node. A new tree

node is attached to the symbolic execution tree. In the same

way, at the next decision point, IF (I.LE.1), the Faise outcome

is selected while test case 2 is stored in the tree node 2. At

the next decision pointp DO 30 L:1,I, since the modified

program section 4 has been already traversed (COUNT 1)p the

second part of the outcome selection criterion is used. Since

both test cases 3 and 4 select the False outcome. no test case

is removed from CTC and the new node 4 is added to the symbolic

execution tree. Test cases 3 and 4 do not select the same

outcome at the next decision point, DO 39 L:1PI. The True

outcome is arbitrarily selected and a new node 5 is attached.

Test case 4P which selects the False outcome of this decision

point, is removed from CTC and stored at node 4. Hereafter,

CTC contains only test case 3. When the current execution

terminates at the RETURN statement, the tree is followed

'.. backward from node 6 to the root node. The tracing is

". terminated at node 4 because it is the first node containing a

test case, test case 4. A new execution can be started from

this node because the STATE information contains the execution

O. .0.

.......~~~~~............... ... ,.,.. -.. •.

4 Page 185

information for the sequence of statements corresponding to a

path consisting of tree nodes 1, 2, 3 and 4. Similarly, test -

cases 4 and 2 are executed. After the execution of test case -

2, the tree is followed back to the root node where test case I

is stored. However, no new execution is started from the root -

node. The True outcome selected by test case I corresponds to

a branch between program section 2 and program section 13.

This branch is not marked and no modified program section has

been traversed (count stored in the root node is zero) and -

therefore# no outcome is selected. Test case 1 is removed and -

its status "not selected" is entered in the test information .- *.

table.

6.5 Test Case Generation And Execution

In order to satisfy the criterion of the input partition

method, which requires at least one test case for each

partition class# it may be necessary to generate additional

test cases. After the assignment of the original test cases is

completed* we generate test cases for partition classes which

do not have any test cases. Note that when none of the - 1

original test cases are reused, we must generate a completely

new set of test cases requiring the same amount of effort to

test the modified module as a new module. In the example

considered in Section 6.3, the partition class 3 is not - -

...e

U. . -

" p

Page 186

assigned any test case. A test case (1, -2.34, 0, O, 8, 0) is

generated and executed to satisfy the testing criterion. The

method we have developed has another mode of execution. Under .

this mode, all the test cases are executed to the end. The

algorithm used for this mode can be derived by making a minor

modification to the test case selection algorithm. ,

Algorithm to execute test cases: We made a modification to

Step 1 of the Test Selection algorithm. Instead of setting

COUNT to 0 initially# it is set to 1. This algorithm executes

all the test cases. Since COUNT is always greater than zero,

the outcome selection criterion is to select an outcome to

which at least one test case in CTC evaluates the encountered

predicate. This guarantees that all the test cases are

considered and none of them are removed before they reach the

exit of the module.

6.6 Output Validation Phase

Our method performs data-driven symbolic execution on the

target module and produces symbolic and real outputs, and the C-'

domain information. According to Howden EHOWD783 the symbolic

outputs are effective to detect computational errors. However,

symbolic execution alone is not effective to detect domain

errors. We can store the domain information for each partition ,e

class in a decision table and this information can be used to

-IA6 ~ -1 A- v- '

. , .

. .. -. . .. -. -

Page 187

validate the domain information obtained by executing a

program. In addition to the domain information, we can add the

output information for each partition class in the decision

table. The decision table for the example program discussed in

Section 6.1 is given in Figure 6.7. Each column oF the table

corresponds to a partition class# and the upper half of theI
table is used for storing the domain information and the lower

half of the table is used for storing the expected output _ :

information.

6.7 Debuoaing - J
The method we have devel-'red has a debugging capability

called tejj execution informalion disolau. The basic idea of -21

this cap bility comes from EXDAMS EBALZ693 and ISMS CFAIR75].

Since the necessary test execution information is stored in the

symbolic execution tree in the data base# we do not have to -T i
execute the program again in order to debug the program. The

maintenance programmer can follow a module path forward or

backward easily# and retrieve information such as path .
constraints and the value of each variable in symbolic and real

*.. forms from the different locations of the symbolic execution - - -

°" tree.

• ..

.°o 'Oo~.9 •-"

Page 168

Partition classes of P

1 2 3 4 5

*19Y N N N N

-I IN Y Y N Y Domain information

2<1<5 N N N Y Y

*A~i) > X Y N N Y

IERR: I v

*R R A(I) v ~-

*R -AC(1) v Expected outputs

informat ion

R)-A~i) v

Figure 6.7. The decision table containing the partition classesr derived from specification in Figure 6.2 and the
program in Figure 6.3.

Note that the sutmbotic debuoaer and the symbolic executor

p I.are not the same. Our method has four different kinds of

commands which the maintenance programmer can use. The first

kind of commandp called test saecificationp is used to specify-

a test case. The second kind of command# called move cmad

enables the user to move the pointer within the symbolic

execution tree so that the user can retrieve the STATE

.' .- ' "''" .-. .: ?,.::: l':':: • _ .. ', . , _ .. ."%-. ,.' . .. 1.. l. - .- * .- - . -,. . ..- ..-.-.-.. . -. .: -

Page 189

information from different tree nodes. The third kind of

commands called show command# shows the necessary test -

execution information that the maintenance programmer requests

at different locations of the executed path. The last kind of

command, called break point command, can set the break points

and stop the tracing at the break points. Since the test

execution information is already stored in the data base,

additional commands which allow the user to retrieve different

debugging information can be easily added without making any

modification to the program portions for test execution of the

method.

6.8 Discussion And Future Work

Our method employs the input partition method for test

generation and data-driven symbolic execution for test

execution. The method has been demonstrated by implementing

parts of it: 1) selective execution of the original tests, 2)

test execution, and 3) debugging. These parts have been

implemented in VAX-FORTRAN, using a DEC VAX 11/780 computer

under the VAX/VMS operating system, and can be used to analyze

programs written in ANSI FORTRAN.

**
- -- . *j-%. -7. .I

-* * . . * .. .•- .
- - ***..* ~ ~ ~ ~ ~ ~ ~

. ° . .

,,Page 190

The revalidation of the program after it is modified is

very important in the maintenance phase. Presently, no

systematic approach exists for revalidating the modified

program in the maintenance phase. Our module revalidation

technique is developed to assist the maintenance programmer to

* perform module revalidation for modified modules. We have also

developed a set of supporting tools which help the maintenance

- programmer to apply our revalidation technique. Our module

revalidation technique uses the input partition method for test

case generation and data-driven symbolic execution for test

execution. We only considered programs which can be specified

using a cause/effect graph. For this kind of program, it is

much easier to derive the input partition from both the program

specification and code. The logic of this kind of program is

usually straightforward and has no complex loop structures.

The cause/effect graph manner of specification was actually

used to specify complex real time software systems.

The application of the input partition method tends to -.-.-

produce too many test cases. The number of partition classes

should be used as a testability measure, and modularization of

the program should be done by taking this factor into

consideration in the design stage of the development phase. .-

Although the input partition method requires much effort and

.5 time for nontrivial modules# it identifies all the functions of

* "V!

*.o *. - .* "

-S. ~.
..- * .. ,*,..

Page 191 @1
the module, and in the process of forming the partition, it

also detects missing path errors [GOOD75]. Furthermore, it can

also detect domain errors. The tool we have developed can

select and execute the necessary subset of the original test

cases and it can also execute all the generated test cases.

The results of the test selection and test execution using.

data-driven symbolic execution include outputs in symbolic and

real forms. The domain information obtained by executing a

program can be compared with the correct outputs and the domain

information stored in the decision table. This increases the

chance of detecting both computational and domain errors. The

real value output may detect overflow and truncation errors -

which cannot be detected by conventional symbolic execution. --

We used data-driven symbolic execution to solve most of the ,

problems encountered in symbolic execution. When the existence

of errors is detected, our tool can be used as a debugger, and

provide useful and helpful test execution information for the

maintenance programmer. Since module testing is just a part of

the overall program revalidation strategy# we plan to develop

methods for integration testing and system function testing.

o* 9

- ..---.. '..- -

,.- -... .,-......... ,.. ... ,...-. -... ., "

Page 192

7.0 METRICS RELATED TO SOFTWARE MAINTENANCE

Since the major concern of our research work is with

software maintenance problems, we have focused our attention on o1

moadifiabilitu related metrics. We have identified several

critical attributes that affect modifiability# namely# logical

stability, performance stability as well as module strength and

coupling. These are all important factors in evaluating the

modifiability of a program. Individual measures for each

attribute have been developed. There will be a brief

* -description of each of these measures in the following

sections. Detailed results have appeared in CYAU78, Ba, 8B 0e

82c], EEJZA82. A limited validation experiment for our logical

stability measure has also been conducted. The results will

*°. also be presented in the following sections. The integration

of these attributes into a modifiability metric requires more

study.

' , .

Due to the experience gained from the implementation of

our logical stability measure, we feel that we need a more

efficient way of analyzing logical ripple effects for large

scale programs with less requirement on accuracy. In this

section, we will also present some preliminary results on these

problems.

'V . ' - ', ---- *

: ,,,. + , .
A " : 2 ' . ' ' . ' . . ' ' 2 ' ' + ' ' ' ' .; ? "" • + - " " " '+ + .- ... i

* Page 193

7.1 Logical Stabi-litu Measure

0
The stabilitu EYAU60e3 of a program is the resistance to

the potential ripple effect that the program would have when it

is modified. The stabilitu of a module is the resistance to

potential ripple effect of a modification of the module on

* other modules in the program. Since ripple effect is one of the

major reasons for introducing errors in the software

* maintenance processp the stability of a program or modti is

closely related to its modifiability.

0
7.1.1 Logical stabilitu measure for modules

A measure for the logical stabilitu of a module ko denoted

by LSk is defined CYAU8Oe3 as follows:

LS I/LREK
kk

where LRE the logical ripple effect measure of a primitive
k

type of modification to a module ko where a

primitive type of modification is considered as a

modification of a variable definition of module

k.

I CP~ki) LCM 3
ki

0 te etofal vribl dfiiton i mdue v
kk

P~ki) the probability that a particular variable

definition of module k will be selected for

Page 194 .0

mod if icat ion,

LCMki itm,_ logical complexity of each modification to

variable definition i in module k

;I C
Ct

tewk

C t z the complexity measure of module t

W the modules involved in the intermodule change
ki

propagation as a consequence of modifying

variable definition i of module k

U X
JEZki

Zk. = the set of interface variables which are affected 0

by logical ripple effect as a consequence of

modification to variable I in module k

X = the set of modules involved in intermodule change .

propagation as a consequence of affecting

interface variable j of module k.

Logical stability measure may be normalized to have a

range of 0 to 1 With 1 as the optimal logical stability. This

normalized logical stability can be utilized qualitatively or

it can be correlated with collected data to provide a

quantitative measure of st a bility. The normalized logical

stability measure for module k, denoted by LS*, is defined as

foll 1ows:

- --.

-. a--- a. t. -

Page 195

LS: 1 LRE*kk

where LRE the normalized logical ripple effect measure fork

module k

LRE k /C

C the total complexity of the program Which is equal
p

to the sum of all the module complexities in the

programs.

LRE =the modified logical ripple effect measure fork

module k

=C + I CPCki) LCM 3
k Iki

k the Complexity Of Module k.

7.1.2 Logical stabilitu measure for oroorams

A measure for the logical stabilitu of a program* denoted

by LSPD, is defined CYAUBSe3 as follows:

LSP 1/LREP

where LREP the measure for the potential logical ripple

effect of a primitive modification to a program

* ~page 1.96

n
I 1P(k) LRE 3

k~1 k

*.P(k) =the probability that a Modification to modu le k

may occur

LRE the logical ripple effect measure ofaprmtv

type of modification to a module kc

n the number Of Modules in the program.

The normalized logical stability measure for a programs

denoted by LSP*D is defined as follows:

LSP 1 LREP

where LREP the normalized logical ripple effect measure for

the program

n
I EPCIC) LRE k 3 77.
k=1

PC~c) the probability that a modification to module kc

may occur

LRE: the normalized logical ripple effect measure

for module kc.

* 7.2 Performance Stabilitu Measure

0. The Derformange stabilituL of a Module Ic, denoted by PS k

is defined as follows:

0e Page 197

PS 1/PREM
k k

where PREM iS the performance ripple effect measure of a
k

S.. primitive type of modification to a module k and defined as

PREM I CPCki) PREB 3k i" ki
iek

PCki) is the probability that variable definition I of module k

will be modified, Vk is the the set of all variable definitions

in module k, and PREB is the performance ripple effect of
ki

modifying a block I in module k, which Is defined as

PREB = The number of performance requirements affected
ki

by modifying variable i of module k.

The performance stabilitu of a program# denoted by PSP, is

defined as follows:

PSP 1/PREP

where PREP is the performance ripple effect measure of a

primitive type of modification to the program and is defined as '
-

-O n
PREP = C [PCk) PREM j,

k: "k

PCk) is the probability that module k will be modified, and n

. .-o .-.

... .,-..-'.

Page Ise 4

is the number of modules in the program.

7.3 Design Stabilitu4 Measure

It mould be more valuable if we can apply the stability J

measure at early stages of program development. Therefore# we

*have developed a stability measure that may be applied during 'A
the design phase. The design stability of a program, denoted

by PDSP is defined CYAUBZC3 as follows:

PDS =I/(I DLRE x)p
x

and the design stability for each module x .-

DS l/DLRE
x x

if DLRE, Y0,O or

DS :
x

if DLRE Op0 wherex

DLRE the design logical ripple effect measure for
x

module x

=TG + I TP + I TP'V JE xx
I.~ x

- -. - N NL

page 1-99

TO =the total number of assumptions Made by otherx

Modules about the global data items in ODx
TP the total number of assumptions made by y aboutxu

the parameters in R .
Sxu

TP' the total number of assumptions made byj y aboutXu Uthe parameters in RI N

OD the set of global data defined in module x.x

R the set of passed parameters returned fromxv

module x to Module u' Where y4J
x

R' the set of parameters passed from module x toxy

Module UD Where yc'3
x

3 the set Of Modules which invoke module x.x

3', the set of modules invoked by module x.

-xx

.44

-% - rj r.. . - * - . * * - . .V - - .-

Page 209 .1
7.4. M*odule Strength and Coupling Metrics

We have developed the definitions of metrics for module 0

-": strength and coupling at the code level, which are presented in

detail in [EJZA823. These metric definitions are

approximations of the heuristic definitions of module strength ,

and coupling as found in the literature on Structured Design

CMYER78], and are based on a new technique for estimating the

probabilities of data object interactions. These metrics are

designed to help estimate those qualities of software structure

which affect the amount of effort required during the program

maintenance activities of functional extension and large-scale

modification.

Module strength and coupling appear to be significant

attributes affecting the modifiability and reusability of

. computer programs and should be important elements of future

- metrics for modifiability and reusability. Metrics for these

important structural attributes should also improve the

visibility of software structure and provide an objective means

for program managers to evaluate individual pieces of software

or to choose between alternate solutions to the same problem.

- fA software tool for computation of the module strength and

0; coupling metrics has been designed for the PASCAL language on

our DEC VAX11/780 computer. Implementation of this tool is

V,".

-.. S..

-0: S-.

..o7-

Page 201

nearly complete. Even though the tool is designed for the

PASCAL language, our technique is applicable to any
I

block-structured programming language. Validation and

refinement of the module strength and coupling metrics should

be performed by correlating them to their structured design .

heuristics in experiments.

In the following sections we will briefly describe our

metrics for strength and coupling. The metric algorithms are

based on a simple program graph model and estimates of the

probabilities of data object interactions. This model

characterizes those program attributes most relevant to the

metrics.

7.4.1 Estimatinq Data Object Interaction .

Estimates of the probabilities of data object interactions

are based on a structural distance functions which assigns an

integer value (greater than zero) to each pair of points in

program source text (for one procedure or function) where

definitions or references to data objects may occur. This

function is a count of the number of syntactic levels -

(associated with statements) in the shortest (syntactic) path

from one point to the other. If there is a data flow path from -

one definition or reference to another, the probability of S

interaction is assumed to vary inversely with structural

'U'

. . .

' " " -+ " " +' " - . . .+. . . . +, 5 ",". ..-. .•'+".". ,, +- , • . ..4' ," .- . . , p , , " + + ,. ,

K,- W. T F -

Page 202

distance. Actual probabilities associated with an average

execution path through a program are inaccessible to a static

analysis tool. -.

The structural distance function is used to estimate the

probabilities of interaction between any two data object

definitions inside a procedure or function in the following

* four steps:

1) A graph model is created for a procedure or function

which consists of edges: a) from nodes where data objects are

defined to nodes where they may be referenced, and b) from

nodes where data objects are referenced to nodes where data

object definitions may be affected. A distance value is

assigned to each edge in the graph# which corresponds to an

inverse probability of interaction. The distance values are

based on the structural distance function described above.

2) The graph model of Step 1 is simplified to indicate

only direct distance values between data object definitions.

Data object definition nodes correspond to the most important

events in an execution path of a program. Each edge in this

simplified graph corresponds to a pair of consecutive edges

between two data object definition nodes via a reference node.

The distance value assigned to each new edge is the sum of the

distances associated with the two edges from the original

-4p

-. ---.. -O

O Page 283

graph.

3) The transitive closure (or shortest-path) of the matrix

of distance values associated with the graph from Step 2 gives

the Data Definition Distance Matrix (DDDM) for a procedure.
The closure process finds all direct or indirect interactions

- between data object definition nodes.

4) The DDDM (from Step 3) for a procedure is simplified so

that it may be included in the computation of the DDDMs for

* •its calling procedures. Simplification is done by removing all

nodes associated with local variables, and by summarizing all

data interactions for each parameter and global which is

- . referenced or defined in the procedure with a single input

reference and a single output definition. Steps 1-4 are

repeated until the DDDM's are constructed for all procedures.

Note that the above steps must be applied to procedures

and functions in a specific order so that information is

available for a procedure when it is referenced in one of its .

" calling procedures. Any forward referenced procedures in the

source text require special iterative processing.

0e. :

• -- -"

0 ,Page 204

7.4.2 Definition of Intra-Module Strength Metric

We consider a module here as any invocable procedure or

function, and define its strength in the context of Structured

Designs as the level of interdependence between its

subcomponents. We use this definition to construct a strength

metric for a procedure or function from its DDDM.
. -. %

Each element of a DDDM is interpreted as an inverse

probability of one data definition node affecting another.

Since we consider the data definition nodes to be the most

significant nodes in the procedure (in our view of a procedure

as a means to alter program data), these nodes are associated

with the 'module subcomponents' of the strength definition.

The 'level of interdependence' between subcomponents is

interpreted as the average probability of interaction between

distinct pairs of nodes.

Our strength metric for a procedure A is denoted by SMA>,"

and is defined as the average over the reciprocals of the

elements in the upper triangle minus the main diagonal of the

matrix which is the minimum of the DDDM{A} and its transpose.

Two simple examples illustrate the range of values

attainable using SM on procedures of clearly different

. strength: 1) SM 1 for a procedure which initializes the S

value of its single output parameter, and 2) SM 0.2 for a

I..
e. '

- "+--i~~.- i,.

- . 7.." -. .

Page 205 0p.

procedure which independently initializes 3 output parameters.

7.4.3 Definition ofl Inter-Module Couplino Metric

Coupling between two modules in a software system is

defined, in the context of Structured Design# as the level of '

direct data object interaction between two modules. We use

this definition, along with discussions in the literature about

the way in which different situations affect the perception of S

data coupling* to construct a coupling metric for any two

modules in a software system.

There is some form of data object interaction between

virtually every pair of modules in a system. We examine only

direct coupling between procedures and functions, since the

lowest level of coupling is described as having no direct

coupling. Direct coupling only occurs between a procedure and

its immediate subordinates (those procedures which it may call

directly), and between any other procedures which share global .. *-.

data. When the DDDM for a procedure A is computed# all

parameter coupling information to its subordinates is

available, as well as all global coupling information

associated with the global data declared within procedure A.

N 0

* SI

.. .,. ,

S.e

" -~.. -...- :. *- --. .- ..". - "*. -.. .' . ".

Page 206

An Inter-Module Data Object Coupling (IMDOC) value, which

m is associated with each 'edge' of direct data flow between two

procedures A and B will be defined later. One of two different

mechanisms, parameter coupling or global coupling# may support

each 'edge' of data flow:

' Coupling (C) between procedures A and B is defined as

follows:

C(A,B) Sum of IMDOC(e) over each edge (e) of direct data flow

between A and B.

The IMDOC value associated with each edge (e) of direct

data flow between any two procedures or functions is defined as
S

follows:

DOC(e) PR(e) DR(e)
IMDOC(e) = ,

DDDM(e) AIP(e)

where DOC Data Object Complexity, such as an array is more

complex than a simple integer.

PR Parameter Rating, such as a global variable has a

higher value than a parameter. 0

.-

* -..

... o ..- o**. .- ..
•.• . . .'++' " .% .° •+. 0 -f * -" r..' " "o . . . • . " -

r.1 T -- 9-1

".,Page 207

DR Data Rating, such as Chapin-type rating for

'through'# 'data' or 'control' objects ECHAP79]. W

AIP Average Interaction Probability to other elements

involved in the coupling.

Now, let us discuss the last four functions DOC, PR, DR

and AIP: An increase in data object complexity (DOC) increases

the coupling associated with an 'edge' of direct data flow

between procedures. This feature is incorporated in the

coupling measure in order to take into account of the effects

of stamp coupling and in recognition of the fact that a more

complex data object has the potential to pass more

'information'. The DOC function is defined recursively

according to the structure of the data object. "

There is significant experimental evidence to show that

direct global coupling renders programs more difficult to

modify than direct parameter coupling [DUNS80]. The parameter

- . rating (PR) function has value 2 for global edges and value 1

for parameter edges.

'Control' objects are understood to contribute more

inter-procedural coupling than 'data' objects. 'Through'

. objects, which are not directly defined or referenced by one Ot

(or both) of the procedures involved, but passed through for

- ..- .- - .- ,
.."~. . .

.. 2 !~. .

* Page 208 .

* use elsewhere, contribute less coupling than 'data' objects.

- Chapin ECHAP79] defined and discussed 'control', 'data' and

'through' objects and suggested heuristics for identifying each

- type. An automatable means of roughly identifying objects in

this fashion has been defined, and a data rating (DR) value

assigned to each type in order to take into account differences

in their contribution to coupling. The data rating function

has value 2 for 'control' objects, 1/2 for 'through' objects

and I for 'data' objects.

The grouping of data objects implied by the DDDM probably

affects coupling between procedures. If data objects interact

closely, they are probably related in function, and contribute

less to coupling when they are involved together in direct data

flow between procedures, as in the concept of data abstraction. V

This relationship is made explicit in our measure of coupling

with the average interaction probability (AIP) function. AIP

-- is the average of the reciprocals of the distances (interpreted

*i as interaction probabilities) between the source node (v) of

* the 'edge' under consideration and all other source nodes of

edges 1) which contribute to data flow between the same two

procedures, 2) which are all either parameters or globals

according to v, and 3) whose source nodes are located in the

same procedure as v.

i +.

o .- 7. .- -- -...o

Page 203 9

7.5 Validation of the logical stabilitu measure

Due to budget constraints, we have performed only a

limited number of experiments for validating the logical

stability measure at the procedure level. The goal of this

validation is to show that there is indeed a certain

correlation between the proposed normalized logical stability

measure computed for each procedure and the reciprocal of the

average number of code changes needed to keep the program

consistent and correct caused by a primitive change in that

procedure. Therefore, an experiment was devised to quantify the

average number of code changes needed for handling the ripple

effect caused by actual modifications for procedures in a

program. Then, the results were compared with the measures

applied to the program.

7.5.1 Experimental Procedures

We will now describe in detail the experiments used to

conduct the validation, how programs were selected, how .

modification proposals were generated for these programs, how

the modifications were quantified, how the logical ripple

effect of each modification was measured, and the statistical 0

analysis used to determine the correlation figures.

*"-6

,.~ -: - V ,.L,-

Page 210

7.5.1.1 Program Selection.

6'
A set of programs was prepared for the experiments. These

programs were restricted to PASCAL programs because the data

flow analysis tools we have developed is for PASCAL programs,

although the techniques are applicable to other programming

".. languages. We also limited the use of pointer typed data in the ..-1

,- programs because, using existing data flow analysis tools, it

would produce imprecise data flow information which will affect

the measures generated by the experiments. The length of each

of these programs was around 1209 lines of code and each

program contained more than 20 procedures. More detailed

information about the programs actually selected will bc given

in Section 7.5.2.

7.5.1.2 Modification Proposal Generation

Specifications for each procedure were generated from the

program code and considered for possible modification. Many

realistic and feasible modification proposals to these

specifications were generated and evaluated for each procedure.

In this process, we chose those specifications which were

'local' to a particular procedure as the modification target.

Since it was not always possible for all procedures to have

meaningful local specifications to be modified, only those

..

Page 211

procedures which can satisfy this requirement were selected so

that all (or most) of the primary modifications would be within

" - that procedure.

7.5.1.3 Quantification of the Realized Modifications

When the modification proposals were carried out at the

code level, three persons were involved in this process. The

first person was the author of the target program. All the

modifications were performed by the second person, and then

were checked for correctness and optimality by the author of

the program and the third person. We need to restrict the

length of the programs used in the experiments because we want

to be sure that every modification could be correctly handled

by one person. The number of Code changes needed for each

modification was quantified as the minimum number of 'tokens'

that had to be deleted from or added to the original program in -

order to implement a particular modification proposal.

7.5.1.4 Actual Ripple Effect Estimation and Normalization

(1) Distinction between primary modifications and the

modifications caused by the ripple effect All modifications

made to the procedure, where the specifications to be modified -

-I .
* -.

* • • - o . .o.y r • -r . -,- , . . .

Page 212 L *

were generated, were viewed as primary modifications. All other

necessary modifications outside the procedure were considered

as a result of logical ripple effect.

(2) Normalization For the i-th modification proposal in

procedure M, the above two types of actual resulting

modifications were both quantified according to the token-count

method. Let the minimum number of tokens involved in the

primary modification be P., and the minimum number of tokens

IIinvolved in modification corresponding to the other type be R.

Then we use N (R +P)zP as the average number of token

changes caused by one primitive change (to a token) in the code

level of the i-th modification proposal. Suppose we have n

modification proposals in procedure M. Since they may vary

greatly in the difficulty or efforts involved in making the

change, we use their average to estimate the stability of the -

module. Therefore, the estimated normalized stability measure - -

LS M for procedure M is calculated by

n
LS M = I /C(I N*) n3

i=1 '

This value has a range from 0 to I# With I as the optimal

stability which is exactly the same as the proposed stability

measure. This result will then be used to correlate with the "

normalized stability measure calculated from the original

program code.

,° S .

4. . 5..

i i-iii-7 7-.

Page 213

7.5.1.5 Statistical Methods Used in Analusis of the Results

We used Pearson product-moment correlation (r) to analyze

our experimental results CBRUN68]. The basic computation

formula for the product-moment correlation is

.00

r = CNCIXY)-dlX)(IY3/(CCNIX)-ZX) NCY 2 -INy) 2]) 3)-

where N = the number of scores for the pairs (x,y)

ZXY t the sum of the products of the paired scores

The Pearson product-moment correlation has been widely

used to determine if there is a relationship between two sets

of paired numbers. The significance of the resulting

correlation may be further tested. Two different procedures

""'. have been used to test the hypothesis that r=U [BRUN68]. If the

- . sample size N is 393 or larger# a critical-ratio z-test can

easily be done. In this case, z rCN-1) is calculated as an

index to find the significance of the correlation. If the

sample size N is less than 30, a slightly more complicated

t-test should be done. In this case, the degree of freedom df,

and the index t r[(N-2)/(I-r)3 are calculated to

.. determine the significance of the correlation.

.-0 .-.

0..

.-

*

... . . ,' S . . r' *..-*.- . * . . . -..-- i

0O" Page 214

7.5.2 Analusis of the Results

Six programs have been examined in the experimental

process of the logical stability measure validation. The

average length of the programs used is around 1218 lines of

" . PASCAL code. Each program has between 20 and 47 procedures. The

* . logical stability measure for each procedure in these programs

*. is listed in Table 7.1.

Thirty modification proposals have been generated and

applied to Z8 procedures. The procedures marked with *" in

Table 7.1 are those which were selected for experimentation.

Table 7.2 Shows the correlation of logical stability measure

versus the experimental result for each modification proposal

on those 28 procedures. In order to show that our sampling was

representative, the means and standard deviations of the

logical stability measures for modules selected in each program

have been calculated. As shown in Table 7.2, they are quite

close to the means and standard deviations calculated from the

logical stability measures of all the modules in individual

programs.

The individual correlation and the probability that the

hypothesisof the actual correlation being zero is true are both S

significant and are listed in Table 7.2. The overall

correlation coefficient calculated From all the results

S.•° o-•.

. . . . ° . -

Page z15

(estimated logical stability measure based on our experiment)

Shown in Table 7.3 against our computed logical stability 0

measure is 0.6338. The probability of the actual correlation

being zero is less than 0.1%. These facts indicate that there

is indeed a correlation between our computed logical stability

measure and the experimental results.

7.5.3 Discussion

The main purpose of this experiment is to show that there

is a significant correlation between the proposed normalized

stability measure computed for each procedure and the

reciprocal of the average number of Code changes needed to keep

the program consistent and correct after a primitive change has

been made to that procedure.

Although the result is positive* refinement of the

experimental process should be implemented provided that a

better environment and better tools exist.

1) The number of code changes is currently calculated by the

changes of 'tokens'. When a statement includes a procedure

* or function call, it Should have a suitable weight to

reflect the Code changes implied by the call.

Ir

* "... .

~~~~~~~............ _............., ....... - t , - - , ,



v r 1. 1
Page 216

Table 7.1 Logical stability measures for each module of the
target programs used in the experiment.

Program 1:
(A pretty printer for PASCAL program stored in parse-tree
form :1735 lines)

Modulname Complexity L.R.E. Factor Logical stability measure

I PROGRAM 13 31.94783 0.6091493368
**2 GETCHAR 8 97.14286 0.0857142806

3 STORENEXTC 2 94.23077 0.1632107496
4 SKIPSPACES 4 93.26087 0.1542533040

**5 GETCOMMENT 3 68.19512 0.4504771829
**6 IDTYPE a 65.00000 0.3652173877

7 GETIDENTIF 7 67.69566 0.350472565
*8 GETNUMBER 2 56.26316 0.4933638573
9 GETCHARLIT 4 52.05263 0.5125858188

10 CHARTYPE 7 82.80000 0.226069741
11 GETSPECIAL 2 58.65116 0.4725986123
12 GETNEXTSYM 7 52.20000 0.4852173924
13 GETSYMBOL 2 59.37679 0.4662714005 c
14 INITIALIZE 1 98. 12090 0.2076521516
15 STACKEMPTY 2 75.00000 0.3304347992
16 STACKFULL 2 7.09000 0.9217391610
17 POPSTACK 2 72.17647 0.3549872637
19 PUSHSTACK 1 73.00000 0.3565217257
19 WRITECRS 3 38.12388 0.6423913240
20 INSERTCR 2 71.00000 0.3652173877

*21 INSERTDLAN 5 37.09051 0.6339921355
22 LSHIFTON 5 52.38769 0.5016722679
23 LSHIFT 2 60.85714 0.4534161687
24 INSERTSPAC 3 65.92857 0.4006211162
25 MOVELINEPO 2 24.50000 0.7695652246

*26 PRINTSYMDO 2 43.53846 0.6048133834
27 PPSYMBOL 5 62.72549 0.4110826850
28 RSHIFTTOCL 2 42.60000 0.6121739149
25 GOBBLE a 45.94118 0.5831202269
38 RSHIFT 5 57.12000 0.4598261118

*Summary 115 6.94572 0.4461014609



0 Page 217

* (Table 7.1 -Continued)

Program 2
(A pretty printer for PASCAL program stored in parse-tree
form :1115 lines)

Module name Complexity L.R.E. Factor Logical stability measure

1 PROGRAM 3 56.98909 0.5355884433 '
*2 PFIOLD a 8.08809 1.8808888
*3 PFIREAD a 0.00900 1.0080000
*4 PFICLOSE a 0.08000 1.8880008

5 MOVE 0 0.80000 1.0000000000
*6 ADDTOKEN 2 0.00080 0.9844961166

SYPARS 4 1847.88897808723
*8 CNSTPT 3 9.81818 8.9886342292

*9 CNSLST 7 5.35897 0.9041939974
10 VARTYP 2 7.80080 0.9248310192
11 VARLST 5 10. 18868 0.8822582960

*12 TYPTYP 8 4.55844 0.9826477337
13 VARDPT 1 18.71429 0.9891916084

*.14 TYPEPT 1 18.62500 8.9089837376
15 TYPLST 2 12.27273 8.8893586993
16 DKPARS 1 35.71429 0.7153931260
17 EXPRESSION 21 9.59140 0.7786893192
18 EXPLIST 3 44.68758 8.9303294897
19 VARUSAGE 6 27.35294 0.7414500713
28 ACTUALPARM 4 28.17241 0.7506014705
21 FUNCTIONCA 2 17.30769 0.8503279686
22 CONSTUSAGE 9 0.61818 8.9254404306
23 DEDLST 1 8.08800 0.9922480583
24 STMTLST 10 20.82051 8.7618812783
25 STMPARS 3 49.11111 0.5968379243
26 ASLST 1 41.77778 0.6683893204
27 PSLST z 19.07692 0.8443649411
28 IFLST 2 47.14286 0.6190476418
29 COLST 5 44.23404 0.6183407903
30 MNLST 1 52.88899 8.5822566748
31 RPLST 1 33.57143 0.7328044041
32 FTLST 2 41.68421 0.6613627876
33 VLST 4 5.0882 8.9297765493
34 PARLST 6 1.47926 0.9428289993

*35 DCKLST 7 19.76923 0.7924866080

*Summary 129 20.65210 089215332031



Page 218 At

(Table 7.1 - Continued) j
Program 3
(A theorem-prover 1180 lines)

Module name Complexity L.R.E. Factor Logical stability measure

1 PROGRAM 4 1.60800 0.9633986950 .
2 INITIALIZE 1 0.00000 0.9934640527 '
3 WRITEARGUM 5 0.00060 0.9673202634
4 WRITELITER 2 3.66667 0.9629629850
5 WRITECLAUS 1 1.90909 0.9809863567 -"-

6 JOINNODE 3 136.00000 0.0915032625
7 JOINLITERA 3 136.00000 0.0915032625 - -

8 JOINCLAUSE 3 147.00000 0.0196078420
9 READINCLAU 3 111.27273 0.2531194091
10 READINARG 5 80.16129 0.4433902502
11 READINLITE 2 87.18182 0.4171122909
12 READINSET 4 108.62921 0.2638613582
13 COPYARGUME 3 121.42857 0.1867413521
14 COPYLITERA 2 118.73333 0.2108932734
15 COPYCLAUSE 2 122.92308 0.1835092902
16 COMPAREARG 7 128.11765 0.1168781519
17 COMPARELIT 2 126.85185 0.1578310132

18 COMPARECLA 4 102.85714 0.3015873432
19 REFUTATION 5 113.33334 0.2265794873
20 DELETELITE 6 128.41379 0.1214784960
21 CHECKDUPLI 7 118.80000 0.1777777672
22 RESOLVE 3 103.78947 0.3020295501
23 INITIALIZE 2 139.00000 0.0784313679
24 SEPARATEVA 3 136.00000 0.0915032625
25 RESTOREVAR 3 136.00000 0.0915032625
26 ULTVAL 4 135.00000 0.0915032625
27 COLLECT 6 120.08334 0.1628539562
26 COLLECTF 9 100.26144 0.2658729362
29 STARTCOLLE 2 97.85714 0.3473389745
30 MATCH 10 122.49580 0. 1340143681
31 UNIFYKEYLI 5 117.92000 0.1966013312

32 APPLYSUBST 6 122.14865 0.1493552327
33 FORMRESOLV 5 109.29358 0.2529831529
34 FINDRESOLV 5 93.80000 0.3542483449
35 SCANRESOLU 6 64.76336 0.5244225264
36 GENERATE 4 26.43478 0.8010798693

s Summary 153 6.37374 0.3332012892 -

to.

L .

7. °6

. °. . .* °

• . . , . ..* " -" -. . . . . . .



0:.. Page 219

(Table 7.1 - Continued)

Program 4:
(A time sharing operating system simulator 1744 lines)

Module name Complexity L.R.E. Factor Logical stability measure

I PROGRAM 8 115.75808 0.5564516187
2 MTHRANDOM a 0.8008 1.0000000000
3 CURSOR 1 0.80000 8.9964157939
4 JANRESET 6 204.83847 0.2471739650

-- s 5 REFRESH 26 8.31923 0.9056658149
s6 DISPLAY 4 8.54412 8.9837128528
7 FINDLOC 3 230.00000 0.1648745537
8 ERRORCARD 3 55.60000 0.7899641991
9 BINARY 14 217.01587 0.1719861031 O

10 FINDDATA 5 264.88080 8.8358422995
11 CHECK 4 264.88888 8.0394265056
12 JOBR 11 218.52554 0.1773278117
13 BATCHR 8 147.95062 0.4410371780
14 READCARD 6 245.11111 0.0999601483

5 15 CHECKMAIN 3 138.18182 0.4939719439 0
16 GENMEM 4 229.08080 8 1648745537
17 GETSID 2 231.00000 0.1648745537
18 GETRID 2 231.00000 8.1648745537
19 GETTIME 1 232.00000 0.1648745537
20 ADDSECOND 1 212.89999 8.2333333492
21 REMOVESECO 1 200.16667 8.2789725065 - .
22 ALLOCATECP 3 196.81250 0.2838261724
23 RELEASECPU 1 164.88a08 0.4086021781

* 24 ADDRJQ 1 215.05263 0.2256178260
25 ALLOCATEMA 2 198.54839 0.2811886072
26 REMOVERJQ 1 197.27272 0.2893450856 .'-.
27 RELEASEMAI 2 202.89473 0.2656102777
28 ALLOCATE 6 63.36364 0.7513847947
29 ALLOCATEIO 2 203.39999 8.2637993097
38 RELEASEIOR 1 149.39999 0.4609318972
31 WALLOCATEI 2 203.39999 0.2637993897
32 RELEASEIOW 1 149.39999 0.4609318972

S 33 ADDIORG 1 212.44444 8.2349661589
34 REMOVEIOQ 3 189.24138 0.3109627962
35 ADDIOWQ 1 212.44444 0.2349661589

* 36 IOINTR 6 180.88889 0.6168857217
37 IOCHECK 18 179.48215 8.3288525181
38 CONVERT 17 73.8888 0.6774193645
39 CONVERTREA 12 90.88000 8.6344085932
40 PUTC 2 74.89891 0.7272727489 0

41 CLEANRBUF 2 69.08088 0.7455197573
42 PRT 2 51.88888 8.8188358248
43 CSREPORT 35 33.45397 0.7546452880
44 TERMREPORT 13 56.29134 0.7516439557
45 BATCHREPOR 19 75.75000 0.6603942513

. S 46 GENCOND 7 187.01819 0.3045942783
47 UPDATE 14 129.15277 0.4869076014

*5 Summary : 279 10.52915 0.4362154007

- ...... ......................................



Page 220

(Table 7.1 -Continued)

Program 5:

(An assembler :823 lines) Of

Module name Complexity L.R.E. Factor Logical Stability measure

I PROGRAM 1 94.01389 0.1591691375

2 ERROR 1 86.50000 0.2256637216

3 PARSER 13 94.67857 0.0470922589 '
4 OCTALNO 5 28.00000 0.7079645991

*5 CHECKMODE 2 87.11111 0.2114060521

6 ENTERDECK 1 9.14286 0.9102401733

7 ENTERSUBNA 4 77.39474 0.2796925902
8 UPDATESUD ± 4.00000 0.9557521939

9 ENTERENTRY 1 9.18182 0.9098954201.

10 SEARCHSYM 3 97.00000 0.115044E362

*11 ENTERSYM 1 99.00000 0.1150442362

12 PRINTSYM 2 1.47059 0.9692866590

13 PRXNTDECK 4 1.03175 0.9554712772

14 PASSONE 2 0.00000 0.9823008776

15 CODEGENATR 32- 0.00000 0.7168141603

16 NEXTLINE 5 69.67742 0.3391378522

17 FINDIDENT 8 72.94643 0.2836599350

19 PASSTWO 3 11.84210 0.8686539531

*19 CHECKCODE 2 33.80000 0.6902654767

S20 NEXTCARD 22 9.46749 0.7303761840

*Summary :113 12.80153 0.5586465597



Page 221

(Table 7.1 -Continued)

Program 6:
(A time sharing operating System simulator 684 lines)

Module name Complexity L.R.E. Factor Logical stability measure

*I PROGRAM 9 57.83133 0.3038403392
2 MTHRANDOM 00.00000 1.000008800
3 ENTERIOQ 1 60.76571 0.3563988209

*4 IOREAD 1 1.00600 8.9791666865
*5 IOWRITE 1 L.00000 0.9791666865
6 RELEASEMEM 5 40.97561 0.5210874081
7 FITMEM 11 57.24299 0.2891354561
8 EXCEPTION 18 13.43000 0.6726042032
9 TERMINATE 5 23.39024 0.7042683363

10 ENTERMEMO 2 63.00060 0.1145833135
11 LEAVEMEMQ 1 66.40000 0.2979166508
12 ENTERCPUQ 1 84.00000 0.1145833135

* 13 ASSIGN 4 0.00000 0.9583333135
14 LEAVECPUQ 2 60.50000 8.34895831350

* 15 SEIZECPU 4 81.00000 0.1145833135
16 COMPETECPU 4 73.65306 0. 19111394688
17 LEAVEIOQ 2 83.00000 0.1145833135
18 SEIZEIO 4 79.52728 8.1299242377

*19 BODY 10 24.25000 6.6432291865
20 CLEANUP 5 66.97222 0.2502893806
21 BATCHREPOR 5 3.60764 0.9103349447

*22 CARDIN 1 84.00000 0.1145833135

*Summary :96 8.07312 0.4594655905



Page 222

Table 7.2. Correlation analysis on logical stability
for individual modules.

Program 1 
0!

Module Number Logical Stability Measure Experimental Result

2 0.08571 0.43396
5 0.45048 0. 40000
6 0.36522 0.33333
8 0.49336 1.00000

21 0.63399 1.00000
26 0.60401 1.0000

The correlation coefficient is 0.7221 with
df 4, t - 2.0878
P (the actual correlation being zero) < 10%

The mean of the logical stability measures is 0.43880

with standard deviation 0.18193
(The mean for all modules in the program is 0.44810

with standard deviation 0.17988)

Note : The notation P(*) means the probability that * is true.

Program 2:

Module Number Logical Stability Measure Experimental Result

6 0.98450 1.00000
9 0.90419 1.000"

12 0.90265 1.00000

The correlation coefficient is 0.9966 with
" . df 1. t 12.1477

P (the actual correlation being zero) < 5%

The mean of the logical stability measures is 0.93045
with standard deviation 0.038227 -O
(The mean for all modules in the program is 0.83010
with standard deviation 0.13609)

Program 3:

Module Number Logical Stability Measure Experimental Result

20 0.12148 0. 13444

(The mean for, all modules in the program is 0.33320
with standard deviation 0.29542)

* oS

-. . . . . .....-.- -..- - - ', - . .. . . -. . .,.. : . - -... -, . -..... ...... . .,-.



Page 223 .

(Table 7.2- Continued)

Proqram 4:
Module Number Logical Stability Measure Experimental Result ".

5 0.90566 0.94186
6 0.98371 0.62162

15 0.49397 1.00000
20 0.23333 0.48971
24 0.22562 0.35210
33 0.23497 0.40749 "
36 0.61688 1.00000
46 0.30459 1.00000

The correlation coefficient is 0.4244 with
df 6, t = 1.1480
P (the actual correlation being zero) < 25%

The mean of the logical stability measures is 0.49984

with standard deviation 0.28876
(The mean for all modules in the program is 0.43622
with standard deviation 0.27158)

Program 5:
Module Number Logical Stability Measure Experimental Result

5 0.21140 0.35290
11 0.11500 0.45630
19 0.69030 1.00000
20 0.73040 0.54540 "

sas* The correlation coefficient is 0.6866 with
df 2, t 1.3354
P (the actual correlation being zero) < 30%

The mean of the logical stability measures is 0.43678 .

with standard deviation 0.27605
(The mean for all modules in the program is 0.55865
with standard deviation 0.34267)

Program 6:
Module Number Logical Stability Measure Experimental Result O

4 0.97917 0.50000
5 0.97917 1.00000

13 0.95833 1.00000
15 0.11458 0.46591
19 0.64323 0.33229
2Z 0.11458 0.25000

The correlation coefficient is 0.6971 with
Of 4, t 1.9444
P (the actual correlation being zero) < 15%

The mean of the logical stability measures is 0.63151 -W
with standard deviation 0.3(365
(The mean for all modules in the program is 0.45949
with standard deviation 0.32674)

0 _]



Page 224

Table 7.3. The summary correlation analysis of logical stability
for all modules in the experiment.

Program Number Logical Stability Measure Experimental Result

1 0.08571 0.43396 J
1 0.45048 0.40000 *

1 0.3652Z 0.33333

I 0.4933t5 1.00000 VA
1 0.63399 1.00000
1 0.60401 1. 00000

2 0.98450 1. 00000

2 0.90419 1.*00000
2 0.90265 1.00000
3 0.12148 0.19444

4 0.98566 0.94186
4 0.98371 0.62162
4 0.49397 1.00000

4 0.23333 0.48971
4 0.24562 0.35210

4 0.23497 0.40749

* . 4 0.616881000
4 0.30459 1.00000

5 0.21140 0.35290

5 0.11500 0.45630
5 0.69030 1.00000

5 0.73040 0.54540

6 0.97917 0.50000
6 0.97917 1.00000

6 0.95833 1.00000

6 0.114580461
6 0.64323 0.33229

6 0.11458 0.25000.

**sThe correlation coefficient is 0.6338 with

df 26P t 4.1784
P (the actual correlation being zero) < 0.1%..

**~The mean of logical stability measures is 0.53859
with standard deviation 0.31947
(The mean for all Modules in all programs is 0.50671

* with standard deviation 0.30872)



'4 Page 225 A.

2) Due to the limitations of existing data flow analysis

tools we have to limit the use of pointer typed data in -

the programs to avoid imprecise data flow information. We -

hope to alleviate this constraint later on.

3) The experiments are developed on the procedure level

partly due to budget constraints. Experiments on the -.

program level will be more realistic and valuable, but

will require more manpower to perform the experiments.

4) For large scale programs# a more efficient tool is needed -.

to calculate the proposed measure of the program

stability.

7.6. A Unified and Efficient Approach to Logical Ripple Effect

Analusis Used in Metrics Calculation

Logical ripple effect analysis is required in computing

the logical stability metric for modules and programs

[YAU8Ue]. Theoreticallyp logical ripple effect analysis has to O

be performed for each variable occurrence in the program to -

reveal the logical ripple effect. Therefore, the efficiency of .

I the logical ripple effect analysis technique becomes a prime *

factor affecting the usability of the met, The logical

ripple effect analysis technique presented in Section 5

S. 0.

p . .e



- ~ ~ w ....

Page 226

emphasizes accuracy in identifying logical ripple effect due to

given program modifications rather than efficiency in

identifying logical ripple effect for many program

modifications for statistical purpose, and hence is not

suitable for validating stability measure, especially for large

- scale programs. Trials using "student projects" or small

demonstration experiments are not acceptable representations of

the nature of the dynamics encountered in the development of

large-scale software systems. Therefore, it is desirable to

have an efficient way of performing logical ripple effect

analysis.

Software quality metrics are more usable if it can be

calculated in the early stages of the program life cycle

[KAFU81]. Strictly code-based metrics provide only an V

after-the-fact evaluation of the quality of the software

structure. Such Indications may come too late to correct any

structural deficiencies in a program that may already have been

completely implemented# possibly at great cost. Typically# it

is 1e0 times more expensive to correct errors in the

maintenance phase on large projects than in the requirements -,

phase [BOEHS1. Therefore, it is also desirable to apply the

ripple effect analysis technique during the program design

phase, so that data-flow oriented predictive software quality S

measures may be developed and calculated at that time.

-.. . . . ". . * . .+ •* . ' -
.. . . . . . . . . . . . . . . . . .



. . .- ... *

Page 227

7.6.1 Fomalization of logical ripple effect

We will discuss logical ripple effects caused by only

define-preserve-use type data flow propagation as illustrated --

in Fig. 7.1. That is, in program execution phase, only those

ripple effects caused by using data items which were defined

somewhere else previously and which may be preserved up to the

point where the usage occurs. This is the common understanding

and consideration of logical ripple effect in program

modification* and it is by no means a severe restriction. ... -

A Is used to define B

40
There exists a control path

along which B is preserved.

B is used to define C

Fig. 7.1 An example Illustrating that variable A may cause

potential logical ripple effect on variable C

-0 S

Let PP be the collection of all procedures in the

program. Let VV be the set of all variable names used in the

.,,. • . . . . .



Page 2Z8

program. Without loss of generality, it is assumed that there

are no distinct variables of the same name. The scope of a 0

variable may be viewed as an attribute of its name, and the

terms "define" and "modify" are used interchangeably.

Now we would like to make the following definitions:

DIRECTMOD is defined as a relation from PP to VV such that

(Pv) e DIRECTMOD implies that v mau be directlU modified in P.

DIRECTUSE is defined as a relation from PP to VV Such that

(P,v) e DIRECTUSE implies that v maU be directIg used in P. MOD

*. is defined as a relation from PP to VV such that (Pv) C MOD

implies that v may be modified in P or some sub-alls of P. USE

i s defined as a relation from PP to VV such that (Pv) e USE

Implies that v may be used in P or some subcalls of P. CALL is

defined as a relation in PP such that (PQ) C CALL implies that -

* P may call Q directly.

Extending the usual definition of "use-definition chains"

to make it fit into inter-procedural data flow analysis, we

have the following definitions: For each occurrence of variable

v in instruction i of procedure P (denoted by i) , DEFS(v,.i) -

is defined as the set of instructions which may be the most

recent definitions for v at run time. DIRECTMAPTO is defined

as a relation in VV, where P c PP such that

(u,v) e DIRECTMAPTOp implies that (P,u) 6 DIRECTUSE,

(P,v) e DIRECTMOD and v is directlU modified depending on the

* 

. -

, -. -" -- . .;-~~~~~~~~~~~~~~~~~~~~~~~. - .; -2 - . • • . - - ."- -.i -.i i 2,:.. : ...: .. .-.-.. .. . ..-....... . . .-... .-.. .-. ...



Page 229

value of u in P. MAPTO is defined as a relation in VV,•
P

where P e PP. (uv) e MAPTO implies that (Psu) G USE,P 0

(P,v) e MOD and v is directly modified depending on the value

of u in P or some subcalls of P.

The direct logical ripple effect relationship between a

pair of variable occurrences is defined as follows: An -

occurrence of variable u in instuction I may impose direct "
P

- logical ripple effect on an occurrence of variable v in

instruction J if and only if i C DEFS(upjQ) and
QP Q

Cu,v) e DIRECTMAPTO . In other words, the pair of variable
L 0-

definitions at two ends of any use-definition chain are said to

have direct logical ripple effect from one to the other.

The direct logical ripple effect relationship between a

pair of Procedures is defined as follows: Procedure P may

impose direct logical ripple effect on procedure Q if and only

if there exists at least one variable occurrence in P which may "

impose direct logical ripple effect on a variable occurrence in

Q.

DIRECTRIP is defined as a relation in PP, such that

(P,Q) t DIRECTRIP implies that P may impose direct logical

ripple effect on Q.

The logical ripple effect relationship between a pair of

* eS



*-'0 Page 230 -

variabl1e occurrences is defined as follows. An occurrence of

variable u may impose logical ripple effect on an occurrence of

variable v if and only if there exists a sequence of variable S

occurrences x ,x,. ... x such that
I. n

U = X V X "
1 n

and x. may impose direct ripple effect on x i+1 for

I < i < n-1.

The logical ripple effect relationship between a pair of

procedures is defined as follows. Procedure P may impose

logical ripple effect on procedure Q if and only if there

exists at least one variable occurrence in P which may impose

logical ripple effect on a variable occurrence in Q.

RIP is defined as a relation in PP such that (PQ) c RIP

implies that P may impose logical ripple effect on Q.

7.6.2 Logical ripple effect analUsis for metrics calculation

We start with the assumption that no intra-procedural

control flow information will be taken into consideration.

""' This is to simulate the situation in the program design phase,

.. where procedures are often viewed as black boxes performing
0

certain functions on interface variables only. Thereforep the

algorithm may also be applied in the design phase.

- - S,:

.. '. . . . . . . . . . . . . . .. . .

C. . . . . *"* . . . .~ ~.



Page 231

Also, again we stress that the logical ripple effect

analysis approach we will present in this section is to

emphasize the efficiency consideration in computing logical

stability measure. Therefore# the accuracy of the logical

ripple effect analysis proposed in this section is somewhat

less than that in Section 5. One way of trading accuracy With

efficiency is to ignore control flow.

In the following section, for the sake of simplicity, we

will not consider mechanisms that may introduce dynamic

aliasing among variables, such as reference parameter passing.

7.6.2.1 No Control Flow - No Sharing

From the definitions and the assumption that any

intra-procedural execution sequence is possible, we can show

that a procedure P may impose direct logical ripple effect on

procedure Q if and only if there exists • nonempty set

RIPVAR(pQ) Of variables such that (Pv) c DIRECTMOD,

T(Q,v) a DIRECTUSE, and (P,Q) a (CALL U CALL U C(PP)3) for
every v a RIPUAR,. Hence, we can compute DIRECTRIP as

(P,Q)*

follows: -

*• _

• _ e °- 
•

) . ° . , ° ,,, .' -
.

•*1_. * *. , . ., -•.-°, , , • , • .. "° * .. . .o ° ° , ° .
°

. ,



0 Page 232

T
DIRECTRIP (DIRECTMOD DIRECTUSE)

T*
(CALL U CALL U C(PP)IP6PP)). (71

Note that when the call graph is connected, (7.1) may be

* simplified and become

T
*.DIRECTRIP DIRECTMOD DIRECTUSE .(7.2)

Thenp for each P in PPP we can generate the sets

MAPEP3 (P U I (u~v) e DIRECTMAPTO P 3 (7.3)

MAP =U MAPEP3. (7.4)
POEPP

Now, define RIPPLE1 as a relation in MAP as follows:

RIPPLE1 C(P ,Q )I(PfQ) e DIRECTRIPP P ,'Q e MAP)Uy JV Vw U P V vpw

(7.5)

This relation is essentially the combination of relation

DIRECTRIP with information stored in relation MAPTO.

Finally# we can calculate the relation RIPPLE in MAP by

the formula

RIPPLE RIPPLE1* (7.6)



Page 233

It can be shown that the logical ripple effect relation

implied by RIPPLE is the most precise information we can have

-.-. under the assumption that intra-procedural control flow is not

considered and no dynamic aliasing condition among variables

may occur.

The relation DIRECTRIP can be viewed as the first level

inter-procedural ripple effect information while the sets

MAPTOCP3, for all PePP, account for all possible

intra-procedural ripple effect information. The way in which

RIPPLE is going to be derived in the following sections is

analogous to the approach used here. That is, after the

relation DIRECTRIP and the sets MAPEP] being established, the

relation RIPPLE is calculated according to (7.5) and (7.6).

This provides a unified form for this approach which may be

applied to both the design and code levels. The derivation of

DIRECTRIP and MAPTOEP] may be different depending on various

conditions.

7.6.2.2 No Control Flow - Sharing

It has been shown by Barth rBART78] that the possible

aliasing relationships among variables caused by

call-by-reference parameter passing may be computed by the

T
expression AFFECT (AFFECT ) where the relation AFFECT was*e "-o

* 5



Page 234

defined to be pairs of variables representing the formal-actual

reference binding at some point of call. Static aliasing

relations can be represented by a set EQU of equivalence

classes in a slightly different form such that a pair (u,v) is

in EQU if and only if u and v are both in the same equivalence

class. EQU can be initialized according to the static aliasing

conditions such as REDEFINE in programming language PL/I.

Thus, the aliasing relation among variables ALIAS may be

computed by

ALIAS = EQU AFFECT (AFFECT )T  (7.7)

. Now we can replace (7.1) by

DIRECTRIP (DIRECTMOD ALIAS DIRECTUSE ) n V

T(CALL U CALL U C(P,P)IPCPP))* (7.8)

The correctness of (7.8) can be justified easily. Analogous to

(7.2), when the call graph is connected, (7.6) can be

simplified and becomes

TS
DIRECTRIP = DIRECTMOD ALIAS DIRECTUSE T

. (7.9)

The precision of (7.9) may be further improved if it is S

possible to take into consideration the durations of the

dynamic aliasing relations implied by AFFECTS (AFFECT )(7.3)

-Sd

S S

v I' ". -ii"7 "' C :: " "."- .:-.- "" "" "" "i' . ,



Page 235

thru (7.6) may now be applied to compute the final matrix

RIPPLE.

Note that the basic relations, namely DIRECTMOD,

DIRECTUSE, DIRECTMAPTO, and CALL, which are needed in the

algorithm, are all local information to the procedure and so

can be easily constructed from a design document.

The dominant factor in the complexity in computation of

- this algorithm is the amount of computation of the relation

RIPPLE Which is the same as the computation of the transitive

closure of an array of Size IMAPI. The time bound for

* - computing transitive closure of an array of size m is known to
3

be smaller than the order 0Cm(). The best result known up to

date is of the order 0(m 9  ) [COPP8I]. This bound depends -

on the size of the set MAP, Which in worse case can be of the

2order 0(n ), where n is the length of the program. But, this

is extremly unlikely in real situations. Actually# based on

some empirical data gathered from real programs1 0(n) is a more

realistic estimate for the size of MAP. Therefore, this gives

us an algorithm to compute the total internal ripple effect of

any program in a time bound which is independent of the total

number of branches in the program. At the same time, since

relations can be represented as a bit-matrix, the space bound

is manageable too.

" . -S

S Sg

* * . * *.



0 Page 236

*7.6.2.3 Control Flow -Tracingi

* Suppose that we know the way of solving the use-definition

*Chains problem interprocedurally. rhen the problem becomes

siia otetaig hs nScin5.adi a esle

in the following manner: Let the set RIPI P be]

RIPIP C Q I V'i P jQJ s .t. j QeDEFS(v,i P)

RIPi is in fact a simplified variation of DEFS. With RIP1

* we can easily build DIRECTRIP as follows

DIRECTRIP C(P#Q) I Vpi -j S.t. i FDEFS(vj'j )3
P Q P Q

=C(P,Q) IPfRIP1 3. (7.10)
Q

Sets MAP(P3 may be derived by the formula

MAPCP3 CP I (upv) c MAPTO n
u'-V P

T
(DIRECTUSE f(PP)> DIRECTMOD)> (7.11)

(7.11) will select local variable pairs from MAPTO # and (7.4)
P

thru (7.6) may be applied accordingly to yield the relation

* RIPPLE. It can be Shown that the information RIPPLE derived in

this manner is precise given that the summary information MOD,

USE, MAPTO and RIPI are all precise.



. . . .-

Page 237

7.6.3 Conclusion-

The technique presented here is a somewhat less accurate

approach for logical ripple effect analysis than that presented

in Section 5.1, but it is more efficient. It is suitable for

calculating softwuare metrics because the measure itself is only

an estimate of some aspect of the software quality. Precise

information is welcome, but sometimes it is too expensive to

generate. Appro x imate information i S thus a practical

alternative and should not affect much on the quality for

vaiidating the metrics. Another advantage of this technique is

that it may be applied in both the design and code levels using -

the same algorithm. This should cause substantial saving in

effort on constructing tools for validating the measures and

ensures the consistency between measures on different levels.

Although the technique is imcomplete in the sense that an

efficient way of obtaining the set RIPI still needs to be

developed, it may be used without considering the control flow

within modules which is less precise. Besides the search for

an efficient way to generate set RIPI, more experiments are

needed to give some empirical evidence that the measures

alculatea in this manner do not differ much from those from

tne original computation.

*'- -.

I



*m Page 238

7.7 Discussion and Future Work

Metrics for the primary attributes which affect software

modifiability are in various stages of development and

validation. Metrics for logical stability have been developed

and partially validated. Metrics for performance stability,

module strength and coupling have been defined. A framework for

efficient logical ripple effect analysis approach at both the .

* .design and the code levels has been established.

Future work is needed to identify and examine all 

important software attributes which affect software

modifiability and reusability, and to develop a way for . .-

S. combining these attributes into quantitative measures of

. modifiability and reusability. To achieve this goal# we should

develop and validate the metrics related to modifiability,

including the metrics for performance stability, complexity,

module strength and coupling. Validation and refinement of all

related metrics, including modifiability itself, need to be

- completed by performing a series of comprehensive experiments.

Furthermore, significant attributes related to reusability,

-. including portability# need to be identified and examined.

"@. @I



0 Page 239

8.0 REFERENCESI

EAH0723 Aho, V. A. and Uliman, 3. D., The Theoru of Parsing,
Translation and Compiling, Vol. II,, Prentice-Hall,
Englewood Cliffs, New Jerseyp 1972.

CALF0771 Alford, M. W... "A Requirements Engineering
Methodology for Real-Time Processing Requirements',
IEEE Trans. on Software Engineering, Vol. SE-3, No.
1, Jan. 1977, pp. 60-69.

CALLE743 Allen, F. E., "Interprocedural Data Flow Analysis",
IFIP 74, North-Holland Pub. Co., Amsterdam, 1974P pp.
398-402. -.-

CARTHS13 Arthur, J. and Ramanathan, J., "Design of Analyzers
for Selective Program Analysis"P IEEE Trans. on
Software Engineering, Vol. SE-7, No. 1, Jan. 1981, -,

pp. 39-51.

* BALZ693 Dalzerp R. M., "EXDAMS -EXtendable Debugging and
Monitoring System"# Proc. AFIPS 1969 Serino Joint
Computer Conf.p 1969, pp. 567-580.

[BART783 Bartflp 3. M., "A Practical Interprocedural Data Flow
Analysis Algorithm"m Comm. ACM, Vol. 21, No. 9, Sept.
1978, pp. 724-736.

EBELF773 Belford, P. C., Donahoe, J. D. and Heard, W. J., "An
Evaluation of the Effectiveness of Software
Engineering Techniques", Digest of Papers, COM'PCON 77
(Fall), pp. 259-269.

*CBOEH733 Boehm, BD. W., "Software and its Impact: A
Quant it at ive Assessment", Datamation May, 1973, pp.
48-59.

EBOWL833 Bowles, A. J., Effects of Design ComylexitA on
Software Maintenance, Ph.D. Dissertation, Dept. of
Electrical Engineering and Computer Science,
Northwestern University, June 1983.

0 BQYD7e3 Boydp D. and Pizzarellop A., "Introduction to the
WELLMADE Design Methodology", Proc. 3rd Int'l. Conf.
on Software Engineering, 1978P pp. 94-100.



0 Page 240

EB3RUN68J Bruning, 3. L. and Kjntz, B. L.~ Computational
Handbook of Statistics, Scott, Foresman and Companyp
Glenview, IL, 1968

CCHAP793 Chapin# N., "A Measure of Software Complexity", AFIPS
*.National Computer Conference, pp. 995-1662, Spring
* 1979.

ECLAR76) Clarke, L. A., "A System to Generate Test Data and
Symbolically Execute Programs", IEEE rrans. on
Software Engineering, Vol. SE-2p No. 3P Sept. 1976,
pp. 215-222.

(CLAU793 Claus, V.j. Ehrig., H. and Rozenbergp ,j
Graph-Grammars and Their Application to Computer
Science and Bioloou, Lecture Notes in Computer
Science 73, Springer-Verlagy 1979.

ECOPPS13 Coppersmith, D. and Winograd, S., "On the Asymptotic
Complexity of Matrix Multiplication Extended
Summary", Proc. 22nd Annual Sump. on Foundations of
Coputer Science, IEEE, Oct. 1981, pp. 62-90.

(DEMA783 DeMarcop T.P Structured Analusis and Sustem
Soecification, Yourdon Inc., 1978.

EDEME813 Demersp A., Repsp T. and Teitelbaum, T., "Incremental
Evaluation for Attribute Grammars with Application to

* . Syntax-directed Editors", Proc. 6th ACM Sump.- on
*.Principles of Programming Lanauagesp 1961, pp.
* . 105-16

IDUNS803 Dunsmore, H. E. and Gannon.. J. D... "Analysis of the
Effects of Programming Factors on Programming '-
Effort", Journa of Sustems and Software, I.- PP.
141-153, 1960.

EEJZA823 Ejzakp R. P. Strength and Coupling Metrics of
Software Structures M.S. Thesis, Department of
Electrical Engineering and Computer Science,
Northwestern University, Evanston, Illinoi, Auguest,
1982.

rFAIR753 Fairleyp R. E.., "An Experimental Program Testing
Facility"s. IEEE Trans. on Software Engineering, Vol.

0. SE-i, No. 4, Dec. 1975, pp. 350-357.



0 Page 241

E FISC773 Fischer, K. F., "A Test Case Selection Method for the
Validation of Software Maintenance Modification"o
Proc. Ist Int'l. Conf. on Computer Software and
ApIlications (COMPSAC 77), 1977, pp. 421-426.

*EFOSD763 Fosdjcl(, L. D. and Osterweilp L . 3.. "Data Flow
Analysis in Software Reliability", AtCM Computing.
Surveus, Vol. So No. 3, Sept. 1976, pp. 305-339.

EGOOD753 Goodenough, J. B. and Gerhartp S. L., "Towards a
Theory of Test Data Selection", IEEE Trans. on
Software Engineering# Vol. SE-i, No. _F June 1975,
pp. 156-173.

CHALL783 Hallin, T. and Hansen# R.o "Towards a Better Method
of Software Testing"P Proc. 2nd Int'l. Computer
Software and Applications Conf. (COMPSAC 76), 1976,
pp. 153-157.

EHAY743 Hay, G. G.o "Formal Definition of a Simple On-line
Teleprocessor in VDL",P in ProgramminA Sumposium,
Paris 1974, Lecture Notes in Computer Science 19, k S
Springer-Verlag, 1974.

EHECH773 Hecht, M. S., "Flow Analusis of Computer Programs",
North-Holland, 1977.

CHEN1793 Heningero K. L.o "Specifying Software Requirements g
for Complex Systems"# Proc. Specifications of
Reliable Softwarep 1979, pp. 1-14.

CHENIS03 Heningero K. L., "Specifying Software Requirements
for Complex Systems: New Techniques and Their
Applications", IEEE Trans. on Software Engineeringo
Vol. SE-6, No. 1, Jan. 1988,p pp. 2-12.

EHOWFD783 HoWdenp W. E., "DISSECT - A Symbolic Evaluation and
Program Testing System", IEEE Trans. on Software
Engineering, Vol. SE-4o No. 1o Jan. 1976, pp. 70-73.

0 EHSIES23 Hsieh, C. C.* ~fi Approach to Logical Ripple Effect.
Analusis for Software Maintenancep Ph. D.
Dissertation, Department of Electrical Engineering
and Computer Science, Northwestern University,
Evanston, Iii.o June 1982.

*CHUAN753 Huang, J. C.# "An Approach to Program Testing", ACM 0
Computino Surveuso Vol. 7, No. 3, Sept. 1975, pp.
113-128.

6 -7



* Page 242

EICHB793 Ichbiah, J., et al, "Prel iminary ADA Reference
Manual";. ACM SIGPLAN Notices, Vol. 14, No. 6, June
1979P Section 5.2.3.

EJACK753 Jackson, M. A., Principles of Program Design,
Academic Presso 1975.

E JANS803 Janssens, D . and Rozenberg, G., "Node-Label
Controlled Graph Grammars".. Proc. 9th Suinp. on
Mathematical Foundations of Computer Science -

Lecture Notes in Computer Science 68,
Springer-Verlag, 1980.

[JENS74J Jensen1 K. and Wirth, N., Pascal User Manual and
Report~ Springer-Verlag, New Yorkp 1974.

EKAFU813 Kafura, D. G. and Henry, S. M., "Software Quality
Metrics Based on Interconnectivity", Journal of
5ySstems and Software, Vol. 2, No. 2, June 1981P PP.

EKING763 Kingp J. C., "Symbolic Execution and Program .*

Testing", Comm. ACM, Vol. 19, No. 7, July 1976, pp.
385-394.

CLEE723 Lee, J. A. N., Computer Semantics, Van Nostrand
Reinhold, 1972.

[LIENeOJ Lientz, B. P. and Swanson, E. B.# Software
Maintenance Management, Addison-Wesleyp 1980.

ELOME773 Lometp D. B., "Data Flow Analysis in the Presence of
Procedure Calls", IBM Journal of Research and
Development, Vol. 21, No. 6, Nov. 1977, pp. 559-571.

CMCCA763 McCabe, T. J., "A Complexity Measure", IEEE Trans. on
Software Engineering, Vol. SE-2p No. 6, Dec. 1976,
pp. 308-320.

CMYER763 Myers, G. 3., Software Reliabilitu: Princyles and
Practices, John Wiley and Sons Inc... 1976, pp. -
2 16-246.

(MYER7e3 Myers, G. J.P Composite/Structured Design, Van
Nostrand Reinhold Company, New York, N.Y., 1978

S.EPAGA813 Pagan, F. G., Formal Specification of Programming
Languages: A Panoramic Primer, Prentice-Hall, 1981.



17

Page 243

ERAMA761 Ramamoorthy, C. V., Ho, S. F. and Chen, W. T., "On
the Automated Generation of Program Test Data", IEEE
Trans. on Software Engineerinap Vol. SE-2p No. 4

(Dec. 1976), pp. 23-300.

ERICH81] Richardson, D. and Cl arke, L. A., A Partition
Analysis Method t o Increase Program Reliability",
Proc. 5th Int'l. Conf. on Software Engineering, 1981,
pp. 244-253.

EROSE793 Rosen, B. K., "Data Flow Analysis for Procedural
Languages", Journal of ACM, Vol. 26, No. 2, April
1979P pp. 322-344.

CROSS773 Ross, D. T. and Schoman, K. E. Jr., "Structured
Analysis for Requirements Definition-P, IEEE Trans. an
Software Engineering# Vol. SE-31 No. 1P Jan. 1977,,
pp. 6-15.

ISTAY763 Stay, J. F., "HIPO and Integrated Program Design",
IBM Sustems Journal, Vol. 15,. No. 2, 1976, pp.
143-154.

ESWAN763 Swanson, E. B., "The Dimensions of Maintenance",,
Proc. 2nd Int'l. Conf. on Software Engineering, 1976,
pp. 492-497.

ITEITS13 Teitelbaum, T., Reps, T. and Horwitzp S... -The Why S
and Wherefore of the Cornell Program Synthesizer",~
ACM SIGPLAN Notices, Vol. 16, No. 6, June 1981, pp.
B-: 16.

EWASS803 Wasserman, A. I.,. "Testing and Verification Aspects
of Pascal-like Languages"P Tutorial on Programming
Lanouaae Design, IEEE Computer Society Press, 1980,1
pp. 61-75.

EWASS823 Wasserman, A. I., "The Future of Programming", Comm.
ACM, Vol. 25P No. 3P March 1982P pp. 196-206.

CWEGN783 Wegner, P.,. "Research Directions in Software
Technology", Proc. 3rd Int'l. Conf. on Software
Engineering, 1979, pp. 243-263.

CWEIS6IJ Weiserp M.,, "Program Slicing"#~ Proc. 5th Int'l1. Conf.
on Software Engineering, 1961, pp. 439-449. S

4 P SI



Page 244 9 0

Ot

E [WEIS82] Weiser, M., "Programmers Use Slices When Debugging",

Comm. ACM, Vol. 25, No. 7, July 1982, pp. 446-452.

[WEYUB] Weyuker, E. and Ostrand, T. "Theories of Program -
Testing and the Application of Revealing Subdomains",.
IEEE Trans. on Software Engineerina, Vol. SE-6, No.
3, May 1980, pp. 236-246.

[WIRT71] Wirth, N., "Program Development by Stepwise - --

Refinement", Comm. ACM, Vol. 14, No. 4, April 1971, 0 0
pp. 221-227.

[WIRT75] Wirth, N., "Pasca -S: A Subset and its
Implementation", Technical Report 12, Institut fuer
Informatik, ETH Zuerich, 1975.

[YAU783 Yau, S. S., Collofello, 3. S. and MacGregor, "Ripple
Effect Analysis for Software Maintainance", Proc. 2nd - -

Int'l Conf. on Computer Software and Applications .j. .
(COMPSAC 78), 1978, pp. 60-65. -.

LYAUBOa] Yau, S. S., Self-metric Software - Summaru of $> - *
Technical Programs, Final Technical Report
RADC-TR-88-138, Vol. I (of 3), NTIS AD-A0386-290,
April, 1980.-

[YAU8Ob] Yau, S. S., Collofello, J. S. and Hsieh, C. C.,
Self-Metric Software - A Handbook: Part I, Looical .

Ripple Effect Analysis, Final Technical Report
RADC-TR-80-138, Vol II (of 3), NTIS AD-A0386-291,
April 198"0.

[YAUB8cJ Yau, S. S. and Collofello, J. S., Self-Metric

Software - A Handbook: Part II, Performance Ripple
Effect Analyusis, Final Technical Report
RADC-TR-80-138, Vol III (of 3), NTIS AD-A0386-292,
April 1980.

[YAU8Od] Yau, S. S. and Grabow, P. C., "A Model for
Representing the Control Flow and Data Flow of
Program Modules", Proc. 4th Int'l. Conf, on Computer
Software and Applications (COMPSAC 80), 1980, pp.
153-160.

[YAU80e] Yau, S. S. and Collofello, 3. S., "Some Stability

Measures for Software Maintenance", IEEE Trans. on

Software Engineering, Vol. SE-6, No. 6, Nov. 1980,
pp. 545-552. The Preliminary version of this paper
appeared in Proc. 3rd Int'l Conf. on Computer

9 °.. S

.+ --.. %°X

.. "'. . .- -" -:" - "-:..- : -..- . . - '- .-- " - "-." - - -. " .. . . ..-



77 - - -. . .

0 Page 245

Software and Applications (COMPSAC 79), 1979,

Effect Analysis for Laroc-Scale.Software Maintenance,
Technical Report RADC-TR-80-55, NTIS AD-AS384-351o
March 1960.

CYAUIB1a3 Yau. S. S. and Grabowo P. c., "A Model for
Representing Programs Using Hierarchical Graphs",~
IEEE Trans on Software Engineering, Vol. SE-7v No. 6,
Nov. 1991P pp. 556-574.

CYAUSIb3 Yau, S. S., Carvalho, M. B. and Nicholls R. A.,- "A
Method for Estimating the Execution Time of Arbitrary
Paths inl Programs", Proc. 5th Int'l Conf. onComauter 0
Software and Applications (COMPSAC 91)p 1981P PP.

F 225-239.
EYAU82a3 Yau, S. S.P Chang, C. K., Hsieh, C.-C., Kishimotop Z.

and Nicholl, R. A.j- "A Methodology for Software
Maintenance"# Proc. Int'l. Computer Sumposium" .

Taiwan, 1982, pp. 447-458.

CYAU82b3 Yau, S. S., Grabow, P. C. and Weems, 9. P., "A Binary
Representation for the Hierarchical Program Model",

oProc 6th Int'l Conf. on Computer Software and
Applications, (COMPSAC 62), 1992, pp. 169-195.

EYAU82C3 Yaup S. S. and Collofellop 3. S., "Design Stability
Measures for Software Maintenance", Proc. 6th Int'l.
Conf. yn Computer Software and Applications (COMPSAC
92), 1962, pp. 100-109.

CZAVE813 Zave, P. and Yeh, R. T., "Executable Requirements for
Embedded Systems"* Prgc. 5th Int'l. Conf. on Software
Engineering, 1981, pp. 295-304.

CZAVES23 Zave, P., "An Operational Approach to Requirements
Specification for Embedded Systems", IEEE Trans on

* Software Engineering, Vol. SE-8, No. 3P May 1962,- PP.
250-269.

EZELK783 Zelkowitzo M., "Perspectives on Software
Engineering"o, ACM Computino Surveys, Vol. 10, No. 2,
June 1978, pp. 197-216.



* Page 246

- 9.0 PUBLICATIONS AND PRESENTATIONS

Besides the results of the research presented in this

* report, many results have already been published or presented

*in preliminary or complete f orms . The publications and

* presentations are grouped in the following categories: (1)

paperso (2) technical reports, (3) presentations related to the

* project* and (4) Ph.D. dissertations and M.S. theses.

* 9.1 Papers

1. S. S. Yau and J. S. Collofellos "Some Stability Measures
for Software M a int e nan c e IEEE Trans. on Software
Englineering, Vol. SE-6, No. 6, Nov. 190 p 4-52.

2. S. S. Yau, M. B. Carvalho and R. A. NichOll, "A Method for
Estimating the Execution Time of Arbitrary Paths in
Programs", Proc. 5th Int'l. Conf. on Computer Software and
Applictions~ (COMPSAC 61), 1961, pp. 225-239. . S

3. S. S. Yau and J. S. Collofello,. "Some Design Stability
Measures for Software Maintenance", Proc. 6th Int'l. Conf. *

on Computer Software and Applications (COMPSAC 82), 1962,.
pp. 100-166.

-4. S. S. Yau, C. K. Chang, C.-C. Hsieh, Z. Kishimoto and R. A.
Nicholl, "A Methodology for Software Maintenance", Proc.
Int'l. Computer Sumposium, Taiwan, December 15-17, 1982,
pp. 447-46

5. S. S. Yau and C. C. Hsieh, "Ripple Effect Analysis for
Large-Scale Software Maintenance I - Logical Ripple Effect
Analysiso submitted for publication.

6. S. S. Yau, 3. S. Collofello and R. A. NiChOll, "Ripple
Effect Analysis for Large-Scale Software Maintenance II
Performance Ripple Effect Analysis",, submitted for

I publication.



Page 247

7. S. S. Yau, C. K. Chang and R. A. Nicholl, "An Approach to
Incremental Program Modification", submitted for
publication. !

8. S. S. Yau and Z. Kishimoto, "A Method for Revalidating
Programs in the Maintenance Phase - Module Testing"..
submitted for publication.

9.2 Presentations

1. * S. S. Yau, "Methodologies for Large-Scale Software
Maintenance", Seminar, Bell Telephone Laboratories,
Naperville, Illinois, July , 1980.

2. S. S. Yau, "Performance Stability Measures for Software
Maintenance", 3rd Minnowbrook Workshop on Software
Performance Evaluation, Blue Mountain Lake, New York,
August 19-21, 1980.

3. S S. S. Yau, "Methodologies for Distributed Computing

System Software Design", Seminar, Fujitsu Laboratories,
Kanagawa-Ken, Japan, October 9P 1960.

4. * S. S. Yau, "Methodologies for Large-Scale Software .
Maintenance, Seminar, Hitachi Sustems Engineering Co.,
Yokohama, Japan, October 13, 1980.

5. * S. S. Yau, "A Model for Representing the Control Flow and . -

Data Flow of Program Modules", COMPSAC 80, Chicago,
Illinois, October 27-31, 1980.

6. * S. S. Yau, "Critical Problem Areas in Software
Development"P Technical Keunote Speech, Int'l. Computer

Sumposium 88P Taipei, Taiwan# China, December 16-18, 1980.

7. * S. S. Yau, "Methodologies for Large-Scale Software -
Maintenance", Seminar, Computer Science Division,
Department of Electrical Engineering and Computer Science,
Universitu of California at Berkeley, February 25, 1981.

8. S. S. Yau, "A Semantic Program Model for Software
Maintenance", 4th Minnowbrook Workshop on Software SI
Performance E.valuation, Blue Mountain Lake, August 11-13,
New York, 1981.

* 6'q

*. . . * .. "
. -°. - . - " -



'0 Page 248 0

9. R. A. NichOll, "A Method for Estimating the Execution Time
of Arbitrary Paths in Programs", COMPSAC 81, Chicagop
Illinois,, November 18-20, 1981.

10. J. S. Collofello, "Some Design StabilIity Measures fo r
Software Maintenance", COMPSAC 82-, Chicago, Illinois..
November 10-12, 1982.

11. *C. K. Chang, "A Methodology for Software Maintenance",
Int'l. £9jmpuyie Sumposium, Taiwanp December 15-17P 1982,0
pp. 447-458.

*These presentations and participation were made at no cost to-
the contract.

9.3 Technical Reports 0

S. S. Yau, MethodologUL for Software Maintenance, RADC -

Interim Report, July# 1981.

9.4 Dissertation And Theses

A number of graduate students, who have worked on thisI
contract, completed their Ph.D. and M.S degrees i n the

Department of Electrical Engineering and Computer Sciences

*Northwestern University. Their Ph.D. dissertations and M.S.

thesis are listed below:

1. C. C. Hsieh, Logical Ripple Effect AnalUsis for Program
* ** Modification, M.S. Thesis' June, 1980.

0.2. Z. Kishimoto., Testing for Large-Scale Programs in the
Maintenance Phase, Ph.D. Dissertationo June, 1982.



Page 249

3. C. C. Hsieh, An Approach to Logical Ripple Effect Analusis
* . for Software Maintenancep Ph.D. Dissertation, June, 1982.

04. C. K. Changse Incremental Modification of Computer Programs,
Ph.D. Dissertation, June 19162.

5. R. P. Ejzak, Strength and Coupling Metrics of Software
Structures, M.S Thesis, August, 1962.

6. R. S. Wang, Incremental Update of Data Flow Information
-- One More Step Toward a Large -Scale Software

Maintenance Environment, M.S. Thesis, June, 1963.

* 0

~-0



S Page 250

10.0 TECHNICAL PERSONNEL

During the period of this study, the following

Northwestern University faculty and graduate students

* contributed to the research effort of this contract:

1980 1981 1982

Principal Investigator Starting Ending
and Project Director April 23 Nov. 30

Stephen S. Yau x x x

Graduate Students

Z. Kishimoto x x -

C. C. Hsieh x x -

B . P. Weems -- x -

C. K. Chang x x x
R. A. Nicholl X x x
S. C. Chang -- XX
R . E . Ejzak X x X
Y. C. Chou -- Xx
R. S. Wang - X

In addition, Professor J. S. Collofello of Arizona State

Universityp who worked on the previous project# continued to

serve as a consultant to this contract for the work in the

areas of software metrics and performance ripple effect

analys is . Professor L. Clarke of the University of

.5. Massachusetts served as a consultant in the area of te~ting.



6 Page 251

L5 A PLN

i o' trie sake of completeness, we include the following

SpuDOlisned papers which contain some of the research

suppor ted by this contract:

s. -au and 1. S. Collofello, "Some Stability Measures
s::oftware Maintenance"r IEEE Trans. on Software

_1.,_2 erinq, Vol. SE-6, No. 6, Nov. 19830, pp.-4-52

s s. Yau, m. B. Carvaiho and R. A. Nicholl. "A Method for
t . matinq the Execution Time of Arbitrary Paths in0
j Jgranv Proc . 5th Int'l. Conf. on Computer Software and

1 .C a tions (COMPSAC 81), 1981, pp. 225-239.

2S ,,a and J. S. Collofello., "Some Design Stability
Meas,re for Software Maintenance"# Proc. 6th Int'l. Conf.

o,2cmpu4ter Software and Applications (COMPSAC 82), 1982.

'a S. Yau- C. K. Chang, C. C. Hsieh, Z. KishiMoto and R. A.
cro "A Methodology for Sostware Maintenance". Proc.

:rt'i. Comite SUmoosiun. Taiwan, December 15-17, 1982,
Q 447-458.



253

* Some Stability Measures for Software Maintenance
STIPlIIN S. A' I\ itiosA, it ',NDJANIIS S. OLLOH[()O,,i ,fittlsrl R, ifI

* 4bstrae; -Softisare maintenance is the donminant factor contributing eilhiiicetiieitts of' capabilities, deletion of obsolete capabilies
to the high cost of soft%% are. In this paper, the soft"s are maintenance ajilt oi/a I Ion 7 T1hle cost of t lie ,,(It wvare majin Icae
process and the important software quality attributes that affect the -cillsha envr hitg and it has been estimrated taniginig
maintenance effort are discussed. One of the most important quality atSte a envr
attfri~ utes of softsware maintainability is the stability of a program, I roill 40 pe.rcent [jto 07 perceni I'-] of tile toutal ci is? during
which indicates the resistance to the potential ripple effect that the the life ocl (I ofL-wre-scale solt 15are .s\settis. This vers high
program wsould have when it is modified. Measures for estimating the softwAare iitteaiCe cSt Sulggests that tire ilraintautlabilit v of -

stability of a program and the modules of wshich the program is corn rmI %e Cical si ftsare quality attribute. Measures
*posed are poresnted. and an algorithm for computing these stability pri

measures is given. An algorithm for normaliting these measures is also are needed to evaluate thle iatiatabit of a prograiii at
given. Applications of these measures during the maintenance phase each phase of its deselopirient. These treasuires rItust be easily 4

ar discussed along with an example. An indirect validation of these, calcrilated arid Su~bJect to validation. Techniques Mrust also be leSi
stability measures is also given. Future research efforts involving ap. developed to rest rUct lre thle software d uring each phrase of' its

plication of these measure% during the design phave, progranm restruc- des eoproetit in order ito Impirove its mraitntainabtlity.-
turing based on these measures, and the development of an overall Itti ae.sewl is ics ~esfwr iattntc
maintainability measure are also discussed. IIti ali A ilfrtdsustesfwr aneac

process atuc thre sorftwsare quality attributes that affect tire
- ~~Index Terrna-Algorithms, applications, logical stability, module mantrareeffort. BCartlse accotmmrodating the ripple effect

stability, maintenance process. norrnaliation. potential ripple effect, of rirodi ficatious in a progratir is norriallv a largze portionr of
program stability, softviare maintenance, softviare quality attributes. th trateaic efoescaly orntwldsgedpo

vaidtin.grains [71, we sAil] presetnt sotrre measures for estimra tinig thre
tliivo'a prograirt, wich is thre quality attribute ittdicatirtg

IN ~trit tt N tile resista'nice ito the potential ripple effect whrichr a programI . IS well ktrss ri thadt rthe cost of large-scale softssare ss A olild have wAhen it is mrodified. Algorithms for cotnputitng
teits as ecorieunacepabl hih [I, 1. uchof lirthese stability mreasures arrd for nrormalizitng threti will be

excessive softwsare cost Car) bei attibutedt to the lacls of tucan- given. Applic-atiowis of these mie asures during the maintenansce 3O
Itrgful tricasureIs of solftware lIn tact, the definritionr of software phase alortg with art examrple are also presented. Future re-
qitalims is %er% i~vu Since soie dire atitributes "4 a pro search efforts irnvolving tire appiiication of these trleasures
-,rain Carl od rih e *idihiiired at thre expense of other a lttit es. duitng tlie design phrase. programn restructuring based onl thtese

* ~progratin qtalut\ rriustf be etrs11irotiritr dependent. Thus, it is nmeasitres. anld tire develiopmrent (of aniroverall mraitrtairabilit
* .imtpossible to establish a sinigle ieure tfo sofnssare quality. nmeasure are also discussed.

Instead. rrreaNnrrfUl attributes lhicl contribute to softssare .T N.ttINNIPrtixn
quality rrrrst be idettfied, Research results itt tis area rlave

*contributed to thre defirnit itu of several software qrtalitt at- speiuisydcsesotae raitrace sayer
*tributes. suchr as correctness. flexilittv. portabtljtts. effi- broad activity . Once a particular nmainntenratice objective

ciencs . rehtabrlrt . rntrttn. testaii u aind iaitairrability setbihd fl ianea persotrtel Mtust first1 Utnder-

[31 161. These resltsI are etucou ragtig arid pr otde a reason- starnd what tlre are to trrodlif . Ties ituist therr trodukfi tlie
*ably, strong, basis for tire defirtliton of the qualti\ ot software. progranr to satist'filte miaitntetnance objectives. After rol

Sincc: software qUalit% is etivirrtiiietrt deperndenn. sorire at- iaonthymsCISlt ittle10dfCindesHl
tributes rnaN be tre 'desirable than others. O)re attr"ibute affect other portion,, of thre priogramt. Finrally , tie\ ntistes

* whrichn ts almiost flav a desirable ecept fit very lnirrited applica- f ire prograin. Thnese activities cart be accotriplislid I it e

*tiotts ts thre tra~ainu/ridilitr of the prigratti Software trlairte- foiur phases as slnuwtit igA
natice is, a verv broad~ ac lt that includies, error corrections. The first pha.;e cotisitS of ajjialyriniu the piograin if) order to

utnderstand It it Sevr a attributes suchn as, tlre conplevit% of the

-Manuscript reirved Aprit I. t19X0. revised JutN 2S. 1980 this1 programr. tire 10lo1Cutrenation, annd the self* descriptiscrie of0 p
%(irk was spliirted h\ file Rlime Air t~s~ 1 Trrtilener. U S Air thre prograir conttribute to tlre ease of iinderstardtur tIrepo
I ore Systemi ( miiiiand, under (-itracts t 106ht12-76i('01597 and erari.l Thre riorfrlcuvj (difle proguramt is a1 tIreasitte lit thre et

S S )l du is with tire tDepirtriert itI tetricil I ngrncecing ind (urn fort rerlrtiei to titderstatid the progrramt ianf is, uIsually based
fluItr Soecnic, Nothwesterl t(,0sts.lasin t i210t ott thre cirttrol or dlata tiuis of thre programn. 'Ilie w/1Jc. srrip

J S ('flotetli woas with tire Diepartmrenit ilt I lctol nuat I nuincetirre ti'oi's oifl~e prigrartis a. treniasure oft htiv, clear thre tirat
,rtd ( irripi[ter Soevne. Nirthiwestern triiersits, Isaristoi It 60111
lie rw, with tihe D~epartmtent I (iputr Sireni. iAri/orT)J S1.1 is. i.e h owk ea3sy It is to i. uintStarid., atnd rise
I nrsuts . teICHtie A/i X 81 8 Thre secornd phrase Consist, 0 Lrenerarinur a parfticular Irtairiti

%S



2540

testing teclIiriliCs be appiedII- iiire r'Irrerae Ilie pi-I
liar', factor curl I iliitile to tile devebiprir-fi IIe~ut of - .

I - ' -effect ik teciliiues is tile fe'slablimr 01 tile pr gilr PtIi

grirrtl testabilit' ,, def-ined as' a illeastil (it tile LilIl rlielfck
tiu 3dei~Iitels test the priugrarin accordire tuo somte Asell dekfinied

011! -1testiliC critil il.

Fach oft these 'loiI phases canid their associated Nutt' a'le

qlhialitv attributes, arc critical Ito the irainterraiice ptocess. All-
of, these software, iualits, attributes mist he cominired to turinl

I, '~-' an tainahiliti, oeaSUre. One of tile iiost irupo (itln Lfuadlit\
ip - ~attributes is tire .suthiliu*t of thle program. 'I is fact call lie il

lust rated hi, coinsidering a program Mshitch is Cast, to rindcer-
stand, easy to genrerate niodificatioin prupoisal', or. anld eass
to test. If tile stahiliti, of, thle pam~ll IN por lisever. tile

- 1<- ~imtpact of am~ modificationl On the0 progrill is lareeT. I ICnI)Ce.
......I. thre mnaintenance cost will be htighr and the reliabilin ma, also

Suiffer dlue to the introduction of possible ties' erro'rs heca:ILIse
of thle extensive changes that have to be made.

Althoughi I the potential betiefits of a validated programl sta-
bility measure are great., vers little resear cli ha:s beein cirduc ted
ill this area. Previous Stability, TireasureS have ben deseloped
by Soong 131, I aney 101 ,and M\ crs 141. I here esist weseral

-. weaknesses iii these measures which have prevented theit ss ide
-- :<< *acceptance. Their largest problem hads beet ile itiabilit, to

Validate thle iticasures dueC to Model itiputs that are qsiesiCurni-

able or difficult to iobtain. Other wkeaknesses of' these rnea-
soires include anr assumrption that all inodificationus to a Miodule
htave thre saiie ripple effect, a sivmrrtetry assumrpin ilita? if
there exists a non/ero probabilit,, of having to iitairge a mlod-
ule igivetn that module jis chianging itienir there exists a nion-I tR u:I it tn "are 111ruliril.uf~ pn o ero

leoprobability of having ito chrani iiiidiule givern tlnJt Iliii-

riarice proposal to accortplishi thle inPiplenition of' thle mainl- tile i is changinig, and a failure to incorporate a pertormianice

tenaLIi:Ce ohjec:tise. This requiires a clear uriderstandinie of' both ciioitta ato h tbltmaue
* t~~ire ruairiterrarce oblecti',e arid thie programt to be trodifled. 11 II i I I ( i M It Ni I()Ii Li rI(t StI Ixt] IttI Nit , ~ iR I

llow~eter. the ease of genreratinge mraitrenanrce proposals for a
priuririrm is prirmrarl affected Ireatibt xr'nsjji Thre Tire Yozhilttv of' a pionrrarr htas been dirred1CL as tire reICNaIN1e1
extersihili, ot thle pruwrairs a rmeasure of tireexterit towich to thle piteittial ripple effect that tile prograir %,,oiild litase
the prierair carl support extentsiirns 0f critical functions [5[- wiert it is rrrodified. teoccin e itt lte stabihiti, ofj

Thre third phase :osssof acc:,iinrg for all of' tire ripple programr, it is rrecessari, to deveCl~pJmatr o h ib
k * feL t as a corise tierice tt programt rmodifications. In soft- of, a m1odule. Thre stabhility, Of a n1odle1 c:,Iri be dir-tICd as d

ware, thfie effect oft a iriudificanliinji navtot be local to the measure of' thre resistance to the poterttial ripple effecti itt
* niditcati. bt na also affect other piortions of' the pro.- modification of thre modurle onl other nodules IiII Ih rirtti

grant. There is a rtpple etfect frorm thle location of thle urodi- There are two aspects of tile stabilit', of al rridule the loerlcaf
- ~icatioii to thle Other Ixirts of thle progrlarrs that are affected aspect artd tire perforrrartce aspect. Thre 1Ip a/i ;,Iahifitv kit j

by tlne rulodificatiori 7 ()rie aspect (if this ripple effect is mrodule is a treaJsure it the resiance to the impripc of such1 a
i:ical or fulli, tiorral In itatioe .-\iothl aspect ot- tills ripple nmodification ott Other mlodules Inl thle progratt inl temlr itsf
eet crreris rthe pe(rrii i t thre prlorrarir. Since ai logical conisiderations. The Jrirformura,ii- bl- i a rnodtle.

rlarge-scale prierari isriali his houh tiiictioril anid perfor- is a treasure of thle resistanc to fle Irmpact ot such arioic- ..-

nanutce reuhuireeits it is ric~essa, to runrderstarrd tile potert- tion on Other modules Ii tice prograrin Iit errms of penirrinrtCc
tial eff ect (it a pnroriri rutiiiatuti frott hoth a loitial vnd cotisiderations. Iii this paperl. locical stabilnt x iasries will be
a perfinriatice point tt sue',', I lie priltar> aitiibure at- deieluiped for a program ad thle modules oft whlich theC pni0-
feiiwor tht- ripple effe. r a a .1 ein tit a1 pturai1 rloi- _,rait is cittpowsd, PetoFIJT fiirnr11ruM sta iItsT tra Mrsae cuIt-
nfcliifuri IN thi jda '~:u i . the po eri-'l l'tiueratt stuhillts is rerii uder ufevelopiretit attd the results will be repoire itt

* defTirrl 11 lit(' ICrSIt~ui,, to flu. iripli'l.,ittiiii o af e JI i i ,I tIbiirt p~aper. Both tile lorcai arid tile perfoirlnc
tit pf- NretiosuIit1', treasuresC te beitrg2 heseIopeCd t(I overuuirtel tile ssecuk-

S let, 1-rn. pha,tlsoiil it testllin iir, 11tiiditiled pvt, ml tresse ifiit vi>sarrx tesrs it a[dlki tireLI srlllIId~IC l kL1111,11 i-
tetr-i: that it ii -fified piuitt ha it feast tire saulic re- bIf1ts ITileasnures ire bettie dfese'pCi %% nt il te iii- 1',' tIeCfrirn -

11011% it o l ticfiir It IN IIpirtut fuit .st-ette ,tIlk, PIe I r Ieti tin lt~ease tiret .1 iiii,uift arid .etn



0 255

I I abilit'. to validate the mneasures. gation anmong the variables in the module. The variables that
2) consistency with current design methodologies, constitute the module's interfaces consist of its global vari-

3)utilization in comparing alternate designs, anid ables, its output parameters and its variables utilized as input -

4)t diagnostic ability. parameters to called Modules Each utilization of a variable
It Shool! be noted that thle stability measures being described as an input parameter to a Called Module is regarded as a

aie ntot inl thertiselves indic:ators of program maintainability, unique interface variable. Thus, if variable x is utilized as an
As pres irusl% nientioned, program stability is a significant input parameter in two module invocations, then each occur-

7 factfor confrihuting to program maintainability. Although the rence of x is regarded as a unique interface variable. Each
mcarsire' being described estimate program stability, they occurrence must be regarded as a separate interface varia'ble
oiust be kitili/ed inl conjunction with the other attributes since the complexity of affecting each occurrence of the

u lie'limt, proi,ii maintainabiliy. For examiple, a single mod- variable as well as thle probability of affecting each occur-
ulc ptorl-1:rro td 20 000 statements will possess an excellent rence mnay differ.

pfg~iistahilit sinkce there cannot be any ripple effect among Once an interface variable is affected, the flow of program
Modulecs. howecver, thle maintainability of thle program will changes may cross module boundaries and affect other mod-
probAbik be qurite poorr. ules. Interinodule change propagation is then utilized to com-

pute the Set Xk, consisting of the set of modules involved in
Dcr t-1,1mieii ,./a lIodnle Logic al Stahilit- Measure intermlodule change propagation as a consequence of affecting
I11ie logical stabilir of a niodule is a measure of thle resis- interface Variable j of module k. In thle worst case logical rip-

tailcc t thc cvpecred impact of a modification to the module ple effect analysis, Xk, is calculated by first identifying all the
ic thr moduiles tit tile pirooraiii in termns of logical considera- modules for which j is an input parameter or global variable.

tiolts Thlisac oinpcrutatoll of the logical stability of a module Then, for each of these modules in X~j. the intramodule
oustI~ hc basd uiponi somic ts pe of analysis of tile maintenance change propagation eminating from / is traced to the interface

acrit hi will be perfornied onl the module. However, variables within the module. Intermodule change propagation
due to thec diverse and almost random nature of software is then utilized to identify other modules affected and these 0
utarirtenance activities, it is virtually mniringless to attenmpt are added to XAki. This continues until the ripple effect termi-

-- to pdIl wh len the next maintenance activity will occur and nates Or no new modules can be added to XkI. An algorithm .

Aliht tis activity will consist of'. Thus, it is impossible to de- for performing this worst case ripple effect has already been
Se! p a stability mleaSure based Upon probabilities of what tile developed (7], (8].
inintenatice effort will consist of. Instead, the stability mea- Tile worst case ripple effect tracing can significantly be re-
slMe roust fie based upon( somre subset of' maintenance activity fined if explicit assumptions exist for each nmodule itt the pro-

t I, 1svh ie 11)) roract of she modiifications canl Teadily be detler- gram for its input parameters or global variables. Intermodule. 6
Millel. Frr this pcirpo se, -a primitive Subset of the mainte- change propagation tracing would then examine if a module's
rin airc .rtit', is cit ili/ed. Thiis co nsists of a chatnge to a single assumptions have been viorlated to determine whether it should
car i,thlC defillti t In In a m1iiiie. This priitive Subset of main- beconme a part oif thle change propagation. If a miodule's as-
Seii,cicvi is iitil i/ed because regardless of the complex- sumiptions have not been violated. thetn the ripple effect will
it-, or tile inamlicirairce :rctisrt , it basically consists of miodifi- not affect the module.

cdi'st, ariahkcs iii the nioiies. A loigical stability, measure There are marry possible approaches to refining the worst
lt!ienC he Corripictled based uiponr the iiipact of' these pririi- case fipple effect which would not require a complete set of
I ise idi tcatiri o the prorarin. lThis logical stability the.- assumptions made for each ittterface variable for every mod- --

uirt wsill ac.l irately precdict the ittpact of these pritmitive miod- ule. For examtple, a significant refinetntt to the worst case
Ill, it on ire p' rl arid. thus, cali tie utfilied tircOMUnpdte chatnge propagation canl result by utilizing the sinmple ap-

eic:ri sr,ililito iilie nlodule %kith respect to thle priltri- prriacc oft examntinrg whether or not a module makes any
it,, iii 0 itt uflls assiunptionts abiout thle values oif its interface variables. These

*IOtie l" theC rijatri ot tire leica,:l siahilit of a 111dl art assumptions cart be expressed as program assertions. If it
I. thc lhteliirial loec,nil ripple efctckt ill tile prograim dires riot miake any assutmptions about the values of its itier-- -

l 1t l' .ucc d Ihere irie tSwo aspects if the lorgical ripple face variables. thetn the tmodule cannot be affected by itnter-
1ii %1 Ilr hi eist f)e C\11TIMnued tOne aspect ~oticerris itra- niuidle change prorpagationri. However, if it dries make art

hi; tre or ,;.irri.bi insilsesth tliri rlwif prigramt assuttiptior about thre value of- ati interface variable. then
1, %ki tile1T uidiL 15 I .itsiirr f' thre ircdifica- thre woirst case is autririaticall', itt effect arid thle trordule is

1 .0l t, I.s.I ie irs, Hl tr1citeouudiche change popaga- placed in thle change priopagationr resciltinv frot affectirng
us lsie i-sI 11i~iit cha~nges across mioduile tire interface variaible if' the intrfc variable is also in thre. .-

- I.. ~ ....r.-rsecri 'd:filie 1uurdufi-catioir. change prorpagationr as a contseqc~iele of'surrie mtiodificationr.

* -I .1 , T ~ r~icrtc ii1s utilizd toi identify thle Bioth itttrartodcrie arid interrirrdule clitge prorpagatioi
'l, I. r .2 %0ii 101s ssij ieaffected by loigical m1ust be utilized iti critirpUir tile expected it11)li t ia piii

1 - is 0il a miidiriti it) variable five motdificationrt ii a mtoduile (il iithter r1itude' Itt tile 1) 0

ii iii i. ~.ici 11A Ir(i cues Iti Idenitificationi of gran)r. A riteaSUre is neededI t0 evalUate the rragrtituude of this
'1 ~ ~ ~ O . i1Itri.1tre iklis ititerfaces arid a lrigical ripiple effect which recurs as a contsequienice of itodits -

1.], Iit I, Ill, p, - Cteuir ititrattluleI CianneC prirpr- ig a variable defintitioin. This treasure must he ,rssociated

.........I



rrT
r

wfil each %ariable dctmiiitoii fiI ,Id:i (hat tile liilji)iA t ollits ix1) '' !I iflatiti 1t, a module k. denoted -

- Iiidit\ mg the %ariable dcltllio liritig CA~t- iuliieiaic han [s1<1 A cani be iiipited. Ilife potential logical ripple
he dc-teriiiiied Thiis Ilal iipc\i ot [IiDoiIctilli0 ettel d'I . uite 5s 1 Iliaslire (it the c\pected impact on
fie Urc wIll be cori1ited~ IM e'ach valijIblc leIiti01 I III tic p-,i~j , Ia lillmitise miiitiatiiiji ti the lldule. Thus, .

eels iiiidiile A aiitk is dliiiI h-\(MA 1 here ale llaiR tile p'Ielilal kCItal I rpIrrC eftt al Il e comlputed as follows.
pissihlc11,1. hicI~rs5~hk iI e used hoi [(MA All o

these mic1511[5 ire Jepeiidcrii 11)WI coliiia th illk ' ut ~ j [IW t~j'~ .( N5

lIdes limoikcA ill inc 11ii iiiieiiC ciaiiic hirpilktZ iiis a wii1

schlcilc i ilitsticI I i~ licillS iisised n te iit wleic IS isle Siit :dl Sariablc detritiis fi motdule k.

ihilill clatle re~tn a a uiiecl~eiCC t lii it~IlL A mlie tm tle hica stabilmt it a module k. denoited

set WK 55 I ci I, IS hd Iice IS

IDci p"on'n/ '. a 1'r iqratn I.,;z ai/ Stahiiv Measure

* iiiihiic'sitvoled n tn ii ritodil ciate ri a gtirti s A IlicaSIfLe til tile potenitial loiceal ripple effect oif a primi-
moucilsienIc l h neroueca~ crpgto c c I I% C Ilo~ -jI]itoap gi deniuted by LRLP, can easily

a .osqec f itiditS i t. This meIaSUre pros-ides a crude ts toiiatt iaporti
IticasurFe (I tile alItililt of effort required tci analy/e the heepirsid ocni-iigi steef~~~ au i

[-Rh- over all of' the miodules fin the prograti. Thus. we hive
grail to) CTISLlie that tile mtodification does tiot in~troduce atl%
ililtlsiltclic% inito thle prograni Otlier measures ss lijeli C.\-

attlile riot oly the niiiir of nodules inolved Ii the Inter- I RII VIA-) [RE, I
itodijie chanc1Ie p lpapatiiil. hut also the inldividual cottIipleXA
its of (he Iltlilcs. 'provide mlore realisltc iliasics it the whrPt ishepoaltyhtaoodfctntom ue

i111111ot ct toil ruiCLIedC( to anlai/e tilec pretanill too enSL whrsole, iepoabl ht oiiaio omdl
A ! itas CU diiad 1t is tile n1Utiber of' moidules in the program.

t11,i HlcISt1StSClIieS aie ]lot 1110Iiiir duce One U.1 slicl11Abscasutil o tln
l~~~lilcd~~~ biieSIC isLIIIII1 of'he ustoiiii iiziiiengs ii primtitive mcdifications is that

pold H~alileIS CUA)C' ' ,:111111CIIIIIII) . The a iillificatioti Canl occur w&ih equal prcbability, to any miod-
c~clttltictiiiiici (~ iscleiiicl ti eitis f te ni~ier t ile aiid at ant\ poit fil the module. hitili/ing this assuniption,

basi. l'atls Illtile iiiLilIC. A baSIc: path is Lchitieci as a a)tli ill tie prohabilit% that a imoditication will affect a particular

theIlldlie tat kilil alsll ll:o~lhilaton .:al vlerlc l iiiiidiile call1 he 0oiiiputecl as I/n. where i is the number o~f
po)Ssible pts (oliiatioil oi'fitle c.%ClotI~itic iiiiibOci 1S. moduilces Ili tire pro-rani. This assluptioni call be relaxed

ths odd(il a drt1-gahtepresetitatioli of the nodule, it acdditiottal Iniformtatioti regarditng the program is available.
For sha til cx,:011tCIfln catit e tcylbetlreeasesuh graph G1 thIltttcniie ~ cluae -or examlple. it- tlie prograin has tonly recentbenrlad
asth iltiuiibei of brances fit i mmttitis thle niutmber of ver-tices aid it is hceeed that a siginificn aroftemitnne
Iti G( p i v- h 7llllI IIIb lofdl te I.I~\ %ilI~o\ ro correctitn. then tile probabilities
coitip1le\it S tneai re. the CIlpei Of itioclificA1utioiu %ani-

couitplxitx ~ttiat particular miocdiles max be affected b,. a modificaticon
able detiltition i of tmocdule A call he com1puted aS tollo)ws itx be altered to reflect the probabilities that errors iil these

[(cmA tuodules max be cdiscoivered. This catl be accomplished by
I. illiltlliZn Somecclipe~t or Soi'iftware science measures 1101].

wbeie(Aimeasureiiolctht ltogicaltstabAaiuyeoi'ra program, denoted

locicalh stabulit ot a tiodiilc is detitied as the re- - S.cl hnIeesalse sflo~

titl~ othe p ,tetitial leclrillple effect if a tidtcait SP I I RlIA.

Vie - to I % riable deI-1tiii It Oft i i tier inodiiles fi thle prograll tilie
pr la i it\ t: J IJ 1C JItC M I lIOfa 11 d leI .A (.iI I ii ii tmIilt (ii\Jil tI r\tiiN Of 1it

A will bt sclec ted iiiudfcaii detited bx t~ ), miust \1i 0w Si .\fxilt I I. Nil \SIit iS

-he dcliliiied, \wv, j a JiW siliptill f, iultPiii Ili this Sectionl, ii alt-orithiti will ble outlined for the cotlpu-
* - tie I pc's it lillilteil,iic iAtIvit\ is 111,1 1i iiuiiificatiii .'ali taititi of these Inical stabilits itiasures Thle followite de---

o,.Cuci ti CIlliqal l atuil its at ait\ poin fit ttldiiodle. T his scriptiitt if this allerittitti1 asSulieIS that1 there does riot exist
Imlieis That Cedet cc-:lilcC ,I CiJ sariible ctbfiili has all\ pi)Ii Kjitowldee L fvill ijlt afftec:t thle probabilities ot

l w ~air cupldl 4iiiitlit Jt b I C 1- ItA'd 1'- 111 t )IIIc i )iti~iCC pro1a1( iiodiai ii.ad Ncl be A cileit ileasUic I]

i~iis This . t"i Caci'l Tile111 %k'e -1ii 31ilitc iic [iiiii er is itiied. 1 lie ailorultloil t cat esuls be itiotId t o it)I(% tot
it varjiabl tetIIIIIii It Ii itic %jiiiil is dstictiid isvice prior kiiiislelee ciicertit the pi bhilitis otI lioli morid-

vwiitii aI iiil.Ci Ii ill 11 It-11CI iii ClclAI1d1
5 Ili itcat ir ti utlic i lteiciit :kiiiplcmt iicastiic 1 lic-

1ir(ibhahi i It s itI It iti iir i, III I I I I i t wil ate, -i p , II al- al iti I cIII ons11 k ist t th S 11 irc I II%.1 S teCI)S
ticritar saile letiii ii '1In Iic Ill, ,'lt Itli ii~l h te ;iiipitll Slip I Iiir ch1 ilitile A - lieiiif the set I k oif all sari-
as I (Iiiiriber) ,t sar icflll- ieii Iii Iilic irolill t ic dletltlim m Ili IMIL11c A lacli ocirile f a variable

deiitoriim Ii ,I Ii m, i A11ck 11 '. hi Tit ,-I l h itt i c "tc L. Jith: %ai i aiabl, is Ici-ld twkic wAitlrir a iidiilc. thenr VA-



~~. . ............. .. .° .. • ; .. - .................. ,. - .. ... , ,. ... . . . . . -. . - ,. - • o . .. . . .

257 "

contains a unique entry for each definition. The set Vk is where P(k) = I i. and n is [he number of iiodulc in the po1,
created by scanning the source code of module k and adding gram. Then
variables which satisfy any of the following criteria to ,k. LSP = I/LREP.

a) The variable is defined in an assignment statement.

b) The variable is assigned a value which is read as input. V. A 01 THi Loix;eA[- St.-xii 0
c) The variable is an input parameter to module k. MFASIItfS

S-d) The variable is an output parameter from a called module.
e) The variable is a global variable. The logical stability, measures presented in) this paper can he

Step 2. For each module k, identify the set Tk of all inter- utilized for comparing the stability of alternate versions ot a

face variables in module k. The set Tk is .reated by scanning module or a program. The logical stability measures can als.
the source code of module k and adding variables which satisfy be normalized to provide an indication of the amountl f-

any of the following criteria to Tk. effort which will be needed during the maintenance phase. '
.a) The variable is a global variable, to accommodate for inconsistency created by logical ripple

b) The variable is an input parameter to a called module. effect as a consequence of a modification. Based upon these

Each utilization of a variable as an input parameter to a called figures, decisions can be made regarditg the logical stabilit-
module is regarded as a unique interface variable. Thus, if of a program and the tmodules of whici, the program is com-

variable x is utilized as an input parameter in two module posed. This information can also help maintenance personnel

invocations, then each occurrence of x is regarded as a unique select a particular maintenance proposal among alternatives. 0
interface variable. For example, if it is determined that a particular maintenance

c) The variable is an output parameter of module k. proposal affects modules which have poor stability, then

Step 3. For each variable definition i in every module k alternative modifications which do not affect these modules

%. compute the set Zkj of interface variables in Tk which are should be considered. Modules whose logical stability is too

affected by a modification to variable dcfinition i of mod- low may also be selected for restructuring in order to im-

ule k by intramodule change propagation [71, [81. prove their logical stability.

Step 4: For each interface variable / in every module k, The logical stability measures can be normalized by first

compute the set Xki consisting of the modules in intermod- niodifying tile computation of the module logical ripple

ule change propagation as a consequence of affecting inter- effect measure to include the complexity of the module

face variable / of module k. undergoing maintenance. Let LRE,* denote this new logical

Step 5. For each variable definition i in every module k, ripple effect measure for module k which is calculated as

compute the set Wki consisting of the set of modules involved follows:
in intermodule change propagation as a consequence of LREA, =CA + L IP(ki) LCMki].
modifying variable definition i of module k. Wki is formed i. ,. .

as follows: where Ck is tile complexity of module k. lhis enables [.R'

R = U Vk, to become an expected value for the cotmplexity of a prinii-
i. ki live modification to module k. Let Co be tie total complexit'

Step 6: For each variable definition i. in every module k, of tile program which is equal to the sum of all the module "-_

compute LCMki as follows: comnplexities in the program. Note that LRE _,<Cp since the
ripple effect is bounded by the number of modules it the pro-

..CMA, = Cr gram. The nornialized logical ripple effect measure for iiod-
W' k'A, ule k. denoted as LRIt . can then be calculated as follos "' ." "

where C, is the McCabe's complexity measure of module t. IRI-. LRI C ,

- " Step 7. For each variable definition i in ever. module k. A

compute the probability that a particular variable definition Tile normal/ed logical st abilit, llneaSote ll module A. de-

t of module k will be selected for modification, denoted b nioted as [ S .:anhelln h .e alculaCd as fllowsNA

. a tollows 1.S* I I R I

P(k) I 'fithe inumber ofelements in "A 17lthe korioal ICd Ioi!K al Nt1t W neaSUle hIa laNee t 1 ) I

Step I-or each module k. comiite LR. ai d s with I the Optiimal logial stlahlhti Is norlnah/cd ioplal
follo'ws stahihts can hc utitie/Cd lualntatisel\ ki it call he coirlalced

' with ollCLred dtkla to pTI d i qd lal t I atIIC Il.IaC \Ls I

" 5 The loltlllali/ed logiw i slahilts inca uire for tle prVclaii-

IS, '.LRI A denoted as [Si*. &anl h , onmpued 1) l h1t ic.tlatllli tile
norllll/Cd 10CItl iipple chte Il 1 ,IcaUo I r the C ' i)ufalll."

Step V ('omlputlc I.RII and 1ISF as follos: denoted a I RhI)*. a, folh,,.

LR I' [Phk) LRF:, I R ,ll'H1* I/, I RI -
• S i. . A' ' I. -. ..

• ..I l
' ]~



* 258

I ire nr 11 rralieekI ic I sAid III~ trcasio Ic Ir ?IItire pliciari call

[S1* -~ I 1RI P

[,SI'*h' lids lic5 1,111LC and litrerleiiioii as t S*

Iii this sectori tile Iricical stabilits mieasures foir thre pro- N

inrai in Vie-. 2 N&IrI be calculated accoirding ito thle presiiiusly
- ~~~descrihed algrritloin ds llrsI

-1 ~ ~ I [R-sri5 2). LRI'IINI)-r 1 2.7.

Thre loer-cal stabjilil of each (it thle rIjidUlS is civen b,,

LS.,,~ 0.25. LSR[<o)(s =0.34, LSrR()o-ts =0.37. 1

* Tire potential loiical ripple eltect of' the prograirt is 1

LREP 3 .2

anid hence the I greal stabilit of' thle programn is given by

LSP =0.3 1

The normnalrced logical stability mecasu res for each of' the i! i
modules anid thle progran are given as follows:

I1,2 An C\.irirp1 rf f r ai I r - MI M1i 1 11 io fi i' iii ii ,r' NLS~lA I =0

Ls* of 0.02
SpeCiticatinIlS bNt differ11'In Or dsg incrdinric. IA'Vical sta-

LS* ()()IS= 0.06 Wiit me~asures for each version ot' the lproiri cOulld thein

I.SP~ 0.0267.he calculated to determoine wich poissesses the best stailljt
A set of' identical rirrditicatronIS to thle Specifications if eaJi

These measures indicate that the stability of' thle program in programo could then be perOnied. [ori eachoifaro o

I -e. 2 is extremek poor. An examination of the program pro- each program. a logical coitIpleXits ot inodificatioril I (AlW
sideN liruitiose support of' these teasures since tile prograrlil could then be callcuLlad!asd Uponr thle difikirits\ or1 iii.

ltjli/es coilmnonl %ariables inl evers module as well as shared] pheinetling the prricidl muodillcatirirfo fil Ie piri)Lilr (inc
intOrtlltiri in tile form of passed paramteters. Thus, the particular Method 101 calCHlatiirc an [(Al hl piesisl b)Cer

- ~chart e propagation potential is very high in thre prr r. decie VI Alter a sigriirr~mt numberc of ideitri,lIPVpe-
ificationl rirodifications rave beeni imrplemntoed mil 11 Sers~lls

\I. VAtI M.A tN (I St A11tt-t I Y \.15\5itRtS of tire prigrami ani average logic al coirplecxrr .11rrdt~a~r

* As presriously imenrtiotned atr important requiremient of thre AL.CM, could be comiputed o'm each kersioll of lie proorlirn
stabrlito. mleasures riecessars, to increase their applicabilits. This AI,01 reflects thre stabilit )I the proijar and, thus.
anrd acceptanrce is tlte capabilit of validating them. Thie tire ALCM Canl he ut11ifIed as a %marrale i tlie eSIeruiirrl

* *preoirois staiihty treasures 131. 141. 1ii1 failed to satisfy this Al'ter a sierrificant rrunrlber Ot sets 0f pro1grams1' use\ Milder-

*-requiiremrenit due ito calculations ivlngsubjectivec on dif- gone threir' sets tit' mrdificatiorts. eSpertrerrtal crrrcluisrrrr

ficll to obtain inputs about thle program beiiiit rire-asured. based upont a statistical allals iN of tIre A\( Of ieire11s andI
-lire stabilitslreastires preseinted ill this paper dir riot sufferC thle stabiits IlteaSrireS cold be tororulated -

froiii these lirriratirs sirrce tires are produced front lgor- This direct approach to sairdatror of tire stbilit\ icats~loe
ritfrrms Milicii cajlculate irteriodulei aiid irrrarilodule chltarge will be diff-ICUlt kilue to tire rrrirrrberI if procrir1S Ando rrrodka~. .,
plorpagatiiri prorpcitics oftir ie programr being nmeasured . Thus. thorls trcessar it) prrrdlice igifcitStatistical restilts lI hu.

threse mieasurres easily lend thiniselves fo ',alidatiori studies this direct ajiproadli ito sahldatiort \%ill be performred rrirUrrg 1*1-
-* ~~Tire stabilut_ mrrasrr presented ini Iris paper cart be %ali- tirel rirrare data baseC M10)cil ol bel :Cdated Ill corrflirc-

kd o iher directlk thrrorigh esperirretrilaiut or Irrdilectlk tiorr ill tire sairdjlorror ol our prograir rrillirtihrilmt 111cr-
tho',1a drscuisiolti oro they are IlrrrUCeld bs various Sure sslrrchirs cur-renitl miuder tiesticatort.

cstrfrlusireo attributeCs of ir procratrr ssiuci affect its stability rec stabrlrty rociir, prfsCrut- l irere 'Mu iAso be Irrdlic'lIi

Ilrrlrre iniarlttr.rtr~c IHire firect approachr to sairdatroir re- siiteul by\ slross uric ros ill, 11cosus are aft*,co '5ne -5srIl,..

- fruirtoS jr treerhie oit rriuirtetuilicC iiftttialiii tri aw sic- ttriutes oftitre1t proLitll M101 Jr afI its Sliabtity dutu

1101-110ir lirirtrber of sariorrs t\ pes oil rroirrrarru in ii fferentt 11ruru11iiterrrrc fli treir-rfro Mottrbrrte ssfurlr aftest mIs itttll,

1t11 ftr d it i rotr"ls rot a .u srle itet (fInc e~jrsttIitsillil ,pjiirtrJo.fi trIltiis ].ifiot W i r IA r1IJ1tetW .rj isirNic 1it11C! 0ia1t 1(110 5,rtL)i,l~

'Ali,111,1 too ittttt '\.lltl rCI t frrll rtt delssqlrisi f lo rtti I ,11Ctitr 1 " trIsi..of 11C. irltr~~ll-n'~nt



259rrr .

ant Indirect validation ot the stabilmt measures must shox affected by a change to a module. i.e.. its sc:ope ot effect. is
* . that the stability of programs utilizring parattetel Passing is a Subset oi'fithe tmodules whiuch are directis or indlirectly in-. --

Penerally better than that of programls utIlliIug global vart- yoked by the modified module, i.e.. its scope ot control f 21.

tbtc,,. This can he easily shoii since tile calculation oft I-S An Indirect validation of the stabhit measures mnust. there-i
is based upon the L('N of' each itnterface variable In Module fore, shouw that the stabilit oft progratis possesstttg this t. pe

I Since global variables are regarded as, itnterface variables of cotrol and data structure are better tihan that of programs
and since tie LCM of anl interface variable is equal to thle Stll which do nlot possess tltis attribute Now a progratn wxhich
of tile complexity of the mlodules affected by tmodi ficatiotn exhibits this scope of effect scope of' Control properly has a%
oft lite interface variable. LS, will be smtall for modules sharing logical stability which is calculated from thle liiscal stability%
the -dobal variable. Thus. thle logical stability of' thle programn of its modules. each of' which is bounded abtove by the surm (if

Aill Jilo be smiall. Oin thle other hanid, ift' tincto is the complexity of the modules which lie within its scope of
Owl ka parameter passing instead of global variables, the LCNI of control. If' the scope iof' effect of a modification to a module

-the parameters will generally be stmall, and hence LS, and LSP dues not lie within the scope oif control of the module, thle
Aill getterally be iniproved. Thus., the stability mteasures in- logical stability of the module is onl]\ boutnded abiove bv' the

*dic:ate that the stability of programs utili/ing paratteter pass- comiplexit,, of the entieporm hs h tblt ia
ic- is cetieralls better thtan that of programts u~tilizinig global sores indicate that the stability of priogramns possessing the
variables. scope oif eftectjsciipe of' coittrol attribute ate generally better

The stabilit, oif a progratn durnimg mintenance is also af- thatn that of programs which do niot possess this attrib-utfe.
tx':IL t 'd f ile tttiltiom if data abstractioits. Data abstrac- Atnother attribute affecting piograto stabilhty dllu ingmn

ti(IN hde ittotinaititn about data which may undergo imiod- tenatice is the complexity of the progratt. Prigramt comptilex-
ifi,,atiiit f'rist the priigrn modules Which Mtatnipulate it. ity directly affects tile utiderstandabilitN of' timeprga ani
TItus. data ab~strac:tilotl utili/ation is characteristic of moiire conis-,quently, its miaintitabilits'. Thus, anl itndirect salidatisin
niiiitahle proigramts. Ani itndirect validatiotn of lie stability of the stability meI ue IICS SMust , therefore, show that thle sta-

neaatires mtust,. therefore. show that the stability of programis bility (if prograttis Asith less coniplexity is generally better0
nt i/mie data ,ibstractIism is ,encralkl better thiati that of pro- than that of programs with tmore complexiy . This is readily

-ratit Ahotse itodUles dirCtlk iratupUtate data structures. apaetfrot the calculatiotn oif tire logical ittlxo o

Ibi cai csil heshwn ~ eairitmngthe stability tneasures mfodificatiotn of an interfac, variable. Tbhus. citOplity i
if a prigrain that utiies data abstractitins anld comparing clearly reflected in lie calculation ltf thre stabilit,, measures.

thoise meiasires it) that oif ati eqimiIVahetit prigrain in whiuch thle The stability measures presenited here catII .1LIus. be indireetls
iti(dUite dirctls access thle data structure. i.e., data abstrac- validated Sitnce thesI itt corporate atid reflect some aspects it

t1)I I I~ 0I/L 1h odtl "Oul IIICadt - programt design eiicralisre~ugni/ed as cuutfmhultltl t tihe

t'ratslist JC dat ttir (istuItirg Vt1 ride Icrd ulpeclin ittl[)u~~ a1 pirt To.IrdM he iuileit dultqini epfn is uit

Jho~li t hasir tTiphuy ,c iuher and a,: (heparItie mtaimt. isdiaeee Irettd \ittiisf nititiuthe

sjtieu hA t rItule NLIC ITAI irtitialties te 1a srtreaid stblt VitleaIu I aI( tiN iisrNli/t het IIII lItu .lsif e

'rner lie ~ uids by theII etLIl)Isyce atititr AI ) xl, asue weII .11 1\IrlCiT. iiCLaidLH ittoolietuati file logtheaestahiliiem-
I islhe C I ari td /t t"itlist011 accs the dta rcur is I, I uhtIc j i sor as r ueadfiefll aslc it )Itue t A 1aiti sit ttte 1) illre haIe

- h ;,rierttipii.u 'niumhnlcr tuinbe o ipJtlt this degn, )w been ~ preet l edild I'lll hlt
i''diie ll Iis ii1\11 s tiritie the red tkt tedt i~tecrtemrcish 1t:i ~nuei(i''ieu'

S iI t i 'erd h tIe deiirrtet ittel i i aiii ftureit re casic ti ndse thus' ,iilsht.,uttstt 1CIlk I IJt , t~ 'AIl tihill

orlc\ l lcsts :ir.h% filei cutissic i uber.te Ailie. J.iuc giIns 'utlie c ii tss tdli slrird tiu'ihli Tleien

tnt. -INjl tn.. Vn~ Jnn mk th dat. Itr iss es c in' odbt f h t iiain michti tilll a' III iseL %,i tow I. i iiea . rrrt \ IIi

K,-~~~~~ ~ ~~~~ LtIc -mplw cc num . brh . Ilti ibstizispl IsIihtn I 't a ICIsstI-~ti~icsr'. ietelse

11 I- io [\i I, thal f ' i sle C Ird In. i a t Ia..' ~ f cn mI ~ ll.IIik ,IL'

I1L or .] I ,rdcrco I, Ih .c)iflcl 1 la 'h ' i e tier ai r p ertsri arc h iit HItciit' i e . i cai tssiht

I,! flw 'I' .5ci III ' o lo. V , jil / n' m us ' tus I'' ii ltt et 31m etlo - l c IC 1 ie koi j I I A hil I fst~ lit' ao istsrrsit 11h rilil [It

I I t'oli - 11 l is Ic t t II file-.- 'i tlits tn kiSt a 1 n Itlie 11fos this' A rn ttr isis ti'' IIa Prigittit'' t ili

' " I I I ii , . 1st c i' % c Its irs.i it pr- hi ts h p t It.' it' e ii jIsf ''Ii; 't it lss'ilii 1(,!

, , ,I'. Y 1,ill. h-i, Is itst
t
t'.,rmsitii~' ir st~t i rs mo 'rw, u' s tsir s' J t i Ilim 'is-

's't t -lj l II,' t " f II I c il II 'fl J I, I tI s'I ar 'i5

1- 0 1 '' I il , Il,''l biif e~ .a ca ir t t 10 t) r! m x i Ith li% p o ~ fl a l

o ' - *' I 1j h--l ii -ft il ) h , ) 11 , ,i m - o J , c (
- - - - -- - - 111[1 NI



HIlCaSUeIC h1is Inaitainabitit melaSUre rouLISt he calculatable I I S S Na cj I S 11110'1111 .1111 1i .% M\al ( ICerT, "Rippcle Olte,
at eac:h upiase of the software life cy~cle arid must he %alidated and 11, "1 !ii IlililaeiiiiC ,c I c (WHAU-( ~

.-\rc~ihef area of' tuture research invokxes thle dexeloptti)I cll 181 S S 'a , 'SellIICIerieIC 01AJIV SIcIcccciar "I technical pl"tl

iutcrcatcdL restructuring techniques toi improve both tile stabil- c' <PN SA)A8c2i.Av91

III , a pwgrair anid tile Modules of' which thc program is coni- 191 1 ig cibC "I -2, ljI\II In-Vc, //'I20 Pc IrnSS76wr

ci ised IThese r est ruct uring techniques should be applicable at 110 N1 11 Hlalstead, fi-cnients ct S 54/ware Sc cunc. NeAc 'a rk

r ach1 phase of' tile software development. Restructuring tech- I Nstcer Ncrth-tlolland. 1977, pp. 84-91.

tikqie\ cicut also be developed to imtprove thle other cJuality 'lems, in R uscarc) Ii ire, ticcp in Soil war rechcnologi .P1
-~ tjir ti . hes'A tAied I d ( tnbielc A n, 'I hress 1979, ppisti16139

-~ ~ ~ tTr ccorrimbiiting inaintainabilit hs restructuring eee.IdCaibil.MAN.IPrs t7.p tIf-t9

te!ujitiqis -1L a~tl~ialiiprive thle mlaintainabiliti, of' 1121 1 .a courdcci and I (>csat Stnctcred Decsigni. Nourdccn,

fte proirtam at each phase ct' its developitent. The net results j)~

Iil tis .ippProdac i shoumid he a significant reduction (if ftile main-

* ~tetiane costs (-t sottware progratins and.- consequientl% a sub- Stephen S. 'au S6iM S~h!'73). for a photograph and biog-

- ~~stanitial redUCtiuc Iti their life :,,cle costs. Progratil reliabhit\rnmcp4- rteS-r~ier9) su i li RNA oS

* shouc~ld also be impricsed because f .esser errocrs nia% be itnjected
* intoi the priceram during prograin changes due tic its improved

ciaitaitcabiliti, Jame% S. (olcofello cS'78-M'79i received the
Ii S anid NI S degrees Ii cciathema tie/corn-

Rt i i i N(i Is IU11 ic ki 1 eceITOicic Northern Illinoi Unner-

iI)ecalb, Ilc 1976 anid 1977, respeiticel'.
I ifk ci, Ichinc, "Solmtare ind its Imcpact A qucantitatic asse:s andic the Ph I) degree in compucter science

crcctt,' IDalanicicmmc. pp 49-59, N 1973 Irio Nortliuestern tcciccrsit% , I vanstccn. IL.
121 %1 V Zetko~i1,. PesetssonoIt t nim:nec A1CM 8ii

(Crccpu/ Sccrei. cccl 10, pp 197-216, June 1978 A\f1er criduadting. lice AsvI a visiting Assistant

131 N L Sonc, "A prcogrami stahjlit,, ticasu re,'' in /croc. I19'7' AInnccd Pro)CssorT in the lieparlmtnt of Fleetricat En-
J( 1Cnr. p 13-73gceinccif and (Crcipuccr Soiene, Northtwestcrn

41 G1 I Mci. Rc-iiahli- St)rcc arc- thrccjch (Cicpccit I)ei-cen Pv triersil tiIc jiniced tire ta~ult,. of ttte De-

rOel1i (hcrCiTr 1979, pp 1 7-149 pirricei ( CnipIcrer SIoenLLe. Ariiccna Stite Unicrsit" Tenmpe. in

I15 1 A MCall. P K Riclicris. anid (I I VAaiters. /-acc(rs inc iSoic A .. u cisi 1979 and is cicrentt, an Assistant Proifessocr there. lie is in-

"are ()idaltic Ilounic- Ill I'rticinart Ilatci/occk on Soturn ace crested iti the relcalcilits anch airiinamhihit> of computing sy tenIcs

)ualthi rlu an -teqwi~iticci ianaeir. N I11S AI)-Ac49 1155. NiN af cid deceprent. %alidlatiori, and apphiaticin of sofmTtwe till city

1 NI lianes-Ndceorriii rd i'cc/c,,. .-II-IIC Iii~VtI)I316 I, l r(,A/S D (cllIkoello is a mrembcer Of) the Assiiiaticcn for Computing Ma-

UI-all Jcci i nccict, ci t ,I 4 1 pi1. pp 7 1-179) cinerI anid Sicnria Xi

* 64

* 04



261 0

A METHOD FOR ESTIMATING THE EXECUTION TIME OF ARBITRARY PATHS IN PROGRAMS*

S.S. Yau, M.B. Carvalho and R.A. Nicholl,
Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, Illinois 60201

One measure of program performance execution time [1] . It is assumed, for
is the execution time of the program. In the time being, that an intuitive
this paper a technique based on a definiton of execution time is "the
self-metric approach for estimating the amount of time required to execute a
execution time of program paths is portion of code". A more detailed
presented. Estimates are obtained for discussion and definition of execution
each of the operations of a programming time will be given later.
language. A program is then used to In this paper, we will present a
analyze the program to be measured, technique to provide an estimate of the
inserting additional program instructions execution time of any set of statements

to obtain statistics regarding the in a program. The reason behind ti.e
execution time. This work was being done effort to provide such information is •
to assist in the analysis of performance threefold
ripple effect during program modifica- 1. to provide the user with -
tion. In this application, information assistance in the decision making process

may be needed about each execution of about program efficiency when selecting
specific paths with critical timing different algorithms,
constraints. The particular paths to be 2. to provide a tool for the
measured, and the type of statistics to development of faster and more reliable
be provided are determined by the user. programs. By having a frequency count of

This technique has been implemented different modules of a program, the user
and used for experiments with PASCAL will be able to recognize areas of code

" programs running on a DEC VAX 11/780 which are never executed (indicating

computer. redundancy or possible error), and also
those areas on which to concentrate 0

Index Terms -- Dynamic monitoring, optimizing efforts (the performance
execution time, hardware clocks, PASCAL bottlenecks and heavily used procedures).
programming language, performance ripple It has been reported that, for a typical
effect, program performance. program, approximately 3% of the code

accounts for 50% of the execution time

INTRODUCTION [2],
3. to provide the software

Program performance is a measure of maintenance personnel with an easy-to-use 6
how efficiently a sequence of statements tool to detect and measure the
of a computer program is executed in a performance ripple effect [3,41. Perfor-

given environment. Ideally, one should mance ripple effect has been defined as
be able to determine an absolute figure the change in the performance of modules

N which would be a measure of the as a consequence of software modifica-
performance of a program and remain tions, and is due to the existence of a
invariant, regardless of the environmen- performance dependency relationship
tal conditions. However, as will be between two modules, say A and B; that
shown later, such a measure is extremely is, a change in module A can have an
difficult to define, and hence the effect on the performance of module B
restriction to "performance in a given [3,4]. Consider two modules, A and B,
environment" is made. from a given program, as shown in Figure

A number of program performance 1. Module B can be affected by a change
-. indices have been proposed, and the one in module A if there is any kind of

that is most widely accepted is that of linkage between A and B, such as a
control and/or data flow link. A change

This work was supported by the Rome Air in statement S in A may affect the
Development Center, U.S. Air Force execution time - a performance index - of
Systems Command, under Contract B. In order to check the analysis of
F30602-80-C-0139. performance ripple effects and to test

0* -e

• /<~-' I
* °o



262 -

the correctness of a modification, it is with CPU time consumed, roughly

necessary to test the performance of all classifiable into two broad categories
paths in the program which have variations in hardware speed and effects

. performance requirements. of system software. The former includes
The technique we are going to mixed memory speeds for the different

present is based on self-metric analysis levels of memory hierarchy, cache 0!
of program performance. We describe a performance, and the size of the

set of pseudo-statements to be inserted allocated working set. Software factors

by the programmer into the program to be include the cost of processing interrupts

analyzed. This is the method by which ("quick" interrupt service routines are

the critical paths of the program are sometimes charged to whichever process

" defined . In order to estimate the was interrupted, because it would not be

execution time of a path, we must know worth the effort to charge it to the

the time required for each operation in appropriate process, context switching or

- the high-level language. Experiments are supervisor/monitor services) and the cost

performed to determine the average of scheduling and statistical work.

execution time of each operation in the Obviously, any arrangements to
high-level language. We refer to these reduce these effects would restrict the

values as the costs of the operations. utilization of the system by other users,
Using a table of costs for the operations and make any measuring session cumbersome
of the language and the pseudo-statements and exceedingly complex.
inserted by the programmer, a source It is true that, today, most -S
language program analyzer modifies the operating systems do keep track of the
source program to include additional CPU time used by executing user

statements to update cost counters processes. But, besides the fact that

associated with the paths being timed. such information is plagued by the

To demonstrate the technique, an analyzer variations already discussed, they still .

has been implemented for PASCAL programs, retain the most problematic aspect of

using a cost table for a DEC VAX 11/780 timing procedures and measuring CPU
computer. We will compare the results usage, namely clock resolution [5,6].
obtained for two programs under various The clock resolution should be small when
conditions, using both the system clock compared with the time spent in the
and the analyzer. procedure. But unfortunately, this is

not true of most systems.
DEFINITION OF EXECUTION TIME The IBM/370 hardware includes a

time-of-day clock (real time clock) with

A desirable characteristic of any a resolution of 1 microsecond, which runs
measure is that it must be repeatable, continuously and provides timing
*therwwoe it would be of little use, if information for operating system
iny. This condition restricts the scheduling and accounting purposes. The
ilef I n It i,) or execition time since the clock is easily accessible with one

o xec-t ion time of a program may mean one low-level instruction (move register

ot ;eve ral different things, depending on type), and has been successfully used to
trt, point of view from which it is being time procedures [7].
c Id e red. The DEC VAX-11/780 architecture, on .

In a uniprogramming environment, the other hand, presents a very
measuring CPU time is an easy task that restrictive clock system, as shown in

requir-s only access to a real-time clock Figure 2. The CPU time information
which can keep time for any desired time stored in the process header can be read
unit. CPU time charged to a process, or by means of a system routine available in
Stime units used for the execution of the the VAX/VMS Operating System : the "Get
I n.t ruct ions between two points in a Job/Process Information" system service

program are due only to the execution of provides accounting, status and
'hat particular segment. identification information about a

A use;r in a multiprogramming specified process [8]. The accumulated
,nv1 ronment may associate execution time CPU time may be read in 10 millisecond
w 1 th turnaround time; that is, the span "tics".

t-- ime from the moment the execution Therefore, when trying to measure
c ,mmand is issued until the moment the the actual execution time of procedures
tanK is completed: alternatively, the by means of the virtual CPU time, one

. ,xeut ion tim, of the program may be runs into two levels of difficulty: the S
V ewei a; a masure of the program's first level is the problem of accessing

n L S umptin ot (virtual CPU time - real the operating system clock registers, and
.imf, m. is interru;pts - or it may signify their inadequate (too coarse) accuracy;

P i m" p-1s t h, execution of all the second level is the variation
s,,.;auy :;y';tem ru ;nrs. associated with the virtual CPU time due

1 1t i1 (
1
05f that there are to memory management, interrupts,

.'",r A. :;, lrs i vuirl i n asociated operatini system ervice routines and

[. . . . . . - .- * *. 7 *. >

* - * *- -A-.•

* *. . . . . . .. . . . . .-. '-:-



•-~4 7 7 2 --- , W. I ,. . . ... .

S263

shortcuts in the accounting policy, and occurs when the augmented version of the

the overhead introduced by the use of )rogram is actually executed on th(
software probes that call system iser's original input data, producing a

routines, report on the execution stati-t'cs In

In view of all these considerations, addition to its normal o , . The

we shall define execution time as the entire process is represent, d in Figure I O

amount of CPU time used by a program when 3.
a sequence of statements is executed,
regardless of the environmental THE PSEUDO-STATEMENTS FOR
conaitions. The execution time of a INSTRUMENTATION PURPOSES
sequence of statements, then, is the sum
of the execution times of the statements Four pseudo-statements and or-
of the sequence, each of which is, in pseudo-declaration are defined to allow

i ;n, the sum of the execution times of the user to instrument the source code, O
t:,e operations performed within those issuing directives to the analyzer to

statements, take actions such as to set up a new
counter, to turn a _,ounter on or of I

METHODS OF MONITORING PROGRAM EXECUTION (thus defining the segment of code that
is to be monitored), to reset the val--

There are a number of different of the counter , and to prepare the data
approaches used to monitor the behavior file for outpu, and record the results.
of a program. Lyon and Stillman [9],
list four typical monitoring philosophies The VAR Pseudo-declaration
and compare them on the basis of a numberof characteristics of cost and This pseudo-declaration is inserted

convenience, such as portability, by the user in the global v.ar iable
accuracy, cost to prepare a program, and declaration part of the source program. ."
clock requirements. It instructs the analyzer to generate the

Each of the four methods has its code necessary to declare the glotal
advantages and disadvantages. The first variables which will Keep track of the
method, using clock interrupts via an statistical measures gathered during the
operating system, is excellent for use execution of the instrumented version.
across different compilers, but requires The names of the probes are declared in
a fast clock for good accuracy and the program by the user. The syntax of -'*.-

precision. The second method, this pseudo-declaration is:
event-driven hardware probes, are good in $$ VAR [C-i ,[* C-n
every respect, but are costly to set up. where C-i ... C-n are the names of the "
The third method, inserting calls to a probes. These names must satjsfy the
system clock limits use to one language, syntax for an identifier of the %
but is an excellent approach if there is programming language in use.
a consistent clock, and if the operating
system keeps track of program-state and The INIT Pseudo-statement"

supervisor-state times separately and for
each user. The fourth method, placing The INIT pseudo-statement initla--
counters inside a segmented program, lizes all variables used for tallying I- '
although limited to one language and purposes, and opens and prepares for
requiring knowledge of the approximate output the data file into which the moa-
cost for each statement type, does have a surements will be written. This pseu- " ' -

'great advantage: during execution of the do-statement should be used as tie first
program, performance monitoring does not statement of the main program. The
use any clock, syntax of this pseudo-statement i5:

This latter method is also known as $$ INIT
the "self-metric" approach, due to the
tact that an instrumented version of tie The ON Pseudo-statement
program gathers all the information about
itself , in addition to performing its This pseudo-statement opens tI
normal function. This is a mcthod which scope of a new probe and def ine thc
nj had a number of reportei uses, for starting point of a new segment
mO n t)r i n.m bo th the execution time and 4hich is to be t ime-moni tore T! I'
t loJIcal hnavior of the program syntax ot this pseudo-statement is:

* ,9- 1'[. $$ ON PROBENAMEh
Tee I1t--mtrLIcw approacn typical ly where PROBENAME is one, of the prose .4n-

con 5; in ts f) two phasn!; the or iginal which were decl a red in the VAR
source code is first acc.pt-d as input by pseudo-declaration, which has not Vet-
a source code analyzei , which, pm,,duces as been used.
,outpit the instrumente : vs 1 n of the" .
prog am, cost a in i ng t t. necessary code The -OFF _Pseudo-st atoment '4
tor the tal lying functi on. Phase two

.... .*.. .v>
- " . .. .. -. - -.-.- . . . . . . . . " ..



'0.. ~ 264
execution will be stored in a

The OFF pseudo-statement closes the s1tandard file.
"-". scope ot the current probe, reestablishesthe scope of the previous probe (there is Special Notes '

one predefined probe), and generates "" '_
source code, which will prepare collected The user should be aware of the
data and do simplification and output of general rule that all paths which begin 6

. intermediate results. The user may at an ON pseudo-statement must pass
" specify whether or not he/she wants every through the corresponding OFF pseu-

new measurement of a probe to be do-statement. This requirement is one of
separately recorded; in either case, the the difficulties associated with
,jemp vulue measured by the probe wi l analyzing programs which contain jumps,
:e computed. The syntax of this pseu- and hence the "structured" languages

$$ OFF AVERAGE provide more assistance in checking that
or $$ OFF NONAVERAGE this rule is followed. The following

The AVERAGE opt ion determines that examples illustrate the use of the ON and
only tie average and standard deviation OFF pseudo-statements with three
are kept, whereas NONAVERAGE specifies different PASCAL language constructs.

that each new value of the probe is also Example 1:
to be reco rded and o utp ut. REPEAT -'

The OFF pseudo-statement ends the REPEAT
scope of the last defined new probe, .$ ON PROBE1;

*" - therefore avoiding possible ambiguities .. ON PROB,.;
due to the overlapping of probes.
Nesting of probes is allowed, however. UTL

The' Re$$ OFF AVERAGE
TheRESULT Pseudo-statement is incorrect, whereas

This pseudo-statement generates REPEAT
instructions to output the gathered data $$ ON PROBE1;
onto a data file. It should be used $O RB
after the last executable statement of $$ OFF AVERAGE
the main program, although this is not UNTIL ... AV.-AGE

"- required. The syntax of this pseu- is correct.
do-statement is:

$$ RESULT Example 2:

How to Use the Pseudo-statements IF ... THEN
__BEGIN T --bN PROBEl; SlEND

The following steps describe the use ELSE
of the technique: BEGIN S2; $$ OFF AVERAGE

I. identify the number of sections of END
code to be monitored and select an _s incorrect, whereas
equal number of probe names; IF ... THEN

2. in the variable declaration part of BEGIN --ON PROBE.; SH;

the main program, insert the VAR _T OFF AVERAGE
pseudo-declaration listing all of END
the selected probe names; ELSE

3. for each section of code to be BEGIN $$ ON PROBE2; S2;
monitored, insert the ON pseu- --- -OFF AVERAGE
oo-statement at its beginning, and END AEG
the OFF pseudo-statement at itn is correct.
end, specifying the AVERAGE/NONAVE-
RAGE option; Example 3:

4. insert the INIT pseudo-statement pON PROBE
before the first executable state-
ment of the main program; IF ... THEN GOTO 1

%. insert the RESULT pseudo-statement
after the last executable statement $ OFF AVERAGE

of the main program; O

6. xecute the analyzer using the 1I
segmented version ot the program as is incorrect, whereas

npe nut file and assign D new ON PROBE1
)utput file to hold the
kn trrmont ,d ver.§on; I F ... THEN GOTO

Imp I , i r.K an: execute the . . ..
In:;tr mented verl n; .

I. t'I , f - measuring the

- ::

0-' S' '

. .



.' 17 TO . . W . - I .F . - .-. .-

* 2965

SOFF AVERAGE inserted for ec~h PASCAL statement type.
is correct. To est imate the total execution

time, which is de ined as the sum of the -_.
THE EXPERIMENT TO DETERMINE execution times of each individual

THE EXECUTION COSTS statement, it is first necessary to
nidobtain estimates of the rolative cost (in
.In this section, we will discuss how units ot time) for the individual

experiments may be conducted to determine statement types. The algorithm used to
approximate relative costs - in units of do this, described in the previous
time - for the standard operations, section, lacks some accuracy, since it
functions and procedures of the does not take into account tihe code opti-
programming language u use. mization capabiity ci tt compiler.

Wortman [71 has conducted a number However, the iclatlve cost u derived,
of experiments to compare "system time" employing the most general sample
and "hardware time"; system time was statements possible, have shown them- -"
defined as the timing information selves to be consistent, reliable, and

returned by a logical clock (26.04 satisfactory for their intended use as
microsecond resolution) maintained for a detectors of changes in perforamance.

*task by IBM's OS/360 MVT operating Trying to incorporate the effect of
system; hardware time was the reading the co ipiler optimization would introduce
obtained from the hardware clock (l a variable which is too volatile, or
microsec resolution). The "system time" perhaps totally uncontrollable; there-
described is very similar to the virtual fore, even at the cost of some inaccura-
CPU time maintained for each process by cy, a decision was made to keep all of
the VAX/VMS operating system. the study in a high level language

Wortman concluded that the system environment.
time had a "normalized standard deviation
that was, on the average, two orders of Restrictions and Extensions
magnitude larger than the normalized -
standard deviation observed for hardware An effort was made to make the
time" [7]. He also found that the mean analyzer accept the entire PASCAL
value for both measurements diffored by languagje as defined in )16], but the
less than 0.5%. tollowinig problem was encountereo:

This method of measurement was The feature which causes some
adapted for the DEC VAX-11/780 computer, difficulty (not part of the original
using a system service routine ($GETJPI) language definition, but in common use)
which gives access to the virtual CPU is the use of externally declared

time (8]. For our implementation, this procedures or functions. This is used
routine was ised to estimate the cost of quite frequently in large software
the var Ious operations in standard systems, to aid modularity and to reduce
PASCAL. Figure 4 is a schematic version the time needed for modification and
of tntf alg3orithm used. comnpilutio.-i Th is feature i s also

necessary to enable the use of installa-
THE ANALYEER tion defined routines existing in system

libraries. Since such routines are not
The analyzer developed uses the available to the analyzer, and need not

self-metric approach described above, be written in PASCAl,, it is not possible
insertinj tallying code which produces for us to apply self-metric analysis to
e F t Istimated execut ion times for the total them. Tnei ri r e , the analyzer has been
run and tor each segment of code that the imSplemnlited to ret o'jn zk. such procedures
"ser has chosen to monitor. arid funct Ion , ,It to take no further

The PASCAL [ 16) language was chosen act ion.
cause of it; growing acceptance in many Ac a ret,.1 c)i this decision, it is

programming situations, its elegance and, not poscl, I u tt o allow procedures
m s t of all , its extensive use of or I-nct i (,nt r 1 : par Am ters, since such

tstructured statements. pt dc-dli es or i unct ions may be declared
TnF analyzer searches the PASCAl, it i ,; t ti. i 1, oram (an d so should

cod0 for the (occurrenc (of reserved he analyzed) , , a xter sal I,,It mnst
word;, al 1 standard (as well as a smal l (31.d 50o s1ou 1 ' 't- analyzed) . while
number of non-standard) ide nti fiers and this resti -t -ron a ; not limited our use
operators, and determines where to insert ot the analz , it may be relaxed to

co;f, to account for the execlut ion of t , i i I t.t the u e of any exterrally
cvry statement . By making as < a rcF(I o a J 1 r Io it 1in u3 a parameter .L

"cost" ta il'1 tallying statemen1ts are .-.
.fenr1r ,td to increment "ct "c{ounter:;, co I.e N iAT A FOR TWO ROUTINES
ard the cc rlu I t '-d va Ise arc, r ,(-dc wd
at the en ofI t hr, cx oc, t ion r ir. The ' c I - m character istic of
A pend i x d scr i., I. ,- wicI 1 i1

_ -* . . o • .



taIi~y jur anal yi'e r and tfa costs
Iv' ,.[ t he syst-,em clock show the Same

icr )I tptoport ion, w ith a percentage
v,, L! di I e renrceP o f ahou t 4 0 pe-,r c e n t.

Sequent ial! hi nary
Estimated Time Clock Time
0.4/1.j= 0.27 6/29= 0.20
ill.4/l.5= 22.9 1237./29= 42.6
1i.73/1.6= 10.8 631/17= 17.0

1, CO PIA.'E' E'AMPL A

A (,lit iv( 1-1 'mallI PASCAL program
1 1 rul (1 b mod iles wan chos7en to
I t,- till, use, of thle execution timle

T. Thi1 pr og ram a ppea red i n
iA; I' de: 1 .1

t; m n t- r'e(I versaion of till progr am
teor iginal source Code plus,

;,( tatfme-nts ins erted hy the
s.ir, Figjure 5. Each proce-

emain p ro)g r am, i s iiein 3
I- I'd . On e n tr to each procedure, a
iti rned "ON" and on exit f rom
pro -osr ethe s-ame pr obe is tat ned(

rt, ighth p)r o )e mnonitors te 0
of tfIe p ro()g ram .

p rl I oCI I w i t I pr oc. I i r e
I Y w j rnc "C'- , w ith t me opt ion

A(p: to c f y t 1iat til t';ecu -

.'i eimut- for tsiat procdu,-re i.-
oIti) ' !l- h time m'i pr oc-du re I,

X, A I IOCther prohoe- at., termi-
i6 t AVFPAC,,i opt i on ,a nd I S

r 1 7 r(I In] a. in ur or re- L1I tF

-- 1o 1 stt r ti of the Outfjut Data

j, t il 1I l o

1rl wi IOc 0 i wI nn

fi,-jarc l r, t 15- .mint I'-rmmnii a- tea l t 2 , ,
I ~ I a ,, o f e Ac h prohf- fori whicl'i

jt0e ii n. isir t-~. t'h .0!A Aol; opt ion W.A C:.ife i1
eu~r, ptd r n i slp.rot of I ,. $S OFFv uh (t.acl

1 
reFaV

val i'- o! thll inpiit tlo 1 1t i l;, I l i ~ ii:] i t ' - nsome of t ho 1 pro'' a d

t t , Lo- jt r Th hi:s (.1.: , rv-a io(n 15 mi : Ii I vul

c r, f rmeni- tq- both t',,- *-t Irr'at ,r and th'' T fi ' 1 t1, te Llt I pIIII

x yet' -(4~a wr1 laow Al a t ii it r)

is shown to iie hi jly di perde(,n t o n the 4: mn q; 1-to i,

pati ii it va] s-- f th'- s-arcti key ti, r'-d ! I 'n I ' F
wi- (Illpt'th fijg ira 0t tlI nid lt *rio.'W 'il it H' Ie wv ax: (X ;1

sa itilsearch ptw .dinr( (on thi- In he.T sli) r~ it imj 1r,;--i-
.. f T )f ea 1, p a Ir) w it h tho.i- for the. ri-la-t i nr t, te r irii t '-r S 1

;.r5 ) arch: proce"hit r. Al tiough the t h- t t 11 pr ,Ir im A f ra#,, i-n u 'C Itj
0[,, i. f fr om t h clock ae ii (I oW r l-,,w- t- t ttio tp tt ; ilil usode w 0~

trthe iurc obtaineid from us!, ndO I ' I i I Ie- t hat anl )iil I i it

Ar'- has- on apprx i ma t ionf3 tes ;t ca-o h'oil' Ii i:0.! t ,Xec (ti Is it

in#t-ua I toc e x C it- 0-et it of ici(

"A. 'At, op-., at lost;, the cosfts "Moir," .]ivr' t air-nTi1,e0 5.1 l -1i



* 267

!-ston ti'> r -. jmr of code, the analyzer could be niade available for
* s ~t> rvi t io: I, i r' :.Ows the the cases in which the smallest unit t o

.,3riut1it L, lrh.1 t LMe e rrtInmate of be measured would be a procedure o r
AI,~-rn exes' 't-1 tf t'~- ,stin C plo', f function. Procedure entry and exit
c Ide. "M'ximrsm -:i lw if v A qs points are easy to detect automatically,
-xe c uti.n t imie mt , to i ( r t it ,jme and such information is easily related to

A cd'- 1 iportin' 1*- r, tile fact the use of ON-OFF switches.
that, ev-:l thos Jn the, w' 1,, xc -:t in The estimator was, in this work,
t ime o-)f a mod'1- may, .j' -u' only developed for the detection of
slrgtl. due tu pert f rmanc- r ipple performance ripple effects, but its use
el efect , i f its maximum execut ion time can be extended to other areas such as
incredses ciis3proportionatel.1, Le n t hat detecting heavily used code, identifying
mo)d ulIe is-1 a 5s2r io0US canrdid6a te for code which has not been executed by any
ceexamindtiO I. test case, defining the relative

"Total Estimated Execution 'rime" importance of different modules, and
(ives the approximats- total cost for the helping in selecting between different

*execution of the whole program, in u n its algorithms.
* or time.

*-These execution time figures may be APPENDIX
compard'. with those obtained from Instrumentation of PASCAL Statements
pr(evious executions of the program to Th is appendix describes standard
ioden t ity performance changes. They may
al:o he, compared against the performance PASCAL statements ai-d their instrumented

* req(Airt'mentS of the program to detect any vesosa osructed by means of the
viola-tions, a nd to provide an early analyzer. First we make the following
wjrnon of possible future violations, definitions:

CONCLUS ION S :Any PASCAL language
statement

In tisc paper we have shown that
*1 1 easu5Lir ing e x ec ut ion time of programs to exp :Any expression that, when

obtain a performance index is not an easy evaluated, yields a value
*tuc a; nd requires some assumptions and of some scalar type (e.g.

appro-x imat ions t o b e made. Our integer, boolean);
*el-tric approach was developed to

monitor the performance of programs. The c :statement cost counter
icel -metr ic approach implies that the
'xecution timne estimate-s obtained are a cost(x) :cost function for "x", in

meaIure1 of only the time for executing units of time;
th,- v-ir iol ar ithmetic, logic and 1/O
,;)raitionu; .nccointered in the p.o-gram. ovrhd :additional cost, not

T i procedure for using the as~so=ci~ated with any
j)is',do-itat-rnents requires the user to syntax unit (these are
nu-An 1iii1 lysegment the program 1by inserting constants, determined by

p -'loSatrn'n5that are interpreted by ex=pe~r i~ment);
t i,- analyz~r. Wh ijIi- thin requirement

T, npo. .ome f-xt rl work on the part of var : Any control var iable;
cr, i c provides the freedom to

I n r J! I -: 'stion ot the program that rec var Any record variable;
I. r. re o)n:; wet niir 1e ces;sa ry . By

rit I pI ing the ON-OFF switich I x( indicates that .1x may
- h, 1-r is il to betrobserve- occur zero or more times;

* .'' r'oauzior of the, pro dam.
m, i) i c i n can b~e mulde to the [x y] indicates that either "x

it-n'.1 s~ n ciWith th.. f101 I owtn or "y" will appear.

n s, , , The beojin -end bracket

sod hstr-)jj t,) andard syrntax;
[I ~~ ret [S- I;j* . T I 31 S -n e nd 0

4 t, ~ -1 . p- , "/ W it "! i M1 1 il
y 1 a -Xr'5 - p -I 1,E . drf A "beigin-end" pair encloses

iit It Ir'' ion )f It r" sequen'-e of statements t ha t are all1
in :'' c - ~-n- xeco tel,, in order o f appearance. The

-L I iiil It W1o.st of each o;tatement snouid be added to '-.

-1rE 1, ' 'i e tr tit, tfte coint-r be fonre execu tion of that

-n~ oin-V' crr /zr ~ta teme n t.



-istrumenred version: cost of this statement:

begin [c : c + cost(S-i) S-i ;[* cost(exp) + ovrhd-l.
c : c + cost(S-n) ; S-n

end ; The if statement

cost of this statement: none. standard syntax: 0,
if exp then S-i [else S-2 I ]

The repeat statement
The expression is evaluated only

standard syntax: once, and the action taken next depends

repeat [S-i ;]* S-n on its outcome: S-I is executed if "exp"

until exp is true and S-2 if "exp" is false. The
cost of evaluating the expression is -4

The statement sequence S-I,...,S-n added to the cost of the statement within

is repeatedly executed until "exp", which the "if" statement appears; the

evaluated after each execution of the cost of S-i and S-2 are incorporated into

statement sequence, becomes true. The the statements themselves.

cost of this sequence is computed in a
manner analogous to that described for instrumented version:

the "begin-end" statement, but must also if exp
include the cost for the evaluation of then be in c := c + ovrhd-i

the expression. c := c + cost(S-l) ; S-1 ;.0'

c := c + ovrhd-2
instrumented version: end
begin [else begin c := c + ovrhd-3

re t c := c + cost(S-2) ; S-2
c := c + cost(S-i) ; S-i ;]* c := c + ovrhd-4
c :: c + cost(S-n) ; S-n ; end h
c :: c + cost(exp) + ovrhd-2

until exp ; cost of this statement: 6
c := c + ovrhd-3 cost(exp)

end
The for statement

cost of this statement:
ovrhd-1. standard syntax:

for var := e:cp-i [to downto[ exp-2 do

The case statement S;

standard syntax: The cost of evaluating the initial
case exp of expression "exp-l" and the final

[case label list-i : S-i ;[* expression "exp-2", each evaluated only
case label list-n : S-n once, is added to the cost of the

end ; state=ment within which the "for"
state=ment appears; the cost of the

The case statement selects for state=ment "S" is in=cor=porated into the

execution the statement whose label is state=ment itself.
equal to the current value of the
selecting expression. The cost of instrumented version:
c-valuatinq the expression is added to begin for var := exp-l
that of the statement that brackets the [to downtoI exp-2 do
case statement; the cost of each ben c : c + ovrhd-2
statement S-I,...,S-n is incorporated in c := c + cost(S) ; S

the statement itself. c c + ovrhd-3
end ;.

instrumented version: c := c + ovrhd-4
case exp of end
Tca se la-el list-i

b eain c := c + cost(S-i) ; cost of this statement:

S-i cost(exp-l) + cost(exp-2) + ovrhd-l.
c := c + ovrhd-2

. end;[* The with statement
case label list-n

beain c := c + cost(S-n) ; standard syntax:

S-n with rec var [,rec var[* do S

- *c c 4 -vrhd-2
end All costs associated with evaluating

end ; the record variable(s) are added to the
statement within which the "with" N

1-0

z-6

i" - .



269 9
statement occurred; the cost of the S the statements in the procedure.
statement is incorporated into itself.

instrumented version:
*instrumented version: proc-ident ([actual par list,

with rec var [,rec var]* do active-probe)
begin c := c + cost(S) ; S end

cost of this statement:

- cost of this statement: none. cost(actual par list) +
cost(procedure call).

The while statement
Function declaration

standard syntax:
while exp do S ; standard syntax:

function func-ident .
The controlling expression is [(formal par list)

evaluated before each iteration, : func-type
therefore the cost of its evaluation is func-body
added to the cost of the statement; the
total cost is incorporated into the The considerations for a function
statement itself. definition are analogous to those

presented for the procedure declaration.
instrumented version:
begin instrumented version:

while exp do function func-ident
begin c := c + ovrhd-2 ; ([formal par list; ]

c := c + cost(S) ; S ; var c : integer) : func-type
c := c + cost(exp) + ovrhd-3 func-body

end
c := c + -vrhd-4 cost of this declaration: none.

end ;
Function call

cost of this statement:
cost(exp) + ovrhd-l. standard syntax:

func-ident [(actual par list)
Procedure declaration

The considerations for a function
standard syntax: call are analogous to those presented for
procedure proc-ident the procedure statement.

([formal par list l )
proc-body ; instrumented version:

func-ident ([actual par list , I
Procedures may be called from active-probe)

different points in the program where
different probes (counters) may be cost of this statement:
active, therefore, in order to increment cost(actual par list) +
the correct counter so that the cost of cost(function call).

- executing the procedure is added to the
cost of the segment in which the call Goto statement
originated, it is necessary to pass the
relevant probe as a variable parameter to standard syntax:
the procedure. [S-i ;]* goto label

instrumented version: The cost associated with the goto
procedure proc-ident statement must represent the costs of all

([formal par list; I statements executed along the path to the
var c : integer) ; goto statement.

proc-body
instrumented vetsion:

cost of this declaration: none. [c := c + cost(S-i) ; S-i ;]-
c := c + cost(goto)

Procedure statement _oto label ;

standard syntax: cost of this statement: none.
proc-ident [(actual par list)

Labelled statement
The act ive probe (counter) has to be

passed to the procedure as a parameter to standard syntax:
account for Ohe cost of the execution of (S-i ; label : [S-j ;]* -"

-. .
1

- .. 0-



-7 - 7W

'0 270 .

The occurrence of a label causes a [III Ramamoorthy, C.V., Kim, K.H. and

new count to be initiated, anticipating a Chen W.T., "Optimal Placement of

later jump. Software Monitors Aiding Systematic

Testing", IEEE Trans. on Software

instrumented version: Engineering , Vol. SE-I, No. 4, Dec.

[c := c + cost(S-i) ; S-i ;]* 1975, pp. 403-410.

label : [c := c + cost(S-j) S-j ;]*

[12] Knuth, D. and Stevenson, F.,

cost of this statement: none. "Optimal Measurement Points for

Program Frequency Counts", BIT, Vol.

13, 1973, pp. 313-322.

[13] Cheung, R.C. and Ramamoorthy, C.V.

REFERENCES "Optimal Measurements of Program

Path Frequency and its Applica-

[1] Ferrari, D., Computer Systems Per- tions", Proc. of the Sixth Intern.

formance Evaluation, Prentice-Hall, Federation of Automatic Control

Eng ew00 C-l-TFTs, N.J., 1978. Congress, Boston, 1975, pp. 1-6.

[21 Ingalls, D.H., "FETE - A FORTRAN [14] Stucki, L., "Automatic Generation of

Execution Time Estimator", in Self-Metric Software", Proc. 1973

Program Style, Design, Efficiency, IEEE Symp. on Computer Software '0

Debugging, and Testing (ed. D. Van Reliability, 1973.
* - Tessel) , Appex. II, Prentice-Hall,

.- Englewood Cliffs, N.J., 1974. [15] Yau, S.S., Ramey, J.L. and Nicholl,

R.A., "Assertion Techniques for

-. [3] Yau, S.S., Collofello, J. and Dynamic Monitoring of Linear List

MacGregor, T., "Ripple Effect Data Structures", Jour. Systems and

Analysis of Software Maintenance", Software, Vol. 1, No. 4, 1980, pp.

Proc. Copsac 78 - Comp. Software 393670T

and Aplications Conf., Nov. 1978,

pp. 60-65. [16] Jensen, K. and Wirth, N., PASCAL

User Manual and Report, Sprin-

[4 Yau, S.S. and Collofello, J., ger-Verlag, N.Y., 2nd. ed., 1979.

"Performance Ripple Effect Analysis
for Large-Scale Software Mainte- 117] Welsh, J. and Elder, J., Introduc-

nance", Interim Technical Report, tion to PASCAL, Prentice-Hall Inter- ;0]

RADC-TR-80-55, March 1980, NTIS national, Englewood Cliffs, N.J., -

AD-A084-351. 1979.

[51 Crowley, C., "The Architecture of

Clocks", ACM SIGARCH, Vol. 7, No.
11, Dec. 1979pp. 4-9.

[6] Davies, J., "Clock Architecture and "

Management", ACM SIGARCH, Vol. 8,

No. 5, Aug. 1980, pp. 3-6.

[7] Wortman, D.B., "A Study of
High-Resolution Timing", IEEE Trans.
on Software Enqineering, Vo6.SE-T

June 1976, pp. 135-137.

[8] DEC Corporation, VAX/VMS Systems

Services Reference Manual, Vol. 4,
DEC Corp., Maynard, MA, March 1980.

19] Lyon, G. and Stillman, R., "Simple

Transform; for Instrumenting FORTRAN

Programs", Software - Practice and
E *x_ erienco, Vol. 5, 1975, pp.
347-358..

1101 Ferguson, L. "Profile : An
Automated Program Analysis Aid",
ACM _Simetric- Conf. on Comp. Per-

form~nce Moniclinj, Measurement and
Man-alem, rt, 1977. -

0- S

*- ....



0 271

A B

Sn f() T 0
cnrol/data

A' B 0

control/data
link

*Fig. 1 -Schematic representation of performance ripple effect

Sloaded at initialization

ne ntervaseter

load

VAX/VMSPDH

TIMESCHDL u ate + 1 CPU time

+ 1CPU quantu

+100,000 TOD register]

J4- 64bitsSI(1th of microsec)

Fig. 2 -Schematic representation of the VAX timing system



7, T

272

original source
progam code

source code +

user inserted markers

phase one

PASCAL analyzer

instrumented version

PASCAL compiler -

phase two program execution

normal execution"'' .-.
output data metr ic dat -..

Fig. 3 - Simplified view of the self metric approach t .

The algorithm:

VAR I,J,K : INTEGER
CLOCKI, CLOCK2, DIFF INTEGER
MEAN, DEV - REAL

PROCEDURE $GETJPI (VAR TIME: INTEGER) ; EXTERN

BEGIN
FOR I := 1 TO NUMBEROFMEASUREMENTSESSIONS DO

BEGIN RESET VARIABLES ; . .""".
FOR J := 1 TO NUMBEROFSAMPLES DO

BEGIN $GETJPI (CLOCK1)
FOR K := I TO NUMBEROFITERATIONS DO

EXECUTE SAMPLE STATEMENT
$GETJPI (CLOCK2)
DIFF := CLOCK2 - CLOCKI
COMPUTE DYNAMIC MEAN AND

STANDARD DEVIATION FOR 'DIFF' ;
END

OUTPUT RESULTS
END

END

* . Fig. 4 - Algorithm used to estimate the cost of operations .-...

* O

" :6: / ::":::'' : ::::< ':::::::::::::::::::: : :! : ::::"i i
. . . .



27
PROGRAM SORT (DATAFILE,OUTPUT);27

* CONST MAXKEY =99999;

TYPE KEYTYPE = . .MAXKEY;
SOMETYPE =RECORD TRANSTYPE (DELIVERY,DISPATCH);a AMOUNT :1 .. MAXINT

END;
ITEM = RECORD KEY :KEYTYPE;

RESTOFRECORD :SOMETYPE
END;

FILETYPE =FILE OF ITEM;

VAR C, DATAFILE FILETYPE;

(DEFINE 8 PROBES *
$$ VAR CXZI,CXZ2,CXZ3,CXZ4,CXZ5,CXZ6,CXZ7,CXZ8;

PROCEDURE NATURALMERGESORT (VAR C FILETYPE);
VAR NUMBEROFRUNS :0 .. MAXINT;

A,B :FILETYPE;
ENDOFRUN :BOOLEAN; -e

PROCEDURE COPY(VAR SOURCE, DESTINATION FILETYPE);
VAR COPIEDITEM :ITEM;
BEGIN $$ ON CXZ1;

COPIEDITEM:=SOURCE^;
GET (SOURCE);
DESTINATION^:=COPIEDITEM;
PUT(DESTINATION);
IF EOF(SOURCE) THEN

ENDOFRUN :=TRUE
ELSE ENDOFRUN :=COPIEDITEM.KEY > SOURCE^ .KEY;
$$ OFF NONAVERAGE

END; (*COPY*)

PROCEDURE COPYARUN(VAR SOURCE,DESTINATION: FILETYPE);
BEGIN $$ ON CXZ2;

REPEAT
COPY (SOURCE,DESTINATION);

UNTIL ENDOFRUN;
$$ OFF AVERAGE

END; (*COPYARUN*)

PROCEDURE DISTRIBUTE;
BEGIN $$ ON CXZ3;

REPEAT
COPYA RUN (C ,A)

IF NOT EOF(C) THEN COPYARUN(C,B);
UNTIL EOF(C);
$$ OFF AVERAGE

END; (*DISTRIBUTE*)

PROCEDURE MERGE;

PROCEDURE MERGEARUNFROMAANDB;
BEGIN $$ ON CXZ4;

RE PEAT
IF A' .KEY<B .KEY THEN
BEGIN COPY(A,C);

0 IF ENDOFRUN THEN COPYARUN(B,C); S
END
ELSE BEGIN COPY(B,C);

IF ENDOFRUN THEN COPYAREJN(A,C);
END;

Fig. 5 - A sample segmented program

IF



* 274

UNTIL ENDOFRUN;
* $$ OFF AVERAGE

END; (*MERGEARUNFROMAANDB*)

BEGIN $$ ON CXZ5;0
WJHILE NOT (EOF(A) OR EOF(B)) DO
BEGIN MERGEARUNFROMAANDB; -

NUMBEROFRUNS:=NUMBEROFRUNS + 1;
END;
WHILE NOT EOF(A) DO
BEGIN COPYARUN(A,C);

NUMBEROFRUNS:=NUMBEROFRUNS + 1;
END;
WHILE NOT EOF(B) DO
BEGIN COPYARUN(B,C);

NUMBEROFRUNS:=NUMBEROFRUNS + 1;
END;
$$ OFF AVERAGE

END; (*MERGE*)

BEGIN $$ ON CXZ6;
REPEAT RESET(C);

REWRITE(A); REWRITE(B);
DISTRIBUTE;
RESET(A); RESET(B);
REWRITE (C);
NUMBEROFRUNS:=0;
MERGE;

UNTIL NUMBEROFRUNS=1;
$$ OFF AVERAGE

END; (*NATURALMERGESORT*)

PROCEDURE COPYFILE(VAR F,G:FILETYPE);
BEGIN $$ ON CXZ7

RESET(F);
REWRITE(G);
WHILE NOT EOF(F) DO
BEGIN WRITELN(F^.KEY);

PUT(G); GET(F);
END;
$$ OFF AVERAGE

END; (*COPYFILE*)

BEGIN
(INITIALIZE THE COUNTERS *

$$ INIT;

$$ ON CXZ8;
WRITELNV-**UNSORTED RECORD KEYS *)

COPYFILE(DATAFILE,C);
* NATURALMERGESORT(C);

WRITELN; WRITELN;
WRITELN('** SORTED Rv'ORD KEYS *)

COPYFILE(C,DATAFILE);
WRITELN(' END OF PROGRAM);
$OFF AVERAGE;

(PRINT FINAL EXECUTION RESULTS ~
* $$ RESULT

END.

Fig. 5 -A sample segmented program (continued)



- - *~-.--~ ------ -w~. ,'~rVV7 -7. -. - -1

275

SINTERMEDIATE RESULTS

CXZ2 =4490

CXZ2 =8970

CXZ2 = 134380
CXZ2 =4478

CXZ2 = 13438
CXZ2 = 13450
CXZ2 = 13438
CXZ2 =4478

SFINAL RESULTS *

PROBE FREQUENCY COUNT MEAN STD. DEVIATION MAXIMUM
1 24 4274.400 4.752 4277
2 8 9522.501 3221.567 13450
3 2 27806.500 119.250 28045
4 2 20442.000 3373.500 27189
5 2 28008.500 39.750 28088
6 1 131220.000 0.000 131220

7231301.000 0.000 31301
81197138.000 0.000 197138

TOTAL ESTIMATED EXECUTION TIME 197138

Fig. 6 -Sample Execution Time Output for Program SORT.

0



274

277

stephur., Yau
Depa r time nt aof Electrical Engjinuer inj. 10'

and Computer Science
Northwestern University
Evanston, Illinois 60201

r he hi jti coust ot software duirinig its life I3
Scy clIe caIn beu cI:t r bu t ed cIa r gelIy t o so ft-w a re it)

ma inteniance i(:t ivit i iS nd a major port ion i .r i i)f1
of these activities is to deail with tie mdifi- J1' - -1
cat ions of the oftware. in this pop'_ r , dei In .*, '

ripple efftect characteriis t dJue u ma Jit i -j p t I n

cat ions ot thle proj3raiii at I it del: 11 *e. it,

presented. ihese m.txrsan. JentratesA at T,: r ;IjI
any paint in the (1ij phoase of t, no )ftwirt:' A a
life cycle whi 1h enables earily, maint iinabilit,, r I!i'~. .

feedback to tie oauft1w.jru developerns T 'ie v " i- H rI r, . i. 3

datior, (it thee ,t measurei5 and future er4

e ffo r ts i nvul I n Itnt levelI oprin no fau , It I 0.t
o r ien t ed mi nt I i rii t 1,y me.s r e whi2i r I,-)r p-Il', I;I r L :
orates the It ;13 Ago t) niit Y me' .,r e a s we Ie

ts ite r ]e: s 31j me, iS;ur ,L; a re d i. SO' ed . 1

Index_ Toerm's Li D,.i jn s,i iit.y ris-.i res 1ir. 1 '. '
pt po-j r m mod IfIt -,-o i',n; , 'tI s f t wire min III I itI . i

'A.1

The t ma jo r expenses in) compute,-r s ':;t,-ms 1 it~ I, t st ;
a prsent art inI -o tor. Wh IlIe tile +1~ 1j~i t t''

of har dwa ret i s de crieasi n' r a p idIy , so f twa re ti II. I13 't 1 1 4 1
product ivity improves only slowly. 'Tius, tht I i T, PI)t'1 I p, Il I s i
cost of sof tware relat ive to hardwar e is rapidl it yt 3, P. )I t" t ti e1 i' ' " ' A. :* i
increcasing. Thie majority of this software cost i I illt . I Iit 0311j 1,)J 117 1i I

can be attributed to software maintenance. 1 jr I' I, T )0,,II
*The cost of ma inrtenanice act ivi ties has bcer; tnjt Ij 1.i 1 1 ty3p 0 It 3[5

very hi~jh ranging from 40 percent to an ignji Li1 .3

as 80( pe _rcet 'It tieC tota Icost dur i ng the i fe ait tIhbit' 'r 1 t A't -1h
*cyclIe of la3rge -s;a let so-ftwar e systems [Bcoeh7A/ , p Fi II1i I I t .

ZelK78, Lien'18l ' O I I )I! t p l

The control of software i5ainteriance costs h.. 1311; it 3:1. 1' T if ', ie I1T

*can be approached in several ways. one, apptoacii iii t ol.I 'Xalar..,,t. '..
is to improve the productivity at m Iintenance iM ti ,. TO 1,; C, 'k,
pract it ioners by pr oviding them with tools and pr.L4 (I 1_ ..i A it'i .I3 Ii t i1'-1 jjj
techniques to help them perform their mainten- str li 1

*ance tasks. Advances in this area Fkave included t,i I I. Adlj i"1 '''', P,~ -. It
debug(3ing tools, program flow-charters, and ttit Iv. j11,',R'1, til 1 at
ripple effect analysis tools. Althoungh thiese an ii; ii l' 1 I -- J p o I 0

.pmenrlt I "I t l 1 Tit
*This work was supported by Rome Air Develop- mea sle w~l L- J'Ii's-

mrent Center, U.S. Air Force System Command under

*Contract No. F30602-80-C0139. 1



* 278

n " -: .t

FL iin :n or nit m I-

F Arui i 1 it rn :rop;ni i t -.- 1. tIl t

.1 ti o h tip t t Ti ''I-''P, .t

AmF T h, I. . . . . . . .

it Ft.' 'LX '

A. . tt i'' 'Fi r Vt' V: id-

A~~~~ it ''' '' ' ' r Z1''Z*

niT~~~~ ~~ 1i Fi 1 tt F' t' i t It iTI i i' TI IMP ntit t

0 Sf

"-'-I'F



0 279S

it 1t1

1~~ A1 1 1 71 J I

I it *Lr t If'

IIrl ttIi

iit Ii .i
1 . . 

i

fl. t o I

ti~ it. x11 itl it. i i

it. C tt;lq'

it C, ,

[itt

I.i' I I[-



-71-7; -: -1. ' 1.'

rat -it

r" t rt' I n v 1 1h m r

I -V j 1 
Y

I g '11 - X

it,~p .11 i

it <1 it >1+

x , Yt tlt 1f: )l I atl I3 as Plos

D'S 1' + - : . .

IPD' +.

wh-r x' i, -i t': piril inictperorw

t ~;j~i made AN EXAMPLE

1 !,jl: ri o llati, ri' P

.1.1 -7 I r''t mt c - ' rsr, ng w oliqcn r-y ~ n.x7

im f 1 I )r, . 1F~li a Ir--it edi.- A -stna '1.0 t the;bmat'

-, ..- o loim-ni. -<ri -ton-by-tars ''.-- , iot -and r~".i'

1~ ~ ~ ~ ~ ~~ ~~rn '11.1 151 titO'~ an t p 1311f heid ow 3rhe Inpt no

114' 1 ' o (I it ti'. valic-> kpyboiard ''o nr s 2-212:;. An nd-oC-transm-sf-,4

ii' mi- -- ;io'- 1'rl t; n' f ,'t too keyboarJ '2g 02 readlo '<nFm2n

-j! Iv Ii1 In tlit. r0j !js The Itt 10111112 O'nrearn of text Er 'm thOs

:- ~ -i~ . I I30122. is tosboo o s1a.t o .

wo rdsr,, wn 1 20' *,hen passc' Ao'' A 1 3  . -
- I.' > '' I --um a .3 i;.i rti-in a pre -x I ot i ng stidulle oiamI 1? 1 . 'D. *'' <

'r e p n' ; t, ; z 1 ant, 'i' p t 'i- 'Itr t

r. I' 't lntr ''r F w,.; , f a i tir na t ve ml -1n'r

I','. wt -. t atlI 1

i- I

z6



UNIV EVANSTON IL S S YAU FEB 8 4 RADC-TR-83-262
F30602-88 C Gi39

UNCLASSIFIED FG92 N

II ."



0;;

%If

13.1

- -

L 1 .8• IIIIIN~t~ U.'- u .
5% 111 .

-IJI2 11111_L4 11

MICROCOPY RESOLUTION TEST CHART

N4 NNL BUREAU 114I DI,

5%%

4

.%



0 281

ALTERNATIVE~ 2
AI.TENATIVE 1

Step 1
Step 1 -

s CAVX,~R:) -; CAN I FI =
~1, -:Y. READXARD, FINLDWORD, if:NCI=~E.OPPXOD,~

FINCCR R~CR 
3 I2~~RD = 1'RC~RI)= SCANTEXT},

INKFY 'READCARD FIDWR =3OWOR
- SCANWORCI, (i 1OR D = GETCWA, GETCARDJ,

XKC _Y,SCANI~CoRD ~caatredo- 3 L1CILN (UIrcARI)D ?T~JR}
_ransrn. ssion flagi, ~'= i (A is 0

~RF.'DCARD ,SCANW( icard image, last-card R = 1 word, end-of-wordsflagi, G! h'0k1 TI XI ag],

%PDA)RD *S(ANWorN. lawrd, en-of-words =

fa, g et-character P'R0CM)RI), SCANTEXY
fla get-card flag, -' {character, end-of-

woddone flagi, 61 tCHARK6 L..i;OR transmission flag),

S SCNWRD DFDCR CFLAD(,T.I wod end-of-wordsr
P .v< = SCANTCX1 ,CAlCARD

R t..R word),iATx G

p.. ~ ~ =icharacter, end-f SCANIK. = krm (wordl
transmission flag, R TV K)GIHN (I-WR,;*CAIcard image, last-card Ci~R),I (IA ;TDD ITAD-

flagte sue.S)2 There are no global data items.

Stp2There are no global data items.

StL!E 3Step 3

* .TP 1 NKF'!,SCA'IWORD 1 I - 1 = 2, TP = 2 + I 3,
* *CIAVRDSRI) X

*TPRI \J)C\p,) , S(:ANIX ORD = 2 + 1 3, )PPOWRDj S(:ANI I XI =0

TP1- [ NIOP, (AV R 2 + + I~ + 1 +1 TP I HR 'O ) = I + 1 2,
= ,TP CE=2+ 1 =3.

T~RICXD .\N(<CORI = .(:F I CARD,GFCIINORD
Step 4

Step 4
TP' - TP' = oTP' SC= 0x ,f'WR

.XP R. iNKCY SCANIVORD,READCARD 0,TP' = 2,.4
TP5*\~ ~()=2, SCAN VIIXI~o.()I

GRF1RI TP CI TCHAR = T 1:1WR, CEI CARD 0.
TP' I~= + 1 + 2 +1 +1(CIOD;FWDA N", 0RD 1), I N DWO R 1) 6.

Ste 5Th C orallirduesx.Step 5 tG 0 for all modules x.

Step 6 Step 6

DLRE CANRORI) 8, L1=
DDEIKURE2 SCANTEXI T 2

DL.RE =3,
C FTWRD )

D-LREADAI 3,L 0
PEA )C )D PROCWORD 0

DLEF)NDWO RD = ,DL.RE GTH =2,

OLPE = 0.LLRE =3.

Pte 7 G(WOI CF'CA R 1
Stepp 7 L

D'SCAW 1/9, S/3

MI NK EY 1/,S CAN1%X = 1/3,

DS = 1/4, DSTW /4,
READCARD ROCRORD=1,

FINDDRD= 17,DS =1/3,

DSOCVO 1. CECHA R
PROCORDDS 1/4.

Stp8=D 1/20. GF f CARD
Stepp 88

Alternative 2

0%

e4,



282

oAal'sis f tie metrics obtained for both poor stabil ity. The important point i> I t - '-
.i lternatives in,.dicates that alternative 2 is if the assumptions made upon a modul wlth p,:

"ot> stable than arlrernative 1. This finding stability are violated, the pot,,nti,,i ripple
- .' is supp[ ted by tne discussion in the source effect is large. Thu", theSe X;z;urspt nns mut

3t the example that alternative 2 is easier to be examined caretully with an e,, tow,,rus; li tor,
program and maintain. Further analysis of these modifications.
metr ics ind icates that the pr imary sources of
" ins tab i ity in alternative 1 are modules Although the expurimentation with the h:ti jhi

FINDORD, and SCANWORD. This finding is again stability measures produced severa, interes;t in-
supported by the discussion in the source of results, it cannot be utilized as; a Voplte -
the example (Your 79]. val idation of the measures. Exper iment:; with

maintenance-type measures can bk, very i
VALIDATION ing clue to the diverse and nur)er ous typ,. of

maintenance tasks which may tbe pe.rformd!. Fr
An important requirement of any metric is example, main enance data r';lle' d r,.Jiln "'

tne capibility of validating it. In this section the maintenance activity that a prt icul i pr-
betn direct and indirect approaches to validating gram experienced may not be repr(;cnt ,t iv, of
the design stabilitj measures will be discussed. the maintenance activity in- other prji i, .,
A direct approaci to validation consisting of A complete direct validation of the deusiji st,i-
experimentation with the metrics was performed bility measures will, thus, require a lar je
by the authors utilizing a graduate software database of maintenan ,-e information tr a'
engineering lass. The class consisted of 24 significant number of various types of prLm . -
professional programmers with diverse company which have undergone a sufficient numLbr of
"xper iences. The course assignment was to design modifications 'of a wide. vuriety. The. shry -,' rm
and implement an automated gradebook system in possibility of utilizinj su h a maintenan' it I-
PASCAL. The class was divided into 4 teams each base for validating maintenance-type m's"

%o af which was to build a program of an estimated is not very promising. In light at this iItt.
4K lines. The class utilized the structured and diverse nature of the maintenance tosK:;
design methodology to produce a complete program performed by users of softWare systems, a mor.,
design specification. This design specification user-oriented approach to maintenance met
was then utilized to compute the design stability :omputation is I neede-d. These user-or ii%
measures. The module design stability measures maintainaility metrics will combine the ,inigue
obtained had a broad range from 1/145 to I. It potential future maintenance requirement:; ..-
was interesting to note that the degree of module a user with the char icteristics of the Owtt
fan-in/fan-out did not always correlate with associated with thte:;te potential moditi -at! l r,.
the Jesign stability. For example, many modules to produ- a tailoreJ measure -1 the
with small fan-in/fan-out had poor stability maintainabil ity to be experienced by the i:r. ".
and 'ice versa. These ideo:; will e Iesct iL in m0t , o.

later.
Jpon completion of the program design

s-'cification, the class was then asked to submit S fince furtti xpcr imentit ion it i "
proposails for possible changes to the program. the design stability measures ,L , misleaiin.
Over 200 such change proposals were received, without a large miirt,.nan e Lit se, a
These proposals were analyzed in terms of their direct validation will be deliyd until th
potential ripple effect if they were to be development of a user-orienttd milntlinability
implemented. Several interesting results of measure. The desijn stability mea:,ires . ,,, .
this experiment will now be described, however, indirectly validated by arguing how

the measures are affected by various al re, iy
Tne first resul'_ is that those modules which established attribute; of programs which alluct

would nave contributed large ripple effects if maintainability. It should be noted that imox-st
modified are among the modules possessing poor of these establ ished attr ibutes sufter f rom the
design stability measures. The converse, same validation ptoblems as the des,,i stablity
however, is not necessar-iy true. Since the measures, and their acceptance is lat 1 l' a
design stability measures reflect a potential consequence of intuitive arjame-nts.
worst case ripple effect, it is possible for
modules with poor stability to be modified in because one program attribute which afts
certain ways without producing a large ripple maintainability is the atili ization of data .
effect, abstraction and information hiding [ParnJ, -

an indirect validation of the design stafi lity
Another result of the experiment illustrated measures must show that the design stability "

tne diagnostic capabilities of the design of programs utilizing data absttaction ind
stability measures. Many of the modules found information hidling is generally better than
to possess poor stability also were of weak that of programs which do not. Since oar men-
functional strength and were coumun coupled to sures are based upon counts of assumptions male
many other modules. It should be noted, however, concerning interface variables and since a lack ..-
that some modules which possess poor stability of data abstraction and information hiding
are not necessarily bad. For example, imple- manifests itself in an increase in assumption
mentations of data abstractions usually possess counts, it is apparent that the design stability

. ,.'*o - .o

,- ~~~~.. ... .-oo-o_.-.............. .......



.~~- .. . 7..

283

of programs utilizing data abstraction and program design generally recognized as contrib-
information hiding is generally better than that uting to the development of program stability
of prograrms which do not. during maintenance.

The relationship of the design stability APPLICATIONS OF THE DESIGN STABILITY MEASURES
measures with both the data abstraction and
global variable notions can be further i.'us- The design stability measures pzesentc'd
trated by the following example: in this paper can be utilized for comparinj

alternative designs of a module or program t
Consider the case of 3 modules A, B, and any point in the design phase of the softwar,-

C which share a global array of records, where life cycle. The selection of alternatives wtn:fh
each record consists of an integer ID number exhibit favorable design stability measures cr.-
and a real balance as indicated in Figure 4. lead to more maintainable programs. 0
If we also assume that no parameters are passed
between the MAIN module and modules A, B, and The design stability measures can also bt.
C and that modules A, B, and C make assumptions utilized to identify portions of the projram
about the values of the ID number and the bal- which exhibit poor stability and, thus, may
ance, the following values can be obtained: contribute to ripple effect problems during the

maintenance phase. These portions of the program
D NA1N =,can be easily identified by the measures andexamined for deficiencies. Those areas of the

S= Ir. =  (. 6 + 6 = 12, program with poor stability can then be rede-
A signed incorporating such favorable design

DLREA = DLREB = DLREC = 12, approaches as abstraction, information hiding,
restriction of global variables and functionality

A B = 1/13, in order to improve the design stability
measures.

The design stability measures will also
In Figure 5, the program is redesigned to be a key component of any overall maintainability

utilize a data abstraction module X to eliminate measure. As previously discussed, stability
the need for having a global array of records, is an important attribute of program maintain-
The data abstraction passes a single record to ability which must be combined with other attri-
the modules A, B, and C depending upon some index butes in order to formulate a maintainability
variable. From the design, the following values measure. Thus, our future research efforts in
may be obtained: the development of a user-oriented maintain-

ability measure will incorporate these desiqn
DS I, stability measures.DMAIN

IG : tG =l T c  0, CONCLUSIONS AND FUTURE RESEARCH
A B C

TP'4X = TP' = TP' = 3 + 2 = 5 In this paper, measures for estimatingdesign stability of a program and of the modules

(assuming that X makes no assumptions about the within a program have been presented. Algorith"ms '
values in the record) for computing these design stability measures,

TP =TP = TPx = 5, applications of these measures, an illustrative
XB C example, some experimental results, and an

DIRE = DLRE = DLRE C = 5, indirect validation of the measures have also
A been presented. .

DLREX = 15, Much research remains to be done in this

DS =I[ = DSC  1/6, area. Our primary emphasis will be on theA development of a user-oriented maintainability

D X 1/16, measure computable during the design phase of
the software life cycle. This metric will in- .- ,..

PD 1/31. corporate our design stability measure as well
as design complexity and testability measures.

These two examples illustrate the detri- Much experimentation will be needed in combining ".
mental effect of global data on stability as these quality attributes into a single measure.
well as the positive effect of data abstraction Extensive validation on large-scale programs
modules. The data abstraction modules, although will also be performed.
quite unstable themselves, improve the stability
of the modules whirh utilize them. ACKNOWLEDGEMENT

The design stability measures presented The authors would like to express their
here can, thus, be indirectly validated since appreciation for the helpful discussions with
they incorporate and reflect some aspects of A. Bowles and S. C. Chang.

- ... •.

. - ..

° • • .- • . . • . . . • . . . . . ,. - - . .

,'--Sq. . ,. " .. @ . r , .. • . ' .. .. • . . . . .. -, -. .. .... _



284

REFERENCES Correct -

progr-im error-,
[Gilb77' T. Gilb, Software Metrics, Winthrop Add newP u b l i s h e r s , I n c ., 1 9 7 7 .

D t r i ec a p a b i l i t i e s. 
.

[Hals771 M. H. Halstead, Elements of 
Software e caltes 0

Science, New York: Elsevier North-Holland, I eteosolt
features1977 pp .84 -i91.:'i:

[Henr8ll S. Henry and D. Kafura, "Software Optimization

Structure Metrics Based on Information Flow",
IEEE Trans. on Software Engineering, Vol SE-7, PC e
No. 5, Sept. 1981, pp. 510-518. Phase Complexity

-

Un d s d Documentat ion " ' ""

S,[Meyer751 G. J. Myers, Reliable Software Uertan
Through Composite Design, Petrocelli/Charter, Self descriptiveness

•. - 1975.

[McCa761 T. J. McCabe, "A Complexity Measure",
IEEE Trans. Software Eng., Vol. SE-2, Dec.
1976, pp. 308-320 

Ps

.Parn72] D. L. Parnas, "On the Criteria to be Generate Extensbilit

Used in Decomposing Systems into Modules",Maintenance
Communications of the ACM, Vol. 15, No. 12, Proposal
December 1978, pp. 1053-1058.

1'rich791 W. F. Tichy, "Software Development
Control Based on Module Interconnection", in

Pzoc. Fifth International Conference on Software Account for
Engineering, pp. 29-41. Ripple Stability

(Whit801 M. H. Whitworth and P. A. Szulewski,
"The Measurement of Control and Data Flow
Complexity in Software Designs", Proc. COMPSAC
30, Oct. 1980,pp. 735-743.

[Yau781 S. S. Yau, J. S. Collofello, and T. M. Tetig etailt

Mac Gregor, "Ripple Effect Analysis of Software
. Maintenance", Proc. COMPSAC 78, Nov. 1978, T Tes""i""

pp. 60-65.

[Yau80] S. S. Yau and J. S. Collofello, "Some""No 

P s

Stability Measures for Software Maintenance",
IEEE Trans. on Software Engineering, Vol. SE-6,Tetn

No. 6, Nov. 1980, pp. 545-552.

[Yin80] B. H. Yin, "Software Design Testability

Analysis", Proc. COMPSAC 80, Oct. 1980, pp.
729-734.

(Your79] E. Yourdon and L. L. Constantine,
Structured Design, Prentice- Hail, 1979. Figure 1. The software maintenance process and

associated program quality attributes in each
[Zelk781 M. V. Zelkowitz, "Perspectives onphase.
Software Engineering", ACM Computing Surveys,
Vol. 10, June 1978, p. 197-216.

..

S- . o" .



285

• .".," ~ ~scANwoRD '""'-

GETWORD PROCWOT s-adfg.

REDG READCARD crdia ls-O-Owr

FIDOD hrctr ND O w"'"edofwrd igr . eig"orAtentie2
oftrnmisin flggt-*. q

fg c(read one (scan rexct flag,

last-er card) for next-card.flag
s o u r c w o r d- d o n e f l a g'; 

: ; "

bRoWrd wr
---] * .. ."

i~j~i2  MODULE INPUTS OUTPUTS iil!.i

MODLE INUT GE C iAR character, end-of-." "

FOUe 2 T DA TaTvtrensmission flag

INE chratr,-"-f GETCARD card-image, last-card flag""

Figure.GETWORD tword, end-of-words flag .

READCARD card image, last- Cutin aodi.ard flag "- '-

FINDWORD character, end- word, anf wordsary foreor
of-transmission flag, get- Fiur'esgnfr ltratv.2
flag, card image, character flag,

last-card flag, get-card flag,
source word-done flag ""'

.. .." oRocWoRD word .:.,-

,.,..,"":"'-- ..

m Figure 2.Design for Alternative 1. "- '

" I DATA I
"= -/ I ABSTRACTION Ii"-[
".';': [ MODULE X Ik:'-

ARRAY ]

ARRAY OF RECORDS

Figure 5. An illustration of modules A, B, and . .. '
Figure 4. An illustration of modules A, B, and C utilizing a data abstraction module to access '"""-

C sharing a global array of records. an array of records. .



- 287

Reprinted from THE PROCEEDI'.h(S OF INTERNATIONAL COMPUTER SYMPOSIUM 1982

Taiwan, December 15 -17, 198?.

A METHODOLOGY FOR SOrKARE MAINTENANE

Stephen S. yau, Carl K. Chang", Chung-Chu Hsieh**,
Zenioni Kisaimoto+ and Robin A. Nicfloll

Department of Blectrical Engineering and Computer Science
Northwestern University

Evanston, Illinois 60201, U.S.A.

ABSTRACT case generation

The capidly inc.reasng cost of
software maintenance indicates the
importance of developing effective INTRO0UCTIO4
methodologies for softvare maintenance.
In this paper a methodology for software Most of the expenses associated with
maintenance, which decomposes the computer systems are due to the cost of
software maintenance Process Into four developing and maintaining software. The
Phases is presented. The first phase is total U.S. expenditure on programming in
to analyze thle software in order to 1977 was estimated at between $SO and FN
understand it. The second phase is to $100 billion. which represents more than
generate and realise a Particular 30 of the U.S. GnI for that year I1l.
m odification proposal. The third pnase It has been estimated that by 1985, the
is to acount for all Of the rippLe cost of computer sof tware vill soar to
effects Of the modification, including 90% of the total system expenditure (2).
both logical and performance ripple This is due to the damautically
effects. The fourth phase is to test the decreasing cost of hardware and the
modified Program to insure that It Increasing complexity and cost of
functions properly. To support a wide software, which has required ever greater
spectrum of activities involved in these human resources to develop, validate and
four Pasege a variety of Software tools maintain.
have been developed. By making use of
these tools# an environment has taus been It is well recognized that the

*created to assisot the software maintenance cost Of software has *.-

maintenance practitioners in peforming increased continuously and that it has
their functions more effectively, become the single dominant cost item 7
Currently, these tools have not been duaring the life cycle of a large-scale
totally Integrated. A method for software system. Estimates of

* Integrating these tools and the database$ maintenance cost have been found ranging
they need Into a unique maintenance from 40% (21, 67% (31, to as high as 80%

* nVironment is Presented. Most of the (41 of the total cost during the life
*tools discussed in this paper have been cycle of large-scale software systems.

deontrated for PASCAL on a DEC Therefore, in Order to reduce the high
VAX-Il/7SO computer. cost of software, it is essential to

develop effective software maintenance
Inde" Terms- software maintenance, methodologies.
program representation, program
modification, program editor, Program *Software maintenances has been
slicing, ripple effect analysis, test defined as 'the process of modifying

existing *oeational sof tware while
'VENTw-BET was supported by the Rome Air leaving its primary functions intacto
Development Center, U.S. Air Force 151. The broad spectrum of activities

1stem Commend, under Contract which comprisae software maintenance
,06024C-0139. Includes error corrections, enhancements

*fos delt~iTon of obsolete
**~Carl 9. Chang and Chung-Chu Esieh are cavabilities, optji~aion, -and _nno

*now with Sell Telephone Laboratories, chnes n mission requ rements [t.o
N aPrvillo, Illinois 60540, U.S.A. iixiI ant e wo the state-Of-the-art

software maintenance techniques and tools
*Zenichi Kishkimoto is now with GTE can be found in (7]. As indicated in

*LaboratoriJe, Waltham, Massachusetts tnat report, much more attention has been
02154, U.S.A. focused on the management aspects of

0%

. *%
.. . . . . . . . .. - . . . d ~



288
n.nta .nnq soft.are systems tnan an tne Trie code-LeveL specif ication of tne
tecnnica.L a spe cs. 'aintenance mooificarion can tnen be realized [91 in

C09 pco armm ers must .till nandle tne tne program code to produce a modified
t. cnnica. proolems in in ad noc manner. program wnicn is .ubject to

re-va. lidat ion.
rnerefoce thnere is an urgent need

.or in effective software maintenance Trie thnird pnase is to account for
,.erodoloqy, wnicn Should not only all the ripple effect of the
address a.]. the major problems of modif icat ons proposed in phase 2. As a
software maintenance, but also provide a result of these modifications, there may
well-integrated maintenance environment be logical inconsistencies and/or
to effectively solve the software significant degradation in program
maintenance problems. In this paper, we performance. The ripple effect analysis
will discuss a metnodology for software technique (10-161, will identify both
maintenance wnicn incorporates a variety logical and performance ripple effects of
of software tools to support a unified the proposed program modification.
maintenance environment. most of the
tools mentioned in this paper have been The fourth pnase is to test the
de.onstrsted for PASCAL on a DEC modified program to insure that it
VAX-LI/780 computer. Each of these functions correctly. OurIng the software
tools, however, operates on its own maintenance phase, it is important that
representation of programs. A method for cost-effective testing tecnniques are
integrating these tools into a software applied [17). Testing of the modified
maintenance environment will also be software must be done in order to detect
discussed. unexpected errors, such as dormant errors

which, although present in the software
system before tie modification, may

OVERVIEW OF THE METHODOLOGY become active errors as a result of the
Modification.

Yau et al. (S1 have presented an
integrated view of the software Zf the modified program fails to
maintenance process. Once a particular pass the testing phase, any or all of the
maintenance objective has been previous phases must be repeated,
establisned, the objective can be depending on the extent and type of
accomplished in the fouc phases as shown failure. in the most extreme case, the
in Figure 1. maintenance objective may itself be

considered infeasible (because of its
The first phase is to analyze the maintenance cost, fa example), and

program in order to understand it. To should be altered.
. facilitate this, the requirements, the

different levels of the design and the
program itself should be clearly SOFTMRZ HNI TEANM PROCESS
described. This description of the
software system can be best prepared Zn this section, we ace going to
during software development when each discuss each of the four phases of the
level of the software system aid ts software maintenance process in more
connection with other levels are detail.
understood. Since there ace many
software systems currently in operation Understanding the Softiare
which have been developed without such
descriptive support, it is necessary for During the maintenance phase of the

" us to establish a procedure by which the A-7 aircraft flight prOgram l18],
information can be constructed by leninger found that the existing
analysis of the existing pcogras, using documentation was space and not
only the source code, in addition to up-to-date. Tnerefore, she decided that
whatever documentation is available, it would be more Cost-effective to

re-construct the software requirements
The second phase in to generate a before attempting to modify the software.

particular maintenance proposal so that This software maintenance example
the maintenance objective can be Indicates the Importance which
achieved. The mlti-level system maintenance personnel place on a good

* description mentioned in phase I can be description of the software system. It
used to determine the effects of the also sowvs that, even after the software .____ 0
aintenance objective on each of the system has entered the operational phase,

levels. A given program modification for it is still feasible to construct Such a
an existing program must be sm ifid at description.
different levels (i.e. requirement,
specification, design and code levels).

--:-: :- .-A, .. ....... . .. - ... ... ....... .... ....... . . -.* ,:



289

tn gener3l, tre ma Lntenance flow of tne program to extract any code
personnel should not be required to wnicn may contribute to the values of
.nderstand the entice system at a those variables at that point. These.
Jetailed Level, because of the cost and program slices are themselves
time required to do so. We prefer an syntacticaly correct programs and, if
approach wnhch allows cnanqes to a executed, will produce values equal to
software system to be made correctly, those produced by the original program at
with the, effort to understand the system te. selected point (assuming that the
being concentrated on only the portions original program contains no
of the software system relevant to the non-tecminating loops (201).
modification. To meet this goal, a

,-. detailed description of the software eeratinq and Realizing Mod i ficat ion
system should be available, which would Pisai
also record the relationsnips of various
components at different levels when a number of "cnange requests-
(requirements, architectural design, from the users are collected for

" detailed design and program code) When attention by the maintenance staff, a
such a layered description of the "modiflcation" is started. There are a
software system is available, tracing number of ways to implement a particular
changes to particular portions of the modLficatLon. and each of these is known
software system may be done aore easily as a *modification proposal' until we
and more accurately, have selected one particular modification 5

proposal to achieve tne maintenance
k further benefit of such a objective. The elements vnicn make up a

description is the ability to directly modification are "program changes*. TO .
relate ten program code of the software generate a modification proposal, it is
system to the moification request, wnicn necessary to carry out activities similar
is often expressed in terms which are to those of requirements, design and
ore familiar to the users of the, system coding, as performed during the

than to the maintenance programmers. development pnase. The change requests t "
This relationship is usually unclear if are assumed to be in an informal
only the program itself is available. notation, but the maintenance staff musat
However, some useful descriptive (ultimately) alter a software system
information can still be extracted from wnich is precisely expressed oc written
the souce code of the programs alone, in a formal language. Therefore, there
using automated analysis tools. is a need to convect the modification

from an informal notation to a formal
Prcjram analysis tools have been one.

available for many years to provide aids
. such as automatic flowcuartLng and We have chosen to attack this

construction of call graphs. Since graph problem from both directions: from the
representations of data or execution flow direction of the Informally defined
are often used to describe software changes and from the direction of the
system requirements (as in RSL (191, for formally defLnd software. First, we
example), we must analyze the program so need a method whereby we can relate each - -
that we can present our 1kformation in item informally mentioned in each change
such a format. Under these request to some known entity in the
circumstances, the most attractive software system. Zn addition, we mut
approach to the construction of this determine how the new behavior required .' ,
software sytem description is one based of those items may be formally describedan dat~a flow a1nalys~i of the pcog :am, to generat e a formal modificatiLon ""--

with the intention of relating inputs and proposal to the software system. We call .'-

outputs of this pogea to each opre. this process the specification of a
The Oprogram slicingO technique (201 can modification proposal. Figure2 shows I --
be used for this putpose. the celationship between the level of the

modification proposal and the level of
of Proqgam slicing refers to a process the software description. . -

sof electing a portion of the text of a
program to form a ealiceo, where the The following steps are repeated for
selection is done automatically, based on each level of the modification proposal: .-
data flow analysis techniques. The user
of a program slicer must specify which 1. Identify the description level to
variables ace of importance, and at which whicn tre modification applies.
point in the program their values are of
interest. These two pieces of 2. Definle the interface between each
information constitute the *slicing change and the software system.
criterionO. The program slicer uses the
slicing criterion to analyze the data

• , . .' . S;. . . ..

.-.- . .-.. *- -*: - * ' " ' r



_________________________ ,,_________________ ,____• _ . -,i+ ,I " . V ,+ .. - . ; .- . . . ~ . - ; ..--

290

3. r:ce tne effects of each change at effect analys s (phase 3) and testing
tnia Level. (phase 4).

4. Restructure tne software system to Ripple Effect Analysis
reduce extraneous effects.

An important a~ctor contributing to
5. Tentatively make the modification. the nigh cost and complexity of software

maintenance is that the effects of
* 6. Check the correctness of the program modification are usually not

modif icat ion. restricted to the location of the
modification, but propagate to other

7. Refine the modification proposal by portions of the program. This phenomenon
decomposing each change into one oc has been fully described in [10] and is
more changes to the next level, called the "ripple effect" of program

modification. Ripple effect analysis
techniques nave been developed for
analyzing two aspects of these ripple

The effects of the changes can be effects, the logical or functional aspect
traced at a particular level 'of and the performance aspect. Logical

- description by performing "ripple effect" ripple effect analysis involves the
analysis on a model of that level of identification of program areas which may
description, and at lower levels, using a require additional maintenance to ensure
definition of the interface between each the logical or functional consistency of
level of description. SRE4 (191 provides the software. Performance ripple effect
some tracing information describing the analysis involves the identification of
peparation of the software system performance repercussions throughout the
requicemoents, and some information about software system as a result of the
the inter-connections between different changes to one program area.
requirements, but this is not adequate
for our detailed analysis, nor is it We have made an extensive study of
relevant to the software design oc code. logical ripple effect analysis techniques

[10-131. The phenomenon of logical
In addition, since most software ripple effects is a serious problem for

systems ace written in well-defined maintenance programmers who must modify
programming languages, we can define a large-scale software systems since the
formal model of & software system and a repercussions from their modifications
set of formal operations on that model. ace rarely obvious. Our automated
This means that a modification proposal technique to perform logical ripple
can be stated as a set of formal effect analysis is based on a model of
modification operations, which ace to be the data and control dependencies which
applied to tnhe software system to exist in programs. We extend the data
implement that modification proposal. We flov to include not only USED and DEFINED
call this process the realization of a sets, but also a mapping to show now
modification proposal. variables are used to define other

variables. This model is called an
Program modification of an existing gerror flov" model, since it shows the

" softwace system must be carried out by means by vhich potential errors may
physically modifying the software at the propagate through a Program.
code level, either by correcting the
existing program code oc by developing When a modification is made to a
new segments of program code (211. pcogram, changes occur in the data flow - -
Modifying programs, howver, is an of the program. A set of variables,
Incremental process. We have developed known as the primacy ecror source set, is
techniques to assist programmers in directly affected by the modification.
modifying only the relevant portions of Our ripple effect tracing algorithms use.
the program and in re-asserting its the arcs of the data flow graph to
correctness with a minimal amount of determine where the effects of the
ce-analysis of the program (221. primacy error source set may reach, and
Incremental pcogram modification should hence all the potential logical ripple
be conducted interactively, so that effects of the modification are
maintenance pcogrammecs can expect identified.
instant feedback on the effects of the
modification, and thus be able to make Logical ripple effect analysis can
program modifications more Intelligently. be decomposed Into two stages. The first
This approach is obviously advantageous, stage is the information construction
because the length of the fix-and--complle stage, where both the intramodule error
cycle is shortened. After the program flow model and the internodule error flow
nan been *fixed", It is ready for ripple model ace constructed. The second stage

• .-.-



291

is the error flow tracing stage. Two automated tool.
dL f cult Les associated with logical

"'ripple effect analysis are further caused Effective Testing for Software
"y recursion and dynamic aliasing, due to Maintenance%%"the fact that log c al -r pp Ie effect _.

analysis is based on a static analysis of After all tne modifications and
the data flow properties of the program. their ripple effects nave been
B o.tn problems nave recently been solved accommodated, testing is performed.
under certain reasonable assumptions Testing is done to validate the modified
LI"). program in order to detect unexpected

errors due to the modifications, such as
We nave also initiated the study of previously dormant errors which may nave

performance ripple effect analysis become active errors due to the
tecnniques (14-16). Since large-scale mod I f icat ion. A complete testing
software systems often have strict strategy for the maintenance phase
performance requirements, It is also consists of module testing, integration

- important to insure that program testing, and system function testing. we
modifications do not degrade program have concentrated on a module testing
performance. technique whicn is part of an overall

testing strategy for software
when modifications are made to a maintenance. This technique uses the

program, performance ripple effects occur i partition method for test case
as well as logical ripple effects. W*e generation and the data-driven symbolic
nave developed a model of che ways in evaluation method for test case execution
wnicn performance ripple effects may T17T.
propgate as a result of program
modification. In this model we identify For each of the modified modules,
attributes of the program which affect test cases are generated by comparing the
its overall performance. These detailed specifications and the program
attributes are quantifiable measures of code. Whenever possible, we will use
pecfocmance. The most obvious example of test cases in tne original test set which
a performance attribute is the execution go througn any modified portion of the
time of module. program. Bowever, it is also necessary

to generate additional test Cases. These
By identifying the performance test cases are then used to evaluate the

dependency relationships which exist behavior of the modified software. Our
betwen perfocmance attributes, we can approach is to use symbolic execution,

% construct a complete model of potential driven by actual test case data, to
performance ripple effect propagation. produce symbolic test results. In
when a change is made to a section of the addition to test case generation and test
program code, certain performance case execution, the technique also
attributes may be affected. These supports debugging of the module when the
performance attributes my, in turn, existence of errors has been detected.
affect othec performance attributes in
the program due to a performance
dependency relationship. Performance SOFTRIM IkrNTENANCZ ZNVIRON,,NT
dependency relationships are created as a
result of Certain Mechanisms in the Zn the following sections we will
program. for example, calling a module describe software tools which we have
is a mechanism which creates a developed for software maintenance.
perfocance dependency relationship from These tools have been demonstrated on a
the called module to the calling module. DZC VAX-11/780 computer under the VMS
SpecifLically, this means that the operating system.
execution time attribute of the called
module ay affect the execution time of The Syntax-dire. eProg am ditor -.
•te caling module. One major contribution made by

In (151 we describe a number of syntax-directed editors is that they
performance attributes and the possible treat a program as a well-formed
performance dependency relationships collection of syntactic units (language
between tham. Using this model we- have constructs), not just text.
also developed algorithms to trace the

*'O potential perfocnance ripple effects from We have developed a syntax-directed
an initial modification. These editor which uses three classes of
algoritrms are also presented in (151. editing command: basic modification
Tau et al (231 refined some of these commands, cursor movement commands, and
techniques and verified the basLc extended m i c at on conds. The
focmulat ton of the appcoach using an bas modification commarTs -include ADD,

- . -

0° .



SRTA, r.%EZTB, E ZI7z arnd .!tA:.-l. flC.Jdinq data declarations) of the code
'nese commands are bai.c !>ec3uSe tney I n e sice. We nave developed a
provide tne nasic mechanisms to enable program slicer wnch meets these
naintenance programmers to modify requirements. Our program slicer
prqrms. The cwrsor movement commands interactively constructs te text of a

ic -dude IIP, OCWNI, LE T, RIGHT and partial programs (or slice") whicn
OIAGONAL. Mailing use of tnese cursor satisfies the slicing criterion. Each
movement commands facilitates *structural slice is a syntactically correct program,
tovement* rather tnan 'textual rovement" made up of a subset of the declarations

throun tne program. With these and statements of the original program.
commands, programmers can make more TO achieve this. we have extended the
aensible moves to locate the desired program representation mentioned in the

- constrcts. The extended madification previous section to include the data flow
commands Li.clde CUTr, PASTEA, PASTE' , informat ion which the program slicer
ZCP and REP LAm. These extended needs.

- commands provide further editing power Our current approach is based on an
for the user. O .

intramodule program slicer. It selects a
Details about trio MeChaniSM Working portion of a module (i.e. procedure or

benind thnese commands can be seen in [9]. function) according to the slicing

This editor operates cin a syntax-oriented criterion, and adds to it the

program representation which is also declarations of objects inside or outside
fully described in (9]. the module to insu-e that it forms a

syntactically coe program. In PASCAL

An incremental analysis mechanism these objects int .e labels, constants,
must be associated vith the editor to types, variab , procedures and
evaluate the static semantics of functions. To e sce the usefulness o-

programs. For example, the command to this program sli as a programming aid,
delete a variable declaration may trigger we have added options of further
the invocation of a semantic checking applying the sl. existing slices of
routine wnich highlights all the usages a program - to * .n a more refined

of that variable, to remind the picture of prog._. behavior - and of
programmer of the existence of a combining slices (possibly those of
potential semantic inconsistency, distinct modules) into more comprehensive

units. The operations which are
"-- The syntax-directed editor is also available to combine program slices are

" supportedl by a scen-ocientod UtNION and INTE7SEC1TIO of program slices.

pretty-prtinter which allos the, Figure 4 illustrates how our program
programmer to view the poction of the slicing technique works.
program being edited. The programmer
first uses cursor movement commands to The Logical and Performance Ripple Effect

examine the program, then "to X alyzer
modi fication commands to Modify the
program. The pretty-pr inter responds to A software support system, the
cursor movements commands and recognize* "logical ripple effect analyzer*, for

program changes by examining the pcogram performing logical ripple effect analysis" -
representation. it then rebuilds the on PASCAL programs has been developed.
screen display according to the change. This support system consists of three
As a result, the pretty-printer provides subsystmem an intramodule error flow
instant visual feedback to assist the analyzer, an intermodule error flow
programmer to perceive program changes in analyzer, and a logical ripple effect
an interactive manner. Figure 3 Identification subsystem. The

illustrates the structural cursor intramodule error flow analyzer was
movement commands. developed by modifying an existing PASCAL Al

compiler. The other two subsystems were
The Syntax-directed Program Slicer newly developed. These programs operate

on the intramodule error flow model and
Weiser's program slicer [201 the intermodule error flow model. ,''."

operated on a conventional form of data
flow graph (24] (i.e. a directed graph The program analyzer developed to
w"ose nodes represent the conditions and construct a *performance ripple effect

-. assignment statements of the program and models for PASCAL programs has been S
wnose edges represent possible data flow implemented by modifying the same PASCAL

patns between them). compiler. A program to trace performance
ripple effects has also been wcritten,

In an Interactive programming which handles initialization of the data

environment, and in normal practice, it structures in the program, user

is more useful to display the text interaction, and the tracing algoritlms

* 5|

--- *...e.-.*:A-, ....

-. -- . . . . . .. . . . . . . . .,-~ - -



-* 293

t.emselves. The perfocmance ripple nave been descrLbed in 19,13,17,231.
e f f ect analyzeC, consists of these two Altnougn we are convinced that our
pograms, tecnnLques can benefit maintenance

personnel in a direct fasnion, further
Testing " Symbolic Execution investigation into various other aspects

of software maintenance is still
Our cucrent res6lts in softwace required. Because an environment of this

testing are limited to module testing. kind is highly experimental in nature, we
we nave demonstrated this technique for must pay equal attention to tool
programs written in ANI FORTRAN since construction and environment
out implementation makes use of existing experimentation in the future.
tools for data flow analysis (DAVE (251)
and symbolic execution (ATTEST (261), Any programming environment must be
wnicn only operate on FORTRAN programs. highly experimental in nature (271. The .

performance of each tool in a particular
We use the DAVE data-flow analysis environment must be studied and altered

system 1251 as a prepocessor to produce accordingly in order to achieve a highly .
tne control graph of a program to be effective integcated system. The

.:- analyzed. From this graph we use a software tools described above nave been
program graph generatoc, which we have demonstrated independently in order to
developed, to construct the program graph show that their implementation was
for furt r analysis. The tokens of the feasible. Consequently, each tool has
program. which ace produced by the DAVE been developed to operate on its own
system, are used by an intermediate code program model (or representation),
genecator, which is a paret of ATTEST-s although together they provide a wide
prepcocessoc (261, to construct an spectrum of program analyses.
intecmediate code representation of the

. program. This intecmediate code will be owevec, our experience has shown
used for symbolic execution of the that information constrtcted for each
pcogcam. independent tool can also be shared among

several tools of similar nature. For
We nave also developed a example, data flow information appears

modification handler to stoe both in the program representation used
modification infocmation in the program by the program slicer and the program
graph produced by the program graph editor, and in the erroc flow model used
generator. The ATTEST symbolic execution by the logical ripple effect analyzer.
system was modified to permit data driven The program representation used by the
execution, and this modified system Is proqran editor Implicitly contains the
used for test case selection and test control flow information which is
case execution. The results of data essential to the module testing tools.
driven symbolic execution are used for The performance analysis tools also
output validation. require information regarding control

flow and data flow, although they also
A test execution tool was developed require additional performance oriented

to perform test execution interactively, information.
This tool is used for debugging, and uses
four types of command: test case In order to integrate all the*e
specification -omands, mo e commands, tools to form an effective maintenance
show comamnds and breakpoLnt commands. machine, several models representing

various aspects of a software system may
Although it has been demonstrated exist simultaneously. We view these

for Fo0R"Am programs, this module testing different pieces of information
technique can be adapted to block collectively as a portion of the
structured programming languages by multi-level software system description.
altering the front-end (prepocessor) and Howevr, it is still necessary to develop
the user interface (maodification a mechanism, whereby the maintenance
handler). activities can be carried out

harmoniously and efficiently. This
mechanism may be considered to be a

AN TEGR.TED SOPTiRR MkrMTMNE modificat ion session managec', which
. .. _______ will support a friendly user interface

and effective and accurate information
Before an integrated system can be handling. The modif Ication session

achieved, experimentation must be manager has the responsibility of
perfoted, based on independent execution controlling the users' use of the -
of each tool currently existing in our diffecent software tools in pecfocming
softwace maintenance environment. modification activities. Figure 5 snows
Results of these separate experiments how such a system can be organized.

S- S



;.W 4

294 .1

* CONCLUSION (101 Yau, S. S., Collofello, J. S. and
MacGregor, T. M., "Ripple Effect

In this paper we nave presented a Analysis of Software Maintenance*,
comprenensive software maintenance Proc. 2nd. Int'l. Conf. on Computer

etnodoloqy. All phases contained in $o-ttEare and Apol icat is (COMPSAC O
this metnodology and tecnniques involved 7TF "ovemir [a, pp. 60-65.
in each phase nave been briefly
described. The status of prototype [111 Yau, S. S., Collofello, J. S. and
systems based on various techniques has Hsien, C. C., Self-Metric Software -

been discussed. ased on tne framework A Handbook: Part I, Logical Ripple
reported here, we expect to conduct full Effect Analysis@ Final Technical

* experiments in applying our methodoLogy Report RADC-TR-80-138, Vol 1I (of
to a large-scale software system in the 3), NTIS AD-A0386-291, April 1980.
near future.

(121 MacGregor, T. M., "Analys is of
Logical Ripple Effect of Program

R FESR1ENCES od i ficat ion", Ph.D. Dissertation,
Northwestern University, 1979.

Il] Boena, B. W., 6Softvare [131 Rsien, C.-C., "An Approach to
Engineering*, IEEE Trans. on Logical Ripple Effect Analysis for
Computers, Vol. C-25, No. 17, Software Maintenance", Ph.D.
DeceL 13.976, pp. 1226-1241. Dissectation, Northwestern

University, 1982.
[21 Lehman, M. M., "progtams, Life

Cycles, and Laws of Software [141 Collofello, 3. S., "Effect of
Evolution', Proc. of the IEEE, Vol. Program Modification on Software
68, No. 9, Septemeir =980, pp. Performance", Ph.D. Dissertation,
1060-1076. Northwestern University, 1979.

(31 Dena, S. W., "Software and Its (151 Yau, S. S. and Collofello, J. S.,
Impact : A Quantative Assessment*, "Perfomance Ripple Effect Analysis
Datamat ion, May 1973, pp. 48-59. for Large Scale Software

Maintenance", Interim Technical
(41 Bauer, a. A. and Birchall,, .. B., Report 3ADC-TR-80-55, NTIS

a"..naging Large Scale Software AD-A084-351, March 1980.
Development with An Automated Change
Control System", Proc. 2nd. Int'l. 161 yau, S. S. and Collofello, J. S.,
Conf. on C -ofiare "Self-Metric Software - A Handbook:

Z'icat-ons( (COPSAC 78), Novem ' Part 1I, Pecfocmance Ripple Effect
1975, pp. 13-18. Analysis*, Final Technical Report

RACC-TR-80-138, Vol III (of 3), NTIS
(-1' [ lkowitz, M., "Perspectives on AD-AO386-292, April 1980.

Software Zngineering0, ACm ComputLng
Surveye, June 1978, Vol=.o0, 9. 2! (171 Kisnimoto, 2., "ffective Software
-pp.7-216. Testing for Software Maintenance',

Ph.D. Dissietation, Northwestern
(6) Lientz, B. P. and Swanson, 8. S., University, 1982.

oCharactercistics of Application
Software Maintenance", [18) Meninger, K. e., "Specifying
Comunicat~ons ACM, Vol. 24, No. 6, Software Requirements for Complex
:une 1978, pp. 41r--471. Systems*, Proc, pe. of ReliabLe

Sot tware, T7E• p"T"4.
(71 Donanoe, J. 0. and Swaringer, D., A

Review of Software Maintenance (191 Alford, M. W., "A Requirements
T RADC-TR-80-13, February Enginecring Methodology for

Real-Tine Processing Requirements",
Vol. S-3, No. 1, Jan. 1977, pp.

(81 Yau, S. S. and Collofello, J. 8., 60-69.
"S0me Stability Meauces for

0 Software Maintenance', ]ZE Trans. (201 Weiser, M., "Program Slicing*, Proc.
on Software ZnjLgriCn, -v01. 314, 5th Int'l Cont. on S ofwr

i~ viii~07.S45-3 52. 7~n~iq 9t~.i9-4-I

(91 Chang, C. K., "Inctemental [211 Donahoo, J. and Swearingen, 0.,
Modification of Computer Programs", "Software aintenance Teennology",
Ph.D. Dissertation, Nocthwestern Proc. 4th Int'l. Conf. on Copue
University, 1962. Yoftware :&g Applicitlnq (CUt9SAi.

4... . . . .



295V d~~ML9 L80. pp. 394-z00. p t

Incremental Program Modification,Obetv
*submitted for publicationl.

1231 Yau, S. S., Carvalho. M~. B. and
.4 Nicnol . R. A., * Method for
EstimatLng the Execution Time of
Arnitracy Pathsa in Computer Understad Phase I.

*Proqramsw, Proc. Stn Ine'l. Cont. onPrga
* Sof ewart-. %olca -

225-239.

12-41 Hecht, M4. S. , Flow Analysis of
* Computer programs. Nr-o.a Generate Phase 2

Publishing Company, Asterdam, 1977.an

(251 Osterweil. L. J. and Fosdick, L.. 0, APriua
* DAVE -A Validation Error Detection Mdfcto

and Docmntation System for Fortran Pooa
Programsm Software Practice and

ee Vo1 - Io. 4T1976, pp.

(263 Clarke, L. A.. 6A System to Generate Ripple Phase 3
*Test Data and Syimolically ftocuts ffc

*Pcoqranms, =ZE Trans. on Software Anlyi
Zn~iqqci~j-VolI. S-2. ti. 3, Se.

* 1976, pp. 215-222.

* (271 Dacstow, 10. R. and Starobe. I. IL Testing Phase 4
00botrvati~oss On Interactive

P rogramming EZniromnte, !ezn
Tutor ta±: Sot tware Development
Envkronments. 194L, pp. 286-301.NoPs

Figte 1. The Software Maintenance Process



S 296
-.

Level of the Level of the
Mod if icat ion Software
Proposal Description

Users' Change Ue
Requests ee

Proposed Modification Software
Software Requirements ; Requ i remen t

Proposed Modification to ig o_-evel
Highlevl Sotwae DeignSoftware Design

I- O

Proposed Moification to "eailed

Detailed Software Design Software Design

* . . % I

Proposed Modification to Executabie
Executable Software Code Software Code m

riqug. 2. The approach to specifYing
modification proposals.

0:.- ? .

?-.:.:7Z%::Zg

-... . . . . 4..'.,

.. - . . 4 4 . -. -

S.-,.. 4.

-. -. * .. %s 4

:.02 ~ "'.-""



'0 297

* reset (data)
wnile (not eof (data)) do program triangle (input, output)

begin IThis program builds a digit triangle
while (not eoln(data)) do vri k itgr

In b in
read (data,cn) bgn~t9d

case ord (oft) of ~~ 1 1ojd

for k ::j downto 2do
wrie (h)rit (2-I7IFread (cart) wien

end: end
at write (ch) : n flnl
If :writela _

otherwise write (oft)()
e(ad

realn(daa)Program triangle (input, output)
end

end. var 1.A t integer:

*9 r j :a I to 9 do

for :a j downto 2 doposition *1 to position *2 - RIGHT end-
*2 *3 -DOWN end
*3 *4 - RInd.
04 *5- OWN (b)

Figure 4 (a) Tho program to be sliced.
Mb An illustcation of the syntax-ditected

program slicing technique (slicing for
rigure 3. Structural oursor movemnts, variable k1).

*% %

-IAN



298 -

* IMuLti-heve1 Softw.are Sytom aescription

Software Documn tat ion
---- SourceReurmn

Code Dsg

nstr uctors Tt froo Updte/

Utilities

Test ing tefoeua a LoqIcal Program Program

--- dto~dt

'SJ

?igurg S. An integrated software maintenance
envirnmen

*A



MISSION
* Of

Rom Air Development Center
WAC rtaq6 and execute,6 teaetch, deveeopmevit, te.6t and

setected acquisition ptog Lani n suLppott o6 Command, Contot
* Cc'mmncation6 and Intettigence (C31) activities. Technicat

and engineetinq 6u~ppott within ate"~ o4 tchncate competence
i,6 p'tov.ded to ESP) Pkog'tam 066ices (PO,6) and o-thetz ESO
ef-enents. The ptincJipat technicat mis&on oA-eas oa~e
communi1cations, etecttomagnetic guidance and cotot, 6wr.-

ve'Uace 06 gtound and ae-'ozpace objec-tb, inte~eigence da-ta
coe~ection and handting, in6oination 6yz5tem technotogq,
iono~pheic puLpagation, so?-d 4tate 6c-ence.6, m-ictowave
phy.5c.6 and ef-ecPtoni tetiabZLZ.itq, rna.ntanabitity and

* comnpatibiltqt.



6 0

S

0

I.

0

C IS

I.~.. S

* I S

I S

* I'..

* e

S.-'



U ' t 9 A$~~j'~. ~ " 
'4

..yt~&j4
A,

p~&o 41

;
4

4$~-v ~4 4

4

1;

~, A;. a

r:'rk~r fJr.A~ 4 - ~- ~ -~

' 5 ~

* 
L ~L4.t.S..L .J....* -

. .,~ ~ .q4.4-~sr . An'

-4--- 7! 
-4.&i 

I-

2 ~ -~

-~ ,444
'4 0..-. . -1

I -. ~ 'Vk ~ n~A 
--~r "'Pa- t

4 ~ ,~ eM

4)~ *

4*

a -,

'"4 ~. ~.* 'lhr ~" t. ~ .~
4- 4 t'~$'?. 

ThJ
'P 

1444 .

*4

4- 
'42

* 
.4 

4

-'C
4' IA'a-

4, .4S 
Ia'

st. t~ 

- - .


