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CONVERSION FACTORS FOR U.S. CUSTOMARY TO METRIC (SI) -.

UNITS OF MEASUREMENT
* To Convert From To By

angstrom Meters (W) l.00 000 x £ -10

atmosphere (normal) Kilo pascal (kPa) 1.013 25 X E +2

bar kilo pascal (ka) 1.000 000 X E +2

barn meter
2 

(m ) 1.000 000 X E -28

British thermal unit (thermochemical) joule (W) 1.054 350 X £ +3 0
cal (thermochemical)/cm

2  
meta joule/M

2 
(NJ/c

2
) 4.184 000 X E -2

calorie (thermochemical) joule () 4.184 000

calorie (therochemical)/g joule per kilogram (J/kg)5 4.14 000 X E +3

curies gigs becquerel (Gbq)l 3.700 000 X E +1

degree Celsius degree kelvin (K) t - C 273.15

degree (angle) radian (rad) 1.745 329 X E -2

degree Fareaheit degree kelvin (K) - F * 4+9.67)/

1.6

electron volt joule (W) 1.602 19 X £ -19

erg joule (W) 1.000 000 X E -7

erg/second watt (W) 1.000 000 X E -7

foot meter (i) 3.048 000 X E -1

foot-pound-force joule (J) 1.355 1s

33
gallon (U.S. liquid) meter (m 3.785 412 X E -3

Inch meter (m) 2.540 000 X E -2

jerk joule (M) 1.000 000 x E +9

joule kilogram (J/kg) (radiation

dose absorbed) gray (Cy)e 1.000 000 f."

kilotons terajoules 4.183

kip (1000 lbf) newton (N) 4.44 222 X E +3

kip/inch
2 

(kal) kilo pascal (kPa) 6.894 757 X E +3

ktap neoton-second/m
2 

(N-8/2) 1.000 000 x E +2

micros mter (m) 1.000 000 X E -6

all meter (a) 2.540 000 X E -5

mile (international) meter (m) 1.609 344 X E +3

ounce kilogram (kg) 2.834 952 X E -2

pound-force (lbf avoirdupois) moeton () 4.448 222

pound-force Inch newton-meter (N"-) 1.129 848 X E -1

pound-force/inch newcon/meter (Ni.) 1.751 268 I E +2

pound-force/foot
2  

kilo pascal (kP ) 4.786 026 X E -2

pound-force/inch
2 

(psi) kilo pascal (kPe) 6.896 757

pound-mas (lbm avoirdupois) kilogram (kg) 4.535 924 X £ -1

pound-mss-foot
2 

(moment of inertia) kilogram-meter
2 

(kB-m
2 )  

4.214 011 X E -2
poun-was/fot 33 3

pound-ease/foot
3  

kilogram-meter (kg/m 
)  

1.061 846 X E +1

red (radiation dose absorbed)i gray (Cy)e 1.000 000 X E -2

roontseef coulomb/kilogram (C/kg) 2.579 760 X E -4-

shake second (a) 1.000 000 X E -8

slug kilogram (kg) 1.459 390 X E -1

torr (m Mg. 0' C) kilo pascal (kPe) 1.333 22 X E -1

*The gray (Gy) is the accepted SI unit equivalent to the energy imparted

by Ionizing radiation to a mass and corresponds to one joule/kilogram.

tThe becquerel (Bq) is the SI unit of radioactivity; 1 Bq - 1 event/s.
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..... ;. .:.-.:..... :_-_ -



HIGH-CURRENT BETATRON, PHASE I

i-1 INTRODUCTION

In a conventional Betatron, the current is limited by

the method of injection and the constant orbit radius. For

example, with an injection energy of 100 keV and an orbit

radius of 1 m, the initial magnetic field must be e10 G. The

- current density is limited by space charge of the beam to

,o100 mA/cm2. We proposed (MLR-402-1, April 28, 1980) to con-

struct a device with a toroidal magnetic field of ,10 4 G, in
which case the space charge limit for the current density is

increased by the factor 16. We proposed to inject the elec-

trons to form a beam by an adaptation of the method of induc-

tive charging.

1-2 STATEMENT OF WORK (MLP-402-1)

The Statement of Work from proposal MLP-402-1 is

reproduced below.

1-2.1 Statement of Work (November 1980-June 15, 1981)

Task 1. Construct Torus

A glass torus with a 40 cm major radius and 5 cm

minor radius will be constructed, coated with epoxy

fiberglass and wound with copper wire.

Task 2. Design and Fabricate Coils
. Vertical-field, air-core coils will be designed and

fabricated.

Task 3. Assemble Systems

The systems of the Betatron experiment, including

magnetic field coils, power supplies, vacuum system,

*and injectors, will be assembled.

S .



Task 4. Perform Initial Experiments

Initial experiments on injection trapping and acceler-

ation will be performed. Electron current and energy

will be measured.

Task 5. Analyze Stability

Electron orbit and beam stability will be investigated

analytically and numerically. Stability analyses

will be performed for:

a. Integer and half integer resonances.
*b. Negative mass instability.

C. Resistive wall/negative energy wave insta-

bilities.

This work was carried out during the period November

1980-June 15, 1981. The results are described in Appendix A.

1-2.2 Statement of Work (June 15-December 31, 1981)

Phase I was continued during the period June 15-

December 31, 1981. The Statement of Work for this period is

reproduced below:

Task 1. Measurement of Injected Charge and

Trapping Efficiency

The ijected charge can be determined from current

traces. The charge trapped can be measured by observ-

ing the frequency of diocotron oscillations. The

charge will first be trapped in local mirror regions

as illustrated in Figure 1. Then, as the diamagnetic

OSLO current in the copper washer decays, electrons will

be ejected along the toroidal field lines. It is

important to measure the electron line density before,

during and after this process. Parameter studies

will be carried out including variations in injector

voltage and injector position. We plan to begin with

1-2



Toroidal Copper
-- 60 cm- Windings Washer

Inj ecting

PPort

CoppeCopper
WWasher

Port

80 cm Toroidal Magnetic
Field Lines

During Injection

MfL.I82-406

Figure 1. Betatron experiment.
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one injector and increase the number up to four, as

required. The end result of this study should be

* that a toroidal beam of electrons is trapped and has

stable confinement for "1l ins. The mean velocity in

the toroidal direction should be zero.

Task 2. Acceleration of the Toroidal Electron Beam

The Betatron fields will be applied. This involves a

peak magnetic field of 1 kG at the location of the
beam with a rise time of ,u.l ins. The toodlelectric

field will produce -,,100 V per revolution. The field

* - index can be varied from 0.2 to 0.8. We will measure

the current with a Rogowski coil and monitor the

charge per unit length by continuously observing the

diocotron frequency. X-ray measurements with scintil-

lators will also be used to monitor the beam. The

objective is to document acceleration to a few MeV

with a current of the order of 1 kA.

1-3 SUMMARY OF RESULTS FOR THE PERIOD

JUNE 15-DECEMBER 15, 1981

A local mirror was produced around the electron

injectors by weakening the toroidal magnetic field with a

closed loop of wires. Electrons were trapped there as well as

in a driven mirror. The line density of trapped electrons was

proportional to the injection voltage. With the use of four
injectors, electrons were captured in four local mirrors along

2 the torus. The current in the loop of wires decayed much

faster than the toroidal field resulting in collapse of the

local mirror. Electrons were then lost due to toroidal drift

as indicated by a delayed burst of X-rays.

1-4 EXPERIMENTAL PROGRESS

Figure 2 shows schematically how the apparatus has

been modified. In a previous report, an arrangement was des-

cribed whereby the mirror field was produced by energizing

1-4



mirror coils with a capacitor bank (Figure 2a). This approach

was subsequently abandoned and a passive means was adopted. A

pair of stranded cables, 2.5 mm dia, was wound around the
injector (Figure 2b). These cables were shorted to form a

closed loop. An electric current was induced by the shorted

cables by the changing toroidal magnetic field, producing a

local mirror.

After electrons were successfully trapped in the

mirror formed by the shorted cables, two additional injectors

were installed and tested (Figure 2c). The multiple injectors

were first fired independently, the A-K gap was adjusted, and

some conditions (e.g., heater current) for electron trapping

were checked. Electrostatic probes were located in only one

'U mirror. For the remaining two mirrors. the anodes of the

electron injectors were used as elec# *ostatic probes. After

each injector was tested independk y, all three were fired
* simultaneously and electrons were trapr 4 in three mirrors.

* The experimental apparatus was disassembled to install additional

electrostatic probes and an additional injector. The final

configuration involved four injectors, seven shorted cable

pairs and seven electrostatic probep (Figure 2d).

1-5 INDUCTIVE CHARGING IN A PASSIVE MIRROR

A comparison between the driven mirror and the passive

mirror is made in Figure 3. In a driven mirror, the electro-

static oscillation lasted longer (Figure 3a). In the passive

mirror, the oscillation damped in 150 uis (Figure 3b). The

oscilloscope traces of the oscillations were, however, quite

similar to each other when observed on a fast sweep speed.
This suggests that the trapping takes place similarly in both

cases.
Figure 4 shows the electrostatic oscillations detected

by anodes when three injectors were used. Simultaneous trapping
was observed as in Figure 5. The frequencies of the oscillations

in the three cells were not identical but were nearly the same.

1-5



Pa~mp ing
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(a) Driven mirror coils. (c) Three injectors
and mirrors.
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(b) Passive mirror. (d) Present state.

-Injector

-Closed Loop
4Electrostatic Probe
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Figure 2. Experimental arrangements of equipment.
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(a) e135'.

(b) e-315'.

ML182-409I

Figure 4. Oscilloscope traces of electrostatic oscillationsJ
picked up by the anode of electron injector.
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I Noise

MLI182-410

Figure 5. Electrostatic signals from two mirrors. 50 ps/div.
Upper: e -00 Lower: e 1350.
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The dependence of trapping on experimental parameters

__ was studied. Figure 6 shows oscilloscope traces of electrostatic

oscillations when changing the injection voltage. AN. the

other parameters were fixed. The frequency is proportional to

the injection voltage (Figure 7) in agreement with theory.

* The frequency is plotted as a function of injection

* current in Figure 8. It is noted that the frequency is weakly

dependent on the injection current: the frequency variation is

within 10 percent for the total injection current of 0.4-2.0 A.

The trapping was sensitive to the injection timing, as studied

- . on the collective focusing ion accelerator.

1-6 LIFETIM1E OF ELECTRONS

The mirror ratio changes with time. Figure 9a shows

the current which flows through one section of the toroidal

coils. Figure 9b is the current in one of the closed loops.

These waveforms indicate, roughly speaking, that the mirror

ratio decreases rapidly after the time when the toroidal field

reached its peak. An X-ray burst appears soon after this time

as shown in Figure 9c. Electrostatic oscillations were not

observed afterwards.

1-7 FOUR MIRROR EXPERIMENT
The injectors used in the four mirror experiment were

not all of the same design. Two of the injectors (e - 00,

'S 1350) gave electron trapping in wide ranges of the experimental
0 0

parameters, but the other two (e 180 , 315 ) worked in very
limited ranges. This made the simultaneous trapping in four

mirrors difficult and unrepeatable. Insufficient time and

resources were available to fabricate new injectors of a common

design.
In addition to electrostatic probe measurements in

the mirror cells, the electrostatic oscillations were detected

by an electrostatic probe located halfway between 0 - 1350 and

180 .The frequency measured between the cells was the same as

I A 1-10
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Figure 6. Oscilloscope traces of electrostatic oscillations
for different injection voltages.
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that measured at 0 =1800 within the limits of experimental

U .error and repeatability.

1-8 DISCUSSION

The process of injection has been verified for a

small number of mirrors. The present experiment is limited to

magnetic fields between 3.5-7.0 kG and a small number of

injector/mirrors. Electrons are trapped and contained as
expected in the mirror fields. However, when the mirror fields
are relaxed there is insufficient charge to avoid the toroidal

drift. (This is consistent with estimates of the line density
of the injected charge as determined from the diocotron oscilla-

tions.) As a result, the electrons drifted to the walls when
the mirror fields were relaxed instead of being contained in

the torus.
This research will continue under ONR sponsorship.

Some of the limitations of the experimental apparatus relating
to power conditioning, coil design, etc., wifll be improved.

Thus far, no new physics problems have arisen and the princi-
ples of the injection/trapping scheme have been documented.

A continuous theoretical effort has been carried out.
The main results to date are a comprehensive analysis of the

problems of orbital stability that are presented in Appendix B.
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HIGH CURRENT BETATRON*

G. Barak, D. Chernon, A. Fisher, H. Ishizuka, and N. Rostoker
University of California, Irvine, California, and

S'a.cawell Laboratories, Inc., San Diego, California

ABSTRACT

In a conventional Betatron, space charge limits the electron current during
injection. By adding a toroidal magnetic field and inecting electronswith the inductive charging method we expect to increase the current limit

by a factor of i0 - 106. After the beam has been accelerated to high
energy the toroidal field is no longer necessary and can be reduced to fac-
ilitate extraction of the beam. The effect of the toroidal magnetic field
on space charge instabilities is investigated. An experimental Betatron

S.' has been constructed with a major radius of 40 cm and a minor radius of 5
cm. On the basis of previous experimental results with inductive charging
the current limit should be a few kilo-amperes.

I. IMTODUCTION

In a conventional Betatron the orbit radius is R - yuc /eB where By is

the Betatron field, 0 * v/c and -y - (i-02)" . For the usual injector 1

y - 1, 3 < 1; for example, with a 100 keV injector and R - 1 meter, By -
2

10.6 gauss. The space charge currant limit is proportional to By2 and is

therefore very small.

The currant limit has been increased by reducing the orbit radius and in-= 2
creasing the injection energy.. Another proposal to eliminate the space

K charge problem by introducing a plasma was not successful.3 Controlling

space charge of electrons by adding a toroidal magnetic field to the usual

Betatron fields was first investigated theoretically in 1973, and the

first experiments were reported in 1976. A similar proposal for ions was

made in 1978.6

During the past five years the technology of inductive charging has been

developed at U.C.I. in experiments with magnetic mirrors7 and a bumpy torus.

A line density of 4 Xl011 electrons/cm has been injected and confined for
8several milliseconds. A new Betatron experiment has been constructed dur-

ing the past year. It is illustrated schematically in Fig. 1. A local

mirror is created into which injection and trapping take place, exactly as

in the previously studied bumpy torus. However, the diamagnetic current in

the copper ring (washer) decays on a short time scale compared to the toroi-

dal magnetic field. The electrons trapped in the mirror are then ejected

along the field lines as the mirror collapses. Based on the resul.s vh

tho bumpy torus we expect to trap enough electrons to produce a currant of
. - * o. ~ ...



a few kilo-amperes when the electrons are accelerated to - 1.

Various instabilities may arise in the modified Betatron including space

charge, negative mass,resistive wall and orbital resonance instabilities.

In general the toroidal magnetic field is stabilizing. In this paper we
shall consider only space charge instabilities; the-other instabilities

have been considered in previous publications.9'1 0  Space charge instabili-
ties have previously been discussed for the field index s - which is a

special case in which the analysis is simple. The present analysis inclu-
des s *J and a consideration of electric and magnetic images.

11. SPACE CEARGE LNSTABILITIES

To describe the orbits in a toroidal electron beam consider the local co-

ordinates (x,y) or (r,e) illustrated in Fig. 2. The equations of motion

for standard Betatron fields B - B (1 + - v and a toroidal"' y o R'
field B are as follows 9

2-2 2 Z z~ (1
nz Sz

+ - nZ  [sCY -n  M " "- X (2)

C moB / " '6 e0/Ymc' C " 2/2Y where u 2 - 4.1 ne2/Ym and s is,.. z V 0pp

the fild index. (x,y) describe oscillations about the equilibrium orbit

given by the Betatron condition R - v /n where v 3--c is the velocity of

4. the electron in the toroidal direction.

For the special case s - .5 these equations may be combined via the trans-
formation -tCx+iy) 5exp S d' C(t') (3)

0
to give 03 + W 2 'o where

2
Transverse beam stability requires W> o. For a coasting beam (' a o) this

corresponds to n '( B Y2  B52) (5)

The advantage of using a strong toroidal field is apparent when Y AsI and B
4, is small. After acceleration when Y and B are large the toroidal field

can be permitted to decay to facilitate beam extraction.

The limiting current is determined by the injection couditIons. For a con-



2 2ventional 3ecatron n < YB /471 mc2 implies a maximum current

3 3 2
Im  (17/4) y 3 (rb/R) k-amps (6)

For -. . mdifiai Betatron with a toroidal field

-3 3 2 2
Im - (17/8) y 3 (rb/R) (B /Bo) k-amps (7)

where we have used the Betatron condition R - c/,S y
If s is not exactly ..5 the general solution of Eqs. (!) and (2) gives three

independent conditions that mus=t be satisfied.

(W2 + Wj +~ la > 4w 2 W S.2 2 2(8)

22w > 0 (9)

1
2  2  2

-.-.. W;
W,... +w W + > 0 (10)

2 2 2  2 2 2 +2 z2

where W 2 (l-s) , - S , 2 and w + +-- We have
. y 2 4

assumed s, Y, 0Z , C and 0 are time independent. Equations (8) and (10)

are satisfied if WZ>o. However Eq. (9) is independent of C . This con-
2 zdition is illustrated in Fig. 3 where (L2/v ) is plotted against s and the

stable region is indicated. In the lower region conventional Betatrons
2 2

operate and w y W> o. In the high current Betatron, the initial operat-

ing point ;is in the upper region, but as y rises we eventually =ust dross
the unstable region except for s - 1/2. In the unstable region the beam
will expand, will drop and a transition to the lower stable region

will occur. For example, if s - (1+6) the density drop will be an/n ft

2 16I. If N is the Line density and rb is the beam radius the transition
occurs fory such that Y352> 4Nr (R/rb)2 where r. is the classical elec-

tron radius. Assuming N a l011 cm- 1 , R - 40 cm, rb I cm the transition

takes place at Y f 6.
The Fermi drift has not been included in Eqs. (1) and (2). The Fermi drift

is due to tht fact that the toroidal field is not constant; i.e., B 3

[l + -] so that the d±ift velocity it sfv /2"- rZR. In Eq. (1) C1  must
be replaced by 0 l + ] y. The Fermi-drif t term C1 x j/R is non-linear.

ZO0 H 2 2 ZO
It may be compared to the term C x or (1-S)0 X. In the first case if

Szo R
\p-

the Fermi drift term can be neglected. Physically the drift is corrected

by the self-field drift which causes angular rotation at the frequenc7



w The displacement due to Fermi drift j/o is negligible for a0 .o 0U dense beam and small Y. If Y is large the self electric and magnetic

fields almost cancel. However, in that case the Fermi drift may still be

neglected if

2Co y/R 2
ZO . (p /ymc) e<1

2

In this case the Fermi drift is compensated by the focusing effect of the

Betatron field. The Fermi drift may be neglected except when (1-s)0 -

2 . y
W x-0. This is an unstable region in any case and should be passed quick-

ly as discussed above.

If the electron ring is in a conducting torus, but displaced from the axis,

A electric and magnetic images at the wall will create forces on the beam

that cause it to drift. Equations of motion for the center of mass of

the beam moving in external fields including image fields are similar to

Eqs. (1) and (2). The results are formally the same with the revised de-

finitions

" * - (l-s) 2

.(rb/a)fl

C2 W /2

We have assued that image currents in the wall decay immediately and image

charges survive. rb is the beam radius and a is the minor radius of the

torus.

The beam will drift around the toroidal axis. As Y increases it must pass
2 - N Ra 2  11 -1through an unstable region when yo .Nre(R/a)2. For N - cm10, R =": de-

A 40 cm and a - 5 cm, YR:8. In this case the self field term rb2n/a de-

- pends only on line density which is not altered by the instability. It is

necessary to have skl/2 and to change y rapidly enough that the beam does

not displace to the wall.

The unstable region for beam motion is not the same as the unstable region

for single particle orbits. In the neighborhood of the latter unstable

• -region the Fermi drift is significant. The beam drift due to electrostatic

image forces should then be considered. The drift frequency is -
(22 /a2 n where C W /22 The Fermi drift may be neglected if

zo p
" -2 R2/<< 2

~i a 2( I/ P)
• 0 R r2

0 r b
.b



Ill. EXPERDlINTAL PARAMETERS

An experiment has been constructed with the objective of producing a i k-

ampere beam of electrons at 10 MeV. The torus is a glass chamber .ith a

metal screen liner of major radius 40 c and minor radius 5 cm. A vacuu

-8* . of 5 X 10 torr has been achieved with a cryo-pump. The toroidal magnet:c

field has a peak value of 12 k-Gauss with a rise time of 100 psec. After

crow-barring the decay time is about 300 sec. The Betatron field has a

peak value of 1 k-Gauss at the majot radius with a rise time of 350 ,Isec.

The field index varies from .2 to .8 in the chamber. Magnetic field

errors have been determined to be less than L%. Injectors are similar to

those previously employed in the bumpy torus. They operate at 15 k-volts

with a current at 5 amps. for 5 isec. They have been operated at voltages

as high as 30 k-volts. Construction and field measurements were completed

in May 1981 and injection experiments are now in progress. Figure 4 is a

photograph of the U.C.I. Betatron experiment.

*Work supported by the Defense Advance Research Project Agency and the
Office of Naval Research.

We are indebted to Donald W. Kerst for many illuminating discussions.
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ORBITAL STABILITY OF THE HIGH CURRENT BETATRON

by

G. Barak and N. Rostoker

Department of Physics
University of California
Irvine, California 92717

UCI Technical Report #81-91 December 1981

C Abstract

We analyze orbital stability of the High Current Betatron.

In this modified Betatron a toroidal magnetic field is added to
the conventional Betatron magnetic field. This increases sub-

stantially the space charge limit during injection. It gives rise,

however, to new problems during acceleration, such as ring sta-

bility, Fermi drift and orbital resonances. A detailed analysis

* ~, Is presented showing that two serious problems may arise; Ci) The
beam becomes highly unstable when the net focusing force on it

becomes zero. The dominant instability in this region is the Fermi

drift. This may, however, be utilized In extracting the beam.
(ii) Errors in the vertical (Betatron) magnetic field result in

tb' driven resonances that must be crossed during acceleration. The
amplitude growth of the transverse Betatron oscillations due to

these resoances Is negligible up to very high y (low n resonances).
It may become practically very difficult to cross the n -i reson-

ance. Thus again extracting the beam by making use of the Fermi

drift while n>l 1Is preferable.

Fd
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I. INTRODUCTION

The largest conventional Betatron was completed about 1950.1

V The energy was about 300 MeV and thae beam current about 100 milli-

amperes. The maximum beam current was limited by space charge dur-

* ing injection. Electrons from a 100 Key electron gun were injected

into an orbit of radius R 1 meter and a Betatron magnetic field

of B y 10 Gauss. The space charge limit is proportional to B 2
1 7 -3

and for the Kerst Betatron n 4 10 cm .The space charge limit

is also proportional to Y, thus it is greatly increased after

acceleration. In a conventional Betatron it is the space charge

limit at injection which determines the maximum current.

To eliminate the space charge problem the plasma Betatron was

2 3
proposed by Budker. After many studies were carried out, the

maximum current reached about 10 amperes, much less than expected.

The current is probably instability limited. The precise insta-

bility has not been identified, although the negative mass insta-

dbility is mentioned frequently. 4

By increasing the injection energy and decreasing the orbit

radius in a conventional Betatron, the space charge limit can be
2 32increased (n~ Y /R ).Small "ironless" Betatrons have been de-

veloped with an electron energy of 100 11eV and electron currents
5

*of about 90 amperes. Electrons were injected into a 3.9 cm or-

bit radius with energy of 500 Key. The space charge limit was

* 4
increased by a factor of 10 compared to the Kerst Betatron.

The total number of electrons was increased however, only by a

*factor of 40.
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Controlling space charge of electrons by adding a toroidal

* magnetic field to the usual Betatron field was first investigated

11 10
theoretically1 in 1973 and the first experiments were reported

* in 1976. A similar proposal for ions was made in 197S).

The combined toroidal and vertical (Betatron) fields increase

substantially the space charge limit and the number of electrons

that can be trapped and accelerated. Injecting and trapping into

such combined fields require new techniques. Several methods

6,7 6
were proposed lately. The first method has already been

* demonstrated in the studies of the Collective Focusing Ion Accel-
8

erator. The method is called inductive charging and was first
9

used in HIPAC. Electrons are injected from thermionic injectors

and trapped by means of a rising toroidal magnetic field. A

Betatron with this type of injection is illustrated in Figure 1.

* Electrons move in an orbit around the torus. They are not drifted

* in the toroidal field due to the self field forces and the inter-

action with the surrounding metallic boundaries. There are no

restrictions on B~ as there are on By in a conventional Betatron.z 2
As the space charge limit depends on Bz during injection, a sub-

stantial increase in the density can be achieved. With the exist-
8

* ing injectors, the current after acceleration will be -1 KAmpere.I
Better injectors may increase this current further by. 1- 2 orders
of magnitude. I

The toroidal magnetic field solves the problem of increasing

the space charge limit during injection. It creates, however,I

new problems during acceleration. It is the purpose of this paper

to investigate the regions of instability of this high current

01
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Betatron and to suggest an optimum mode of operation. We shall

- assume throughout this paper that inductive charging is used.

The parameter set we shall use as a standard reference is given

in Table 1. We shall discuss only orbital instabilities. Collec-

tive instabilities, such as negative mass, or resistive wall in-

stabilities have not been treated in this paper, but it is known13

that toroidal field decreases their importance.

D ..

6.t
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II. SINGLE PARTICLE ORBITS
132.1 Equations of Motion

In order to describe the particle orbit in a toroidal elec-

tron beam, consider the local coordinates (x,y) or (r,e) as illus-

trated in Fig. 2. The toroidal direction is indicated by z. If
eB v

- Y electrons will move on a radius R - . Furthermore,

if B is changed in time so that
y

-B.. By (R) 2 S (r) r dr

(R'r 0

the electrons will move on a constant radius. Due to the beam

self fields and the distribution of the initial conditions elec-

trons will also move in the transverse directions. This motion

0 determines the maximum current that can be obtained and the quality

of the beam. The equations of motion, up to first order in (x/R),

where x is the deviation from the Betatron equilibrium orbit, are:

"my + x + e Er  Be )  + B (vyB z -v z By)

(2.1)
" "my Y+xy - e[(Er-B ) -+.I(VzBx-VxBz)]

Y r c Z B v

Bz and B are the applied toroidal and vertical fields, Er and B9y
are the self fields. Interaction with the surrounding wall was

neglected here and will be considered separately later. The equili-

brium orbit is determined by the relation By(R)- S jy(R). jy(R) is

influenced by the beam current. For a high current Betatron this

is not negligible, especially for the early stage of acceleration.

O°°-*
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External currents should be added to eliminate this effect. We

shall assume that this is done so that v- R y, where R is con-

stant and vz  c (the case of YO1 will be investigated separately).

For a cylindrical symmetric beam the self-fields are easily

calculated,

-2
. n(r)

-e (Er - B )/myr -

2-2 4nne
where w n is the average density of the beam and n(r)

p YM
is the average density up toradius r. If the beam is uniform,

n(r)/n - 1, and the self force is harmonic.

The Betatron field is

(2.2)

B x ya 0Bxa R
,1.

Thus we get the following equations of motion:

x + rL-sn 2  2-
(2.3)

+~ t2 _ 2

wheref 0 -~ (y- ~z Ymc Y Y DC 2 2

The toroidal field was assumed constant. Higher order corrections

'dl

i.

'/,.,-.",-,"."'.''r"'.." ''i'.',-'"- ' ,''"' " ",'''., .''' ' ';'rJ CJ<"L'.'.".''''. '- ':I' .• ",","' "
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• ." 2.2 Space Charge Limits

Define

2 2 2

x y
(2.4)

,_ ._ 2 0y 2 2

and assume that s, y, n2z 0y, n are time independent. The general

solution of Eqs. (2.3) and (2.4) can be expressed as a sum of

two oscillations having frequencies

-:::2 1/2
2.2 2 2 Qz2  2 2)2  2  2'

Q + + 2f+W -4W 2 z yx - 4 ) (2.5)1,2 2

Orbits are stable if and only if:

i (a) (Wx 2 4Wy 2 4 Lz 2  > 4w x2*Wy 2

22'222 2

(b) w 2 Wy > 0 (2.6)

(c) w 2 + W2 2

Denoting s - 1/2(1+6) these conditions can be written as:

2:?: 2a 2__2 +6 2 a 4}) > 0.
(a) (0z2.20~ 4 0 )z.8o y o

(b) (fl/n )21 l/2]> 62 (2.7)
y

-" (}2 (}2 2
(c) 0 + -22 > 0

,. .:.

* Condition (b) involves only n and ny. For 8 -0 it is always

satisfied. When 6 *0 it is satisfied in two disconnected regions:

'.-.

..z -

4- -5..,
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or 2>F1+18> (2.8)

°y 2 ny 2

The first is the "low density" region in which conventional Beta-

2 2
trons are operated (w~W2 y2 > 0). The second is the"hg

*(density" region ( W < 0). In the high current Betatron we
x y

intend to start in the high density region, but as y rises we

eventually have to cross the unstable region (see Fig. 3). Here,

the beam will start to expand, but as it expands f2 will drop

and a transition to the lower stable region will occur. An upper

limit estimate of the density drop is i"Il <2181, thus for 161

0.25 the beam will expand by less than 25% in radius.

This effect can be decreased by crossing the unstable region

quick enough; e.g., by a rapid change of y.

Conditions (a) and (c) are satisfied for every 6 if they

are satisfied for 8-0 (s -1/2). Condition (a) is then stronger

than (c). Thus we get:

2 2

Q . <- +- + or

2 2""B 2 BzO

+n < +(2.9)n <y4mc 
8rrmc

For the inductive charging B <<Bz at injection,

y
thus n Y y Bz2 . In experiments at the University of California,

max.l

* Irvine, electron ring of line density - 2 •10 cm was injected

* and trapped. This corresponds to a current after accelera-

tion of about 1 Kamp, and is larger by a factor Of 104

.o4

""" '' '' " "'' " ''''- "''" "'" '' '' " "'". . . . . . . .* .".''.. " : " '..*...* -' ' " '-," ' . ~ * ' "*** -** '-
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compared to the Kerst Betatron. This is still two orders of magni-

tude less than the current that can be contained by a 10 kG toroidal

field. We expect to increase the density of the trapped electron

ring by using higher injection voltage which is presently 10 K-volts

In experiments at Maxwell Laboratories a line density of 2.1012 was

observed with an injector voltage of 30 K-volts.10

2
During acceleration YB rises, thus if Eq. (2.9) is satisfied

y
during injection it will be also satisfied during acceleration.

The transition from the high 0/0y region to the low 0/y
yy

region occurs at

w3 2 4 NR rc (
Y (2.10)

where rc is the electron classical radius and rb is the beam

radius. For our standard example (Table 1) this means y 13

and By 210 Gauss.

.. . . .. . . . .



10.

III. RING ORBITS

Assume that the electron ring is shifted away from the axis of

the torus. Electric and magnetic images at the wall will push the

beam further onto the wall. Together with the toroidal magnetic

field a slow rotation (F xB drift) around the toroidal axis will

start. We shall investigate here this transverse motion and find

its stability regions. We shall consider only the z-independent

mode, and expand the image forces to the lowest order in a/R0
(where a and R are the minor and major radii respectively).

0

To the lowest order in a/Ro, the image forces may be considered

as created by an infinite cylinder of radius a. If the beam is off

center by 6x along the x axis, the image will be a line with the

same line densityN located at x -a2/6x. The electric field at 6x

*" resulted by the image charge is

EX 2Ne -2Nebx (3.1)
" 2/6x - 6x, a2

and the force exerted on an electron at 6x will be:

,"i

2 2
F - ymfl (rb/a) 6x (3.2)

where

2 2 2Tne2

ym

The magnetic field depends on the image currents. If the wall

is an ideal conductor the magnetic force is opposite to the elec-

T2
tric force and reduces it by a factor of y. We shall assume the

r* " S

.
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other extreme case; i.e., immediate decay. The equations of motion

for the beam center are:

2p + z2(r 2x eB

Rc~x aymc.

(3.3)

y1r + 2 eBx

Y a Y +z ymc z

x and y are measured relative to the toroidal axis. If the beam

center is shifted relative to this axis, the equilibrium radius

will be determined by a different condition than that of a single

particle, namely R = vz/y(R). This is due to the additional force

in the x direction. Assume that the equilibrium

orbit, R, is shifted in the x direction by 6x; i.e., R - - 6x.

If the Betatron field is expanded around R we get:

By Bo [l+s .- ]

(3.4)
,'[ "B , B o s

oR

Note that v. - R y(R) and s - s(R), Bo -B (R).
y o

Substituting in Eq. (3.3) we get for the x component

+- n2lx - - (s-l) y2 6x (3.5)

If we make the transformation

(s-. 8x (3.6): :x - __ _ __ _ _

* .* * (l-s. .y -(rb/a)

• 
. . , . , . ,. . - .
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which is permitted as long as the denominator is not zero, the

f equations of motion become:

; + + z  + x 0

(3.7)

y+ x - +z +W y 0o

where

x 2 (1-s)CI y  - (rb/a) 22

(3.8)

2 2 2 2
2= s2 (rb/a) 2

The beam equilibrium radius is thus shifted by

Ax - Y relative to the toroidal axis. The

(ls -(r b/a)2 0

physical reason for this is that the image force supplies part of

the centripetal force.

* * Equations (3.7) are similar to Eq. (2.3). For s - 1/2 the

motion is stable if

2. 2
2 < _ 2

or (3.9)
or

2  B 2  2

b SMC 4Trmc

This equation can be written approximately as:

.S

, .4 . .€ .. ';' °•• -' . '. " ., " ' - ":," ".. - .,-.• . -"-" " '. " -- '. ,, . .".,.
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4.1014 9
N< + 2.10 y

where N is the line density and the parameters of Table 1

were used. If N <1.8.10 the beam is stable for every y.

However, for N 1.8.10 there is a region of instability.

For N-1013 cm- 1 this region starts already at y -40. To

overcome it either B should be raised or the currents in

z

the wall should persist longer.

Equations (3.7) have the same stability problem as we saw in

Eq. (2.8). It will start at

2 1 2 2 2 2f . (a/rb) Q2 or YO 4N(R/a) rc  (3.10)

where r is the electron classical radius. For our standard param-

eters this will occur at y s 90. In contrast to the single

particle case, the self field depends here only on the line density,

which does not change as the instability develops. It is thus

necessary to cross this region fast enough. An estimate of the

growth rate can be given at the maximum; i.e., at - . (a/rb) 2 y

Here the e-folding time is

2z Q0.045
-- I.secIs-iIy z  Ist

which is much less than i.sec unless Is-il << 1.

Besides the exponential growing instability the beam will

9 drift in the y direction. This is due to the r.h.s. term of Eq.

(3.5). The drift speed is 1 6-- 8x - 20 6x cm/psec. Assuming

6x - 0.5 cm the beam will hit the wall in 0.5 psec. Increasing

NR will increase the y where the transition occurs. Thus the

.4

-... .. ./. ..- "- -... . .. .... -.. -.- ..-........-........-....... .....-. '........,..-.,,............-.........'..........."..'.........:
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2
instability may be avoided (if NR is large enough) or it may be

used as a means to extract the beam.

In concluding this section a remark should be made concerning

the single particle orbits. In Eqs. (2.1) we neglected the force

created by the image charges This force will add oscillating

terms to Eqs. (2.3). A problem will arise only when the single

electron and the beam motions are in resonance; i.e., wk(single

particle) - w (beam). This is not likely to happen because the
'- w2 y2

2. 2 in Eqs. (2.4) and (3.8) are different (as long as 0 is

not very small compared to )

? -.
.o4

- S

%°z

O'D



77 7. 7 70

15.

IV. BEAM EMITTANCE

. The quality of a beam is sometimes described by its emit-

tance, defined as:

. E/r -e p- /pz (4.1)

where P is the beam radius and 8 is the angular divergence. Emit-

tance is determined mainly by the method of injection. For in-

ductive charging p ± p - m V a - const, where a - 5cm (the beam

radius during injection), and v /c- 0.2 corresponding to 10 keV

injector . When the toroidal field reaches its maximum of -10

KGauss the beam radius is of the order of 1 cm and the transverse

8
kinetic energy is -500 keV. During acceleration p. -const, but

p decreases due to the By increase and the self-pinching effect.

For simplicity assume s - j and consider Eq. (2.3). If Bz is chang-

ing in time, the induced field E6 should be included. Trans-

forming then to the rotating Larmor frame we get:

.- " u+2 2n +2 4 2)u-o

where (4.2)

S+ ±iy - exprS z (t')dt' ut
so. w)

This is correct for any change of 0 z; either changing y or Bz .

The mixed term u can be eliminated by the transformation

Y

u - z (4.3)

yielding
2z+ W z 0 -

where

j[z2 n2_ 2 2d' r 2 2 _ 2- .:1

. .,-+.2...4-n..-..-. ._4
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Eq. (4.3), for the real and imaginary parts of z can be

solved using the WKB approximation. The general solution can

be written as

c( t
.z i C (Wt + Cpi)

where ci and ep are determined by the initial conditions, thus
:. -

Y- Iz2 r 2 sin(2wt + e)

where A 2 B2 and c are functions of the initial conditions only.

The maximum value of r, thus the beam radius, changes in time as

(YW)-, or:

r~t -u~t 1  ((t)t)M [Y 2 0 402r(t) Io Z- Co I 1o (4.5)7F7-,(7~ z o, M 0,+2C1y2-4
y

During inductive charging y 0 and y 1. If Q -0 we get the

well-known adiabadic condition

r2 (t) Bz(t) - const (4.6)

This is equivalent to !._ , const.

As acceleration takes place 0 rises and 02 drops down
3y(like y3). At high y the self term is always negligible due to

cancellation of the electric and magnetic forces. The beam rad-

ius then changes as

2  2
r(t) (B + 2 2 - const (4.7)z y
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Thus the beam is further compressed as it is accelerated.

If,after By reaches its maximumBz is turned off, the final beam

radius will be rf/r (B2/2Byf) For B,. - 10 kG, Bf 5 kG,
-.', r /rO  - 1.2.

1.. v 1.2r

At a final energy of 300 MeV E/C 2 millirad cm..~Yc

-" Instabilities may increase this number. As the emittance de-

pends mainly on the injection method, a full understanding of

this process will be necessary to further increase the beam

quality.

The electron ring dynamics during acceleration is very simi-

.ar to the one electron dynamics. Here, however, the electro-

static interaction with the walls does not reduce during acceler-

ation and according to (4.5) the amplitude increases as:

2B 2
r(t) 1 + - const (4.8)

Fbr the standard parameters the change in r Is negligible,

*:- even for y - 600. If, however, the line density is increased by

an order of magnitude, the beam will become unstable at y s 200.

D This can be remedied by increasing the toroidal field or by the

persisting image currents in the walls (compare to Eq. (3.9)).

-*

-a.

.. . . . . . . . . . . . . . . C.,.-. . . . . . ° . ..- C . '. " .o ° - , '- - - .. '. ' ' °.
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V. FERMI DRIFT

A charged particle moving .roidal magnetic field

drifts with a constant speed in a direction perpendicular to the

toroidal plane. This drift is known as the Fermi (sometimes also

VB) dirft. It is due to the non-constancy of the magnetic field

(necessary for x B - 0) as a function of the radius. This

effect is of second order in (a/R) and was neglected in the previous

discussion. In the Betatron we describe, which has both toroidal

and vertical magnetic fields, and which has strong self-fields,

the Fermi drift motion is weakened as we shall see.

Let us start with the simple case of electron moving along

a toroidal fields. The equations of motion in the transverse

directions are:

x + f (x) - 0z
(5.1)

y -(-(xi -

where

"znzG+ (5.2)
1z TR-x

up to first order in (x/R). R is the radius of the equilibrium

Betatron orbit. Equations (5.1) are non-linear. To use perturb-

ation technique let us first write them in the following way:

x+ Cl".. +z - z R

z Z

. ...... ... . . .... . • .* . -.. . •_... -. -.,, ,'.. o .*.
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--:.' (i) (2) I) (2)
Writing x x + x yi- y ) y +...

where

x(1) + 0z y (11 0
u*(l)

z

v - . ( 5 . 3 )

Y. -- 2 z

with the given initial conditions, and

,.:.2- + Q j 2 (2) XM1) l

z z R z R

(5.4)

(2*(2) * (2) (l)C(1
z z R

(2) (2 0 (2) *,(2) 0 .
with the initial conditions x - y(2) 0

Higher order terms will be neglected, consistent with Eq. (5.2).

The solution to Eq. (5.3) can be written without any loss

of generality as:

,.x (I ) - x0Cos n z t

.(5.5)

y m- sin Qlz t

S...-"-.-

where

- Inserting this into Eq. (5.4) we get the inhomogeneous equa-

tions
.(2) + Qz( 2 )

N ", - z (1 + cos 2 a t )

(2) j2 1 2 (5.6)

x( 2 ) ( 2 ) nz2  sin2 t

..

.o.S . - . •o- - . • °. 5 -* -, . . . , - o - - ..'%*..
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'with initial conditions x (2) - 0 *(2) "(2) . 0
(o) "( 0 ) X(o) "( 0 )

These equations can be separated;

2
(2)) (0 0o2 Xo2 +

2

-(nz - -- 2 )cos 21lt

(5.7)

y (2) + 2 _ - )sin 20t - z 2  y t
z 1,(2 (y2 = -4R 2)in t - nz --.

The solution to the first equation is obtained immediately.

x (2) = a(cos izt-l) + b(cos2n t- 1) (5.8a)
z z

where

~T) 2

a+b - ( Oz Y x °  + z2 Xo) 2

and

b -(Qz =R x°2-0- )/M z2

Thus the second order correction to x is a sun of two simple

oscillations with frequencies Oz and 21., shifted .,(a+b) rela-

tive to the first order gyro center. Substituting Yo " the

shift is 3X 2

lAxl - << x

thus it is negligible.

W The solution to the y(2) equation is also immediate.

7_°.
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(2 -- 2-XtQ (5. 8b)y(2 _(WR o- sin2zt - -- t R

z

Thus, in addition to the small amplitude oscillation, there

appears a drift term with speed

2
ymv C (59)YD B- B R qR(5.)

where p is the electron magnetic moment.

In conclusion, up to second order we found that the electron

rotates around its guiding center which drifts in the -y direction

with constant speed.

Now let us return to the modified Betatron case. For simpli-

city assume s - 1/2. The equations of motion up to second order

are:

x+ 0 + ~2 -x
.. - x:;;" ( 5.10O)

i+ w2y - x
z z R

where

221 2 2
1 Y . (5.10')

The first order solution is given by a combination of the modes:

' fOz TOfz7 + 4wz

-. z (5.11)
2

The general form of the solution is:

.* * * ,
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S I

*W .8. -i i -

W+ i 3W t ~ i+t
Y A .. e +B -i e +0 i +D iW-+C i

U)! W W W

(5.12)

where the constants A, B, C, D, should be determined by the four

initial conditions.

It will be shown that the Fermi drift is important here only

when w < O, thus

- z

uJ+ (5.13)

z x

(5.14)

* ( 2 ) nzj(2) + W2 ( 2 ). jz XR 9 -g(t)

The solution to these equations can be obtained by using the

method called variation of constants.

Given the set of equations

9'-A(t)y + g(t) (5.15)

where A is an x nmatrix, y, and g are n-vectors. Assume 0 is

the fundamental matrix of j-A(t)y. Then the function
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t

u(t) -0(t) 0 (s) g(s) ds (5.16)

is the unique solution of (5.15) with the initial conditions

" u(o) - 0. From (5.12) and (5.16) we obtain this solution:

t

t+ S - g(S) [Csinw+ (t-s) - sinu- (t-s)] ds

w -.0 is

tt

- ( S) ~ ~ gco s ) COS (-s)w (t- s)] ds

.- '. .. + S g, (s) [csi w- (t-) - os + (t ) d

0t 0

The term that gives rise o to the Fermi drift in the limit

W -. 0 is

t

"e'I~i"':"yD2 + 9* -- ( _s) cos w-(t-s) ds (5.18)

-"The other terms are analogous to the oscillating and the
" llsmall shifting terms in (5.8). Moreover, it is only the constant

Spart of gx(s) which contributes to the Fermi drift. It can be

shown by a straightforward calculation that
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(2) 0z (o °2 22) Wz(x 2 22R-+--3Lz ( o + J C x
0 _ yo ) - + Y 0

2 o sin -t

2w (x -y (5.19)

The dominant term in the sum is z (X0 + y2), thus we get

"(2) L sinwt (5.20)

z
i.

The Fermi drift speed is multiplied by cos w-t, and the

electron will drift only a finite distance, Ay, up and down.

2aI 2R (5.21)

If IJyi << a the Fermi drift can be neglected,
2 -2

Close to injection-2 and y -1, thus the above

criterion is

2
2

(ji.) << aR or << 2rnaRr (5.22)Wp P o. c

where n is the electron density and rc is the electron classical radius.

*6) For n - 1  cm-  2 = 0.5, a-5 cm, R-100 cm, inequality (5.22)

is satisfied.

When y is large in2 >2 and the Fermi drift can be still
y

negligible due to the focusing effect of the Betatron field. The

condition for this is (v.±/v 11)
2 << a/R, but since v - v°/y it can

,oI
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be written as:

0 2 2

(va v, «< (a/R) .y, (5.23)

Assuming v1  c and (v°/c)2 = (5.23) yields y2 >> 10.

A problem exists only when JO - 2 This occurs aty
y2 ~ Thi ocurs t y13

(see 2.10). In order to prevent the beam from displacing to the

wall a rapid change of y should take place. However, a simple

calculation shows that y should be changed from - 12 to 14 in

about 30 nsec which is not practical. It turns out, however, that

the surrounding metalic walls help in preventing a catastrophe.

In the preceding discussion, we assumed that the beam is located

at the center of the torus and neglected interaction with the walls.

A displacement of the beam will induce non-negligible electric image

forces. The equations of motion for the beam center can be obtained

by averaging (5-10) over all the electrons. Let us denote the

coordinates of the beam center by X, Y and the single particle

coordinates by x,y:

20
x- - (xi)

(5.24)

2
Y Qz +Wb Y R xk)

where w- 1 02 _(b6 ( 5. 25
b y a b2

r is the beam radius and 2 W
.rb 0b-

The average terms can be calculated immediately.

.
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(xi =((X + 6x) (x+ 6:k)) =XX +

6x is the x coordinate of a single electron relative to the beam

center. (6X2) = 0 because the beam x-dimension does not change

as it drifts.

2

(x0> = + (6Xy + 

where (6x6y) was estimated exactly as (5.20). The equations of

motion of the beam center are:

22" * ( vJ. )

(5.26)

a + W2 Y XX

The constant term on the r.h.s. result in a small shifting

of the beam in the -x direction (outside) unless wb =0. If

Wb - 0 a drift in the y direction with a speed will start.

In comparing (5.26) to (5.10) it is evident that the beam

and the single particle drifts occur at different y(compare

equations 3.10) and 2.10). Thus when the single particle drift

starts the beam is stable and it will only oscillate with a small

amplitude. In order to estimate this single particle drift effect

assume that at t-0 the beam is located at X-Y-0, and it starts

'I

. . . . . . .. . .' , ' d . , . , . . . . . . . . / . . ' * , .-- . .S.. .. - ' - • , - , - , = : : : - _ ' ; :
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2(v. )
drifting with O, Yo - - . Following the same steps as

z
for the single particle case, we find that the beam will oscillate

in the y direction with amplitude:

2 w

~yl where w-I _I b
*Ly1 2Rzlw_ 

whr

*f or

02

Thus, the criterion for the single particle Fermi drift to be

negligible is

Lb << 4 (5.27)

Wb can be estimated if we assume that at the transition

f2 << (rb/a) 2b , then we get

.<< a - R (5.28)

In our standard example, this inequality is obviously satis-

fied.

As y increases further, the beam will become unstable for

wb - 0 andwill quickly drift tro the wall (see Section 3 for other

instabilities which occur at this region).

• ~~~~~~~.. ......................... .... ......... :..._..,..., ...
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vi. RESONANCE INSTABILITIES

In the previous discussion we assumed that all the fields

2 were ideal, i.e., they did not depend upon the coordinate z.

Errors in these fields give rise to new types of phenomena, known

as orbital resonances or parametric instabilities. These in-

stabilities might very easily destroy the beam quality, and it is

our purpose here to give quantitative restrictions on the fields in order

to assure good beam quality. We shall treat the equations of

motion only in the linear approximation. Higher orders are

important only when the beam quality is so poor that they are

of no interest anyway.

In the previous discussion, the fields were expanded around

the equilibrium radius, R, and the expansion parameters were

assumed constant. Now we let them be functions of z. If the

electrons move with constant v these parameters are also periodic

functions of time, with a period T, (T - When T is an
z

integral (sometimes half integral) multiple of the transverse

oscillation time, a resonance occurs. We shall examine some of

the interesting cases and find the restrictions they impose on

the external fields.

We shall start with perturbing the Betatron field B .This

y

necessarily perturbs the equilibrium radius R. Electrons will be

deflected in the x direction. In certain conditions they will

4resonate with the 6 B (z) f ield. We shall derive these conditions

* and determine their influence on the operation of the high current

Betatron. 6 B y(z) induces additional component 6 B (y) 0vx X 0).
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This will, however, add only second order terms to the equations

of motion and thus will be neglected,

Assuming 6 B -0, the Betatron field will be

By 3 ( i+) + 6B (z)

(6.1)

:.--.Bx 0 Ro

and the equations of motion.

-- :" + + Qz +  (ls 02 2

(6.2)

:+ y- z x + Ls y - y- 0Y Z

In discussing (6.2) let us start with the conventional Betatron,

i.e., without toroidal field. We shall see later that the high

current Betatron can be analyzed by a simple generalization. The

equation of motion for the x component is:

2 2i+ iW x-f R E(t) (6.3)Y 0

where n o 'ly n - , .2 _ and it changes slowly in
0,O- 2TT

time. E(t) is periodic in t with period T - and thus can be
0

decomposed in a Fourier series:

. -• . .

. ._. .

[-. .
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.o

- - (6.4

"'['<..-.-.EMt . (anCOS n not + OnSin n f'ot

.n " T E(t) cos n flot dt (6.4)
0

%<,,,; -- E(t) sin nit dt

If w and y are constant the solution to (6.3) with the given

initial conditions is:

x - XCos Wt + 2 sin wt + S ri RE(s) sinw (t-s) ds (6.5)
0W W. 0

0

Substituting (6.4) for E(s), the integral can be calculated

explicitly. A special case is for w- nfl. Then we find for the!-. fiR
integral r [nsinnflot- n cos not ]t + E(non secular terms).

r "' "k*n

Thus the amplitude grows linearly with time.

A conventional Betatron operates below the n-1 resonance.

--. *In the modified Betatron, we start with very large n and go down

._ to the lowest resonances as y increases. It is thus necessary to

estimate the amplitude growth as resonances are crossed.

For large n resonances are crossed so quickly that no growth

(or at least a very small growth) in the amplitude is expected.

When the time Atn, to go from w - (n+J)fl to W - (n-)0 o is com-

parable to T, the time to go around the torus, a real growth in

the amplitude might occur. Atn is given by:

atn - flo (6.6)
w-nfl

0
OS..,
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Te, for simplicity, only the cos n trmoteFurr

~ series and denote

0

W-(W+nfl )/2
0

* then the resonant term will be

2

Xrs- n inW sin wt (6.7)
25

Thus, the amplitude for 6w*o goes like (6w) .This is the

reason that real growth occurs only very close to resonance, and

each resonance can be taken separately. Thus, let us look only on

* the n resonance as it is crossed.

1f -Y << 1, the asymptotic expansion WKB can be employed.
a~ t

r. It can be shown then that the solution to (6.3) is:

x0X 2 E(S)
X ~Cos W t + - sin w t + 0 R --~s sin 'CM-C~)d

CP(t) - w(t') dt' (6.8)

* 0

In the high current Betatron yLU is nearly constant, thus the

*zero order amplitude is constant, while the transverse speed de-

-1
* creases as y .The integral may, however, increase the amplitude

- due to the resonance terms, which can be shown to be
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R o t cos [c(s) - n S 1
0 n0

Xres - 2 '.(s) ds sin qp(t) (6.9)

The last integral can be approximated by:

.-- a" t LU tn

n 2 n

2 -- o dt (6.10)

-. where NO

j whee Nn is the number of turns the electron does 'when it goes from

n)n

.-. t-n0 to t-At n . We assumed that Nn>1. To estimate the integral

.rN 2M?"" C os t 2d 6.0

• (6.10) we note that the function cost is close to 1 for t <1 and

is highly oscillating for t> 1. Thus only the interval ostSl con-

tributes significantly to it. Taking n - no, the integral (6.10)

-" is estimated to be 4 4n and substituting back in (6.9) we get

the change in the amplit~de as we cross the n resonance:

Xres 2/r n n(6.1)

To be specific assume that the error is constant (AB) in an

arc L, then:

• ,x. L (6..12.

'-'n

:i~~i : .. ... ...... -..... .......... ................ .... ,,...............,,...... .......
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To minimize AXrs , ABL has to be smaller, n larger and the

time to cross the resonance smaller.

Now let us return to the modified Betatron case in details;

The equations of motion are:

. + + + 2= 0 2 R E (t)

* :(6.13)

+ - + W2y =

The change of the solution due to the inhomogeneous term is

given by the integrals:

2 t

X(t) E(s) [sin w+(t-s) - sin W-(t-s)J ds

0

02R t (6.14)

y(t) - )E(s) [cosw (t-s) - cosw + (t-s)] ds,

where w are given by Eq. 5.11. Resonances occur for w m
2 0

However, Iw-i = < o thus only w+ resonances have to beiz

considered and especially the low n resonances.

Assuming w()+ 2.1011 sec- 1 (B"o) 1 0 4 Gauss), and

106 se-1
dy/dt 10 sec - , we obtain

•2 IF ld= Ft-7 5.10- << 1 (6.15)
w

and WKB can be employed. The results of the one dimensional case

+ 2are still valid except for an additional factor )(O. Moreover,

the resonance is now observed also in the y direction. In our

-o*.J .
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standard case (Wo/+) 1<< , almost down to the lowest resonance,

thus reducing the growth rates predicted earlier. For example,

if n=2, y - 340, By Q= 5 KGauss and (no /w+ ) 0.25.
y 0

To be specific, let us assume that LB is constant in an arc
0

L, then:

AB ()2 fN-Xres B - n
B0

But

Nn
W+ T 1- (dy\

nl y dt/n n n

Thus we get the total growth in the amplitude:

AB 0 ,n 4

AX 8  ) L C /2T 1 /n4  (6.16)

If dy/dt 106 sec-1 and O - 2.1011 sec-1 AXres 150-B 0 ) L.

Most of this comes from the n-1 resonance which takes a very long

time to cross. Thus it will be useful either to cross the lowest

resonances very fast (by turning off B in t m 10 gsec) or to ex-

tract the beam while n> 1. (e.g., by using the drift motion of the

- beam - see Sections III and V).

Before discussing the general case let us work out another

simple case. Assume that Bz is perturbed along the torus. Accord-

ing to 0 B -0, x 6Bx + 6B * 0 and additional first order

terms should be included in the equations of motion. If

68Bx "yB and if Bx (o,o) -B (o,o) - 0 the equations of
R" . . ... ,y y

I-.-. .**...**%:A -~~*~ %IZ~~~/4... %
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motion are:

X +- + a + y ~+r1-2 -~z 2 z L y

(6.17)
.]:]=.=,.,y .4 3 " Zx z L f + ro y - J "

Neglecting the terms with y/y and using the transformation

x + iy -exp [i/2 S Qz(t')dt'j u(t) (6.18)

0

we get

2U + w (z) u - 0 (6.19)

where

When w is constant the general solution is:

u - Acoswt + Bsinwt - ux + iu (6.20)

." and u - Reu, u - Imu. The four initial conditions are:

-o -x") ,()-yo

u (o) - () - o ; Uy (o) - y(o)

z z(6.21)

S(0) " (0)+-T- y(0) O"y (o - x(o)

Unlike Eqs. (6.17), (6.19) for ux and uy are not coupled, even

when w is not constant.

For the stability analysis it is enough to examine

jui - jx+iyI. The amplitude growth rate is determined by the
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two real equations
-2

" Iu + W(z)uinO

where

- = X, y

The two independent solutions to each of these equations can

-. be written according to Floquet's theorem as:

iI~t
u(t) - e gL (t) (6.22)

where g,(t+T) - g1L(t) and the constant g is either real or pure

imaginary. For w constant it is readily verified that g - 0 wo"

However, when a small perturbation is added to wo, there will

be regions of W for which g will become pure imaginary and one

of the two independent solutions will be unstable.

To show this explicitly let us take the following example,

which can be solved analytically:

Assume

W °(I+Q) 0 < t < a - T/M

wM(t) (6.23)
W" U0  a < t < T

b - T - a, and w(t +T) - w(t). It can be shown that:

cos": T sin w(l. +Q)7 sin (wob) (6.24)1W;.- ostT-coso(T + &Q)j J -I)siL00

As Q 0 the r.h.s. becomes cos woT. Resonances are expected

around woT - nr. If Q * 0 the r.h.s. might be greater than 1

(in absolute value) in some intervals. For these intervals g

.*.a.-
-. * a.

o.,. 'S u •.
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will be imaginary and the orbital amplitude will grow indefinitely

in time.

In order to find the locations and widths of these intervals

define

X - w o ET+aQ] (6.25)

The r.h.s. of Eq. (6.24) can be written as:

2G(r.h.s.) - cosX (l+Gsin w b) - sin2w bsinX (6.26)0 0

where
Q2

2(l+Q)

GS

If IGI << 1 the r.h.s. can be k 1 only when cos X 1 or X nr,

or

n
o 1+Qa/T) (6.27)

(n) eet
Expanding the r.h.s. around Wo  we get:0

2S
r.h.s. - ()n[IG sin 2 W  - sin2(n) 2b (X) (6X) (6.28)

The maximum of this expression is obtained at

6X f-sin2" b

and is 1 + Gsin2 W(n)b to first order in G. The width of the n --

unstable region is

6 wT Isin (n) b( .1T32 jsinw(n) b1 (6.29)

7-

.. 
91
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-or small n resonances (n <<M)

6 (n) Q! (6.30)

Q::o

and the e-folding time, tn, at the maximum growth rate is
_n'

e."tn =. I M T
n TQ n (6.31)

In the high current Betatron w0 changes in time, due to the change

in y or Bz . At the beginning Bz is held constant (-10kG) and y

rises. In our standard example ny - 670 and unless y is very high

n >> 1. For n b M the number of turns that an electron

executes while it crosses the n-th resonance is 9 104  1
n

Thus until n is very low this number is much smaller than 1 and

no real growth is expected. As n becomes of the order

of 1 (n <<M) the number of turns the electron stays in the n-th

4 -2resonance is - 3.104 Q- . Assuming Q - 10 M - 10, and n - 1 this
nil

number is 30. The amplitude growth will be less than 10%. Com-

paring to Eq. (6.16) it is obvious that the same perturbation in

6B is much more destructive.
y

As we pointed out earlier the missing of the half integral

resonances in the last case was due to the high symmetry of the

problem. In order to see the general nature of the motion as Bz

is perturbed assume that a8B /Bx - 0. Thus 66 B /by- - B /aZx y
and the equations of motion become

x + (0, y) -0

(6.32)
?-..-..-0

y
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Integrating the first equation and substituting in the second we

get

x + z y ( 0 ) (o)

1 + (0l y )  =A

(6.33)

+ fz2 y A Oz A(2 z -+ 60z )

where C z is the average along the torus and A is a constant which

depends upon the initial conditions. The second equation is a

nonhomogeneous Hill's equation and it has integral and half inte-

gral resonances. The symmetry in this case is obviously lower than

in the previous case.

Let us now consider the most general perturbations in the

fields for a high current Betatron. These fields may be expanded

around the average equilibrium radius R - v z/0. Using Maxwell's

equations V B - 0, Vx B - 0 and keeping terms only up to first

order in the equations of motion we get:

:- 6Bo 6 /Bo,
1 2_ 2 2 B0  2

x+ y ( -)x = y R + + 6s x
- Bzy Bz y -ft0 0

6 B z B~ -

-~ ~ + ~ [- y.(1c)-. y] f(t)

z z ."

SPA-l
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2 2 2 x B 0

6B 8B
+ XD + j ~- g(t) (6.34)

z L

where we assumed s- 1/2 and:

z z z

B 6B 0R (z +B (z) BB RE + (cy(z)-l) z
0

(6.35)

6B 0 LBz
*BxB EX+ 6B (Z) +(#+ L)B Sy (Z) Zx

0

* a(z) is defined by:

a6B BB
- cr(z) -7---

We wrote the equations of motion so that all the perturba-

tion terms appear on the r.h.s. These terms are, however, not of

the same order. The dominant terms are the first, thus one sus-

pects them to be the most dangerous for the beam quality. If 6B 0/B 0

and 6B X/B xare given, their contribution can be calculated accord-

ing to Eq. (5.17).
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The first terms result in resonances for w+ - nfo 0 (nz > ny)

.- These resonances were considered in detail (see Eqs. (6.1) - (6.16).

The only difference is that here B (z) is perturbed too.

The growth rate at the resonance is determined mainly by the

larger of 6Bx and 6By. Thus to minimize the effect both 6Bx andY 

6B should be decreased.
y

The second largest terms on the r.h.s. of Eqs. (6.34) for

- > f are the 0 terms. We have seen earlier (see Eqs. (6.17) -

(6.31)) that for a - 1/2 these terms give rise to parametric in-
2'.. +f2 ( 2 4I2 n oy12ne e

stabilities with i%/-4 - nflo . For a * 1/2 new re-

-i]" . sonances appear (IwtI - 1/2 nn o 0z " nflo)" These new modes disappea%'
0 z 0

-:. as a -1/2. As w 0 and w+ -f (only Bz is left) we recover the

2.,' 0 " resonances (see Eqs. (6.32,(6.33)).

The other terms(proportional to 8B /2B + 6s) give rise to
0 0.

resonances at w - nfl.

All the instabilities we have just considered start growing

linearly. Comparing the terms of the r.h.s. of Eqs. (6.34) it

is obvious that the first terms are greater by .R/rb than the

second. This makes the first terms much more destructive. The

remaining n terms were investigated carefully and it was found

that they are at least one order of magnitude less dangerous than

the first terms.

4.o

.-

%4..
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DISCUSSION

In this paper we investigated some aspects of the stability

of a High Current Betatron. Specifically, w4 discussed (1) space

charge limits of both single particle and the electron ring, (2)

the Fermi drift, (3) resonance instabilities and (4) beam emitt-

ance.

Two important questions have not been addressed, namely;

(i) stability during initial acceleration (injection, trapping

and initiating acceleration will be discussed separately), (ii)

collecrive modes, such as negative mass and resistive walls.

These modes have been discussed extensively by many authors, yet

there is no conclusive evidence that they might cause a destruc-

tive damage to the High Current Betatron.

Let us summarize the main results:

(1) The space charge limit during injection is increased
compared to a conventional Betatron by (B)/2B

(2) Single particle orbits become unstable (for s *1/2) at

3 ; 4NR2 r c/r 2 This instability, however, is self-stabilized re-

sulting in only a small increase of the beam radius.

(3) The stability of the beam is influenced by the surround-

ing walls. Ideal conducting walls enhance the stability of the

beam relative to the single particle. In the opposite case, when

the image currents decay instantaneously the beam may become un-

stable due to space charge limit as y increases, even for the

s - 1/2 case. This occurs only if the line density is high enough.

2
(4) For s *1/2 the ring becomes unstable at y. 4N(R/a) rc

, d . o - - , - .: n in,, ®, • - -
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(see Eq. (3.10)). In this region the total focusing force on

the beam becomes zero and various phenomena occur which make it

practically impossible to hold the beam in the torus.

(5) The Fermi drift is negligible except in the region

where the total focusing forces on the beam become zero (this is

true even for s 1/2). Then, the beam drifts quickly to the

wall. This drift may be utilized to extract the beam.

(6) The beam emittance changes only slightly during accel-

eration (neglecting instabilities). It is, thus, determined by

the injection method and by the instabilities enhancement.

(7) Errors in the external fields may cause driven as well

as parametric resonances. The first are caused by errors in

B (z) or 9 (z) which are not zero at the equilibrium orbit (mono-y x
* pole-like). These are the most dangerous resonances and put

severe restrictions on those fields unless the beam is extracted

before they develop (n> 1). Parametric resonances (dipole-like),

*caused by errors in B z(z), B 0(z) or s(z) are much less destructive.
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TABLE I: Standard set of parameters

for the high current Betatron (used

throughout this paper).

MaJor radius (R) 100 cm

Minor radius (a) 5 cm

Bo 10 KGauss

11
Line density (N) 2.101 cm

Beam radius (r )1 cm
b

2.101 sec 1

w * 1.4.1010 e

BO/Y 16 Gauss

dy/dt 1 b&e
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Figure Captions

Fig. 1. Schematic design of High Current Betatron with

inductive charging.

Fig. 2. Coordinates for a toroidal electron beam.

Fig. 3. Graphical representation of the stability con-

ditions for the modified Betatron (see Eq. 2.8)).

The transition takes place when Y is increased.
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