D-A142 7632

UNCLASSIFIED

METHODOLOGY FOR SOFTWARE MAINTENANCE(U) NORTHWESTERN 1/4 .

UNIY EVANSTON IL
F38682-88-C-08139

S S YAU FEB 84 RADC-TR-83-262

F/G 972 NL

e m e e o e arw m - P N T
C et P I I GO S e e) i Y g
A A A A S ELAP R Aa e i S A iy A s Tt "R A T BT R TNTCTY T
L = Cha e)

m‘% 25

=X

s £

it -
lizs s pe

o
E

"TEF

I

-
{

o

re
==

I

l

N
O
o

|
i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS [- 4

vy
a e

aehl e,

K e Y

e ah 4 A e e wm e~

AD-A143 763

¥ HLE CORy

RADC-TR-83-262
Final Technical Report
February 1984

METHODOLOGY FOR SOFTWARE
MAINTENANCE

Northweuitern University

Stephen S. Yau

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

P P ey
‘ a e
. s

s T
Ay,

T AT %T Vi,

LA A A A S A el e R e S N, e A R S A S A S A O O A A O A R R

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-262 has been reviewed and 1s approved for publication,

s gl Pl

JOSEPH P. CAVANO
Project Engineer

APPROVED: ﬂAfbde/g/f

RONALD S. RAPOSO
Acting Technical Director
Command and Control Division

FOR THE COMMANDER: % al

JOHN A, RTIZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RAUC (COEE) Griffiss AFB NY 13441, This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

L

L

L
PRI

4
. 4
T
hdaa'n’el _cam

R e - , .‘
e A :
L T . [; oL, B
L . . O ot Lot e
VSRS W I Y P TR VRS NENEY 7 SPNEPY W W Y WY DL LD L

R
ST T
e
AL
Al a4 s oA Ba

?
",
. L

SN RN N A el B I AR S A S A AP Sk S §

UNCLASSIFIED .
SECURITY CLASSIFICATION OF THIS BAGE (When Deta Entered) o
|

REPORT DOCUMENTATION PAGE ORE COMPLETING F

BEFORE COMPLETING FORM S
REPORY NUMBS [GovT AC 17 N ‘ d
RADC-TR-83-262 {A/@ &

. AECIMIENT'S CATALOG NUMBER

4. TITLE (end Sudtitle; S. TYPE OF REPORT & PERIOD COVERED
< |Final Technical Report
METHODOLOGY FOR SOFTWARE MAINTENANCE)} Apr 80 - Sep 82
6. PERFORMING OXG. REPORT NUMBER
N/A
7. AuTHORCa) 3. CONTNACT OR GRANT NUMBERTS) |
Stephen S. Yau F30602-80-C-0139
3. PERPORMING ONGANIZATION NAME AND AGORESS 0. PROGNAM ELEMENT. noucv TASK - '-:
Northwestern University AREA & WORK UNIT NuMBE -
Evanston IL 60201 62702F ADSOA
55812018 SRR
11. CONTROLLING OFFICE NAME AND ADDRESS 12. QREPORT OATE i, X
Rome Air Development Center - (COEE) \Egbruary 1984 e
Griffiss AFB NY 13441 312~u"!fﬂo=’Acss -
T4 MONITORING AGENCY NAME & ADDRESSrif different from Controlling Office) 18, SECJYRITY L ASS. ‘of this reporr) :: K
4"\ -
UNCLASSIFIED Boxst
Same Sa OECL ASSIFICASION OOWNGRAODING TN
N/A SCHEDULE s

6. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbstrect entered 'n Block 20, If ditferent from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COEE)

A
,)‘! 1

19. KLY WORDS (Continue on revervee side il necessary and identity by dlock number)
software modification software testing

software maintenance
software measurement
software metrics
logical ripple effect analysis
20. ABSTRACT (Continue an reverse side !f necessary and identify by dlock number)
Improved techniques for specifying and implementing software modifications

']
s

.
P AP RV S Y

T

s . e a5 e e, L IRT R .
o . . Lttt . e e O L A AT IR P
* 'L U o PR S P p AR

. . » P et
. S S T . . . P . o
DI B AN [. oo . . LR .
. P s + . PR P .
. . 3 e e e P . TR .
. . . R U . Y . . ! f
s, 0l e f . . TR . el CREA A S] e
L St . . v .
. . , S e . da'
_a h L z)

. were developed including logical ripple effect analysis, logical and o .J
. performance stability measures, and effective testing for software mainten- 1;: 'Q
. ance. An experiment was performed to analyze logical stability measurements. ‘{ﬁ;“}}

b R

DD 1 :2:.," 1‘73 COITION OF ' NOV 68 15 OBsSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF Twis PAGE (When Deta Encered)

o« 1 1 . -
S .ln.-"'"l
RN

o

ABSTRACT

This report documents the research performed under RADC
Contract No. F38602-80-C-9139 by Northwestern University for
developing effective methodologies for software maintenance.
This contract is a follow-on to Contract No. F30602-76-C-0397
and focuses on refining, expanding and automating software
maintenance concepts and techniques developed under the previous
contract.

During this contract period, significant progress was made
in developing techniques for specifying and realizing software
modification proposals., logical ripple effect analysis and
module revalidation after modification. These techniques and
the performance ripple effect analysis technique developed
during the previous contract period were demonstrated using a
DEC VUAX 11,780 computer. 1In addition, a number of software
metrics related <to modifiability, such as measures for logical
and performance stability, module strength and coupling, were
developed. Limited experiments for wvalidating the logical
stability measures were performed.

In this report, research results which were presented in
published papers are summarized, and unfinished and unpublished
work is presented in detail. Publications, and technical
personnel related to this project are also summarized.
Published papers presenting the work supported by this contract
are included in the Appendix.

Key MWords - Software maintenance, maintenance methodology.
specification and realization of software modification
proposals, loqical and performance ripple effect analysis,
program revalidation, techniques., software metrics, stability.,
module strength and coupling, validation experiments.

Accession For

NTIS GRA&I g

DTIC TAB
Unannounced O
Justification |

By
_Pistribution/

Availability Codes

‘Avail and/or
Dist | Special

"

LR

"t .

- ‘.- .\
ala® o' o

[
!".'.c':' d

O Y58

. N v y
a® \{i

.....

Page ii
TABLE OF CONTENTS
ABSTRACT v v ¢ o « v &« o o« o o o o @ A |
LIST OF ILLUSTRATIONS & ¢ ¢ ¢ & o o ¢« & o « WV

LIST OF TABLES ¢ + « ¢ ¢« ¢« « 4+ « o+ Vii

1.0 INTRODUCTION . . . o + ¢ ¢« 4 4o &« ¢ ¢ « & s o o = « o+ 1
2.0 SOFTHARE MAINTENANCE PROCESS AND ASSOCIATED QUALITY
FACTORS ¢ ¢« ¢ & &+ & o &+ o o o o o 4 &« « - 3
2.1 The Activities Of Software Maintenance 3
2.2 Tools And Techniques For A Software Maintenance
Environment ¢ i ¢ ¢« s ¢« e e s e . . . B
2.3 Quality Factors Affecting Software Maintenance . 11
3.0 SPECIFICATION OF SOFTWARE MAINTENANCE PROPOSALS . 13
3.1 A Model Of Software Systems For Software
Maintenance e e & 2 s 4 & s 4 o e e+ o s+ . o 18
3.1.1 Background ¢ 4 4 s s s e s s s e 18
3.1.2 Graph Rewriting Systems 2O
3.1.2.1 Graph Rewriting ¢« « &+ + o 4 « « « - 280
3.1.2.2 Definition Of A Labelled Graph 24
3.1.3 The Intraphase Model 24
3.1.3.1 Software Components« « « « ¢« =+ « « « . @25
3.1.35.2 Component Interfaces « « + « « o « « « 36
3.1.4 The Interphase Model e« e s s« . . 40
3.2 Construction Of The Software Hodel . e e . . . 45
3.2.1 Construction Of The Intraphase Model s s+ o .« « . 45
3.2.1.1 Definition Procedure 47
3.2.1.2 An Example For Constructing AN Intraphase Hodel
(An RSL Subset) « &+ + « &+ « « + . . 48
3.2.1.3 Implementation Of The Intraphase Model Si
3.2.2 Construction Of The Interphase Model! 52
3.2.2.1 Definition Of The Interphase Mode! SS
3.2.2.2 Implementation Of The Interphase Model S6
3.3 A Technique For Specifying Software Modification
Proposals . . ¢ « & &« & « & s o s s o o s « o« « 57
- 3.3.1 Intraphase Tracing c e+ s+ .« . . . 5B
- 3.3.1.1 An Example Of RSL Hodxf:catxon e+ s+ s e s 4+ & .« B1
o 3.3.1.2 Assertions To Control Intraphase Tracing 63
- 3.3.2 Interphase Tracing . . « « ¢ ¢« « &+ &« « « s« « « « B5
[3.3.2.1 An Example Of Interphase Tracing 65
) 3.4 Discussion And Future Work « + « « « « . 71
-i- 4.8 REALIZATION OF SOFTWARE MAINTENANCE PROPOSALS . . 7S
s 4.1 overview ¢ « ¢« o« 4 o o + &« o s o » 4 &« 4 75
j« 4.2 The Program Representation 79
‘i? 4.2.1 Data Flow Extensions To The Basic Representation 61
d
!
.
<
e
::- . ‘.._..:....4 U PRI "“.'-‘..-'-'.*'A' RO

OOLCOMNEARAEAL A TR AR R M A A SARR A A A SRS SR AR A S A R A
AN RN I I A T oo '

DS AT S At e A e A i et b e i aen it aag e o]

Page iii o
4.2.2 The Construction Of The Representation 84 E 3
4.3 The Program Slicer « « « v « « + « . 85 -
4.3.1 The Concept Of Program Slicing 8BS
4.3.2 Algorithms For Syntax-Directed Program Slicing . 89
4.3.3 Enhancements . . . ¢ ¢« + ¢« ¢ ¢« s 4 s 4 s s s e . 95
4.4 The Syntax-directed Editor « « « + « 96
4.4.1 Incremental Editing 98
4.4.2 Legitimate Operations ¢ . « 4« &+ & « « « 99
4.4.3 Incremental Analysis e« + « « +» o 100
4.4.4 Incremental Update Of Data Flow Informatxon . . 104
4.4.5 Interactive Pretty-printing 106
4.5 Software Develaopment ¢+ +. « « « o« . 106
4.6 Discussion And Future Work 110

RIPPLE EFFECT ANALYSIS . . ¢ ¢ ¢ « ¢ o o« o « « « « 113
Logical Ripple Effect Analysis Technique 113
Intramodule Error Flow Model 118

S.0

S.1

S5.1.1

S5.1.1.1 Block Error Characteristics 128
S.1.1.2 Construction Of Intramodule Error Flow Model . . 124
5.1.1.3 Intramodule Error Flow Tracing 125
S.1.2 Intermodule Error Flow Model 132
$.1.2.1% Module Error Characteristics 134
S5.1.2.2 Generation Of Module Error Characteristics . . . 138
S.1.2.3 Update Block Error Characteristics 140
5.1.3 Logical Ripple Effect Identification 143
5.1.3.1 Error Flow Tracing « ¢ ¢« o « & « « . . 144
5.1.3.2 Intermodule Error Flow Tracing 145
5.1.3.3 Error Flow Tracing Algorithm 146
5.1.3.4 Logical Ripple Effect Derivation . . « « « « 150
S.1.4 Logical Ripple Effect Analysis Technxque « + « » 153
5.1.5 Experiments ¢« ¢ . « + « s 2 « « « + . 156
S.1.6 Discussion And Future Work « s+ e« ¢« « « 159
5.2 The Performance Ripple Effect analgSns Technique 160
S.2. Experimentation + & « + « « . 161
5.2

N

DISCUSSION ¢ &+ ¢ « « « s« o s o s« s« « & « 163

EFFECTIVE TESTING FOR SOFTWARE MAINTENANCE 165
The Module Revalidation Technique 166
Derivation Of The Input Partition 168

[A N
WNre=g
[

. Reusability Of Original Test Cases 172
Assignment Of Original Test Set To The Input

- Partition ClassSes . . . « o « « o+ o s+ o« o« o« « . 173
6.4 Selection Of Original Test Cases For Execution . 174
6.4.1 Necessary Information For Test Selection 175
6.4.2 Overview Of Selective Test Executijon 178
6.4.3 Algorithm To Select Test Cases 18@
6.4.4 AN Example ¢ 4 e i 4 e e s e a2 e e . . 181
6.5 Test Case Generation And Execution 185
6.6 Output Validation Phase 186
6.7 Debugging . . . B X - 4
6.8 Discussion And Future Nork e v+ s o+ s e s+ . . . 189

o
[N
O
]

N =

w N -

NNANANANNNNNANNNANNNS

9] NUNANANNANBRDEDLWNESP»E

ﬂ

~N N~
WwN

aonGan

NN NN N
WRNRNN N
wn e

o
NGO

(Vo RV Yo IV QY]
SAWN -3]

16.0

11.0

P T Y
SWN =

[
a

iV

METRICS RELATED TO SOFTWARE MAINTENANCE . . .
Logical Stability Measure
Logical stability measure for modules . . .
Logical stability measure for programs . . .
Performance Stability Measure e e e e e
Design Stability Measure
Module Strength and Coupling
Estimating Data Object Interaction
Definition of Intra-Module Strength Metrnc .
Definition of Inter-Module Coupling Metric .
Validation of the Logical Stability Measure
Experimental Procedures« « o &
Program Selection
Modification Proposal Generation
Quantification of the Realized Modifications
Actual Ripple Effect Estimation and
Normalization « o . . .
Statistical Methods Used 1n Analgsxs of the
Results o ¢ o o v 4 ¢ o v v v o .
Analysis of the Experimental Results
DIiSCUSSION . . . & ¢ ¢ v ¢ &« o o & « o o o o
A Unified and Efficient Approach for Logical
Ripple Effect Analysis Used in Metrics
Calculation . . . ¢ . ¢ ¢ v ¢ ¢« « ¢ o & & o
Formalization of Logical Ripple Effect Analysis
Logical Ripple Effect Analysis for Metrics
Calcutlation . . . « ¢ ¢ ¢ 4 4o ¢« 4 o o o o
No Control Flow - No Sharing « e e e e e s
No Control Flow - Sharing« « + .+ &
Control Flow - Tracing T e e e s s e e s
Conclusion« ¢« . v v e 4 e e e e 4 .
Discussion and Future MWork

REFERENCES ¢ ¢ . o & & o o « s o o =

PUBLICATIONS AND PRESENTATIONS
Papers . . o ¢« . ¢ ¢ ¢ 4« e i 4 e s e s e e
Presentations . . . ¢ . ¢ ¢ & ¢« & ¢« e e .
Technical Reports . . . ¢« . v + o « « o o =
Dissertation And Theses « + + .« =

TECHNICAL PERSONNEL. + +« & o & & =«

APPENDIX « « « + « . .

192
193
193
195
196
198
200
201
204
285
209
209
21@
210
211

211

213
214
a21s

2as
227

238
231
233
236
237
238

239
246
246
247
248
248
25e

251

& o o

4
{

AR REREARY N
o et e .
PR ST RIVIRN A S

'-. a
Y% "y

..
R]
P T I
LI T) FJ
A ¥

S R

e
s

P
Vet
NPT
AN

i
P
D

_., ,
ST
P

))
-y

Ty

Lars
s 4
. .' . N
PR ARl ~ RN

D

|
Fa g
KA

¢

ARRRARARAN

MARA AREN
TR ot s
o . . .

. b SRR

%

MDD
r'd

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure

Figure

3.13.

3.14,

3.15.
3.16.

3.17.

3.18.

3.19.

3.20.

3.21.
3.22.

Page v
LIST OF ILLUSTRATIONS

The software development process 4
The software maintenance methodology 8
The users’ view of a software system 13
The programmers’ view of the same software
system ¢« ¢ ¢ ¢ ¢ 4 4 4 4 s e a + » .« 15
Equivalence preserving requirements for
reliable software modification 16
An example for rewriting a string 22
An example for rewriting a graph. 23
An example of the control flow representation 28
Notational abbreviations for the standard
graph patterns o . . . 29
Abbreviated representation of the previous
example shown in Figure 3.6 30
An example of data flow representation. . . . 32
An example of data structure representation . 34
An example of a component interface graph
with no PARAMETERS subcomponent 40
A process structure using Jackson’s design
methodology . . . « ¢ « ¢« « & o « « & « « » o« 42
The model representation of the JDM design
shown in Figure 3.12. « « o+ .« » 43
Part of the interphase model betmeen
requirements and design 44
RSL R_Net and associated alphas 62
The MODEL representation of control flow of
the RSL example ¢« . ¢« + +« « « . . 863
Consequences of possible combinations of good
and bad code with good and bad assertions . . 64
The abstract graph ra2presenting a software
SYSTEM s s ¢ s h t e e s s e e s s . 8686
Tracing rules between two phases of an
abstract software system 66
The next phase of the abstract software
SYSLEM. ¢ ¢ ¢ + 4 4t e e 4 e e 4 e . . 67
A new right-hand side for rule R4, . 69
An alternative right-hand side for rule R4 . 71
The procedure for incremental program
modification . . B
The structure of tne system for incremental
program modification 7B
(a) Portions of the program to be modified.,
(b) portions of the slice constructed for the
variable COUNT+ <« « .« o+ . 88

Page Vi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

8 e 4 TR T Bt e St S A MK ANE 0 L ST I Sl el i o M S

[
nN -

o
w

6.7.

- -

A part of a legitimate operation table
Insertion of a local wvariable e
An example to show a sequence of cursor
movements . .
The communxcatxon pattern oF the xntegrated
tools .« e e e e e e e e e e e e e

An example pragram . . . e v e e e
The error characterxstxcs of the blocks in
rroots in the example program shown in

Figure 5.1. e e e e e e
Intramodule error flow tracxng in rroots in
the example program shown in Figure S.1 . .
The module error characteristics of rroots

in the example program shown in Figure S.1.
Error flow tracing in the example program
shown in Figure S.1« .« .« « & « & .+ .

An overview of module revalidation . . .
The causeseffect graph specification of an
example program ¢ &« e 4 o« . . s
The source code of the example program with
the specification shown in Figure 6.2 .
Ooriginal test cases prepared for the program
in Figure 6.3 e e e e e e e e ®
The program graph with reachxng set
information for the program in Figure 6.3 . .
Result of test selection on the program in
Figure 6.3 with test cases in Figure 6.4: (a)
symbolic execution tree, and (b) contents of
test information table e . .
Decision table containing partxt:on classes
derived from the specification in Figure 6.2
and the program in Figure 6.3

T . Ce
S R I S SR
LIS R R N S A L S P R
NV ARG TS NP VR SV T

181
183

187

ie9

126

149

167

170

171

174

i82

e o - . -, . . - . .
. BN S,
b alala e Brlie o g e .

AT AT TR L AT U RTN R R T RTRSAT AT
R - - . - -7 A - ~ - . - - T et ‘

-
R
e

|
s,
L

!
q PN

. - ST
3 L

i
W

.
-~
]

f
.'l'l
Al gt g

-
r . {
0. \,’.5.

1

;;. w;_(;_{a.]

.
.

NN

N

A

- — \ - —— Y A R
va SRR A Lo it Gl &kt e Rt S A AN AL SN SR S N s et Wit S I R A W e e DA S '*
. ¥ . . . N BN A O) LN P .

Page vii

A s—!L -'

oo a'a

LIST OF TABLES

'
»

Table 7.1. Logical stability measures for each module
of the target programs used in the

-
eXPeriment . . . ¢ .+ 4 4 s s s e s+ 4« . . 216 ::::

A

Table 7.2. Correlation analysis on logical stability T ﬂ
for individual modules« 222 -

A
3.4

Table 7.3. The summary correlation analysis of logical
stability for all modules in the experiment . 224

. ‘. .' N
: 'r‘“}.‘l‘."
. -
A "‘ L

¥
~ L
. JRA
ah fatonten

R SR N AR
R .

b AN
L G

.‘.‘ll’,.‘l‘
PN SRR

o
»

da

jﬁ}j
‘~:L:-::1
R
AR
-
)
=D
- -1
e

Tt
*
bk a8

.
o et d
NS
BRI
.\. -'-
.. * -'
.. .‘
ERERS
.. .-'
.

e
TS
N

x.
NS I

e) ’ N o e * i - . L .
Lt - -
DR

'i‘l-' PR O Y BPEre.

- ‘ Ca® - . ot . . . AT P e -
. . - co- L P T . o ma " c . LR LRI QY- TR) ‘ -
R PSPPI P LI RS WP PN AP ATPE P8 VYD LT OF G- TV T T VS VWIS LTS |

1.8 INTRODUCTION

This report summarizes the research performed under
Contract No. F38682-80-C-8139 by Northwestern University for
Ruome Air Development Center during the period from aApril 23,

1988 to November 3@, 1982.

The original objective of this effort was to conduct
exploratory development of techniques for the design.,
implementation, wvalidation and ewvaluation of ' .iacble and
maintainable software systems. This effort was i .einded to be

a follow-on to Contract No. F38602-76-C-8397, ¢ “f-Metric

Software" [YAUBBa, 8@b, 8@cl, and would focus on refining,
expanding and automating software maintenance concepts and

techniques developed under the previous contract.

The oriqginal effort was planned for a period of three
years, starting April 23, 19860. However, because of some
difficulty in continued funding., this project was re-scoped in
September, 1981 and had a lower level of funding starting FY82.
This project starting October, 1981 was re-directed as follows:
to complete the development of those techniques which could be
completed in FY82, and to complete the development and perform
some preliminary wvalidation of the logical stability measures
of programs for measuring the resistance of the programs to

logical ripple effect due to modifications. In this report,

- _".'. . e .‘:‘.-'

: A ” -" : . A s I".h.‘ iy
AN S
- ,

Page ¢2 , ‘.J

research results which .sve been presented in previous papers ‘ﬂ¥j
and inrtcrim technical reports are summarized, and unfinished L
and unpublished work is presented in more detail.
Publications, presentations and technical personnel related to

this project are also summarized. .

" K
® ..,
IO G FLISTITTSS SR

During this contract period, we have made significant

progress in developing techniques for specifying and realizing

software modification proposals, logical ripple effect analysis
and module revalidation after modification. These techniques
and the performance ripple effect analysis technique developed
duraing the last contract period have been demonstrated using a
DEC UAX 11,7848 computer. In addition, we have developed a
number of <software metrics related to modifiability, such as
measures for logical and performance stability, module strength
and coupling. Limited experiments for validating the logical N

stability measures have also been performed.

RS A Ad T s h Al ek S el el Gl e D L R St A SR ST s ORI A P A SN A Sr I L o Ll M sl el
. R TR I L T N . N LI ~ . L S . - - d

2.8 SOFTWARE MAINTENANCE PROCESS AND ASSOCIATED QUALITY

FACTORS

The software maintenance phase is the most time-consuming
and costly part of the software life cycle [(BOEH731, [(ZELK?81,
[(LIENB@]1. However, the activities carried out during this
phase are deeply affected by the process of software
development, since the purpose of software maintenance is to

modify the products of the software development process.

2.1 The Activities Of Software Maintenance

We conceive the software development process as shown in
Figure 2.1. The first activity of software development is to
study the application area and define the requirements for a
new software system for the particular application problem.
This activity involves the participation of representatives
from both the users of the software system and from the
software development organization. The second activity (or set
of activities) is known as software design. This activity may
involve the definition of several intermediate stages during
which a system is being developed to meet its requirements.
These intermediate stages may be known as, for example,
architectural design, subsystem design and module design. This
activity is normally carried out exclusively by members of the

software development organization, although some user

e

oo

vt

H o .
Lo, AN e . o
. 4!1‘ RN -4 O

.d
3
X
.1-3
."J

§
K

Jj

!

P,

i

|

y

]

Page 4 .

»

falnred K"..". .l

et ety

Requirements
Analysis

Softuware
Design

'

Coding

'

Testing

|
Y

Operations
and
Maintenance

Figure 2.1. The software development process.

grganizations may continue their involuement through wvarious
stages of design. The next activity of software development is
to organize the software system design into one or more related
programs, together with associated data files. This activity

is known as the programming or coding phase. The final

ey r vy
.

activity of software development is to test the implementation

S .
‘-

of the software system which has resulted from the software

P
T
el

ele]

[I I TS N A
N
i

@

aa
PR
.

1 % .

3

}

q

"
.t
]
\

.~

@
.

AR

DA T AN I N R e I N A T i A e i A A N SR s e .hu SR

Page S

development process. These last two activities are exclusively
carried out by members of the software development
e organization., although they are frequently performed by people
= who were not involved in the previous activities of preparing

> software requirements and design, When the system has been

a tested ‘""successfully', it is released to the users and enters
an ‘operational’ phase. To the programmers who must work with
= the system, this phase is more commonly known as the

“"maintenance' phase.

The software maintenance phase isS in some sense a
repetition of the activities of the software development if{.‘

{} process. Although maintenance abjectives include improving e

O software performance, correcting errors, transferring software

..
P S I

systems to new computer system canfigurations and deleting i

A
e
e
o
.
'. - . .
s
. N IO
bl camd

obsclete features, the most frequent objective is to increase

system functionality by adding new features or by improving

¢ existing features. Thus, it is again necessary to discuss the
. requirements for the software system with the users; it is
again necessary to perform software design; and, finally, it
is again necessary to perform coding and testing. However,
there is one fundamental difference in these activities when

they are carried out during the software maintenance phase:

" these activities must now be carried out in the context of an
;Q existing, operational software system. It is important for the
o

Page 6

software maintenance personnel to have an understanding of the
process which was used to develop the software system. They
must know not aonly what the operational system is and does, but
also how and why it does so, since they will have to change the
requirements, redesign the software, modify the programs and
test the new implementation based on wvarious demands. The
traditional approach to providing information to assist with
these tasks is by means of 'system documentation’. Many
techniques have been developed to document software systems,
but they tend to be incompatible and not sufficiently
comprehensive to describe the entire software development
process (e.g. HIPO [STAY?76l). We have developed a model which
is suitable for describing software systems’ requirements,
designs and programs. In addition, this model also permits
individual software requirements to be <traced through the
intermediate levels of software design to the final programs of
the system. This tracing capability is essential for the
maintainer of a software system, who must be able to understand

and modify the system rapidly and correctly.

Although it is important to identify the correspondence
between the requirements which are to be changed and the code
which must be changed as a result, there are several tasks
which must be performed by the maintenance personnel before the

modified software system can be made operational again. These

(A i A Ja e Mg

A T YA S Rl Al S AN MBS A il Bt S B e

Page 7 R

tasks constitute our software maintenance methodology [YAU78., '5;€u
88a, B80e, 82cl, and they are shown in Figure 2.2. After
determining which parts of the software system must be changed
in order to affect the modification request, software changes
must actually be carried out, their consequences must be

analyzed, and the modified system must be retested.

In the following sections we will describe our approaches
to each of these problems of software maintenance. In Section
3, we will describe a software system model which may be used
to trace the correspondence between the software requirements,
software designs and programs of large-scale software systems.
In Section 4, we will then summarize our approach for improving
the reliability with which the program code can be modified -
using a program slicer to assist in locating the code to be
modified and a structure-oriented editor to make the
modifications free +from syntax errors. In Section S, we will
summarize our ripple effect analysis technique, which is used
to analyze the effects of the program modifications on the
behavior of the program. This static analysis technique allouws
potential logical and performance changes to be identified.
The final phase of our methodology is to retest the modified

system. In Section 6, we will summarize our module testing

technique, which reuses existing test cases whenever possible

to reduce the retesting effort.

o
A
7
\.)-:

¢
v

LA e Su v]
I f“/

]

B
SN

s v
LU) I‘. l.
MO

.. - - Ce e e
O A
- . ‘. < . . ’ R . A -t a
i . ".I et v o e e e O "--‘.- - S T T I N ot -
L . LIPS A a e .. - e - fe et et - .
RN A I I P N R S A A N A T A AT

o 28 Page &

BN
A
»‘ Construction of a

ng Multi-Level
AN Software System

o Description
:Z?_ Determine the

" Maintenance
o Objective

- Specification Phase 1
el of Program
xg\ Modification
o Proposal

N +
A Incremental Phase 2
R Program
. Modification

e Ripple Phase 3
"y Effect

- Analysis
.‘-.‘_

Yy i

.

. Testing Phase 4

No Pass

1O Testing

?
ﬁj Yes

0

- Figure 2.2. The software maintenance methodology
o

S

‘_'J

-.J

o

X

o

L

MR U e S R -

RSN A A A D N S A P P A A POl e i St B g AL AP (o B Sl e o 0 e ie G 4 oo B0 aa aren o

Page 9

2.2 Jools And Technigues For A Software Maintenance

Environment

The techniques for realizing program modification
proposals, ripple effect analysis and module testing have been
demonstrated by implemented programs running an a DEC
VAX-11,/786 computer under the UMS operating system. The
technique for defining and tracing the correspondence from
software requirements, via software design to program code uwas

not implemented during the time available.

Tools for software maintenance should be able to share a
common program representation. This integration of tools
provides maintenance programmers with a standardized
environment for performing maintenance activities. We have

developed a formal program representation to support the tools

described in Section 4, which permits an efficient
implementation of our tools for program modification. In
addition, we have developed efficient representations of

programs for implementing each of the ripple effect analysis
techniques. While this approach to implementing software tools
is sufficient to demonstrate the wvalidity of individual

techniques, software tools based on these techniques will be of

greater practical value if they share a common model of the

program. A more flexible program model, such as the

b st i i R o

S ey vyeyyT
TERY PR

. &

|2 Z2adC R el AT A At g S T A Al NSt S 2 IR

te T
-

e o
b
e

l.- -

E{.; Page 19

-

&;i Hierarchical Graph model [YAUE@d, B81a, 82bl, provides the means
o for combining different software tools into an inteqrated
software maintenance environment. Like the model used by our
syntax directed editor, this model is based on the abstract
parse tree of programs. Since it alsog includes detailed
information about data flows in the program. it appears to
provide a suitable basis for integrating our individual
software maintenance techniques into a set of opractical,

cooperating tools.

The ripple effect analysis techniques have been developed
to perform exhaustive analysis in the sense that they are
capable of identifying all blocks of a program which may be
affected by a program modification (YAU?8, 88a, 80b, B8@c)
(HSIEBZ2]. Howewver, to implement such a technique as a
practical tool requires that we allow the maintenance
programmer to restrict the tracing of ripple effec.s in
accordance with hissher own wunderstanding of the software

system. Our implementation of the the logical ripple effect

analysis technique permits the programmer to interact with the
analysis program to select certain procedures for analysis and
to remove others from consideration. Additional effort on the
interface to these tools would be needed to improve their

practical effectiveness.

LA

, .
e .‘... .".' BN S L A
..-\ .. l. l‘ . » L] ’.'. . - v . LI S v ." .- . v .

PR
» te

G RO

& e

A I R S SIS A I e i Tt 4 Asch i 2 AU ISV A M RC A R DR

OV Jade R DA i A A A A R e R

Page 11

Although our work has been to develop techniques for
software maintenance, they are also useful during certain
€tages of software development. Our approach to realizing
software modification proposals, for example, uses a syntax
directed editor - a tool which is also wvery useful for the
initial writing and debugging of programs. Furthermore, the
activities involved in debugging a program require the
identification of two types of code: the first may cause
certain unintended effects (bugs), the second may be affected
because of changes made to repair bugs. However. the program
slicer (Section 4) has been developed to identify code of the
first type, while ripple effect analysis (Section S) is
intended to identify code of the second type. In practice, we
would expect these tools to be used even more effectively in
the development phase, since the development programmer can
take advantage of hissher familiarity with the program under

development.

2.3 Quality Factors Affecting Software Maintenance

One important concept which runs throughout the entire
software maintenance methodologqy is the wuse of software
metrics. Our long term goal is to develop a software metric
for modifiability —- to provide a quantitative indicator of the

amount of effort required to make changes to particular

s

e .
P A

- -
&S
L

LA LA R St S A e, et R0 T ATl A A T A B A I i A A e i T ‘T Sl s A MRl Sl Fulh el Sl ik Sl St i A0 Sl Sl A e St A S
L « . L TN DAL R A A AT S TR R e I A - . AN A AR AR ASARA

~
g
Page 12 - .4

programs or modules, and we have already developed some

me asures of certain attributes of modifiability, which will be .
described in detail in Section 7. The earliest measures which _f.
we have developed are those +for the logical stability of ; EJ
programs and modules [(YAUBOel. These are based on our ripple ;fi
N J

effect analysis technique, and have been proposed as indicators
of the resistance of a program or module to ripple effects as a
result of changes made to it. We have also developed a measure
for the logical stability of program design {(YAUB2c) since we
recognize the value of an early indication of deficiencies in
the quality of a software system. However, a metric will not

really be useful until it has been shown to correlate with the

phenomenon which it is supposed to measure. We have., -ff
therefore, devoted some additional effort to the validation of ﬂ’;ﬁ
REARY
our proposed stability metrics, and the preliminary results of :"j!i
our validation experiments will also be presented in this '}{;%
report.]
93
T
NN
WY
NUNNEIE
\.\'

B
DI TR
',

v
»

AAASANES
YA

. o' L
b

LS S gt o |
o
e

. e

. Page 13 ﬁ&
e e
Yo
e 3.8 SPECIFICATION OF SOFTWARE MAINTENANCE PROPOSALS
L.\ As reported by Lientz and Swanson [LIENS8@], the most

frequent and most costly activity under the heading "software
maintenance™ is system enhancement in response to user requests

L) for change. The view of a software system as seen by its users

:} is shown in Figure 3.1,

5 Environment (Application Area)

= Software System

N
e User
L Interface

; Other Software USER Manual

- —————
Systems - Systems

Lt Figure 3.1. The users’ view of a software system. !
{f¢ The users know the application area - the environment in
:f which the system operates ~ and they know something about what
“a. t-- @
T the system requires as input, and what it is capable of T
Ry R
ﬁ{: producing as output. Howewver, it is only rarely the case that R
:2- they know anything about the internal organization of the .{li
- N
 .1 system. Under these circumstances., user requests for change 54!{
o are inevitably stated with reference to the application area. : L;
. N -_.-1
o -~

. N
- '-::{‘]
o <
® o

v &7

et e
e Y

b AdE e
-

i
ales

PR S LAgeofu s e Suse e has e bt it Anf Bm I I A T U A A8 A A A AT A Rl S R AR T S R

Page 14

These requests wusually refer to the i1nterface which already
exi1sts between the software system and its operating R
environment. It is with such change requests that the process

of specifying software maintenance proposals begins.

In order to correctly modify a software system, it is]|
necessary to understand the relationship between the change :‘7*

requests and the programs which make up that system. Since

this requires a clear understanding of both the behavior of
those programs and the effects of the requested changes, a vast
amount of effort or prior experijence with the system is
necessary. 1n the absence of such effort or experience, the
most logical alternative is to record information which
describes the relationships between the program code and the

software system’s application area.

The programmers’ view of the same system is shown in
Figure 3.2. During the maintenance process, these two views of
the same software system (the users’ view and the programmers’
view) must be reconciled in such a way that the enhancements
requested by the user are implemented. This requires changes
to be made in both the users’ and the programmers’ views of the

system and these changes must continue to be compatible with

each other.

L Y J U P S

. - A T e - T. -t . -
PR L LA L VAT VRS YO LY

LAMCANE SN AT AR it S A A A A S AR S e S chAn Sha e i i S i et und Sl Snd i gl A Rl A S AAr Al -t el A SN R SR AR el i

J K

Page 15

\
-

.
N
s

e
Y

L e
Pl

Environment (Computer System)

.
PPN

N Software
(RN System

g

e
[}
.

Y

t
L

Subsystem Subsystem

Lo

..,k
R |
AJA‘!*

Subsystem Subsystem e

% [
User T
Interface :

— JFC

Figure 3.2. The programmers’ view of the same software system. T

Saad'a 4 &

[
63
@

v

.
. D
I A

e N,

dad d A ded 4 4

f
A

e Figure 3.3 shows the "semantic equivalence" relationship

;f: which exists between the two views of the original software

¢
AL A a s

system, and which must be preserved during the maintenance

PR

process. In addition, the users’ new view of the system must

PRI

;,l represent the incorporation of the modification request into

LA

@ ..
s
IR

‘“ their old wview of the system. In order to ensure this, the

f.'_-','.{

acaa’a . o,

e modification proposal which is implemented by the maintenance

- . P LT T . e . .. R Y
WY VI O PRIPFEWE PP L PEPTIIC PRT ST V. VTG PR G P TRy

Page 16 "'.j
;:_ ‘
R programmers must preserve a "semantic equivalence' between the T
users’ new view and the programmers’ new vieuw. -’:
@!
Users’” 0Old Users’ New .
View > yiew
Modification R
Request . e
4 Semantic Semantic o
A Equivalence Equivalence 3
o
R ~
Programmers’ Old Programmers’ New
: View > View o
o Modification S
.. Figure 3.3, Equivalence preserving requirements for reliable
software modification. SR]
- So far we have only discussed the problem of specifying a
software maintenance proposal in a very abstract manner. Now, 3)
: 1
we would like to consider some of the practical problems, "
especially those involved in providing automated assistance for R
"4
the maintenance personnel who must make the 'semantic T
R .
. equivalence preserving' modificatian. o '\.',;
j - ".4
. o
The first problem is to describe software systems using ".j::_‘:
® : o . ~@
N formal notations or formal descriptions. Since we cannot
)]
expect any automated assistance in dealing with informal -
= S
. notations or descriptions, we must ensure that all notations IR
-@. . , o
used to describe the software system have been formalized as -l
much as possible. In dealing with the programmers’ view of the

aMa T

“ S T SN T e e
R P P U T P T DA ST A T L P W B VR I IR DY

—_———y W _w v T v -
Pet o am o .

TN

-

LT T, v,
R LA}
*s)

.

o P

TLTLY
LN

~

Page 17

system, we are on fairly solid ground with respect to formal
notation, since all programming languages must at least have a
well-defined syntax - to aliow automatic elimination of some
programs which are clearly incorrect. In addition, all
programming languages must have a semantic definition so that
the programmer can predict the behavior of the code being
written. Howewver. these semantic definitions are frequently
informal, are often subject to implementation constraints and
occasionally permit several interpretations. When dealing with
the wusers’ wview of a software system, we cannot expect that a
very formal notation is being used. The best we can hope for
is that parts of the system have been defined in a notation
such as RSL [ALFO?771, SADT [ROSS771 or SA [DEMA?78B], which have
varying degrees of formalization. If we do not have such a
description of the system, one must be developed:; otherwise,
we will ©be wunable to have any precise idea of what a change
request entails until we have found the relevant program code
which must be changed. One major problem with this approach is
the likely existence of (though perhaps minor) discrepancies
between the wusers’ actual concept of the system operation and
the programmers’ description of that concept. However., given
formal descriptions of these two views of the software system.,
we can pruceed to study the effects on the one of changes made
to the other. In order to deal with these issues, we will

develop formal models of the different views of the softuware

Lot v"_,;v‘_ NN LNl r,("_v';.' JEe.wTYITL r.._"{' RY - AR ST A E DA At S S '_'_1 RS A AL S S e BCEM R R Y A

”" Page 18§

system and proceed by working with these models. :5;25
R

. jh

3.1 A Model Of Software Systems For Software Maintenance ?ﬁ”;
The most important questions to answer when we decide to ;
model the processes and products of software maintenance are ‘e!!
what to model and how to model it. We now describe how we have t.;i
approached these problems, and explain the reasons for our L}iﬁ
choices. We will then present the details of our modelling ; fﬁE

approach.

And

A

* .
X TN
[N

| P

3.1.1 Backqground :ﬁ&

.
MR
P P

The major activity of the software maintenance process is

.
s
Aok ok

to make changes to existing documents which describe a software isij

Lo
: Aqh_‘

I
T ad

system. These changes may be trivial or substantial, optional

or essential. They may be carried out by a single person or by

- PO]

several independent groups of people. Since these documents

are interdependent (for example, the design document is derived

-

from the requirements document), we must also be able to model

the process of changing a document in response to changes in

another document. It is frequently necessary to retain sewveral

sj versions of each document, and therefore we must also control
modifications so that they are made to the correct version and
e in the correct sequence. Thus, we have identified the

following three major activities for which our model is needed:

P e , P
L P UL
a0 e e

- - . v
i i b n Du gh su s an i B @ SR RCI

[

RIS PR
KR The
C el
‘.‘.'

g L Zarin Rl EPal gx Re g L 20adin hand i had " Sad s J e
P S B Al Sl Mgl Mgl Wil * g St ~aih e T B S A S AP R R S it At i SR e BV AN ST R T VTR R e e T e T e T T T '-',.., .

Page 19

1) Modifications to a single software document, by either (a)

a single programmer or (b) several independent programming ;'}j

groups. ?;EE

e

2) Replacement of portions of a software document in response ?ﬁij
to changes made to its source document. '

3) Control of different versions of individual documents and }il

their interdependencies.

In practice, the software documents which must be modified
may exist in either 3a textual or graphical form. However, in L
both cases there is a substantial amount of context sensitive N

information present in the document. Due to the limitations of

»
A A d ot oA o 4 e i

the descriptive power of strings (and even trees) when

L IR .
Ta " L.- .'-'- -'.‘t
R TSI
cL @

‘50 e o by

modelling context sensitive information, some other approach is

required. Therefore, we have chosen to use graphs, with their e

t

greater descriptive power, to directly show context sensitive

properties.

Having adopted the graph as the basic representation for

software documents, we must express changes to these documents ;;.‘
e as graph modifications,. Graph modifications are commonly
o described by means of graph rewriting systems. Using existing e

methods for studying graph rewriting. it is possible to control

concurrent access to a software document, since tests have been

Page 29

developed to check if two separate modifications to a single
graph are sequential independent (may be executed in either
sequence) or parallel independent (may be executed
concurrently). These checks are necessary when several groups
work together to modify a large software system. When the
modifications are interdependent, these tests may be used to
identify the interface (or interaction) region of the two

modifications on the graph.

3.1.2 Graph Rewriting Systems

Graph reuwriting systems have become a topic for research
in recent years I[CLAU?9]1, primarily as a result of the great
significance which graphs and graph theoretic concepts have
assumed in computer science and engineering. Since we wish to
mode]l the processes of software maintenance, and to do so in a
very abstract manner, it is natural to examine the use of such

an abstract tool., particularly in view of the preponderance of

};- graph representations for software requirements and design.
F,’ 3.1.2.1 Graph Rewriting

To rewrite a graph means that we will apply a set of

rewriting rules to the graph, one by one, in some sequence, to

£
P construct another graph. A rewriting rule corresponds so
)
L .
f;. closely to a production rute of a grammar for a language that
o~
o
o
b
&
p -
=
L -
.8

R A% i I A YA S D el T AN T I MR A A A R A 2 At e A ! PR S Mt Al ek e A AN A0 dEne Sl oy

e Y

- Page 21
[

;2; graph rewriting systems are also known as 'graph grammars’.

o

Each graph rewriting rule has a left-hand side and a .2!
right-hand side, each of which is a graph. To apply a ﬁis
rewriting rule with the left-hand side L and the right-hand 'f
side R to a graph G, it is first necessary to locate an ‘ "5ﬂ
instance of the graph L as a subgraph of G. If no such :}{§

instance exists, then the rewriting rule cannot be applied. If

such an instance does exist, then it should be (conceptually)
deleted from G, giving rise to the graph G - L, and then the

graph R should be (conceptually) added to G in 1its place,

giving rise to a new graph H = (G - L) + R.

The most difficult part of the entire process is to embed
the right-hand graph R into G in place of L. When strings are
being rewritten, this embedding of the right-hand side is made
cbvious by the implicit left to right ordering of the

characters in the string. This is illustrated in Figure 3.4.

In Figure 3.5 we show the difficulty involved in embedding
a graph within a graph. The rewriting rule shown there
requires that we replace the node labelled “a™ by a subgraph
consisting of three nodes (labelled "b*", "c" and 'd') and two
arcs (from "b" to "c" and from “c" to “d"). Clearly, the
rewritten graph must contain five nodes, labelled "b", ‘¢,

“d", "e" and "f". In addition, it must contain arcs from “"b"

v w W
[
(]

Rule
a =) bcd

Applications

If the original string is "baabe" then the following applications

of the rule may be made.

(Replace "a"

by “bcd*)

1) baabe :=> baabe => bbcdabe => bbcdabe

2) bbcdabe => bbcdabe => bbcdbcdbe => bbcdbcdbe

Figure 3.4. An example for rewriting a string.

to *c'" and from "c' to 'd'. However, what should be done with

the arcs in the original graph from "a" to “e" and from "a" to

“£"? That is, how should the new subgraph be embedded into the

original graph? The approach which we have adopted is to

assign integer labels to certain nodes or arcs in the rewriting

rule, with the constraint that any

left-hand side of the rule must
side. The interpretation of this
when a rule is applied, any node

side is considered to be replaced

integer which appears on the
also appear on the right-hand
assignment of labels is that
labelled "i"™ on the left-hand

by the node labelled "i" on

the right-hand side so that any arcs incident to (or from) that

node in the original graph should

replacement for that node in the

be incident to (or from) the

graph on the right-hand side.

In Figure 3.5, there is only one node to be replaced (labelled

*a") and its replacement node

shown by the integer label "1").

is the node labelled "c" (as

Thus, the rewritten graph is

[N

.
PRPRT GG BTy

- LI
ot e o .
L@,
—

B .€ §5
@

i e 2000 A A8 v -
IO A AR A RS N Wi S Ml A A At A DR A S I NN RS Al A Ar L TUL e e 2 ut g e o e
. PR - R A - [RS DA v TR r—

Page 23

the one shown at the bottom of that figure. P

Rule LR
(Replace node "a" by a lqu

@ 1 => g:‘fp:n:iﬁ:"?odes "p*, \4

Application

If the original graph is

then the following (partial) application of the rule may
be made. RO

® e
@

The final (rewritten) graph is

(= (®)

BRRE S
S,

e

&

T
Y

R S I PN

(s

cata gt gy

Figure 3.5. An example for rewriting a graph. R

T T LT S -~ e~ o, - e : "
e T - N Lt e . R T W TR Y “ e S At e W
) S IS S A R R AL S T L R T
A A A e e T T e < L - N - c. -
DR A et » e "

- et .Y, . * . h‘.-"-'-‘.';.--.“ -
VY R VP T R S T A R R L R R RN

Ar oA A S ST SR Al St i DA A o BAEREIAER A AN ity o/t Sl A SRL) At N it A oA A g s S S/ MRS NI e e

V’; Page 24

IR
.. . Co .
oL@
DA R DR PN G S

3.1.2.2 Definition Of A Labelled Graph

]
.
Ll

id o

To formalize the graph representations for software

‘@

systems, we define a labelled graph as follows: A labelled
qraph is an B-tuple.,
G - (N, A, LN, LA, sN, tN, nbL, aL}.,
where N is a set of nodes,
A is a set of arcs,
LN is a set of node labels.,
LA is a set of arc labels,
sN, tN ¢ A -> N are functions which map each arc to
its source and target nodes (respectively).,
nL ¢ N -> LN is a function which maps each node to
its label,
aL. ! A -> LA is a function which maps each arc to

its label.

3.1.3 1The Intraphase Model

The software documents used to describe each phase of the jﬁﬂ
software development process will each be modelled by a set of

.
interconnected components of the software system. We represent ;'!‘

I

ol
o PR

each component by its control +flow, data flow and data

4o olats

structures, and also by its relationships to other components.

oy
et e
Dl

v B ot
) R
. ol e e e
g P
. B . . -
L o .
. B L

AR Its interface with other components is stated in terms of o
.-.'-." > "‘.
h .‘- -. . -._- i
Rﬁ: objects required from other components and objects provided for R
- '...' S . ~
N N
2 L

LAV i A o S e dl S gl S P Mt P Tt b A il i T i e s S A nIC AR it et VLA S S Sl Al e i 2 SIS 4

f"‘-" Page 2S . o

other components. A software system is simply a collection of
such components, with a distinguished initial (or master)

component.

3.1.3.1 Software Components

A software component is an executable object which
contains several subcomponents. These subcomponents are:

- a control flow structure (in a form to be described),

- a set of data structure graphs (of a similar form). }*ﬁf

- a set of data flow triples, whose executable objects are f:ﬁf
“leaves'” of the control flow graph and whose (input and j g
output) data objects are data structure graphs, and k@

4

- a set of distinct object names, each of which refers to a ’fﬁ:
data structure graph or module which defines the structure -
of that object.

B 3.1.3.1.1 control Flow

-j‘- M

e o

b.' The following notation will be wused to describe the ;f[i
)

f. control flow of a software system component. Since it 2;1

- .‘- . -.:’1

, emphasizes only the relative ordering of activities, this AN

» el

notation is independent of the particular notation being used

to describe the component. We have confirmed that it can be

used to describe most of the control flow properties of a

:‘i requirements definition in RSL or a pragram in PASCAL. This

notation uses the formalism of a labelled graph, using nodes to

NSNS St e APt LA REILER AN L GORSINGEILEEAL . B /LSRR S S S R YA AN
.‘.‘. N < .
AR
NENE
A~
) P 26
age

represent “"activities'” and arcs to represent relationships

between these.

RN Let us now introduce our notation. First of all we
specify the basic notation completely, and then describe the

remainder of the notation informally.

i; A basic, structured, sequential control flow description
:Ei is a labelled graph with

\ LN = {TASK, LOOP, AND, OR} U Z+ U (e,

I LA = 2+ U Cel,

Eif where 2+ denotes the positive integers {1, 2, 3, ...} and e
1:A denotes the empty string.
lii The use of these symbols is now explained informally: The
- graph is a rooted tree structure, directed downwards. Nodes
. - labelled by LOOP, AND or OR are referred to as structured
Ei& nodes. E-labelled nodes are referred to as primitive nodes.
;:E' Nodes and arcs labelled by e are referred to as e-labelled.
;i- Nodes and arcs labelled by a positive integer are called
;f? Z2-labelled. Structured nodes are always nonterminal nodes in
< the tree. Primitive nodes are always terminal nodes (leaves)
j%i of the tree. All leaves of the tree are e-labelled. All nodes
%i and arcs of the tree are labelled by a label from LN or LA.

-
‘;? 1) Form: The software component has a single, distinguished
‘ naode, labelled TASK. This node is the root of the tree.

o

-~

T ETAMT T AT M A AN S A RN S it i i) AR SRS i I i DA A I AT M A

Page 27

Interpretation: The subtree of which this node is the root

represents a separately defined, executable software component.
2) Form: A LOOP node always has a single child.

Interpretation: The activity represented by the subtree rooted

at the <child of the LOOP node is to be executed a number of
times, ranging from zero to a finite number to be decided
within the LOOP node in an (as yet) unspecified manner.

3) Form: An AND or OR node always has a single child, which
must be an Z-labelled node.

Interpretation: An AND node indicates that the children of its

Z—-labelled child must all be executed, while an OR node
indicates that pgne <child of its Z-labelled child must be
executed.

4) Form: AnyYy Z-labelled node, with label n, must alsao have
outdegreee n, and its parent in the tree must be labelled by
either AND or OR. The arcs of which this node is the source

must be labelled by the positive integers {1, 2, 3, ..., n}.

Interpretation: The value of the arc label indicates the order

ih which the activity should be executed. The activity

labelled i should be executed before the activity labelled i+1.

In summary, AND represents the execution of a sequence of
(n) activities, OR indicates ¢the selection of 1 <(of n)

activities, and LOOP represents the repeated execution of an

activity.

LRI WA Al mag =al A A T Tl At S R P A S S M) RASARA AN oA At S APER AN NS g e DACIF AL AR S A B it (et St e Ay |

K J

Page 28

3.1.3.1.1.1 Conditional Expressions

Our current approach to the expressions which control
selections and iterations is to restrict them to be of one of
two types: they may have the form of either a range of values
or a condition (or boolean expression). Figure 3.6 shows an

example of an RSL statement and its graph representation.

RSL statement

IF FOUND = TRUE
ALPHA: A1l
OTHERWISE
ALPHA: A2
END

Control flow representation

Lol '_:1
S

Figure 3.6. An example of the control flow representation.

o
.

. P T
e et e Y
RO e e

oo d N T

. . e

e .
2 st odddh ol

.

»

'
. o 6 P
e f .

Sy

-]
; 4

(I
AT

‘o et o - ca - - coe W . R
.‘.~'.' . T e e e e NET R R e .
I TIPS A Yo D I S P T R S SR "L."L.-L'1"‘q':g,’.il'..'_'.‘:":-':J'_‘-'_'Jli'-‘;'-‘.‘-‘_:'Ji"j

Page 29

3.1.3.1.1.2 Notational Extension

As a notational convenience, we may represent the tree
structured graphs in the following manner. This simple
convenience presents the graphs which make up the model in a
more pleasing manner. We will wuse abbreviations for the
standard graph patterns as shown in Figure 3.7. The control
flow representation given in the previous section would appear

as shown in Figqure 3.8.

appears as

D
[«

appears as

LOOP

appears as

©
— @~

Figure 3.7. Notational abbreviations for the standard graph
patterns.

~ PR
Q. AR
,

@
na

aaaa s 4y

P

. T
« N
IS 4

" w - I A ¢
p———— ot LARE M b gbos i e M S s el Tt Ahoia ath Saredanr i aghit st db BIMA AP AN Anitig . Al ST
4CARC e e S dve dren s S ARSI SRR S AnA JandatudirAC ol SO IC A . - LIRSt DN T .

| -.04
Page 309 S

£l T

Al A2

Figure 3.8. Abbreviated representation of the example shown
in Figure 3.6.

3.1.3.1.1.3 Extensions To Other Control Structures

Extensions to this basic form of control flow description
have been defined to describe (unstructured) jumps and
concurrency or nondeterminism. Jumps are included as directed
arcs between two nodes, the arc being specially labelled to
distinguish it from the arcs representing structured control
flow. Concurrency or nondeterminism are included by permitting
Z-labelled nodes to be the source oOf e-labelled arcs. This
removes the ordering concept described in Form 4) discussed
before, and so permits nondeterminism. A further extension has
been defined to suppoart inclusion of separately defined
software components within another component. This represents
both the SUBNET concept of RSL and the procedure concept of
programming languages, such as PASCAL. With these extensions
the graph is no longer a tree structure, but the non-tree arcs

are distinctively labelled.

. s 0

T
R QL et

e e e e _'-._ R C e RN "t
TR GG LR PP s vy \".-..n"_-';.ﬂ_f'm_@u\i-? TN DI Ut Tl ety

.14."
(P PR & g\

- -
. . Lo
- - - . - AT T e T . - a

I I I L Y T WL N W WP WPy S Yy T

- Page 31

Using such an abstract view of control flow, it is
possible to construc®, for example, the skeleton of a PASCAL -
program from the control flow requirements of an RSL <ﬁ}}
specification. In addition, the theory of graph modification
[CLAU79] provides us - with a foundation for defining ;,;
modifications formally, and for relating this formal definition ,ﬁﬂ
to modifications which are to be made to software systems’

descriptions in notations which are currently in use.

3.1.3.1.2 Data Flouw

Data flow information has also been added to our model. 01
This information may be viewed as a set of triples of the form: :ﬁiﬁ
<EOC, 10, 00>

where EO is an executable object (such as a statement or ':;.
procedure), and IO (the input object) and 00 (the output
object) are data objects (such as program variables). Such a ?:&H
triple has the interpretation that EO may use the value of IO
to alter the value of 00. In its graphical form. each such

triple denotes the existence of an arc from activity EO,

labelled 00, to some other activity., and from some other

activity to activity £0, labelled I0.

B JuA JEn SuE SEe o d
AMIM]

*

re

"..',..-

e de it i 2u uSndn oo s ddh Sl
T R
oo

F.ﬁ
A%
o
SIS
g
:
.

)

'[- N - o EAANEREARRCRRAEI LA T Saft it Jatdt B A DA g
. Ceo-
b ,.:
- - T an
L. Page 32 .,
For example, the activity Al, written as an ALPHA in RSL, -7fg,g
appears as: jig:;;
|
ALPHA: A1, AN
INPUTS: DATA: D1. NSRS
OUTPUTS: DATA: D2 OREN
DATA: D3. L
and would be represented as: - 1‘}
o
<A1, D1, D2>
<A1, D1, D3> N
unless further information is available. However, if we have fd
-
information that D3 is being assigned a value in Al which is i“JﬁPq
independent of Di, then we would represent Al as: R

<A1, D1, D2>
<A1, K, D3>

where K is some relevant constant or other independently
def ined data object. Figure 3.9 shows the graphical

representation of this latter case,.

D1 D2
—a(A1) —»
K D3

Figure 3.9. An example of the data flow representation.

) PSR P S .- - Tt toe EERIT I A e -“.:‘_- :"_. '.»‘ P L) _--‘__
VDS o a PP Wy O TR DD PR T U Y W A RN S S S R YR v W

ey e T N T N T T N T T Ty T T myrryyey .

5T T

Page 33
- 4
3.1.3.1.3 Data Structures Eﬁ}il
T
In the previous section we described a graph ,..!
representation for control flow, and indicated that we have ?:ja
N
also developed a wvery similar representation for data Ii?;é
structures. We will use our data flow information to connect ”@a
representations of data structures (which we call "input data QH:E

objects” or ‘“output data objects") to representations of

control flow structures (which we call “executable objects").

3
’
i

)
. 'r

The graph representation of data structures resembles that used

‘l
f
)

“

Yyt r
.

to describe executable activities, in that sequences of

a0 e

heterogeneous data objects are represented by trees rooted uwith

an AND node, selections of one of several data objects are
represented by trees rooted with an OR node, while collections
of several homogeneous objects are represented by trees rooted v @
with a LOOP node. For example, the data item D1, written in ﬁi%ff

RSL as: AR

DATA: D1. .
INCLUDES: DATA: D1-P1
DATA: D1-P2

DATA: D1-P3.

would be represented as shown in Figure 3.10. In the event -f,:f

that the subcomponents of D1 are also structures, then their ‘;%’

structure will also become a substructure of Di.

Lt
i

r-.fl
PSS
Y BAARILRY

T
.

e 2n e dnin M
* l‘.l' r

. .
o 8
e,

B e T T T TR T PR el SFEL o I o e it aaa o S ge il Aar avi SPLIINE S MIWS ARt abd SOV N MELAAE g i etk A e i e i i o
. N - . N - - - N -

Page 34

SEQ ti‘b‘J
(b1-r3 | N

D1-P3 REOR
BPRACN

o') J

@

D1-P3 *.j
o

2

4

@

Figure 3.10. An example of data structure representation.

|
i

P

e e s v e
Bt ddod b

3.1.3.1.4 Data Dictionary

Within the description of each component is a data
dictionary. As is customary, this dictionary contains a
definition of each element of this component., excluding those
which belong to other components, but are used within this

component. There are three types of elements which exist in

any component - activities, data and structures.

Activities are defined by the data items which enter them

or leave them. They also describe the operations which are

performed on that data. These operations include operations

defined by the language., notation or operating environment, and
those carried out by other components of the system. Examples

are the "+ operation of a PASCAL program, which probably

Yy g -
s AR AEANE

refers to a hardware dependent addition instruction, and the

\ - - - . - . -
AR PEA AT P PP ORI AU PAP Y LW Tt \!-_LALLILA 5_..';_&L1.‘t\1&_._ _\ A

4.’... PO ..‘._.. e

= A < . R . N N R |
o L
.- Page 3S .' .{
.§}§ PASCAL "sin" (sine of an angle) function, which probably refers lﬁ
: _; to a function in the system’s standard library of functions. ;';r
- Data are defined only by their structure and external i;i;
kf; name. The structure of a data item may be defined by the :f;
}-)_ lanquage, notation or (less often, but hardware dependent) -?’%
S
:?;t operating environment, or by other components of the system.
?? Examples are the standard file "input” of a PASCAL program, ; ;;
_i‘ which refers to a standard system input file (usually the ig”
.}ﬂ' terminal keyboard), and the PASCAL constant "maxint", which has ;;;j
‘ the value of the largest integer available to PASCAL programs
S in a particular computer system.
_;; Structures are defined in terms of connected
WX
i‘ sub-components, which are themselves either data items or other
E?: structures. Subcomponents may refer to structures defined by -, ;
?TT the language., notation or (less often, but hardware dependent) ‘iié
;5% operating environment, or by other components of the system. .:;;
(—
;i. Examples are the standard types "text'" and "integer' of PASCAL S$ﬂ
;i; programs. “Text" refers to the system’s implementation of ;E;
353 sequential files of characters, while "integer™ is affected by ‘f:
. P
ﬂiﬁ the available word length and precision of the computer system. T
= R
The data dictionary is a sub-structure indexed by an .?{}
;‘ internal object name, denoting a particular activity, structure .u‘
i,i or piece of information. When the object is a named activity., ?T;f
_j:j:;i; -
;E; -
o *
f:::i:2~. T -~) C e el N A I A

. . . e e LTS B -

- . T 'J:‘.L\ o : .l ;‘:;':‘ "..-I': IR AT i S AR

e e e e, e ST e e s i T e
LT St U - LR o e ST T
T R I I Y TN PP N T T R P P PP I e T AT

Page 36

the index leads to another software component. When the object
is an unnamed activity, the index leads to a description of the
activity (which may be in a formal or informal notation). When
the object is a structure, the index leads to a description of
the form of that structure. The lowest level structures are
those defined by the computer installation. When the object is
a piece of information, the index leads to the definition of

the structure which is contained in the piece of information.

For instance. the previous examples would give rise to the

following data dictionary entries:

<D1i, DS1> where DS1 is the structure shown in Figure 3.10,

<D1-P1, DS2>

<{D1-P2, DS2>

<{DS-P3, DS2>

<A1, CS1> where CS1 is the control flow structure shown in

Figure 3.8.

Furthermore, DS1 and DS2 are the names of data structures to be
found within other components, and D2, D3 and K are also

assumed to be defined within other components.

3.1.3.2 Component Interfaces

Any software component is a separately defined activity in
an overall software system. In order to act in a coordinated
manner, the components must share information with each other

and provide services for each other. We would 1like to

represent the interdependencies between components in a

Page 37

disciplined fashion, in a way that permits modifications to be
analyzed and to match the representation of software
components. Our approach to this problem is to associate an
interface subcomponent with each software component. Within
this interface are defined all of the objects which appeared
outside the current component, and also all of the objects
which appeared inside the current component, but may be used by
other components. These objects are further distinguished
between those which are directly linked to external components

and those which are indirectly linked (as parameters).

The interface graph can be formally defined as follows:
An interface qraph is a labelled graph :

G = (N, A, LN, LA, SN, tN, nL, al)

where
LN = {INTERFACE, GLOBALS, PARAMETERS, IMPORTS, EXPORTS)}
U Z+ U (e}
and LA = {e)

The graph is a rooted, acyclic, directed graph (tacyclic
*digraph”). Nodes labelled by GLOBALS, PARAMETERS, IMPORTS and
EXPORTS are referred to as structured nodes. Nodes and arcs
labelled by e are referred to as e-labelled. E-labelled nodes
are referred to as primitive nodes. Nodes and arcs labelled by
a positive integer are called Z-labelled. Structured nodes are

always nonterminal nodes in the tree. Primitive nodes are

.
’ TR
et
- R N]

. Lt
’ e T v
. A P
- K R
.. [T
NKPEEN
'.-LAAA 1

i

. Sttt
B L
L PR
. | ’ .
. . LA
. . i e, .
IR A
ettt el e Batatate At atals

.
coa ek ‘

IR I B S I
R

.

.
.

AN

.

v
.

« b e 4
PR .

Page 38

always terminal nodes (leaves) of the tree. All leaves of the
tree are e-labelled. All nodes and arcs of the tree are

labelled by a label from LN or LA.

1) Form: The component interface has five distinguished nodes.,
labelled INTERFACE, GLOBALS, PARAMETERS, IMPORTS and EXPORTS.
The INTERFACE labelled node is the root of the digraph. The
other four distinguished nodes are immediate descendants of the
root node. No other node is directly connected to the root
node

Interpretation: The subgraph of the root node represents the
interface between this component and other components. All
references to or from other components are forced to pass
through this subgraph. This subgraph includes all names and
structural information which is required to complete the
interface with any external component.

2) Form: The primitive nodes of the interface digraph are
directly connected to exactly one of the following nodes
{GLOBALS, PARAMETERSY.

Interpretation: The primitive nodes represent the interface
objects. If a node is connected to GLOBALS, then the object
represented by that node may be accessed directly. If a node
is (instead) connected to PARAMETERS, then the local object
represented by that node provides indirect access to another

object, and this relation between the local object and the

-

P

. - . e Earar . - .
o et e N A U .
CaBm iR .t e atataataald s A - .

v o AT T T AT AT T TR AT LY WS ATET T4 T LT T T T AT e T T
A4 T i Tdrid T I AaR st S0 Thie udte aude Tt e -Shde i eSO AR TS - S e . PN . - . . S
Ve

Page 39

other object may be altered by execution of the system of

components.

3) Form: The primitive nodes of the interface digraph are
directly connected to at least one of the following nodes
{IMPORTS, EXPORTSY (connection to both of these is possible).

Interpretation: The primitive nodes represent the interface

objects. If a node is connected toc IMPORTS, then the object
represented by that node may be examined and used, but may not
be altered. If a node is connected to EXPORTS, then the abject

represented by that node may be altered.

For the previous example, the interface must include all
of those objects which did not appear in the local data
dictionary, i.e. DS1, DS2, D2, D3 and K. Since RSL will not
permit data structures to be altered within the system, DS1 and
DS2 must be connected to the IMPORTS node alone. In addition,
since RSL has no facility for parameter passing, all five
ob jects must be connected to the GLOBALS node alone. The data
objects, D2 and D3, are both altered within the component, and
hence they should be connected to the EXPORTS node alone. The
constant K is defined externally, and cannot be altered in this

component, and therefore it should be connected to the IMPORTS

node alaone. The interface graph is shown in Figure 3.11%.

Page 449

GLOBALS
- IMPORTS
L K1
- DS1
ij Ds2
EXPORTS
o34
T D3
Figure 3.11 An example of a component interface graph with
_ no PARAMETERS subcomponent.

- 3.1.4 The Interphase Model
i¥ Although our comparison between the features of different

languages (for writing programs, designs and specifications)
;f and the abilities of our model to represent such features has]
- shown that we still have many limitations (e.q. no scope {
o rules, no parameter passing rules), we think that our current
L
. model is suitably complete for wus to study properties of
- interest when software modifications are proposed.
e
<

Page 41

We now develop a method for expressing “equivalence"
relationships between objects in <two different ‘evels of
description. We have already indicated that these
relationships should be expressed as relationships between

graph structures, and have made a preliminary study of methods

to achieve this. It is these equivalence relationships that

provide us with the ability to analyze the effects of
modifications to one level of description on the behavior of

the other.

The interphase model is composed of a set of graph
rewriting rules described before. On the left-hand side of
each rule is a subgraph of the graph model of the software
system at the end of a particular phase. On the right-hand
side of each rule is a subgraph of the graph model of the
system at the end of the next phase. The rules record the fact
that the subgraph on the left-hand side is to be replaced by
the subgraph on the right-hand side. Thus, if a change is made
to a particular part of a software system, we can identify its
potential impact on the next phase by locating all rules with
that part of the system in its left-hand side, and identifying

all of the subgraphs in the corresponding right-hand sides.

A - P S I) - . i L e e TR I. M A i, |

{ | Page 42 @,
In order to constrain possible ripple effects, an
effective restriction on the software development process is to \'4

require that each node of a graph model of a software system
should appear on the left-hand side of exactly one rule. The
effect of adopt ng this rule is to create a process closely
resembling thz2 "stepwise refinement' process advocated by many -
" authors (e.g. ([WIRT711), but applied to the refinement also of ijf}

data flows and data structures, whereas stepwise refinement is

. '
I .o o
NPT Ry PN T 3 Y]

@

involved primarily with control flow and executable activities. s

- For example, given a process structure, using the notation of ﬁff
E Jackson’s design methodology [JACK?S1 shown in Figure 3.12, we ;'i
v @
have the model representation shown in Figure 3.13.) ??
P1 P2 P3 R £
) h
-
_
o o] 4
P21 P31 g
C e b
= BRI
P211 pa12 EREN,
- .:.:31
RN
Figure 3.12 A process structure using Jackson’s design -;-g{
n methodology ”.ﬂ
R
In this case, the interphase model would contain the rules 'iﬂ
shown in Figure 3.14. These rules show how the design ,’

-. .
structure may be derived from the requirements structure. of i
¢ -@4
Y
PR,
¢ @
> S N

'

e TV

5

W
‘,

\ERdate e an an b Aan A fh b R AR AR AL LM AL §
e e e e e e
oLttty .

Pia deve A o AL Aefn B an -

3

A Bt 2t B Sl TR S S R it il i

Ot it Audn et St

~

T TR YT

b Al i

Page 43

AND

OR

g2

AND
1

P212

P211

OR

E3

31

'
'

AT
P

-
"

PR

4
.
W BPOR Pi WR EIY

4
4

R RN o)
).‘{.?-LA' s

RN
. IR
-

B I
R
e

Figure 3.13 The model representation of the

shouwn

TN U WA, |

-

in Fiqure 3.12.

A TTe s

R R VTR T VAR Y

JDM design

J o R . LR .
. . C Lo .
. . et PRI
., . z-.,l. .
»

P .
PR B S PG WY BN

@
PEPRCTY WP

"
LR

0
O
2,

.- 'l‘ L)

PR}

Eara o

AR NN
PR LI - Ny

'A

’

Jr P W)

I o badlirste -aou AR n Suth e Singt gt Hatt Sttt St S i) Chads I S S M S P A A A A A R M ieatian dvin S2ac et i S0Vl TR A 49

oy, wr
B
® .
. . .
P L ..

- Page 44 o
- e
- course, other derivations are possible, and the record should s
S IR
‘e show the derivation that was actually used. .}

1)

ey (USSR

5
PGP PSP

[Lo

I
@ .
-

PR 't
[P LN

2>

3 <)) '

Figure 3.14. Part of the interphase model between
requirements and design,

L At Ju A A

L aa h et

v
»

Y
Pad

> «

- - - . .- " - Py “- - =, - . - N . . - ~ . - e . e . .
- S P S T RO I IS I R L I R L BT e T T .
I N e A A S A T P AL RPN WERITRR L S L L UL WL DRGSR DL DTG PRI VRN DI S

[

CEA A

Page 45

3.2 Canstruction Of The Software Model

In this section we will present a general technique to
enable the software model in the format described above to be
constructed for any software system. MWe will first describe
the approach for constructing the model for a particular phase.

and then the approach for constructing the interphase model.

3.2.1 Construction Of The Intraphase Model

The intraphase model describes control flow, data flow and
data structure. Not every method of system documentation
possesses all of these attributes. Nonetheless, these
attributes, which refer to the sequence of activities, the flow
of information and the form of information are present in all

systems and relevant to all system descriptions.

Since we will use our model for many different notations

to cover several phases., it is necessary to base the
caonstruction of our wmodel on some properties which are
independent of these individual notations. The properties

chosen are based on semantic rather than syntactic properties.
on the assumption that this basis will be sufficiently broad to
support the general aims of the model. For this reason.
construction of the intraphase model for a particular notation

must be preceded by preparation of a semantic definition of

. . B A & LT i - T ot oL Y
P I P L P I I I I N e T T I T R T T . S P A T T A L T P S

r""“‘-"k“_“{"‘_'v"“‘, Caodee B 3 G T e Sna. Y he Anit Gui S et Sl bind Sdr Al)
DAL .~ - . - S A A . . e . .

e

Page 46

that notat:an.

Regarding the control

b
. emphasized. For example,
h- .

definition is:

{compound statement> =
begin <statement> {(;

more interested

be executed

“begin', ‘'end" and ";" as delimiting tokens of this construct.
X Therefore, we would "abstract away" from such a construct to
o ive:
o g
. {compound statement)> :::z
:’. <statement> { --> <statement> 3,
- s
S .
. where S1 --> S2 denotes that S1 should be executed before S2. -
P, -
. S
Data flow properties are mainly associated with the rw%.
assignment statements. For example, a PASCAL assignment f\fj
RSN
statement and its data flow properties can be expressed in the ‘ﬂijj
following manner: -@
(assignment statement> ::= (variable> := <expression> ._b;;f
<variable> :::z <identifier)> {identifier> [<index list> J o
<index list> ::z <index> { , <index> 2
<index> ::z (expression>)
®
AS ::z I --> 0 (I = V.1 UE.I; O = V.0 UE.O) ST
v.0 =z €{id> U IL.O, V.I iz IL.I SR
IL.I ::= ind.I € U ind.I %, IL.O t:=z ind.0 { U ind.O 2 N
(] Y)
i s
¢ °
[-
. .' ‘ K - "\

flow.,

T

=

let us consider the BNF production

rule for the PASCAL syntax construct <compound statement>.

For the purpases of having a semantic

The
{statement>)} end
model however, we are
in the fact that the list of statements is to
in the use of

in their order of appearance than

the

L A A AN ANt sk i i R A s)

execution sequence is

PR et e T - - - - P T T .
NPT RV EPY VPP PRI PR PLPT Y PSS

L Page 47

ind.I ::z E.I, ind.0 ::z E.O

To display data structure properties, we note that they
come from the structure of declared objects. In PASCAL, for
example, an array structure has the following representation:

{array declaration> :::z
array [<index range list> 1 of <type>
<index range list)> ::=
<index range> { , <index range> 2
with the interpretation:
{type> <{type> . e . <type>
~ ~)

<index> -->(succ)l)-> <index> --> . e e -> <index)>

Therefore, definition of the intraphase model for a
particular notation is largely a wmanual procedure. The
notation must be analyzed to identify the features determining
the order of events, the flow of information and the form of
information. These features of the notation must be

characterized in terms of the basic elements of the model.

3.2.1.1 Definition Procedure

1) For each construct in the language definition which

corresponds to a distinct activity, define an entity.

"',.‘-_*-_\'.-".."."'.'-'A"- ._-. \-.‘v.‘; ‘.:_"("i_v.:‘-_;‘- ._v‘;-.' LA M e Ml Al Y A - :rv‘_ "N a3 T S -igA- T . Y_“F' . YT TR RTETY IR .."'V‘—" i)

Page 48)

2) For each construct in the language definition which defines

a sequencing relationship between other constructs. define

a relational entity. R

- N

3) For each construct in the language definition which defines ?fj}ﬂ
information flow into or out of an activity, define a T e

triple <activity, I-set, O-set)>.

4) For each construct in the language definition which defines
the form of a piece of information, define a <{name,
structure> pair, where <{(structure)> is derived from the form

of the information.

3.2.1.2 An Example For Constructing An Intraphase Model (An

RSL Subset)

Here we describe the construction of a model for a subset
of the Requirements Statement Languages (RSL) CALFO77]. In the
following definition, the nonterminal symbols are delimited by
“<"* anga ">", optional symbols are delimited by *“C" and "1"“,
choices to be made between symbols are delimited by "!" and
symbols to be repeated are delimited by "{" and ">", with

preceding and succeeding integers to denote the lower and upper

bounds respectively on the number of iterations. The T s

definition of the subset of the language now follouws:] L]

D S .
PRLIVNS STy P

SEMELIANCSCNEAC At et et et It At R D R S |
! T
Page 49 . :!”
T
.9
<new element definition> :::= T
(DEFINE] element-type-name element-name [comment]. IR
@C [INSERT] <element definition sentence> ¥n - -~.~J
v .. ‘1
<element definition sentence> :::= o
Cattribute declaration> o
i <relation declaration> o
¢ <structure declaration> r;
Cattribute declaration> :::z _' .
attribute-name 1{ value-name ! number | text-string >1 ~
Ccomment].
<{relation declaration)> :::= _:“3
relation-name [(relation-optionai-word) R
1{ [element-type-namel element-name [commentl 2Xn. 'fﬁ!
¢(structure declaration)> :::= ﬂ;;b
STRUCTURE 2{ <node>)Yn END [comment]l. ﬁﬂ‘?
<{node)> :::c :- .
<element node)> b
¢+ <terminator> R
i <and node> -
: <or node> "
¢« (for-~each node> ERE
<element node> ::: - @
{element-type-name] element-name [comment] N
<terminator) :::z :ﬁ%;f
TERMINATE Ccomment] R
¢ RETURN [comment] Coe
e
e <{and node> :::c e
O DO [commentl <branch> L
- 1{ AND <branch> 2n RIS
-. END AN
.“_, - :,\
iy <branch> :::= @
N 1{ <node> Xn SN
Ei; <or noded> :::z SN
IF Ccomment] <conditional branch> Sl
L @{ OR <conditional branch> 2n ST
{.‘ OTHERWISE [<branch>l L e
l& j END
b
P
b\-,' .-
b'."
b - .-
p - .o
) @ L0
s e
. - AN
SO -.‘_.:.
AN o
o B
K
[o -

A A at) M A S s Bt R San e SarSe M SuE oo tw mrel vl e SRNLADAL YA M I T T A e B B A B Sat Se e C A S SPEL AP SR Sl Sl el S e S A
P . PO T . e EE o - P . R AR

Page S8

{conditional branch> :::
funsigned-~integerl] <condition> <branch>

{for-each node> :::=
FOR EATH (FILE] file-name [(RECORD]
[SUCH THAT <condition>]
DO [comment]
1{ [ALPHA] alpha-name {comment]
v [SUBNET]) subnet-name [(comment]
2t
END

<condition> :::=- (<Boolean expression>)

Now, following the definition procedure given in the last

section, we have the following steps:

1) Construct an entity for each ALPHA and SUBNET and STRUCTURE

in the software system’s requirements.

2) construct relational entities for each <and node >,

<terminator>, <or node> and <for-each node>. o g

3) Define triples <alpha-name, I-set, O-set)>, <subnet-name., o

I-set., O-set> and <(structure-name, I-set, O-set> for each

4
U UL P

Lean i o}

, ‘

ALPHA, SUBNET and STRUCTURE.

o .
o st

.
PO Ol)

L [

L e T

o ..' ﬁ':" -

4) Define pairs <data item name., Structure> from the

PR
Coel

definitions for DATA items. e

. . il .

S Ay e s ' te e R
L AL .
PR LI ’ . ! .

,

4
.

(lT!f
A

.‘ .l‘ 'Al

A AL

« g

_‘Yv
Y TR

ORCin B e

L 4 o

. . PR . et - R e T T T N L oy
L. . . B « .- . . L L - . . B I R P T e I e I «
D Y WA P T T VT UL S U WP R TR ST S G S VS Y I, WG I 0, Sy

_)

B e

Page 51

3.2.1.3 1Implementation Of The Intraphase Model

Since the intraphase model is based on a semantic
definition of a notation, it is clear that construction of the
model should proceed from semantic analysis. Semantic analysis
is most commonly carried ocut by a compiler (or an interpreter),
in conjunction with a parser, which constructs the necessary
syntax constructs with which semantic rules are associated.
This is the approach which we will adopt for construction of

the intraphase model.

To implement the intraphase model for a particular
notation, the first step must be to develop a parser for that
notation. Obviously this is only possible when the notation
has been formally defined. If no formal definition is
available, then one must be defined, or the parsing process

must be replaced by a manual inspection process.

When we have developed a parser to recognize the notation
in question, we will then modify it to produce the nodes and
arcs of ocur model. The first step is to identify those
constructs which constitute the primitive activities of the
system from the definition of the notation. Now identify the
syntax constructs which control the sequence of primitive

activities and determine their effect on the activity sequence.

Next., identify by what rules these activities can use or alter

ERC

v,y

- ¥

BRI A

LA N T ey ywgeere 1—-‘-74
- . B . PR N . . A A A

-5’.. g

Page s2

' '._.! L _"

'

the objects of the system. Now modify the parser in the

following manner:

”
Y

1) When the construct is a primitive activity, produce a

"primitive activity" node. R,

|- -
L . ' ..'.) ,"‘.'.". L -"-
@

L- - -
..’ - ‘

e 2) When the construct is a program object., produce a ‘'program .
(_.‘..‘ e
Yoo object" node. T
~ s
b 0
o

1!. 3) When the construct combines several activities, produce a "7’
"combinator” node and connect it to the primitive S

activities.

4) When the construct is a *“callable" entity, produce a

"component'” node and connect it to its activities.

S) When the construct refers to a "callable" entity, produce a ﬁilji
“primitive activity" node, but connect it to the T

“component” node.

3.2.2 construction Of The Interphase Model

By the nature of the interphase model, it is clear that it
depends on the notations wused at each phase. Nonetheless,
certain general principles provide general assistance in its

construction.

Citat i M= M N AT T T W r:} AR ARG ._T..‘\'_.'- __v';.‘r\v'.‘r..v'{w__lr__nr__vt . v .lf("‘-'"_.'r..f‘.j'_'.' L Sl _.-.(-.7-.__- (‘_': A7_ i i

Page S3

The form of an interphase model is simply the form of a

'@ Lo e

,. ,.‘
IR c.
[P e ey

(graph rewriting system, in which the previous intraphase model }
plays the part of the initial (axiom) graph. For each
0 rewriting rule, the left-hand side must include nodes and arcs

which are part of the axiom graph, while no right-hand side may S

@
dendinien,

include any node or arc from the axiom graph except that if the
same node or arc also appears in the left-hand side of the DOREINN
rule. :}}151

e
= The interphase model should be constructed by the software }ffgﬁ

.- development team, and must be updated by software maintenance

personnel who modify the system. In the event that no such
model exists to support the software maintenance personnel,
they must construct it from the existing documentation of the
system. Heninger CHENI?79] has described a successful
maintenance project in which the software requirements for a
complex flight control system were constructed by examination

of existing documentation and discussion with users and

developers of the system. The interphase model can be {-“;gn
constructed by following that procedure and recording the
relationships identified between the requirements derived and o ﬁ“

the code being examined.

ha LA Al Sl Ol Tl N B S A Tl Sl Sl il SR TG T LWLE Y TRV -_'J‘ DA AR St BihAci AL Al arat SiNAC At et i I o Bt T T T T

1 1 ¥

M

4 Page 5S4

0f course the simplest way to define graph rewriting rules

to replace a graph G by another graph H is simply to use a

single rule G =z> H. While this is both accurate and
permissible, it is of little wuse to maintenance personnel et o
because thas is already an assumed rule, used by any : R

maintenance programmer who trusts the software documents from

which G and H were constructed.

On the other hand, if we define graph rewriting rules so) j‘*
that each left-hand side has exactly one node, then we are
placing restrictions on the developer of H, since certain "h:y

permissible graph structures cannot be constructed using this

restriction [JANSB81, although we are greatly assisting the

maintenance programmer in performing tracing throughout the

&
R

i
b

system. This phenomenon is further extended if we permit the

node on the left-hand side to have only a single representative

LA s
o

A S

node on the right-hand side, by restricting the possible growth

of node interconnections.

- Andrih d
v e
PR

a
»

While it may appear to be wundesirable to restrict the

- e v w
i}
.
»

range of possible solutions available to the developer., a
discipline in the use of development processes does assist the
maintenance programmer. In addition, since the number of arcs

in the graph is a measure of the degree of interconnection of

BRURRURARTY - SR

the graph, it is an indicator of both the complexity and the

stability of the system. Therefore, given McCabe’s measure of

bk,

LAAIA SRR SR S A
-
9
P

. - R " S e -

~YY AT T T w o

.
t

-
.

R S
a4 & B A, g4 & 4 2 & °

v
.

P ATV RS W VU n Y PN PN

. S e e . Ca . . . S N
RIS, YO T YW DU D G O GG 2 W SR S B X Bl o itn M S B e B o

Page 55

cyclomatic number for program complexity [MCCA763 and our
experience with the effects of interconnectivity on program and
design stability (YAUBBe., B82cl, any development process which
raises this degree of interconnectedness must be considered a

source of increasing system complexity and instability.

3.2.2.1 Definition Of The Interphase Model

In order to construct an interphase model, it is necessary
that two phase models already exist. We will refer to these as
the source and target intraphase models, and we will say that
the target model is derived from the source model. Having thus
defined our terminology, we now state the definition procedure.
1) For each node in the source model, assign it to the

left-hand side of one rule.

2) For each rule, assign a sub-graph of the target model to
its right-hand side.

3) For each node in the left-hand side which is part of the
interface between the subgraph and the complete graph
model, indicate to the user any arcs by which it may be
connected to the rest of the model. According to the
user’s response, select one of the following steps.

3a) If the arc is not to appear in the next phase, the

developer must enter an explanation for this omission.

J PR W

2l

A Lt . i .
R
. ’ [.

ot
P
PP PRV Y W alh e

. -

)
L
R
Y N
AL a . c o

‘h ’l

. ‘e
Sl ety

AP

N

.
oy

S AN R A A A A AU A A ol e ety i il it (e et i oA AP i o A S =

e A el i i gt otk aue |
f CORRPE TR PR

v

) o -
@
PR -GS

Page 56

3b) If the arc is to be represented in the next phase, the

hAsra-a ata’a

developer must identify the node or nodes of the right-hand

side which 'represent'” the node under consideration. Each ._i

such node on the right-hand side should be given a unique ‘ég

label. The node on the left-hand side should be given a QS

list of labels, made up of all of the labels which were o
Just assigned to the right-hand side.

3c) If, in attempting to obey the instructions in the previous]

step, it is found that the arc is not represented by an arc :?2?

or simple set of arcs during the next phase, then we should f?i

add the arc to the left-hand side, decide if the left-hand :;j

side can be divided into simpler subgraphs, and modify the ‘ fgv

right-hand side in a corresponding fashion. :ii?fi

T

R

)

3.2.2.2 1lmplementation Of The Interphase Model - ?

R

Since the interphase model is merely a collection of graph :

rewriting rules describing the process of deriving one
intraphase model from another, implementation of the interphase
model should consist merely of recording ¢the development
process as it is carried out. To do this, we will require that
, the development team uses the discipline of recording the fact
b” that a certain portion of a milestone document is to be
d replaced by a certain portion of a later milestone document.

It i1s then necessary for a software tool to translate the

w e s o e T8 A Te Te T 3 T e e ., S e e T e T e e TN T T '_"-“._?‘v-.‘(ﬁ,_l"v_T:_-‘_“'\'_".'x_

Page S7

portions of the two documents into subgraphs of the interphase

SO rry

models of these two documents. This requires an ability to

recognize the relationship between a software document and its

vy
..!Q'. T L
co. L P
LT . PN o

- . e

model, but this recognition is achieved via the tools wuwhich

LA A S
PR

- implement the intraphase model. We have already demonstrated
F!E an implementation of this concept at the program code level, in
= which the text of the program and its internal representation
{ are kept in step by means of a syntax-directed editor and an

interactive prettyprinter. By analogy with that system. to

5jf record the fact that two subgraphs may be used to form one rule

of the interphase model demands that we select the portions of
the documents which correspond to each subgraph. then extract
the portions of the internal representations which have been
selected, and finally record the results as a part of the

interphase model. =

3.3 A Jechnique For Specifiying Software Modification Proposals

In this section we will describe how to identify all items
of a software system which may need to be changed as a result
of a change request. At first we will describe how these items
may be identified within the description of a particular phase fﬁ;g
("intrapase tracing"), then we will describe how these items
may be identified within the description of other phases

("interphase tracing”). A software modification proposal

|

P R T S R S ‘.‘. “."'._.".. T e . . - “ . ~ e a T . AN . DI N - .
A M e e e e A e A e et Y et st e ataldatada e A aala Ltmiateta mia‘alal taiafasan

T T T

AP e e it i A St S AC AR A SO AP RN A AT R A SE L AN SN S SUILERE SN SRR JENc ettt o SIS At st

Page S8

consists of a list of all items which need to be changed, and a
description, prepared by the maintenance programmer, of the

change which must be made to each item.

3.3.1 Intraphase Tracing

The model of the system at each phase describes the
control flow, data flow and data structures Oof the system
during that phase. MWe are interested in tracing the effects of
changes made to this phase of the system on other portions of
the system. The problems are largely identical to those which
we have already worked on for program modification., whose
solutions we have <called "logical ripple effect analysis"”
CYAUBBb] and ‘“performance ripple effect analysis" CYAUBGcC.,
8afl. For that reason, we may use substantially the same
approach for tracing the effects o0f changes during other
phases. In fact, the problems of performing ripple effect
analysis at the program level are reduced during other phases
since the complex problems of aliasing and recursion are less
likely to arise. In addition, the likely reduction in the size
of the model to be traced makes ripple effect analysis
techniques even more attractive. In developing our measure for
design stability, we have already discussed the use of ripple
effect analysis techniques at the design level. Hence, it wiil

not be difficult to use that technique to detect potential

S . . s T e - -) ." N - .~
- ES T R S - - - .. R Lt - . L .~ - o - K -
PSP LT R GY S N WL S SR SO AL R TR T Y

T
e

v

R it odh s s e Bt d Sae s TS i int et et e i i IR T A SR ST AR T A AT A -

Page 59

ripple effects for that phase. In addition, since the

intraphase model has & similar structure.

independent of any

particular phase, the approach will also be independent of the

phase at which it is applied.

In all of our previous work on analyzing the effects of

program modifications, it has always been the case that we have

restricted our definition of logical ripple effects to those

potential changes 1nh program behavior which may result from a

change 1i1n the values of data items in the program. We have

been able to identify which values may change by performing

logical rapple effect analysis. Our later work on realizing

program modifications helped us to identify another differe.t,

though relatively minor., type of ripple effect - the effects on

the syntactic correctness of the program being modified. While

those effects would be detected by a compiler, the ability of

our pragram editor to detect them at the time the modification

1s being made is of great value to the maintenance programmer.

For example, the ripple effects of a modification may lead to

undeclared identifiers, bacause their declaration has been

deleted. This kind of effects is to be handied by the

syntax-directed editor which will be discussed in section 4.4.

.- - . . . B A
. - N . . P - .t . . " e _ N n
YIS U LRSI S LI ST P . PP PN O PR Y DU VAL PPN RN T Y. e

RN A e P A

, .
® ..

i
‘@

SN -
Tatacaca s acal

'4
-

cha b b Ahden Bedode

TP AT S PRI

W e e
I W W Y

e
il e

‘'

v

’

RV S AT BEh Jie & e 2re Ahn B B B i S - Sous’ B iiite St Tty e T T T Tl P i S A e At CHE I Y IR - T T T T T T R T N R e T T TR e

Page 6@ .1
This raises the question, then, whether there are other ZQ;E%
ripple effects of program modification which we are not yet —"A;j
able to detect. If so,» how can we extend our approach to cover ~;§;
ST

all of these effects? Furthermore, how can we be certain that ‘ifﬂ
no other types of modification effect can exist? Our response f~ﬁ:§
tc these questions has been the development of a semantic model 'sz
- with the intention of modelling all of the semantic J
properties of the system. By comparing our semantic model for 'i"i:

a particular notation with the standard semantic definition for

that notation, we can at least determine the completeness of

our model for that notation. Thus., if no semantic changes must
be made to our model of a system in this notation, we can
deduce that no semantic changes will occur in the system.
since the ‘“semantics' o0of a system is synonymous with its
“logical behawvior', it follows that no other logical ripple
effects may occur. It is not so clear however, that no other
performance ripple effects may occur. In addition, the proof
of completeness must be carried out independently for each
notation under consideration, and the notion of ‘''completeness"
must be wunderstood to be limited by the completeness of the
standard semantic definition of the notation (for example,
certain decisions may be left to the implementors of the

notation).

- Lt e T e . . - - . . - . o P . .- - E . . - O T T PPN
PN L. - . . . et e PAN &L ~L. - P o, ~ PR
B A, S S T R T T I WLV, W U Dt "UEL VLR, T WA, (U . ~.L$X\":x e

MU L ST ALY

.4

Page 61 .f

However, the fact that intraphase tracing is being f'*;}

performed in a multi-phase context makes it more probable that ‘;

the results of tracing within a phase are reflections of Fﬁfi

similar tracing results at a previous phase. Therefore, these h&

effects should be anticipated. Other results of the tracing ’t:;é

phase will not have been anticipated; these are the effects .

Ef due to the approach used in the implementation of this level. f:
}E! While it is <clear that certain effects at one phase follow]

inevitably from changing a previous phase, these other effects

C}; appear to be less desirable - since they are not a consequence .
.- -
F.o of the problem, but a consequence of the development process. -

s ¥
These effects reduce the maintainability of the system as a :
whole and require the maintenance programmer to study more of
the system before modifying it. RN

- o
R
3.3.1.1 An Example Of RSL Modification T
1
This example shows an RSL R_Net being modified. The R_Net e
is shown in Figure 3.15, and its MODEL representation is shouwn X
in Figure 3.16. LN
- @
Now let us change ALPHA A1 to be 3
ALPHA: A1, T
INPUTS: DATA: D1 RN
_ DATA: D4. oy
I-® OUTPUTS: DATA: D2 °
o DATA: D3 —
- DATA: D4, -
e :
) LE
& DN
R S L L T T
Y AT AP S AT PV J PP L, B A PO A A AL T P AT N VP PR e .)'.:\"L

h]v P A VAR A i P e e aCh e B i i A A e e A s e e s p—py —————

EQ‘ Page 62

)
o 0
.

At e B B At O
ST - RN NN~ R
e ’ . o . ' . e e e L e e

.~

R_NET: RN@O1.

STRUCTURE :

INPUT _INTERFACE: 1I1

ALPHA: Al

DO ALPHA: A2

AND ALPHA: A3

ALPHA: A4

END

ALPHA: AS

OUTPUT_INTERFACE: Ot
END.

ALPHA: A1l.
INPUTS: DATA: Di.

QUTPUTS: DATA: D2 RCREAR
DATA: D3. N

ALPHA: A2. L
INPUTS: DATA: D2. o a
OUTPUTS: DATA: D4. £
ALPHA: A3. C]
INPUTS: DATA: D3. s

OUTPUTS: DATA: D4.

F -
.
n
r'.‘.
N

ALPHA: A4, £E¥9
INPUTS: DATA: D4, AT
QUTPUTS: DATA: D4. o

ALPHA: AS.
INPUTS: DATA: D4.
OUTPUTS: DATA: DS.

.
. o
S .
L 5
‘. S, PARPE
& oa -_J“'_A.....LA_J..LA 4

i Figure 3.15. RSL R_Net and associated alphas. Tfﬁ!i
o e
:_“ Then intraphase analysis should implicate activity Al and data %5i’j
Bl items (D2, D3, D4). It may also be necessary to implicate the Tl
:?: activities which provide the wvalue of D4. These should then go
--.\ .- Y
Q; on to implicate additional elements which use these implicated ;‘“Qj

elements, as given in the data flow triples.

LI i S Sk g G Gl Mgl Sty P S Sha i T it Eh A T et S e -t "t Rt it T A i i Pl Are i i L g aMb g iC A Sl LA S Al " i

Page &3
Y
(MODEL) L
TASK RNGO1. i

SEQ

AND v i
SEQ

A2 @ .

1

S °

@9

Figure 3.16. The MODEL representation of control flow of the
RSL example,

3.3.1.2 Assertions To Control Intraphase Tracing]
We may indicate assertions to the programmer which have 3;;;3

been implicated., and let the programmer decide if any effects -f;;:
g

can propagate. These assertions should automatically be ;; {E
derived from the previous phase, and hence the effects on inﬁi
assertions may (perhaps) be derived or deduced from the effects | .‘!

observed at the earlier level. Of course, some assertions may

P
L
v
P
AP
e
ey

v
.
s
»
et T,
. ’
NS PGP LT LI & W

——
. . . 1 [s
/o A
Lod Hi% a'aoa o

AL R PR L D R A St L L R T I R e A L I e A D A A R S A A L T A

o Page 64
ftf relate more to the implementation approach than to the problemn
. area.

T Now, since modifications are being made to the system, the
~
;;f assertions - since they state what the system state should be
}) at a certain point in its execution - must alsoc be changed.
: Hence we have the chart of possibilities shown in Figure 3.17.
When the assertion is initially placed in the system, we will
&. generally assume that it is correct - that it is easier to
o state the assertion than to write the program (segment). When

o the program is being modified, it i1s essential that all

“
3 assertions be reexamined, since any ‘“wrong'" assertions will
v}: destroy all attempts to draw any conclusions about the program
. (see Figure 3.17).
- Code
- oK Wrong
- A
g
{) .
L4 s oK Pass Fail
e
L r
RO t
e i Wrong Pass/Fail Pass/Fail
S o
RO n .
- Figure 3.17. Consequences of possible combinations of . Uf
R good and bad code with good and bad assertions. el
- RBOA
- @, 0
S
.) .'---J
o
) ~:.~ Ty
* 1
ik T
- 9
. N
4
2 o
1

N e At S0 SELM AR

o
: .

. A
Y

Even here, some

“Wrong" is necessary.

interpretation 0

f

the terms oK' and

Thus, an assertion may be passed by some

segment of code, and the assertion may

code., although the

assertion which

correctness of the program should have

not guaranteed by the code. We would

assertion to be wrong

be guaranteed by the

was needed to ensure the

been stronger., and is

have to consider such an

because it does not accurately state what

was required by that segment of code.

3.3.2 Interphase Tracing

We first illustrate our approach

with an abstract example.,

to be used for each type of "primitive"

to interphase tracing

we then go on to define the procedure

modification activity.,

and finally illustrate this with an example.

3.3.2.1 n Example Of Interphase Tracing

We will show how
software system shown
Figure 3.19 can be
decomposition, shouwn

rules given in Figure

the effects of

changes made to the

in Figure 3.18 using the tracing rules of

traced to the

in Figure 3.209.

next level of system

Note that, in the set of

3.19, each node of the system appears on

the left-hand side of exactly one rule.

rules throughout our approach,

We follow this set of

since other rules involve more

caomplexity both for design and tracing of the software system.

s -
L]

oo
P SPIRLTV" S Ths ShC I S Y BNy]

o

Figure 3.19. Tracing rules between two phases of
an abstract software system.

MRS e SO R e S T T S T v S S S I S SR B ARCA AP RN et St et Balt it St B S At D) SR 5 T i

"‘ Page 67 &
-::j' .]

}uf - :]
) e‘: - .
A v @Y
y ._‘_;' T
: V <:
Figure 3.20. The next phase of the abstract software system. - d
- ;.i

= N

Now., we would like to consider the effects of

L) modifications to the original structure of the system.

T
! G v, ','_n',
. A S -
BT PR AV

o g

- ,':':_

7S 3.3.2.1.1 gimple Modification S
- @l

- Consider to modify the node labelled C shown in Figure)

;jl 3.18. This node seems to be fairly localized in the original
hg graph and hence its ripple effect should not be too large. Let

L us show the detailed stieps.

1.

Page €8

Local ripple effect analysis would require us to examine
the nodes B and £ (primarily E) because they are directly
connected to node C. Let us assume that B and £ need not

be changed.

The tracing rules in FfFigure 3.19 show that the node
labelled C appears in R4, being traced to a subgraph on the

right-hand side of rule R4.

Now, we must determine what parts of the right-hand side of
R4 must be changed. Let wus assume that we decide to
replace it by the alternate right-hand side of R4, which is
shown in Figure 3.21, which we may consider to be the
addition of a new feature yY) together with the
modification of an existing feature (V). Now, we must do
some local ripple effect analysis of this new right-hand
side of R4, as a result of the insertion of the noae
labelled Y and the modification of the node labelled U to
v’. However, we anticipate that the right-hand side of a
rule should be small enough to do the analysis thoroughly,

perhaps even by hand.

Now, no further ripple effect analysis of the modified
rewritten software system is needed- since the node
labelled X is the only embedding item in the rule. Hence,

if local ripple effect analysis has been done on node X (in

. ST P R TR SRR
N e e e e e L e - e . - . e e et e et e e, P
PR L R R IS T . T T T . P P O I T I N T R . S IR S U W WA W S L I i

‘ ‘q

‘v
.

»
» . .
._"A“‘“A'

'

‘ o .
- W IPIPIN

ad .
oo ,

PRI

v
e A - B
PO Ot AL) VIV B B O e e e |

[
'ala

!‘-,
e .

ST T W . T EIETTITWT L ai > > af radte u e Shace Snu Bage oy oo, 4 o NN S s Bt st S e s A Sk A BB A Bk B AR A ma R A a s o na .l
.
.

Page 69 o

Figure 3.21. A new right-nhand side for rule R4.

Step 3, the last stepl), no further ripple effects can

occur.

S. Trace the effects to the next level.
- The modification to the node labelled U can be handled in
this same way like the modification to the node labelled C
at the previous level.
- The insertion of the node labelled Y must be handled
differently, since one of the reasons is that there is no

rule established for the new node (Y).

3.3.2.1.2 1lnsertions

This procedure should be followed for newly inserted nodes.

1. For each neighbor of the new node, determine if its rule
(as before, we are assuming that there is only one rule for
each node) should include the new node. If the node should

be included, modify the left-hand side of the rule, and

s proceed as before for modifications to nodes (as for B and

- . - '.- "_- " ". A “, .- . . o . . . '..) N - . " ."- '.' ".;.“ - ’
Sty st LN e e e .‘-,'.‘.".'-“-“.--.~‘." R P P ..‘.'-.'.A‘ s .""‘),'-_—-‘..'x.k‘.'. . . P IO - P . -

T o ORI . . - N o . . - So. IR (SIS T AT e « - - SooAT e B P STl T
[V S T R R A Ll O W . S . T T L T S L, S A S S LR A S I T AR VLI T Tl Wl SO

Mc-te 80 /At A et it Bt Bags Tk S s SN S e A

Paqge 70

U before). Otherwise, go to Step 2.

Define a new tracing rule, whose left-hand side is the necw
node. and whose right-hand side 1s a refinement of the

semantic definition of the new node.

Determine how the right-hand side should be fitted into the

new level. (The embedding problem).

Perform ripple effect analysis at the new level, to make
sure that the new right-hand side "fits". Make new

modifications as required.

Repeat the process for inserted and modified nodes at the

next level.

3.3.2.1.3 Deletions

This procedure should be followed for nodes which are to be

deleted. We will use the same example, with a new substitution

for R4 to illustrate this procedure.

Let us assume that the alternate right-hand side of R4 s

instead shown in Figure 3.22. Again, we should do some

local ripple effect analysis of this graph. In this case,

there is not much to inspect,.

S S e e R S~ S A T s T A i R it S e Sl iR e S M0t e S e Wy An NEC " At ias SNe N Acivin Tt i S dhen J

Page 71

W oww- o X

Figure 3.22. An alternatiwve right-hand side for rule Ra4.

2. In addition (as before), since the node labelled X, the
gluing item, is not affected, no further ripple effect

analysis can occur.

3. Trace the effects to the next level.

Now, at the next level, we must first deal with the
tracing rule involving the deleted node, labelled V. If the
rule is a pode replacement rule, then that rule may he deleted.
Alternatively, since that rule will no longer be applicable, it
may be left alone -- for "garbage collection”. At this point,
our strategy depends on whether we store the descriptions
statically or store the tracing rules and allow the
descriptions to be generated dynamically (the standard

spaces/time tradeoff).

3.4 Discussion And Future Work

The results presented here deal with problems which have
been largely ignhored in the area of software engineering in
general, and the a~ea of software maintenance in particular.

Yet, 1t is Clear that we are dealing with problems which must

i I A e fhdus doe

N
et

P X e U N W)

e

.

ST
PO W O WG P WU e

)
[
) -.AVA.. PR
Andedededodadod il atud oh

.“‘.".’._v"
ade,

»

3

P S R

e

b R
PP WP |

"

]
"
y
.
v

QW TR e LNy W W T T N e T e AL AP el 2arl sl aUMEAME oS RR St diin e —

Page 72

be resolved by software maintenance personnel if they would
improve their productivity. This work is most closely related
to that of software configuration management, in which the
ability to trace software elements between different phases is
emphasized, with the aim of improving the quality of a
delivered software product. Cur results represent a
considerable improvement over software configuration management
approaches, since we trace not only software elements, but also
their itnterrelationships. This is particularly wvailuable to
software maintenance personne!, who must eliminate all

undesired side-effects of their modification activity.

The value of these results is limited by the absence of
practical experience in using the approach with any software
system. The effort needed to implement tools to support this
approach would undoubtedly be considerable, even if these tools
were restricted to particular well-defined notations for
requirements, design and coding, In addition, we have not
dealt with the question of the adequacy of representing only
the <control flow, data flow and data structures of a software
system. Our model is a semantic model for software systems,
most closely related to operational semantic definitions.
Existing operational approaches have been used for softlware
requirements [ZAVEB!, 821, design (HAY741 and proqgramming

language definition [LEE?72], [PAGABL]. Hence. the success

i dte e .

S ® . .
. . . N
Y T Y S Y) 'A“‘.‘ 2 s AA B

N

M S A e e A d At et S Al i b e S A S “"‘?ﬁr'?wvx

'_i

Page 73 vA,i

]

achieved in these areas suggests that our approach s V*l

sufficient. .4‘

While some analysis of the approach remains to be Egjii

performed, new questions have been raised by the results ?igi

already obtained. First af all, it is clear that the approach ~f§!

has implications for the software development process. f;iéﬁ
Currently, it is not customary for developers to record any

information regarding the process of refining a system between
different phases, although this information is clearty

available. Using our interphase model this refinement process

can be recorded, so that the maintenance personnel can make use

of it. This leads wus to ask if this information can be
automatically extracted wusing other software tgols in a RO
software engineering environment. In addition, the realization -

that the refinement process will become a part of the system 5£f*
documentacion should encourage software developers to consider
how this process should be carried out. It is clear that the
refinement process affects the quality of the final software

system. Bowles [BOWLB3) has shown that the complexity of a 3f“i“

software design may be wused to predict the complexity of a
progran developed from that design, under certain assumptions
about the refinement process. His results may be considered
together with ocur work to study the effects of different

processes and the degree to which they permit additional

Page 74

complexity to be introduced. Further studies might consider

the effects on stability (YAUBRAe, B2c).

t—._-. AU SO C A N s e R AN Rt St e i A lins i olba Sane i b = p i A S A

L

b

P. Page 75

ZE: 4.8 REALIZATION OF SOFTWARE MAINTENANCE PROPOSALS

E(? Realizing a program modification proposal can be an

‘.-' .

h expensive and unreliable process. We have developed an

T

v

\}7 approach to program modifications more quickly and more

h accurately. Our approach uses a syntax-directed editor which

o

1 operates on a formal model of the program. Using this editor
ensures that modifications will always leave the program in a

TQ! syntactically correct state. If a modification results in a

syntact

of that fact and

needed.

As an aid to the maintenance programmer,

also

program editor to display those sections of the

may affect the program code under

ic

use a program slicer [WEISB1,

incansistency,

this editor will advise the programmer

indicates where further modifications would be

our approach will
821 in conjunction with the
program which

investigation.

M

R ol

' 4.1 OQvervieuw

3

p

The overall procedure for gur approach to this incremental

r. process of program modification is shown in Figure 4.1, We

3 assume that the programmer has made a preliminay decision as

-
{uf what types of changes must be made. based on a given
Fi modification request. Examples of the type of information

1

o which the programmer should have are the particular functions

P

} @

.- -
- B
b - . e
b .
b - .

L @ ;
3 h
S . e

- e A
o O N O T T I T P A S O A T e S T A SR T

N
[P TP Ry

e e UYL WA N Y TR BRI AT SO I A A it SRR Jhott Stt Shvee s o gaere - T Ty - — v v
. S T T e T T WS T T T e e s T N TR T T RO W AL A A A e B s ad el A «K‘-‘l

J
1
Page 76 - .4

5
L Al

Locate the y ~.4!
Modules to be Lo
Changed ;ff;i
{

)

:

Identify the Code Slicer and Editor @
Relevant to the S
Changes -

L

Decide how to - ﬁ.i
Make the -
Changes

Edit the Code Editor o .J

to Complete RN
the Changes o

Figure 4.1, The procedure for incremental program
modification

to be changed, the data values which are in error, or the
additional functions required of the program. Our approach for jﬁ;~L
the programmer to make the modification can be summerized as

follows:

PR N 2OV SR N Y

P

ST SO

,” . e e

. e PRI
Soate bk

e e e Lt

)

STy

S e e
S @

e e b L
atd a’a g’

. et
P L
o

. o

- ‘.~.‘ S e s, 0
T L P R B A
" T VI TG W MR UL A, MR . S Ly hatani

-

-“!‘va
. il
. o

Page 77

(1) Based on the information obtained during the preliminary
analysis of the proposed change, locate the program modules

to which modifications must be made.

(2) Use an interactive "program slicer' to identify the portion
of the program which directly affects the program code and

data values to be changed.

(3) Decide what changes must be made to the code selected by

the program slicer.

(4) Use a syntax-directed editor to make the modifications to
the program code. This editor will guarantee that the

changes preserve the syntactic correctness.

In order to support this approach, we have developed a
system which incorporates two major software tools: the
program slicer and the syntax-directed editor. Figure 4.2
shows the organization of this system. The editor consists of
three basic modules: an interactive pretty-printer for
displaying the status of the program being modified, an
incremental analyzer for analyzing the legitimacy of the
modifications being made to the program and for updating data
flow information, and a recursive-descent parser for parsing
user—-supplied textual information. A small routine, the

“manager'", is created for supervising the control flow of the

T A e S e rn Ao Jese. v e sy iyt i ute Betd bt s Bt -Aedk TR LSt R 0 g Ava. Sed JAUR Y dh 200 -Ben e e Wi de T St sae, b ind et Sl gl i Sl Sl AR AME AR AR
LR AN RN R .

....................
..............

Page 78
oldsnew
specification USER
[~ T T "1 menacer[::__—_I- T 1
| | | | "8
| y | ¥ |]
| SLICER | EDITOR t 2y
| ' PP| IA | RP | :
ST
l | | :’j
%
| K MODEL | | :
' VA ‘
— — prp | g»{ DUMPER CONVERTER & — — —
source listing of
listing nodes existing
programs
— — — - control + data
— data ‘
BPP - Batch Pretty-Printer 1
PP - Pretty-Printer ' ”.‘
$ IA -~ Incremental Analyzer — ;
. RP - Recursive-descent Parser
& .
;; Figure 4.2. The structure of the system for incremental 4
-4 program modification

T T
[SR B T

£ S gt 20]
S e

I u e
D .

ar it AR e i N o
I

D A A T B M i e LA Tl TR 2 R A A S i S B A ik S e e

Page 79

system. Upon receiving slicing commands from the user, the
manager invokes the program slicer. Upon receiving editing
commands from the user, the program editor will be invoked. A
number of utility programs have been attached to the system: a
converter for converting existing programs to our program
representation (i.e. program model), a dumper for sequentially
listing the nodes contained in the representation., and a batch
pretty-printer for producing a well-indented sSource code

listing.

4.2 The Program Representation

Most existing syntax-directed editing environments store
the syntactic information of programs in the form of abstract
syntax trees. Depending on the level of abstraction, there may
exist a wvariety of abstract syntax trees. The hierarchical
structure of a program is thus represented by the syntax tree.
We feel that a program representation to be used in an
interactive syntax-directed programming environment must meet

the following criteria:

1) The representation must be formally defined, based on a

formal specification.

Ta®a® %™ %"

- D % N W Oy W - =
« . ".('.r" v ','»‘,':. ‘hr_"—\'i"'_'v',,\v-_.q—_} - LS __71-1."..'.' '-'_-'~','-. 1_"."'..'__{'1_ “‘v‘f‘».r T »v'.. DN At sl Sl Sl A fla S T _"—r‘. A

Page 8@

2) The representation must be constructed without losing any

of the syntactic information contained in the program.

3) The representation must present all features of the

language in a wuniform manner, so that a variety of tools

et
. .. PR
. g LT STt
R . - PR
P TR
e e vy

y

can be easily integrated [WASS821. %

~ "]

4) The representation must support incremental program ;ﬂ
modification. That is, whenever a modification is made to .ﬂ

a pragram, only part of the program needs to be updated and

re-analyzed.

We have developed a tree-like representation for programs.,
which is based on the BNF notation frequently used for formally
describing particular programming languages. and resembles the
parse tree used by compilers. Our tree representation consists
of a well-defined set of node types, each of which corresponds
to a syntactic construct of the lanquage. Definition of the
representation for a particular programming 1language can be
done wusing a procedure which operates on an annotated BNf

description of the language.

4.2.1 Data Flow Extensions JTo The BasiC Representation

In addition to recording the abstract syntax and static

ST LR R R . AT e T AT e e . .
LI S W Bt P OIS I TRY N WS L e T m e a e et " et e ata e oo

T T T e T T TN TN TE T TN TETATLTOY T ANy LYW LSLYY e YT e e T T T S TR TR TR TR RN R TR LR, BT T e Wyt e e e e

Page 61 ' .1

semantics of a program, the program representation has been z;Ff;l

- o T
t extended to include some data flow information. This data flow - ‘<
) !

4

information takes the form of two attributes which list.,

respectively, the set of variables whose values may be used in }""]
that statement and the set of variables whose values may be 'i-f;;j

) .
i defined by that statement. This data flow information can be -
: constructed from the BNF notation fcr a simple PASCAL-like Zi?;;ﬁi
[language as shown below. where the used variables are referred “i;; E
) o |

to by the attribute I (denoting input) and the defined ;g,@}*

variables are referred to by the attribute O (denoting output).

(1) <block> ::= begin <{statements> end

Here, a block can be the program main routine, a procedure
or a function body.

<{block>.I
<{block>.0

{statements>.I - { xix is a local variable 2} R
<statements>.0 - { xix is a local variable PR

L Py arae o

. 2) <{statements> :::=- (statement)

;- {statements>.I = <{(statement>.I
{statements>.0 = <(statement>.O

3 (statements>’ :::z {(statements>" {statement >

. .i
’ H M
Py
NI
. M '
T . ., A)
ot S
PRI ERS r PRr O Y

{statements)>’.I = <(statements>"”.I + (statement>.1 }ﬂg};_
(statements>’.0 = (statements>".0 + <(statement>.0 R

¥ (4) <(statement> :(:= <Cassignment)> | <procedure statement)> ! ' ”.’
<for statement> | <while statement> ! <repeat statement)> ! R
<if statement)> | <(case statement> . <compound statement> 1

In this case, all the attributes are preserved.

Page

S)

(6)

7

8)

9)

1e

a2

<assignment> :::- id

<assignment),
<assignment>.0

-

"o

{procedure statemen

In this case.,
body, then

iz (expression>

{expression>.I
{expression>.0 + € id >

t>

let <block)> be the

ti= id ¢ <actual parameters>)

corresponding procedure

{procedure statement>.I =

{ x ! for each element y in <block>.I, if 4y is a farmal
parameter then x is wused in the corresponding actual
parameter, otherwise, x = Yy, a global variabled
{procedure statement>.0 =

{ x | for each element y in <block>.0, if y is a formal
parameter then x is the corresponding actual parameter.,
otherwise, x = Yy, a global variable 3

<for statement> :::

for id H—

{expression>’ (to.downto)

{expression>'" do <{statement>

{for statement>.I
{(statement>. I
{for statement>.0
{(statement>.0

<while statement> ::

<while statement>

<while statement>.0

i |

<expression>’.l + <(expression>".I +

{expression>’.0 +

while <expression> do <(statement)

= <expression>.l + <{statement>.1
= <(expression>.0 + <{(statement>.O

{repeat statement) I repeat (statements> until
<{expression> .

{repeat statement>.I = <(statements>.I + <(expression>.I

<{repeat statement>.0

{if statement>
else (statement>"

<if statement).
{(statement>"”.1
(if statement)>.
{statement>" .0

]

{statements>.0 4+ <expression>.C

if <(expression> then <(statement>’ [

{expression>.I + <(statement>’.I + [

= <expression>.0 + {(statement>”.0 + [

{expression>".0 +

!1"‘
TR T
e Tt

.

,.
Lt . r M . .
s - * ,'. C e . - ..

o . RSN
o a’ 2 . 2 A A s a1 e

s ‘\l\ v

‘l./."‘l“"‘ i o'-‘.‘ 4" - . ’

e)

.
[S R

v

e
. S
NPT P

3 S

-., e e

N PR
PN Py C

el
S

L, @
a2 b » 2 ¢ 4 &

ey

TR b il - AN Y i AR ME al Eaitt iR e i i e e st dante e ugn e

Page

(11) <case statement> :::x case <expression> of <cases> end
{expression>.1 + <cases)>.l

{case statement>.I =
= <expression>.0 + <cases>.0

<{case statement>.o0

12) {cases>’ ::
{cases>’.

= <one case> [; <cases>" 1
I
{cases>’.0

<one case>.I [+ <cases>".I1 1
<one case>.0 [+ <cases>".0 1]

113

{one case> : {constants> : {statement>
<{one case>.l

{one case>.0

{statement>.]I
{(statement>.O

(14) <compound statement)> :::=- begin <(statements> end

{(statements>. I
{statements>.0

<{compound statement>.I
{compound statement>.0

(1S) For <expression>, if it does not involve
call, then <(expression>.I
used in the expression and <{expression>.0 will be
If a function call is involved,
{procedure statement> can be used to
information for that function call.

flow information will be the union of these two parts.

any

derive data

The minimum requirement for data flow analysis is

expressions or assignment statements. However.,

- frr'rlr,rs,fr..hrw -
o, » -, ‘..-‘-|‘: ‘ "-_

L et St it et el e Rl

function -
will be the set of variables e

empty. R
then the equations for S
flow)
The resulting data

that
these attributes are attached to the nodes denoting conditional

the

L i

83 - -

ams b Ao b s AY L

.
Adase Al

'}
o7 PP T AR

..
. i
,
@

r .y
Tl
T R
R TR

'
;

v
.

[

» ' - .‘
."UU, [
W Vo SR LTS

i

4
R
| I T W S

® representation described here is able to greatly reduce tree Y
L .
EI traversal, since we can immediately determine if a structured R
L. 2
33 statement contains any references to a particular variable.) -
&'_... o "
L'_.. _-.
L.
@
P
L.
b
-
p -
o
. . AR
b . N -
- e
= ALY
b - CN
b S
L. .." . “ -,
L"'- \'_~-‘.
r‘ .u. £ ...
L Ré

attributes for performing program slicing, they can also be

used for data flow analysis of a more general kind.

4.2.2 The Construction Of The Representation

For existing programs, a compiler-like process needs to be

initiated to form the representation by generating a tree node
for each language construct as soon as it is recognized by the
parser. This process should present no problem, since existing
programs in their production wversion are presumably both
syntactically and semantically correct. The compiler or the
interpreter of a particular programming language can be
modified for this type of conversion. This conversion is.
however, a one-time batch process. After the conversion has
been carried out, the program representation is subject to
modification, but this can then be handled by a syntax-~directed
editor. The editor is suitable not only for introducing new
code into existing programs., but also for developing new

programs.

. " - - ‘. . . M . - . a -~ Al - .
. . - . o A - L
PR WAL W DDV 5 S S0 YA SIS WV AP S el W i S . S T 2

Lo ta n . 8 & &« P a_ m_ m_a_.t_tan.

F' --. ?‘-:'_i '-‘_'-‘,‘ﬁv‘-‘f‘.“\“r‘ o, ‘r,‘ I _-f:'Lﬂ:'“—'_v d '-. P/ B A .i‘_ﬂ__—s NRES - il T YT T T - aadry * Lave |
" -
o :
o Page 84 ,.;
g
[As a result of this extension to the Dbasic program
g
F" representation, a corresponding extension has been made to the
v,]
R editor’s incremental analysis procedure, in order to keep these d
. td
.\ i
data flow attributes wup-to-date while the program is being - .
- modified. Although we have only used these data flow S
3

.
'a ‘n ta

‘. .A
PRSI 0¥ S I F T S 27 Wer PR

.

1

P
SEARL IO
LUV N

it ad okt

Caade

L

Y

PP W L

i o

DL IRCIACREE NS S N M LASCRVG S A S I e A e AT AT AR U I AR AR SO
3
p .

!' 4

. X)

p. Page 83]

» -4

-~ S

p - 4.3 The Program Slicer 'j

4 :

¢ L 'Y

T 4.3.1 The Concept Of Program Slicing -

2 o

The purpose of ''slicing" a program is to automatically ,_i

-

extract sections of the program which are closely related to -.]

each other, with the aim of providing the information on which i

the programmer wishes to concentrate by removing those sections -inﬁj

S

of the program which are not considered relevant to the -:‘i

.‘_ . ' J

modificatiaon task. RERRNNY

R

- S _1

The term "program slicing" was first introduced by Weiser "j}j%

.

(WEISB1]. The interrelationships of program sections in a ¥ @

program slice were restricted to those which can be detected by %;

data flow analysis. We also follow this restricted definition. _:

1

A program slice can be constructed as follows: N}

"

1) Locate the statement in the praogram at which program]

slicing should s t. ‘ ;3

s >

3) “4
‘ 2) Decide which variables are of interest to the programmer, 2]

3) Use data flow analysis techniques to identify all of the

" ;

- .
o

ol aak A

program which may affect the wvalues of the selected

_ R
} variables. 3
& o
-4 , . . .
. Thus, the input to the program slicer consists of a program, a 7
h R
. distinguished program statement, and a set of proqram -
L‘"' 9
h- 1
¥ o4

‘ S

»
'
A
PRy

r

1

-
;L

:
o e

N
o

- JEE .. RN ™
O g S - ~ SV

: . - - . ‘. - - - . El < ST N A Lt .
P T I LT e et a s S . . et . .. L . N . . .- C e e . . [T
PRV SN W WD WY T W VI WP W VAR AN ot Uiy YU WIS Sy W W I GRS Wi Wy G WP Sl P P i s P SIS DAL S el WV G T, S YA §

I3 -
‘15‘

| Ja AR i

e o o §
.

W R

.

ML S Aouin SECAN RS A S |
B . » .

TV

v

.

(e A LR 4

Ty
- .

Lant auen NONE SEuir s oe RO LA -l i Eadiaradirtdid N T NIRE TS TN TR TV T TN T A TR ST TR

Page 86

variables. The output consists of a set of statements oOf the
program. The program slicer itself depends on data flow
analysis techniques. The behavior of the statements selected

by the program slicer will Dbe partially equivalent to the
behavior of the original program with respect to the selected
variables and initial statement. Under the assumption that no
non-terminating l!oop exists in the program, the behavior of the
program slice and that of the original program with respect to
the selected wvariables and initial statement are totally

equivalent L[WEISB811.

Weiser [WEISB1, B2]1 has shown that slices constructed in
this way were recognized by subjects who, under experimental

conditions, were asked to perform modifications to several

programs. This result indicates that the subjects had
(mentally) constructed program slices relevant to the
modifications in order to modify the programs. Howewver, the

program slicer was not available for use by the subjects of the
experiment. Furthermore, this program slicer operated on a
conventional form of data flow graph [HECH?7?7]1 (i1.e. a directed
graph whose nodes represent the condition~ and assignment
statements of the program and whose edges represent possible
control flow paths Dbetween them). Such a program slicer
produces program slices with incomplete syntactic information

to display a slice as a syntactically correct program.

APV TR TR R T

[ARl 2 S TR <R

) L)
-~ :4
o
4
4
) (2
. .‘
-~]
N ¥
-
_-~<
, h
S
LR 91
R 4
. -
) A |
s
- .' -9
e
_’_4
e
) N
. _-j‘
- - -
. K
T
T4
) (r
. K
R
_]
..‘
to
®:

'* S
SRR

s

ol

L4 SRR
adlh bbby

’

Pl .
MO Y

.. @
DY v

a

A .o A 2a &

AD-A143 763

UNCLASSIFIED

ﬂETHODDLOGY FOR SOFTWARE MAINTENANCE(U) NORTHWESTERN 274 .

NIV EYANSTON IL
F308682-88-C-8139

S

S

YAU FEB 84 RADC-TR-83-262 |
F/G 972 NL !

SR VIR T WIS R [I

(A i SAACR W

..

T

Ve

e

ofll il © foo} W “
bl <2l 2l
= e == a—— B
Ol ~f g o =
33 . =
dAaa0a0 —_ il 2
== B =
O x5
. o—— 5 W .M
— T 3
—— ——— — Q z
—— —— ————1 =
A
2
I
b
i
o
Vo
..”..
.‘._
'
y-. L
’ w e -w v * . Lt . . P 0 et e e - IR A et e e s e E® -‘...4‘...,4,4.- .-v- K 3 .q..4 ..

OSSN SV A AL AN X TnafHC L SO - 4

Al
& 4 o s .

. ,'.4'..' .“ 4-

o
o
.
g

.-

R G
PN
.

@ .
LA
LR

': ..' \.' :\

Page @87

In an interactive programming environment, the slicer must
present the programmer with a view of the program which
corresponds to that presented by other tools in the programming
environment. In this case, and in normal practice, this means
that the text of the code in the slice must be displayed.
Although tne program slice has been defined in terms of data
flow analysis and the selection of statements, in many
programming languages, data declarations play a very important
role. In such programs, it is necessary that program slices

also include those declarations which declare all the objects

used in those slices. Our program slicer meets these
requirements, interactively constructing the text of partial
programs which are made up of the subsets of declarations and
statements of the original program which satisfy the slicing
criterion and form a legal program. To achieve this, we
extended a program representation, which we had developed to
describe both the syntax and semantics of programs, to include
the data flow information needed by the program slicer. Figure

4.3 illustrates the program slicing technique when applied to a

small program.

Our current approach is based on an intramodule program
slicer, which selects that portion of a module (i.e. procedure
or function) which satisfies the slicing criterion., and

includes declarations of objects inside or outside the module

L)
ol
-
o
[Sk
-
L.

-4 - - o Lo e e
v e CETETNT NN .‘."'.‘_L" AL Sl S A AR V‘r‘.v.. MBI S S e g LANLIM aP gA i i A e i

. ‘

Page 88

type “ e f?j
applerecord = s
record appletype: (golden, smith): e_,“7..'|

rotten: boolean; order: integer;
caost: dollars
end

var . .
i, count: 1 .. 2@; accum: integer:;
average: real;

apple: array (1 .. 20] of applerecord;

for i 2 1 to 29 do

with applelil] do

if not rotten then

begin count ::z count + 1;
accum ::= accum + order

end 3
if count > @ then average ::= accum / count ;

type . e .
applerecorg =
record rotten: boolean; order: integer;
end ;
var . e

i» count: t .. 2@;
apple: array (i .. 20] of applerecord;

wi appT;tiJ EE
if not rotten then count := count + 1}

(b)

Figure 4.3. (a) Portions of the program to be modified
(b) Portions of the slice constructed for the
variable COUNT.

P AR P g g Y ACRA RS te B Aadheariin Tiin BAs S AncEAn Y v Be~Rin X d ‘e B Mk A T e An ik i R 20
N Tt v B -~

Page 89

e
AR

2%
(s
s

which are necessary to ensure that the slice is indeed a
!f syntactically correct program. In PASCAL [(JENS74]1 these
.- objects include labels, constants, types, variables, procedures

- and functions.

lf 4.3.2 Algorithms For Syntax-Directed Program Slicing

0
4,
L

To perform ‘'“syntax-directed'" program slicing, we have
developed the following algorithm, which operates on the parse
tree of the program. to attach data flow sets to each statement

and expression node of the tree.

The inputs to the program slicer are the augmented parse
tree of the program, the point at which slicing should start
(specified by the current position of the ‘cursor"” within the
parse tree) and a set of variables to be used to construct the

2 slice.

The behavior of the algorithm depends on the particular
statement type, based on the possible data flow paths which are

permitted by the semantic definition of the statement type.

The basic ''generic" statement types are sequence, selection and

o a 1NgR

iteration. In PASCAL-S, these are represented respectively by

the compound statement type, the if and case statement types.

. P
e 1 a2 s e

and the while, repeat and for statement types. Other statement

types may be collectively referred to as assignment statements.

)
LN

k)
L Y

N

]
KR
N A

Page 9@

The basis of the slicing algorithm may be written as

follows:

procedure slice (St: statement ;
var SV: set gf variable names) ;

comment
This procedure identifies the statement type of St, and uses
the value of SVU to determine if any statements within the
parse tree rooted at St should be included in the slice.
The value of SV is updated to reflect the effects on the
possible data flow of the behavior of St.

end comment

if su N st.output ¢ 2 then
case St.statement type of
SEQUENCE: slice_sequence (St, SVU) ;
SELECTION: slice_selection (St, SVU) ;
ITERATION: slice_iteration (St, SVU) ;
ASSIGNMENT: slice_assignment (St, SV) ;
end case
include_statement (St)
end if ;

end procedure

where the sub-procedures are defined as follows:

1) slice_sequence (St: statement ;
var SV: set of variable names) ;
slice (youngest_unsliced_child_of (St), SU)
while St has more unsliced children do

slice (youngest_unsliced_child_of (St), SV)
end while

\'v

))\ ﬂ.._P ¥, O Ty

¢ 4 @r
A

B

<
A
Ears

L] "
" B
f - L] 'l * *, " (4
N l.{‘./q.‘:-.,t!.

s Te "2 Cad

Page 91

2) slice_selection (St: statement ;
var SV:! set of variable names) ;

OSV = 8V ; T =z 0OSV ;

slice (last_unsliced_choice_of (St), T) ;

NSV = T ;

while St has more unsliced choices do
T ¢z 0SSV ;
slice (youngest_unsliced_choice_of (St), SVU) ;
NSU = T U NSV

end while ;
SU 1= NSV U Expr.Inputs
include_expression (Expr)

3) slice_iteration (St: statement ;
var SU: set of variable names’ ;

OSV =T T =z OSV ;
slice (body_of (St), SVU) 3
NSV = T ; T := T - OSVU U Expr.Inputs
while T ¢ ¢ do
OSVU 1z OSV U T 3

slice (body_of (St) SVU) ;

NSU = NSV U T ; T .2 T - 0SSV
end while
SU := NSV ;
include_expression (Expr)

4) slice_assignment (St: statement ;
var SVU: set of variable names) ;

SU (= SU - St.O0utputs ;
SV = SU U St.Inputs ;

The slicing algorithm progresses by traversing the parse
tree in an order which visits the statement nodes which precede
the initially chosen statement node (according to the program’s
control flow) in reverse control flow order. When structured
statements are encountered, they are considered in a top-down
order, being considered only while their output data set (the
variables affected by that statement) overlaps with the current

set of "slice variables".

. O . .' -‘ ‘~.. T N
$ ‘- ! \I . l"!‘ \AL

- -
A\.!_.A_j

Page gz

All

*included"”

statements

in the

ARSI i At e A At s e

chosen by the slicing algori

resultant slice of the program,

the correctness of the syntax of the slice, declaratio

objects us
the slice

variables.

ed in the

. These

and their

included statement must also be in
"objects” include named consta

associated type definitions, as r

In the case of our intramodule slicer, we must al

an approa
calls are

an empty

ch to de

included,

version

al with calls to other modules.
we have adopted the convention of

of the called procedure in the sli

version of the procedure includes its name, type (if

formal parameter list, together with an empty declara

and an e
sufficient

language.

mpty comp

ound statement for its body.

to satisfy the syntactic requirements

Since block structured languages such as PASCA

access to

“"objects

* declared at any one of seve

levels, we have chosen to preserve the upper levels in

of the sli

ce. Thus,

the slice will include "“"empty" ve

all procedures which contain the module being sliced.

each of

these procedures will also appear the declar

any objects which were previously declared in that p

and which are needed within the slice. Clearly, the

of declarations within the slice is important for

RG-St Bt A 0 & pda arem gre o gu dvas sodt e o e st ae e |

equired.

B

thm are e
To ensure R
> .

ns of any n
cluded in S
nts and S
:1l

so devise
When such
including
ce. This
any) and
tion part
This is

of the

L permit
ral upper
the body
rsions of
Within
ations of
rocedure,
inclusion

helping

Page 93

program modification.

The nodes which are included within a slice form a subset
of the nodes in the parse tree of the program. However, they
_;: can be rejoined to form another parse tree, using the edges
F.E which existed in the original tree as a guide. The new parse

A tree constructed in this way is used to display the text of the

slice identified by the slicing algorithm.

However., these algorithms are not sufficiently general to
allow the programmer to select statements arbitrarily. For

instance, if the programmer selects a statement from the center

of a sequence of statements, the '"slice_sequence'" procedure

T must be altered to start slicing from the selected statement.,

instead of starting from the last statement in the statement
‘!l sequence. To handle this and similar cases involving
é& “slice_selection” and “slice_iteration”, we have written

modified algorithms to perform slicing on partial parse trees.

First of all, it is necessary to construct a list L of all
statements which enclose the selected statement. This list can
be constructed in a straightforward manner from the parse tree,
by wvisiting the “"parent” of each node until the body of the
module is reached. The following algorithm, a modified form of

the "slice' procedure, is used:

e e] e N L e
\ e e e e e T e e LT T Tt S oS Tk

-A...-. ' .-‘-—-. "'-" 2T, .-- -‘- s ..'- -'\~‘~. "..-.. \ .‘.'

T Y) e e . P R G S T R S B -
AR R I A LR SR R S SRR A R S Ry E ¥ L AL ST D SRSV WY SIS PRSPPI S B R AP P . W

.

) procedure part_slice (St: statement ;
- L: list of statements
var SVU: set of wvariable names)

. if L is empty then slice (St, SU)
elsif sU Mst.output # @ then

- case St.statement type of

- SEQUENCE: slice_part_sequence (St, L, SVU) ;

. SELECTION: slice_part_selection (St, L, SVU) ;
L ITERATION: slice_part_iteration (St, L, SU) ;

ASSIGNMENT: slice_assignment (St, SV) ;
end case

% include_statement (St)
N end if
K end procedure

As an illustration, we show the modified form of the
procedure "slice_sequence'. Similar modifications must be done

to "slice_selection'” and "slice_iteration".

- slice_part_sequence (St: statement ;

(L: list of statements ;

N var SV: set of variable names) ;
part_slice (head (L), tail (L), SV)

while St has more unsliced children

preceaing head (L) do

a8

a8

slice (youngest_unsliced_elder_sibling_of C(head (L)), SV)

end while

The initial call to start slicing will be:

part_slice (head (L), tail (L), SVU).

S >
f?i Page 95 tiff
Ef; 4.3.3 Enhancements i;f;
_}s To improve the usefulness of this program slicer as a iﬁ;g
W A
%:: programming aid, we have added the options of further applying o
271 the slicer to existing slices of a program to obtain a more
-.i refined picture of program behavior and of combining slices
}S (possibly those of distinct modules) into more comprehensive .;if:
ARURS ..
ﬂiﬁ units. We have defined the following operations for combining i
:‘ program slices into larger units, including statements taken iQﬁ!
;éﬁ from several modules: ;5 i
L . o
xi; UNION: Given two slices, Si and S22, construct a third ; ;
?; slice S3 which contains all the statements and declarations i};_
“55 which appear in either Si or S2. 3 ;i
INTERSECT: Given two slices, S1 and S2, construct a third :_:-".
i)ﬁ silice S3 which contains all the statements and declarations é_ii
i% which are common to both Si and S2. ;& -
51; -By the definition of a program slice, each of these -in
:i: operations will always ensure that the slice S3 satisfies the jéfz
é;’ requirements of a program slice, and also ensures that it will ii E“
oy be syntactically correct. Since a program slice can be éf ;;
;; considered as a parse tree, or even as a set of nodes taken ii ig
%3 from a parse tree, these operations are readily implemented ;;»ﬁ?
]ﬁ using well~known algorithms for set operations. :Alid
:
. oo
I S
2 *
Ay . IR . - . . T
S oSS s i - B

DR el
oLt

AR oL
P I RS R Sy

N N T T e T NN ST s) [, PN T e e T
e SIS S BRI W S W S B A A W IS L SRR Wiy AL U DUE R G NP NN

IR S AN A SR A S A R AT S A A A I ST/ i s S S-Sl Tt o e pe fhun e et aot dum . fiois.d W

Page 96

4.4 The Syntax-directed Editor

We can make the following observations on existing
syntax-directed editors: They are designed specifically for
program development, emphasize the creation of programs in a
top-down fashiaon., are based on the abstract parse tree,
incorporate an incremental semantic evaluation mechanism, and

are highly experimental in nature,.

One major contribution made by existing syntax-directed
editars is that a program is treated as a well-formed
collection of syntactic units (language constructs), not just
text. The actions carried out by these editors can be

classified as suntactic editing operatians because the

syntactic structure of the program will be affected a< an
immediate result of these operations. The programmer using
these ‘"syntactic" editing operations should., however, expect
“semantic’” effects as well. Most program editors do perform
semantic checking, which is enforcvd in conjunction with the

syntactic editing operations.

In this section we briefly describe a new type of program
editor which also supports incremental analysis and update
using a tree representation of programs, and displays program
text wusing a screen-oriented pretty-printer. The editor.,

however, is based on the class of editing operations which are

R N ERRN - P . . . R R

) >Al

.' !
o

. : :.;
L
@l
o
.."-~‘.
PRI
. ,’.’
A
- -~ ..d
T
e
A-' »“ ."‘
DR
0 @
o
-

AN B AT ATITRAT AT AL Al WL AEROMOME AU Sl oA Al AL AL A Sl S Ba B Pl I S e San Se d A4 Aee Sedi g S feie

Page 97

termed semantic editing operations, in the sense that not only

the syntactic structure of the program is affected, but also J
each of these operations has a meaning (semantics) which is

defined by the context in which the operation is performed. 5 ﬂfﬁ

0

‘ For example, suppose that the cursor is positioned over a . ".f

Ff constant definition. The programmer can add a new constant L 1

- {
-

definition, appearing after the current one, by issuing an }.'f

t!! insert operation. The programmer does not have to explicitly
Qj: specify the intention to insert a new ‘'constant” definit n.

Knowledge of the immediate semantic effects of the ed: ing

operation is therefore shared between the programmer and ¢ £

system. More complicated semantic effects, such as

multi-declarations, are still subject to tracing by the system

alone.

[P . .
R P
o, [

'k s g alatala e 4 4

There are at least two major advantages in using this kind :\Q
"y
of editing operations: I
»— f".’
%.,: . _‘~
1. Since the programmer is made aware of the structures of the SR

‘e
'y
ey

programming language. modifications are performed as

A g

operations on these structures, rather than as operations

.
3
-5
RPN

on a piece of text. We believe this to be a more reliable

and informative way of modifying programs, although certain

textual operations are still valuable.

4

A A A a4

1

»

[
Ll

I

-4

Page 98

2. Less infarmation needs to be provided by the programmer
because the cursor position helps the editor to determine

the meaning of each operation.

We have defined three classes of commands., basic

modification commands., cursor movement commands, and extended

modification commands. Programmer’s modifications can be

translated in the underlying operations for each command. The
programmer’s view of the editing operations., however, uses a
more friendly notation than the commands described in that

paper.

4.4.1 Incremental Editing

Very often one may prefer, at intermediate stages of

program editing, some syntactic structures of a program to be

temporarily incomplete, Therefore- the concepts of
“templates", "placeholders' and "phrases’, as described in the
Cornell system [TEITB1l, are also used in our system. These

concepts are illustrated in the following example:

insert a "while'" statement after the "for'" statement

for i 1= 1 to 2@ do applelil := pieCil;
while <{<{condition>> do <<{(statement)>>;

"while'" template placeholders
(construct) (components of construct)

)

»
[

PR

i g S S S St B Ak S i S

Page 99 f.

"Phrases'", which we call "prim:itive strings', are subject

to parsing. A simple 'recursive descent' parser is included in ‘]
our system to perform this limited parsing. The process is ‘fvffﬁ
incremental only in the sense that, after parsing, the ;54
resulting subtree is included in the existing program tree. o ;%

The set of basic modification commands is suitable for T

updating programs in 1 more incremental manner., while the set

'
aa

of extended modification commands takes advantage of the

e,

existing program constructs.

i
>

L .

]
."
adk

A

»
e
T

.
PRV S ey

‘

4.4.2 Legitimate Operations "
Not all types of editing commands can be applied to each
language construct. For example., in PASCAL, the DELETE
operation can be applied to the "ELSE" part of the IF_THEN_ELSE !;.'.:
b‘ construct to delete the keyword ELSE and all the statements of | :¥
E} the 'ELSE" body. The operation, however, may not be applied to .V_fi
P the “THEN" part of the IF_THEN ELSE construct. Note that all W'J;
;i the statements of the "THEN" part can be deleted to leave an E;}ffﬁ
empty "THEN" part. 3
F_vc bt
:f We have defined a Leqgqitimate Operation Table which o
E; records, for each language construct, the type of semantic i§§3fg
E} editing operations that can be applied. Figure 4.4 shows part ::xRia

of the table for the programming language PASCAL. Whenever the e

o

1

1

e

< arard

. . " N . - -7 5
T e T e e e e R) L Lo B L S ER P .. T N e e N DY
A R I RS0 S N N DIPU l WP SR LY G US S WS . e I WL O LI WK AT PR TR VAL T T PP iy, By N, Y

Page 198

programmer specifies an operation to be performed, the editor
must consult the table to determine the legitimacy of the

intended operation.

4.4.3 Incremental Analysis

The major function of incremental analysis is to perform
incremental evaluation of the static semantics of programs.
Accarding to the characteristics of the operation, the current

cursor position in the program representation and the new

information to be included in the case of ADD, INSERTA, INSERTB

and CHANGE operations, consistency checks of the static

semantics of the program being modified must be made.

For each entry in the Legitimate Operation Table, certain
semantic "hooks” may be defined. These semantic hooks trigger
the invocation of related semantic checking routines. when the
entry indicates that the operation is legitimate. For example,
the command to change an assignment statement "a ::= b+c"” to

"a iz b+d" may be hooked to three semantic checking routines:

1. Check whether the variable ''d" has been declared or not.

2. Check whether the wvariable "d" can be used as an aperand in

this statement, according to its type.

i, PN .

R ..A' P A
. . PR
e S

.

gyl w T — AP el e Sl Ml Sk p g Gd et el e i a0 Jre sl aruh hd Al SND an atvl smac i o
...... AASESERE SRS . A B N TN ~ N .

Page 101
Operatians ADD INSERTA INSERTB CHANGE DELETE
Language
constructs
- CONST X 0 0 o o o
i VAR X o o 0 0 R
PROCEDURE_CALL O (o] 0 X 0o
ACTUAL _PARM X (o] o) o o)
BEGIN_END)) o X o
IF_THEN_ELSE 0 0 0 X 0
THEN o 0 X X X
ELSE 0 X X b3 (o)
WHILE 0 (o) o) X 0
EXPRESSION X X X o] X
TEMPLATE X X X o) X
A O : legitimate operation :;5‘
142 X : illegitimate operation i;&&
. o
72 Figure 4.4, A part of a legitimate operation table. :::

'''''

L B T N Y Y .

.- T T R NN
LRSI Lt e .
PO AP A ST PP FC P,

e - L ta .t P RN . . N
. . - . s - A - _ - L] - - - - PR S
PR e R RS SRS L.L(A'L.'.L'I_.L.A. -]

ARl S Sl Bt A A St A e A g ga- gt it s oy |

Page 182

3. Perform type coercion. ;:7'

Since temporary semantic inconsistency at intermediate
stages of the program modification activity should be
tolerated, the language constructs involved may be highlighted
to indicate the violation until it is removed. For example, if
a variable declaration is deleted. a list of usages to this
variable in the program will remain, in which each element

represents a semantic inconsistancy (i.e. an undec!l ared

variable). The system should assist the programmer in

identifying this list of semantic inconsistencies.

Figure 4.5 shows a more complex case, in which a new
variable is introduced into a procedure B which is nested
within another procedure A. The original variable CURSOR was
declared in procedure A, and used in both of the procedures A
and B. If a new variable CURSOR is declared in procedure B,
this will owverride the previous declaration. A very likely
consequence is that the usages in procedure B of the original

variable CURSOR will also become invalid.

This may be because the attributes of the two wvariables
are totally different. Even if these two wvariables have

identical attributes, the programmer’s intention is still

. IO R TS e N -
PN PR NN P P A I LR

()
7 Rud
A

gJ
Y]
l'."l'f."

oy
a4 s

~
(SR ERY

-
S e

" ‘."l'.'
PPN

L4
-

N
&4 °
A

Iy
LI I}
et}

St

e

. ’
. SR
@it

Page 103

Procedure A;
var CURSOR : integer:;

Procedure B;
[] - . .

begin (x procedure B x)
€ CURSOR used)
end; (» procedure B x)
pegin (x procedure A x)
{ CURSOR used 2

end; (= procedure A x)

Figure 4.S. Insertion of a local variable.

unknown. If these two variables have identical attributes, a
compiler must take into account the new declaration, and apply
it to all the '"usages"” of the variable CURSOR declared in
procedure B. However, since the programmer was making
modifications <to an existing program, he might not be aware of
the existence of another variable of the same name. Compilers
are obviously ineffective in detecting this kind of

("injected”) error.

s

A
5 e
LY LIy Aa ol 4 4

'

S R | .

r—j,v. L e e B o e P e oL gr B2 o N g0 &AL oad i A S ahis e 2 an b S SN U S SML SRdL i e S NSLINE AL s oSN NS aodic aal A MO et i et S =gl i i ol o

& M

Mgl

N Page 184

N G

AN By comparison, a highly responsive program editor can .3 -3

:i’ assist programmers in detecting them at the earliest possible ;3“;

N .

o stage. We do, therefore, feel that it is the responsibility of T

;) the editor to inform the programmer about such dangers, and to :
require the programmer to resolve the ambiguity. ;“

4.4.4 Incremental Update Of Data Flow Information

Once a modification is made to a node of the tree model, f;j3
the data flow equations are used to update the data flow
information for that node. Since the data flow information for
most nodes is derived from its children, changes will be
propagated to the ancestors of the modified node as far as
possible. If we let the propagation of changes proceed each
time a modification is made, we will find that there are two
immediate disadvantages. First, this propagation for
large-scale software systems may continue for a long time, if
the next modification is made to a descendant node of the
current node, this propagation of changes is not only wasteful,

but also unnecessary.

R Since the cursor movement along the parse tree is
"

li- continuous, we realize that updating data flow information for
e

SN the current node should be done only when the next move is to a
b; K

r.f sibling node or to the parent node. This scheme reduces the
p -

.-

2 response time significantly and still guarantees that data flow
p.

P:‘."

’..'..

P .

o

° °

& a2 8

[
.
»

P

‘o

P
D

Page 1@S

information is ready whenever the subtree rooted at the current
node is referenced. Whenever a slicing command is entered,
propagation will be performed until the propagation reaches the
root of the tree or stops at some node which has no change in

its data flow information.

One of the major assumptions of the above scheme is that
we assume that only the nodes which lie on the path from the
root of the current block to the current node have incorrect
data flow information. Otherwise, we assume that the data flow
information of descendant nodes and sibling nodes is correct at
any instant, even when procedure statements or function calls
exist. This is not true if we do not update the data flow
information of procedure statements and function calls when the
data flow information of the corresponding block changes. We
consider these changes as side effects which are created when
the data flow information of a block is changed. 1In this case.,
all the procedure statements or function calls which refer to
this block must also be updated, and we must propagate the

change in data flow information as far as possible.

ot
o

.
- N8
t

g o

.'...‘_' . Page 106 -'.i-'jt-
o g
e 4.4.5 Interactive Pretty-printing T

1t The function of the screen-oriented pretty-printer is to _’1
A n
fﬁ? allow the programmer to view the portion of the program being '
EQS edited. The programmer first wuses the cursor commands to f
-'- .- h ‘4
: j examine the program., then uses the editing commands to modify f'ii

the program. The pretty-printer responds to cursor commands,

]ﬂt and rebuilds the screen display according to program changes,

B by examining the program representation. As a result, the

pretty-printer provides instant visual feedback to assist the

programmer in perceiving program changes in an interactive
> manner. Figure 4.6 shows the wvarious cursor positions

resulting from a sequence of cursor movements.

4.5 Software Development

féﬁ We are currently completing an implementation of a
prototype wversion of the system shown in Figure 4.2. The
system has been written in PASCAL and runs on our VAX-11,780
computer. Our choice for the first target programming language

is PASCAL-S, a4 subset of PASCAL [WIRT?S]. The program

{ﬁj representation is implemented as a set of fixed length PASCAL

.'- records, each of which corresponds to a construct in the

PASCAL-S language.

- n - . . P ” - o - g - h‘vvv"""""'
RO CUNUC A AR S A NS B O AR AE AR LU AR L WA S S R Sel T Rl At P R R)

{28 Page 1@7

- -‘.
.\.‘ .
.I\‘Q. “?
AN R
‘.- "‘.
LI " -
LN « -
SIS _'...
™ M) Pl
S
(t ..’ .
A
. - -
. N
i - - - ™ a
“m - - .‘ -
. e

Caaal

IS procedure sort;
x®7

- var counter, pointer, temp : integer;
) beqgi

NS counter ::=: 28;

A while counter > 1 do

N beqgin
. painter ::= 1;

<L x1

\ while pointer < counter do
s %2 =3

AN begin

o *4
o~ if listlpointer] < listlpointer+i] then
ey =S

HL P R

begin

T temp = listlpointer];

L listlpointer] :z listlpointer+1l;
o listlpointer+1l:ztemp;

SNy end;

. pointer ::= pointer + 13

bt =6

C end;

> counter := counter - 1;

DOWN
RIGHT
DOWN
RIGHT
DOMN
DIAGONAL

! position *1 to position =2

. 0 %2 " *3
S " *3 " x4
" x4 2 xS
- " *S " *6
" xe . .

Figure 4.6. An example to show a sequence of cursor movement.

: .
T o

® .- L. 7.
.".A -l. R
7 -

~ " e
- PR
..‘.. .b .

L

(]

.« et T et . . t. PN et 'VI..-‘
PRI P 30 TP I ACTIRS Y SOV T S SRS NN

W W, W
.....

!

-_".al-J" s

e,

- A
PR

Page 1@8

To convert existing PASCAL-S programs to the program
representation, we have wmodified the PASCAL-S interpreter by
Wirth CWIRT?5] so that we can use the syntax-directed editor to
modify the program. Of course, the editor can also be used for
new program development. Our implementation of the
pretty-printer has been enhanced by using an "extended cursor"
[TEITB1]1 to highlight an entire programming language construct.
The program slicer is now operational on individual modules.
However, using the operations UNION and INTERSECTION of program
slices it is possible to construct program slices using

intermodule data flow.

These software tools <(modules) communicate with one
another through updating and examining the value of the current
position indicator in the tree, given by a global wvariable
TREE_CURSOR. Figure 4.7 shows the communication pattern. The
utility programs described in Section 4.1 have also been
implemented, and they are often used as off-line tools. To
provide the programmer with more information about the program
and the status of the modification, we use a multi~display
system. Two CRT terminals are used sSimultaneously one for
displaying program fragments and the other for user interface.
This will allow functions such as issuing commands, entering

character strings (primitive information) and receiving system

N o N A N A i A S A ad NI A RS A I A Al Sl Ol i Sie Ml A b Aiahan Rty o e eI e Sde Bt e i i 4 AR,

Page 199
messages.

Syntax-directed Editor el
(modification) R
* IO
" el
Program Slicer Pretty-printer 'f;”i
(criterion) (ad justing EEREI
display))

TREE_CURSOR

ROOT

N
LA
/A /A

Figure 4.7. The communication pattern of the integrated tools.

By integrating these toels using our program

representation, we have provided an environment in which f‘5‘3

different activities involved in program modification may be

Page 11@

coordinated and treated as parts of a single task. Our
experience based on testing early wversions of these modules
(such as the program slicer and the pretty-printer) indicates
that our approach is feasible. Consistently wusing the tree
operations defined on the program model as editing operations

has been shown to be practical.

4.6 Discussion And Future Work

We have presented an approach to incremental program
modification using a set of well-integrated software tools. We
have also presented a tree-like program representation which
contains sufficient information about the program structure and
static semantics with data flow extension to facilitate various

analysis.

In order to use this approach., the following improvements

need to be made:

1. Programmers are allowed to move freely to any spot in the
program by means of the structured cursor movement
commands. It is found that the correspondence between the
position in the representation and the user’s view of the
position in the text is troublesame, and that different
nodes within the tree representation often correspond to

the same piece of text. This would confuse the user as to

Page 111

the exact location of the cursor in the program. Our
solution to this problem will be to refine our
implementation so that movement commands automatically skip
certain nodes which do not correspond to a distinct

construct in the user’s view of the text.

2. The extended cursor provides a wvisual cue for the
programmer by clearly highlighting the current construct.
Movement commands with even larger spans are still needed

for the programmer’s conwvenience.

3. The set of editing commands is complete in the sense that
it allows any kind of modification. However, in order to
achieve greater efficiency, this set must be extended. For
example, multiple buffers can be introduced to facilitate
more powerful refinement actions (such as combining tuwo

sections of code into a single construct).

From the previous discussion, it is clear that further
research is needed to have a better environment for program
modification. For instance, in order to use this approach to
different programming langquages, the construction of the
praogram representation should be at least semi-automated. This
should be feasible because the program representation and the
operations on it are formally defined. Furthermore, since

separate compilation is a very important and useful feature of

Page 112

programming languages, & practical syntax-directed programming
system should have facilities to support this feature. In
addition, the program modification system should easily
incorporate many other software tools, such as ripple effect

analyzer, which will be discussed in the next section.

~ o : LT

- W e S T Tam N

-
. L e e o e e L, e e e, e e e e '.'H
astod, PSPPI, W T T D LU S BT Y T IR A S S S ST MR I SR, G I R PR R S Rt T T Sl

e W

L J

‘

LA
e LN

s

R
i

LN

. e
) f
et
.

Sl b) 8 A

. 3 .
N\ SN

.
1]
@
A 'i',""

‘a.

E Page 113 .
S.@ RIPPLE EFFECT ANALYSIS
]

One of the most serious problems facing the maintenance A gr

programmer is t0 accurately determine the consequences of ;'Ei

making a particular program modification. While visual Y?ii:

inspection can be successful, automated analysis techniques are _-.H.%

likely to be more reliable. We have developed an approach to i;fig'

perform automated analysis of the ripple effects of program é%;f&
modification, and this approach has been demonstrated using }. f.?

PASCAL programs on a DEC VAX-11/788 computer. The analysis h'fd

technique may be used to identify potential ripple effects on i;ff‘ﬁ

both the logical and performance aspects of program behavior.
The logical ripple effect analysis technique is a significant
improvement over that previously demonstrated for JOVIAL
programs [YAU?78, 88a, 80bl and is able to deal with the
problems of recursion and dynamic aliasing. 1In this section.,
we will present both our logical and performance ripple effect

analysis techniques.

S.1 Logical Ripple Effect Analysis JTechnigue

The logical ripple effect analysis technique presented

here is to statiscally analyze the changes to the data flow of

the program introduced by an initial program modification.

When the value or attribute of a variable in one portion of the ‘ﬁfff:
program may be changed after an initial program modification, “'ﬁ
]

P 1 |

T

L

A T . . Lot - - . . CRNE

RPN S .5 e T e T T N e EN .
WS OISR PRNRETRE BT GG WY LG IS P PP VR v Wl R

PRl Rt her o e

P P i i e

Page 114

the variable may cause potential errors when it is used. Thus,

this variable is identified as a pgtential error source. AS a

simple example, consider the following program segment:

ST ¢! x 1z x + &;

se ¢ y = x + z;
Suppose that the expression on the right—-hand side of the first
assignment statement S1 is modified in an initial program
modification, then the assignment of y in S2 may become

legically inconsistent with the initial modification.

Similarly, when a control condition, e.g. if (x > y), is
changed in an initial program modification, potential errors
may be introduced to the program since the execution and hence

the result of the program may be changed.

A potential error source can be a primary or a secondary

error source. A primary error source is a variable or control

condition whose value or attribute is modified by an initial

program modification. A secondary error source is then a

variable or control condition whose wvalue or attribute may
become inconsistent with the initial program modification. 1In
the above example, x in S1 is called a primary error source,
while y in S2 a secondary error source. The propagation of the

potential error sources will be referred to as potential error

flow.

.

Page 115

To identify the potential error flow, our logical ripple
effect analysis technique identifies and wutilizes the
definition and usage information commonly wused in data flow
analysis techniques [(ALLE741, CLOME?71], [LBART?781, {ROSE?791],
[ARTHB1l. In the above example, our logical ripple effect
analysis technique will identifg y as a secondary error source
based on the information that the definition of y in S2 uses X,
which is a primary error source. Hence, the scope of logical
ripple effect which can be identified using our technique |is

bounded by the canabilities of its underlilying data flow

analysis technique.

Our logical ripple effect analysis technique is similar to
those program analysis tools, such as DAVE {FOSD?6] and program
slicing technique [WEIS811, in that they are all based on data
flow analysis of the program. However, they differ in their
applications of the data flow information. For example, DAVE
is concerned with identifying the data flow anomalies of a
program, while program slicing technique is focused on
identifying an executable "slice'" of a program which may result
in the definition of a variable at one point of the program.
Both DAVE and program slicing technique are not applicable in
identifying the logical ripple effect of an initial program
modification, because they do not identify the changes to the

data flow of the program after an initial program modification.

o i soes aave Sad st 2n Tht Jul S0 AL A

L e d

. 8
SR

y
4
g
-4
y

’
ke
s

(AP -y &

v
. & W

. RN A
! alaNah

.o P .. - Ty
Cee s et et e T e
adale a8 8 u L o aonad

r
e
v

1
v a S

ol

s
£ 4

- AR
4

,
L

Page 116

our technique, on the other hand, provides a trace of the
program segments which may be affected by the 1logical ripple

effect of an initial program modification.

In this section, only the framework of our logical ripple
effect analysis technique is presented through the development
of abstract models. These models can be applied on sequential
programs written in high level languages such as FORTRAN.,
PASCAL, etc. Implementation or language specific details are

not discussed here.

Our technique performs logical ripple effect analysis in
two stages. The first stage is the error flow model
construction stage, during which an intramodule error flouw
model and then an intermodule error flow model will be
constructed to characterize how potential error sources can
propagate within the modified wversion of the program. The
intramodule error flow model characterizes how potential error
sources can propagate within the modules in the program., The
intermodule error flow model characterizes how potential error
sources can propagate between the modules in the program. The
construction of the intramodule error flow and the intermodule
error flow models have approximately the same level of
complexity as the intramodule and intermodule data flow

analyses., respectively.

L
.

Page 117

The second stage of our logical ripple effect analysis is
the logical ripple identification stage which concerns with
identifying the potential error sources implicated by an
initial program modification. This stage can be performed in
two phases. During the first phase, the primary error sources
are identified based on the initial program modification and
the error flow models of the modified program. Then., in the
second phase, the logical ripple effect will be traced

utilizing the primary error sources and the error flow models.

The logical ripple effect analysis technique presented
here is capable of providing exhaustive tracing of the logical
ripple effect. It can be tailored to support other strategqgies
for logical ripple effect tracing. For instance. an
implementation of the technique may provide only intramodule
error flow tracing which can be sufficiently effective in an
environment where intramodule error flow dominates, while the
cost of applying this technique can be greatly reduced.
Another axample of an implementation of this technique is to
identify only the error sources directly implicated by the

primary error sources.

A prototype logical ripple effect analyzer for PASCAL
programs has been developed. This analyzer provides an
interactive environment for tracing the logical ripple effect.

The extent of the logical ripple effect tracing can be

- - - . B A 3 h . 08 ® . % W, N W Ty
r-_r_—r_f.f. LA s Jh Auacae S Jen 4 A0S A A e nr e A Mic s ou e AT T Al Bl S e S R Ve q'-.‘.-k R ,'.'_',‘T‘, DA

Fage 118

ﬂf controlled by the software maintenance programmer such that he
. can choose the program areas of his interests to be examined by
the logical ripple effect tracing scheme. Also., the software
maintenance programmer can eliminate some modules or variables
from the logical ripple effect tracing, which are not affected
by the initial modification based on his understanding of the
program. Thus, our logical ripple effect analysis technique
can identify the program areas which will require additional
maintenance effort. Some experimental results of our lggical
ripple effect analysis technique for PASCAL programs will also

be presented.

- S.1.1 Intramodule Error Flow Model

In this section, we will present the intramodule error

;L flow model, and show how the propagation of potential error
" sources within the modules in a program can be modelled by the
model. Before we present these, we need to make a number of «,-u-.gl

definitions. ’ 1

- A program module is defined to be a separately invokable

piece of code having a single entry and a single exit.

ll"p. o :..' . ‘5

s Practically speaking, a module can correspond to a SUBROUTINE EAEOASR
-)
- or PROCEDURE, etc. To reduce complexity, a program module is - j
- @
e further represented as a set of program blocks. A progqram ;ﬁ:tg
; HEEN
- block can be either a local block or an external! block. It {ATQS

1
L] s ‘r

et
TSR RV Y

FI

"

a .

P
I B]

PP

I A

Page 119

will be seen later that there is a sequence of three blocks in
the invoking module for each module invocation, which can be a
procedure call statement or a function reference; and these
three blocks for each mocdule invocation are called external

program block. A local program block contains an expression

which provides a control condition, or a simple statement other
than a procedure call statement. €ach program block has a
single entry and a single exit. However, a program block may
reach or be reached by several program blocks. For example, a
program block containing an “"if" clause may reach two program
blocks corresponding to the “then'” and "else' parts of the "if"

statement.

The flow of control among the program blocks of a module

can be represented by a control flow graph associated with this

module. The control flow graph associated with a module m can
be expressed as a quadruple, CFGIml = (V, B, u, V), where V is
the set of vertices representing the set of program blocks in
the module m, B is the set of branches which are ordered pairs
of vertices representing the flow of control from the exit
point of a program block to the entry point of another program
block, u is an element of UV representing the entry block of the
module m, and v is an element of V representing the exit block

of the module m. Note that the entry and exit blocks of m are

used to trace the error flow into and out from m. They do not

[o
]
RE

y el

y el

A 4

H
IR
.'. . "," “‘ e
SIS V- T T |

f T
.
g 0T .
,‘..’,‘ IR
PRI)
Aw’ 2'a

2 aae

r".‘?'.‘s‘“ RO A Dt ',‘.“ A Bl Yl i Sl SN i ~'.v_v<v'~r_rA7'~-~._. AR et e at Sas Rt S B J—iv‘v;v)-,v‘-_- L

Page 120

correspond to any executable statements in m,.

The intramodule error flow analysis can be simplified by
decomposing the error flow within a module into the error flaow
which occurs within a program block and the error flow which
occurs between program blocks in a module. In order to analyze
the error flow within program blocks and between program

blocks, it is necessary to develop a characterization for a

program block which reflects how potential error sources may

flow within the program block.

5.1.1.%1 Block Error Characteristics

The basis for the characterization of a program block
requires the identification of all data items and control items
in the program block. A data item is a member of the set of
minimal information wunits which describe the program. They
basically consist of the program’s wvariables. The control
items are artificially created in our logical ripple effect
analysis to provide a basis for 1linking the data flow and
control floaw information together in the program. A control
item is created for each control condition which determines the
execution of a statement or a group of statements. For
example, the predicate in a conditional "if" statement provides

a2 control <condition which determines the outcome of this

decision point, and hence a control item is created to

1Rl A R AR BRI B R T I AR I A R D Bl R iaciyn e i i A AR S s S S A N]

Page 121 .t

represent the predicate. A FORTRAN "do" statement which

b

ectablishes a controlled loop also provides one type of control .

item. A control item can be created in such a manner that it

v
PPN O VTRV

will not generate any erroneous error flow in the program by

assigning to it a symbolic name which is guaranteed to be

TSR

distinct from any identifier in the program and from any other 25h73

control item. A definition is an item whose value is modified

or read in a part of a statement, or whose associated control
condition is defined in an expression. A usage is an item
whose value is referenced in a part of a statement, or whose
associated control condition can affect the execution of the

statement.

It is assumed in our error flow analysis that all data

items have a unique memory address and that this memory address
can be symbolically determined oprior to program execution.
This implies that the wvariables with the same name but
different scopes are treated as different data items. It also
implies that all the &elements in a data structure are

represented by the data structure itself. Due to the static

nature of our analysis, it is infeasible to trace the exact
- error flow for programs which contain data structures.
. However, the worst-case error flow can be computed by treating
i a data structure as a single data item. Thus, if an element in

- a data struycture is affected by the error flow, the whole data

SO

N SN e . . N - S L Te e s S
-

oo) . R e T [T N RN
. ‘e A .. . L. 1_‘ N . . . - Tt . - . Gt e T e Tt o . . - . ~ AR A M = - ~ -
FAFAIN T AR AT WO Py AT PU PRIV Py Th U0 VR TR TR TR A TS VA TR U SR o

. \:'g.' -"A" >

Page 122

structure 1s cons:idered to be affected by the error flow.
>c! A data i1tem is said to employ explicit addressing if it is

a4 simple data item; otherwise, it is said to employ implicit

addressing. An example of implicit addressing of data items is
the array data structure. A control item is treated as

employing explicit addressing although there is no memory

address corresponding to it.

The characterization of the potential error behavior of a

block can be formally defined as follows:

Definition S5.1. The block error characteristics of a block b

consists of two sets CL(bl and PCbl, and a mapping FM{b]l. The
source capable set CIlb]l of b is the set of items which can
become error sources due to an execution of b. A subset of
CCb] consisting of the elements in Cfbl which employ explicit
addressing is called the explicit source capable subset of b
and denoted by ECCbl. The potential propagator set PLbl of b
is the set of items which can implicate some secondary error
sources due to an execution of b. The flow mapping FMLb] of b

is a function from the set PLbl to the power set of Clbl. For

each element p of the set PLbl, the subset of CILbl which is the
image of p under the flow mapping FMI[b] is defined as

FMCBl(p) = € c € CLb) | p can implicate c as a secondary

L, N e et P
. L o .
ot p
. L,
. ¢ P . B
Eo e e oA
. RS
. R
PR .
2l .

.
PaD T

error source due to an execution of b).

A0S
spte e
‘..‘.,‘. R

— Y -.L_L:l A

) 3 - - - e - - - . - . - N N . =
R T I N R S RPN .-.{\ A R T et e e '3
U SRS R U A AT AT RO SRR, PR PSR VST ST PR YRR RFS T LR S IR SRR SIS EA LS MERESL ALY SLSLREY

) .
?;ﬁ Page 123 o
:l. e -

?ﬁ: The error characteristics of a local block characterize Ejﬁ
&; the potential error obehavior of the statement or expression B i

B contained in the block. On the other hand, the error
- characteristics of a sequence of three external blocks for a

module invocation characterize the potential error behavior of

the module invocation.

It is clear that the potential propagator set and the .lfi:
- source capable set are needed for modelling the potential error e
:?; behavior of a block. The flow mapping., which provides the -f?bj
-, ; relationships between the two sets of items, is also needed

v
Al because the sets of secondary error sources implicated by the S 2

<

elements of the potential propagator set can be different when

AL)

the block is an external block used to model the potential

yry

i FRFRPE [
. . s .
s e . .
o 4

error behavior of a wmodule invocation, or when multiple

S
L} "

L3 .

[N

'

assignment in a simple statement is possible for the source NS

a
¢
s
)
Farwl

language of the program to be analyzed. Furthermore., the block

»
e

o .

l_) error characteristics defined abgve are sufficient to =@

ek

characterize the potential error behavior of a block because R -

N
“:} the source capable set provides the set of items which can T

@ become an error source, and the potential propagator set and
;é the flowing mapping together provide the set of items which can
.33 implicate some secondary error sources as well as their
.} implicated secondary error sources due to an execution of the

block.

B U S R A

J e LI R P WL A Ty e R L S I T T o C
R R R e R N P P I L I I 2 U I Rl N T Rt T S T T R

v
.

PP
M

o

L
Y S

Ty
€

Page 124

5.1.1.2 Construction Of Intramgdule Error Flow Model

The construction of the intramodule error flow model for a
program is similar to the identification of the local data flow
information in data flow analysis techniques (ALLE?74],
[LOME?71], [LBART781]., CROSE791, [ARTHB11. For a local block b
the source capable set CLb] basically corresponds to the MODIFY
set which is commonly used in data flow analysis techniques.
This is because each definition x in b can become an error
source either due to an initial program modification to the
definition of x in b, or x is defined in b with some usages
which are error sources. The potential propagator set PLb]
basically corresponds to the USE set in data flow analysis
techniques because each usage Yy in b is used to define some
definition x in b. Hence, Yy can implicate x as a secondary
error source if y is an error source flowing into b. Note that
the control definitions and usages are included in the block
error characterization. Furthermare., the black error
characteristics sets of the entry and exit blocks are specified
as empty sets because they do not correspond to any executable

statements.

In the intramodule error flow model construction process.
only cantrol usages are identified in the block error
characteristics of the external blocks in the program. These

block error characteristics will be updated when the

ChGCMCI SA I D ne Mo Juies i aincet hah A AL SR S0 S AT e M SN T A S0 IS A AR R P AN S S e A SRR AR

Page 125 .*

intermodule error flow model is constructed.

Lo -

The intramodule error flow model can be constructed by an _’;
extended parser [AHO?2] of the source language of the program ?;
to be analyzed. The intramodule error flow model construction ii
process can be described quite formally using an attributed ”‘!

grammar (AHO?21 of the source language. ST

Example S.1. Consider the PASCAL program given in Figure S.1.
This program computes the roots of a quadratic equation axxxx +

bxx + ¢ = Q. The block error characteristics of the blocks 1

to 6 which are constructed in the procedure rroots are shown in

Figure 5.2. The control flow in the procedure rroots is

sequential.

5.1.1.3 lntramodule Error Flow Tracing

Now, let us consider the tracing of the error flow within
a module. The error flow can be described in terms of the

propagation error source sets of the blocks as defined below.

S Definition S.2. The propagation error source set ESCbl of a

program block b consists of the set of error sources which

reach the exit point of the block b.

. 4
o L
]
'@ Page 126 Ly
Block Source code - :
: 1
. . o
program exampleCinput, cutput); o
var a, b, ¢, xri, xr2, xi: real; ji
procedure roots(aa, bb, cc: reald: ‘;-']
var x1, xr, xs, disc: real; o ;
procedure rroots(rrootsdisc., rrootsxi):; \f”
var rrootsx2 : real; T
1 begin R
-4 rrootsx2 = sqrt(rrootsdisc);
3 xri = rrootsxi + rrootsx2;
4 Xr2 =z rrootsxi - rrootsx2a;
S Xxi 1z @
6 end:;
procedure iroots(irootsdisc, irootsxi);
var irootsx2 : real:;
7 begin
8 irootsx2 = sqrt(-ircotsdisc);
9 Xri =z irootsxi;
18 xr2 =z irgotsxi;
11 Xi 1z irootsxe
i2 end;
13 begin
14 x1 =z - bb - (2.8 x aa);
1S CoxXr iz x1 % x1;
16 XS = €cC 7/ aa;
17 disc =z xr - xs;
18 if disc >- 9
19,208.,21 then rraoots(disc, x1)
22,23,24 else irootsf{disc, x1)
25 end;
26 begin
27 read(a, b, c);
28 if a <> B then
begin
29,30, 31 roots(a, b, c);- e
32 writeln(xri, xr2, xi) .
end]
33 else writeln(’Not a quadratic equation’) :
34 end. 4 ‘4

Figure S.1. An example program.

AN SN L A A At el Sl D i g DO AT I A i jug St o Suras 2 A Al A A AT B

Page 127

Cl1i]

a; : L I
PC11]) '

a;

cra21 € rrootsx2 }; :;;;J
PCL2] { rrootsdisc ; ST
FML21(rrootsdisc) = { rroatsx2 2; U d

S CL3] € xr1 3; R
PL3) = € rrootsxl, rrootsx2 J;
o FME3I(rrootsxl) = FM[31(rrootsx2a) { xr1 2: e

CL4) = € xr2 J;
PC4]) = € rrootsxl, rrootsx2 2X;
- FM{4l(rroaotsxl) = FML31(rrootsx2) = € xreg X;

CiSl
PLS51

€ xi 2X;
8:

cle6l
PLB1]

a;
8;

Figure 5.2. The error characteristics of the blocks in rroots
in the program shown in Figure S.1%.

Given the error source set ESCLal of a block a, the sets of
error sources which reach the exit points of the immediate
successor blocks of a can be determined based on the set ES[al
and the block error characteristics of these immediate

successor blocks. A tracing function f(a, b) is defined below

to derive the set of error sources which reach the exit point

of a block b, given the propagation error source set ESCal of

s -
@
_ ¥ Ve

°

&El BN,
- S
kﬁj t:;ﬂ
@ 0
- 9
F?l,u e o : | .o - - :~f'ﬂ':;?ﬁi?7f"- (RPN A 1?
R R R T T IR, |

Y v R e W T e R e T e TN T TN TR T T T -‘_‘-..'.."._-_._‘i‘_‘c_"‘.‘j,-_-,u SRR AL v AR R A ien Jiie RO e) R A B A A e ‘1.

ArAr RS |

D

source x will flow out of block b as a result of the incoming

L;‘ Page 128

ﬁiiﬁ an immediate predecessor 'block a of the block b. AN e-ror
; '

X

error source set ESfal if one of the following two conditions

holds:

(1) x is implicated in b as a secondary error source by an
element of ESLal, or

(2) x is an incoming error source which passes through b.

Thus, the tracing function f(a, b} is defined as the union
of the two sets of error sources, each of which contains all of
the error sources satisfying one of the above two conditions.

Under Condition (1), each element x in the intersection of PCb]

and ESLal is capable of implicating a set of secondary error

sources in b because x is an incoming error source and it can .*'

propagate potential errors 10 some items in Db. The set of

,'._.'. .
Coa auaad e’ o g’ g

secondary error sources implicated by x in b can be obtained by
the flow mapping on x, i.e. FMIDl(x). Hence, FMIBI(PLB] N ;ﬁ;?
ESCal) is the set of all secondary error sources implicated in
b by the incoming error source set ESCal. Under Condition (2),

an incoming error source x cannot pass through b if it employs

ki

fy
N . ‘l' n
. L. L s
e e v .
IR W ST NN PSR A

explicit addressing and it is redefined in b. 1In other words, .

Xx cannot pass through Db if it is an element of the explicit
source capable subset ECLb] of the block b. Hence, (ESCal -
ECILbl) is the set of incoming error sgurces which passes

through b. Therefore, we have

“ N

L. DR R T .
PO W D WP VT WD SRy B /AP PR Y WU WG ¢

-

Page 129

f(a, b) = (ESCal - ECI(bl) U FMLbI(PLb]) N ESCal).

The intramodule error flow from the points of initial
program modification to other areas in the module can then be
traced utilizing this tracing function along with the error
characteristics of the module’s Dblocks and the control flow
graph of this module. The tracing function can be applied on a

block—immediate successor block basis to form an algorithmic

technique to trace the intramodule error flow. Applying the
tracing function on a block-immediate successor block basis
means that errors are propagated from an initial error source
block s to all immediate successor blocks t of s, and then from
t to all immediate successor blocks of t, etc. Application of
the tracing function repeatedly in this manncr identifies the
propagation error source set ES[i] of a block i in a stepwise
manner with all <the error sources flowing from an immediate
predecessor block of i to i contributing to the +final ES[il.
The tracing function is applied in this manner while new

secondary error socurces are identified.

This intramodule error flow tracing scheme can be
formalized as an algorithm. It is assumed in this algorithm
that the propagation error source sets in the module m are
initialized according to some initial error flow condition.

Also assumed is an initial errcor source bloc. 2t IBLml] of m

consisting of the blocks in m which have non-empty initial

~os T -) - _'-.“.."._1‘:.':-‘_‘.' T

P -

- . L. - R [A% S IR W
s m et .

DI S L T A T R R PR N PECIPTR AL S N
T T T R RN P S e
P PN SR T A S A W NP SN 5 I S I S SRR S I R

-
"4

Ap

A b i

¥

[y

-
PR
. v et -
L e PR
R] Y
P D)
g iy e

a el et ot o

SAEANRARSEARAE A S O A AR A SR Al A A A A il S A A/ Nl A e i A /e b pudl SR S Bt
P' Page 139 e
:;:‘_". ':|
P propagation error source sets. This algorithm is given below. ﬂ
P .
-\:' -
N 4-. -.A:.-.‘.
"u Algqorathm S.1. Intramodule Error Flow Tracing -.
3 ;. ®
- Step 1. If IBLm] is empty, then terminate. Otherwise, select "f
h" . L)
K.« -
o an element from IBIm] and then delete it from IBCml. Let b :__'i
denote the selected block. fij
@
Step 2. For each immediate successor block b’ of b, first, __f
el
check if (b, Db’) is a subset of ESIb’). 1If it is not, then ".jj
. .‘.1
let ESCb’] = ESLb’]) U f(b, b’), and insert b’ into I1BLm]. f=Tj
2@
After all the immediate successor blocks of b have been :a::
o 4
examined, go to Step 1. B
]
I g
The proof that algorithm S.1 correctly identifies the @
intramodule error flow in m implicated by the initial
Ai‘.‘4~1
ASEE
propagation error source sets of the blocks in m can be found o
in [HSIES2). Now, we would like to give an example to ;;;iﬁ
illustrate this algorithm. e
Example 5.2. Consider the procedure rroots in the program -a
L8 L
given in Figure S.1. Assume the initial error flow in the =C_§
:~:.:~:::-
procedure rroots is given as IBLrroots] = € 1), where ES[1] =]
AN
._“\1 -
{ rrootsdisc 2 and ESIb]) = @ for the remaining blocks b in SARS
rroots, i.e. the input parameter rrootsdisc is the only error ?*iH
source in the procedure rroots flowing out of the entry block 1 i;ﬁh
-9
of rroots. The intramadule error flow tracing for the d

procedure rroots is then illustrated in Figure S.3.

“ e S te " “ - . - et E. . .

° T T N T e e et N it sy s T T T e S . . N .
e At A AL A e ot e AT WA AR Ve e e et e S e T e e e e
LN N LG SRR RS PRSI ST) YRS N L, L e ™ % matente e e e e e e e e Y T T e e

Page 131

Input. ESC1]) = { rrootsdisc 2.
ESLi)] = @, for i = 2 to 6.

Step 1. Since IBL{rrootsl] = € 1 2}, select block § from
IBCrrootsl, and let IBCrrootsl =

Step 2.

Block 2 is the only immediate successor of block 1:

Since f(1, 2) = € rrootsdisc, rrootsx2 > is not a subset
of ESL2) = @, let ESC2] = € rrootsdisc, rrootsx2 2}, and

IBCrrootsl = € 2 ».
Step 1. Select block 2 from IBLrrootsl.,

Step 2.

and let IBLrrootsl] =

Block 3 is the only immediate successor of block 2:

Since §(2, 3) = { rrootsdisc, rrootsx2, xri1)} is not a

subset of ES(3) =z @, let ESC31 =

{ rrootsdisc, rrootsx2, xri), and IBLrroots] = { 3 2.

Step 1.
Step 2.

Select block S from IBCrrootsl,

Since f(S, 6) = € rrootsdisc, rrootsx2, xri, xr2 }» is not a

subset of ES(6] = O,

and let IBLrroots] =

Block 6 is the only immediate successor of block S:

let ESC(6] = € rrootsdisc, rrootsx2, xri, xr2 2,

and IBCrrootsl = @.

Step 1. Select block 6 from IBLrrootsl,

Step 2. Since block 6 does not have any
go to Step 1.

Step 1. Since IBCrroots] = @8, terminate.

The final propagation error source sets
procedure rroots are given as follouws:

and let IB(rroots] =

immediate successors,

of the Dblocks in

ESL1] = € rrootsdisc).

ESL2] = € rrootsdisc, rrootsx2 J>.

ESC3) = { rrootsdisc, rrgotsx2, xri J},
ESL41 = € rrootsdisc, rrootsx2, xri, xr2 2.
ESC(S]Y = € rrootsdisc, rrootsx2, xri, xr2 2.
ES[61 = € rrootsdisc, rrootsx2, xri, xr2).

Figure S5.3. Intramodule error flow tracing in rroots in

the program shown in Figure

S.1.

the

e
I
of oL

ey T}

by
. ‘e
@ -

;.LL'}&'.',‘

;

.i
“ 4 . .
P , 4
A .

' 2ty e
g
N T o
E) v

bl 28 il

i
.
.

MR
P
. P PN

’
* F8

rS AL S
A l.l'!‘..

x

Fx %,

i

DN NN
s h Y
’

E R .
7 SR R R] W SPPRRY S

|
1
L
':'i
:
li
K

[N
D

»

'. [
a

v A ' W

4
'
P '

Page 132

>t L am
@

The intramodule error flow model and the intramodule error

¢ 1]

AR | f .

v.l e

o
. L
3
' e e .
S

flow tracing scheme together model and trace the potential

error flow within a module.

5.1.2 Intermodule Error Flow Model

In this section, the intermodule error flow model is
presented. The intermodule error #flow model models houw
potential error sources can propagate between the modules in
the program. Error sources can propagate between the invoking
and invoked modules through parameter passing or data sharing

via module invacation.

A program can be considered as a collection 'of program
modules. There exists one and only one module in the program
which starts program execution upon invocation by the operating

system. This module is called <the main mpdule. Upan

invocation, a module is executed and then the module returns
control to the invoking module at the invocation site upon exit
from the module. The invocation relationships among the
modules in the program can be represented by a gall graph of

the program [ALLE743.

Recently, much effort has been devoted to the development

. .« = .« " . . .
ST T T T T T T TN e e e T T e
PR SO AT WS BT PV S VP A N R P VI P P P o R

Ty

_— ol o o 0
L L] [

M . ST . .

Ll ot L, oL ey

Page 133

of intermodule data flow analysis techniques with applications
primarily to compiler optimization and static program analysis
CALLE74]1, (LOME?71, [BART781, [ROSE?9], L[ARTHB81]. Intermodule
data flow information that is wused at the point of module

invocation has been called summary data flow information

CALLE741. MWith each module invocation, a summary of the
variables which may be modified, used, ar preserved due to this

module invocation will be generated for data flow analysis.

In our logical ripple effect analysis, the intermodule
error flow is modelled utilizing an approach similar to usual
intermodule data flow analysis techniques. The summary error
flow information of a module is <called the module error

characteristics of the module, and will be generated to

represent the potential error flow properties of the module.

In order to model the intermodule error flow which occurs
at a module invocation, a sequence of three blocks is
constructed in the invoking module for this invocation. The
first block in the sequence, called an input parameter mapping
block, is used to establish the error flow from the actual
input parameters to their corresponding formal input parameters
of the invoked module. The second block in the sequence.,

called an invocation block, is used to reflect the potential

error flow properties of the inuvoked module represented by the

[(‘f.‘v,C-‘\v-.r\r._-‘._i_..--(.- ."'. \v.{v:l'vvr_--‘v.‘: - »l'_' .'-—._ LA el S W 4 e e . P w.‘ﬁ}—‘ AR BT 1 1-'., TR .."'.‘:-‘ T

P

Page 134 .

module error characteristics of the invoked module. The third

block in the sequence, called an output parameter mapping

(]
block, is used to establish the error flow from the formal R
output parameters of the invoked module to their corresponding
actual output parameters. The error characteristics of the “-ﬁfﬁ

three blocks can be updated, after the error characteristics of
the inuvoked module have been generated, based on the invoked
module’s error characteristics and the parameter passing

information associated with this invocation.

S.1.2.1 mModule Error Characteristics

To define the module error characteristics of a module m,

it is first necessary to identify the data interface of m

consisting of the items which can interact with the global
environment of m. The data interface of m is represented by
the parameter set of m which 1is formally described by the

faollowing definition:

Definition S.3. The parameter set PSI{m]l of a module m consists

of the formal parameters of m, the item representing the return

value of the module if m is a function., and the data items
which are global to m and are referenced in m or any of m’s

invoked modules.

[

a0 AUy VW VTR
JoA S . S
e -

B S e
. . . R A T A FEEN . UL -
2 3 - - = =k y e J 2 > K3 > - PSR W PSS NP G Vil Wil R W W

Lafaaranaagn < Asr e dinu Dt e e St M A 0 R 4 SRR A T A A ST AMECIPEC M A Racive Srt i e S ien A4 IV ERrARAuL s DA Ak i Al AAE Al St Sl T
NEANE A Ty NSRS gt B IR A, N - Bl R A " [N S . .

Page 135 S

The module error'cnaracteristics of a4 module m can be

formally defined ac follows: ' 6]

Definition S5.4. The module error characteristics of a module m
consists of two sets MCIm) and MPIml, and a mapping MFMILm].
The module source capable set MCLm]l of m consists of the items

in the parameter set PSI[m]l of m each of which can become an

error source due to an invocation of m. The module potential
propagator set MPIml of m consists of the elements in PSIm]
each of which can implicate some elements in PSILm]l] as secondary
error sources capable of affecting the global environment of m

due to an invocation of m. The module flow mapping MFMILm]l of a

module m is a function from the set MPILm] to the power set of

MCILml. For each element p of the set MPILml, the subset of

MCIm]l which is the image of p under MFMIm] is defined as
MFMCmlc(p) = € ¢ € MCIm] | p can implicate ¢ as a secondary

error source due to an invocation of m).

The module error characteristics of a module m provide the

set of items which can become error sources capable of

affecting the global environment of m, and the set of items SN

(B

§
e

M e hontin

'y

which can propagate potential error sources from the global

e Ao A 4 g 5 4

environment of m to implicate some secondary error sources
capable of affecting the dglobal environment of m as well as

their implicated secondary error sources due to an invocation

s DR
. s
PR PP P
. 0o K
. ST
. e PR .
, .] t e S

C
L

B
Aadenl od

cf m. It is clear that the module error characteristics of a

LRt A T Yl

s
FA
.

ey Casd
I

» .o Lot

. LI I P .

L LGN

AR S e e s s eGP AT i S M .‘__—-! MR B gy e it St Mt e ot M S P P Aot At Jed sei il St

Page 136

module are necessary for modelling the potential error flow
behavior of the module. To show that they are sufficient, it
is not necessary to include the items which are not elements of
the parameter set PSIm) of a module m in the module error
characteristics of m because they cannot interact with the
global environment of m. Furthermore, it is not necessary to
include an item x, capable of implicating some elements in
PSILm] as secondary error sources none of which can affect the
global environment of m, in the module propagator set of m
because the error sources implicated by x cannot affect the
global environment of . Therefore. the module error
characteristics are sufficient to model the potential error

flow properties of a module.

The order in which the error characteristics of the
modules in the program are generated is very important because
the error characteristics of an invoked module can affect those
of its inuoking modules. In nonrecursive programs, there is

some ordering, called the reverse invocatiaon order which has

the property that when modules are examined in this order.,
invoked modules are always analyzed in advance of the modules
which invoke them LALLE741, Therefore., the error
characteristics of the modules in a nonrecursive program can be

generated following the reverse invaocation order. In the case

of recursive programs, there is no ordering with such a

Ce o,
Lt
l“’l
Lo B R b

G,
o’ a'a a'a’an.

Page 137

property. Furthermore, the 1ocal wvariables of a recursive
module may exhibit different error flow properties in different
activations of the module because recursive activations of the
module will create separate copies of the module’s 1local

variables, called incarnations of the variables.

Intermodule error flow is also complicated by dynamic
aliasing, which is a problem that occurs when syntactically
distinct names are used to represent the same or owverlapping
storage areas at run time. In the presence of dynamic
aliasing, the error characteristics of the modules must be
generated with the consideration of dynamic aliasing
conditions. Dynamic aliasing can be caused by reference

parameters.

Our approach to model the intermodule error flow for
nonrecursive programs uwhich do not have any dynamic aliasing
anomalies will be described here. By a dynamic aliasing
anomaly we refer to the problem where either a variable is
passed by reference to more than one formal parameter of a
module, or a global variable which is referenced in a module is
also passed by reference to a formal parameter of that module.
In the presence of a dynamic aliasing anomaly. the formal
reference parameters of the module cannot be treated as
independent entities. Dynamic aliasing anomalies tend to

complicate testing of programs, and hence modern programming

e
e

U A S A A A M R S N N AP E A S AP S A U S ina R S0 Sty iy~ s i e 4 RS- iau s S d AN A6 A RAR AR A e R S8 A2
. . S

Page 130) .4

practaces advacate the elimination of dynamic aliasing

anomalies {(WASS5881, [ICHBY92. An approach to handle programs

-

which have recursion or dynamic aliasing anomalies can be found a,;
in [HSIEBZ]. -;fj
T
s
For a naonrecursive program without any dynamic aliasing _‘]
g
anomaly, the error characteristics of the modules in the -
1

program can be denerated following the reverse invocatian :
order. Each module has to be analyzed only once. After the C
,\.ﬁ
error characteristics of a module have been generated, the 7‘j&ﬂ
S
error characteristics of the external blocks for invocations of {.7%#
TR
the module are then updated. Ty
[@
- '_*
5.1.2.2 Generation Of Module Error Characteristics - ;
The error characteristics of a module m can be generated i 0y

oy

by the following algorithm based on the parameter set PSI(m] of

PR

m and the error characteristics of all the blocks in m. s

9

3

<

Algorithm 5.2. Identification of Module Error Characteristics . 1
NS

Step 1. 1Initialize the set MPIm] to be empty.

:
.ﬂ

Step 2. Calculate the set MCLml by computing (PSIiml N ¢ U CCb]

I b is a block in m)).

Step 3. Obtain a set T by computing (PSCml N (U PCb) | b is a

0

s
ekl

block in m)).

PR
. .o

Step 4. If T is empty, then terminate. Otherwise., select an

2 .
’
A".'{A AIA‘A

1}
4!"

:". U

B K g

N PR v
i B h B L

-
PN W T

L e e e e e e e e e e e T - PPN
h PP P PR PLTE PP R S LKA NS DRI A S T SRR Y Py

Page 139

element from T, and then delete it from T. Let x denote the
selected element.

Step S. Let IBLm]l = { u >, where u is the entry block of m.
Let ESCLul = € x >, and ESIb) = 8 for the rest of blocks in m.
Step 6. Apply Algorithm S.1 to trace the intramodule error
flow in m.

Step 7. Check if (EST{vI N MCIml) is empty, where ESLV] is the
propagation error source set of the exit block v of m. If it

is not, then insert x into the set MPILm), and let MFMILm] (x) =

(ESLV]I N MCIml). Go to Step 4.

The proof that Algorithm 5.2 correctly identifies the
error characteristics of a module is given in [HSIEB2). Now,

we would like to give an example to illustrate this algorithm.

Example 5.3. Consider the procedure rroots given in Figure

S.1. The parameter set PS(rroots] of the procedure rroots can
be easily identified as PS[rrootsl] = <{ rrootsdisc, rrootsxi.,
xri, xre, xi . The identification of the module error

characteristics of the procedure rroots is illustrated in

Figure S5.4.

: ia .‘—'1' o ¢ sL'A'LI-E

e e o
Lo e T P
- PR
P
ettt
- S

oot PR
L A
. PR Y
ety Tt
- . Lt

re

ARkt oo o ediusib Adedead

r‘f;f’f. Eaaiil e ats s oo s ahwt S0k Saex o T T T —— Sy —

Page 148

Step 1. MP{rrootsl]l = 9.
Step 2. MCLrrootsl = { rrootsdisc, rrootsxi, xri, xr2, xi %
{ rrootsx2, xri, xr2, xi }

= { xri, xr2, xi .

Step 3. T = € rrootsdisc, rrogotsxi, xri, xr2, xi 2>
{ rrootsdisc, rrootsxi, rrootsx2 >
= { rrootsdisc, rrootsx1 1I.

Step 4. Select rrootsdisc from T, and then let T = { rrootsxti 2.

Step S. Let IBLrrootsl = € & >, ESCL) = € rrootsdisc 2}, and
ESLi)] = @, for i from 2 to 6.

Step 6. The set ES(6] obtained by Ailgorithm 1 is
ESL6] = € rrootsdisc, rrootsx2, xri, xr2 .

Step 7. ESC6B] MCLrrootsl = ¢ xri, xr2 2.
Therefore, let MPLrroots) = { rrootsdisc Y, and
MFMlrrootsl(rrootsdisc) = ¢ xri, xra J.

Step 4. Select rraoatsxl from T, ang then let T = @.

Step S. Let IBCrrootsl = € 4)}, ESC1] = € rrootsxl ¥}, and
ESCil = @, for i from 2 to 6.

Step 6. The set ESC6] obtained by Algorithm 1 is
£ESL6] = { rrootsxi, xri, xra2 2.

Step 7. gEstel MCCrroots] = € xri, xr2 2.
Therefore, let MPI[rrootsl = { rrootsdisc, rrootsxi 2,
and MFM{rroots3l(rrootsxl1) = € xri, xr2 >.

Step 4. Since T is empty., terminate.

The error characteristics of the procedure rroots identified
Algorithm 2 are as follows:

MClrroots) = { xri, xr2, xi };

MPLrrootsl = { rrootsdisc, rrootsxi ;

MFMCrrootsl(rrootsdisc) = MFMCrrootslirrootsxl)
= { xri1, xr2 }.

Figure S.4. The module error characteristics of rroots in
the program shown in Figure 5.1.

.Y

4

— T

*,

=Y

-“.

@4

.'t‘.":\

N "‘-_'-

. .'_ “uf

E :_.‘

@,

3

.

- " b
Y. (S =
e L Ty)

it A AR s A didn Bt s S Bete St M Jugtiede AuteBes B ud s o

MG G S VPRI |

PR

- Te b . .,

1 + "L .

G @
A AL "

by

p
P ..' . . Cat B .'7‘.. b e . R P ML PR S ¥ - .- .\-.'- . .A-.. - _'-. AR e L et J
P U Py S S L I A WL ¥ . I LI I T T PRI . WY B A R A AT Y SRR . . Y T R Y N S

s

Page 141

S.1 2.3 Update Block Error Characteristics

Let i, j, and k be a sequence of three external blocks in
a module n for an invocation of m. For the first block i in
the sequence, i.e. the input parameter mapping block, each
formal input parameter x of m should be inserted into the
source rapable set ClLil of block i. Each data item y which nas
positional correspondence to x in the actual parameter list of
this invocatiaon should be inserted into the potential
propagator set PLi)l of block i, while x is inserted into

FMLid(y).

For the second block j in the sequence, 1i.2. the
invocation block, each element of the module source capable set
MCIm] of m should be inserted into the source capable set C[j3J
of block j. Also, eacnh element x of the module potential
propagator set MPIml of m should be inserted into the potential
propagator set PLj]l of block j,» while each element of MFMIm](x)

is inserted into FMLjl(x).

For the last block k in the sequence, i.e. the output
parameter mapping block, each formal output parameter z of m
should be inserted into the potential propagator set PLk]l of
block k. For each formal output parameter z of m, let w be the

data definition and X be the set of wusadges in the actual

o

T AT 2 I T St Tt i e i

Page 142 @,

parameter li1st associated with this invocation which have

positional correspondence to z. Then, w should be inserted o
1nto both the source capable set CLk]l of block k and FMCkI(z). e
Furthermore, each element x of the set X should be inserted |
1into the potential propagator set PCk]l of block k., while w is

i J

inserted 1nto FMIk](x). i

furthermore., for each contrcl wusage in the potential

oy

S

g upagator set of each block in the sequence identified by the -:.j

= 9

-

.~twramocule error flow model construction process. the flow RN

g'iﬁ

nig2ing on the control wusage is updated to be the source Ty

\

apable set of the block. BN
t

.
.
e

For some programming languages, such as JOVIAL, a formal ?;y
parameter of 8@ module can be identified as an input or output
formal parameter based on the syntax rules of the languages. o ‘_'j
For cther programming languages which cannot distinguish iif

syntactically between the formal input and cutput parameters, a

formal parameter x of a module m is an input formal parameter -wn.;
.

if x is an element of the module potential propagator set MP(m]]
S :-\

of m. A formal parameter y of m is an output formal parameter "Aj
if 4y is an element of the module source capable set MCIm] of m. e 1
Example S.4. Consider the invocation of the procedure rroots j;ﬁk

in the program shown in Fiqure S5.1. Blocks 19 to 21 are the

f» . external blocks constructed for this invocation. Let c.1%

0

AR adde T AT
. . i
,

.
3
Y
re - .
yoo
f
fl
y.
rl
2
A

denote

the control

Page 143

item representing the predicate (disc > @).

The block error characteristics of the three blocks identified

by the

intramodule error flow construction process are given as

follows:

cf191
crLz2el
CL211

Based on

rroots

a;
a;
a:;

PC19]
PC20]
PL211]

the module

described in

womnon

{c.1 2}; FMO191(c.1) = @}
{c.1 2} FM[281cc.1) = @
€ c.1 3} FML211(c.1) = @;

error characteristics of the procedure

Figqure S.4, the error characteristics of

the three blocks can be updated as follows:

CrL19]1 =
PL191 =
FML191(disc)
FML191(c.1)

crz29l -
PL20]1 =

ctail =
FMC[21]1(c.1)

5.1.3

{ rrootsdisc, rrootsxi 3};
{ disc, x1

{ xri,

s C.1 23;

= { rrootsdisc J; FML191(x1) = € rrootsxl J>;
= CC19).

xXrz,

Xi };

{ rrootsdisc, rrootsxti, c.1 X
FMCL2B]1(rrootsdisc)
FML281(c.1)

@a;

= FML(281(rrootsxl) = { xri, xr2 };

= Crzel.

PL21] = { c.1 };

crz11.

Loqical Ripple Effect Identification

In this section.,

the identification of the logical ripple

effect of an initial program modification is described. The
logical ripple effect can be identified in two steps. The
first step is the error flow tracing step which traces the

error flow

erraor

in the modified program implicated by the primary

sgurces.

The

second step is the loqical ripple effect

derivation step which derives the logical ripple effect of the

c N *.
PP P .

.E-'l\

e e e el
A T e

LT et

T e S T

.'.q- 'n“‘.' -0 '.. ‘q. .;. - »‘ .-- '-. Tt - - S N t. Y . T '.. - -. "v
W S N I P I A S R R S B - P IR IR T Bo% W)

g
)
a

'l a ' : ' :v'.. ‘.‘
A ke dend ol FORR

Y

.
.,,.
.

2

A

\.'

T s
. @ .
PN T P RO A

"_'»h " ‘...""‘.
alh

e e At ad kdia

A
L J

|

i
. i.")
PGP LIPLY O B I PGl S QPSR I WY

’
.

v S
P

N T)

KR IRt ARG AR '..".-.'.'.'.-‘ ‘ R
PO S AW R WAL PLI R TR SO VSR A L

Page 144

initial program modification based on the error flow in the

program.

S.1.3.1 Error Flow Tracing

The error flow tracing requires the tracing of error flouw
both within modules and between modules. Potential error
sources can propagate from a module m to the modules which
invoke m, and to the modules which are invoked by m. When
there exists error flow from module m to the modules invoked by
m, errar sgurces are said to propagate in a downward direction
with respect to module m. Similarly, when there exists error
flow from module m to the modules which invoke m, error sources
are said to propagate in an upward direction with respect to m.
It is apparent that the downward intermodule error flow with
respect to m must be identified before the upward intermodule
error flow with respect to m is identified; otherwise, the

latter cannot be completely characterized.

Let PRIMESET be the primary error source set of a program,

in which each element (m, b, x) denotes that x is a primary
error saurce at block b in module m. The error flow tracing
identifies the modules, blocks, and items which are implicated
by the error fiow caused by the primary error source set

PRIMESET.

SN e L e : A ~

e L e
.

L AT e Tae T . LT e
PRI Ty Oy 1o T IR IR ST S Y ST N & Wy

Page 145

S.1.3.2 lntermodule Error Flow Tracing

The existence of the upward intermodule error fiow from a
module n can be identified as follows: A module n can
propagate error sources upward to each module which invokes n
via each invocation of n if and only if (MCLnl N ESLV]) f a,
where ESC{v]l is the propagation error source set of the exit
block v of n and MCIn] is the module source capable set of n.
The elements of (MCInl N ESILv]) are used to update the
propagation error source set of each invocation block
constructed for an invocation of n such that the error flow
implicated by these wupward intermodule error sources can be

traced.

The presence of the downward intermcodule error flow from a
module m to an invoked module n via an invocation of n can be
identified as follows : Suppose that a module m is invoked in
a module n and b is the input parameter block constructed in n
for this invocation. Given the propagation error source set
ESIb)Y of b, n can propagate potential errors to m via this
invocation if (ESCb) N MPLm]) # @, where MPLm]l is the module
potential propagator set of m. The elements of (ESL(b]l N MPIm]l)
are used to update the propagation error source set of the
entry block of module m such that the error flow implicated by

these downward intermodule error sources can be traced.

'
\ R R
alale g _'! f)

@

<
c

-" -‘
]
R
.}

.

B

« ,'?
}f¢

8.7 2@

[}
P O

]
o e o
f PRI EE
A
T N
A baend 2

'f ll

LdR O,

.
’

'.,'
Al

'
Lo |9

S

.1.3.3 Erreor Flow Tracing Alqorithm

The areas in a program which are implicated by the error
flow in the program is identified in a stepwise manner. The
primary error source set PRIMESET is wused to initialize the
propagation error source sets and the initial error source
block sets. The intramodule error flow in the modules involved
in initial modification is then traced based on the initial
propagation error source sets of the blocks in the modules.
After the ‘ntramcdule error flow in a module m stabilizes, the
intermodule error flow originating at m implicated by the error
flow is then identified based on these propagation error source
sets, and used to update the propagation error source sets of

the blocks in the modules to which the intermodule error flouw

1S propagated. The modules which are implicated by the
intermodule error flow are then analyzed. This process
continues until the error flow stabilizes, i.e. no new error

sources are identified.

An algorithm has been developed for identifying the
program areas which are implicated by the error flow caused by
the primary error source set PRIMESET. Let AFFECTM be the set
of modules which are iaplicated by the error flow. In this
algorithm, a set UPM is used to contain the modules potentially

affected by the upward intermodule error flow, and a set DOWNM

15 used to contain the modules potentially affected by the

- . L 2k 2 G - At Baae s B 20 Jad Bu A
SufU A S Rl S St iy 20 B Y e 24 20 RS AT AN ad k& LA A%t g S AL A SO S MR Ot P Rt

AN Page 147

;;? downward intermodule error flow. This algorithm is given

- below. o
L

e

o Alqorithm S.3. Error Flow Tracing

Step 1. Initialize the sets AFFECTM and UPM all to be empty.

[

3 for each module m in the program, initialize the set IBLm] to
,f be empty. For each block b in the program, initialize the set

ESCb] to be empty.

a Step 2. For each element (m, b, x) of the set PRIMESET, insert ’
.:x.:
- X into the set ESCb]l. Furthermore, insert b into IBCml, and m

into the sets AFFECTM and UPM. .
Step 3. If UPM is empty, then terminate. Otherwise, select a %j;~i
module from UPM and delete it from UPM. Let n denote the o
;’ selected module.

Step 4. Identify the intramodule error flow in n wutilizing ijf:;
L Algorithm S.1.

.. Step S. Calculate T = (ESCv]l N MCCnl1), where v is the exit

é block of n. If T is not empty, then for each invocation block T
;Q b in a module k constructed for an invocation of n, check if T
\-t‘/
A is a subset of the propagation error source set ES[b] of b. If
it is not, i.e. new error sources flow out of n upward to Kk r
via this invocation, then insert k into AFFECTM and UPM, and b ;?;
into IBLkl]. Furthermore, let ESCbl = (ESCb] N T). ;::
“ Step 6. Let DOWNM = @. Then, for each input parameter mapping ,4
: block b in n for an invocation of some module m, calculate a Dol
: =
-~ N
. . -ed
< RO
- REREAE
.o . R
- IR,
e
‘o 0.

BRI TATNCATI NN TR TN

Page 148 . .4

set T =z (ESCbI /N MPLml). Check if T is a subset of the

propagation error source set ESCLul of the entry block u of

flow propagated from j. This process continues until the set

: .!
module m. If it is not, i.e. new error sources flow into m, .
then insert m into AFFECTM and DOWNM, and u into IB(mJ.
Furthermore, let ES[ul = (ES[ul U T), r'i
Sy

e J

Step 7. If DOWNM is not empty, then select a module from DOWNM e
and delete it from DOWNM. Let j denote the selected module. ﬁff
Repeat Steps 4 and 6 with j substituting n to trace the A
intramodule error flow in j and the downward intermodule error .:
IR

1

«

4

&

3

DOWNM becomes empty. i.e. the error flow implicated by the

downward intermodule error flow originating at n stabilizes.

"
NPy

Then go to Step 3 to trace the error flow implicated by the

upward intermodule error flow from the modules in the set UPM.

The proof that Algorithm 5.3 correctly identifies the
areas in a program which are implicated by the error flow in :Qiiy
the program caused by the primary error source set PRIMESET is
given in ([HSIEB2]. Now, let us give the following example to

illustrate this algorithm.

g
. 4 . i L. f ..
o~y L.A".A“.._A.L._‘A“;‘I‘

Example 5.S5. Consider the program shown in Figure S.1. Assume

that the initial modification corrected the definition of xi in

e dendedhnd,

the procedure rroots, i.e. the primary error source set of the f.

program is given by PRIMESET =z { (rroots, S, xi) }. The error @

'
Beandl 2t A4 &

flow tracing by Algorithm S.3 is illustrated in Figure 5.S.

.
.
AN}
@ AR
S
-

L gl

1
ste
.
[
.-
s ‘r Yy
ISV N

R A AT
el et s ot gt s e e N L . .

AR M hagh

v
s 8 ¢ 2 8
R

N

a
>

Step .

Step S.

Step 6.

Step 3.

/UL S UL i e e sandl s Sanie Sk Saci gt Andh Jaemrs

Page 149

Let AFFECTM = 8. and UPM = @.
Let ESCil) be empty, for each block i.

Let ESCS] = € xi », IBCrroots) = € 5), and
UPM = € rroots)}, AFFECTM = { rroots 2.

Select rroots from UPM, and then let UPM = ©.

Since (ESL6] MCLrrootsl) = € xi), let
UPM = { raoots 2}, AFFECTM = { rroots, roots 2,
ESC22] = € xi 2}, and IBLrootsl = € 28 }.

Since rroots has no immediate successors.,
go to Step 3.

Since (ES(25] MCLrootsl) = € xi 2, let
UPM = { example 2}, IB(examplel = ¢ 30),
AFFECTM = € rroots, roots, example >, and
ESC3@] = € xi 2.

Since no downward intermodule error flow from roots,
go to Step 3.

Select example from UPM, and then let UPM = 9.

Since no upward intermodule error flow from example,
uPM = @.

Since no downward intermocdule error flow from example.
go to Step 3.

Since UPM is empty., terminate.

The result of error flow tracing is as follows:

AFFECTM = { example, roots, rroots J;

Figure 5.5. Error flow tracing in the program shown in

Figure S.1.

TopwgeLy

IR pew R JErt sea et St el s arth P SR g S ST M T T e Ao e e lis i e et S v g st aoul gt 0 S M Sl A g S A SN

N 5' .‘
@

k, Page 1592

w

o S.1.3.4 Logical Kipple Effect Derivation .

A
We will use RIPPLELb] to denote the set of items in a . 0!

i e _:‘

b block b which are affected by the logical ripple effect., ;{

v
.
-
.

RIPPLEBILm] the set of blocks in a module m which are affected
by the logical ripple effect, and RIPPLEM the set of modules in N ‘@

a program which are affected by the logical ripple effect.

To derive the logical ripple effect from the error flow,

it is first observed that a block may not be affected by the PR
a e

logical ripple effect even though the propagation error source f}
VLM

set resulted from the error flow is not empty. This can be A

true if the elements in the propagation errcr source set are

error saources which just pass through this block. Furthermore.,

.
Dl ndo s, o 2

it can easily be shown that -an item x is affected by the

-
L,
it
@ .
a4 M

laogical ripple effect in blaeck b anly if x € (ESCbl N Clbl). B

Given the set AFFECTM and the propagation error source ‘ R
set, which are derived in the error flow tracing step, the ;;;‘a
first step in logical ripple effect derivation is as follows: %

For each module m 1in the set AFFECTM, first initialize
RIPPLEBIM] to be an empty set. Then, for each block b in m,
check if (ESCb) N CLbl) is empty. If it is not, then let

RIPPLELD] = (ESCb]l /A CI[bl), and insert B into RIPPLEBIm].

S Al

PR . L . . . ,~~'-‘.',-.-.".w,’-‘-_\,'-‘- -"." Te ~ .'."."-'
PP W T A A Y ISR G NPT VLTS PPN PX SRR v Wi Wiy e, B, S Y. |

Next, 1t i1s observed that a module m may no
by the logical ripple effect despite the
implicated by the error flow. This can happen
error sources in M are just passing through m
invoked by m without internally generating error
It 1s obvious that a module m is not affected
ripple effect, 1f all the blocks in the set
external blocks. Therefore. the next step
ripple effect derivation is to identify the subs

the modules in the set AFFECTM which have at

block in their RIPPLEBIm] sets.

In an analogous manner, a block b with a
RIPPLELD] may not be affected by the logical ri
the block is an external block constructed for a
a module which is not an element of the
Therefore, the final step in the logical
derivation is, for each module m in the set RIP
the blocks b in the set RIPPLEBC(m) which are ¢

invocations of modules which are elements of the

RIPPLEM).

Page 151

t be affected
fact that m is
when all the
to the modules
sources in .
by the logical
RIPPLEBLMmM] are
in the logical
et RIPPLEM of

least one local

nonempty set
pple effect, if
n invocation of

set RIPPLEM.
ripple effect
PLEM, to remove
onstructed for

set (AFFECTM -

oo
.
5
LAY
.
A"“'
'l
dala'a a4

@
4

J PSR T S Y

f
. @
et ides

-~
kst ah e -

!
O R
N roam

. A A
[N~ SO WP N)

Ve
[N N4

Ll

..
SR
. .
A ol

Rttt A el Ak fent S St M R A AP A S A b SNAC RO SR -aAR A i S dae i et et Mt b it Sl S Sk Sk At Ao e ooe Aie See B ie B o B SE SNEEE SEEEY

Page 152 ‘..A

Now., the set RIPPLEM gives the set of modules in a program ﬁ-‘fmg
which are affected by the iogical ripple effect. For each jT]f}
module m in the set RIPPLEM, the set RIPPLEBILb] gives the set e

of blocks i1in m which are affected by the logical ripple effect.

For each bjljock b in the set RIPPLEBIm], the set RIPPLELDL] gives
the set of error sources in b which may cause logical ST

inconsistencies with the initial modification.

Example 5.6. Consider the program shown in Figure 5.1. The : ':b
result of error flow tracing in the program has been shown in ‘:;;ﬁ’
Figure S.5. Since the only block in the procedure roots is an <ffgl?
external block, the procedure roots is not affected by the &‘f;'
logical ripple effect. Hence., the procedure roots is not : }i
included in the set RIPPLEM. Ffurthermore, block 3@ in the main b;ﬁ
module example is constructed for an invocation of the . “‘}
It N J

- . 3

procedure roots which is not affected by the logical ripple Col
effect. Hence, block 38 is eliminated from the set) 3;
RIPPLEBLexamplel. The logical ripple effect is thus given as ‘63
follows: xfj
el

RIPPLEM = { example, rroots >, KRR
RIPPLEBLexamplel = { 32 3. S

,\.ﬁ

RIPPLEB(rroots] = { S 2. s
RIPPLEL 321 - € output 2.)
R

RIPPLELS] = { xi 2. e

.4

S

)

..!

.?

Q'tﬂ

ol

o

e e T T ;-1."{.\;*;;:; ;';.;.:i‘:l::

Page 153

In this section, a scheme to identify the logical ripple
effect based on the set of primary error sources has been
presented. Note that this scheme illustrates the concept of
logical ripple effect identification. A more efficient

algorithm can be found in [HSIE8BZ2].

The intramodule error flow model, the intermodule error
flow model, and the logical ripple effect identification scheme
together provide a model based on which the logical ripple
effect can be identified. In the next section, the owverall

logical ripple effect analysis technique will be presented.

S.1.4 Logical Ripple Effect Analysis Technique

The logical ripple effect analysis technique can now be
summarized as follows:
Step 1. Construct the intramodule error flow model as
described in Section S.1.1.
Step 2. Construct the intermodule error flow mode | as
described in Section S.1.2.
Step 3. 1ldentify the primary error source set PRIMESET based
on the initial program modification.
Step 4. Identify the logical ripple effect of the initial

program modification as described in Section 5.1.3.

. J A T e PN T
P I L N - -
TR Y S WP GRS VLR o0E W W VU W8 VPP a P o, B

MLAPELEPO SP i e A T BRI A ¢ e i e S i ‘_'f“'_,*"v*’

e

"
- 4
T4

p

o

oy
B
N

3
e e

T
n‘f.-' .

SRe '.Hj
ST, g

1dentafaication of praimary errgr sources iSs more complicated.
and the automation of this process is not simple. We will now

discuss thi:s step 1n more detail.

The praimary error sources are identified to transform the
initi1al program modification into the changes to the error flow
of a praogram. To illustrate the identification of the primary
error sSources, let us consider the following types of initial
program modifications:

(1) Suppose that a control condition was modified by changes
to the data usages, relational operators, or constants in this
control condition. The control definition associated with this
control condi:tion 15 then specified as a primary error source
at the block which contains the control condition,

(2) Suppose that a data definition was changed or added in a
block. The definition is then specified as a primary error
source at the block.

(3) Suppose that a data definition was deleted. The
definition is then specified as a primary error source at the
binck to which the original definition transferred control.
Furthermore., if any definition in the block is defined with a
usage of the deleted data definition, then the definition 15

also specifi1ed as a primary error source at the block.

S A S AT a gea oSt AS A S M UV gt g Y AL GV AL N S AN IR A= AT RS TN A A e A A v B |
. -
p~4 -t
AR - 4
"0 Page 154 [J
’. -

.- :
y' ‘.
. Steps 1, 2, and 4 of the logical ripple effect analysis A
. -
- -
; technique can be automated without difficulty. Howewver., the :
G

'
B
[B PNy v S g ap ey)

Page 155

(4) Suppose that an actual parameter x was replaced by y in a
module invocation. If the correspondging formal parameter f 1is
an input parameter, then f is specified as a primary error
source at the input parameter mapping block for this
invocation. If £ is an output parameter, then x and y are Both
specified as oprimary error sources at the output parameter
mapping block for this invocation.

(5) Suppose that a module invocation which invokes a ncecwly
added or an existing module was inserted into the program. The
elements of the module source capable set of the invoked module
are then specified as primary error sources at the invocation
block for this newly added module invocation.

(6) Suppose that a module invocation n was deleted from a
module m. The elements of the module source capable set of the
invoked module with the formal ocutput parameters substituted by
their corresponding actual parameters in the deleted module
tnvocati:on are then specified as primary error sources at the
block to which the deleted module invocation transferred
control.

(7) Suppose that an unconditional goto statement si which
branches to a <“catement s2 was deleted from the program. Let
s3 be the statement which followed the statement si in the
original program. The data definitions which could reach s2

before the deletion of s1 but cannot reach s2 after the

detetion of s1 are identified as primary error sources flowing

M AT e Ao M T It Bes Sere e

rYrv v v

Page 156

into the statement s2. Furthermore, the data definitions which

could not reach s3 before the deletion of s1 but can after the

deletion of si are identified as primary error sources +flowing

into the statement s3.

Our current logical ripple effect analysis technique

requires the maintenance programmers manually identify the
primary error sources. Further work is needed to automate this

be process.

- S.1.5 Experiments

A prototype system to perform logical ripple effect
analysis on PASCAL programs has been developed. This system
consists of three subsystems: an intramodule error flow
analyzer, an intermodule error flow analyzer, and a logical
ripple effect identification subsystem. The identification of
primary error sources should be performed manually by the

maintenance programmers.

The intramodule crror flow analyzer 'S dewveloped by
maodifying an existing standard PASCAL compiler, while the other
two subsystems are newly developed. The prototype system is

currently running on a DEC UAX-11,/788 computer under the UMS

operating system. The system is primarily written in UAX-11]

PASCAL, while some file handling routines are written in VAX-11

ol aACa Rt St S S e st ol S A b S N s Rt s 200 Reth et - Rl s 20Ar Tl Tt Bt Tt ek Al A

Page 1S7

FORTRAN. The intramodule error flow analyzer and the
intermodule error flow analyzer are run in batch mode, while

the logical ripple effect identificatior subsystem can be run

L in either batch or interactive mode. The program sizes of the
i intramodule erraor flow analyzer, intermodule error flow
!!E analyzer, and logical ripple effect identification subsystem
E:‘ are 643, 198, and 230 disc blocks, respectively, where each
in disc block under the UMS operating system consists of 512
(]

bytes.

During the logical ripple effect identification step, the

e v

:t user can specify the modules whose internal error flow will not
ni: be traced. For such a module, the upward error flow
i;i originating at this module will still be traced. but the
o downward error flow originating at this module will not be
traced. Also. during interactive logical ripple effect
identification, the user can remove an item from the error flouw

at a block such that further error flow implicated by this item

5:; would not be traced. This feature enables the user to control
.E; the scope of error flow tracing. for example, he can choose to
:; trace only the intramodule error flow of a module which is
;ﬁ‘ involved in an initial program modification. Also, it can be ;
E% used to reduce the scope of error flow tracing., and hence \.
_;: provide the wuser with more precise information about the - ;;

potential logical inconsistencies. One example of a module

'

-
~
‘.

‘.

.

L.
»

Page 158

which is not traced can be an ocutput routine which converts a
data item from one format to another, while the routine itsel#f
is not modified. There are certain messages displayed on the
terminal which can help the user better understand the error
flow in the program implicated by the initial program

modification.

We have applied our logical ripple effect analysis
technique on PRASCAL programs with sizes ranging from about S0
to 5808 lines of program statements and declarations. Based on
our experiments, the execution time needed for the error flow
analysis of a program depends on the program size. However,
the response time for the interactive logical ripple effect
identification is not significantly affected by the program
size, but by the size and complexity of the modules in the
program because the logical ripple effect identification is

performed on a module-by-module basis.

Our experiment indicates that our logical ripple effect
analysis technique can be wvery effective for scientific
programs, which require extensive numerical computation. The
logical ripple effect of an initial program modification
follows very closely the data flow in this type of program.
For other types of program the effectiveness of this technique
is limited by the underlying data flow analysis technique. For

example, since the data flow analysis cannot distinguish

. e T e e e C L e e e e T e e s
VPP PRI FET R ST R WA A AP PG U O G G S RN NV TR PRI SR,

'
. . v
P LG UG W S

VT

:
o
v oluw
o R
B . TN
el
b had AL

i,

Vi
v

h I TP
Vies % W NN

4

“w
N v
i

.

e e

R
e
.
y ‘e
Pl

t SO

- - 'J
& ;

Lg Page 159 “:#

[Ao

- oo

f;~ distinct components of a complex data structure, the whole data 8 -a:

iﬁi structure is treated as modified if a particular component in ‘i

p SR

o the data structure is modified. This implies that all the ;;f

D . 0

program blocks which use different components of the data N

structure would be identified as affected by the ripple effect ";iﬁ

of the modification to a particular component in the data ‘Lgi

structure. S

SN

5.1.6 Discussion And Future Work

Our current logical ripple effect analysis technique
requires the maintenance programmer manually identify the

primary error sources and requires the program to be reanalyzed

after each initial program modification to construct the error
flow model of the modified program. The efficiency and ease of ww;di
use of the logical ripple effect analysis technique can be

improved by developing a scheme which can incrementally update ;;lj%

the erraor flow model of the program and a scheme which can aaiad L

automatically identify the primary error sources.

The error flow model of a program can be incrementally
updated in two steps: updating the intramodule error flow
model and the intermodule error flow model. 5ince the
intramodule error flow model can be constructed by an extended fxgié
parser of the source language, the changes to the intramodule

error flow model can be identified by an extended incremental

. A - <, e T CAMACASE A A Iy AN S0 A ey RS AR SNREPE SN AN sty AR AR S s e
. - S .]
S -4
" e
- RN
K Page 168 _:.’
-]
5}§ attributed grammar evaluator CDEMEBL] which performs ‘<fff
incremental attribute reevaluation. An incremental attribute - ;1
- "c PR
'Cf} grammar evaluator can function together with a syntax-directed Lo
g editor which can incrementally reevaluate the syntactic e
d information of the program. The intermodule error flow model '{i]
W)]|
SN can then be incrementally updated by modifying the construction 3
N step of the intermodule error flow model ta eliminate the

- analysis of the module error characteristics of a module if the
module and each successor of the module is not involved in the

initial program modification.

5.2 Ihe Performance Ripple Effect Analysis Technigue

Since a large-scale program usually possesses both
functional and performance requirements, the ripple effect of
program modifications must be analyzed from both a functional
and a performance point of view. In many large-scale programs,

) the violation of a performance requirement is equivalent to a

~ system error and thus requires further corrective action .j;{u

N {BOYD781, [WEGN781, [SWAN761, [BELF771. Consequently, in the R

v
lll "o A
S Y Y]

maintenance process it is important to fully understand the i‘~"

potential effect of a modification to the system in terms of

P
Sl o s

the performance of the parts of the system directly involved in

L a s

< the modification, as well as those that may be affected

indirectly. The change in performance of these parts may then

s
WSl
s p B a3}

T C 4 L il 4 L 3 AN L LY - .
S il e A A A A i A ALY

Page 161

have an impact on the performance of the other parts of the

system.

In the previous contract, we developed a performance
ripple effect analysis technique which was reported in detail
in [YAUBBCc, B8Afl. This technique is based the identification
of performance attributes, <critical sections, performance
propagation mechanisms, interdependency relationships among
modules as well as the relations between user performance
requirements and module performance attributes. Algorithms for
identifying those items have been established and an algorithm
for tracing the performance ripple effect has been established.
During this project period, we have constructed a prototype
system for the demonstration of our performance ripple effect
analysis technique. In the following section, we will discuss

our experimental results,

S.2.1 Experimentation

This prototype system, which has been develaoped to
demonstrate our performance ripple effect analysis for PASCAL
(JENS74) programs, is made up of two subsystems: a program
text analyzer, which constructs a model of the program for
tracing performance ripple effects, and a performance ripple

effect tracing subsystem. Since PASCAL programs involve no

concurrent operations, not all of the performance attributes.,

-

L L
LN

' lv ..n'. .‘. {

e
- e 00T
. o . 0 Ta Te

Page 162

critical sections, wvirtual performance attributes and the
relationships among them could be shouwn. Therefore, the
program text analyzer constructs only those portions of the
model which are relevant to PASCAL programs, although the
subsystem to 1trace the effects of program changes can alsc
trace these effects on programs which include those portions of

the model which are associated with concurrent operations.

The program text analyzer was developed by modifying an
existing PASCAL compiler and consists of over 7088 lines of
PASCAL code, while the tracing subsystem was newly developed
and consists of about 2588 lines of PASCAL code. The prototype
system is currently running under the UMS operating system on a
DEC VAX-11,/788 computer. This system is written entirely in
UAX-11 PASCAL. Both subsystems run without wuser interaction,
the first constructing the performance ripple effect model of
the program, and the second tracing the effects of a

madification through the entire program.

Since the logical correctness of a software system is at
least as important as its ability to meet performance
requirements, we will assume that an analysis of logical ripple
effects precedes that of performance ripple effects. This
allows us to take advantage of the data flow analysis performed

by the logical ripple effect identification subsystem.

R . P T W "‘-"":'--‘ AR
ST, I R PP R PRI Y |, T O R ey

._’.‘\"'. > '..'.".‘ T '.‘ '." Tl
P Y P I R ROV |

i_‘

N
.

- .. PR, . . Lo R P . T P Ce e e s PPN ,
L A et ' S R I AN I SO . . . e R oo
. et \ I B R s O G N RN e
St e PRI < . S s e u A Sl ' . . N (- - .
P o f . e I LT s : i N Tt B ’ R st P . .
L o . s s “ M et L A PAEN R
. e T BN - o e : oo P P . . L . .
‘r A . . B . PRV LI I A S I A . s . . R .
T LT s B R M . . R N L . . RN I . . e .
’ oo N e - o Lot o e . o LT e p PO
DU IACADNARARELIR IR Ty SN T AN e
o ¢ ettt " PPy Ty e Loal s o’ - Py - N

;
@
e

.
g YN NNN]

s
.
PP

Page 163

oy To assist us in validating the results of our performance
ij ripple effect analysis we developed a technique to estimate the
. execution time of arbitrary paths in the programs being
52 modified. This technique was described in [YAU8ibl. We

compared the estimated execution times of all critical sections
!!F of the program, before and after the modification, and observed

that all quantitative changes in estimated t imes appeared in

critical sections that were implicated by our performance

ripple effect analyzer.

$.2.2 Discussion

During the early stages of the maintenance process, the

performance ripple effect analysis technique can be used as an

aid in dewveloping criteria for maintenance personnel to

evaluate proposed program modifications from a performance ;C;fﬁ
perspective. Basically., this involves the worst-case 1?15-
identification of performance requirements which might be e

affected by the program modifications.

A.
2 Al .
AP S W) Adtededend:

After a program modification has been selected and

. § !
" B
LY IEPRRLEARNL
ntaddiit

completely implemented, the performance ripple effect analysis {ﬂj-

technique can substantially refine its analysis and determine ‘ﬁégﬁg
more accurately which performance requirements may have been fki}ta
affected by the program modifications. These performance -—fj!L

requirements can then become the targets for retesting. This C]

IR TS el e ST Ut Bt e SO i SR b oe Shuss S e e ghae Jaage . v -
I"_ AR A ACARAS AR A A AT AL S e AR A S i Al ool A Aui Ak sed e h Sk Al s Wl i At e indin i A

Page 164

is accomplished by determining whether or not a performance }i'

attribute is actually affected before implicating other Lo
o

performance attributes involved in a performance dependency ;,Q,:

relationship with the given attribute. In other words, if a

dependency relationship exists between performance attributes x

N A'-.
!A‘-'.‘r."

and 4, performance attribute y does not need to be examined for ;,E
changes if it has been determined that performance attribute x 'i3
is not affected by the maintenance activity. Thus, the l*j
preliminary results of some of the early retesting efforts may E;?fs
be decisive in determining the scale of retesting which remains ;?%f:

to be done. The wuse of program assertions concerning the

execution time of performance attributes would play an RRIRIR
‘:A 7Y

important role in determining if a performance attribute has DR
been affected by a modification. ;f};q
B}

R

-0~ R

BN

[

d
L]|

A]

.] '1
o o
VL - \1
'@ Y
T R
e N
b B
. o

) T e L AU . Lo -~

A N e

cat e - - F .
. BB T I AL o P e .
| TP, S R R . PR N ot L i S e A et) L) e e e

.
[
t
!
e

~T T e e TN -
- Dy LR

Page 165

6.0 EFFECTIVE TESTING FOR SOFTWARE MAINTENANCE

Despite the use of automated tools to assist the
maintenance programmer in making modifications correctly, the
possibility of error remains, and so the modified program must
still be retested. Nonetheless, we would 1like to avoid
retesting the entire program if only a minor modification has

been made.

We have developed a module testing approach which makes
use of existing test cases whenever possible, and uses the
input partition method CRICHB81] for constructing new test cases
when they are required. Actual testing is done by symbolic
execution C[KING?61, but we make use of real test case data to
select the control flow paths to be executed. We have
demonstrated an implementation of our approach using ANSI
FORTRAN by modifying the ATTEST system [CLAR76]. Our method is
effective in testing programs with mathematical computations
whose specifications can be given in the causeseffect manner
[MYER76]1, [GOOD?S], ([(HALL78), ([HENIBAl, such as control
programs for aircraft control systems and nuclear power plant
control systems. Although our method has been demonstrated for
programs written in FORTRAN, it can easily be modified for
programs written in block-structured languages, such as PASCAL.,
PL/1 and ALGOL. The application of this method will also be

discussed.

@

'
N .
24 4 2

’

DR]

v

. « Cn
PRy T ey

Page 166

6.1 The Module Rewvalidation Technigque

In this section, we will present ocur module revalidation
technique during the maintenance phase. The smallest unit in
the program we consider here as a modified section is a program
section which is a maximal set of ordered statements of a
program that can only be executed as follouws: its execution
starts from the first statement, terminates at the last
statement, and all of its statements are executed in the given
order. In addition, we assume that each module in the program
has one entry and multiple exits. Our technique is applied
only after all the necessary modifications of the module are
completed. It is assumed that the module before the
modification has been tested by the test set T =
{t1,t2,...,tn}, where T was generated by any test generation gwgii
method, each test case ti = {(V1,v2,...,um}, iz1,2,...n, and vj, ;ib
i=1,2,...,m, is an input value for the jth input wvariable of
the module. Furthermore, we assume that the specification of ;Qépi
each module is correct and given in the form of a causeseffect f75-

graph [MYER761.

N
The module revalidation technique can be summarized in the .'41
flow-chart shown in Fiqure 6.1. To start with, the derivation

of the input partition for the modified module will be done to

reflect the changes in the program code and-/or specification. Ly

L

Then, the original test cases of T which are still correct o

Sy

S

Np

.7.4

-

S e

b v

=]

AN o

p L 1

T” o

S . o o S N _ B
e T el e : T U e e :

R N I S S v i R I R R I OO T R R e \1

LM e S e S SER e A o o
e

. e

*

v,

BRI R 2

Ry 2 e e e

the

No

Fane - ssak arg Brea g

Derive the
for the modified module

Keep correct test cases

MRt s R .W‘.". Ty .-_'-v.‘: AR i) .v'i
R

-1

Page 167 L J

input partition

in T

and discard other test cases

Assign correct test cases to

Generate additional
test cases to satisfy

the criterion

'

Is the criterio
satisfied

input partition classes for
the modified module

Yes

\J

Execute all the newly generated test
cases and previous test cases whose
execution exercises any modified

Output validation

l

Debugging

section of the modified module

Figure 6.1 An overview of module revalidation.

Lol

L@,
] LNy

. .
on ’ R
RPN Y SN P

T

N
*

it

SRR O AN AT AN S e N

~ “

Page 168

inputs for the modified module are kept and all other ariginal
test cases of T are discarded. If the use of the test cases in
T does not satisfy the criterion of the input partition method,
which requires at least one test case in each partition <class,
additional test cases are generated to satisfy the criterion.
After the criterion is satisfied, all the newly generated test
cases and the original test cases whose execution leads to any
modified portion of the module are executed, and the results of
the execution are examined. When the existence of errors is
detected, debugging of the module will be performed. In the
remainder of this section, we will discuss each of these

processes in detail.

6.1.1 Derivation O0f The Inputi Partition

The input partition F used in our method is derived by
intersecting two input partitions Ps and Pc, which are
generated from the program specification and code respectively.
and our testing criterion is to have at least one test case in
each partition class of P. This input partition has also been
considered by Weyuker and Ostrand [WEYUBBl, who used English
for the program specification, and Richardson and Clarke
[RICHB11], who wused a Program Design Language (PDL) type
specification,. As mentioned befcre, we used the cause-seffect

graph to represent the program specification. The partition Ps

GO0 FUY YOI W N U

il

AT
PR)

T Ty Ty T vy LR, T wey h il Sl i AN S Al A A Al i A e S B T

Page 169

can be generated by considering all possible combinations of
input conditions from the causeseffect graph and each
combination corresponds to a partition class. The partition Pc
can be gdgenerated by considering that each distinct executable
path in a module corresponds to a distinct partition class.,
except that those paths which differ only in the iteration

number of the same loop belong to the same class.

To illustrate the input partition method, let us consider
the program which computes the average of a given array of
numbers and returns its absolute value. The specification of
the program is given in the cause-seffect graph shown in Figure
6.2. Its code, together with the program graph information, is
shown in Figure 6.3. The causeseffect graph is used to give
the inputsoutput relations of the module. Circles on the left
correspcnd to causes, which denote input conditions i;or the
module, and circles on the right correspond to effects, which
denote outputs of the module. Circles in the middle denote
intermediate nodes, which are used to specify combinations of
causes by means of logical relations, such as (AND), (OR’ and
~(NOT). Causes (or combinations of causes) and effects are
caonnected if there exist relations: if causes (or combinations
of causes) are given in the module, the effects are returned by

the module.

PSPPI W W

e aa s ‘.LA

[e

e N N T T e

Page i7@

I < @ Error

1
(3 ACIIIZI

o
a
"

1
TACi) > @

I
-cZ2AaciNnrste

is

Figure 6.2. The causeseffect graph specification of an
example program.

Suppose that the maintenance programmer has corrected two
errors: R was not initialized, and "GO TO 48" was "GO TO S5@".
Let S be ACi). Then the input partition for this program is
derived as follows: to generate Ps, we first +find the
following causes of this example from its cause-seffect graph:
I1<@, 1<1<S and S$>8. Howewver, causes I<B and 1<I<5 cannot occur
at the same time, as indicated in the cause-seffect graph by the
symbol "E". Similarly, causes I<® and S$>8 cannot occur at the
same time. Therefore, the only possible combinations of causes

are I<O, 1{I<{S and 5>8, and 11<I<and S<B@, each of which

CHvie Svie-Tevi S Snferd

- e R i S A i d s S ot AR Sl e e

Page 171

Program Block No. Statement No. SOURCE

> D >) = D = — — . — — —— — - —— — - —— = — —— T . — T > —— - —— —

1 SUBROUTINE SUB1 (A,I1,R,IERR)

1 1 DIMENSION A(S)
2 IERR - ©
2 3 IF (I .LE. &)
13 4 $ GO TO 1@
3 S IF (I .LE. 1)
12 6 $ GO TO 28
7 R -8
4 8 DO 38 L = 1,1
S 9 36 R - R + A(L)
() 10 R = R/1
7 11 40 IF (R .GT. &)
11 12 $ GO TO
8 13 R = =R
14 SO WRITE (6,1080) R
188 FORMAT (X, F3.2)
9 15 GO TO 68
16 286 R = A(1)
12 17 GO T0O 49
13 i8 19 IERR = 1
10 19 68 RETURN

D D D D L . - . ———— . — . _—— - - T e . . — —— - ————

Figure 6.3. The source code of the example program with the
specification shown in Figure 6.2.

Ll srarate an

PR
T

Page 172

represents a partition class of Ps, and Ps = (I<@) U (1<I<5 and
S$>8) U (1<I<S and S <B). 7o generate Pc, we first find the
following five different kinds of paths in the program: the
path to handle the case I<8, the path to handle the case 1I=1
and S<@, the path to handle the case that Iz1 and S>3, the
paths to handle the case 2<I<5 and S<@, and the paths to handle
the case 2<I<{5 and S>@. Based on this grouping of paths, Pc
can be derived as follows: Pc = (I<@) U (2<I<S and S>8) U

(2I<5 and S¢{(B@) U (I=1 and S>8) U (I=-1 and S¢8).

By taking P = Ps Pc, we obtain all the partition classes

of P as follows:

class 1. I<8

class 2. I=1 and S$>0
class 3. I=1 and S<@
class 4, 2<I<5 and S>@

class 5. 2<¢I<S and S¢<®9

6.2 Reusability Of Original Yest Cases

The changes made to the module may make the application of
the original test cases to the modified module invalid. Hence,
it is necessary to determine whether the original test cases
are correct inputs to the modified module. To do this, we need

to examine the total number of input values necessary to invoke

oM Bte Shage)

e

BEPETRN 2t

o .

.» e e

. . L v
DA S

Il

Ba i Saiendh A At A S N S B A B A S S SR i S G A AL aa e S g ik SR GRS gt AL AU o e AL R A R arRR S ey

Page 173

the modified module and the order of these wvalues. For
example, because of the modification, another input may be
needed to invoke the modified module correctly. In such a
case, after the modification, the original test cases are no
longer valid to test the modified module and must be discarded.
In the case of a modification for error correction, the input

which detected the existence of errors should be included in T.

6.3 Assignment Of Original Test Set JYo The Input Partition

Classes

When original test cases are correct inputs +to the
modified module, we should use them in order to generate fewer
new test cases. This is done in our method because it is much
easier to see if a given test case satisfies a given input
class domain than to generate a new test case which satisfies a
given input class domain. As long as some t in T which
satisfies the domain constraint of the jth partition class, we
assign it to the jth partition class. A similar idea was also
used in CASEGEN [RAMA761. To illustrate this, let us consider
a set of original test cases shouwn in Figure 6.4 for the
program shown in Figure 6.3. Since test case 1 satisfies the
domain constraint of partition class 1, we assign test 1 to
partition class 1. Similarly, test cases 2, 3 and 4 are

assigned to partition classes 2, S and 4 respectively.

w .
. @ :
P B S S ST IR Ny SRy W)

Test case = C I, AC1), AC2), A(I), A(4), A(S))
Test case 1 = (8, 9.0, 0.8, 0.0, 0.8, @.0)
Test case 2 = (1, 4.3, 0.9, 9.0, ©.8, 0.8)
Test case 3 - (2, -7.89, 2.6, @.@, 8.8, 0.0)

Test case 4

¢ 3, 1.58, 6.32, -7.34, 2.8, 8.8)

Figure 6.4, Original test cases prepared for the program in
Figure 6.3.

6.4 Selection Of Oriqinal Test Cases fFor Execution

We only need to execute those original test c¢ases which
exercise any modified program blocks of the modified module
because execution of the rest of the original test cases will
only follow the same sequence of the same statements as they
did before the module was modified and the same test execution
results are generated. Fischer (FISC77] developed a method to
select the test cases whose executions exercise the
modification, but his method 1is onlu applicable to those
modifications which do not change the control structure of the
program. In this section, we will present a heuristic method,
which can be applied to any kind of modifications., including
the case where the control structure of the module is changed.

Because it is an unsolvable problem to determine which sections

Page 17S

of a module will be traversed for given test cases before their
execution, we can determine whether a given test case will
traverse any modified portion of the module only during or
after its execution. We will first discuss what information is
needed to select test cases, and then present the selection

algorithm.

6.4.1 Necessary Information For Test Selection

Let us define a path in a program graph as a sequence of
nodes and branches. A module path is a path which starts from
a node corresponding to the module entry and ends at a node

corresponding to a module exit. The reaching set of a node X

in the program graph is a set of all possible paths that start
from the entry node and end at the node X. The reaching set of
a given node in the program graph is identified by wusing the
depth-first search algorithm. We store the reaching s:2t

information in the program graph by marking every branch which

belongs to some path in the reaching sets of the modified
nodes. The reaching set information stored at each branch in

the program graph is used to select test cases.

We would use the symbolic execution tree [KING?76]1 to keep
track of the test execution information. Each node in the
symbolic execution tree corresponds to an execution of a

statement. We modify the definition of the symbolic execution

. T R—_—_—————— e CAn i i M P aicai At LA AP A YA Al Jai O CEA A A

o
@

-y
f
»

N
LN
e

'

o -y
o e e e N,

PRI
& r ‘u’l't

v Y.'

Ty
N\

["

T T T T T T T T T TR TN TN N NN Ty I AN ey P Dt A i e S SRS i e

Sty [-

Page 176

tree so that each node in the tree corresponds to an executian

of a Decision-to-Decision Path (DD-path) [HUAN7S5]). A DD-path

is a path in a flow-chart which satisfies the following
conditions: 1) its first edge starts either from an entry node
or a decision box; 2) its last edge terminates either at a
decision box or an exit node; and 3) there are no decision
boxes on the path except at both ends. This modification
reduces the storage requirements without losing the necessary
test selection information. At each node of the modified
symbolic execution tree, the information called STATE is
stored. STATE is a triple {VU, LC, PC), where V is a wvector
containing all the values for the variables in the program, LC
points to the last statement of the DD-path, and PC stores the

constraint to execute the path so far traced.

As the execution proceeds, U, LC, and PC are updated in
accordance with the result of the execution. PC is originally
assigned to a value of “TRUE" and 1is updated whenever the
execution has gone through a decision point and selected an
ocutcome of it. The new PC is computed by taking an
intersection of the o0ld PC and the constraint needed to be
satisfied in order to take the selected outcome. Therefore, PC
stored at a given node in the symbolic execution tree contains

the path constraint for the path between the root node and this

node. Note that PC does not change during the execution of a

A-Q(uyf‘LJ!L;Qﬁmj

i
IS W

-

'
»

D .
Ay
ML SIS Wi P I

Page 177

DD-path. On the other hand, VU may change during execution of a
DD-path. A wvalue of a variable is changed when a statement
assigning some value to this variable is executed. During the
execution of a DD-path, possibly existent assignment statements
in the DD-path may be executed, changing the wvalues of
variables. U stored at a node of the symbolic execution tree
contains the wvalues of variables after execution of the
sequence of statements corresponding to the path stating from
the root node and ending at this node. Note that the U stored
at each node as a part of the STATE information is the one
computed after the execution o0f the last statement of the

corresponding DD-path.

In addition, we need a table <called test information

table. This table is needed to keep the test selection
information, and it has three columns. The first column is
used to store a test case identification, the second column is
used to store a symbolic execution tree node identification to
show where the test case specified in the first column stopped
being executed, and the third column is wused to store the

information of whether the test case specified in the first

column was selected.

A RA I Tl ATt Tk SR A A S A A A AT At AT e A B A
F

X ¥

}‘ Page 178

o

£

6.4.2 Overview Of Selective Test Execution

our method is developed by wutilizing the reaching set

information and the symbolic execution tree.

The selective execution using the reaching set of modified
nodes can be described as follows: any execution is continued

as long as it follows any path in the reaching sets of modified

nodes. This is because such a path eventually leads to the
execution to a modified node. The execution is terminated as
5}}? soon as it is found out that the execution does not follow any
;3; path in the reaching set of modified nodes. Since all the
ii branches belonging to the paths in the reaching sets of
EE modified nodes are marked, one can tell whether or not the

current execution still follows any path in the reaching set of
modified nodes by observing if the outcome selected by the
S execution at each decision point is marked. If the execution
so far followed a path in the reaching sets of the modified
nodes and a marked branch is selected, we know the execution is
still following a path in the reaching sets of the wmodified
nodes. on the other hand, if an unmarked branch is selected,
one can tell that the execution no longer follows a path which
leads to the execution to a modified node. The execution is

continued for the former case while the execution is terminated

for the latter case.

[
b

I

oy
dhabduhd S

DR
. Lo . ’
e e
. R A
P R G U

n

- Lt AT el T A,
N R A

Y

- '—-.'- N - -
SR, COI R e o
e e e e e T e T T Tt T T T S
T . U YR VRN TR YRR T TR TR TN VRN NS WS PR G IV AN PRI Ve e e re. o

Page 179

The symbolic execution tree is used in order t0 process
more than one test case at one time. The symbolic execution
tree i1s constructed as the data-driven symbolic execution
proceeds. Initially., all test cases are stored in
Current-Test-Cases (CTC) which holds test cases relevant to the
execution. WKhen a decision point of the module is encountered,
we must choose an outcome of the predicate because not all the
test cases in CT7C necessarily evaluate the predicate to the
same outcome, and not all outcomes lead to the execution of
modified nodes. Based on the selective execution previously
described, we have set the outcome selection criterion as
follows: When no modified node has been traversed by the
execution, select an outcome whose constraint can be satisfied
by at least one test case in CTC and whose corresponding branch
in the program graph is marked; once one modified node has
been traversed, select an outcome whose constraint can be

satisfied by at least one test case in CTC.

After the outcome is determined, the test cases in CTC
which did not select this ocutcome are removed and stored in the
current tree node. The execution is c&%tinued towards the
selected outcome of the predicate by adding a new tree node.
Note that at that time test cases in CTC are the ones which
choose the selected outcome. When the execution is terminated

because it has reached an exit point of the module or because

R N T T T T T WY Vv T

| @ Page 18@
3

y.o no outcome can be selected, the test selection result is stored
c’ in the test information table, using '"'selected"” status for the
E former and "not selected" for the latter case. Then, the

symbolic execution tree is <followed backward from the node

where the execution was stopped to the root node. When the
first tree node containing test cases is found, a new execution

is started by assigning the test cases stored in that node to

CTC and using the STATE information stored in that node. When
no such node is found, the algorithm terminates. Now, let us e
present the algorithm to select the test cases. o
-
-1
6.4.3 Algorithm To Select Test Cases) _f:
S
DR
S
N T o
Step 1. Set CTC to the original test <cases, from which the : ¥
= 4
test cases are selected. Set a counter for the number of o
traversed modified program blocks, COUNT to @, the statement : §
. »
pointer ST to the first executable statement, and the tree ;G;‘:
. 4
pointer TN to the root of the symbolic execution tree. :u
Step 2. If a modif.ed block is traversed, increment COUNT by : ;,f
-'_1
one. If ST is an exit statement, store the test cases in CTC :-J
in the test information table with the status ‘“selected' and go {
to Step 4, If ST is a decision statement, go to Step 3.
Otherwise, set ST to the next statement and repeat Step 2.) ;
Step 3. Select an outcome of a decision statement based on the . '

A GG L Thit S Y MY

vﬁjgrq,
¥

B NI AAMS Sl S ek el M Medind Vi Sl AV ATl p e A g St i = B il i St S AT A

Page 181

outcome selection criterion by wusing tests in CTC. If no
outcome can be selected, all the test cases in CTC are stored
in the test information table with the status ''not selected”
and go to Step 4. Otherwise, store the test cases in CTC which
do not satisfy the constraint of the selected outcome in TN and
remove these test cases from CTC, Sture COUNT in TN. Generate
a new tree node as a successor of TN and set TN to this node.
Set ST to the next statement and go to Step 2.

Step 4. Trace the tree from TN towards the root. Get TN to
the first tree node encountered which holds test cases and go

to Step 2. If no such nodes exist, terminate.

6.4.4 An Example

To illustrate the test selection algorithm., let us
consider the program shown in Figure 6.3 again. The proagram
graph for this program with the reaching set (program sections
4 and 12 are modified’ - shown in Figure 6.5. The addition of
R=@ is done in program section 4, and the correction of "GO TO
58" to "GO TO 4@" is done in program section 12. The original
test cases are shown in Figure 6.4. FfFigure 6.6 (a) and (b)
show the symbolic execution tree and the test information table
after the execution is owver. The tree nodes are numbered as
they are generated and attached to the tree. Initially, CTC

contains four test cases 1, 2, 3 and 4, and th2> symbolic

’

R S M A S N e M e S e Sl AR PR 8 O AR R 20 St T Ja Jhad B Ane e, e

Page 182

execution tree consists of only the root node.

Figure 6.5. The program graph with the reaching set information
for the program shown in Figure 6.3.

An execution is started from the first executable
statement. When the first decision point, "F (I.LE.Q@), is
encountered, we try to select an outcome using the first part
of the outcome selection criterion becaus?2 no modified node has

been traversed yeot. Since the False outcome of this decision

N VP SR W S § r i VD W G TR i Wit T Wil S T U i e it L anfinande o g '

L ghl el s ot ore on o o me]

> @
..

-

‘. ' ta
b~ @

UNIV EVANSTON IL
F38602-88-C-0139

S

METHODOLOGY FOR SOFTWARE MAINTENANCE(U) NORTHWESTERN

S YAU FEB 84 RADC-TR-83-262

F/G 9/2

o0
EEEE
m—mmuuutm

| =

o

I

PRAETR

18

I
I

ll==

" | l.b
——— ——————
——— _—
—— _—
p——— E———

Iz

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU 0F STANDARDS- 190

~

CATETetmtat YN AT AT At AN At T

P

o

Dt g i il 7—5‘ LA g e S g I AR e B Al I i S

(AC1)+AC(2))I/] < @

T T .y

I1<1

ACL) > 0

Page 183

(ACLY+AC2)+ACIII/T > @

v
M .
" l. LI I
4, 4 ¢
o

.
t

-

TN e

LN S IR
LA

‘f' '1' . .n‘) ‘f‘z
l‘ &
P

SRS
- R Y2

ca) T
Test case Tree node selection status
3 6 Selected
4 9 Selected
2 11 Selected
b} Not selected
(b)

Figure 6.6. Result of test selection on the program shown in
Figure 6.3 with test cases given in Figure 6.4:
(a) symbolic execution tree, and (b) contents of
test information table.

i R W
PR S S R L P AL SR U SOI L L T S0

RO CRSSE S SIS ARSI GO OLEACA AT COELESA L AL AL A3 &) R b A A Wi bk o A SR CH M AR
o | =
oo R
. Page 184 ” -Q
= i
‘_'.j-\'-". peint corresponds to a marked branch from program section 2 to ‘_f";__’:j:
'g' program section 3 and this outcome can be selected by test Tf‘;
:\:’ cases 2, 3 and 4, the False outcome is chosen. First, test \
'*‘-. case 1 is removed from CTC because it did not choose the :
S .
. selected outcome and gets stored at the root node. A new tree
node is attached to the symbolic execution tree. In the same :j
way, at the next decision point, IF (I.LE.1), the False outcome -3
- ‘. is selected while test case 2 is stored in the tree node 2. At .1‘
the next decision point, DO 38 L=1,I, since the modified ‘;
x program section 4 has been already traversed (COUNT = 1), the -.:
\ second part of the outcome selection criterion is used. Since iﬂr.‘i
both test cases 3 and 4 select the False outcome, no test case e
is removed from CTC and the new node 4 is added to the symbolic
* execution tree. Test cases 3 and 4 do not select the same
‘ outcome at the next decision point, DO 3@ L=1,I. The True
J c;utcome is arbitrarily selected and a new node S is attached.
"".'" Test case 4, which selects the False outcome of this decision
oy point, is removed from CTC and stored at node 4. Hereafter,
CTC contains only test case 3. MWhen the current execution
terminates at the RETURN statement, the tree is followed
E:;;:‘ backward from node 6 to the root node. The tracing is
\ terminated at node 4 because it is the first node containing a
. test case, test case 4. A new execution can be started from
-',:j.-f this node because the STATE information contains the execution
_*x
..
N
-
L

ot e e e e e
PP L P " P R P P L DR

R AR AL A A B A A A I A P M T A e e A DA N A AP AL B M M E Ao SRt . B S P 4"

« o e v
DD EREREACARAES

.“ .l. ~" - 4 .

VetitaTs st A

I.l.l.l.l'l'l_l

N

v v N

.....

Page 18S b

information for the sequence of statements corresponding to a ;?iﬁ;ﬁ
path consisting of tree nodes 1, 2, 3 and 4. Similarly, test
cases 4 and 2 are executed. After the execution of test case
2, the tree is followed back to the root node where test case 1

is stored. However, no new execution is started from the root

node. The True ocutcome selected by test case i corresponds to

a branch between program section 2 and program section 13.

This branch is not marked and no modified program section has

<

o et e e Lo e .
LI e [N .

~ LI PP -'.- .‘-.4.
R I e S0 e e
. e ‘

been traversed (count stored in the root node is zero) and DA

therefore, no outcome is selected. Test case 1 is removed and

.
I
ey

‘L aalsatate

its status "not selected"” is entered in the test information

‘l-‘
Pt
)

table.

"‘ A A _a

=4
|~;
BRI
.) .
-' 4,.....13."..'._-”'- .

6.5 Test Case Generation And Execution

‘
.
Aa’

In order to satisfy the criterion of the input partition kiif
method, which requires at least one test case for each
partition class, it may be necessary to generate additional
test cases. After the assignment of the original test cases is

completed, we generate test cases for partition classes which

do not have any test cases. Note that uwhen none of the

original test cases are reused, we must generate a completely i}bi»
new set of test cases requiring the same amount of effort to 12];d¥
test the modified module as a new module. In the example .

considered in Section 6.3, the partition class 3 is not il

Page 186

assigned any test case. A test case (1, -2.34, 0, B8, @, 8) is
generated and executed to satisfy the testing criterion. The
method we have developed has another mode of execution. Under
this mode, all the test cases are executed to the end. The
algorithm used for this mode can be derived by making a minor

modification to the test case selection algorithm.

Algorithm to execute test cases: We made a modification to

Step 1 of the Test Selection algorithm. Instead of setting
COUNT to @ initially, it is set to 1. This algorithm executes
all the test cases. Since COUNT is always greater than zero.,
the outcome selection criterion is to select an outcome to
which at least one test case in CTC evaluates the encountered
predicate. This guarantees that all the test cases are
considered and none of them are removed before they reach the

exit of the module.

6.6 Output Validation Phase

Oour method performs data-driven symbolic execution on the

target module and produces symbolic and real outputs, and the

domain information. According to Howden [HOWD?78] the symbolic
outputs are effective to detect computational errors. Houwever,
symbolic execution alone is not effective to detect domain
‘E errors. We can store the domain information for each partition

class in a decision table and this information can be wused to

Vet ks . T T T ST S e e
AR e . SN . o “

- - ~ - - Talt et e . - e - N - . - - - -~ -
PG O PP P Y AT S VAT JU VTV S A S G DR e PRI . T TS Tl S P SRR S . I S SRR s S DRI S D

Nt e S Sl e D AR i s AN B A N A A e T S A A A M O e e
.. . . e - . - .Y .t et . LA S . Pl AN .t

Page 187

validate the domain information obtained by executing a
program. In addition to the domain information, we can add the
output information for each partition class in the decision
table. The decision table for the example program discussed in
Section 6.1 is given in Figure 6.7. Each column of the table
corresponds to a partition class, and the wupper half of the
table is used for storing the domain information and the lower
half of the table is used for storing the expected output

information.

- 6.7 Debugging

- The method we have develcred has a debugging capability

ﬁi called test execution jnformation display. The basic idea of
h this cap -hility comes from EXDAMS (BALZ269] and 1ISMS [(FAIR?7S].

Since the necessary test execution information is stored in the

symbolic execution tree in the data base, we do not have to

execute the program again in order to debug the program. The
maintenance programmer can follow a module path forward or

backward easily. and retrieve information such as path

constraints and the value of each variable in symbolic and real

P

forms from the different locations of the symbolic execution

¢

tree.

v

A SAP-Aae

LY

' 7
Y

LA d

St o

c‘.‘

.
v
.
¢

N e e e T s e T A e

. ' o o L .. Pl P - . L - - - - - - - . - v~ .
AL VAL P YA, VYR WAL YL ALY

Page 188

Partition classes of P

Figure 6.7. The decision table containing the partiti
derived from specification in Figure 6.2
program in Figure 6.3.

Note that the symbolic debugger and the symbolic

LSt nd Rt}
P S T e

308

1 2 3 4 S
1< @9 Y N N N N
I =1 N Y Y N Y Damain information
2<I1<¢C5 N N N Y Y
ACi) > 0 b Y N N Y
IERR = 1 v
R = AC1) v
R = -A(l) v Expected outputs
information
R = -ACi) v
R = A(i) v

on classes
and the

executor

are not the same. Our method has four different kinds of
commands which the maintenance programmer can use. The first

kind of command, calied test specifjcation, is used to specify

command,

.

”.

: a test case. The second kind of command, called move

H enables the wuser to move the pointer within the symbolic
|

; execution tree so that the wuser can retrieve the STATE
..-

r.

’.

v

1]

'-

P\

r.

,

!

n

..‘ "
,

PTG A TR WY S O R o WS X

LA '--"-'.\ St * U et
[N SV SR PR AL WPV PR W S A

B A A AR A o N OO T AEAE e RS

Page 189

information from different tree nodes. The third kind of

command, called show command, shows the necessary test

execution information that the maintenance programmer requests
at different locations of the executed path. The last kind of
command, called break point command, can set the break points
and stop the tracing at the break points. Since the test
execution information is already stored in the data base.,
additional commands which allow the user to retrieve different
debugging information can be easily added without making any
modification to the program portions for test execution of the

method.

6.8 Discussion And Future Work

Our method employs the input partition method +for test
generation and data-driven symbolic execution for test
execution. The method has been demonstrated by implementing
parts of it: 1) selective execution of the original tests, 2)
test execution, anda 3) debugging. These parts have been
implemented in VAX-FORTRAN, wusing a DEC VAX 11/788 computer
under the VAX/UMS operating system., and can be used to analyze

programs written in ANSI FORTRAN.

et eyt
DR et et

PRV TR VR P W PO |

(e R R i B Ak 4 b Sl A Vg, bl S A A T A T A A M
- LT .. N - o N - L Lt O o M - Rl M N e . -

N
.
a

»
v
Py

LI
-

TP PR T

» e e y L
PRI IR RER .
ha At A, by o

s
T DI

-
ra

Aedend,

SN

B T . T R N N N N o o R e e R TN vy e e
DRI AN A R A A A T A N L AL L PR RN T A T T T T T e e T T N e T e T T e T T T T T T T . . ST

[

S Page 190

The revalidation of the program after it is modified is
very important in the maintenance phase. Presently, no
systematic approach exists for revalidating the modified
program in the maintenance phase. Our module revalidation
;- technique is developed to assist the maintenance programmer to
perform module revalidation for modified modules. MWe have also
T developed a set of supporting tools which help the maintenance
. programmer to apply our revalidation technique. Our module

A revalidation technique uses the input partition method for test

vt

case generation and data-driven symbolic execution for test

A

execution. We only considered programs which can be specified

'
+
s

using a causevseffect graph. For this kind of program, it is

. e

:f much easier to derive the input partition from both the program

specification and code. The logic of this kind of program is
(usually straightforward and has no complex loop structures. o
i; The cause-seffect graph manner of specification was actually

i: used to specify complex real time software systems.

3 The application of the input partition method tends to T
a produce too many test cases. The number of partition classes

i should be used as a testability measure, and modularization of KRR
. the program should be done by taking this factor into RIS
consideration in the design stage of the development phase. -
Although the input partition method requires much effort and Rt

time for nontrivial modules, it identifies all the functions of O

=T
h\' . .." -,
e
TN
-+ AL
NS
N
."-‘ '-‘\.’\
AT
¢ Y

the module,
also detects missing path errors (GOOD7S]1. Furthermore, it can
also detect

select and execute the necessary subset of the original test

cases and

The results
data-driven
real forms.
program can

information

chance of detecting both computational and domain errors. The
real value output may detect overflow and truncation errors
which cannot be detected by conventional symbolic execution.
We used data-driven symbolic execution to solve most of the
problems encountered in symbolic execution. MWhen the existence
of errors is detected, our tool can be used as a debugger, and
provide useful and helpful test execution information for the
maintenance programmer. Since module testing is just a part of
the overall

methods for

Page 19t

and in the process of forming the partition, it

domain errors. The tool we have developed can

it can also execute all the generated test cases.
of the test selection and test execution using
symbolic execution include outputs in symbolic and
The domain information obtained by executing a
be compared with the correct outputs and the domain

stored in the decision table. This increases the

program revalidation strategy, we plan to develop

integration testing and system function testing.

..
LNt
l‘ * ’
b e S A A e

)

a

-
‘e tacatd ol a4 D

g — - i -
SEANA o o a0 it Al 4 L R AL A SR SUC L AL L AL AL RN SRS AD ARG L A

Page 192

7.8 METRICS RELATED TO SOFTWARE MAINTENANCE

Since the major concern of our research work is with
software maintenance problems., we have focused our attention on
mogifiability related metrics. We have identified several
critical attributes that affect modifiability, namely. logical

stability, performance stability as well as module strength and

coupling. These are all important factors in evaluating the

;ij modifiability of a program. Individual measures for each
“~ .‘
St
g attribute have been developed. There will be a brief
-‘\.-‘
N description of each of these measures in the following

sections. Detailed results have appeared in [YAU?8, B@a, B@e,
82cl, [EJZAB2]. A limited validation experiment for our Jogical
stability measure has also been conducted. The results will
S also be presented in the following sections. The integration

of these attributes into a modifiability metric requires more

study.

:lj:.
;{_ Due to the experience gained from the implementation of
”2; our logical stability measure, we feel that we need a more

i

o efficient way of analyzing logical ripple effects ¢for large o
-ﬁ: scale programs with less requirement on accuracy. In this j
T, I
._ ~ K ,"‘
A section, we will]l] also present some preliminary results on these “ﬁrﬁj
o o
Fy- problems. .
.)
e :

B ASS IS 440 20 2w Aaruay ot Sanfe G0 RaCheL SRS ban AAbachen Rea i B Tt e A4e PO A e il 0 R RL RN A s G SN At S A A VR AN P SO <) 6 A MY

Page 193

7.1 Logical Stability Measure

The stability C[YAUBOe) of a proqram is the resistance to
the potential ripple effect that the program would have when it
is modified. The stability of a module is the resistance to
potential ripple effect of a modification of the module on
other modules in the program. Since ripple effect is one of the
major reasons for introducing errors in the software
maintenance process, the stability of a program or modu is

closely related to its modifiability.

7.1.1 Logical stability measure for modules

2
o
|
A measure for the logical stability of a module k, denoted .4
by LS,» is defined [YAUB@el as follows: SRRALS
i
H 7/ A
LSk 1 Ll'!Ek R
where LRE = the logical ripple effect measure of a primitive _ﬁ
[ackadl) |
type of modification to a module k, where a ,4
primitive type of modification is considered as a =
modification of a variable definition of module i
K.
= 3 CPC(ki) LCM 2]
iey ki
YV
Y, = the set of all variable definitions in module k.,
P(ki) = the probability that a particular wvariable
definition of module Kk will be selected for
- s NN o " .U LSRN ".:‘.;\:‘;‘ij-;\!-:.‘s‘:;‘;;' ;-‘-'!‘: ;:;‘.:‘.;:;'g‘::';'...\;._1;4-.1.l-1-]-1‘

k"x A TSI MDA A4 A A DA ARG RN b Rhe A0 iU L AN IR S At eI A AR AL AR A D
U
Page 194 L J
modification, i
N
Lem, o= th: logical complexity of each modification to q
. . L 2
variable definition i in module k 4
= X Ct
TeW,]
]
Ct = the complexity measure of module t ...i
W, = the modules inuvolved in the intermodule change PR
i o
SR
propagation as a consequence of modifying]
SRR
variable definition i of module k o
U X "
= - Y
. kJ B
i€z, . .
.‘_\
,'.“
zZ,. = the set of interface variables which are affected 2
by logical ripple effect as a consequence Of
modification to variable i in module k
X5 = the set of modules involved in intermodule change 1
]
propagation as a consequence of affecting ';if%
TN
interface variable j of module k. NS
—
Logical stability measure may be normalized to have a :i
range Oof © to 1 with 1 as the optimal logical stability. This '_i]

normalized logical stability can be utilized qualitatively or

it can be correlated with collected data to provide a

quantitative measure of stability. The normalized logical

¢ @
e T .

e
.'_w..__._-
SoTAN
I

SN AN
SN AT
- o

-.-\ -\-
e~ A\]

AN

*
stability measure for module k, denoted by Lsk. is defined as

«
.
JUy

»

follows:

P W SN

[. AR
« FRT PRI
.' ’ l. . i .

e e s
e
A

LA

.
._L.A.‘“_‘

P
z e

.. ’
‘A" atam

‘_A

" e e S
AP A M ey A T T T TR TN T T TR T NIRRT RN R R R RN T e e R e S

Page 195

» *
LSk = 1 LREk

where LRE: the normalized logical ripple effect measure for

module k
+ Lo
= LRE_~C SR
€ Cp o
-3
cp s the total complexity of the program which is equal i:
L
to the sum of all the module complexities in the ib:.r
program, e
LRE: = the wmodified logical ripple effect measure for
module K S
= C + I CPC(ki) LCM_ 1
K ki - .
ieV A
k Tl
Ck = the complexity of module k.

7.1.2 Logjcal stabiljty measure for proqrams

A measure for the logical stability of a program. denated

by LSP, is defined [YAUBPe] as follouws:
LSP = 1/LREP

where LREP = the measure for the potential logical ripple

effect of a primitive modification to a program LT

n
Z CP(Kk) LREk]
k=1

P(K)

the probability that a modification to module Kk
may occur

LRE, = the logical ripple effect measure of a primitive
type of modification to a module Kk

n = the number of modules in the program.

The normalized logical stability measure for a program,

denoted by LSP", is defined as follows:

Lsp® = 1 - Lrep®

where LREF"‘l = the normalized logical ripple effect measure for

the program

tP¢k> LRE™
=1 k

n
XMD3

P(K) the probability that a modification to module k

may occur

LRE = the normalized logical ripple effect measure

for module k.

7.2 Performance Stability Measure

The performance stabjlity of a mgdule k, denoted by Psk'

is defined as follows:

Ce e T
R B - -

. : - -
1.;"‘&.-_4' I AL IS ARG A

.

-~

»

? Page 197

'. = /

s PS, = 1/PREM ,

¢

- where PREM, is the performance ripple effect measure of a

iﬁﬂ primitive type of modification to a module k and defined as

o PREM_ = I CP(ki) PREB_ .1

Nt Kk) ki

Lk :euk

\

P(ki) is the probability that variable definition i of module K

./:‘_ will be modified, Uk is the the set of all variable definitions

j: in module k., and PRI':B"i is the performance ripple effect of

%

‘-

. modifying a block § in module k, which is defined as

ﬁ: PREB . = The number of performance requirements affected

~

o by modifying variable i of module k.

s

- The performance stability of a program, denoted by PSP, is

& defined as follows:

x PSP = 1/PREP

3 ¥ oo

where PREP is the performance ripple effect measure of a NONCAES
A primitive type of modification to the program and is defined as N
o SRR
_'.. "_A-‘-
P> RS &
g | n Y
L - PREP = 2 [P(k) PREM 1],
[4
k=1

L P(k) is the probability that module kK will be modified, and n

o

s

Page 198

is the number Oof modules in the program.

7.3 Design Stability Measure

It would be more valuable if we can apply the stability
measure at early stages of program development. Therefore, we
have developed a stability measure that may be applied during

the design phase. The design stability of a program, denoted

by PDS, is defined (YAUBZ2c] as follouws:

PDS = 1/7(2 DLREXJ;
x

and the design stability for each module

DS = 1/DLRE
X x

if DLRExﬂ e, or

DS = 1§
x

if DLREx = @, where

DLREX= the design logical ripple effect measure for
module x

=T6 +T TP +I TP’

’ xy
yeJ yeJ x

x

L el i M N Tt Tt iR A M O A e T Tl i A S R T A N L

?! Page 199
G
- Tox = the total number of assumptions made by other
modules about the global data items in pr'
Tqu = the total number of assumptions made by y about
the parameters in R_ .
xy
TP'xu= the total number of assumptions made by y about
14
the parameters in R xy®
pr = the set of global data defined in module Xx.
qu = the set of passed parameters returned from

module X to module Yy, where UCJX.
R'XU = the set of parameters passed from module x to
module y» where UGJ'X.

J = the set of modules which invoke module x.

Je the set of modules invoked by module Xx.

-
™
-,
c >
-1
-,

‘s
1

LA

CERCIRE - - N . s . . - B - e . . IR
Wt P A R L R R . L - . e e R T «
e te Tt . LR RN T e 2T e T . e 2T e e e e e e e T e e .
PR VN - PRI T A SR O PP U LY VAN S GAPE T il WY TADY WP W Gyl W TN Salt TP WA GRIT I Gul Wt Wl Wl Wil AT Yt WAl | e

A AU el

-..
RO
rl il

Page 2080 S

7.4. Module Strength and Coupling Metrics

DO

We have developed the definitions of metrics for module
strength and coupling at the code level, which are presented in
detail in [EJZAB2]. These metric definitions are
approximations of the heuristic definitions of module strength

and coupling as found in the literature on Structured Design

CLMYER78]), and are based on a new technique for estimating the
probabilities of data object interactions. These metrics are '*"
designed to help estimate those qualities of software structure

which affect the amount of effort required during the program]

maintenance activities of functional extension and large-scale

modification.

Module strength and coupling appear to be significant
attributes affecting the modifiability and reusability of
computer programs and should be important elements of future
metrics for modifiability and reusability. Metrics for these
important structural attributes should also improve the
visibility of software structure and provide an objective means
for program managers to evaluate individual pieces of software

or to choose between alternate solutions to the same problem.

A software tool for computation of the module strength and

coupling metrics has been designed for the PASCAL language on

our DEC VUAX11/780 computer. Implementation of this tool is

Page 201 T

nearly complete. Even though the tool is designed for the

.

PASCAL language, our technique is applicable to any ERR
block-structured programming language. Validation and ﬂé
refinement of the module strength and coupling metrics should :;
be performed by correlating <them to their structured design ;ﬁ;;ﬁ

R

heuristics in experiments.

(PR
s
PRI §

In the following sections we will briefly describe our Tj:}
metrics for strength and coupling. The metric algorithms are
based on a simple program graph wmodel and estimates of the
probabilities of data object interactions. This model
characterizes those program attributes most relevant to the

metrics.

7.4.1 Estimating Data Object Interaction

Estimates of the probabilities of data object interactions
are based on a structural distance function, which assigns an
integer value (greater than zero) to each pair of points in
program source text (for one procedure or function) where
definitions or references to data objects may occur. This
function is a count of the number of syntactic levels
(associated with statements) in the shortest (syntactic) path
from one point to the other. If there is a data flow path from
one definition or reference to another, the probability of

interaction is assumed to wvary inversely with structural

R S A A R RS r"A - d?_-l: :q: :_w:;~vj{w-.' vv_;r':‘ AR

Page 282 ..

distance. Actual probabilities associated with an average -}277

execution path through a program are inaccessible to a static

4

analysis tool, \..‘
R

The structural distance function is used to estimate the fjﬁ
probabilities of interaction Dbetween any two data object f{;;]
definitions inside a procedure or function in the following E ﬁ
. A ,.-_J‘

four steps: I\Lii
N

1) A graph model is created for a procedure or function ¢ g

P I NP Y

- .”I

which consists of edges: a) from nodes where data objects are
defined to nodes where they may be referenced, and b) from
nodes where data objects are referenced to nodes where data
object definitions wmay be affected. A distance wvalue is

assigned to each edge in the graph, which corresponds to an

inverse probability of interaction. The distance values are

based on the structural distance function described above.

2) The graph model of Step 1 is simplified to indicate
only direct distance values between data object definitions.
Data object definition nodes correspond to the most important
events in an execution path of a program. Each edge in this
simplified graph corresponds to a pair of consecutive edges
between two data object definition nodes via a reference node.
The distance value assigned to each new edge is the sum of the

distances associated with the two edges from the original

T Y
IR A AT P

Page 203
graph.

3) The transitive closure (or shortest-path) of the matrix
of distance values associated with the graph from Step 2 gives
the Data Definition Distance Matrix (DDDM) +for a procedure.
The closure process finds all direct or indirect interactions

between data object definition nodes.

4) The DDDM (from Step 3) for a procedure is simplified so
that it may be included in the computation of the DDDM’s for
its calling procedures. Simplification is done by removing all
nodes associated with local variables, and by summarizing all
data interactions for each parameter and global which is
referenced or defined in the procedure with a single input
reference and a single output definition, Steps 1-4 are

repeated until the DDDM’s are constructed for all procedures.

Note that the above steps must be applied to procedures
and functions in a specific order so that information is
available for a procedure when it is referenced in one of its
calling procedures. Any forward referenced procedures in the

source text require special iterative processing.

R I
. .
e IO I

CeaTe e e e, e e N VLI S = e e '._'..'-_'.Q.-._._-.-
P R R A A R R e I R O A Ay S A P Ly R NS

PR y

RN M AR AN A S S A A A A T A MR R B A I AR e i S it i St i A S VL S g i AT S g A e cen can

Page 2@4 . 0
7.4.2 Definition of Intra-Module Strength Metric -jffj

We consider a module here as any invocable procedure or :‘T];
function, and define its strength in the context of Structured jj¢fﬂ
Design, as the level of interdependence between its .ﬁﬂ
subcomponents. MWe use this definition to construct a strength S

metric for a procedure or function from its DDDM.

]

Each element of a DDDM is interpreted as an inverse

P
oy
oy
- d

probability of one data definition node affecting another.
Since we consider the data definition nodes to be the most
significant nodes in the procedure (in our view of a procedure
as a means to alter program data), these nodes are associated
with the ’module subcomponents’ of the strength definition.
The ’level of interdependence’ between subcomponents is
interpreted as the average probability of interaction between

distinct pairs of nodes.

Oour strength metric for a procedure A is denoted by SMCAJ,

and is defined as the average over the reciprocals of the
elements in the upper triangle minus the main diagonal of the

matrix which is the minimum of the DDDM{A} and its transpose.

Two simple examples illustrate the range of values

2

attainable using SM on procedures of clearly different

strength: 1) SM = 1 for a procedure which initializes the

S0 L dags L9 Y%

- value of its single output parameter, and 2) SM = 8.2 for a

oy

):'. _4‘-
. e ¥ ‘.'A \J
. —
" N
A = ‘4
\':\ 1
S o
R Y
n_'.‘:' R
\.:\,- -
X R
i.. 04
. b

NS . .~ e . R R . . N
L e s . P e IR, S e . . L . IR .
WP TUNOAT AOERA P P OV TP R A e e e T e e - R l

R AN Bag SN o S ti A g o b APl SIL S AL L S SR A Bl N MR oY

Page 205

procedure which independently initializes 3 output parameters.

7.4.3 Definition of Inter-Module Coupling Metric ijl
) .-"_l*
Coupling between two modules in a software system is {f;
T
defined, in the context of Structured Design., as the level of _”’i
- o s - 9
- direct data object interaction between two modules. We use R
-'\-:) .-_..
T this definition, along with discussions in the literature about f{}j&
the way in which different situations affect the perception of
AL data coupling, to construct a coupling metric for any two
'f modules in a software system.
.- There is some form of data object interaction between
.:?‘ virtually every pair of modules in a system, MWe examine only
direct coupling between procedures and functions, since the
lowest level of coupling is described as having no direct
'Qil coupling. Direct coupling only occurs between a procedure and
n its immediate subordinates (those procedures which it may call
- \'
? directly), and between any other procedures which share global
. data. When the DDDM for a procedure A is computed, all q
-~ ™
. parameter coupling information to its subordinates is RN
St available, as well as all global coupling information ﬁ.f
- : =
s associated with the global data declared within procedure A, ; }ﬁ
g g :;'1
v S
. IO
o ST N
N
- AR
L i -.}
- A
. R
° o
e RO
_\‘ - .. ~ . - 9
. . 3]

b - .

e Page 206

. A
- {.fq
. An Inter-Module Data Object Coupling (IMDOC) wvalue, which ;,}
L.~ RO
i is associated with each ’edge’ of direct data flow between tuwo SR
Ly o

f?ﬁ procedures A and B will be defined later. One of two different

;:f} mechanisms, parameter coupling or global coupling, may support

each ’‘edge’ of data flow:

Coupling (C) between procedures A and B is defined as

follows:

C(A,B) = Sum of IMDOC(e) over each edge (e) of direct data flow

between A and B.

The IMDOC value associated with each edge (e) of direct
data flow between any two procedures or functions is defined as

follows:

DOC(e) PR(e) DR(e)
IMDOC(e) = ’
DDDM(e) AIP(e)

;f where DOC Data Object Complexity, such as an array is more

complex than a simple integer.

5; PR = Parameter Rating, such as a global variable has a
-

higher value than a parameter.

M —
AN W R R AT R T W e WL .’_‘_-_u‘ﬂ'_vv_..‘ﬂ‘q<-—f'_1,ﬁ':iN“..Y.--.‘T:"_".':"'.

Page 287

DR = Data Rating, such as Chapin-type rating for

’through’, ’data’ or ’control’ objects [CHAP791].

AIP = Average Interaction Probability to other elements

involved in the coupling.

Now, let us discuss the last four functions DOC, PR, DR
and AIP: An increase in data object complexity (DOC) increases
the coupling associated with an ’edge’” of direct data flow
between procedures. This feature is incorporated in the
coupling measure in order to take into account of the effects
of stamp coupling and in recognition of the fact that a more
complex data object has the potential to pass more
’information’. The DOC function is defined recursively

according to the structure of the data object.

There is significant experimental evidence to show that
direct global coupling renders programs more difficult to
modify than direct parameter coupling [DUNSB88]1. The parameter
rating (PR} function has value 2 for global edges and value 1

for parameter edges.

‘Control’ objects are understood to contribute more
inter-procedural coupling than ‘data’ objects. ’Through’
objects, which are not directly defined or referenced by one

(or both) of the procedures involved, but passed through for

. g . CL T

NI

¢
»
gt

®
hsinm Koa o s’ A

AP

- :‘-i
4
.7
e
L .'-
@

e e a A e bde ded

.
‘
—

1
'.' '—"." ’ . ' '..-' S 2 N

I
. e
'
13 .
L
L
-—ala

o d

A
L
1

d

!

A
."1

Page 288

use elsewhere, contribute less coupling than ’data’ objects.
Chapin [CHAP79]1 defined and discussed ’‘control’, ’data’ and
’through’ objects and suggested heuristics for identifying each
type. An automatable means of roughly identifying objects in
this fashion has been defined, and a data rating (DR) wvalue
assigned to each type in order to take into account differences
in their contribution to coupling. The data rating function
has wvalue 2 for ’‘control’ objects, 172 for ’‘through’ objects

and 1 for ’data’ objects.

The grouping of data objects implied by the DDDM probably
affects coupling between procedures. If data objects interact
closely, they are probably related in function, and contribute
less to coupling when they are involved together in direct data
flow between procedures, as in the concept of data abstraction.
This relationship is made explicit in our measure of coupling
with the average interaction probability (AIP) function. AIP
is the average of the reciprocals of the distances (interpreted
as interaction probabilities) between the source node (v) of
the ‘’edge’ wunder consideration and all other source nodes of
edges 1) which contribute to data flow between the same two
procedures, 2) which are all either parameters or globals

according to v, and 3) whose source nodes are located in the

same procedure as v.

PR
A s 2

s

s

!
i

..
: "‘l
AP
g
N IDOL

v s

e
e e s
PPV

Page 209

7.5 Validation of the logical stability measure

Due to budget constraints, we have performed only a
limitea number of experiments for wvalidating the logical
stability measure at the procedure level. The goal! of this
valigation is to show that there is indeed a certain
correlation between the proposed normalized logical stability
measure computed for each procedure and the reciprocal of the
average number of code changes needed to keep <the program
consistent and correct caused by a primitive change in that
procedure. Therefore, an experiment was devised to quantify the
average number of code changes needed for handling the ripple
effect caused by actual modifications for procedures in a
program. Then, the results were compared with the measures

applied to the program.

7.5.1 Experimental Procedures

We will now describe in detail the experiments used to
conduct the wvalidation, how programs were selected, how
modification proposals were generated for these programs, how
the modifications were quantified, how the \logical ripple
effect of each modification was measured, and the statistical

analysis used to determine the correlation figures.

Page 210

7.5.1.1 Progqram Selection

A set of programs was prepared for the experiments. These
programs were restricted to PASCAL programs because the data
flow analysis tools we have developed is for PASCAL programs.,
although the techniques are applicable to other programming
languages. We also limited the use of pointer typed data in the
programs because, using existing data flow analysis tools, it
would produce imprecise data flow information which will affect
the measures generated by the experiments. The length of each
of these programs was around 1280 1lines of code and each
program containead more than 28 procedures. More detailed
information about the programs actually selected will be given

in Section 7.5.2.

7.5.1.2 Modification Proposal Generation

Specifications for each procedure were generated from the
program code and considered <for possible modification. Many
realistic and feasible modification proposals to these
specifications were generated and evaluated for each procedure.
In this process, we chose those specifications which were
“local” to a particular procedure as the modification target.
Since it was not always possible for all procedures to have

meaningful local specifications to be modified, only those

Page 211

procedures which can satisfy this requirement were selected SO

that all (or most) of the primary modifications would be within - J

that procedure.

.
e
A_..A" v)

Pl

12
2!
'

Hd
Tey
.
A

a Al

7.5.1.3 Quantification of the RealiZzed Modifications

o

) B
TR
M .)
W m.‘k"AJ)

When the moaification proposals were carried out at the O

code level, three persons were involved in this process. The

first person was the author of the target program. All the

| S T

modifications were performed by the second person, and then

were checked for correctness and optimality by the author of

F
Je l"{‘ -:'.-. . ",
.'.'.'.(';" K l"r S

the program and the third person. We need to restrict the

lengtn of the programs used in the experiments because we want
to be sure that every modification could be correctlg handled
Dg one person. The number of code changes needed for each
modification was qQuantified as the minimum number of ’‘tokens’
that had to be deleted from or added to the original program in

order toc implement a particular modification proposal.

7.5.1.4 Actual Ripple Effect Estimation and Normalization

(1) Distinction between primary modifications and the

modifications caused by the ripple effect : All modifications

made to the procedure, where the specifications to be modified

L T T Iw FTw T -~

Page 212

were generated, were viewed as primary modifications. All other
necessary modifications outside the procedure were considered

as a result of logical ripple effect.

(2) Normalization : For the i-th modification proposal in
procedure M. the above two types of actual resulting
modifications were both quantified according to the token-count
method. Let <the minimum number of tokens involved in the
primary modification be P.» and the minimum number of tokens
invalved in modification corresponding to the other type be Ri.
Then we use Niz (Ri+Pi)/Pi as the average number of token
changes caused by one primitive change (to a token) in the code
level of the i-th modification proposal. Suppose we have n
modification proposals in procedure M. Since they may vary
greatly in the oifficulty or efforts involved in making the
change, we use their average to estimate the stability of the
module. Therefore, the estimated normalized stability measure

»
Ls" for procedure M is calculated by

x n
LS, =1 /C¢Z N)7 n3
M . i
i=1

This value has a range from 8 to 1, with 1 as the optimal
stabilitg which is exactlg the same as the proposed stabilitg
measure. This result will then be used to correlate with the
normalized stabilitg measure calculated from the original

program code.

. B
PP BPRrT |

'

i
"

N
»

4 4

' I

M N A NN

s

»
D,
.

v A\

o .'."-"‘."'

. A
. v
.]
. .

Page 213

7.5.1.5 Statistical Methods Used in Analysis of the Results

We used Pearson product—-moment correlation (r) to analyze
our experimental results ([(BRUN6B]. The bDasic computation
formula for the product-moment correlation is

2 2

ro= ENCZXYI=CIXICZIYII/ZCENCEIX)~-(IX) 25,172

JEN(IYZJ-(IY) b

where N = the number of scores for the pairs (x,y)

IXY = the sum of the products of the paired scores

The Pearson product-moment correlation has been widely
used to determine if there is a relationship between two sets
of pairea numbers. The significance of the resulting
correlation may be further tested. Two different procedures
have been used to test the hypothesis that r=® [BRUNG6B81. If the
sample size N is 38 or larger, a critical-ratio z-test can
easily be done. In this case, z = r(N-i)iIZ is calculated as an
index to find the significance of <the correlation. If the
sample size N 1is 1less than 30, a slightly more complicated
t-test should be done. In this case, the degree of freedom df.,
and the index t = r[(N-Z)/(i-ra)31/2 are calculated to

determine the significance of the correlation,

7

LRI

.
P

N
. Y4 .
P ’ v
P - P A)

ORI o) S S S AL A N i M oA AC A SO i it St s A g A AR AT R AR M i DB DACHA S S S Iy
- N Y e . . R e N coY . R TN A R A oL

N =~

Page 214

7.5.2 Analysis of the Results

Six programs have been examined in the experimental
process oOf the logical stability measure wvalidation. The
average length of the programs used is arounad 1200 lines of
PASCAL code. Each program has between 20 and 47 procedures. The
logical stability measure for each procedure in these programs

is listed in Table 7.1.

Thirty modification proposals have been generated and
applied to 28 procedures. The procedures marked with "x" |n
Table 7.1 are those which were selected for experimentation.
Table 7.2 shows the correlation of logical stability measure
versus the experimental result for each modification proposal

on those 28 procedures. In order to show that our sampling was

representative, the means and standard deviations of the
logical stability measures for modules selected in each program
have been calculated. AS shown in Table 7.2, they are quite
close to the means and standard deviations calculated from the
logical stability measures of all the modules in individual

programs.

The individual correlation and the probability that the
hypothesis of the actual correlation being 2zero is true are both
significant and are listed in Table 7.2. The overall

correlation coefficient calculated from all the results

PrTTTTIS E T .

o T I W N ¥ SAEEY

~ TWLTTR Y 8
AN et~ gl en Jeut cset ama e oene S S AEIMEL il Sai Ml st MRk CRetdde 2 P Tl Rat S R ol .".'_‘r_l"ﬁ'._‘.'!,'_l,"'. T TR

Page 215

(estimated logical stability measure based on our experiment)
shown in Table 7.3 against our computed logical stability
measure is ©.6338. The probability of the actual correlation
being zero is less than B8.1%. These facts indicate that there
is indeed a correlation between our computed logical stability

measure and the experimental results.

7.5.3 Discussion

The main purpose of this experiment is to show that there
is a significant correlation between the proposed normalized
stability measure computed faor each procedure and the
reciprocal of the average number of code changes needed t0o keep
the program consistent and correct after a primitive change has

been made to that procedure.

Although the result is positive, refinement of the
experimental process should be implemented provided that a

better environment and better tools exist.

1) The number 0f code changes is currently calculated by the
changes of ‘tokens’. When a statement includes a procedure
or function call, it should have a suitable weight to

reflect the code changes implied by the call.

.

A T R Y VA N UL U U

T N "-" . .‘.' S R e

." LY ‘. LT et ..-v"‘ ‘-‘Q '... 'At *u ‘..h-"‘ ..“ - \'\ L \“. .’“ h M. h ‘\

R T e e RN \
WL R P Ry RV W oV a0 nﬁ.:.. e .:]‘I‘

NOMNOAM AR 4 NG
2,

et v N NI
K A et
vl N IR

T T, LY e Y
‘.)

Page 2158

Table 7.1

Proqram 1:

Logical

stability
target programs used

measures

(A pretty printer for PASCAL program stored in pars

form : 1735 lines)

Modulname

PROGRAM
GETCHAR

IDTYPE

»*
WONODALEWN-

19 CHARTYPE

11 GETSPECIAL
12 GETNEXTSYM
13 GETSYMBOL
14 INITIALIZE
15 STACKEMPTY
16 STACKFULL

17 POPSTACK

18 PUSHSTACK

19 WRITECRS
2@ INSERTCR

x 21 INSERTBLAN

22 LSHIFTON
23 LSHIFT

24 INSERTSPAC
25 MOVELINEPO
x 26 PRINTSYMBO

27 PPSYMBOL

28 RSHIFTTOCL

29 GOBBLE
3@ RSHIFT

x%x Summary

STORENEXTC
SKIPSPACES
GETCOMMENT

GETIDENTIF
GETNUMBER
GETCHARLIT

Complexity

13

UNNUANNBNARARNOr NN RRRNNNNANNDWAND

115

L.R.E. Factor

31.94783
97.14286
94.23877
93.26087
60.19512
635 .00000
67.69566
56.26316
S52.985263
82.00000
58.65116
S2.280e0
59.37879
90.12000
7S .00008

7.00000
72.17647
73.00000
38. 12500
71.00000
37.09091
S52.38769
60.85714
635.92857
24.50000
43.53846
62.72549
42.60000
45.94118
S7.12800

6.94572

Logical stability measure

for each module of the
in the experiment.

e-tree

8.60891493368
0.0857142806
9.1632187496
9.1542533040
8.4504771829
@.3652173877
8.350472569S5
@.49336368573
2.5125859188
9.2260869741
2.4725986123
8.4852173924
0.4662714005
8.2876521516
9.3304347992
8.9217391610
9.3549872637
8.3565217257
8.6423913240
@.3652173877
2.6339921355
8.5016722679
8.43534161687
@.40@86211162
8.7695652246
8.6840133834
0.4110826850
8.6121739149S
8.5831202269
@.4598261118

@.44819146092

. Ly PR T T T .
. . A
PR I 35 W U U ST U

i

(Table 7.1 -

Program 2 :

IR R S B

continued)

DA AR o S SN AN A I it tae i it it Ao e At Ao A |

Page 217

(R pretty printer for PASCAL program stored in parse-—tree
form : 1115 lines)

Module name

PROGRAM
PF10LD
PF1iREAD
PF1CLOSE
MOVE
ADDTOKEN
SYPARS
CNSTPT
CNSLST
VARTYP
VARLST
TYPTYP
VARBPT
TYPEPT
TYPLST
BKPARS

VONOURAEWN -

*
T T O L
ONOOPUALUNRE

EXPLIST
VARUSAGE

NNNN -
WN=®\

BEDLST
STMTLST
STMPARS
ASLST
PSLST
IFLST
COLST
WHLST
RPLST
FTLST
VLST
PARLST
BCKLST

WWWWWWUNNNNRNDN
AUDAUWN=OWVO~NOOAWNL

Summary

EXPRESSION 4

ACTUALPARM
FUNCTIONCA
CONSTUSAGE

complexity

NOANR»PUNNFP WO UNLMONW RN DUNNWLANDODGEO W

: 129

L.R.E. Factor

56.908909
2.080000
9. 00000
6.0000e
0.90000
@.00800

18.47368
9.81818
5.35897
7 .808ae
19. 186868
4.535844
18.71429
19.62500
12.27273

35.71429
8.59140

44.68758@

27.35294

28.17241
17.38769
@8.61818
0. 0000e

20.82e51

49.11111%

41.77778
18.87692

47.14286

44.23404

S2.88689

33.57143

41.68421
S.@s86e2
1.47826
19.76923

20.65210

Logical stability measure

9.5355884433
1.00000000008
1.08000000000
1.0000000000
1.0000800000
9.9844961166
2.88780088723
9.90886342292
9.9041939974
8.9240310192
@.86822582960
9.9826477337
6.9891916084
8.9898837376
9.8893586993
@.71339312680
0.7786893192
9.9383294897
@#.7414500713
0.750608147085
8.8583279686
9.92%54484386
9.9922488583
8.7610812763
8.59608379243
8.6683893204
9.8443649411
8.6198476418
©8.6183407903
8.5822566748
@.73208044041
8.6613627876
8.9297765493
8.94208289993
8.79248660880

8.682153320831

L
Tl

~

Page 218

(Table 7.1 - Continued)

Program 3 :
(A theorem-prover : 108109

Module name Complexity

PROGRAM
INITIALIZE
WRITEARGUM
WRITELITER
WRITECLAUS
JOINNODE
JOINLITERRA
JOINCLAUSE
READINCLAU
READINARG
11 READINLITE
12 READINSET
13 COPYARGUME
14 COPYLITERA
15 COPYCLAUSE
16 COMPAREARG
17 COMPARELIT
18 COMPARECLA
19 REFUTATION
%x 28 DELETELITE
21 CHECKDUPLI
22 RESOLVE
23 INITIALIZE
24 SEPARATEVA
25 RESTOREVAR
26 ULTVAL
27 COLLECT
28 COLLECTF
29 STARTCOLLE
30 MATCH 1
31 UNIFYKEYLI
32 APPLYSUBST
33 FORMRESOLV
34 FINDRESOLWV
35 SCANRESOLU
36 GENERATE

CO~NOOUNLEWN»-

[
Q

ADUVUAODOUONUYUODAWWUWNWNOULOLNNNNWBLANUALDWWW=NA =L

x% Summary 153

P ol At At i G Nl s el o . e At i ATl A Sl il Sl Sadh A Man ~ Al it -2¢

lines)

L.R.

E. Factor

1.600080

9.900000

0 .9200800

3.66667

1.9@989
136. 808000
136.00000
147 .08800
111.27273
80.16129
87.18182
198.62921
121.428S57
118.73333
122.923e8
128.1176S
126.8518S
182.85714
113.33334
128.41379
118.8080808
183.78947
139. 00080
136.00009
136. 00800
135.00@808
128.88334
1900.26144
97.85714
122.49580
117.92808
122.14865
199.29358
93. 80000
64.76336
26.43478

6.37374

(A I I ML APE et -

T

Logical stability measure

@.9633986958
@.99346403527
9.9673282634
0.9629629858
@.9809863567
0.8915032625
8.991503262S
8.81960784290
8.25311940891
0.4433982502
8.41711229@9
8.2638613582
8.1867413521
8.2188932734
@.183389298e2
0.1168781519
@.1578318132
8.38135873432
8.22635794873
8.121478498€
8.1777777672
8.3028295581
8.08784313679
@.099135032629%
9.891503262%
@.8915032625
8.1628539562
@.2858729362
8.3473389745
0.1340143681
0.1966013312
8.1493552327
9.23529831529
8.3542483449
8.5244225264
0.8218738693

9.3332012892

NRE T

+ et T
W’ ot
. P .
Ot Tl e T
et et
S - ‘
ASS Sdooa L4 g

v e 5 4
PR RPY |

-
N e o [
AN e
N
) PP
I .
PP PRI

|

o il ala g)


~~~~~

T
. S
o ]
’ Page 219 s
\'.“ . :
n =
(Table 7.1 - Continued) n
> Program 4: S
a (A time sharing operating system simulator : 1744 lines) o!
-j_—f-’ Module name Complexity L.R.E. Factor Logical stability measure
e 1 PROGRAM 8 115. 75000 8.5564516187 g
- 2 MTHRANDOM . 9.200800 1.0000200000 -
L) 3 CURSOR 1 9.20008 ®.9964157939 bt
; 4 JANRESET 6 204.03847 8.2471739650 A
-~ * S REFRESH 26 9.31923 9.9056658149 R
e * 6 DISPLAY 4 8.54412 8.9837128520 "
o 7 FINDLOC 3 230.90000 9.1648745537 -
o 8 ERRORCARD 3 5S.60200 9.7899641991 ~¢
N 9 BINARY 14 217.01587 9.1719861031
G 18 FINDDATA 5 264.00000 9.0338422995
o 11 CHECK 4 264.00000 9.93942650856
g 12 JOBR 11 218.5%2554 9.1773278117
3 13 BATCHR e 147.95062 9.4410371780
L 14 READCARD 6 245.11111 9.0999601483
o ® 15 CHECKMAIN 3 138.18182 9.4939719439
, 16 GENMEM 4 229.00000 8.1648745537
. 17 GETSID 2 231.00000 9.1648743537
- 18 GETRID 2 231.020000 8.1648745537
- 19 GETTIME 1 232.00000 9.1648745537
* 20 ADDSECOND 1 212.689999 @.2333333492
21 REMOVESECO 1 200.16667 2.2789725065
S 22 ALLOCATECP 3 196.81250 8.2838261724
o 23 RELEASECPU 1 164.00000 9.4066021781
B ®* 24 ADDRJIQ 1 215.095263 9.2256178260
s 25 ALLOCATEMA 2 1968.54839 0.2811886072
- 26 REMOVERJQ 1 197.27272 ©.2893450856
b 27 RELEASEMAI 2 202.89473 8.2656182777
o 28 ALLOCATE 6 63.36364 9.7513847947
= 29 ALLOCATEIO 2 293.39999 9.2637993097
AR 380 RELEASEIOR 1 149.39999 9.4609318372
. 31 WALLOCATEX 2 2093.39999 9.2637993097
: 32 RELEASEIOW 1 149.39999 9.4609318972
= 33 ADDIORQ 1 212.44444 8.2349661589
34 REMOVEIOQ a 189.24138 9.31089627962
35 ADDIOWQ 1 212.44444 8.2349661589
x 36 IOINTR 6 188.88689 9.6168857217
37 IOCHECK 10 179.48215 9.3208525181
38 CONVERT 17 73.00000 9.6774193645
39 CONVERTREA 12 90. 20000 9.6344085932
-®. 4@ PUTC 2 74.09091 @.7272727489
- 41 CLEANRBUF 2 69.020000 9.7455197573
L 42 PRT 2 S1.000008 0.8100358248
o 43 CSREPORT 35 33.45397 8.7546452880
. 44 TERMREPORT 13 56.29134 8.7516439557
o 45 BATCHREPOR 19 7S.75000 9.6603942513
®. % 46 GENCOND 4 187.01819 8.3045942783
L 47 UPDATE 14 129.15277 ®.408690876014
" xx Summary 279 18.52915 8.4362154007
®




Page 229

(Table 7.1 -

Program S:
(An assembler

Module name

Continued)

823 lines)

Complexity

L.R.E. Factor

%
VONOOQRLWN-

4 . L . .« 1 0 . v »
@ S e ST
N 1 » . PO Ve
@A e
R e
B DR Y . . s . - . .

s
L

e Ao

LN

v
Pt e

" .'

v
St LR
. \ ¢

-, .
Pl B R

Sl

R

PROGRAM
ERROR
PARSER
OCTALNO
CHECKMODE
ENTERDECK
ENTERSUBNR
UPDATESUB
ENTERENTRY
SEARCHSYM
ENTERSYM
PRINTSYM
PRINTDECK
PASSONE
CODEGENATR
NEXTLINE
FINDIDENT
PASSTWO
CHECKCODE
NEXTCARD

summary

94.01389
86.50000
94.67857
268. 080000
g7v.11111
9.14286
77.39474
4.80000
9.18182
S7.00000
99.00000
1.47059
1.83175
2.0220820
2.08000
69.67742
72.94643
11.84210
33.00000
8.46749

Wr = N W

w
NNWOUNNLNK

N

[y
[
W

12.88153

togical stability measure

0.1591691375
8.2256637216
2.8470922589
9.7879645991
2.2114068521
0.9182401733
@.27969259802
9.9557521939
9.90989542091
8.1158442362
9.1158442362
8.9692868590
8.9554712772
B.9823008776
©.7168141603
P.3391378522
0.2836599350
8.86B86539531
8.6902654767
@.73837616840

8.5586465597

hh.‘
L

-
o
NERRS
-
®!

' 0
'
. PP
de' o 8" £ 4" s 1w

N .
P YN
R T sl e
.u AT .
.

'
D RPR B S

- Vo v
. Sy
. .1.,“‘,.f

L)

.
. R
[P S S G W W )

St
PN




W ¥ W e T T T TR TSI LY e Y YUY Y

D A I A e e T B N R A AR e I R e T I A P A S A

Page 221

BN (Table 7.1 - Continued)

(! Program 6:
- (A time sharing operating system simulator : 684 lines)

~‘ Module name Complexity L.R.E. Factor Logical stability measure

1 PROGRAM 9 57.83133 ©.3038483392
2 MTHRANDOM ] 9.00000 1.2209000000
3 ENTERIOQ 1 608.78571 28.3%563988209
4 IOREAD 1 1.08000 8.9791666865
S IOWRITE 1 1.00000Q B8.9791666865
6 RELEASEMEM S 48.97561 8.5219874081
7 FITMEM 11 57.24299 ®.2891354561
8 EXCEPTION 18 13.43080 8.6726042032
9 TERMINATE ) 23.39824 8.7842683363
18 ENTERMEMQ 2 83.00000 8.114583313S
11 LEAVEMEMG 1 66.40000 0.2979166508
12 ENTERCPUQ 1 84.00000 8.114583313S

% 13 ASSIGN 4 9.00000 8.9583333135 e

14 LEAVECPUQ 2 68.50808 9.3489583135 s;=f0?

x 15 SEIZECPU 4 81.00800 @.114383313% Tl

16 COMPETECPU 4 73.65386 8.19111394886 S

17 LEAVEIOQ 2 83. 000200 9.1145833135 R

18 SEIZEIO 4 79.52728 8.1299242377 e

x 19 BODY 10 24.25000 8.643229186S ]

28 CLEANUP s 66.97222 28.2502893806 IR L |

21 BATCHREPOR s 3.60784 8.9183349447 SR

. = 22 CARDIN 1 84.00800 @.114%583313%
N, *x Summary : 96 8.87312 8.4594855905




PP S e i}
Ve e e

e

o 8 .
s 8 0,

’

4

.".'.'.'.'

. l' M
L IR
A 8

S

.

Page 222
Table 7.2. Correlation analysis on logical stability
for individual modules.
Program 1:
Module Number Logical Stability Measure Experimental Result
2 9.88571 8.43396
S @.45848 2.48000
6 @.36522 8.33333
8 0.49336 1.800880
21 8.63399 1.0000809
26 0.60401 1.0800880
K The correlation coefficient is @.7221 with
gf - 4, t = 2.0878
P (the actual correiation being zero) < 16%
KK The mean of the logical stability measures is 8.43880
with standard deviation ©.18193
(The mean for all modules in the program is B.44810
with standard deviation ©.17988)
Note : The notation P(x) means the probability that x is true.
Program 2:
Module Number Logical Stability Measure Experimental Result
6 @.98459 1.000800
9 a.98419 1.0200009
1z 8.9026% 1.08000
K K The correlation coefficient is @.9966 with
af = 1, t = 12.1477
P (the actual corretlation being zero) < Sx%
ORK The mean of the l1o0gical stability measures is ©.9304%
with standard deviation 0.038227
(The mean for all modules in the program is 8.839010
with standard deviation 8.13609)
Program 3:
Module Number Logical Stability Measure Experimental Result
29 9.12148 @.19444
L 2 2 8

W WY T T Y T T T AT S T MY TN T A TAY L YOY YT et a Y VWYY yY Oy o,

(The mean for all modules in the program is ®.3332@
with standard dewviation 0.29542)




Page 223
.\.
(Table 7.2 - Continued)
(! Program 4: - ;l
Module Number Logical Stability Measure Experimental Result ]
S 8.908566 @.94186 <
6 8.98371 8.62162
15 8.49397 1.00000
208 8.23333 8.48971 .
‘ 24 @8.22562 8.35210 ) u;]
\ 33 8.23497 @.408749 T
36 @8.61688 1.90800 LT
46 a.30459 1.80800 )
XXk The correlation coefficient is 8.4244 with .fﬁfU'
Y df = 6, t = 1.1480
a P (the actual correlation being zero) < 25% .
- The mean of the logical stability measures is @.49984 N

with standard deviation 9.28876
(The mean for all modules in the program is @.43622 S
with standard deviation 8.27158) S 4

AR
Program S: L
Module Number Logical Stability Measure Experimental Result Rt
5 9.21140 8.35290 SRR
11 9.11500 0.45630 T e
19 2.69030 1.080000 PRI
L) 8.73a848 8.54540 IR
- The correlation coefficient is ©.6866 with - 'ﬁi
af = 2, t = 1.3354 RS
P (the actual correlation being zero) < 38% T
T4
g o The mean of the logical stability measures is B.43678 *‘"!E
with standard deviation 8.27685S e
o (The mean for all modules in the program is ©.5586S e
oy with standard deviation @.34267) B
o
Proqram 6: RO
v Moadule Number Logical Stabilitg Measure Experimental Result ' ».“
4 8.97917 ®.50000 RS
s 2.97917 1.00000 SO
13 8.95833 1.909000 RS
15 ®.11458 8.46591 R
19 9.64323 9.33229 .
P 22 8.11458 2.25000 o
RN
A The correlation coefficient is ©.6971 with Tl
af = 4, t = 1.9444 R
P (the actual correlation being zero) < 15% e
N N
° —xnw The mean of the logical stability measures is ©.63151 Y
with standard deviation 0,3836S N
(The mean for all modules in the program is ©.45949 e
with standard deviation 8.32674) S
-
® o




NI TN TRV AN TP IRTRN T WTELTAT ST TS MERADARERA A A A AN A 0 A% Mutm Bn A Bon e At Bt Bute Shees i Jnae SAar R e i A i Iy A VRS B vl a g

-

L
| PP

Nl LU

Ty
BT
. [ .
. ATV
. s 0l
. PR

Page 224 Lo
RS
Table 7.3. The summary correlation analysis of logical stability o .
for all modules in the experiment. o
0!
Program Number Logical Stability Measure Experimental Result lifj
1 @.88571 @.43396 .;g}
1 9.45848 2.400008 Y
1 e.36522 8.33333 e
1 8.4933y 1.900080 ]|
1 2.63399 1.80000 L
1 2.60401 1.00000 j{fﬁ
2 @.98450 1.90000 T
2 8.90419 1.09000
2 8.90265 1.80000
3 8.12148 8.19444
4 @.38566 @.94186
4 ©.98371 0.62162
4 8.49397 1.00000
4 @.23333 2.48971
4 8.22562 2.352180
4 0.23497 8.408749
4 ®.61688 1.900080
4 8.30459 1.90000
5 8.21140 8.35290
S 8.11500 8.45630
5 9.69030 1.00008
S @.73848 8.54540
6 8.97917 8.50000
6 8.97917 1.00000
6 8.95833 1.00008
6 9.11458 8.46591
6 8.64323 8.33229
6 8.11458 @.25000

x%x%k%x The correlation coefficient is 0.6338 with
af = 26, t = 4.1784
P (the actual correlation being Zzero) < ©.1%

xxx%x The mean of logical stability measures is @.53859
with standard deviation 8.31947
(The mean for all modules in all programs is ©.50671
with standard deviation @.30872)

e 2 TR

.
P
. . . .
D

Dl

A A
R SR AN

Lal 20 g odaade A ST T 7n 20 T AAEY
Vot a st ‘
L. .“.-'x‘-

I.I"

AN

- Sl
s s el eai s



A A YL S IPR Be Bron i e i Nt e " /e Sl SN Sl S Bl S EAGAA IS AR T A A AN Al A S et A aC gt ML gl GASE SR S e Bl L AL S ".f.'.?

Page 2293 !*~j!ﬂ

2) Due to the limitations oOf existing data flow analysis

tool, we have to limit the use of pointer typed data in

the programs to avoid imprecise data flow information. We

hope to alleviate this constraint later on.

3) The experiments are developed on the procedure level
partly due to budget constraints. Experiments on the
program level will be more realistic and valuable, but

will require more manpower to perform the experiments.

4) For large scale programs, a more efficient tool is needed
to calculate the proposed measure of the program

stability.

7.6. A Unified and Efficient Approach to Logical Ripple Effect

Analysis Used in Metrics calculation

Logical ripple effect analysis is required in computing
the logical stability metric for modules and programs

(YAUB@el. Theoretically, logical ripple effect analysis has to

At ey

be performed for each variable occurrence in the program to

U

reveal the logical ripple effect. Therefore, the efficiency of

the 1logical ripple effect analysis technique becomes a prime

L A aui s e s o ol g
TV LI TY

factor affecting the usability of the met- - . The logical

ripple effect analysis technique presented in Section S

Pl a0
L -

ha %_ow o s g g

Rl

e

T .

) - N - -‘-...- ."-4 -'-' - '..> '- ! B LT . - o - - 0. IR - P P IR - B . . - .~
I I I I AP AP PRI S S PR i PRI T PR VLT PRGN, VLT R L PO PR PP S, PN TIPS VO S P S Y.




SAuAR
L S
A

v alea
el

I &

¥
R A N

v v e

h Ty e T

T e

LR R

v
S

Page 226

emphasizes accuracy in identifying logical ripple effect due to

given program modifications rather than efficiency in
identifying logical ripple effect for many program
modifications for statistical purpose, andg hence is not

suitable for validating stability measure, especially for large
scale programs. Trials using “"student projects'” or small
demonstration experiments are not acceptable representations of
the nature of the dynamics encountered in the development of
large-scale software systems. Therefore, it is desirable to
have an efficient way of performing logical ripple effect

analysis.

Software quality metrics are more wusable if it can be
calculated in the early stages of the program life cycle
[KAFUB1]. sStrictly code-based metrics provide only an
after—-the-fact ewvaluation of the quality of the software
structure. Such indications may come too late to correct any
structural deficiencies in a program that may already have been
completely implemented, possibly at great cost. Typically, it
is 100 times more expensive to correct errors in the
maintenance phase on large projects than in the requirements
phase ([BOEHB1]. Therefore, it is also desirable to apply the
ripple effect analysis technique during the program design
phase, so that data-flow oriented predictive software quality

measures may be developed and caiculated at that time.

e

§
K.

oot a
PERN

L T
. P
. e
.' t
LSS

Lo
' ’
[N YO ay SNy O )

Al




LU A SR e e b S e B B A e A RS Tt I Sl At St e e ol i O i

Page 227

b
= 7.6.1 Fomalization of logical ripple effect

We will discuss logical ripple effects caused by only

. s

define-preserve-use type data flow propagation as illustrated ffﬁf

Al 2 s

in Fig. 7.1. That is, in program execution phase, only those ?"'f*

T
LIV PO Wy

ripple effects caused by using data items which were defined I

somewhere else previously and which may be preserved up to the R,

¢

S
2

. .L;“ *

and consideration of logical ripple effect in program

‘ point where the usage occurs. This is the common understanding -
\
: modification, and it is by no means a severe restriction.
Y
3

A is used to define B

There exists a control path

along which B is preserved.

N/

B is used to define C

Fig. 7.1 AN example illustrating that variable A may cause

potential logical ripple effect on variable C

Let PP be the collection of all procedures in the

program. Let VUV be the set of all variable names used in the

ot
. N IR
N PP B
. . £} L
L i

s A4




Page 228 -
program. Without loss of generality, it is assumed that there f,'_f
are no distinct variables of the same name. The scope of a P
: Py

variable may be viewed as an attribute of its name, and the ~71tﬁ
ENANRN

terms “define” and "modify" are used interchangeably. el
n':x':\'?w

I

o

Now we would like to make the following definitions: C
DIRECTMOD is defined as a relation from PP to UV such that T
(P,v) € DIRECTMOD implies that v may be directly modified in P. AR

DIRECTUSE is defined as a relation from PP to VYV such that
(P,V) € DIRECTUSE implies that v may be directly used in P. MOD
is defined as a relation from PP to VUV such that (P,v) € MOD
implies that v may be modified in P or some sub-alls of P, USE
is defined as a relation from PP to VYU such that (P,v) € USE
implies that v may be used in P or some subcalls of P. CALL is
defined as a relation in PP such that (P,Q@) € CALL implies that

P may call Q directly.

Extending the usual definition of "use-definition chains”
to make it fit into inter-procedural data flow analysis, we
have the following definitions: For each occurrence of variable
v in instruction i of procedure P (denoted by iP), DEFS(v.iP)
is defined as the set of instructions which may be the most

- recent definitions for v at run time. DIRECTNRPTOP is defined

@
" as a relation in vy, where P € PP such that
(u,v) € DIRECTnaPToP implies that (P,u) € DIRECTUSE,
. (P,v) € DIRECTMOD and v is directly modified depending an the
'@
e

- e N e L
ISRy SIS W Y TN




Page 229

value of u in P. HAPTOP is defined as a relation in Uy,
where P € PP. (u,v) € MAPTOP implies that (P,u) € USE.,
(P,V) € MOD and v is directly modified depending on the value

of u in P or some subcalls of P.

The direct logical ripple effect relationship between a
pair 0f wvariable occurrences is defined as follouws: An
occurrence of variable u in instuction iP may impose direct
logical ripple effect on an occurrence of variable v in
instruction JQ if and only if iPG DEFS(U.JQ) and
(u,v) € DIRECTHQPTOG. In other words., the pair of variable
definitions at two ends of any use-definition chain are said to

have direct logical ripple effect from one to the other.

The direct 1logical ripple effect relationship between a
pair of procedures is defined as follows: Procedure P may
impose direct logical ripple effect on procedure Q@ if and only
if there exists at least one variable occurrence in P which may

impose direct logical ripple effect on a variable occurrence in

Q.
DIRECTRIP is defined as a relation in PP, such that
(P,Q) « DIRECTRIP implies that P may impose direct logical

ripple effect on Q.

The logical ripple effect relationship between a pair of

r




. L4 - -
AR VR YT Wi

Page 238 @

variable ogccurrences is defined as follows. An occurrence of :ft;
variable u may impose logical ripple effect on an occurrence of

variable v if and only if there exists a sequence of variable

occurrences x_,X_»...,X_Ssuch that R
1’72 n
Jy = Xiﬁ v = an
and x. may impose direct ripple effect on X4 for } L J

1 ¢ i < n-1.

The 1logical ripple effect relationship between a pair of 1 1'
procedures is defined as follouws. Procedure P may impose
logical ripple effect on procedure O if and only if there
exists at least one variable occurrence in P which may impose p»«.i

logical ripple effect on a variable occurrence in Q.

RIP is defined as a relation in PP such that (P.,Q) € RIP

implies that P may impose logical ripple effect on Q. SR

R

o]

7.6.2 Lagical ripple effect analysis for metrics calculation T
We start with the assumption that no intra-procedural *-‘4

control flow information will be taken into consideration.
This is to simulate the situation in the program design phase,
where procedures are often viewed as black boxes performing

certain functions on interface variables only. Therefore, the

'
B .
A A d ha 2

algorithm may also be applied in the design phase.

'y

I
e

. .
.‘,'4-
4

Pl S S \

-

N . N ¥ P ” e e .
bt nid Lo oaC.




+

S
R I T

‘,
SARRY
ettt

L]

S
e e

Page 231 e

e

Also, again we stress that the 1logical ripple effect -
analgsis approacn we will present in this section is to 4?;

emphasize the efficiency consideration in computing logical

PR W W Ty

stability measure. Therefore., the accuracy of the logical

ripple effect analysis proposed in this section is somewhat RS
less than that in Section S. One way of trading accuracy with

efficiency is to ignore control flow. R

In the following section, for the sake of simplicity, we
will not consider mechanisms that may introduce dynamic

aliasing among variables, such as reference parameter passing.

7.6.2.1 No Control Flow - No Sharing

From the definitions and the assumption that any
intra-procedural execution sequence is possible, we can show
that a procedure P may impose direct logical ripple effect on
procedure Q@ if and only if there exists &« nonempty set

RIPURR(P Q) of variables such that (P,v) € DIRECTMOD,
14

(Q,v) € DIRECTUSE, and (P,Q@) € (CALL U CRLLTU C(F'nP)))’.l for

every vV € RIPVAR Hence, we can compute DIRECTRIP as

(P,Q@)°

follows:

N - . ~ R R - . - - ' - PR .
LI S T A T R A S AL P P AL AP P R T



Page 232

DIRECTRIP = (DIRECTMOD DIRECTUSET) n

(CALL U CALL'U C(P,P)|PePPI™.

Note that when the call graph is connected. (7.1)

simplified and become
DIRECTRIP = DIRECTMOD DIRECTUSE'.

Then, for each P in PP, we can generate the sets
MAPCP] = (P | (u,v) € DIRECTMAPTO_J,

u,v P

MAP = U  MAPLP].
PePP

(7.1)

may be

(7.2)

(7.3

(7.4)

Now, define RIPPLE1 as a relation in MAP as follows:

RIPPLELl = ((Pu 'Q ) | (P,Q) € DIRECTRIP., P :Q

'V V,u u,v

This relation is essentially the combination of

DIRECTRIP with information stored in relation MAPTO.

Finally, we can calculate the relation RIPPLE in

the formula

RIPPLE = RIPPLE1L”

14

€ MAP)
w

(7.5)

relation

MAP by

(7.6)




. S
9. Page 233 1.f

>~ It can be shown that the logical ripple effect relation
[ implied by RIPPLE is the most precise information we can have .i
C under the assumption that intra-procedural control flow is not 1
S n
o considered and no dynamic aliasing condition among wvariables 1
L ]
_ may occur. -4
L) o
The relation DIRECTRIP can be viewed as the first level o

inter-procedural ripple effect information while the sets

,fi MAPTOLPI, for all PEPP, account for all possible

; intra-procedural ripple effect information. The way in which

'* RIPPLE is going to be derived in the following sections is ‘.
analogous to the approach used here. That is, after the -}EJ

- relation DIRECTRIP and the sets MAPLP] being established, the :
relation RIPPLE is calculated according to (7.5) and (7.6). o fi}

- This provides a wunified form for this approach which may be ? ff3

:i? applied to both the design and code levels. The derivation of .

;;f DIRECTRIP and MAPTOCP] may be different depending on various

)

- conditions.

o e
7.6.2.2 No Control Flow - Sharing

It has been shown by Barth [BART?8] that the possible

o. aliasing relationships among variables caused by

'i : call-by-reference parameter passing may be computed by the

expression AFFECT (AFFECT™)', where the relation AFFECT was

ibf

.iT

S D T T s el e

T i Sy S P RS S S e TR VRN R ¥, S



A war AEARARATMAS (AR AN AL W Ak Mol e i Tl AT a7 M et A S A i L A MM Iy

Page 234 @

defined to be pairs of variables representing the formal-actual

reference binding at some point of call. Static aliasing i
relations can be represented by a set EQU of equivalence .. .i
classes in a slightly different form such that a pair (u,v) is ‘“fﬁ;;
in EQU if and only if u and v are both in the same equivalence :
class. EQU can be initialized according to the static aliasing .j
conditions such as REDEFINE in programming language PL/I. :
Thus, the aliasing relation among wvariables ALIAS may be :_::j:;._'.":q

- “od
computed by .1

aLIAS = equrAFFECT™(AFFECT™) . (7.7)

Now we can replace (7.31) by

L

DIRECTRIP = (DIRECTMOD ALIAS DIRECTUSE') n SR 4

S

ccaLL u caLt’u cepL Py PePP” (7.8) =

)

The correctness of (7.8) can be justified easily. Analogous to e
R ‘.“

(7.2), when the call graph is connected, (7.8) can be R
-1

simplified and becomes S

"o
.
oY

f .,..*
_‘::'_" DIRECTRIP = DIRECTMOD ALIAS DIRECTUSET. (7.9) ) ,_1
[ . .
e -
bt e -
[ :
I @. The precision of (7.9) may be further improved if it is o
SN ) SRR
tji- possible to take into consideration the durations of the I
[ ST
A wx T ST
t_ dynamic aliasing relations implied by AFFECT (AFFECT™) . (7. 3) S
) @. Y
Pos -
P B
P n
P s
L
T 9
. @ o
E:.- ST : : A ]
Lo §

P AP WA S U AP SR Ul T N S N el . e T



[ ac i aiet i I acheaCh e, .v—~_‘-v.'._"1.‘"?‘_‘\-\"'_“.-_.“_‘7*"_ b

Page 23S 394

thru (7.6) may now be applied to compute the final matrix

RIPPLE. .

Note that the Dbasic relations, namely DIRECTMOD, 'foL
DIRECTUSE, DIRECTMAPTO, and CALL, which are needed in the ff*'ﬂ
algorithm, are atll local information to the procedure and so

can be easily constructed from a design document.

Sy

¢
. e . .
RN S S5 ¥er 4 O S IR P,

The dominant factor in the complexity in computation of "f:f

this algorithm is the amount of computation of the relation

“

4,

RIPPLE which is the same as the computation of the transitive

closure of an array of size |MAP| . The time bound for

..

computing transitive closure of an array of size m is known to

.o

»,

be smaller than the order O(m>). The best result known up to 4J}ﬁr

date is of the order o(m>° 495384, rcoppe11. This bound cdepends ?;7.

na

Al b

on the size of the set MAP, which in worse case can be of the

order O(nz), where n is the length of the program. But, this

is extremly unlikely in real situations. Actually, based on

some empirical data gathered from real programs. O(n) is a more i:t?ﬁ
realistic estimate for the size of MAP. Therefore, this gives R 4
us an algorithm to compute the total internal ripple effect of 04
- e
3 any program in a time bound which is independent of the total ST
= S
e number of branches in the program. At the same time, since hff}ﬁ

v T
r.‘ relations can be represented as a bit-matrix, the space bound ,7‘24
KR
Q:t is manageable too. PR
. R
R ]
L @. -@
, ik
]
R
S
o °

il

N

<

]
'
]
,
»
]
:
.
o .
.
« ;
W,




« a4
PRI}
s

a4

e e
PR

AdCRUIA JhA A AN AN e B on S S0 4 AR - R el - M AL VA N S

Page 236

7.6.2.3 Control Flow - Tracing

Suppose that we know the way of solving the use-definition
chains problem interprocedurally. Then the problem becomes
similar to the tracing phase in Section 5, and it may be solved

in the following manner: Let the set RIPIP be

RIP1, = € @ | B wvsi sjo» S.t. j €DEFS(V,i )3,
RIP1 is in fact a simplified variation of DEFS. With RIP1

we can easily build DIRECTRIP as follows

DIRECTRIP = ((P,Q) | 3 U:iP;JQ S.t. iPGDEFS(VnJQJ)

= ((P,Q@) | PeRIPiQJ. (7.18)

Sets MAPC(Pl may be derived by the formula

MAPCP] = CPu’u | (Uu,v) € NﬁPTOPn

(DIRECTUSET {(P,P)) DIRECTMOD)) (7.11)

(7.11) will select local variable pairs from NAPTOP, and (7.4)
thru (7.6) may be applied accordingly to yield the relation
RIPPLE. It can be shown that the information RIPPLE derived in
this manner is precise given that the summary information MOD,

USE, MAPTO and RIP1! are all precise.

Pl A SN JEnhl

«Te v

‘q




b e 2arasn ane

Page 237

7.6.3 Conclusion

The technique presented here is a somewhat less accurate
approach for logical ripple effect analysis than that presented
in Sectaion 5.1, but it is more efficient. It is suitable for
calculating software metrics because the measure itself is only
an estimate of some aspect of the software quality. Precise
information is welcome, but sometimes it is too expensive to
generate. Approximate information is thus a practical
alternative and should not affect much on the quality for
vaiidating the metrics. Another advantage of this technique is
that 1t may be applied in both the design and code levels using
the same algorithm. This should cause substantial saving in
effort on constructing tools for validating the measures and

ensures the consistency between measures on different levels.

Although the technique is imcomplete in the sense that an
efficient way of obtaining the set RIP1 still needs to be
geveloped., it may be used without considering the control flouw
within modules which (3 less precise. Besides the search for
an efficient way to generate set RIP1, more experiments are
needead to give some empirical evidence that the measures

ralculatead 1n this manner do not differ much from those from

the ori1ginal computation.

';LL! :

f}

-
) R Lo,

“u R

.....u"" ¥ Ao

-
o
Aod o bebes doge b e

-~

-
e
Py

PO W Y

-
R
S

. .l; N

U@

AP

'
i

-
r‘ - ".
.9 .

)

-
i
-
[}
. oo
PRI _—
PP YPraray vy

P R AR

e
« .
»

L

. .
e, . ..
——a

|
S J

1
S o
FORATIRIC - S

bl Zon B,




Page 238

7.7 Discussion and future Work

Metrics for the primary attributes which affect software
modifiability are in wvarious stages of development and
validation. Metrics for logical stability have been developed
and partially validated. Metrics for performance stability,
module strength and coupling have been defined. A framework for
efficient logical ripple effect analysis approach at both the

design and the code levels has been established.

Future work is needed to identify and examine all
important software attributes which affect software
modifiability and reusability, and to develop a way for
combining these attributes into quantitative measures of
modifiability and reusability. To achieve this goal, we should
develop and validate the metrics related to modifiability,
including the metrics for performance stability, complexity,
module strength and coupling. Validation and refinement of all
related metrics, including modifiability itself, need to be
completed by performing a series of comprehensive experiments.
Furthermore., significant attributes related to reusability,

including portability, need to be identified and examined.




r- Al oo et 4 Be A0 R A A Aot g SR A e e SaAAe e Bt At S Sionib i Sl Sl s Mol L B Sl A P i gied SO AL A ,".'.',".'.".'.".".".'.’7.‘]
MR .« M I S R P ST s T et . ° ° T~

o Page 239

8.0 REFERENCES

e
(AHO72]  Aho, V. A. and Ullman, J. D., The Theory of Parsing. i
Translation and Compiling, Vol. II, Prentice-Hall, e
Englewood Cliffs, New Jersey, 1972. NR
N J
P
[ALFO77] Alford, M. W.. A Requirements Engineering .
Methodology for Real-Time Processing Requirements', oL
IEEE Trans. on Software Engineering, Vol. SE-3, No. PO
i, Jan. 1977, pp. 60-69. b
S
[ALLE?74]1 Allen, F. E., "Interprocedural Data Flow Analysis", 2@

IFIP 74, North-Holland Pub. Co., Amsterdam, 1974, pp.
398-402.

tARTHB1] Arthur, J. and Ramanathan, J., "Design of Analyzers
for Selective Program Analysis”, JIEEE JTrans. gon
Software Engineering, Vol. SE~7, No. 1, Jan. 1981.
pp. 39-51.

[BALZ269] Balzer, R. M., "EXDAMS - Extendable Debugging and

. PR .

N 1 et e
S PR

. . S e
. PRI PR

L P I A
Lo Ao s

Monitoring System", Proc. AFIPS 1969 Spring Joint o
Computer Conf., 1969, pp. S67-58@. SANRRS
[BART?81 Barth, J. M., "A Practical Interprocedural Data Flow ~
Analysis Algorithm'", Comm. ACM, Vol. 21, No. 9, Sept. ;;331
1878, pp. 724-736. RN
Ry
[BELF77] Belford, P. C., Donanhoe, J. D. and Heard, W. J., "An -}-.A
Evaluation of the Effectiveness of Software ;”w.‘
Engineering Techniques', Digest of Papers, COMPCON 77 o
- (Fall), pp. 259-269. fﬁgif
e ISR
R tBOEH731 Boehm, B. W.. "Software and Its Impact: A RO
Kjf Quantitative Assessment’, Datamation, May, 1973, pp. f’,j;
®. 48-59. ~>ﬂ,!
L {BOWLB3] Bowles, A. J., Effects of Design Complexity gn R
S Software Maintenance, Ph.D. Dissertation, Dept. of AN
S Electrical Engineering and Computer Science., ;;;}:
AN Northwestern University, June 1983. SO
L, T
'!‘ (BOYD?81 Boyd, D. and Pizzarello, A., "Introduction to the nggﬁ
: WELL.MADE Design Methodology'., Proc. 3rd Int’l, Conf. DI
on Software Engineering., 1978, pp. 94-1080. e
AR
* ;.08
B RO
o

L R s S e e J PR L T Ce e ot te t e
W P I IR SRRV AR GNP S SRR W AP W UGN W VI P PR et atat et atacnfat n’ata 2taasaatalalds




Ch'e e 2% A TpA 0t ~DAn e 60 4 o S i Thver S 4 S Ao S I Seie Joen e & s e Svinh SR S ST A0 Tl St St S i St gt et S it Jat A /i S A St L N

Page 24@ 1;:.1

(BRUN68B81 Bruning, J. L. and Kintz, B. L., Computational
Handbook of Statistics, Scott, Foresman and Company.,
Glenview, IL, 1968

LCHAP79] Chapin, N., "A Measure of Software Complexity"”, AFIPS
National Computer Conference, pp. 995-18@2, Spring
1979.

CLCLAR?6] Clarke, L. A., "A System to Generate Test Data and
Symbolically Execute Programs', IEEE Trans. on
Software Engineering., Vol. SE-2, No. 3, Sept. 1976,
pp. 215-222.

CCLAU?9] Claus., V., Ehrig., H. and Rozenberg., G..»
Graph-Grammars and JTheir Application to Computer
Science and Biologqy, Lecture Notes in Computer
Science 73, Springer-Verlag, 15979.

ccoPPB811 Coppersmith, D. and Winograd, S., "On the Asymptotic
Complexity of Matrix Multiplication : Extended
Summary', Proc. 22nd Annual Symp. on Foundations of
Computer Science, IEEE, Oct. 1981, pp. 82-98.

C(DEMA?8] DeMarco., T.» Structured Analysis and System
Specification, Yourdon Inc., 13978.

{DEMEB81] Demers, A., Reps, T. and Teitelbaum, T., "Incremental

Evaluation for Attribute Grammars with Application to E‘"*?'i

Syntax-directed Editors”, Proc. 8th ACM Sump. on ]

Principles of Programming Lanquages., 1981, pp. ﬂﬁxﬁq

185-116. S

CDUNS88] Dunsmore, H. E. and Gannon, J. D., "Analysis of the SRS

Effects of Programming Factors on Programming s |

Effort"”, Journal of Systems and Software, 1, pp. AR

141-153, 19860. RO

[LEJZAB2] Ejzak, R. P. Strength and Coupling Metrics of -}2::

Software Structure, M.S. Thesis, Department of f‘-?;

Electrical Engineering and Computer Science., - -0f

- Northwestern University, Evanston, Illinoi, Auguest. ST
o 1982. el

'y 4 -

i {FAIR7S] Fairley, R. E., "An Experimental Program Testing
- Facility", IEEE Trans. on Software Engineering, Vol.
SE-1, No. 4, Dec. 13975, pp. 358-357.

Ty T

PPN PR T W |

MG S8 A 2Bl S e fh o caf aut JI aak sun e |
.. i AR .
L@

"D '-'- A A L S T Ut N S P
LW A R T TR T B S SR I R G S W e




ANEAL SAIITUCAILELIPAE 44 W CACAAMDMLE AEACHE SAMEAL SCMERLA LS DAL AR R ) A et B

o
e
|

RS

R

s

Page 241 ' ;ﬂﬁ

S

[FISC77] Fischer, K. F., "A Test Case Selection Method for the e

< Validation of Software Maintenance Modification', ,ﬁ}j
-' Proc. ist Int’l. Conf. on Computer Software and - -
_Q Apllications (COMPSAC 77), 1977, pp. 421-426. : o
~ RN

N (FOSD76] Fosdick, L. D. and Osterweil, L. J., "Data Flow R

N Analysis in Software Reliability”, ACM Computing DRI

Surveys, Vol. 8, No. 3, Sept. 1976, pp. 305-330. 3:-323

{GOOD75]1 Goodenough, J. B. and Gerhart, S. L., “Towards e

a
Theory of Test Data Selection”, IEEE Trans. an P
Software Engineering, Vol. SE-1, No. 2, June 1975, NACAE

pp. 156-173. BRI

PSP SOyl

CHALL78) Hallin, T. and Hansen. R., "Towards a Better Method
of Software Testing”, Proc. 2nd Int’l. Computer
Software and Applications Conf. (COMPSAC 78), 1978,
pp. 153-157.

{HAY74) Hay, G. G., "Formal Definition of a Simple On-line
Teleprocessor in VUDL", in Proqramming Symposium.
Paris 1974, Lecture Notes in Computer Science 19,
Springer-Verlag, 1974.

CHECH771 Hecht, M. S., "“Flow Analysis of Computer Programs',
North-Holland, 1977.

[HENI79]) Heninger, K. L., "Specifying Software Requirements 3
for Complex Systems", Proc. Specifications of T
Reliable Software, 1979, pp. 1-14. B

CHENIBB) Heninger, K. L., "Specifying Software Requirements
for Complex Systems: New Techniques and Their
Applications’”, IEEE Trans. on Software Engineering.
Vol. SE-6, No. 1, Jan. 1988, pp. 2-12.

(HOWD78] Howden, W. E., "DISSECT - A Symbolic Evaluation and

Program Testing System"”, IEEE JTrans. on Software
gEngineering, Vol. SE-4, No. 1, Jan. 19?8, pp. 70-73.

e [HSIEB21 Hsieh, C. C., An Approach to Logical Ripple Effect '!
- Anglysis for Software Maintenance., Ph. D. ,:s»;:
Dissertation, Department of Electrical Engineering .
and Computer Science., Northwestern University. j
Evanston, Ill., June 19862.
L -§
CHUAN?7S] Huang, J. C., "An Approach to Program Testing'", ACM }——r!;
Computing Surveys, Vol. 7, No. 3, Sept. 1975, pp. e
113-128. ‘f};
. ._,
- -0
SRR
SN N
ST
~. c- ..' -.
.-"‘. 7..:.‘
ISR
" .i

r

R . e D PN . e . R P B S
T Y I NS & U T WY TN B S I P S ISP . SN, S o CE B PRI IS W SIS WL SIS




GRS T S i AR S A Jear St et Y e R T I T T T e T N T T Ty sy vy
Lt e S Y R o « e ' BN R T RS AR KA S N

i Page 242

o LICHB?91 1Ichbiah, J., et al, "“Preliminary ADA Reference

Manual', ACM SIGPLAN Notices, VUol. 14, No. 6, June
1979, Section 5.2.3.

L JACK?51 Jackson, M. A., Principles of Proqgram Design.,
Academic Press, 197S. .

ol [ JANSBB] Janssens., D. and Rozenberg, G.., "“"Node-Label
o Controlled Graph Grammars', Proc. 9th Suymp. on
Yy Mathematical Foundations of Computer Science =

T Lecture Notes in Computer Science 88,
o Springer-VUerlag, 1988.

[JENS741 Jensen, K. and Wirth, N., Pascal User Manual and
Report, Springer-Verlag, New York, 1974.

[KAFUB1] Kafura, D. G. and Henry, S. M., “Software Quality
Metrics Based on Interconnectivity", Journal of
Systems and Software, Vol. 2, No. 2, June 1981, pp.
1°1-131.

CKING?61 King, J. C., "Symbolic Execution and Program

S Testing", Comm. ACM, Vol. 19, No. 7, July 1976, pp.
L 385-394.

-}% CLEE72] Lee, J. A. N., Computer emantics, Van Nostrand
o Reinhold, 1972.

- LLIENS8®] Lientz, B. P. and Swanson, E. B., Software
- Maintenance Management, Addison-Wesley, 1980,

L
PR
Ad

CLOME?7] Lomet, D. B., "Data Flow Analysis in the Presence of T
Procedure Calls"”, IBM Journal of Research and C e
v Development, Vol. 21, No. 6, Nov. 1977, pp. 559-571. hy

)
S E
@

. '.’ ':' :A .:
.AIA._ ‘e la g g L'JA_“'

b4
1.

CMCCA761 McCabe, T. J.» "A Complexity Measure”, IEFEE Trans. on
Software Engineering, Vol. SE-2, No. 6, Dec. 1976,
pp. 388-320.

VAR

Y
r s
.

- C{MYER76] Myers, G. J., Software Reliability: Princples and

Practices, John MWiley and Sons Inc.. 1976, pp. . "!
216-246. AR

{MYER78) Myers, G. J., Composite-Structured Desiqn. Van
Nostrand Reinhold Company., New York, N.Y., 1978

-®. [PAGAB1] Pagan, F. G., Formal Specification of Programming 4
: Lanquages: A Panaoramic Primer., Prentice-Hall, 1981,

i
‘e .
PR P
o |I| a2’




— I _Sren e o B I T A L
Ty SISy S ik Tl e Anet Mt 4 IR it aiih S aa SPaL I A e A Lt Te Te Ta

Page 243

[LRAMA76] Ramamoorthy, C. V., Ho, S. F. and Chen, W. T., "On
the Automated Generation of Program Test Data', IfEE .
Trans. on Software Engineering, Vol. SE-2, No. 4 i

o

. . 'y et

Software Engineering, Vol. SE-3, No, 1, Jan. 1977,
pp. 6-15.

1
(Dec. 1976), pp. 293-300. .

CRICHB11 Richardson, D. and Clarke, L. A., "A Partition s
Analysis Method to Increase Program Reliability", ;}h

Proc. S5th Int’l. Conf. on Software Enqineering, 1981, i,j

PP. 244-253, . -.1

-

[ROSE79] Rosen, B. K., "Data Flow Analysis for Procedural oo
Languages’”, Journal of ACM, Vol. 26, No. 2, April SR

1979, pp. 322-344. ‘;}}

(ROSS??]1] Ross, D. T. and Schoman, K. E. Jr., "Structured ) ’iﬁ
Analysis for Requirements Definition", IEEE Trans. on '_:

(STAY?6] Stay, J. F.,» "HIPO and Integrated Program Design",
IBM Systems Journal, VUol. 15, No. 2, 1976, pp.
143-154.

[SWAN7?6] Swanson, E. B., “"The Dimensions of Maintenance',

Proc. 2nd Int’l. Conf. on Software Engineering, 1976,
pp. 482-497.

SR

(TEITB1]1 Teitelbaum, T., Reps, T. and Horwitz, S., “The MWhy ’ @
and MWherefore of the Cornell Program Synthesizer', - O
ACM SIGPLAN Notices, Vol. 16, No. 6, June 1981, pp. FETA
8-:16. ’

[{WASSBB] Wasserman, A. I., "Testing and Verification Aspects S

of Pascal-like Languages", JTutorial on Programming P @

Lanquage Design, IEEE Computer Society Press, 1988, _—

pp. 61-75. . .34

. . ',-4:4

[WASSB2] Wasserman, A. I., '"The Future of Programming', Comm, 1542Qj
ACM, Vol, 25, No. 3, March 1982, pp. 196-286. 0

) ~ @

CWEGN78] Wegner, P., "Research Directions in Software I
Technology”, Proc. 3rd 1Int’l. Conf. on Software Lo
Engineering, 1978, pp. 243-263. AR

CWEISB1) MWeiser. M., “Program Slicing", Proc. Sth Int’l. Conf. N
on Software Enqineering., 1981, pp. 439-449, ] @

AR

L - :::-:

N ]

S L ,'1

) - -@

e o

!
9
4
1
4




?_7'.'7._- D R T I AN AR -'.:;‘_:;'_:f,w- - ,_r'._ir.-~ B __r‘_'r\v'_‘t?‘v AR AV SN SN gt g M G M AR D MEAEAAAEAS o
)

i! Page 244 ' @
= e
)

&

. CWEISB21 Weiser, M., “Programmers Use Slices When Debugging".,

Comm. ACM, Vol. 25, Na. 7, July 1982, pp. 446-452.

(WEYUBB] Weyuker, E. and Ostrand, T., “Theories of Program r ’
Testing and the Application of Revealing Subdomains', R
IEEF Trans. on Software Engineering, Vol. SE-6, No. R
3, May 1980, pp. 236-246. o

CWIRT?71] MWirth, N.., “Program Development by Stepwise T
Refinement”, Caomm. ACM, Vol. 14, No. 4, April 1971, ) @®.
pp. 221-227. C

CHIRT?S] Mirth, N.., *Pasca -S: A Subset and its
Implementation', Technical Report 12, Institut fuer
Informatik, ETH Zuerich, 19785,

-

. LTl A
@ .

P Y R LI -

e A e

Lyau781l Yau, S. S., Collofello, J. S. and MacGregor, "Ripple
Effect Analysis for Software Maintainance', Proc. 2nd )
Int’] Conf. on Computer Software and Applications N,
(COMPSAC 78), 1978, pp. 68-65. -

Ml

[yAUBBal Yau, S. S., Self-metric Software -~ Summary of
Technical Proqgrams., Final Technical Report P
RADC-TR-8@-138, Vol. I (of 3), NTIS AD-AB386-290, RS
April, 1980. R,

[YAUBBb] Yau, S. S., Collofello, J. S. and Hsieh, C. C., OO
Self-Metric Software = A Handbook: Part 1, Logical R
Ripple Effect Analysis, Final Technical Report e
RADC~-TR-88B-138, Vol II (of 3), NTIS AD-AB3IB6-291, RS
April 1988. f:c3

{YAUBBC) Yau, S. S. and Collofello, J. S..» Self-Metric 1{?1&%
Software -~ A Handbook: Part II, Performance Ripple r,ﬂ..;
Effect Analysis. Final Technical Report RS
RADC-TR-80-138, VUol III (of 3), NTIS AD-AB3B6-292, .{}fy:j
April 198@. A

tyAUB@d]l] Yau,» S. S. and Grabow, P. C., “A Model for
Representing the Control Flow and Data FfFlow of

Program Modules'", Proc. 4th Int’l. Conf, on Camputer S
Software and Applications (COMPSAC 8@), 1980, pp. SR
153-160. X
[YAUB®e]l Yau, S. S. and Collofello, J. S., "Some Stability ;i
Measures for Software Maintenance®, JEFE Trans. on N ‘
. Software Engineering, Vol. SE-6, No. 6, Nov. 1988, T
5 pp. S45-552. The Preliminary version of this paper e
L appeared in Proc. 3rd Int’l Conf. on Computer RIS
. ]
SN
F. ' -04
St ™
B AR
- SRS
- SR
[_ _-.::\ _\;,'-:
L ) 0 _-_. _:..
s DR
3 Y ¥
. ) N - - .
3 . o . - . .~ -~ - - v .. ‘..‘.. '.- N - - ~
T el T e e e NN e : , S
M e e e T e e e e R ._‘-’. ;- A-‘_a‘_-;. f_’.;_‘. IR _ o . S e e ;-t




at Sad My B ML AN Aun e SEnaCib sttt St TP AL N P S A M AR T i SR AN A A i AR B N R S SR

......

f!' Page 245

v Software and Applications (COMPSAC 79), 1979,
e pp.606-611.

P .
. O L
PR

{YAUBOBf] Yau, S. S. and Collofello, J. S., Performance Ripple o
Effect Analysis for Larqe-Scale Software Maintenance., }g_}]
Technical Report RADC-TR-88-55, NTIS AD-AB384-351%, f-?{g
March 198@. Igfj;g

tvyAUBtal VYau, S. S. and Grabow, P. C., "A Model for SR
Representing Programs Using Hierarchical Graphs*, i 2
IEEF Trans on Software Engineering, Vol. SE-7, No. 6, ’
Nov. 1981, pp. 556-574. R

CYAaUB1b]l Yau, S. S., Carvalho, M. B. and Nichell, R. A., "A el
Method for Estimating the Execution Time of Arbitrary ]
Paths in Programs', Proc. 3th Int’l Conf. on Computer M
Software and Applications, (COMPSAC 81), 1981, pp. ]
225-239. .

{YAauUB82al Yau, S. S.» Chang, C. K., Hsieh, C.-C., Kishimoto, Z.
and WNicholl, R. A., "A Methodology for Software S
Maintenance", Proc. Int’l. Computer Suymposium. g-?¢‘i
Taiwan, 1982, pp. 447-458. R

tyauB2bl Yau, S. S., Grabow, P. C. and Weems, B. P., "A Binary
Representation for the Hierarchical Program Model",
Proc. 6th Int’l Conf. on Computer Software and
Applications, (COMPSAC B82), 1982, pp. 188-19S5.

[YAUB2c] Yau, S. S. and Collofello, J. S., "Design Stability
Measures for Software Maintenance'™, Proc. 6th Int’l.

Conf. on Computer Software and Appljcations (COMPSAC
82), 1982, pp. 188-168.

LZAVEB1] 2Zave, P. and Yeh, R. T., "Executable Requirements for
Embedded Systems', Progc. Sth Int’l. Conf. on Software

Engineering., 1981, pp. 295-364.

(ZAVEB2] Zave, P., “An Operational Approach to Requirements
Specification for Embedded Systems', IEEE Trans on
Software Engineering, VYol. SE-8, No. 3, May 1982, pp.

250-269. h

[ZELK78) Zelkowitz, M., "Perspectives on Software ;?3
Engineering', ACM Computing Surveys, Vol. 18, No. 2, e

June 1978, pp. 197-216. -.}

I

R ~

g

s
_(_s_A_

..
.l
P ]
@,
-

1
.."'A 4

S o

Iy

. - ... n" PR »
PR - R S R S D L
R T e S S AL A I T Sal T Uik Sl T i i T T T




. -
-
\
.
.
.

a
L RN S . W N et
PRI R . < w . L R I e e Ty NN . . P TR AR U N . . .
FRPLIPRE TP SR VTR W P VAT G RO S, R A P I T I U

Page 246

9.8 PUBLICATIONS AND PRESENTATIONS

Besides the results of the research presented in this
report, many results have already been published or presented
in preliminary or complete forms. The publications and
presentations are drouped in the following categories: (S
papers, (2) technical reports, (3) presentations related to the

project, and (4) Ph.D. dissertations and M.S. theses.

9.1 Papers

1. S. S. Yau and J. S. Collofello, '"Some Stability Measures
for Software Maintenance', IEEE Trans. on Software
Engineering, Vol. SE-6, No. 6, Nov. 1989, pp. 545-552.

2. S. S. Yau, M. B. Carvalho and R. A. Nicholl, "A Method for
Estimating the Execution Time of Arbitrary Paths in
Programs”, Proc. Sth Int’l. Conf. on Computer Software and
Applications (COMPSAC B81), 1981, pp. 225-239.

3. S. S. Yau and J. S. Coallofello, "Some Design Stability
Measures for Software Maintenanrce', Proc. 6th Int’l. Conf.

on Computer Software and Applications (COMPSAC 82), 1982,
pp. 180-108.

4, S. S. Yau, C. K, Chang, C.-C. Hsieh, Z. Kishimoto and R. A.

Nicholl, "A Methodology for Software Maintenance'", Proc.

Int’l. Computer Symposium, Taiwan, December 15-17, 1982,
pp. 447--458.

S. S. S. Yau and C. C. Hsieh, "Ripple Effect Analysis for
Large-Scale Software Maintenance I - Logical Ripple Effect
Analysis', submitted for publication.

6. S. S. Yau, J. S. Collofello and R. A. Nicholl, "Ripple
Effect Analysis for Large—-Scale Software Maintenance Il -
Performance Ripple Effect Analysis’, submitteqg for
publication,

R A R A A S A G A SR A I AT A A Tl B VA Al S “ g S, "R inC i e A St St b A R G Sk S Y 1 P A ey stk S Snd ari SFaL AP Gt edh TRl g st st

. * .
o

R

e e
e
e
I

- S

W T ¥



ol T W PN S i giet - o SR SR AR a AN L SO I S AN A P R A T A e

Page 247

7. S. S. Yau, C. K. Chang and R. A. Nicholl, "An Approach to

Incremental Program Modification', submitted for
publication.

8. S. S. Yau and 2. Kishimoto, "A Method for Revalidating
Programs in the Maintenance Phase - Module Testing',
submitted for publication.

9.2 Presentations

1. *x S5. S5, Yau, "Methodologies for Large-Scale Software
Maintenance', Seminar., Bell Telephone Laboratories.,
Naperwville, Illinois, July 1, 19880.

2. S. S. Yau., "Performance Stability Measures for Software
Maintenance’, 3rd Minnowbrook Workshop 9on Software
Performance Evaluation, Blue Mountain Lake, New York,
August 19-21, 1988.

3. ®*S. S. VYau, "Methodologies for Distributed Computing
System Saoftware Design’, Seminar, Fujitsu Laboratories,
Kanagawa-Ken, Japan, October 9, 198@.

4. »* §, S, Yau, '"Methodolgogies for Large-Scale Software
Maintenance, Seminar, Hitachi Systems Engineering Co..
Yokohama, Japan, October 13, 1980.

5. x S. S. Yau, "A Model for Representing the Control Flow and
Data Flow of Program Modules", COMPSAC 8@, Chicago.,
Illinois, October 27-31, 1960.

6. * S. S. Yau, "Critical Problem Areas in Software
Development”, Technical Keynote Speech, Int’)l. Computer
Symposium B8, Taipei, Taiwan, China, December 16-18, 198@.

9. 7. =*S. S. Yau, "Methodologies for Large-Scale Software
Maintenance", seminar, Computer Science Division,
Department of Electrical Engineering and Computer Science.,

-—r —
T, T, Y7, 11 ..y "
[ - « v L]

;f University of California at Berkeley, February 25, 1981.
»{: 8. S. S. Yau, "A Semantic Program Model for Software
Li Maintenance™, 4ath Minnowbrook Workshop on Software
y Performance Evaluation, Blue Mountain Lake, August 11-13,
:A New York., 1981,

r'-
o
r-_ "-
.-
2R
L,

=
%

PPy
) 1] . . . -

N A
A

A

.

, .

.

' .
R
e I

Aoy i e .

.
s

';_““*4 destnsbadn il

POGRT ISP S U S W RS

AR . ol . .
P P . T . .
. . . g Ch e . .
i PR A P SN
e o @ :
. S . e e e L, e, .

!
|

P
T s
G
e
y 4

| I .
L9,

, P
. . .

Ve 2t L ta'l s

b
OSTRR
{_‘l.“ ‘, !



AR ST L i Al W A Mk el T A A ATl A-R A= ath SSa S o S B A et Bl Sas TS S S SR AN et A Aanc Fal- S AR St M S S B |
(R e e T ETRTEEA RN, . AN A R Pl T AR B

Page 248 @.

9. R. A. Nicholl, "A Method for Estimating the Execution Time L
of Arpitrary Paths in Programs", COMPSAC B81i, Chicago. RS
Illinois, November 18-28, 1981. EER)

18. J. S. Collofello, "Some Design Stability Measures for
Software Maintenance”, COMPSAC 82, Chicago., Illinois,
November 18-12, 1982.

11. ==C. K. Chang. "A Methodology for Software Maintenance’, R,
Int’l. Computer Symposium, Taiwan, December 15-17, 1982, K 2
pp. 447-4358.

*x These presentations and participation were made at no cost to e

the contract. Y
S

)

=

9.3 Technical Reports e
]

S. S. Yau, Methodoloqy for Software Maintenance, RADC -

Interim Report, July, 1981.

a
-
-al®_a_ 8w

9.4 Dissertation And Theses

A number of graduate students, who have worked on this
contract, completed their Ph.D. and M.S degrees in the
Department of Electrical Engineering and Computer Science,
Northwestern University. Their Ph.D. dissertations and M.S.

thesis are listed below:

y

| G

[N

- 1. C. C. Hsieh, Logical Ripple Effect Analusis for Program

b Modification, M.S. Thesis, June, 1980.

oo

f.‘ 2. 2. Kishimoto, JTesting for Large-Scale Programs in the

R Maintenance Phase, Ph.D. Dissertation, June, 1982.

b

N

' @ -@
o ‘
e .
- o
L] 0

Wty o

B
- - + e . . - - . - - . -

\ - SR A N L WL I R T R - - o et vl et T, . e o \ . . . N
[P PR TS TR R WL VR PPN WY VU USRI S ST S P03 PSP S Sl SR A N P S aZatala aaTe AL el a




Ay C st T _-_-.._._.>'.v'..‘.-‘5 . e L LY e, ',-‘,—""-'>"-‘"—-rT..-'TT"T' AaCiat et A SaCihinG B T
Page 249
3. C. C. Hsieh, An Approach to Loqical Ripple Effect Analysis

for Software Maintenance, Ph.D. Dissertation, June, 1982.

4, C. K. Chang, Incremental Modification of Computer Proqrams.,
Ph.D. Dissertation, June 1982.

S. R. P. Ejzak, Strenqth and Coupling Metrics of Software
Structures, M.S Thesis, August, 1982.

6. R. S. Wang, Incremental Update of Data Flow Information

- - One More Step Toward a Large -Scale Software
Maintenance Environment, M.S. Thesis, June, 1983.

g g T—v—vfrv
Tl A e T
'A.." . )
]
)
P_.h_.’lL‘

e e
L .\:. X

‘. ) - _'.‘ 1

-, -

-

Fe *1

= 4

- ®. .9
a )
p
b -
3 Eal
o -y
., - e
p. - B
" L
t. ,3
. =y
P - <
R
N o
- T
X K
Y o
f d

. s “._ S ._'.._‘.-.’-., B . - - J'.
L RN _-._‘.;..\_'L_;.‘.;;.;.J.._-.A_x__‘._ﬂ\fm K

I



W ey e T e VYT T ¢ e W Y OV 4 Ty 5§ W g @Y ¥ -
F“"‘ AN caat — v L S fem Jah o sy Ot 4 T E Al By Eliadi v PPN B . NN N « T e R A -
- £ A e Tt Rt P A Mgt . . . .

-

@ Page 258

10.80 TECHNICAL PERSONNE

During the period of this study., the following
Northwestern University faculty and graduate students

contributed to the research effort of this contract:

19886 1981 1882
Principal Investigator Starting Ending
and Project Director April 23 Nov. 3@
Stephen S. Yau X X X
Graduate Students
Z. Kishimoto X X --
C. C. Hsieh X X -
B. P. Weems - X -
C. K. Chang X b X
R. A. Nicholl X x b
S. C. Chang - X X
R. E. Ejzak X X X
Y. C. Chou - X X
R. S. Wang - - %
b
- In addition, Professor J. S. Collofello of aArizona State
k.
o University, who worked on the previous project, continued to
i I serve as a consultant to this contract faor the wark in the
¢
f‘ areas of software metrics and performance ripple effect
5’ analysis. Professor L. Clarke of the University of
F,, Massachusetts served as a consultant in the area of testing.
=
- 0.
8
L‘-
p .
-
o
N
&
r; -4
’.. .
L
e
L
5
&
.- :
2 B ..
| O

e BB A M.

PO

A A hdcdeaid i

|
. .
il oot e S i ik i endentboadiondindbchecd el

’
.

PRI
R
R
P
e
.

A

(
St .
SR e

PR
e e nlnaa




fBpp.ications

Measures

APPENDIX

tor the Sake of completeness., we include

M st Buse Ses Ao S Shh S0 s Tt Y

publishea papers which contain some

s supported by this contract:

e RER I VN T B S A

Page 251

the following

of the research

%. rau and J. S. Collofello., “Some Stability Measures

L Sgftware

tngi1neerang. Vol. SE-6,

S. vyau. M. B. Carwvalho and R.
tstimating the Execution Time o¢f Arbitrary Paths in

Maintenance’, IEEE Trans. on Software
Na. 6, Nov., 198@., pp. 545-552.

A. Nicholl, "A Method for

ragrams Proc. 5Sth Int’l. Conf. on Computer Software and

S Yau and J. S.

(COMPSAC B1), 1981, pp. 225-239.

Collofello, “Some Design Stability
faor Software Maintenance', Proc.

6th Int’l. Conf.

~.chnoll. “A Methodology
int'1l. Comp
np 447 -4%8.

o PPV L P S -

S. rau. C. K. Chang.,

ar Computer Software and Applications (COMPSAC 82), 1982,
pp. 180 188.

C. C. Hsieh, 2. Kishimoto and R. A.

for Software Maintenance', Proc.

. PRREN . .. _-“",'_." E S
NN AL, LV YRCIR TR R PN AT R

uter Symposium., Taiwan, December 15-17, 1982,

-

el .

PR
e o
poe

. /,?;MI
-SRI

SN
PP

P PREPIRI .
At e it il ek bt ol




TETRTRTF LWL TUY I

o
w
w

Some Stability Measures for Software Maintenance

STEPHEN S YAU, rrirow. vt aND JAMES S, COLLOFELLO. ME MBI R 111}

Abstract —Software maintenance is the dominant factor contributing
to the high cost of software. In this paper. the software maintenance
process and the important software quality attributes that affect the
maintenance effort are discussed. One of the most important quality
attnitutes of software maintainability is the stability of a program,
which indicates the resistance to the potential ripple effect that the
program would have when it is modified. Measures for estimating the
stability of a program and the modules of which the program is com-
posed are presented. and an algorithm for computing these stability
measures is given. An algorithm for normalizing these measures is also
given.  Applications of these measures during the maintenance phase
are discussed along with an example. An indirect validation of these
stability measures is also given. Future research efforts involving ap-
plication of these measures during the design phase, program restruc-
turing based on these measures. and the development of an overall
maintainability measure are also discussed.

Index Terms - Algorithms, applications, logical stability., module
stability. maintenance process, normalization, potential nipple effect.
program stability, software maintenance, software quality attributes,
vahidation.

I INTRODUCTION

T IS well known that the cost of large-scale software sys-
Itcms has become unacceptably high [1]. [2]. Much of this
excessive software cost can be atiributed to the tack of mean-
ingful measures of sottware  In fact. the definition of software
quality s very vagoe  Since some desired attributes of a pro-
gram cun only he acquired at the expense of other attributes,
program quality must be environment dependent. Thus, it s
mmpossible to establish a wungle figure for software quality.
Instead, meaningful attributes which contribute to software
quality must be identificd. Rescarch results in this area have
contributed to the defimtion of several software quahty at-
tributes, such as correctness, flextbility. portability. effi-
ciency, reliabihity, integrits | testability | and maintainability
[3]-]6]. These results are encouraging and provide 4 reason-
ably strong basis for the definition of the quality of software.

Since software guality is environment dependent. some at-
tributes may be more desirable than others. One attribute
which is almost always desirable except in very limited applica-
tons 1s the mantarnability of the program. Software mainte-
nance 18 g very broad activity that includes error corrections,

Manuseript recerved Apnl 1. 1980, revised July 28, 19800 This
work was supported by the Rome Air Development Center, US A
Force System Command, under Contracts F30602.76-C0397  and
FI0602.80-C-0139

S S Yau s with the Department ot Flectnical Fagineering and Com-
puter Suience, Northwestern Unneraty, Bvanston, 11 60201

]S Callofello was with the Department of Flectncal Fngineering
and Computer Saence, Notthwestern University, Fyvanston, 1L 60201
He s now with the Department of Computer Saence. Arizona State
Univeraty, Tempe, AZ 8S281

enhancements of capabilities, deletion of obsolete capabilities,
and optimization [7]. The cost of these software maintenance
activittes has been very high.und it has been estimated ranging
from 40 pereent [1] to 67 percent [2] of the total cost during
the life cycle of large-scule software systems. This very high
suftware maintenance cost suggests that the maintamability of
a program iy a very critical software quality attribute. Measures
are needed to evaluate the mamtainability of g program at
cach phase of its development. These measures must be easily
caleulated and subject to validation. Techniques must also be
developed to restructure the software during each phase of its
development in order to improve its maintainability .

In this paper. we will first discuss the software maintenance
process and the software quality attributes that affect the
maintenance effort. Because accommodating the ripple effect
of modifications in a program is normally a large portion of
the maintenance effort. especially for not well designed pro-
grams [7]. we will present some measures for estimating the
stability of a program, which is the quality attribute indicating
the resistance to the potential ripple effect which a program
would have when it is modified.  Algonthms for computing
these stability measures and for normalizing them will be
giver. Applications of these measures during the maintenance
phase along with an example are also presented. Future re-
scarch efforts involving the application of these measures
during the design phase. program restructuring based on these
measures, and the development of an overall maintainability
measure are also discussed.

I Thr MAINTENANCE PROCESS

As previously discussed, software maintenance is 4 very
broad activity.  Once a particular mamtenance objective
is established. the muintenance personnel must first under-
stand what they are to modity. They must then modify the
program to satisfy the maintenance objectives.  After modi-
fication, they must ensure at the modification does not
affect other portions of the program. Finally | they must test
the program.  These activities can be accomplished in the
four phases as shown in Fig. 1.

The first phase consists of analyzing the program in ordet to
understand it. Several attributes such as the complexity ot the
program. the documentation, and the selt-descriptiveness of
the program contribute to the ease of understanding the pro-
gram.  The complexity of the program is o measure of the of-
fort required to understand the program and is usoally hased
on the control or data flow of the program. The self-deserp
tiveness of the program is a measure of how clear the program
is. e how casy 1t s to read understand, and use [S].

The second phase consists of generating a particular mamte-

PIILWLT®OWLTY (VL T Tl T Ty e e T

- - .
» ( J
s __ ¥

1

.

N

T

[ ] - @i
-

4




254

votie o

I TOprowtam ertaers
VD nca s

Qe termine Totaiata
Mudntinan [
Ohective Tree el
N tettuge:
<
N

S oontimicatien

1 oovomp Loty

Covument otion

~elt desorip-

thveness

P
(PR e
Partinlat . s
. F- fxtensihtlit,
Miintenance
roposal
: a3
Acvount ter
Ripple o Sratlc
Fiteor
.
Phase .

Trsting

Fig 1 The software mamtenance process.

nande proposal to accomplish the implementation of the main-
tenance objective, Thas requires a clear understanding of both
the mamntenance objective and the program to be modified.
However. the ease of generating maintenance proposals for a
program s primarily affected by the attribute exrensibility. The
extensithility of the program is a measure of the extent towhich
the program can suppuort extensions of critical functions 5]
The third phase consists of acenunting for all of the ripple
ettect as & consequence of program modifications.  In soft-
ware, the effect of o moditication may not be local to the
moditication, but may also atfect other portions of the pro-
gram. There 1s a ripple effect from the location of the modi-

fication to the other parts of the programs that are affected
by the modihication {7]. One aspect of this ripple effect is
eaical or tunctional in nature. Another aspect of this ripple

[

R enect concerns the pertormance ot the program.  Since i
large-scale program usually has both functional and perfor-
s mance requirements, 1t s necessany to understand the poten-
| tial cltect of & progrom modification from both o logical and
. a performance point of view |[7]0 The primany attnibute af-

fecting the npple ettect as 4 consequence of @ program mod-

" theation v the sebdier ol the progiom. Program stabiliny s
y = . © ) ~ B
. defined as the resstance to the amphtication ot changes in
" the provram

The fourth phase consists ot testing the moditicd program
tocensare that the moditied progran has at Jeast the same 1ee
Tabihies Jevel ay botore T mportant that costeetiectne

testing techniques be applied during mamtenance. The pri-
mary factor contributing o the development of these cost-
eftective techniques s the reszabiline ot the program. Pro-
gram testability s defined as a measure of the eftort required
to adequately test the program according to some well detined
testing criterton.

Each of these four phases and their assoated sotftware
quality attributes are critical to the maintenance process. All
of these software quality attributes must be combied 1o form
a maintainabitity measure. One of the most important quality
attributes is the seabiliry of the program. This fact can be il
lustrated by considering a program which is casy to under-
stand, easy to generate modification proposals for, and easy
to test. If the stability of the program is poor. however, the
impact of any modification on the program is large. Hence.
the maintenance cost will be high and the reliability may also
suffer due to the introduction of possible new errors because
of the extensive changes that have to be made.

Although the potential benefits of a validated program sta-
bility measure are great, very little research hasbeen conducted
in this area. Previous stability measures have been developed
by Soong [3]. Haney [6]. and Myers [4]. There exist several
weaknesses in these measures which have prevented their wide
acceptance.  Their largest problem has been the mnubility to
validate the measures due to model inputs that are question-
able or difficult to obtain. Other weaknesses ot these mea-
sures include an assumption that all modifications to a module
have the same ripple effect. a symmetry assumption that if
there exists a nonzero prohability of having to change a mod-

ule i given that module 7 is changing then there exists 4 non-

sero probability of having to change module j given thar mod-
ule ¢ s changing, and a failure to incorporate a perfonmance
component as part of the stability measure.

[ Devirormint o Lociear Stanitiny Mrasoris

The stabiliry of a program has been defined as the resistance
to the potential ripple effect that the program would hase
when it is modified.  Before considering the stabilinn o
program, it is necessary to develop a measure for the stability
of a module. The stability of g module can be detined as o
measure of the resistance to the potential ripple effect of
modification of the module on other modulesin the program.
There are two aspects of the stability of a module: the Togieal
aspect and the performance aspect. The logical stabidiry ot
module is a measure of the resistance to the impact of such a
madification on other modules in the program in terms ot
logical considerations. The performuance stabiliry of o module
is a measure of the resistance to the impact ot such a modifica-
tion on other modules in the program in terms of performance
considerations. In this paper. logical stability measures will be
developed for a program and the modules of which the pro-
gram s composed. Performance stability measures are cur-
renthy under development and the results will be 1eported in
a subsequent paper. Both the Topieal and the performance
stability measures are being developed to overcome the weak:
nesses of the previous stability: measures. In addimon the st
bilrey measares are bemy developed with the followmye require:

ments toanarease ther apphoabihty and acceptance




LA o

T T VY

LB an A e ]

N
.
.

.
s

.

.

MG 208 S0 A g

1) ability to validate the measures,

2) consistency with current design methodologies,

3) utilization in comparing alternate designs, and

4) diugnostic ability.

It should be noted that the stability measures being described
aie not in themselves indicators of program maintainability.
As previoush  mentioned, program stability is a significant
tactor contributing 1o program maintainability. Although the
measures being described estimate program  stability, they
mst be utilized in conjunction with the other attributes
affecting program maintainability . For example, a single mod-
ule program ot 20000 statements will possess an excellent
program stability since there cannot be any ripple effect among
modules. however, the maintainability of the program will
probably be quite poor.

Development of a Module Logical Stability Measure

The logical stability of a module is a measure of the resis-
tance to the expected impact of 4 modification to the module
on other modules 1 the program in terms of logical considera-
tons, Thus i computation of the logical stability of a module
must he based upon some type of analysis of the maintenance
activity which will be performed on the module. However,
due to the diverse and almost random nature of software
maintenance activities, it is virtually meaningless to attempt
to predict when the next maintenance activity will occur and
what this activity will consist of. Thus, it is impossible to de-
velop a stability measure based upon probabilities of what the
maintenance effort will consist of. Instead. the stability mea-
sure must be based upon some subset of maintenance activity
tor which the impact of the modifications can readily be deter-
mined.  For this purpose. a primitive subset of the mainte-
nance activity is utilized. This consists of a change to a single
vatidhle detinttion i g module. This primitive subset of main-
tenance activity is utilized because regardless of the complex-
ity o the manttenance activity, it basically consists of modifi-
cations toovariables in the modules. A logical stability measure
care then be computed based upon the impact of these primi-
e modifications on the program. This logical stability mea-
sure will accurately predict the impact of these primitive mod-
eattons on the program and. thus, can be utilized to compute
the Togend stability ot the module with respect to the primi-
tive modifications

bue to the nature ot the logieal stabihity of 4 module, an
atiabysis o the potential logical nipple eftect in the program
rnast be conducted. There are two aspects of the logical ripple
cthect wheh st be oxanined. One aspect concerns intra-
siodule chuanve prcparation. This involves the How of program
hoees within the moeduale as g consequence of the modifica-
o The other aspect comcerns mitermodule change propaga-
nen heomvalves the flow ot progiam changes geross module
Boomd e as o consegquens e of the maodilication,

Intiamodate chunge propagation s ntlized to identify the

t/00 ot mtrtace sanables whidh are atfected by logical
Apple et ae s consequence of aomedification to variable
Jetimtion comedule A This requines anidentification of
abi b Contiture the module’s interfaces and a
e nsaten ot the petennal mtramodule change propa-

255

gation among the variables in the module. The variables that
constitute the module’s interfaces consist of its global vari-
ables, its output parameters and its variables utilized as input
parameters to called modules  Each utilization of a variable
as an input parameter 1o a called module is regarded as a
unique interface variable. Thus, if variable x is utilized as an
input parameter in two module invocations, then each occur-
rence of x is regarded as a unique interface variable. Each
occurrence must be regarded as a separate interface variable
since the complexity of affecting each occurrence of the
variable as well as the probability of affecting each occur-
rence may differ.

Once an interface variable is affected, the flow of program
changes may cross module boundaries and affect other mod-
ules. Intermodule change propagation is then utilized to com-
pute the set X;; consisting of the set of modules involved in
intermodule change propagation as a consequence of affecting
interface variable j of module k. In the worst case logical rip-
ple effect analysis, X, is calculated by first identifying all the
modules for which j is an input parameter or global variable.
Then, for each of these modules in Xy, the intramodule
change propagation eminating from j is traced to the interface
variables within the module. Intermodule change propagation
is then utilized to identify other modules affected and these
are added to X,;. This continues until the ripple effect termi-
nates o1 no new modules can be added 10 X;. An algorithm
for performing this worst case ripple effect has already been
developed [7]. [8].

The worst case ripple effect tracing can significantly be re-
fined if explicit assumptions exist for each module in the pro-
gram for its input parameters or global variables. Intermodule
change propagation tracing would then examine if a module’s
assumptions have been violated to determine whether it should
become a part of the change propagation. If a module’s as-
sumptions have not been violated, then the ripple effect will
not affect the module.

There are many possible approaches to refining the worst
case ripple effect which would not require a complete set of
assumptions made for each interface variable for everv mod-
ule. For example, a significant refinement to the worst case
change propagation can result by utilizing the simple ap-
proach of examining whether or not a module makes any
assumptions about the values of its interface variables. These
assumiptions can be expressed as program assertions. If it
does not make any assumptions about the values of its inter-
face variables. then the module cannot be affected by inter-
module change propagation.  However, if it does make an
assumption about the value of an interface variable, then
the worst case is automatically in effect and the module is
placed in the change propagation resulting from affecting
the interface variable it the interface variable is also in the
change propagation as a consequence of some modification.

Both intramoduic  and intermodule change  propagation
must be utilized to compute the expected impact ot a primi-
tive modification to a module on other modules 1 the pro-
gram. A measure is needed to evaluate the magnitude of this
logical ripple effect which occurs as a consequence of modify-
ing a variable definition. This measure muost be assocuated

T

»

'
NI N




256

with cach vanable defimmmon e order that the unpact ot
moditymyg  the vanable detimbon dunng mamtenance can
be determined. This Togical complesity ot moditication
figure will be cornputed tor cuch vanable detimtion ¢
eveny module A and as denoted by TOM 0 There wie many
possible: measures which may be used tor LOM, 0 All ot
these measures are dependent upon computation of the mod
ules mvolved in the intenmodule change propagation as a con-
\cq'ucnyc ot moditvine ¢ The modules involved in the inter-
module change propagiation as 4 consequence of maditving
vanable detimuon £ of module & cun be represented by the
set B which s constructed as follows
W= U X
RN
The sumplest measure for LOM, ;. would be the number of
modules involved in the intermodule change propagation as
a consequence of moditying i This measure provides a crude
meuasure of the amount of effort required to analyze the pro-
gram to ensure that the modification does not introduce any
inconsistency into the program.  Other measures which ex-
amine not only the number of modules involved in the inter-
module change propagation, but also the individual complex-
1y of the modules. provide more realistic measures of the
dmount ot ettort required to analyze the program to ensure
that inconsistencies are not introduced. One such eusily com-
puted measure iy McCabes cyclomatic number [9]. The
cyclomatic number TG is defined in terms of the number of
basic paths in the module. A baste path is defined as a path in
the module that when taken in combimation can generate all
possible paths. Computation of the cyvclomatic number is.
thus, based on a directed-graph representation ot the module.
For such u graph ¢/, the oy clomatic number can be caleulated
as the number of branches in 5 minus the number of vertices
in G, plus two. Utilizing the cyclomatic number or any other
complenity measure, the complexity of modification of vari-
able definition 7 of module & can be computed as follows
LM, = >
oWy,

where G, s the complenity of module 7.

Smce the logical stability of a module is defined as the re-
sistance to the potential logical ripple effect of a modification
to a variable detinition 7 en other modules in the program, the
probability that a4 particular variable detinition ¢ ot a module
A will be selected 1or moditication, denoted by P(k1), must
be determined. Now g hosic assumption of utilizing primi-
tive types of mantenance activity s that o modification can
oceur with equal probability atany point in the module. This
mphies that cach occurrence of cach vanable definttion has
an equal probabthty ot berv attected by the mamtenance
activity . Thos, for cach module we can calvulate the number
ot variable detfimtions T the same vanable iy detined twice
within o module, cach detirnrnen s revarded separarely . The
probabihity that & meditication 1o g module will aftect 4 par-
trcular vanable detimmonn the maodal can then he computed
as number ot varnable detintions i the modale)

With the intormation ot FOMe and PtAoy tar cach varable
definition ¢ ot meduole & the potentad boseal nipple ctrect

b a pramitive type o modification to g module &L denoted
by LRE . can be computed.  The potenual logical rnipple
cltect o o module s g measure of the expected impact on
the proyram of 4 primitive moditication to the module. Thus,
the potential fogrcal npple etfect can be computed as tollows:

LRE, = > [P LOM,,)
by

where 1y the set ot alb variable detimtions in module k.
A micasore tor the logical stubthty ot g module &, denoted
by LS, . can then be established a< tollows:

LS, = 1/LRE, .

Development of a Program Logical Stabtlity Measure

A meusure for the potential logical ripple effect of a primi-
tive modification to a program, denoted by LREP, can easily
be established by considering it as the expected value of
LRE, over all of the modules in the program. Thus, we have

H
LREP= S [P(k) - LRE]

Aot

where Pik) is the probability that a modification to module
k may occur, and nis the number of modules in the program.
A basic assumption of utilizing primitive modifications is that
a modification can oceur with equal probability to any mod-
ule and 4t any point in the module. Utilizing this assumption,
the probability that a modification will affect a particular
module can be computed as 1/n, where a1 is the number of
maodules in the program.  This assumption can be relaxed
it additional information regarding the program is available.
For example. if the program has only recently been released
and it is believed that a significant part of the maintenance
activity - will involve error correction, then the probabilities
that particular modules may be affected by a modification
may be altered to reflect the probabilities that errors in these
modules mayv be discovered.  This can be accomplished by
utilizing some complexity or software science measures [10].

A measure for the logieal stability ol a program, denoted
by LSP. can then be established as tollows:

LSP = 1 'LREP.

IV, At cortins tor 11k COMPUTATION OF THE
Loaiear Stapiiiry MEAsSUries

In this section, an algorithm will be outlined for the compu-
tation of these logical stability micasures. The following de-
scription ot this algorithm assumes that there does not exist
any prior knowledge which might affect the probabilities of
progrant modilication. and McCabe’s complexity measure [9]
15 utitized. The algorithm can casily be moditied toallow for
prior knowledge concerniny the probabilities ot program mod-
ification or 1o utilize o Gitferent complesity measure The
alrorithm consists of the following steps

Srep T For cach module & dentify the set oot all vane
able detintions in maodnle A Fach occurrence ot a variable

i a vanable detinmon s umaguels dentitied m Vo Thusaf

the same varable s detimed twice within g module, then 17

[}

b alaand

’
i

'
Vo

o .

. ) [

LU I S D A e

P Sy VL

. Lt
- i
>t . : Ll .
R ' R
VO I SRR S S S O i )

L agy

. : o
Adnd abb s ol bk

.
.
FEPRIPG ¢




Tt

-y

v

-y

Landi o o
. »
R 2

."-.

-v—r

——

. e A e

contains a unique entry for each definition. The set V' is
created by scanning the source code of module k and adding
variables which satisfy any of the following criteria to }7.

a) The variable is defined in an assignment statement.

b) The variable is assigned a value which is read as input.

¢) The variable is an input parameter to module k.

d) The variable is an output parameter from a called module.

e) The variable is a global variable.

Step 2. For each module k, identify the set T, of all inter-
face variables in module k. The set Ty is created by scanning
the source code of module k and adding variables which satisfy
any of the following criteria to T

a) The variable is a global variable.

b) The variable is an input parameter to a called module.
Each utilization of a variable as an input parameter to a called
module is regarded as a unique interface variable. Thus, if
variable x is utilized as an input parameter in two module
invocations, then each occurrence of x is regarded as a unique
interface variable.

¢) The variable is an output parameter of module .

Step 30 For each variable definition i in every module k.,
compute the set Z,; of interface variables in T, which are
affected by a modification to variable definition ¢ of mod-
ule k by intramodule change propagation [7], [8].

Step 4: For each interface variable j in every module k.,
compute the set X,; consisting of the modules in intermod-
ule change propagation as a consequence of affecting inter-
face variable j of module k.

Step 5 For each variable definition 7 in every module k,
compute the set Wy, consisting of the set of modules involved
in intermodule change propagation as a consequence of
modifying variable definition i of module k. W, is formed
as follows:

Wei= U Xy
|4
Step 6 For each variable definition i, in every module k,
compute LCM,; as follows:

LCM, = Y G
oWy,
where C, is the McCabe's complexity measure of module ¢.

Step 70 For each variable definition i in every module k.
compute the probability that a particular variable definition
i of module & will be selected for modification, denoted by
Pki). as totlows

P(ki) = Litthe number of clements in J7 ).

Step & For cach module k. compute LRE; and LS, as
follows
LRE, = > [Pikey LOCM,, |
(R
LS, = I'LRE,
Step v Compute LREP and LSP as tollows:
n

LREP = 57 |P(k) - LRE, ]

LN

 Sat, i Jlaes Jan dhetsdhan i Sante Sl afih ari ot il asul Std g A A d il

257

where P(k)=1/n, and n is the number of modules in the pro-
gram. Then

LSP = I/LREP.

V. APPLICATIONS OF THF LoGrear Stasivntry
MEASURES
The logical stability measures presented in this paper can be
utilized for comparing the stability of alternate versions ot 4
module or a program. The logical stability measures can also

be normalized to provide an indication of the amount of

effort which will be necded during the maintenance phase
to accommodate for inconsistency created by logical ripple
effect as a consequence of a modification. Based upon these
figures, decisions can be made regarding the logical stability
of a program and the modules of which the program is com-
posed. This information can also help maintenance personnel
select a particular maintenance proposal among alternatives.
For example, if it is determined that a particular maintenance
proposal affects modules which have poor stability, then
alternative modifications which do not affect these modules
should be considered. Modules whose logical stability is too
low may also be selected for restructuring in order to im-
prove their logical stability.

The logical stability measures can be normalized by first
modifying the computation of the module logical ripple
effect measure to include the complexity of the module
undergoing maintenance. Let LRE; dencte this new logical
ripple effect measure for module k& which is calculated as
follows:

LRE; =C, +

i g

where Gy is the complexity of module . This enables LRE;
to become an expected value for the complexity of & primi-
tive modification to module k. Let C,, be the total complexity
of the program which is equal to the sum of all the module
complexities in the program. Note that LREZ < (), since the
ripple effect is bounded by the number ot modules in the pro-
gram. The normalized logical ripple effect measure tor mod-
ule k. denoted as LREZ, can then be calculated as follows

LRES = LRE, C,

The normalized logical stability measure for module &, de-
noted as LS? . can then be caleulated as follows

LSF =1 [REE

The normahized towcal stabihty measure has o 1ange of O 1o
1 with 1 the optimal logical stabality - This nonmalized Togieal
stability can be utilized quahtatively o it can be correlated
with collected data to provide o quantitatine measure of
stability .

The normualized logical stabilits measure tor the program,
denoted as [SP* can be computed by 1t calculating the
normahized fogical npple eftect measure tor the program,
denoted as T REP* as tollows

"
LREP* - D 1Pk IREY]
A

C i Ml Al e = A TG e S S A O

Caaaa’a sl

Y Y




The nonmalized Towcal stabiliny micasure tor the program can

then be catculated as tollows
LSP* =1 IREP*

LSP* hus the same nnee and nterpretation as LS

VI Exoaeni

In this sectton the logieal stability measures for the pro-
gram in Fig. 2 wall be caleulated according to the previously

described algorithm as follows
LREy Ay =0 LREggao1s = 290 LRE o018 = 2.7
The logical stability of cach of the modules is given by
LSy =0.250 LSproors = 0340 LSikoors =037,
The potential logical ripple effect of the program is
LREP =132
and hence the logical stability of the program is given by
LSP =0.31

The normalized logical stability measures tor each of the
modules and the program are given as follows:

LSHaiv =0
LSkroors =002
LSfkoors =006
LSp* =0.0267.

These measures indicate that the stability of the program in
Fig. 21y extremely poor. An examination of the program pro-
vides intuitive support of these measures since the program
utilizes conumon variables in every module as well as shared
imformation in the tform of passed parameters.  Thus, the
chunge propagation potential is very high in the program.

VI VATIDATION OF STABILITY MEASURES

As previously mentioned, an important requirement of the
stability  measures necessary  to increase their applicability
and acceptance is the capability of validating them.  The
presioos stability measures [3]. 4], [6] tailed to satisty this
requirement due to calculations involving subjective or dit-
ficult to obtain puts about the program being measured.
The stability measures presented in this paper do not sufter
from these limitations since they are produced trom algo-
rithms winch calealate intermodule and intramodule change
propagation propertics of the program being measured. Thus,
these measures easily Tend themselves to validation studies,

The stability measures presented i this paper can be vali-
dated aither directly through expenmentation or indirectly
through a discussion of how they are influenced by various
estabhshed sttnbutes of 4 program which atfect its stability
Jdanng mamtenance  The direct approach to vahidation re-
quires g Larve database ot mamtenance mformation tor a sig-
miticant numher ot varous types of programs in ditterent
Lanvuaves which have undergone o sigmiticant number ot
modifications ob u wide vartety. One expenmental approgch

would he to examime sets of provrams deseloped todentical

WM
iAo o A
Do doeMar g

MODULE ke
VREROD T
COMMON

MODT LI TROC!

SURROU O
Conea,
1E 0 iin
: SORT -
e my
i
HI H
ERANIERN ]
RETUR®,
Fig 20 Anexample program tor computing the stabiliny measures.

specifications but diftering mn design or coding. Logical sta-
bility measures tor cach version of the program could then
be caleulated to determine which possesses the best stability
A set of identical modificattons to the specitications ot cach
program could then he pertarmed. For cach maditication to
cach program. a logical complexity of modification, [ OCM.
could then be caleulated based upon the difficulty o1 -
plementing the particular moditication for the program. One
particular method for calculating an LCM has previous]y been
described [7]. (%], Atter asignicant number of identical spec-
ification modifications have been mmplemented on all versions
of the program, an average logical complexity ot moditication.
ALCM. could be computed tor cach version of the proyram.
This ALCM reflects the stability ot the program and. thus.
the ALCM can be utilized as o vanable in the experiment
After a signiticant number of sets of programs hase under-
gone their sets of modifications, expenimental conclusions
based upon a statistical analysis of the ALCM fgures and
the stability measures could he tormuliated.

This direct approach to validation of the stability measures
will be dithicelt due to the number ot programs and modinicy-
tions necessary to produce significant statistical results. Thus,
this direct approach to vahdation will be performed utilizing
the maintenance data base which will he created i conjune-
tion with the vahdation of our program mamtangbibn owea-
sure whieh s currently under mvestigation.,

The stability measures prosented here can also beindirectl,
validated by showmyg hiow the measares are attected by some
attributes of the progrgm which attect s stabihity durine
netntendanee  One program attnbute which attects mamtiam
ahality s the use of vlobal vanables The Channehing ot cone
municanon v paraineter-passine rathes than elobal vanabios

v charactensiie ot mare mantaable procrams [HH Tha

»
RO R S ey

.
oty




b

an indirect validation of the stability measures must show
that the stability of programs utilizing paramete: passing is
generally better than that of programs utilizing global vari-
ables. This can be easily shown since the caleulation of LS;
is hased upon the LCM of each intertace variable in module
¢t Since global variables are regarded as interface variables
and since the LCM of an interface variable is equal to the sum
of the complexity of the modules affected by modification
of the intertace variable, LS; will be small for modules sharing
the global variable, Thus, the logical stability of the program
will also be small. On the other hand, it communication is
vig parameter passing instead of global variables, the LCM of
the parameters will generally be small, and hence LS; and LSP
will generally be improved. Thus, the stability measures in-
dicate that the stability of programs utilizing parameter pass-
ing 1y generally better than that of programs utilizing global
variables.

The stubility ot a program during maintenance is also af-
fected by the utilization of data abstractions.  Data abstrac-
tions hide informanon about data which may undergo mod-
ficatton from the program modules which munipulate it
Thus. data abstraction utilization is characteristic of more
mumntamable programs.  An indirect validation ot the stability
measures must, therefore, show that the stability of programs
uttlizing data abstractions is generally better than that of pro-
arams whose modules directly  mampulate data structures.
This can casily be shown by examining the stability measures
of a program that utilizes data abstractions and comparing
those measures to that of an eyuivalent program m which the
modules directly aceess the data structure, i, data abstrac-
tons are not utilized The modules which utilize a data ab-
straction to aceess o data structure will have fewer assumptions
about thetr interface vanubles and hence have higher stability
than that ot the modules directly accessing the data structure
and hence having many assumptions ahout 110 For example,
consider o data structure consisting of records where cach
record has an employee number and o department number.
Assume that module INIT mtalizes the data strocture and
orders the records by the emplovee number. Also, assume
modoles YOV and Z must aecess the data structure to obtain
the departiment tor o civen cmplovee number. In this design,
omedale INTT s moeditied o that the records i the daty
structare are ordered by the department anstead ot the em-
Cnwhor then madules Y0 and Z must also he mod-

Thais porental moditication s retlected in the caleula-
fon ot LN Gy e comse et CESP T howeser modules
LI BTIN V4

st throueh o darg abstrace
o teonednle INTT wall attect

S S A NP PR E S et mesdules YOy and /
[SERTTENTIN | oot PSP owll he dareer
foothe e by bt oo than the
i o Yoers et Thus the stabiiny
e s e Do e e e e bt the srabghiey ol
IR VY Tala b cenerally borrer than

thye o w b b e
N e gt e e bt daene
Tetiatio oy e g et e et e siey e o w o b the
ot vt bt vine b AwrtErre thes scame et contral
ot ey | R R TR S N AR PO AN AL A SRR

T Y T U N U S

affected by a change to a module. te.. its scope of effect. is
a subset of the modules which are directly or indirectly in-
voked by the modified module, i.e..1ts scope uf control [12].
An indirect validation of the stability measures must, there-
fore, show that the stability of programs possessing this ty pe
of control and data structure are better than that of programs
which do not possess this attribute  Now a program which
exhibits this scope of effect/scope of control property has a
logical stability which is calculated from the logical stabitity
of its modules. each of which is bounded above by the sum of
the complexity of the modules which lic within its scope of
control. If the scope of effect of a modification to a module
does not lie within the scope of control of the module, the
logical stability of the module is onlv bounded above by the
complexity of the entire program. Thus, the stability mea-
sures indicate that the stability of programs possessing the
scope of effect/scope of control attribute are generally better
than that of programs which do not possess this attribute.
Another attribute aftecting program stability during mam-
tenance is the complexity of the program. Program complex-
ity directly affects the understandability of the program and,
consequently, its maintainability. Thus, an indirect validation
of the stability measures must, therefore show that the sta-
bility of programs with less complexity is generally better
than that of programs with more complexity . This is readily
apparent from the calculation of the logical complexity of
modification of an interface variable.  Thus. complexity 15
clearly reflected in the calculation of the stability measures.
The stability measures presented here can . thus. be indirectly
validated since they ncorporate and retlect some aspects of
program design generally recognized as contntbuting o the
developmient of program stability dunng maintenance.

VIE Concrvsion ann Forrre Ristakon

In thiy paper. measures for estimating the logical stabiliny
ot a program and the modules of which the program s com.
posed have been presented  Alponthins tor computing these
stahihity mewsures and for normahizing then have also been
given. Apphcations and interpretations ot these stahihty mea-
sures as owell oy an andirect vahidation ot the measures have
been presented

Much research remains o be done et area One arca ot
future research imvolves the apphoation ot the lopaal stabihing
measures to the design phase of the sottware hite ovede An
anabysis of the contral ow and the data flow ot the design
of the provram should provide satticent intormation o
calenlation of a Towcal stabiliny measare dnnng the desien
phase

Another area of future researchomvolves the development of
a performance stabality measure Sinee o progsam moditics
ton may resalt i hoth a Towcal and o pertormiance npple ot
foct. @ micasure tor the pertormance stabline ol a program an
the me Tudes of which the nrovecam s composed s also neces
wn 7108

Much rescarch alse remains 1o be done i the dentiticanon
of the other sottware quahty tactors contothuting to mamtan
abifite Sutahle measures tor these sottware - pralits tacten
st alao be develpe b These mmeasures st then he gptes

crated wirh the sttty reeasares tooprodbc e contarmatbales

' Aai et Nad Aal WebAnd Aaithed Anl i AN A AN AN s S AL ARE A0 A e “1

aA A

e s 2

N .
ey




260

measure,  This mamntaimability measure must be calculatable
at cach phase of the sottware lite cyele and must be validated

Another ates of future tesearch involves the development of
automated restructuring techniques to improve both the stabil-
1ty oy program and the modules ot which the programis com-
posed  These restructuring techniques should be applicable at
cach phase of the software development. Restructuring tech-
nigques must abso be developed to improve the other quality
tactors contributing to maintainability.  These restructuring
techmgues must automatically improve the maintainability of
the program at cach phase ot its development. The net results
ot thiy approach should be wsigniticant reduction of the mam-
tenance costs of sottware programs and. consequently, a sub-
stantial reduction in their lite cycle costs. Program reliability
should also be improved because tewer errors may be injected
into the program during program changes due toits improved
mamtanability .

Ry bt RENCES

[t B W Bochm, "Sottware and ats ampact A quantitative assess
ment,” Datamation, pp 48-59 May 1973

(21 M.V Zelkowitz, UPespectives on sottware vngineering” ACM
Comput, Surveys, vol 10, pp. 197-216, June 1978

13} N. L. Soone, A program stability measure.” in Proc. 1977 Annu
ACM Conp L pp. 163-173

141 G § Myers, Reliahle Software through Compaosite Design - Pet
rocell Charter, 1979, pp 137-149
151 3. A McCall, PK. Richards, and G b Walters, Factors i Soti-

ware Qualitv, Volume [11 Prelinunary Handbook on Sottware
Quuality for an Acquasttion Manager. NTIS AD-A049 085 Noy
1977 pp 2-1-3.7

J6] I M Huaney, “Module connection analysis,™ o Proc. AFIPS
1972 Fallt Jome Comput Conf  vol 41, part Lopp. 173-179

708 S Yau 1S Collotello, and T M MacGrepor, “Ripple eftect
analy s ol software mantenance,” 1 Proc COMPSAC 78, pp
HU-65,

18] S S Yau, “Sclt-metric sottware Summany ot technical prog-
ress.” Kep NTIS AD-ADB6-290, Apr. 1980

191 1 3 McCabe, A complesty measure,” [EFF Trans. Sofiware
Frg  vol. SE-2 pp. 308-320, Ded. 1976

{10] M H. Halstead, Flements of Suftware Science. New York
I Isevier North-Hollund, 1977, pp. 84-91.

[11] L. A Belady ond M. M. Lehman, “The charactenstics of large
systems,” in Research Dircctions in Sottware Technology . P
Wepner, Bd. Cambridee, MA MIT Press. 1979, pp. 106-139

[12] t. Yourdon and L Constantine, Structured Design. Yourdon,
1976

Stephen S. Yau (S760-M'61-SM'68-1 "73). for a photograph and biog-
raphy . see pod 34 o1 the September 1980 1ssue of this TRANSACTIONS.

fames S, Collofello (S'78-M"79) received the
BS and MS  degrees in mathematics/com-
puter soence from Northern Hhinois Univer-
sity . Dekalban 1976 and 1977, respectively,
and  the Ph D degree in computer saence
trom Northwestern University, Fvanston, 1L,
in 1978

After eraduating, he was g visiting Assistant
Protessor in the Department of Flectrical En-
mneenny and Computer Saence, Northwestern
University He joined the taculty of the De-
partment of Computer Saence. Arizona State University. Tempe. in
August 1979 and s currently an Assistant Professor there. He is in-
terested an the reliability and maintainability of computing systems
and the development, validation, and application of software quality
mernes

Dr Collotello v @ member of the Assoviation for Computing Ma-
chinery and Siegma Xo

S

,...
o eul

SR A 4

.-A s

. @
& o2 A

A a4 e g e

PP
0

'

a8 1 2 & SrMm la.a's’

valataa A ala

[ S PRGN

.
e
A ST



By et Bt B ot 2o St T N BP0 "R 8 TR ) S e o i

261

A METHOD FOR ESTIMATING THE EXECUTION TIME OF ARBITRARY PATHS IN PROGRAMS*

S.S5. Yau, M.B. Carvalho and R.A. Nicholl,
Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, Illinois 60201

One measure of program performance
is the execution time of the program. In
this paper a tecnhnique based on a
self-metric approach for estimating the
execution time ot program paths is
presented. Estimates are obtained for
each of the operations of a programming
language. A program 1is then used to
analyze the program to be measured,
inserting additional program instructions
to obtain statistics regarding the
execution time. This work was being done
to assist in the analysis of performance
ripple effect during program modifica-
tion. In this application, information
may be needed about each execution of
specific paths with critical timing
constraints. The particular paths to be
measured, and the type of statistics to
be provided are determined by the user.

This technique has been implemented
and used for experiments with PASCAL
programs running on a DEC VAX 11/780
computer,

Index Terms -- Dynamic monitoring,
execution time, hardware clocks, PASCAL
programming language, performance ripple
effect, program performance.

INTRODUCTION

Program performance is a measure of
how efficiently a sequence of statements
of a computer program is executed in a
given environment. Ideally, one should
be able to determine an absolute figure
which would be a measure of the
performance of a program and remain
invariant, regardless of the environmen-
tal conditions, However, as will be
shown later, such a measure is extremely
difficult to define, and hence the
restriction to “"performance in a given
environment” is made.

A number of program performance
indices have been proposed, and the one
that is most widely accepted is that of

* This work was supported by the Rome Air
Development Center, u.s. Air Force
Systems Command, under Contract
?30602-80-C-0139.

execution time (1l). It is assumed, for
the time being, that an intuitive
definiton of execution time is "the
amount of time vrequired to execute a
portion of code". A more detailed
discussion and definition of execution
time will be given later.

In this paper, we will present a
technique to provide an estimate of the
execution time of any set of statements
in a program. The reason behind thle
effort to provide such information is
threefold

1. to provide the user with
assistance in the decision making process
about program efficiency when selecting
different algorithms,

2. to provide a tool for the
development of faster and more reliable
programs. By having a frequency count of
different modules of a program, the user
will be able to recognize areas of code
which are never executed (indicating
redundancy or possible error), and also
those areas on which to concentrate
optimizing efforts (the performance
bottlenecks and heavily used procedures).
It has been reported that, for a typical
program, approximately 3% of the code
accounts for 50% of the execution time
l2],

3. to provide the software
maintenance personnel with an easy-to-use
tool to detect and measure the

performance ripple effect [3,4]. Perfor-
mance ripple effect has been defined as
the change in the performance of modules
as a consequence of software modifica-
tions, and 1is due to the existence of a
performance dependency relationship
between two modules, say A and B; that
is, a change in module A can have an
effect on the performance of module B
[3,4]. Consider two modules, A and B,
from a given program, as shown in Figure
1. Module B can be affected by a change
in module A 1f there 1is any kind of
linkage between A and B, such as a
control and/or data flow link. A change
in statement S in A may affect the
execution time - a performance index - of
B. In order to check the analysis of
performance ripple effects and to test

B A A A S

e e aeaa s d



. - Al ol e i e a4 L e .,

262

the correctness of a modification, it is
necessary to test the performance of all
paths in the program which have
performance requirements.

The technique we are going to
present 1is based on self-metric analysis
of program performance. We describe a
set of pseudo-statements to be inserted
by the programmer into the program to be
analyzed. This 1s the method by which
the critical paths of the program are
def ined. In order to estimate the
execution time of a path, we must Kknow
the time required for each operation in
the high-level language. Experiments are
per formed to determine the average
execution time of each operation in the
high-level language. We refer to these
values as the costs of the operations.

of the language and the pseudo-statements

inserted by the programmer, a source
language program analyzer modifies the
source program to include additional
statements to update cost counters
associated with the paths being timed.

To demonstrate the technique, an analyzer
has been implemented for PASCAL programs,
using a cost table for a DEC VAX 11/780
computer. We will compare the results
obtained for two programs under various
conditions, using both the system clock
and the analyzer.

DEFINITION OF EXECUTION TIME

A desirable characteristic of any
measure 1 that 1t must be repeatable,
otherwise it would be of little wuse, if
any. This condition restricts the
definition ot execution time since the
execuation time of a program may mean one
ot several different things, depending on
the  point of view from which it is being
considered.,

In a uniprogramming
meacsuring  CPU time
reguires only access
which can keep time
urit.  CpPU
time anits

environment,
1s an easy task that
to a real-time clock
for any desired time
time charged to a process, oOr
used for the execution of the
instructions between two points in  a
program are due only to the execution of
that particular segment,
A aGer in a
environment

multiprogramming
may assocliate execution time

with turnaround time; that is, the span
st tame from  the moment the execution
command 15 15sued until  the moment the
tack  1s completed: alternatively, the
execution time  of  the program may be
viewed as oa  measare  of  the program”s
consumption ot (virtualid CPU time - real
Lime m. us interrupts - or 1t may signify
P time  plus the  execution  of all
CPBSAry AP stem rout ines,

Than ot 1o clear that there are

eoler Dy dreen of warltatlion Lli‘).’}‘.“)Cldt’,’(‘i

Baa ALl o gt R o

. Sttt S/t N

with CPU time consumed, roughly
classifiable 1into two broad categories :
variations in hardware speed and effects
of system software. The former includes
mixed memory speeds for the different
levels of memory hierarchy, cache
performance, and the size of the
allocated working set. Software factors
include the cost of processing interrupts
("quick” interrupt service routines are
sometimes charged to whichever process
was interrupted, because it would not be
worth the effort to charge it to the
appropriate process, context switching or
supervisor/monitor services) and the cost
of scheduling and statistical work.

Obviously, any arrangements to
reduce these effects would restrict the
utilization of the system by other users,
and make any measuring session cumbersome
and exceedingly complex.

It 1is true that, today, most
operating systems do keep track of the
CPU time used by executing user
processes. But, besides the fact that
such information is plagued by the
variations already discussed, they still

retain the most problematic aspect of
timing procedures and measuring CPU
usage, namely clock resolution [5,6].

The clock resolution should be small when
compared with the time spent in the
procedure. But unfortunately, this is
not true of most systems.

The IBM/370 hardware 1includes a
time~of-day clock (real time clock) with
a resolution of 1 microsecond, which runs
continuously and provides timing
information for operating system
scheduling and accounting purposes. The
clock 1is easily accessible with one
low-level instruction (move register
type), and has been successfully used to
time procedures [7].

The DEC VAX-11/780 architecture, o©n

the other

hand, presents a very
restrictive clock system, as shown in
Figure 2. The CPU time information
stored in the process header can be read

by means of a system routine available in
the VAX/VMS Operating System the "Get
Job/Process Information" system service
provides accounting, status and
identification information about a
specified process (8]. The accumulated
CPU time may be read in 10 millisecond
"tics".

Therefore, when trying to measure
the actual execution time of procedures
by means of the wvirtual CPU time, one
runs into two levels of difficulty: the
first level is the problem of accessing
the operating system clock registers, and
their ilnadequate (too coarse) accuracy;
the second level 1s the wvariation
assoclated with the virtual CPU time due
to memory management, interrupts,
operating system service routines and

At b

PR Wl




-
ik

AORAR A an An Sk e S SN
" »
a. o

]
'

P
' .

M
'

Lo s e e g See s Se e At e St SRl I ACAAC AN | Y IR e I e
shortcuts in the accounting policy, and
the overhead introduced by the use of
sof tware probes that call system

routines.

In view of all these considerations,
we shall define execution time as the
amount of CPU time used by a program when
a sequence of statements 1s executed,
regardless of the environmental
conuitions. The execution time of a
sequence of statements, then, 1s the sum
of the execution times of the statements
of the sequence, each ot which 1is, in
turn, the sum of the execution times of
tue operations performed within those
statements.

METHODS OF MONITORING PROGRAM EXECUTION

There are a number of different
approaches used to monitor the behavior
of a program. Lyon and Stillman [9],
list four typical monitoring philosophies
and compare them on the basis of a number
of characteristics of cost and
convenience, such as portability,
accuracy, cost to prepare a program, and
clock requirements.

Each of the four methods has 1ts
advantages and disadvantages. The first
method, using clock interrupts via an
operating system, 1is excellent for use
across different compilers, but requires
a fast clock for good accuracy and
precision. The second method,
event-driven hardware probes, are good in
every respect, but are costly to set up.
The third method, inserting calls to a
system clock limits use to one language,
but 1s an excellent approach if there 1s
a consistent clock, and if the operating
system keeps track of program-state and
supervisor-state times separately and for
each user. The fourth method, placing
counters inside a segmented program,
although 1limited to one language and
requiring knowledge of the approximate
cost for each statement type, does have a
great advantage: during execution ot the
program, performance monitoring does not
use any clock.

This latter method 1is also known a4
the "self-metric" approach, due to the
tact that an instrumented vercion of the
program gathers all the information about
1tself, in  addition to performing its
normal  function. This 1s a method which
nas had a number of  reported  uses, for
monitoring  both  the execution time and

the logical behavior of the program
{&,9-10].

The selt-metric  approach  typically
consi1sts ot two  phases: the original
source code 16 tirst accepted as input by
a source code analyzer, which produces as
csutput the instrumentec  version  of  the
program, contailning the necessary code
tor the tallying function. Phase two

d i Al
T T s e W e TN T T N

263
occurs  when the augmented version of the
srogram  1s  actually executed on the
1ser’s original input data, producing a
report on  the execution statistics 1n
addition to its normal ou i, The
2ntire precess is represent.d in Filgure
3.

THE PSEUDO-STATEMLNTS FOR

INSTRUMENTATION PURPOSES™

Four pseudo-statements and one
pseudo-declaration are defined to allow
the user to instrument the source cCode,
issuing directives to the analycer to
take actions such as to set up a new
counter, to turn a counter on or otf
(thus defining the segment of code that
is to be monitored), to reset the valuae
of the counter-, and to prepare the data
file for outpu. and record the results.

The VAR Pseudo-declaration

This pseudo-declaration is 1inserted
by the wuser in the global variable
declaration part of the source program.
It instructs the analyzer to generatc the
code necessary to declare the glowal
variables which will keep track of the
statistical measures gathered during the
execution of the 1instrumented version.
The names of the probes are declared 1In
the program by the user. The syntax of
this pseudo-declaration is:

$S VAR [C-i1 ,]* C-n ,
where C-1 ... C-n are the names of the
probes. These names must satisfy the
syntax for an identifier ot the
programming language in use.

The INIT Pseudo-statement

The INIT pseudo-statement 1nitia-
lizes all wvariables wused for tallying
purposes, and opens and prepares tor
output the data file into which the mea-

surements will be written. This pseu-
do-statement should be used as the first
statement of the main program. The
syntax of this pseudo-statement is:

$$ INIT

The ON_Pseudo-statement

This pseudo-statement opens tie
scope of a new probe and detfines the
starting point of a new segment ! code
~hich = is to be time-monitorod. The

syntax ot this pseudo-statement 18:

$$ ON PROBENAME
where PROBENAME is one of the prove numes
which were declared in the VAR
pseudo-declaration, which has not vyet
been used.

The OFF pseudc-statement

v v W v CovE oW

by

PP YR O S u

-
Vi

2
4° .

e
SR’ W Y I ¢

, .
e cataln As ‘ak

e M A

s )




264

The OFF pseudo-statement closes the
scope oOf the current probe, reestablishes
the scope of the previous probe (there is
one predefined probe), and generates
source code, which will prepare collected
data and do simplification and output of

intermediate results. The user may
speclfy whether or not he/she wants every
new measurement of a probe to be

separately recorded; in either case, the
1verage value measured by the probe will
ne  computed. The syntax of this pseu-
do-statement is:
$$ OFF AVERAGE
or $$ OFF NONAVERAGE

The AVERAGE option determines that
only the average and standard deviation
are kept, whereas NONAVERAGE specifies
that each new value of the probe is also
to be recorded and output.

The OFF pseudo-statement ends the
scope of the last defined new probe,
tnerefore avoiding possible ambiguities
due to the overlapping of protes.
Nesting of probes 1s allowed, however.

The RESULT Pseudo-statement

This pseudo-~statement generates
instructions to output tne gathered data
onto a data file. It should be used

after the last executable statement of
the maln program, although this 1is not

required. The syntax of this pseu-
do-statement is:
$S$ RESULT

How to Use the Pseudo-statements

The following steps describe the use
of the technique:

1. identify the number of sections of
code to be monitored and select an
equal number of probe names;

2. in the variable declaration part of
the main program, 1insert the VAR
pseudo-declaration listing all ot
the selected probe names;

3. for each section of code to be
monitored, insert the ON pseu-
do-statement at its beginning, and
the OFF pseudo-statement at 1its
end, specifying the AVERAGE/NONAVE-
RAGE option;

4. insert the INIT pseudo-statement

before the first executable state-

ment of the main proqgram;

5. insert the RESULT pseudo-statement
after the last executable statement
of the main program;

6. eoxecute the analyzer using the
segmented version ot the program as
the input file and assign a new

oJatout file to hold the
tnstramented veraion;

T.ocomplie, iink and execute the
instramented version;

B tne  resaitn i f measuring the

execution will be stored 1in a
standard file.

Special Notes

The user should be aware of the
general rule that all paths which begin
at an ON pseudo-statement must pass
through the corresponding OFF pseu-
do-statement. This requirement is one of
the difficulties associated with
analyzing programs which contain Jjumps,
and hence the "structured" languages
provide more assistance in checking that
this rule 1is followed. The following
examples illustrate the use of the ON and
OFF pseudo-statements with three
different PASCAL language constructs.

Example 1:
REPEAT

$$ ON PROBEL;
UNTIL ... ;

$S OFF AVERAGE
is incorrect, whereas
REPEAT

$$ ON PROBE1L;
$$ OFF AVERAGE
UNTIL ... H
is correct.

Example 2:
IF ... THEN
" BEGIN $3 ON PROBEL; sl
END
ELSE
BEGIN S2; $$ OFF AVERAGE
END ;

.5 incorrect, whereas
IF ... THEN
T BEGIN 33 ON PROBEl; S1;
$3 OFF AVERAGE
END
ELSE
BEGIN $$ ON PROBE2; S2;
§§ OFF AVERAGE
END ;
is correct.

Example 3:
$$ ON PROBEL ;

IF ... THEN GOTO 1 ;
$$ OFF AVERAGE ;
1:

is incorrect, whereas

$S ON PROBE1 ;

IF ... THEN GOTO 1 ;

1:

. . M N t. e
s Dol s

PSP "

. sl

C 4
1




——<
....‘..
' .

'

T E I

—ry -
.

»
)

v

o 2 2o T T e Th Mgl
o
B

.

$$ OFF AVERAGE :
is correct.

THE EXPERIMENT TO DETERMINE
THE EXECUTION COSTS

In this section, we will discuss how
experiments may be conducted to determine

approximate relative costs - 1in units of
time - for the standard operations,
functions and procedures of the

programming language . use.

Wortman {7] has conducted a number
of experiments to compare "system time"
and "hardware time"; system time was
def ined as the timing information
returned by a logical clock (26.04
microsecond resolution) maintained for a
task by IBM's 0S8/360 MVT operating
system; hardware time was the reading
obtained from the hardware clock (1
microsec resolution). The "system time"
described is very similar to the virtual
CPU time maintained for each process by
the VAX/VMS operating system.

Wortman concluded that the system
time had a "normalized standard deviation
that was, on the average, two orders of

magnitude larger than the normalized
standard deviation observed for hardware
time" [7). He al-so found that the mean

value for both measurements diffrred by
less than 0.5%.

This method of measurement was
adapted for the DEC VAX-11/780 computer,
using a system service routine (SGETJPI)
which gives access to the virtual CPU
time [8]. For our implementation, this
routine  was ssed to estimate the cost of
the wvarious operations in standard
PASCAL. Figure 4 1s a schematic version
of the algorithm used.

THE ANALYZER

The analyzer developed uses the
self-metric approach  described above,
inserting tallying code which produces
estimated  execution times for the total
run and tor each segment of code that the
user has chosen to monltor.

The PASCAL [(l6] language was chosen
vecause of 1t5 growing acceptance 1n many
programming situations, its elegance and,
most of all, its extensive use of
structured statements.

The analyzer searches  the PASCAL
code for the occurrence of reserved
words, all standard (as well as  a  small
number of non-standard) identifiers and
operators, and determines where to 1nsert
code  to  account  for the execution ot
every statement, By making use of a
"cost"  tanle, tallying statements are
gJenerated to o increment "oost" counters,
and the accumalated values are recorded
at the end of the  execuatilon ron. Thie
Appendix  describes  tio code whilch s

v —— T T R T Y e wTwIT=, WY T T
- AS-ae eut sl e o S wtvl sbuc afec Al ant s e s L ani R M YDA Ebali- S A e i G A il A i S Pl "

265

inserted for each PASCAL statement type.

To estimate the total executlion
time, which is Jdetined as the sum of the
executlion times of each individual
statement, it 1is first necessary to
optain estimates of the relative cost (in
units ot time) for the individual
statement types. The algorithm used to
do this, described in the previous

section, lacks some accuracy, Ssince 1t
does not take into account the code opti-

mization capabliiity of the compiler.
However, the 1elative cousts derived,
employing the most general sample

statements possible, have shown them-
selves to be consistent, reliable, and
satisfactory for their intended use ac
detectors of changes in perforamance.

Trying to incorporate the effect of
the compiler optimization would introduce
a variakle which 1s too wvolatile, or
perhaps totally uncontrollable; there-
fore, even at the cost of some inaccura-
cy, a decision was made to keep all of
the study in a high level language
environment.

Restrictions and Extensinng

An  effort was made to make the
analyzer accept the entire PASCAL
language as  defined in {l6], but the
following problem was encounterea:

The feature which causes some
difficulty (not part of the original
language definition, but in common use)

is the use of externally declared
procedures or functions. This 1s used
quite frequently in large software

systems, to aid modularity and to reduce
the time needed for modification and
compilation. This featuce is also
necessary to enable the use of installa-
tion defined routines existing in system
libraries. Since such routines are not
available to the analyzer, and need not
be wriltten in PASCAL, it is not possible
tor us to apply self-metric analysis to
them. Thereviore, the analyzer has been
implemented to recognize such  procedures
and functions, Hut to  take no further
action.

As a rtewalt ol this decision, it 1s
not  possioie  tor us to allow procedares

or fuanction: u:.  pdarameters, since  such
procedures  or functions may be declared
eltiier witnin v prodram (and so  should
be analyzed), Uoas externas ruatines
(and so stould not be analyzed). while

this restriction bas not limited our use
ot the analyzer, 1t may be relaxed to
torold  instead the uze ot any externally
aeclared roatine as a parameter.,

CUMPARLIGON DATA FOR TWU ROUTINES

Tre wost Jdesiraole characteristic of

: PSSP B P U S I T I T P! . .




i N
- o
ey
* I 1
- Lo
e,
.
.
» v ’
ER
~ :
. i. PRI . . : v
r . ;
[T SRR RS ST TR PR S R PR
1010y b vy it ' H [ SRR RETRTI
LUf by b twen o v o Lent g
the lar jeeat e lemerns b boe array g
find a match  Tor trae Theoe
aoing tree biinary ER T et 1 gl
Search roatineo;
It 14 eany Yo See  thae thee lainary

search procedare s independent of  thee
value of the inpuat, that 15, independent
of the  search key.o  Thios observation 1o
confirmed Ly both the ectimator  and  the
synter  clock, as  cnown below.  Aloo as
expected, the sequential search proceduare
15 shown  to e highly Adopendent on the
particalar value of the sarch ke,
We compare the figures obtained  for
Fhe sequential search procedure ton the
ettoof each palr)  with  those  for  the
oary search procedure. Althouqgh the
S outained  from  the clock are
B to  the variations previously
rei, and the fiqgures obtained from
culszer are based on appreximations
i boLmee requilred toe execute
FASCAL operations, the costg

f A IR Ched el Rl Y S S AL I

sootimated by our analyzer and  the costs
fiven by the system clock show the same
r«er o of proportion, with a percentaqge
teltataive ditference of about 40 per cent.

Scequential/Binary

roace Estimated Time Clock Time

1 0.4/1.5= 0.27 6/29= 0.20
Tw 34.4/1.5= 22.9 1237/29= 42.6
e 17.3/1.6= 10.8 631/37= 17.0

h _COMPLETE EXAMPLE

Ao sample Execution

A relatively =2mall  PASCAL  program
TG Lt I ot 8 modules was chosen to
Lllastrate tne une of the executlon time
LRt Or . This program appeared in
welonoand Blider 117

Trne seqgmented version of the program

Tttt 15, the original source code plus
atements inserted by  the
shown in Flgure 5. Each proce-
main program, 1s beinjg
T ’ On entry to cach procedure a
e 1 turned "ON";  and on  exit  from
oo procedure, the same probe 1s turned
"OFEPY. Toee  elghth probe monitors  the
rain o mecdale of the program.
T prober ac ciated with procedare
& 5 oturned "OFF", with the option
to specify that the execu-
tion time estimate for that procedure 1o
tooone oatpat each time the  procedure i
e ated, A1l  other probes are termi-
sated with o othe "AVERAGEY option, and  so
will recard only a gommary of results.

RV

UNONAERAGE

Interpretation of the Output Data

The catpat of the measuaren cocoaerated
ry e tallying code of the 1nstruanent
vercron Of the analyzed program 1s o shown
n Figare e,

The  "intermediate results” Show
every fangl valae of each probe for which
the NONAVERAGE option was  opecified In
the $S OFF paeudo-statemoent; cach resalt
drrplays the nome of the  probe  and  1to
meacarid valare,

The "fainal recults” give 3 cummary

o f toe  activities  of  each probe. The
"treguency connt™  gives the  namber o o
tne s that a Segnent ot code R VoI -
tored by the corresponding probe, Tha.
shows  how heavily the codde wan exeoatind,
and hence ndloates J Importan 1n
relation to other monitored sections and
the total program. A treguency coint oof

zero  shows that that particalar code was
not exeoated  with the  1nput  data set
used, and ghus mplies that an additional
test case should e uaed to execate that
cection of code,

"Mean” gives toe o aver o030 cot aimat ed

W VY 200 o0 P R S P8 SRTUYY VS VR VEPR Y

e

-
er

. L

- ) .‘
- - -
- - '~
. s - P

L

:? d
) @

e

-

Y
o

bl

PN G Y




w——— —————rY ————
exelution  time for the ceogment of code,
and  "standard deviation” Grows the
VA ration in the  time  estimates  of
Jiffersnt executions of the same prece of
code. "Maximum® SIOW e largest

execution vime measared for that segment
St code. Tts oamportance lies in the fact
that, even thoogn the AT ne execution
time of a module may Lave changed only
slightly due to a performance ripple
effect, if  1ts maximum oexecutlion time

tncreases disproportionately, then that

module 15 a serious candidate for
reexamination.
"Total Estimated Execution Time"

gives the approximate total cost for the
execution of the whole program, in units
of time.

These execution time ftigures may be
compar ed with those obtalned from
previous executions of  the program  to
ldentity performance changes. They may
also be compared against the performance
requirements of the program to detect any
violations, and to provide an early
warnina of possible future violations.

CONCLUSION

In this paper we have shown that
measuring  execution time of programs to
obtain a performance index is not an easy
task and reguires some assumptions and
approximations to be made. Our
self-- . tric approach was developed to
monitor the performance of programs. The
self-metric approach implies that the
cxecution time estimates obtained are a
measure  of  only the time for executing
the wvarious arithmetic, togic and 1/0
operations encountered In the p.ogram.

The procedure for us ing the
pseudo-statements requires  the user to
manually segment the program by inserting
paendo-statements that are interpreted by
the  analyzer. wnile this requirement
1mpeses Some extra work on the part of
thoaser, 1t oalso provides the freedom to
menttor  any  Zection ot the program that
e Loer considers necessary. By
wepropeiateiy placing the ON-OFF switch
pairs, the aser 1o oaple to better observe
L pehavior of the program.

Two modifircations can be made to the
couarrent syctem to o deal with the following

PNt iong

t. A1 i now, Uhie uger nas o to

twia aplee s ot e progqram: o one s

Sru Titias Sodroe code g b Orheer

roe SEpmentedd Jerslon., Ths 18 4

Wl e o SEO g Bpace,  whilono may o be
Tt thoexbtrems Ty larges prosrals are
Ter o paee gmontoor ed, Const raction ot an
(RS EAATS [ A et paedo-comment s
Voot ot poeada-s i stemeent s o wi 1l el b
oo nanme copy te he aocepted by both o the

Somplier oand the analyzer.,
. A taralL s o aatomatl version of

267

the analyzer could be nade available for
the cases in which the smallest unit to
be measured would be a procedure or
function, Procedure entry and exit
points are easy to detect automatically,
and such information is easily related to
the use of ON-OFF switches.

The estimator was, 1in this work,
developed for the detection of
performance ripple effects, but its use
can be extended to other areas such as
detecting heavily used code, identifying
code which has not been executed by any
test case, defining the relative
importance of different modules, and
helping in selecting between different
algorithms.

APPENDIX
Instrumentation of PASCAL Statements

This appendix describes standard
PASCAL statements anrd their instrumented
versions as constructed by means of the
analyzer. First we make the following
definitions:

S : Any PASCAL language
statement ;
exp : Any expression that, when

evaluated, yields a value
of some scalar type (e.g.
integer, boolean);

o] : statement cost counter ;

cost(x) : cost function for "x", in
units of time;

ovrhd : additional cost, not
as=so=ci=ated with any
syntax unit (these are

constants, determined by
ex=pe=ri=ment);

var : Any cortrol variable;
rec var : Any record variable;

[x]* : indicates that "x" may
occur zero or more times;

[x | y1 : indicates that either "x"
or "y" will appear.

The begin - end bracket

standard syntax:
bhegin [S-1 ;]* S-n end ;

A "begin-end" pair encloses «
sequence of statements that are all
executed, in order of apprarance. The

cost of each statement shouid be added to
the counter before execution of that
statement.




APt S st A et A A A AN A EaNEJAC ARSI M AR S AR AT AL SRR A W DA dn |
P ‘
' 268 J
T4
instrumented version: cost of this statement: e
begin [c := c + cost (8-1) ; S-1i ;]* cost (exp) + ovrhd-l. . f
Cc 1= C + cost(5-n) S-n ; . .
end ; The if statement D
cost of this statement: none. standard syntax: .‘!
if exp then S-1 [else S-2 | ] : g
The repeat statement o D
T The expression 1s evaluated only .
standard syntax: once, and the action taken next depends
repeat [S-i ;]* s-n on its outcome: S-1 is executed if "exp"
until exp ; is true and $-2 if "exp" is false. The
T cost of evaluating the expression is
The statement sequence S-1,...,5-n added to the cost of the statement within
is repeatedly executed until "exp", which the "i1f" statement appears; the
evaluated after each execution of the cost of $-1 and S-2 are incorporated into
statement sequence, becomes true. The the statements themselves. ‘
cost of this sequence is computed in a
. manner analogous to that described for instrumented version:
.o the "begin-end" statement, but must also if exp
? _— include the cost for the evaluation of then begin ¢ := ¢ + ovrhd-1l ; 4
m the expression. c := c + cost(S-1) ; S-1 ; T L
ok c := ¢ + ovrhd-2 ]
L instrumented version: end S
e begin [else begin ¢ := ¢ + ovrhd-3 ; R
b7 repeat c i= ¢ + cost(S5-2) ; S-2 ; "]
P: ¢ := c + cost(S-1) ; S-1 ;]* c := ¢ + ovrhd-4 RN
2 c 1= ¢ + cost(S-n) ; S-n ; end | ] i e
¢ := c + cost(exp) + ovrhd- o
until exp ; cost of this statement: R}
c := Cc + ovrhd-3 cost (exp) . . :
end ; - ="
- The for statement j
cost of this statement: -
ovrhd-1. standard syntax: S
for var := exp-l [to | downto] exp-2 do . :
The case statement i )3
el Bl S ; '.1
standard syntax: The cost of evaluating the initial ‘
case exp of expression "exp-1" and the final R
fcase label list-i S-1i ;1* expression "exp-2", each evaluated only =
case label list-n : S-n once, is added to the cost of the e
end : state=ment within  which the “for" e
state=ment appears; the cost of the "4
The case statement selects for state=ment "S" is in=cor=porated into the v
execution the statement whose label is state=ment itself. h
equal to the current value of the . ';
selecting expression. The cost of instrumented version: ST
evaluating the expression 1s added to begin for var := exp-l T
that of the statement that brackets the {to | downto] exp-2 do T
case statement; the cost of each begin ¢ := ¢ + ovrhd-2 ; R
. statement S-1,...,S-n is incorporated in c := c + cost(S) ; S ; 2
@ the statement itself. c := c + ovrhd-3 -~ @
4 end ; R
instrumented version: c := c + ovrhd-4 R
case exp of end ; ) -
“Tcase label list-i - D
begin c := ¢ + cost(S-1) ; cost of this statement: ‘J
S-1 ; cost (exp-1) + cost(exp-2) + ovrhd-1l. e
c := ¢ + ovrhd-2 . Ty
i'., end; | * The with statement C 3
. case label list-n : R
} L begin ¢ := ¢ + cost{S-n) ; standard syntax: ) -'.1
S S~n ; with rec var [,rec var]* do S ; SRR
- c 1= ¢ + uvrhd-2
- end All costs associated with evaluating RO
Fﬂi; end ; ) the record variable(s) are added to the =
= - statement within which the "with” )
) @ L
T -

WP NS e Wy g,

.. - . . . - ‘. LR S e '..- ot Y R
DT I JF APPSR S WP AP S N S I AR 0" SN N WS

-l
l“-)
r’t' .
’,:
r.
L
r,

I

b
il'v
b

3

1

r

)

[}

.n

7

'v

]
LA L




.
N
.
»

- vy

T T yryY
P ‘
.

>
B
.

Lt ot
. 4
.

bt ST AT

L ol D00 aon giec-o (i aARt dm Al A= AN St Sl S O

statement occurred; the cost of the S
statement is incorporated into itself.

instrumented version:
with rec var [,rec var]* do
begin c := ¢ + cost(S) ; S end ;

cost of this statement: none.

The while statement

standard syntax:
while exp do § ;

The controlling expression is
evaluated before each iteration,
therefore the cost of its evaluation is
added to the cost of the statement; the
total cost 1is incorporated into the
statement itself.

instrumented version:

begin
while exp do
begin ¢ := ¢ + ovrhd-2 ;
¢c := ¢Cc + cost(S) ; S
¢ := c + cost{exp) + ovrhd-3
end ;
¢ := ¢ + nvrhd-4
end ;

cost of this statement:
cost (exp) + ovrhd-1l.

Procedure declaration

standard syntax:
procedure proc-ident
({formal par list | 1) ;
proc-body ;

Procedures may be called from
different points 1in the program where
different probes (counters) may be

active, therefore, in order to increment
the correct counter so that the cost of
executing the procedure is added to the
cost of the segment in which the call
originated, it 1is necessary to pass the
relevant probe as a variable parameter to
the procedure.

instrumented version:
procedure proc-ident
{{formal par list; | ]
var C : integer) ;
proc-body ;

cost of this declaration: none.

Procedure statement

standard syntax:
proc-ident [(actual par list) | |

’

The active probe (counter) has to be
passed to the procedure as a parameter to
account for the cost of the execution of

269
the statements in the procedure.
instrumented version:

proc-ident ({actual par list, | )
active-probe) ;

cost of this statement:
cost(actual par list) +
cost (procedure call).

Function declaration

standard syntax:
function func-ident
(formal par list) | ]
:  func-type ;
func-body ;

The considerations for a function
definition are analogous to those
presented for the procedure declaration.

instrumented version:
function func-ident
({formal par list; | ]
var ¢ : 1integer) : func-type ;
func-body ;

cost of this declaration: none.
Function call

standard syntax:
func-ident {(actual par list) | ] ;

The considerations for a function
call are analogous to those presented for
the procedure statement.

instrumented version:
func-ident (([actual par list , | |
active-probe) ;

cost of this statement:
cost (actual par list) +
cost (function call).

Goto statement

standard syntax:
{S-i ;]* goto label ;

The cost associated with the goto
statement must represent the costs of all
statements executed along the path to the
goto statement.

instrumented veirsion:

[c := ¢ + cost(S-1) ; S-i ;]|*
c := Cc + cost{goto) ;
goto label ;

cost of this statement: none.

Labelled statement

standard syntax:
{s-1i ;]* label : [S-3 ;1*

A
_[;J”;I.x

-

v
’

«

s . e
’ . .
AL PN Y B S )

Py L“A

aa

aala

@

'




s R v B P
P
o .
a,
.

cost of this statement: none.

REFERENCES

{1} Ferrari, D., Computer Systems Per-
formance Evaluation, Prentice-Hall,
Englewood Cliffs, N.J., 1978.

[2] Ingalls, D.H., "“FETE - A FORTRAN
Execution Time Estimator", in
Program Style, Design, Efficiency,
Debugging, and Testing (ed. D. Van
Tessel), Appex. 1II, Prentice-Hall,
Englewood Cliffs, N.J., 1974.

[3} Yau, S§.S., Collofello, J. and
MacGregor, T., "Ripple Effect
Analysis of Software Maintenance",
Proc. Compsac 78 - Comp. Software
and Applications Conf., Nov. 1978,
pp. 60-65.

(4] Yau, S.S. and Collofello, J.,
"Performance Ripple Effect Analysis
for Large-Scale Software Mainte-
nance", Interim Technical Report,
RADC-TR-80-55, March 1980, NTIS
AD-A084-351.

{5] Crowley, C., "The Architecture of
Clocks"™, ACM SIGARCH, Vol. 7, No.
11, Dec. 1979, pp. 4-9.

{6)] Davies, J., "Clock Architecture and
Management", ACM_SIGARCH, Vol. 8,

No. S, Aug. 1980, pp. 3-6.

[7] Wortman, D.B., "A Study of
HHigh-Resolution Timing", IEEE Trans.
on Software Engineering, Vol. SE-2,
June 1976, pp. 135-137.

(8] DEC Corporation, VAX/VMS  Systems
Services Reference Manual, Vol. 4,

DEC Corp., Maynard, MA, March 1980.

{9] Lyon, G. and Stillman, R., "Simple
Transforms for Instrumenting FORTRAN

Programs", Software - Practice and
Experience, vol. 5, 1975, pp-
347-358.

{10} Ferguson, L., "pProfile : An
Automated Program Analysis Aid",
ACM Sigmetrics - Conf. on Comp. Per-
tormunce : Modcling, Measurement and

Management, 1977.

[12]

(13]

[14]

{1s]

[16]

117]

Knuth, D. and Stevenson, F.,
"Optimal Measurement Points for
Program Frequency Counts", BIT, Vol.
13, 1973, pp. 313-322.

Cheung, R.C. and Ramamoorthy, C.V. :
"Optimal Measurements of Program
Path Frequency and its Applica-
tions", Proc. of the Sixth Intern.
Federation of Automatic Control
Congress, Boston, 1975, pp. 1-6.

Stucki, L., "Automatic Generation of
Self-Metric Software", Proc. 1973
IEEE Symp. on_Computer Software
Reliability, 1973.

Yau, S.S., Ramey, J.L. and Nicholl,
R.A., "Assertion Techniques for
Dynamic Monitoring of Linear List
Data Structures", Jour. Systems and
Ssoftware, Vol. 1, No. 4, 1980, pp.
319-336.

Jensen, K. and Wirth, N., PASCAL
User Manual and Report, Sprin-
ger-Verlag, N.Y., 2nd. ed., 1979.

Welsh, J. and Elder, J., Introduc-
tion to PASCAL, Prentice-Hall Inter-
national, Englewood Cliffs, N.J.,
1979.

e s LI
- e T
. - LI

@, TN .

- - - . . - . - -.> -‘.' - '--'-“
[ RIE AR Y Yl YT S R S LA AT SAEATL WL P VS W

J.»;';‘l\

o

P T T T e T T T e e, T VT RN T S T T TR
P
270 e
The occurrence of a label causes a {11] RrRamamcorthy, C.V., Kim, K.H. and 4
new count to be initiated, anticipating a Chen W.T., "Optimal Placement of J;
later jump. Software Monitors Aiding Systematic s
Testing", IEEE Trans. on Software -
instrumented version: Engineering, Vol. SE-1, No. 4, Dec. ISP
[c := ¢ + cost(S-i) ; S-1i ;}* 1975, pp. 403-410. o
label : (c := c + cost(S-3j) ; S-3 ;l1*

!
|
e

e

e s e P
@
SRR

e Bon ok

}
s
) /"J'.A'A.E oy

b

»

s
JT e

Smdaden e S

L
endratond

RS
ry
sl

A’J'A L‘.‘-‘L L PP ! .

‘

P ]

AP Y
WP Vs

.
Pa )




RSt S O Sl Nl 4t Jill S M St Nl SRS Sl Anik-FhCNA S A AL A S S r ¥ Gt AR IR & S L i SML IS SR A AL AL SN SR S s S SN R

-

271 :CH
R J
A B L
}
S £(S) t 0!
control/data <
link 1
|
S
e
, A B '@
. 3
y . -f . o
N s* £(S°) t” e
oo control/data PR
RS link l o
by,
S Fig. 1 - Schematic representation of performance ripple effect
ZON
RO loaded at initialization
O next interval register
. - load
- h
SR interval timer
Y, {1 microsec)
. interrupt overflow
()
R VAX/VMS PDH
‘-_:‘--f
N TIMESCHDL update + 1 CPU time
‘ + 1 CPU quantum
SR + 100,000 TOD register

'0.' l‘—64 bits—Pp|
U (10th of microsec)

Fig. 2 -~ Schematic representation of the VAX timing system

(NN

LI




Hr-_.. ANt e e g e PN e et -y R e e e 2
: !
. . .
P '..

I " -

@

- 272

e

r,‘~-

b, -

P -

tff‘ original source

progiram code

v

g

source code + -

user inserted markers RS

phase one ‘ }f; S

h PASCAL analyzer = "'"‘:j
IO

N instrumented version

|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
i
i
i
:ég'kL.-

. PASCAL compiler Cee
& ' 4 B
L-? phase two program execution input data e

PO }
1

normal execution
output data metric data
Fig. 3 - Simplified view of the self metric approach r

The algorithm: R
I‘- - -\ -
VAR I,J,K : INTEGER ; o
CLOCKl, CLOCK2, DIFF : INTEGER ; I

MEAN, DEV : REAL

C-. PROCEDURE $GETJPI (VAR TIME: INTEGER); EXTERN ;

.

11}5.'...‘! RPN

BEGIN .
FOR I := 1 TO NUMBEROFMEASUREMENTSESSIONS DQ AT,
BEGIN RESET VARIABLES ; Y
FOR J := 1 TO NUMBEROFSAMPLES DO B
. BEGIN $GETJPI (CLOCK1) ; S
- FOR K := 1 TO NUMBEROFITERATIONS DO S
- EXECUTE SAMPLE STATEMENT ; :
n $GETJPI (CLOCK2) ; \
- DIFF := CLOCK2 - CLOCKl ;
- COMPUTE DYNAMIC MEAN AND
-Q STANDARD DEVIATION FOR “DIFF” ;
. END ;
OUTPUT RESULTS ;
END ;

Fig. 4 - Algorithm used to estimate the cost of operations

Cte e e
I T R ]

e -'_.-_., S P Y .
{.ﬁ-;.’g..;g,;._.,-, R ORI YA Ty DS Y S R TV IR R S




i St Sl At A A S i R et i A e T it e S i il Al S et A AL S A S Tl Tl R e S S s Sach s megk SBwL SN el ot MR el Adr- e

273
PROGRAM SORT (DATAFILE,OUTPUT);

CONST MAXKEY = 99999;

TYPE KEYTYPE = 0..MAXKEY;
SOMETYPE = RECORD TRANSTYPE : (DELIVERY,DISPATCH);
AMOUNT : 1 .. MAXINT
END;
ITEM = RECORD KEY : KEYTYPE;
RESTOFRECORD : SOMETYPE
END; R
FILETYPE = FILE OF ITEM; o

VAR C, DATAFILE : FILETYPE; : .}

(* DEFINE 8 PROBES *) ER
$$ VAR CXZ1,CX22,CXZ3,CXZ4,CX25,CX26,CX27,CX28; I
. - . -

PROCEDURE NATURALMERGESORT (VAR C : FILETYPE); s
VAR NUMBEROFRUNS : 0 .. MAXINT; RS
A,B : FILETYPE; 2

ENDOFRUN : BOOLEAN;

PROCEDURE COPY (VAR SOURCE, DESTINATION : FILETYPE);
VAR COPIEDITEM : ITEM;
BEGIN $$ ON CXZ1l;

COPIEDITEM:=SOURCE";

GET (SOURCE) ;

DESTINATION":=COPIEDITEM; .

-

N

0. TR

PUT (DESTINATION) ; [
IF EOF (SOURCE) THEN T
ENDOFRUN := TRUE 1
ELSE ENDOFRUN := COPIEDITEM.KEY > SOURCE".KEY; N
$$ OFF NONAVERAGE S
END; (*COPY*) i
e
PROCEDURE COPYARUN (VAR SOURCE,DESTINATION: FILETYPE); T

BEGIN $$ ON CX22; v @
REPEAT S
COPY (SOURCE, DESTINATION) ;
UNTIL ENDOFRUN;
$$ OFF AVERAGE
END; (*COPYARUN*)

PROCEDURE DISTRIBUTE;
BEGIN $$ ON CXz3;
REPEAT
COPYARUN(C,A) ;
IF NOT EOF(C) THEN COPYARUN (C,B);
UNTIL EQF(C);
$$ OFF AVERAGE
END; (*DISTRIBUTE*)

PROCEDURE MERGE;

PROCEDURE MERGEARUNFROMAANDB;
BEGIN $$ ON CXZ4;
REPEAT
IF A" .KEY<B".KEY THEN
BEGIN COPY(A,C);
IF ENDOFRUN THEN COPYARUN(B,C);
. END
i ELSE BEGIN COPY(B,C);
- IF ENDOFRUN THEN COPYARUN(A,C):
END;

S BT OE
B SR ARAN

LR LS

Fig. 5 - A sample segmented progranm

L
L

bl
rfe

)
s

s T T
s @
T %




274

UNTIL ENDOFRUN;
$$ OFF AVERAGE
END; (*MERGEARUNFROMAANDB*)

BEGIN $$ ON CXZ5;
WHILE NOT (EOF(A) OR EOF(B)) DO
BEGIN MERGEARUNFROMAANDB;
NUMBEROFRUNS : =NUMBEROFRUNS + 1;
END;
WHILE NOT EOF(A) DO
BEGIN COPYARUN (A,C);
NUMBEROFRUNS : =NUMBEROFRUNS + 1;
END;
WHILE NOT EOF (B) DO
BEGIN COPYARUN(B,C);
NUMBEROFRUNS : =NUMBEROFRUNS + 1;
END;
$$ OFF AVERAGE
END; (*MERGE¥*)

BEGIN $$ ON CXZ6;

REPEAT RESET (C);
REWRITE (A) ; REWRITE(B) ;
DISTRIBUTE;

RESET (A) ; RESET(B);
REWRITE(C) ;
NUMBEROFRUNS :=0;
MERGE;
UNTIL NUMBEROFRUNS=1;
$$ OFF AVERAGE
END; (*NATURALMERGESORT*)

PROCEDURE COPYFILE (VAR F,G:FILETYPE);
BEGIN $$ ON CXZ7

RESET(F) ;

REWRITE (G) ;

WHILE NOT EOF(F) DO

BEGIN WRITELN(F" .KEY);

G :=F";
PUT(G); GET(F):
END;

$$ OFF AVERAGE
END; (*COPYFILE*)

BEGIN
(* INITIALIZE THE COUNTERS *)
$$ INIT;

$S ON CXz8;

WRITELN (" **UNSORTED RECORD KEYS **7);
COPYFILE (DATAFILE,C) ;
NATURALMERGESORT (C) ;

WRITELN; WRITELN;

WRITELN (" ** SORTED RFTORD KEYS **7);
COPYFILE (C,DATAFILE) ;

WRITELN(”® END OF PROGRAM?):

$S$S OFF AVERAGE;

(* PRINT FINAL EXECUTION RESULTS *)
$$ RESULT
END.

Fig. 5 - A sample segmented program (continued)

T P T o Ny |

B R

. St e vt e
IR DA TN e TS

Yy @
e
:;r :l;‘
N o
- -
) ]

e

AU e |

w
. P} Y
Leodhoiasid 4

SIS N

| A }
3

4

b ol
. -
<0 ]

v
I
alx

.': - -'\\‘:.1
: A
®» o
" ‘Q
«‘ -
T
- o4
- - P \. T ~ - .
v Ve )



e Ja et e “Rie vt Sean liee i s el BB ate Ser i Sefk et S et Jbudi it St S A S A S geh S A A A AR i AP S S AR S A

275

*%* INTERMEDIATE RESULTS #*#*%

CXz2
CcXz2
CXz2
cXxz2
cXz2
CXxz2
CcXz2
CXz2

4490 N
8970 -
13438
4478
13438
13450
13438
4478

N . . “ . " .
oA A—‘-;"lllLLLJ'J.“! e od

Seebncd ol

*%% FINAL RESULTS *#* T

PROBE FREQUENCY COUNT MEAN STD. DEVIATION MAXIMUM SRR
1 24 4274.400 4.752 42717 RO
9522.501 3221.567 13450 RO
27806.500 119.250 28045 T
20442.000 3373.500 27189 . ;
28008.500 39.750 28088 s J
131220.000 0.000 131220 . @
31301.000 0.000 31301 Lo
197138.000 0.000 197138 S

NN N D

‘,‘r—- B
T
@I bW

L TOTAL ESTIMATED EXECUTION TIME : 197138 't;g”

2ty g s

b~ - Fig. 6 - Sample Execution Time Output for Program SORT.

T v
PP VAR ey

..
L. * R .

S Lt PR PR
Y 4

v
P ORI AP U

e Badn il

'.- -» . ~-_ . - Y ..“. . ) N i,", N .v“ . N
. . N e T . R . R Ol ev e vy s
IR AN L S R N AN R A N
Y : . L S . L S, % RN WAk Sl AL S Vol Soll WA o U P PO WL PR PR WP VR A i




. T

Stephicr Yau
Department of Electrical Englneering
and Computer Science
Northwestern Universicy
Evanston, [llinois 60201

SUMMARY

The hijh cost of software during its life
cycle can be ectributed largely to software
maintenance activities, and a major portion
of these activities is to deal with the modifi-
catlons of the software. In this paper, design
stabillty measures which indicate the potential
ripple eftect characteristics due to modifi-
cations of the program at the design level are
presented. These measures can e generated at
any polint in the design phase of the software
lite cycle which enables early maintainability
feedback to the software developers.  The vali-
dation of these measures and tuture reseatch
efforts involving the development of o user-
oriented maint iinablilty measure which incorp—
orates the design stability measures as well
as other Jesign measutes are discussed.

Index Terms - Design stability measures,
K J Y

projram modifications, and software malntenan o,

INTRODUCTION

The major expenses in computer systems
at present are in software. while the cost
of hardware is decreasing rapidly, software
productivity improves only slowly. Thus, the
cost of software relative to hardware is rapidly
increasing. The majority of this software cost
can be attributed to sottware maintenance.
The cost of maintenance activities has been
very high ranging from 40 percent to as .1gh
as BO percent of the total cost during the life
cycle of large-scale software systems [Boeh73,
Zelk78, Lien78].

The control of software maintenance costs
can be approached in several ways, One apptoacii
is to improve the productivity of maintenance
practitioners by providing them with tools arui
techniques to help them perform their mainten-
ance tasks. Advances in this area have included
debugging tools, program flow-charters, and
ripple effect analysis tools. Although these

* This work was supported by Rome Air Develop-
ment Center, U.S. Air Force System Command under
Contract No. F30602-80-C0139.

ESIGN STABLILITY MEASURE:S

L . o '.“—’.."""A>‘.4'V'
[ W MR S S, W Wi W e mlat st el talatukal

277

FOR SURTWARE MALNTENAN B*

1

Jares LUl .
Commiter . L
AL AR it L [
Torpas, ArLsoo = -
. o
E
]
~
) N}
. - ]
Pone o TOD -
il technlgues whlCh are DLt L
catsler Ll 7 oah peli e wing -7
fevelapets dnt Loty Mmoo o T .

Software, Pl Lo
[SER RN N
BLoJraneilng e

g DU

Tl

Sndasih liock.

Ao v, g .
IAY IR SR OR ipeplena
'

Bolntenance Sonts oo

P PRI B S I ]

L

Lii pteegr : ) .

fevel opment b e idr e Cor v At ey Lhe - 1

L R T O S S O B L LU TP S PR ) -
Dodenvelopment ' - : ;

Iro vhos poapact, we wilDon ol approos ' . .5

L A B TS T I S B LI Th T N e 01 EE ORI SN

Satlunsoob o merr s, We wilo tiret diein ot D .

BolUw e it et b e e i the G -

QUAEE By g et gLt T mad L

ctbott, e e et Ty thie ropp Lo e --.‘-: .

sbomoditicntions g progtam 0o normuily - B J

AT port o o6 the malntetornoe et ot S

shally tor not woll designed prograee Yoaoasoo, p
woo WIIL plescit Some meanates oot inating . .

the stabiility ot © program design. Tne or - e
Lility of g program design s the guaiit, O
attribate andl cating the reorstan s te thae k
Fotential vipple oftelt whilch o pto jran de- \ :
veloped trom the dect g woola Bave when 100 .4
modLELeds These doesign star ity me st e can [ ] = I
b sbtainsd At any point in the desd g procens 1

avl, thus, orabie eraminat i o o
n o their dite cpole tog [HEBS LRI
problems.  Algocrithoe o computing theee de oo
stabality reaciren wi il b prenented i de-
teil. pRlicat s aa ot
trative exanplo, some okperimental
an tndirect validation will
Future teuearsh ciforts involving
opment ob G usor-orliented maintainatiloty
measure will also be )

‘prv» JUONNL Carl

Preanddb e, oy
rosuits fo
1o b pProese tedd,

the devel -

Jiscussed,

. e



BN N g6 4 S AT AN AN E i g el gl S & i S Sl giol SASL SR i S S e A anS St A et ot ]

278 y )

- L
ST (AN Lot e i ) .
[ v ' .
wio. ot Dot iy B
L
il «
B Lo L, )
m Lo Wl e e R
ro . . L.
i DOooallecote Loy thoo coamplexit,, : s . :
JES ST T SRS Dvenes ot It Db .
[ : Vo COTSIGLE ol Jener - [T I
Uity o partloular moditloation proposal e madntalnatllity ot st oyt L
[N SN Wi nentation of e maintenanos audegaate dat g t [ !
et co Ghls phase booaffected Ly the exten- SAG Termd U Do el g -
.. itoiaity o e prograc, CThe third phase Con- Lt Gl it ,
o Lot fos s ptineg for the vipple ofteot as SRV IO Ul penc WDl bttt a0 s
¢ oCnnmeg et st projram moditioations, Ghe a ripple ottert R N A ' v

Pl attecting ripeple cftest is reequiclng adidicd : ' < .
. vt e projrar, where stanility
. ! S PR OTEEE B SR O B eoony the ampliifi- Trow i L .
BRI AR AU SR T ST ST % S FS VT toarth derived fn ' :
c.. I Lt o T his Ceeroliedd projroan exiatin: . [ .
X ' [T Eae teatoat Lot f oomeodule wilnob [P :
' [ O LI oo teelore o Thiis phin £ Pl
e otre et lliny sl e protan., PR, I '
. r s ZEN VIO ' i wh el - v ’
}‘ A HE I B it e Urit ' :
= o : Copr L e [ENVERS S '
= t L ' B ot some .
R RN RN et -
L . ol NN weomnpleaiey metrics
Lo, Cao AT sty el estalll Loty
G Lo, el v an ity perrics ,
D S T LA R I SSEPAPE 5 atilot :
: . r toai i v | .
: Pttt L [ [ :
: . ti : i : A
il Lol b‘yh
B Bt gt :
g Tt Mg )
’ PR TR et ' ! - @
' M e ' Ll v 10 U ’: i v ‘
Loyt F T S SR thie it oo ) ‘
v ovpae ot —cte st o apgiboerchoweo g be Uhe T S B .
A 1 SR S ST ) ST TS SN TR S RPN I R U O : : -
P ettt hidr phor s ALy restractaring NSNS P , ;
SR St s o htaanabn Dty conid tnen T IR [ . .
@ : ] vy T anier thano pestroctaring perovanrn ' )
N fe. ' el ol doabe Sluringg the
R . Lo oot bty U pro Jram maln- e
R C " Ceens ey iapeds bar example, T et : ‘ ' . .
Pl EA 5 S SRS ¢ bt Ty the com= P T S . Lot .
Pordty Henrel, WhorsEED b tear i liegy (Y] Wathoor Pt - . : ) -
t Prware o de ignce. Mo lgle conneectavity O S N TP E I P
Yoottt s b latey, Strengtiho, fan-1rn, I R L e S Tt S T P ) -
H i, Do st —et e s e - ont ]
- ' i VU bbb cable for ot tware ddengns
. ore b e Dape D THenr s, My U ar T .

LRATRENTS § SH B N TR A ST TR0 O S RSN U SR S S AT

.
i
s Powtrdo the cualuation of proejran moalntaine-

B

R abrrlaty, they o ot ety adlress, the e 4
N Jaalaty attritate of dendgnontabdilar g L gn : - : 1
® stability meanaterent fegilres a rore in-depth inated e AT BT L W P
. <

Py




oy
yore
L.
[N
o

' !
[
Vol
Qe
YN,
1
y o1
ot
. !
e

e Ceoath o b ties suumptioon
: DTN I G ST T T DS SR S S
Lo et i o st seeinlet s dnter -
T nterd e L Lo biney 1y Con-
o et e et er s, Juobing
O SN Y SR R VRSN e i
N Lo s CApL i
o 5 'rn t";.' i N
. R (S GEE S SR
! Lrer e e e ot
G f A ST S S
, vor e Plle oot
L T C T A L A piotia
e b el L K e
. I L P TR A A O O O
“ R PR s b e ompone Todnto

BTV,

Pt

LIS TN

entl-

TR

: Sreeor e anitenger, und tin
R T S S A N T SIS R AN I S TR S
S SRR TR TR A G A RN BT O S SURT SR SRR S ST
[ | T T SR SR TR E S R R
Tliet o the sampt Dot ma b I TR IR
[ ' ST e e e, W it
H IS Wl o t : [ReC
PR I ; el TN
Lot st b : PR TR SR I
o, Tl oa e, et HIN yoooany b
1 [T M A [P R T B i B
R UL S S R ¢ LUt rs Lt
RTINS S ST BT AU R D Thee e et e
ptlors [N & AV FUR P S Dot H
AR HETE B SR A [ R IR T E S A A ti My

perojrarTi

’holono ool restroTolans Lo vl b
tesot didl s Lutn s S e RN
assulib 1ons,

Calalty e ana

H fl." et

A L

(e ’ ool RN

1l el Wl
ERIHIE PRSI S B SN S 1% il gt E
contritie tootnis o Lo [HEN
ple, anoarvay or integers o atLg L
deointertoace dmplles oo socang i sy
Srustare. i et e T
toowandn that oo [EEOE [RTEIEES Sh R
Mircimal ontity tor tho o St are fe a1
WhICT T les g moxaney | 1
oy cronlney o Lt
(RS [ Lo [T
Tar LUiLEr jeoy P e e ot
teer o, conno ST rest s
ir RERES DI ST VR VTN P L
Pravie UYL Gl e A5yt Lo, Do i L
reecor bede o The Doise tpes ot L RN
Chreri b eoxamineed aed o wbdntg sl gt
tecotdhds Attt hier ssample, ool
G student s whaote 4 stadhent In g et
fry of o T oo an o oarahes Ao
miay b recor et Lor the o array o atrast e
Feeoolal GUUUCLAT ., el e DU mmb e

PN

Por o meaximam ol S A 1ot .

R e S O L A S L T S
trian Sirply PR LNEG bl
ot pre ey ey Ty

Al A U THM B [
PR A ST I S TS R A SN
'y LTt i e b
SECTEE S S A RIS 1 A I S
e the o NN TR
hterbane SR e
I T T S S TS ' DU A ML

DRSS oY NRISILEES BT PI BRI

et ot annampt Lo oy e ot
TOnCCLIIN T Lrie Peed e Wi o 0t
med e g, HNE IS S

ol Wi e

Wl

. ,

|

Lo
.
.
TN




oy BIA IS 2 n e A e dan s 2o 2SR AAIRECRAIN R arh e i . A A e S - iR adr- Rt aE St AR AR S
.
o 280
%
{“ : T A S R L VRN F S IR TP U PR
Lot et Sation Llerardhy
! Lo ! [ vodule W, Lhentity
' Coke Moddule K,
. ke oy moddale ko,
RPN Vet reetarniod from
LA el wWhere
' ol cr [T Lrom “
L N AN
. CrieLroaqroan cheoidn ation,
i proorr ! (Lo it Shodnoaes
' ! Doglanel o wariablen and Ahored
ey, [ vl w ddentify the follow-
Jooate Tt re U3 = 101 o+ ,
s poobel o bt e b )
Step 6@ Ton T
: : ! C o, toar ween plobal ciata drem 1, PD5 as follows:
TS P S
! PDS = /01 + . ,
- ) X
W T [ 3 vt
wheore x is a module in the program.
I Fooroea e doeach parametet
; L bl tio assumptions made AN EXAMPLE
r St boarilizing the tullowing
Vi Beooaloarithune in trnis
stibrlity measure Wwiil
o croamee e L b o struoturad daty {ezigng Uar wna same .
s, e e e 1 Into dts hase typew sagen from YourU3 . The problem o Lota o
, Craret e gaampt L antoby 1, realing text from oan online keybnard and text
Lo I T S R UT S TR A S DU (LA N noa tard Tile, reting the te nuo oWtz
At rombining these words accoriing oo ie
e can b clecomposed, the weyboard and codes contained in
: : Pooneet o ominimas Inpat begins with the Keyboard and
Cohe ampesie dtodnto its nase oloment = ~haracter-by-onaraacter, untll the fdeograpn
PreTient e mpr 1on by 1. is re2eived. AL tnat point, the reajing of inpa
from rards is to commence and ocontinue until
P clramal ontity cumpbrising 1, 1f the itdeograpn "11" 5 reached. Input {rom the
! i tions about the value keyboard when resumes. in ende-of-transmission
w oo cnt ity moy assume, then ane - from the kKeyboard triggers reading the remuining
- v i cseint by 2, elne increnent cards.  The continuous stream of text from these
& ' . R ot N two 3ourne., 1s to He broken into separate fngii
? . words, whi~oh 4re then passed
 J ey e el number of Smpt 1ons a pre-existing module named
b ; T R PUTRNTETPLPEE ST £ T L S lovel structures cnacts Sor o sgoh moduls woe
- ' sarresponting are shown in
T oy P : " ol oerch paramerer Figure 2 Piware e
t ’ R , ooy mpt 1ons made ) el
. . Y sy the g ode
- RN : - joeign stabilit: I nw
Loth alter:
i. [ coreh o thae bl rvrber of oy e
" : e by Wl oot et o K .
b ' .
N

. - N .

PN NI N A RGO way v

R AL G U T W I Py e




AD-AL143 763 METHODOLOGY FDR SOFTWARE MRINTENHNCE(U) NORTHHESTERN 4/4 .

UNIV EVANSTON IL
UNCLASSIFIED

F30682~88-C-0139

5 5 YAU FEB 84 RADC-TR-83-262 -
F/G 972 NL




[ VAR RCREREREN

et

\-\\.\\
.....1.:.

s___s 3 6-.._

oll —

—— —
_— =
v L SR R
‘.- ..--& n.n—' . ..C

I

l

14

s 1l

v
M .

R 4 \.\.\A

MICROCOPY RESOLUTION TEST CHART

4

A

NATHONAL BURLAU OF  STANDARDS (84

.\.-\,ﬂ-d\ 4\‘\'\.‘ W A

MMM RS AN Y bl

-b--'-\.

RV WA AT o8 4 4.1




Step 1
J = {
SCANWORD '
J’ 11,

soaviorn T ogde Y4

Jixkey = Jreabcarn

n

RIFADCARD  SCANKY

R

FINDWNORD, SCANKOR.

PROUWORD,SCANWORD

fL L UROCWORD

O GETNIWORD

Step 3
TPINKEY L SCANWORD
TPREADCARD, SCANKORD
TP {XDWORD  SCANKORD

TPpROCWORD, SCANKORD

Step 4
TP' .-
N SUANWORD, INKEY
mp
P SCANWORD, PROCWORD
TP'

SCANWORD  FINDWORD

Step 6
DLRE ( antiorp = 8+

DLRE | xkpy = 2

DLRE ki AncaRD = 3¢

DLRE | orn = ©7
OLRE o veworn = 00
Step 7
DS¢eaxworn = 1799
05 wkey - M3
DS prancarn = /4
DS ¢ npworn = M7
DS pracorn = Lt
Step 8
Alternative
S
K
. .:_\j
"

{SCANWORT } ,

Ryngey,Scaxworp = icharacter,end-of-
* ~ransmission flag},

= TP

ALTERNATIVE 1

ﬂ?BEZADCARD, FINDWORD,

= Jpivoworn T Jprocwor

= {card image, last-card

agt,

word, end-of-words

lag, get-~character
flag, get-card flaqg,
word~-done flagi,

=9,

RS CANWORD , READCARD 2

= {word},

= {character, end-of-
transmission flag,
card image, last-card
flag, sodrcel.

Step 2 There are no global data items.

=1 +1

it

2,
=2+ 1 3,

2+ 1 +1 4+ 1 +1
6,

= 0.

1

[T}

. =
SCANWORD, READCARD
=2'

1+ 1 4+241+1

step 5 TG = 0 for all modules x.

= 1/20.

]

0,

281
ALTERNATIVE 2
Step 1
Jecavtexy = @
J'SCANT[XT = {GETWORD, PROCWORD},
Jorrworp = Jprocwory = (SCANTEXTE,
3 G THORD {GETCHAR, GETCARD},
Jorremar T Jorrcary = (GETWORDY,
i - ) -
I precvord T 9 cerenar = 9 crrearny = 9
R .iann coanvrier = fword, end-of-words
GETWORD , SCANTEXT élag},
R PROCKORD , SCANTEXT — 2f

{character, end-of-

R YL TR
CETCHAR, GETRORD transmission flag},

éword, end-of ~words
lag},
=0.

{word},

R . e
GETCARD , GETWORD

R!
SCANTEXT,GETWORD
1
R SCANTENT, PROCWORD
. -
R CETWORD ,GETCHAR —

R 8.

] -
GETWORD,GETCARD
Step 2 There are no global data items.

Step 3
™ .. o, =2+ 1 =3,
GETWORD, SCANTEX
P . R =0,
PROCWORD, SCANTF X1
1 - =1+1=2,
GETCHAR ,GETWORD
™ . =2+1=3.
CETCARD, GETWORD
Step 4
t -
™ SCANTEXT ,CETWORD 0,
L -
P SCANTEXT , PROCWORD — 2
TP = TP

L]
GETWORD,GETCHAR

Step 5 TG = 0 for all modules x.

Step 6
DLRE canTixy = 27
LRE = 3,
GETWORD
DLRE = 0,
PROCWORD
DLRE __ = 2,
GETCHAR
LRE Crcarn = 3
Step 7
DS =
SCANTEXT /3
DS ckrworn - /4
DS procworn ~ L
D =
SCETCHAR 1/3
= 1/4,
S CETCARD /4
Step 8
PDS =1/11.
Alternative 2
. T
T R T

' =
GETWORD (CETCARD

-




282

Analysis of the metrics obtained for both
alternatives indicates that alternative 2 is
wtre stable than alternative 1. This finding
1s supported by the discussion in the source
>t the example that alternative 2 is casier to
projram and maintain. Further analysis of these
metrics indicates that the primary sources of
instabiliity In alternative 1 are modules
FINDWORD, and SCANWORD., This finding is again
supported by the discussion in the source of
the example {Your 7Y!.

VALIDATION

An important regqulrement of any metric is
the capability of validating it. In this section
votn direct and indirect approaches to validating
the design stability measures will be discussed.
A direct approacn to validation consisting of
experimentation with the metrics was performed
by the authors utilizing a graduate software
enjyineering class. The class consisted of 24
professional programmers with diverse company
experiences. The course assignment was to design
and implement an automated gradebook system in
PASCAL. The class was divided into 4 teams each
of whichi was to bulld a program of an estimated
4K lines. The class utilized the structured
design methodology to produce a complete program
design specification. This design specification
was then utilized to compute the design stability
measures. The module design stability measures
obtained had a broad range from 1/145 to 1. It
was interesting to note that the degree of module
tan-in/fan-out did not always correlate with
the design stability. For example, many modules
with small fan-in/fan-~out had poor stability
and vice versa.

Jpon completion of the program design
specification, the class was then asked to submit
propusals for possible changes to the program,
Over 200 such change proposals were received,
These proposals were analyzed in terms of their
potential ripple cffect if they were to be
implemented., sSeveral interesting results of
this experiment will now be described.

Tne first resul’. is that those modules which
wouid have contributed large ripple effects if
moditied are among the modules possessing poor
design stability measures. The converse,
however, 1s not necessar.ly true, Since the
design stability measures reflect a potential
worst case ripple effect, 1t is possible for
modules with poor stability to be modified in
certain ways without producing a larye ripple
effect.

Amother result of the experiment illustrated
tne diagnostic capabilities of the design
stability measures. Many of the modules found
to possess ponr stability also were of weak
functional strength and were common coupled to
many other modules. It should be noted, however,
that some modules which possess poor stability
are not necessarily bad. For example, imple-
mentations of data abstractions usually possess

KAy apl A A AN LA Al W Sl iy S Rl

poor stability. The important point is thiat
1f the assumptions made upon a module with poor
stability are violated, the potential ripple
effect is large. Thus, these assumptions must
be examined caretully with an eye towards tuture
modifications,

Although the experimentation with the design
stablility measures produced several interesting
results, it cannot be utilized as a complete
validation of the measures. Experiments with
maintenance-type measurcs can be very mislesi-
ing due to the diverse and numcerous types of
maintenance tasks which may be performed.  For
exanple, maintenance data collected reqgarding
the maintenance activity that a particular pro-
Jram experienced may not be representative of
the maintenance activity in other projrams.
A complete direct validation ot the desijpe sta-
bility measures will, thus, require a larje
database of maintenance information tor a
significant number of various types of projgrams
which have undergone a sufficient number of
nodifications of a wide variety, The short-term
possibility of utilizing such a maintenan e hat -
base for validating maintenance-type measures
is not very promising. In light ot this teality
and diverse nature of the maintenance tasks
performed by users of software systems, a mote
user-oriented approact tu maintenance metri.s
computation Is needed. These uscr-oriented
maintainability metrics will combine the anijgue
potential future maintenance requirement:s uf
a user with the characteristios of the sottwire
assoclated with these potential modifi-ation.
to produce a tailored measure f the exjected
maintainability to be experienced by the uset,
These ideas will ve described in more detand
later.

Since further experimentation atiliiging
the design stability measures mould be misleaiing
without a large maintenanc-e Jdatabane, a complete
direct validation will be delayed until the
development of a user-orilented muntalnability
measure., The desljn stability measares can b,
however, indirectly validated by arguing how
the measures are aftected by various already
established attributes of programs which attect
maintainability. It should be noted that most
of these established attributes sufter from the
same validation problems as the des:jyn stability
measures, and their acceptance is larjely a
consequence of Intuitive arjuments.

Because one program attribute which aftects
maintainability is the utilization of data
abstraction and intormation hiding {Parn7.},
an indlrect validation of the design stabnlity
measures must show that the design stability
of programs utilizing data abstraction and
information hiling is generally better than
that of programs which do not., Since our mea-
sures are based upon counts of assumptions made
concerning interface variables and since a lack
of data abstraction and information hiding
manifests itself in an increase in  assumption
counts, it is apparent that the design stability




LG s s el
T AR AR

O R

. ,l..."

of programs utilizing data abstraction and
information hiding is generally better than that
of programs which do not.

The relationship of the design stability
measures with both the data abstraction and
global variable notions can be further i!lus-
trated by the following example:

Consider the case of 3 modules A, B, and
C which share a global array of records, where
each record consists of an integer ID number
and a real balance as indicated in Figure 4.
1f we also assume that no parameters are passed
between the MAIN module and modules A, B, and
C and that modules A, B, and C make assumptions
about the values of the ID number and the bal-
ance, the following values can be obtained:

DSain = 1o

'IGA='XCB='IG(.=6+6=12,

DLRE, = DLREj = DLRE. = 12,

DS, = DS, = DS. = 1/13,

PDS = 1/37.

In Figure 5, the program is redesigned to
utilize a data abstraction module X to eliminate
the need for having a global array of records.
The data abstraction passes a single record to
the modules A, B, and C depending upon some index
variable. From the design, the following values
may be obtained:

BSparn = 1
TGA"IGB"IG(::O,

. = ' = ' = =
TPAX TPBX TPCX 3+2=5

(assuming that X makes no assumptions about the
values in the record)
'I‘PXA = TPXB = 'I‘PXC =5,

DLRE, = DLRE, = DUREC =5,
DLRE, = 15,

[EA=[EB =l$c= 1/6,

s, = 1/16,
PDS = 1/31.

These two examples illustrate the detri-
mental effect of global data on stability as
well as the positive effect of data abstraction
modules. The data abstraction modules, although
quite unstable themselves, improve the stability
of the modules which utilize them.

The design stability measures presented
here can, thus, be indirectly validated since
they incorporate and reflect some aspects of

P e A S At el Gl et Badb el 20 R it A i g g AL el B v it i el G

283

program design generally recognized as contrib-
uting to the development of program stability
during maintenance.

APPLICATIONS OF THE DESIGN STABILITY MEASURLS

The design stability measures presented
in this paper can be utilized for comparingy
alternative designs of a module or program at
any point in the design phase of the software
life cycle. The selection of alternatives whi:h
exhibit favorable design stability measures car
lead to more maintainable programs,

The design stability measures can also tx
utilized to identify portions of the program
which exhibit poor stability and, thus, may
contribute to ripple effect problems during the
maintenance phase. These portions of the program
can be easily identified by the measures and
examined for deficiencies. Those areas of the
program with poor stability can then be rede-
signed incorporating such favorable design
approaches as abstraction, information hiding,
restriction of global variables and functionality
in order to improve the design stability
measures,

The design stability measures will also
be a key component of any overall maintainability
measure. As previously discussed, stability
is an important attribute of program maintain-
ability which must be combined with other attri-
butes in order to formulate a maintainability
measure. Thus, our future research efforts in
the development of a user-oriented maintain-
ability measure will incorporate these design
stability measures.

CONCLUSIONS AND FUTURE RESEARCH

In this paper, measures for estimating
design stability of a program and of the modules
within a program have been presented. Algorithms
for computing these design stability measures,
applications of these measures, an illustrative
example, some experimental results, and an
indirect validation of the measures have also
been presented.

Much research remains to be done in this
area. Our primary emphasis will be on the
development of a user-oriented maintainability
measure computable during the design phase of
the software life cycle. This metric will in-
corporate our design stability measure as well
as design complexity and testability measures.
Much experimentation will be needed in combining
these quality attributes into a single measure.
Extensive validation on large-scale programs
will also be performed.

ACKNOWLEDGEMENT
The authors would like to express their

appreciation for the helpful discussions with
A. Bowles and S. C. Chang.

- R e e [ SRSV

R N I I
PRI I VR YW Y T P P PRy T

-
)

-
-

*a
S
~
~
b
~
~
b
]

A0




284

REFERENCES

[Gilb77} T. Gilb, Software Metrics, Winthrop

t

ey Publishers, Inc., 1977.

Q-\‘

t [Hals?77] M. H. Halstead, Elements of Software
;\j science, New York: Elsevier North~Holland,
DY 1977, pp. 84-91.

-4 {Henr81l)] S. Henry and D. Kafura, "Software
. ) Structure Metrics Based on Information Flow",
Ol IEEE Trans. on Software Engineering, Vol SE-7,
S No. 5, Sept. 1981, pp. 510-518.

i'j {Meyer75] G. J. Myers, Reliable Software
J:? Through Composite Design, Petrocelli/Charter,
A 1975.
L {McCa76] T. J. McCabe, "A Complexity Measure",
R IEEE Trans. Software Eng., Vol. SE-2, Dec.
T 1976, pp. 308-320

LS

*; {Parn72] D. L. Parnas, "On the Criteria to be
: N Used in Decomposing Systems into Modules”,
NN Communications of the ACM, Vol. 15, No. 12,
[ Daecember 1978, pp. 1053-1058.

: ; [Tich79}) W. F. Tichy, "Software Development
;‘, Control Based on Module Interconnection®, in
::.' Proc. Fifth International Conference on Software
-*; Engineering, pp. 29-41.

s {Whit80] ™. H. Whitworth and P. A. Szulewski,
g "The Measurement of Control and Data Flow
_— Complexity in Software Designs”, Proc. COMPSAC

L 30, Oct. 1980,pp. 735-743.
e {Yau78) S. S. Yau, J. S. Collofello, and T. M.
e Mac Gregor, "Ripple Effect Analysis of Software
R Maintenance", Proc. COMPSAC 78, Nov. 1978,
. L pp. 60-65.

)
o [Yau80] S. S. Yau and J. S. Collofello, "Some
A Stability Measures for Software Maintenance”,
S IEEE Trans. on Software Engineering, Vol. SE-6,

< No. 6, Nov, 1980, pp. 545-552.

[YinB0] B. H. Yin, "Software Design Testability
Analysis", Proc. COMPSAC 80, Oct. 1980, pp.

< 729-734.
" {Your79) E. Yourdon and L. L. Constantine,
T Structured Design, Prentice- Hall, 1979.

s (Zelk78] M. V. Zelkowitz, "Perspectives on

Software Engineering™, ACM Computing Surveys,
vol. 10, June 1978, pp. 197-216.

- . - . - - . - - -“"'
ARV S VLR WA MW

'

Maintenance

Correct
program errors

Add new

Determine F’/” capabilities

Objective P‘\\\ Delete obsolete

features

Optimization

Phase 1 , Complexity

Understand | __— Documentation

Program

. ™ self descr iptiveness
Phase 2

Generate
Particular }—— Extensibility
Maintenance

Proposal

} Phas

e 3

Account for
Ripple
Effect

—— Stability

Phase 4

Testability

Figure 1. The software maintenance process and
associated program quality attributes in each
phase.




SCANWORD

SCANTEXT

PROCWORD

GETWORD

INKEY
(get next
character
from key-|
board)

READCARD
(read one
card)

FINDWORD
(scan texy
for next
word)

PROCWORD

LGETCHAR] |GETCA Rﬂ

INPUTS

MODULE OUTPUTS

GE CHAR

character, end-of-

MODULE transmission flag

INPUTS OUTPUTS

GETCARD card-image, last-card flag

INKEY character, end-of-

transmission flag

GETWORD word, end-of-words flag

READCARD card image, last-

~ard flag PROCWORD word

FINDWORD character, end- word, end-of words

Figure 3.

of-transmission
flag, card image,
last-card flag,
source

flag, get-
character flag,
get-card flag,
word-done flag

Design for Alternative 2.

PROCWORD | word

Figure 2. Design for Alternative 1.

DATA
ABSTRACTION
MODULE X

RECORDS

ARRAY OF RECORDS

Figure 5. An illustration of modules A, B, and
C utilizing a data abstraction module to access
an array of records.

Figure 4. An illustration of modules A, B, and
C sharing a global array of records.

XF-AESANAES
™ AL AR

00

I‘.I( [-' '.

o .y

L N
. .'u'-'n.




Reprinted from THE PROCEEDINGS
Taiwan, December 15 - 17, 1982.

LB A e S0 i AL il e i

287

OF INTERNATIONAL COMPUTER SYMPOSIUM 1982

A METHODOLOGY POR SOPTWARE MAINTENANCE®

Stephen S. Yau, Carl K. Chang**, Chung-Chu Hs ieh**,
Zenicni Kishimoto+ and Robin A. Nicholl

Depacrtment of Blectrzical Bngineering and Computer Science
Northwestern University
Svanston, Illinois §0201, U.S.A.

ABSTRACT

The capidly increesing cost of
softvare saintenance indicates the
iapor tance of developing effective
sethodologies for software maintenance.
In this paper a methodology for softwace
saintenance., which decomposes the
software maintenance process into four
phases is presented. The first phase is
to analyze the software in order to
understand it. The second phase is %o
genercate and real {28 a particular
modification proposal. The third phase
is to account for all of the ripple
effects of the modification, including
botn logical and performance cipple
effects. The fourth phase is o test the
nodified program to insure that it
functions propercly. To support a wide
spectrum of activities {nvolved (n these
four phases, a variety of software tools
have been developed. By making use of
these tools, an enviromment has thus been
created to assist the softwace

maintenance gractitionecrs in performing
theiz

funct ions moce effectively.
Currently, these tools have not Deen
totally integrated. A  method for

integrating these tools and the databases
they need into a unique maintenance
envizronment is presented. Most of the
tools discussed in this paper have Dbeen

demonstrated for PASCAL on a DEC
VAX-11/780 compute:.

Index Terms~ software maintenance,
prograa cepresentation, prograa
nodification, program editor, program
slicing, ripple effect analysis, test

¥Fhis work vas supgocted by the Rome Alr

Develogment Center, U.S. Aiz Pocce
glcu Command , undeg Contract
0602-80-C-0139.

#%Carl K. Chang and Chung-Chu Hsieh are
now with Bell Telephone Labocatories,
Napecrville, Illinois 60340, U.S.A.

+%nicni EKishimoto
Labocator ies,
021854, T0.S8.A.

is now with GTE
Massachusetts

Waltham,

case generation

INTRODUCT ION

Most of the expenses associated with
computer systems are due to the cost of
developing and maintaining software. The
total U.S. expenditure on programming in
1977 was estimated at between $50 and
$100 billion, which represents more than
3% of the U.S. GNP for that year [1].
It has been estimated that by 1985, the
cost of computer software will scar to
90% of the total system expenditure [2].
This is due to the dramatically
decreasing cost of hardvare and the
increasing complexity and <cost of
software, which has required ever greaterc
human resources to develop, validate and
saintain.

It is well recognized that the
maintenance cost of softwace has
increased continuously and that it Dhas
become the single dominant cost item
during the life cycle of a large-scale
softvare system. Estimates of
maintenance cost have been found ranging
from 40% [2], 678 (3], to as high as 80%
(4] of the total cost during the life
cycle of large~scale softwace systeas.
Therefors, in order to reduce the high
cost of softvare, it is essential to
develop effective software maintenance
sethodologies.

*goftware maintenance” has been

defined as "the process of modifying
existing operational software whi 1:
leaving its primary functions intact

{S]. The broad spectrum oOf activities
which comprise gsoftware maintenance
includes error corrections, -nnanc::ct:::
of capabliities, deletlion of obsol

ca Elfictes, g%ig__ lzation, and  minoc
changes In mission requirements [61. An
oxcohont' teviev of the state-of-the-art
software maintenance techniqQues and tools
can be found tn (7). As indicated in
that report, much more attention has baen
focused on the management aspects of

Ty s v, s ¥ ~




.A."

"“
AR e
St

-
-
.~
“~

I Ah M N St S RS R

288

AdLntaining sotteace systems than on the
cecnnical ispects. Maintenance
programmers st 3g1lld nandle the
tacnnical prodlems 1n an ad hoc manner.

Therefore there 13 an  urgent need
tor an effective software maintenance
aetnodology, waica snould noe anly
address all zhe major problems of
software maintenance, but also provide a
well-integracted maintenance environment
to effectively solve the softwace
maintenance problems. 1In this paper, we
will discuss a methodology for software
ma:ntenance wAILCh ncocporates 1 variety
of softwacte toOls %0 support a unified
maintenance environment. Most of cthe
zool3s mentioned in this paper have been
demonstrated for PASCAL on a DEC
VAX-11/780 computer. Each of these
tools, however, operates oOn {ts own
tepresentation of programs. A meghod for
integrating these tools into a software
maintenance environment will also be
discussed.

QVERVIEW OF THE METHODOLOGY

Yau et al. (8] nhave presented an

integrated view of the softwvare
maintenance process. Once a particular
Baintenance objective has been
estadlisned, the objective can De

accoaplisned {n the four phases as shown
in Pigure 1.

The first phase is to analyze the
prtogram in order to understand it. To
facilitate this, the requicrements, the
different levels of the design and the
progcam itself shouyld Dbe cleacly
described. Tnis description of the
software system can De best prepared
during software development when each
level of the saftware system and (ts
connect ion with other levels are
underseood. Since there ace sany
software systems currently in operation
which have been developed without such
descriptive support, it is necessary for
us to establish a procedure by which the
information can be constructed by
analysis of the existing programs, using
only the soucrce code, in addition to
wvhatever documentation is available.

The second phase {8 tOo dJgenerate a
pacticular maintenance proposal so that
the maintenance objective can be
achieved. The sulti-level system
description mentioned in ghase 1 can De
used to detecnine the effects of the
maintenance objective on each of the
levels. A given program modification for

an existing proqram must be § ified at
diffecrent levels ({.e. requicement,

specification, design and code lavels).

A TRA S I a8 T Rt e i e SR A

Thne code~ level specification of cthe
moqgification can then be realized [9] in
the program code to produce a modified
program which is subject to
ce=-validation.

The thicrd phase is to account for
all the cipple effect ot the
mod i ficacions proposed in phase 2. As a
tesult of these modifications, there may
be logical incons istencies and/o¢
significant degradation in program
performance. The ripple effect analysis
technigque (l10-16], will identify both
logical and performance cipple effects of
tne proposed program modification.

The fourth pnase is to Ctest the
modi fied program to insure that (it
functions correctly. During the software
majintenance phase, (¢t is important that
cost-effective testing techniques are
applied [17]). Testing of the modified
software must be done in order to detect
unexpected errocrs, such as dormant ecrors
which, although present in the software
system befoce the modification, may
become active errocrs as a result of the
modification.

If the modified program fails to
pass the testing phase, any or all of the
previous phases must be tepeaced,
depending on the extent and type of
failute. In the most extreme case, the
saintenance objective may itself be
considered infeasible (because of its
maintenance cost, for example), and
should be altered.

SOPTMARE MA INTENANCE PROCESS

In this section, we are going ¢to
discuss each of the four phases of the
;ot:::tc maintenance process i{n more

etall.

Undecstanding the Software

Dur ing the maintenance phase of the
A-7 aircraft flight program (18},
fHeninger found that the existing
documentation was sparse and not
up-to-date., Tnhecefore, she decided that
it would be more cost-effective ¢to
ce-construct the software requirements
before attempting to modify the software.
This softvarce maintenance example
ind{cates the importance whicn

maintenance personnel place on & good
description of the software system. It
also shows that, even after the software
system has entered the operational pnase,
it is still feasible to construct such a
description.

A gk arg SPAL Sudh Sl Al Pl "B e i A0 S0 Ry

T T TR T L P T T e e T
SN N T VI SRS




L4
’
»

N v v v vy

W

PR

T

4
PP

L (e
X .
Ai '

; 4'_'/‘./_ E

‘e %
.

MR
SN

In Jenecal, the maintenance
petrsonnel snhould not be cequired to
understand the entice system at a
Jecailed level, because of tne cost and
cime required to do so. We prefer an
Jpproacnh which allows changes to a
softwace system to be made cocrrectly,
with the effort to understand the system
being concentrated on only the poctions
of the software system celevant to the
modificacion. To meet this goal, a
detailed description of the softwace
system should be available, whicn would
Also recocd the relationships of vacious
components at diffecrent levels
(tequirements, architectural des ign,
detailed design and program code). When
such a layeced description of the
software system s available, ctracing
changes to particulacr portions of the
softvace systems may be done mocte easily
and mocre accurately.

&k further benefit of such s
description (s the ability to directly
relate tne program code of the software
system %o the modification request, which
is often expressed in cteras which are
moce familiar to the users of the system
than tOo the maintenance progrannecs.
This relationship (s usually unclear i{if
only the program itself is available.
However, some useful descriptive
information can still be extracted from
the source code Of the prograas alone,
us ing automated analysis tools.

Prciram analysis tools hnave been
available for many years to provide aids
such as  automatic flowcnacting and
construction of call graphs. Since graph
repcesentations of data or execution flow
ace often used to describe softwvare
system requirements (as in RSL (19], for
exaaple), we must analyze the program 0
that we can present oOur isformation in
such a format. Onder these
circumstances, the most attzactive
approach to the construction of this
softvare sytem description is one based
on data flow analysis of the program,
with the intention of relating inputs and
outputs of the program to each other.
The “prograa slicing® technique (20] can
be used for this purpose.

Program slicing refers to a process
of selecting a portion of the text of a
program to form a “slice®, where the
selection is done automatically, based on
data flow analysis techniques. The user
of a program slicer must specify which
vaciables ace of impoctance, and at which
point {n the program their values are of
intecest. These two pleces of
infocnmation constitute the “slicing
criterion®. The prtogram slicer uses the
slicing criterion toO analyze the data

289

flow of the program ¢O extract any code
wnich may contribute to the values of
those variables at that point. These
pecogram slicCes are themselves
syntactically correct programs and, |t
executed, will produce values equal to
those produced by the original program at
the selected point (assuming that the
ariginal progran contains no
non~tecminating loops {20}),

Generatin and Realizing Mod { ficat ion
froposals

When a number of “change cequests”
from the users arce collected for
attention by the maintenance staff, a
*modificacion® i3 sStarted. There are a
nusber of ways to implement a particular
modification, and each of these is known
as a “modification proposal® until wve
have selected one pacrticular modification
propgosal to achieve the maintenance
objective. The elements wnhich make up a
acdification are “"program changes”. To
generate a modification proposal, it is
necessary to carcy out activities similar
to those oOf tequirements, design and
coding, as pecformed dur ing the
development phase. The change requests
are assumed to Dbe in an informal
notaticn, but the maintenance staff must
(ultimately) alter a software system
which is precisely expressed oc written
in a formal language. Therefore, there
is a need to convert the modification
from an informal notation to a formal
one.

We have chosen to attack this
problem from both directions: from the
dirtection of the infocmally defined
changes and from the dicrection of the
formally defined software. Pirst, we
need a method whereby we can relate each
item informally mentioned in eacnh change
tequest to some known entity in the
softwvare system. In addition, we nmust
deternine how the new behavior required
of those items may be formally described
to genecate a formal mod{fication
proposal to the software system. We call
this process the S ification of a
modification propgosal. Flgure 4 shows
the telationship between the level of the
modification proposal and the level of
the softvare description.

The following steps are repeated for
each level of the modification proposal:

1. 1Identify the Jescription level ¢to
whicn the modification applies.

2. Define the (nterface Detween each
change ond the software system.




J < N “._‘.)'u

:')s.“'.“‘)!‘ L4

®-
o

J. Trace tne effects of eacnh change at
tni3 level.

4. Restructure the software
reduce extraneous effects.

system to

S. Tentatively make the modification.

6. Check the
nmodification.

corcectness of the

7. Refine the modification proposal by
decomposing eacn change into one oc
more changes to the next level.

The effects of the changes can be
traced at a pacticular level ‘ot
desccipt ion by pecforming “ripple effect”
analysis on a model of that level of
description, and at lower levels, using a
definftion of the (nterface between each
level of description. SREM (19] provides
some tracing information describing the
prepacation of the softwace system
requicrements, and some information about
the inter-connections between diffecent
requirements, but tnis (s not adequate
for our detailed analysis, nor s {t
celevant to the software design or code.

In addition, since most softwvare
systeas are vweitten in well-defined
programming lanquages, we can define &
formal model of a software system and a
set of formal operations on that model.
Tnis means that a modification proposal
can be stated as a set of formal
modification operations, which ace to be
applied to the softwace system to
inplement that modification proposal. We
call this process the ctealization of a
msodification proposal.

Program modificacion of an existing
softvare system must be carried out by
physically modifying the software at the
code level, either by correcting the
existing program code oOr developing
new segments of program code [(21].
Mod{fying prograas, however, is an
incremental process. We have developed
techniques to assist progranmers in
msodifying only the relevant portions of
the program and {n ce-assecting its
cocrectness with a minimal amount of
te~analysis of the prograa (22].
Incremental program sodification should
be conducted interactively, 20 that
saintenance programmers can  expect
instant feedback on the effects of the
scdification, and thus Dbe able to make
program modifications more intelligently.
This approach is obviously advantageous,
because the length of the fix-and-compile
cycle is shoctened? After the program
nas been “fixed”, it is ceady for cipple

effect analysis

(phase 1))
(pnase 4).

and testing

Ripple Effect Analysis

An important factor contributing to
the high cost and complexity of software
maintenance (s that the effects of
program modification ace usually not
testricted to the location of the
modfficacion, but propogate to other
poctions of the program. This phenomencn
has been (fully described in (10) and is
called the “ripple effect® of program
modificacion. Ripple effect analysis
techniques have been devel Sped for
analyzing two aspects of these rlpple
effects, the logical or functional aspect
and the performance aspect. Logical
ripple effect analysis involves the
identification of pcogram areas which may
tequire additional maintenance to ensure
the logical or functional consistency of
the software. Performance ripple effect
analysis involves the identification of
pecformance cepeccussions throughout the
softwace system as a cresult of the
changes to one program area.

We nave made an extensive study of
logical cipple effect analysis techniques
[10-13]). The phenomenon of logical
cipple effects is a serious problem for
majintenance programmecs who must modify
large~scale software systems since the
tepercussions from their modifications
ace tactely obvious. Our automated
technique to pecfocm logical cipple
effect analysis is based on a model of
the data and control dependencies which
exist {in programs. We extend the data
flow to include not only USED and DEFINED

sets, but also a mapping to show how
vaciables ace used to

define other
vaciables. This model is called an
®egroc flow" model, since it shows the
means by whicn potential ercrocs may

propogate through a program.

¥hen a modi{fication s made ¢to a
program, changes occur in the data flow
of the program. A set of variables,
known as the primacry error soucce set, ls
directly affected by the modification.
Ouc rcipple effect tracing algocithms use
the accs of the data flow grapgh ¢to
determine where the effects of the
primacy error souccCe set may reach, and
hence all the potential logical ripple
effects of the mod{fication are
identified.

Logical ripple effect analysis can
be decomposed (nto two stages. The first
stage {s the information construction
stage, where both the intramodule ercoc
flow model and the intermodule error flow
model ace constructed. The second stage




Tn
VIL YOl Y G O

flow

1S the erroc tracing stage. TwO
di1fficulties associated with logical
tipple effect analysis are furtner caused
by recur sion and dynamic aliasing, due to
the fact tnat logical ripple effect
analysis i3 based on a static analysis of
the datd flow properties Of the program.
Boeh problems have recently been solved

under cecgtain ceasonable assumpt ions
[13}.

We have 3lso i(nitiated the study of
performance cipple ef fect analysis
zecnniques [l4-16]. Since large~scale
softwace systems often have strice
pecformance requirements, {t is also
important to insure that progran
modifications do not degqrade program
pezformance.

When modificacions are made to a
pcogram, pecformance ripple effects occur
as well as logical ripple effects. We
have developed a model of che ways in
whicn pecformance cipple effects may
propogate as a tesult of program
sodification. In this model we {(dentify
attzibutes of the program which affect
its ovecall pecformance. These
attributes are quantifiable measures of
pecformance. The most obvious exanmple of
a perfocrsance attribute is the execution
time of module.

By identitying the pecformance
dependency telationships which exist
between performance attributes, we can
constzuct & complete model of potential
pecformance ctipple effect propogation.
When a change is made to a section of the
program code, cectain performance
attributes may Dbe affected. These
pecformance attributes may, in turn,
affect other pecformance attributes in
the pcogram due to a performance
dependency relationsaip. Performance
dependency relationships are cceated as a

result of cectain msechanisms in the
program. Por example, calling a module
is a4 mechanisa which creates a

pecformance dependency relationship from
the called module to the calling module.
Specifically, this means that the
execution time attribute of the called
sodule may affect the execution time of
the calling module.

In {15] we descride a number of
performance attributes and the possible
pecformance dependency relationships
betveen them. Using this model we have
also develuped algoritmms to trace the
potential pecformance cipple effects from

an initial modigicat ion. These
algocithms are also presented in (15].
Yau et al {23] refined some of these
techniques and verified the Dbasic
foraylacion of the approach using an

R . - . .
« - '® . e te .
(R P AP PR

t Pati il Pl e "

291
automated tool.

Effective
Maintenance

Testing for Software

After all tne
their cipple

modifications and
ef fects have been
accommodated, testing is cecformed.
Testing is done to validate the modified
program {n order to detect unexpected
errocs due to the modifications, such as
previously dormant errors which may have
become active errors due to the
modificacion. A complete testing
Strategy for the maintenance phase
consists of module testing, integration
testing, and system function testing. We

have concentrated on a module testing
tecnnique whicn is part of an overall
testing strategy for software
maintenance. This technigque uses the
input partition method for test case

generation and the data-driven symbolic
evaluation method for test case execution

Por each of the modified modules,
test cCases are gJenerated by comparing the
detailed specifications and the program
code. Whenever possible, we will use
test cases {n thne original test set which
go through any modified portion of the
program. However, it {s also necessarcy
to generate additional test cases. These
test cCases are then used to evaluate the
benavior of the modified software. Our
approach (s to use symbolic execution,
driven Dby actual test case data, to
produce symbolic test cesults. In
addition to test case generation and test
case execution, the technique also
supports debugging of the module when the
existence of errocs has been detected.

SOPTWARE MA INTENANCE ENVIRONMENT

In the folloving sections we will
describe software tools which we have
developed for software maintenance.
These tools have been demonstrated on a
DEC VAX-11/780 computer under the VMS

operating system.

Inhe Syntax-directed Progcam Editoc

One major contribution nade by
syntax-dicected editors s that they
treat a program as a well-formed

collection of syntactic units (language

constructs), not just text.

We have developed a
editor which uses
editing command: bas ic modification
commands, cCursoc movement commands, and
ext en: 1fication commands . The
basic modification commands include ADD,

syncax~directed
three classes of




ta2

INSERTA, INSERTSH, CoLaTE and SHILALGE.
These <ommands are "Bas|c” because Iney
srovide the Dasic mechanisms to enable
lmaiatenance grogrammers Lo modify
srogyrams. The Cursor movement commands
include P, OCWN, LEFT, RIGHT and
JIAGONAL., Maxing use of cthese Cursoc
sovement commands facilitates “structural
movement® rather than “textual movement”
throuwgh the peogram. witn these
commands, programmers can make mote
3ensible moves to locate the desired
constructs. The extended modification
commands 1nclude CUT, PASTEA, PASTEB,
ICP Y and REP LACE. These axtended
Jocmmands provide further editing power
for the user.

Cetails about the mechanism working
tenind these commands can be seen in [9].
This editor operates un a syntax-oriented
program tepresentation which s also
fully described {n (9].

An  incremental analysis mechanism
aust be associated with the editor to
evaluyate the stat{c semantics of
prograns. Por example, the command tO
delete a variable declaration may trigger
the invocation of a 3semantic checking
toutine wnicn nignlights all the usages
ot thae variable, to temind the
prograamer oOf the existence of a
potential semantic inconsistency.

The syntax-directed editor |is
suppoc ted by a
pretty~pr tnter which allows the
programmer %o view the pocttion of the
pcogcam being ed{ted. The programmer
first uses Cursor aovement commards to
examsine the prtograa, then uses
modi fication conmands to modify the
program. The Pretty-9r inter responds to
cursor movements coamands and recognizes
program changes by examining the progras
tepresentation. It then rebuilds the
screen display according t© the change.
As a result, the pretty-pcinter provides
instant visual feedback to adsist the
programmer to percelve program changes in
an {nteractive mannec. Pigure 3

illustcates the structural cur sor
aovenent comzmande.

also
screen=-or lented

The Syntax~directed Program Slicer

Weiser’s program slicer [20]
operated on a conventicnal form of data
flow graph (24) (l.e. a directed graph
vnose nodes fepresent the conditions and
assignaent statements of the progras and
whose edges fepresent possible data flow
paths between them).

In an interactive proqtanuir}q
environaent, and in normal practice, it
is more useful two display the taxt

finclading dara declarations) of the code

in the slice. We
program slicer
requirements, Qug
interactively constructs the text of a
partial progqrams (or "slice") whicn
satisfies thne slicing critecion. Each
slice is a syntactically correct program,
made up of a subset of the declarations
and 3tatements of the original program.
TO achieve this, we have extended the
program representation mentioned {n the
ptevious section to include the data flow
informatcion which the program slicer
needs.

have developed a
wnichn meets thesge
program slicer

Qur current approach i{s based on an
intramodule program slicer. It selects a
portion of a module ({i.e. procedure or
funct ion) according to the slicing
criterion, and adds to it the
declazations of objects inside or outside

the module to insu-e that it forms a
syntact ically cor program. In PASCAL
these objects inc je labels, constants,
types, variab v procedures ard
functions. To @ xv.e the usefulness of
tnis pcogram sl{ ~ as a prtogramming aid,
we have added options of further

applying the sl: * existing slices of

a program - to I .n a more cefined
picture of prog._« benavior - and of
coabining slices (possibly those of

distinct modules) into more comprehensive
units. The operations which are
available to combine program slices are
UNION and INTERSECTION of program slices.
Pigure 4 {llustzates hnow our prograz
slicing technique works.

The Logical and Pecrformance Ripple Effect
Xnalyzer

A software support system, the
"loqical ripple effect analyzer", for
perforaing logical ripple effect analysis
on PASCAL programs has been developed.
This support system consists of three
subsystems: an intramocdule error flow
analyzer, an {intermodule error flow
analyzer, and a logical ripple effect
identification subsystem. The
{ntramcdule errzor flow analyzer was
developed by modifying an existing PASCAL
compiler. The other twc subsystems were
newly developed. These programs operate
on the intramodule error flow model and
the intermodule error flow model.

The program analyzer developed to
construct a “performance rcipple effect
model® for PASCAL prograas has been
implemented by modifying the same PASCAL
compiler. A program O trace performance
ripple effects has also been vwtitten,
wnich handles in{tialization of the data
structucres {in the program, user
interaction, and the tracing algocithms

- .

.~ o RS .
- W -

ST ICRE S S AL

ey

I
e s o s

’
. ' + N e . .
- . Ll LA A
L il L

IR

"
"
»
LA
e oS
[



themsalves. The “pecformance cipple
effect analyzer” corsists of these <Ctwo
progecams.

Testing by Symbolic Execution

Our cuccrent results in softwace
testing are limited to module testing.
We nave demonstrated this technique for
programs written in ANSI PORTRAN since
our implementation makes use of existing
tools for data flow analysis (DAVE [25])
and symbolic execution (ATTEST (26]),
which only opecate on FORTRAN programs.

We use the DAVE data-flow analysis
system [25] as a prepocessor to produce
tne control graph of a program to be
analyzed. Frtom this graph we use a
program graph generator, which we have
developed, to construct the program graph
for further analysis. The tokens of the
program, which ace produced by the DAVE
system, are used by an intermediate code
genecator, which is a part of ATTEST s
prepcocessor (26}, to construct an
intermediate code representation of the
progrtam. This intermediate code will be

used for symnbolic execution of the
program.

We have also developed a
modification nandler to stoce

modificacion infocmation in the prograa
graph produced Dy the program graph
generator. The ATTEST symbolic execution
system wvas nodified to permit data drciven
execution, and this amodified seystem is
used for test case selection and test
case execution. The results of data
driven symbolic execution are used for
output validation.

A test execution tool was developed
to perform test exscution {ntecactively.
This tool is used for debugging, and uses
four types of command : test cCase
specification commands, move commands,
show commands and breakpoint commanrds.

Altnougn it has Ddeen demonstrated
for PORTRAN programs, this module testing
technique can be adapted to  block
structured programmaing languages by
altering the front-end (prepcocessor) and
the user intecface (mod{fication
handler).

AN INTEGRATED SOPTWARE MAINTENANCE
ENVTRONMENT

Before an integrated system can be
achieved, exparinentation must be
performed, based on independent execution
of eacn tool currently existing in our
softvace naintenance environment.
Results of these sepacate expecizents

293

have been described in (9,13,17,23).
Although we are convinced cthat our
tecnniques can benefit maintenance
personnel in a direct fashion, further
investigation into various other aspects
of sof tware maintenance is still
required. Because an environment of this
kind {s highly experimental in nature, we
must pay equal attention to tool
construct ion and environment
expecrimentation in the future.

Any programming environment must be
nignly experimental in nature (27]. The
pecformance of each tool in a particular
environment must be studied and alteced
accordingly in order to achieve a nhighly
effective fntegrated system. The
software tools described above have been
demonstrated independently In order to
show that thefir implementation wvas
feasible. Consequently, each tool has
been developed to operate on its own
program model (or tepresentation),
althougn together they provide a wide
spectrum of program analyses.

However, our experience has shown
that information constructed for each
independent tool can also be shared among
several tools of similar nature. Por
example, data flow {nformation appears
both {n the program representation used
by the program slicer and the progranm
editor, and in the error flow model used
by the logical ripple effact analyzer.
The program representation used by the
program editor implicitly contains the
control flow information whicn is
essential to the module testing tools.
The performance analysis tools also
require information regarding control
flow and data flow, although they also

tequire additional performance oriented
information.

In order to {integrate all these
tools to form an effective maintenance
machine, several mcdel s representing
vacious aspects of a software system may
exist simultaneously. We view these
diffecent pleces of information
collectively as a portion of the
multi-level softwvare system description.
However, it is still necessary to develop
a mechanism, whereby the maintenance
activities can be carried out
barmonjiously and efficiently. This
mechanism may be considered to be a
*modification session manager®, which
will support a friendly user {ntecrface
and effective and accucate information
handling. The modification session
manager has the respons ibilicy of
controlling the users’ use of the
diffecrent software tools in pecforming
modification activities. Figure 3 shows
how such a system can be organized.




v TrTY
R A
.

A S A
@[

ry

. Tt [

. L

P o e e

e AT .
PR

LSRR T 2 e

.

»

Ll i ottt
e T '

’
S,

294

CONCLUS ION
In tnis paper we have presented a
comprenensive software maintenance

methodology.

ths
in

described.
systems based on various
been
teported here, we expect to conduct
experiments in
to a lagge-scale software system in

neacg

i1l

2]

(31

(4]

{s]

(6}

(71

{8}

{91

All phases contained in
methodology and techniques involved
each pnase have been briefly
The status of prototype
techniques has
8ased on the framework
full
applying our methodology
the

discussed.

future.

REFERENCES

Boennm, B. .,
Engineecing”, [EEE Trans. on

Computers, Vol. ~ C-25 NG . 17,
Becaber 1976, pp. : '

1226-1241.
Lenman, M. M., “Programs, Life
Cycles, and Laws of Software
Evolution®, Proc. of the 1EEE, Vol.

68, No. 9, September 1980, pp.
1060-1076.

*Softwace

Boenm, B. W., "Software and Its
Impact : A Quantative Assesament”,
Datamat fon, May 1973, pp. 48-59.

Bauer, H. A. and Birchall, R. 1.,

*“znaging Lacge Scale Softwarze

Development witn An Automated Change

Control System®, Proc. 2nd. Int’l.

Conf. on Computer oftware and

ﬁ"gﬂcae—{on- (COMPSAC 78) , November
’ pp- «18.

Zalkowitz, M., “Pecspectives
Softvare Engineecring”, ACM Computin
Sutvc;g. June 1978, Vvol. 10, 55. 2,
fP-

-216.

on

Lientz, B. P. and Swanson, E.
"Characteristica of Mplication

Softvare Maintenance®,
Communications ACM, Vol. 24, No. 6,
une . PP. 456-471,

Donahoo, J. D. and Swearinger, D., A
Review of Software Maintenance
Technoloqgy, RADC-TR-30-1), Pebruary

Yau, 8. S. and Collofello,
‘Some stability Measuces gor
Softvace Maintenance®, IEEE Trans.

on Software Engineering, Vol. SE-8,
Ho. €, November 1380, pp. 545-552.

e 8. '}

Chang, c. K., “Increnental
Modification of Computer Programs”®,
Mn.D. Dissectation, Nocthwestecrn

Untivecsity, 1982.

(10]

(11]

(12}

[13]

{14])

{1s5]

{16}

(1n

(18]

{19]

{20]

{211

Yau, S. S., Collofelilo, J. S. and
MacGregor, T. M., "Ripple Effect
Analysis of Software Maintenance”,
Proc. 2nd. Int’l. Conf. on Computer

Sottware and ?%%éliﬁ&i9%§ (COMPSAC
78), Novenber . Pp. 60-65,

Yau, S. S., Collofello, J. S. and
Hgien, C. C., Self-Metric Software -
A Handbook: Part I, Logical Ripple
Effect Analysisd@ Final Technical

Report RADC-TR-80-138, Vol 11 (of
3), NTIS AD-AG186-291, April L1980.

MacGregor, T. M., "Analysis of
Logical Ripple Effect of Program
Modification®, Ph.D. Dissertation,
Northwestern University, 1979. .

Hsien,
Logical
Softwarce
Dissectation,
University, 1982.

C.~C., *"An Approach to
Ripple Effect Analysis for
Maintenance®, Ph.D.

Northwestern

Collofello, J. S., “Effect of
Progran Modification on Software
Perfocrmance”, Pn.D. Dissertation,
Northwestern University, 1979.

Yau, S. S. and Collofello, J.
*Performance
for Large

S..,
Ripple Effect Analysis
Scale Software
Maintenance®, Intecim Technical
Repoct RADC-TR-80-55, NTIS
AD-A084-351, March 1980.

Yau, S. S. and Collofello, J. S.,
*Sel f-Metr ic Software - A Hamdbook:
Part II, Pecformance Ripple Effect
Analysis®, Pinal Technical Report
RADC~TR-80-138, Vol III (of 3}, NTIS
AD~A0386-292, April 19840.

Kishimoto, 2., “Effective Software
Teating for Software Maintenance®,
Ph.D. Dissectation, Northwestern
Oniversity, 1982.

Heninger, K. L. *Speci fying
Software Requirements for Complex
Systems”, Proc. ec. of Reliable
Soft\lltﬁ. I;’g' ppo -140

Alford, M. W., *A Requirements
Engineering Methodology for
Real-Time Processing Requirements®,
vol. S!-J, No. l' Jan. 1977, PP
60-65,

Weiser, M., "Program Slicing”, Proc.
S5eh Int’l Conf. on Software
zngin“dng, 1981, pp. 439-449.

ponahoo, J. and Sweaczingen, D.,
"Software Maintenance Tecnnology”,

Proc. 4th Int’l. Conf. on Computer
Sifevats. and— hpplications (COMSAC

PRI
0. .
.t e e e T
Lt .

t
-l

a’

. @ :
ARARA
(An. fataa' e sl

. A
4 TR
e ad S A aun A A 8 B § ¢ 0

[4

S og ollend

A




(23]

(251

(28]

(27}

301, 1980, pp. 394-400.

fau, S. S., Chang, C. and
Nicnoll, R. A., “An Approach to
Incremental Program Modificacion”,
submitted for publication.

Yau, S. S., Cactvalho, M. B. anrd
Nicholl, R. A., °A Metnod for
Estimating the Zxecution Time of
Arpitracy Paths in Computer
Programs®, Proc. 5Sen Iat’l, Conf. on
Computer Software and Agglxcacxona
({COMPSA 81y, Novembder s PP-

225-239.

Hecht, M. S., Plow Analysis of
Compyter Prograas., Nocrth=Holla
Publisning Company, Amsterdam, 1977.

QOscterveil, L. J. and Posdick, L. DO,
*DAVE <-A Validation Error Detection
and Documentation System for Portran
Programs”, Software Practice and

uErience. vol. &, No. &, 1978, pp.

Clacke, L. A., °A System to Generate
Test Data and Symbolically Execute
Prograns®, IEEE Trans. on Softwvace

Bngineering, Vol. SE-2, No. J, Sep.
DR op. J15-222.

Bacrstow, D. R. and Shrode, H. &E.,
“Cbsecvations on Intecactive
Programming Environments”, IZEE
Tutorial: Software Develogment
Eavironaents, 1981, pp. 286-301.

295

Determine the
Maintenance
Objective

Understand Phase 1
Program

Generzate Phase 2
and
Realize
A Particular
Mod{fication
Proposal

Ripple Phase 3
Effect
Analysis

Testing Phase ¢

Yes

Pigure 1. The Software Maintenance Process




et et

T AT AT AT AT T AT T AT T T TN T
B )

ML A - T ARl Bae s o on
v . s » PR A oAl ub adih aah au S g 0@ S s 2

- it o ~2e i B e Mhin. ———

Level of the L.evel of the
Modification Software
Proposal Description

A ———————r——

Users’ Change Usec
Requests Level
?roposed Modification to Software
Software Requirements Requirements
Proposed Modification to High-liaevel
Hign~level Software Design Software Design
11 ;
Propogsed Modification to Detailed :
Detailed Software Design Softwace Design ;
¥ i he
Proposed Modification to Executable Es
Executable Software Code Software Code

Pigure 2. The spproach to specifying
modification proposals.

S
R AR 4
& ¢ ¢ 8 a 1 ’

iy sy iy

¥
v,

| L N a2 o
'..‘:".“ l’l

r X o» owip -
BT

- S .

-t . AT e e T ‘o Dy
BT et N e e - "
Lamdard i e &'y = (.1-5.1;\'.'1\3(4.'1':'1‘.:




N

P ND
0t
Wl

CIA)

A

-
Y PRREOEY

.-. ‘-. ‘v. .-‘ .

Q9

Y

I-: I.‘. '..‘l" \

begin
reset (data) ;
while (not eof(data)) do

begin
while (not eoln(data)) do
*1 *2

3egin

read (data,ch) ;

4
fasc ord (cn) of
££ : begin

wegite (ch)
read (carr)
end ; .
cr : write (eh) ;
1f : writeln
othervise write (ch)
end
end ;
teadln (data)
end
end.

position *1 to position *2 - RIGHT
*2 *3 « DOWN
3 *4 ~ RIGHT
"4 *S - DOWN

Pigure 3. Structucal cursoc novements.

297

program triangle (inpu:, output)
{ This program builds a digit triangle )

vat 1,3,k : integer;

begin
for § := 1 to 9 do
begin -
Loz 1 *
for i :» 1l to j do
weite(i:1);
for k := j downto 2 do
write(k-1:1);
weiteln;

end
end { triangle | .
(a)

ptograa triangle (input, output) ;

var 3,k in:eqct:

begin
ot j = 1 to 9 do
begin
for k % § downto 2 do

end -
end.
(b)

Pigure 4 {a) The program to de sliced.

(b) An {llustzation of the syntax-directed
pcograr slicing technique (slicing for
vacgiable k).

-V S MG I 2l RS T I ek Bt




2]
4 298

:‘_-, Multi~level Software Syctem Description
ii
X
~ Softwace Documentat ion
~ = =j= = " Source Requirement
| Code Des ign
| L
1]
. 4
Model : Gata for| _  IData for :.. Inccemental
Constructocsem Tool L Tool n Update/ -
— Other Tracing
ytilities L'/""""I"" T '\-"‘~.
7z N -~ -
s/ LI 1] ~ - -
] . .
Pecrformance Logical Program || Progcam
Ripple Ripple Editor Slicer
Effect Effect ‘

Analyzer Analyzec
b 4

Modification
Session _
Managet o
cxr |
—p control+data
~=e=p data
Uset

Pigure S. An incegrated softwaze maintenance
environment

.
s

a e avy
[l A
PR
D A

..l'.‘-1 . .'.

0
’

R

PR

- .' -, . .‘ . . —.-
N SR IR

Srelt




LAnd aul i Aad ads aegh B &

v

RA N EA SR i ad
e

MISSION
of

Rome Atr Development Center

RADC nlans and executes neseanch, development, test and
delected acquisdition proghams in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
8 provided to ESN Program 0ffices (POs) and other ESD
elements. The princdipal technical mission areas are
commundications, electromagnetic guidance and control, sunr-
vedllance of ground and aerospace objects, intelligence data
collection and handling, Anformation system technology,
Lonospheric propagation, sofid state sciences, michowave
physics and electrondic neliability, maintainability and
cempatibility.,

- " PRI - - . - LY e Y ) ..
.- I e . ’ . S . R P P I .
e e — e o T res PRSP SRS O WS =~




LI it b B b i Sy S B dnd




Iy

v

Ty

NCAICH

vy

pPRR I W )

B, T

R PR TR Y . - L -". . '.'7'.‘ - - . e .
AP TTCES AT W P SIS I SR AP AP




