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I.  INTRODUCTION 

The study of the motion and stability of a liquid-filled projectile 
requires a knowledge of the internal motion of the liquid which determines the 
moment exerted by the liquid on the projectile. The motion of the spinning 
liquid can be divided into two categories: (1) solid body rotation, the 
condition attained for "large" time, and (2) spin-up, the transient state 
before solid body rotation is attained. Investigations have been directed 
along two lines: (1) the determination of the frequencies and decay rates of 
inertial oscillations, and (2) prediction of the moment on a spinning liquid- 
filled cylinder executing angular motion. These are referred to as the 
"eigenvalue problem" and "moment problem," respectively. 

For solid body rotation rational theories have been developed and applied 
both to the eigenvalue problem1 and to the moment problem with restrictive 
conditions.2*3,lf The works of Stewartson5 and Wedemeyer6 form the basis of 
these efforts. Clearly, to include the transient spin-up effects requires a 
non-trivial extension of those works. Eigenfrequencies and decay rates have 
been obtained for spin-up;7»8 the solutions did not satisfy the no-slip 
condition at the endwalls. In Reference 7 it was shown that calculated 
frequencies compared with experimental results to within a few percent, but 
decay rates could be off by as much as a factor of two. If an endwall cor- 
rection for solid body rotation is applied during spin-up (obviously an ad hoc 
correction) the prediction of decay rate is improved for late time but not 

2« C. W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid 
in a Rotating Cylinder: Part I. Solid Body Rotation," BRL Technical 
Report  ARBRL-TR-02081, June  1978.     (AD AOS77S9) 

2. N. Gerber, R. Sedney, and J. M. Bartos, "Pressure Moment on a Liquid- 
Filled Projectile: Solid Body Rotation," BRL Technical Report ARBRL-TR- 
02422, October  1982.     (AD  A120567) 

3. C. H. Murphy, "Angular Motion of a Spinning Projectile with a Viscous 
Liquid Pay load," BRL Memorandum Report  ARBRL-MR-03194,  August  1982. 
(AD Al 18676)     (See also Journal of Guidance,  Control,  and Dynamics,   Vol.   6, 
July-Auaust 1983,  pp.   280-286.) 

4.     N.    Gerber   and   R.    Sedney,    "Moment    on   a   Liquid-Filled   Spinning   and 
Nutating  Projectile:   Solid  Body   Rotation,"  BRL  Technical   Report   ARBRL- 
TR-02470, February  1983.     (AD A12S332) 

5. K. Stewartson, "On the Stability of a Spinning Top Containing Liquid," 
Journal of Fluid Mechanics, Vol.   5, Part 4,  1959. 

6. E. H. Wedemeyer, "Viscous Corrections to Stewartson*s Stability 
Criterion," BRL Report No.   12873 June  1966.     (AD 489687) 

7. R. Sedney and N. Gerber, "Oscillations of a Liquid in a Rotating 
Cylinder: Part II. Spin-Up," BRL Technical Report ARBRL-TR-02489, May 
1983.     (AD A129094) 

8. C. H. Murphy, "Moment Induced by Liquid Payload During Spin-Up Without a 
Critical Layer," BRL Report in preparation. Also AIAA 22nd Aerospace 
Sciences Meeting, Reno, Nevada, January 1984, AIAA Paper No.  84-0229. 



early time. In this paper we calculate the contribution of the pressure to 
the moment during spin-up of a liquid that fills a right circular cylinder 
undergoing coning motion at constant frequency and constant yaw angle. The 
contribution of the wall shear will be treated in a later report. 

Two coordinate systems will be used.  The first is an inertial system; 
i.e., the unyawed reference frame shown in Figure 1, with rectangular 

2 
coordinates (x, y, z) and cylindrical coordinates (r, e, x), where r = (y + 
2 1/2 

z )   and 0= arctan (z/y).  The second reference frame will be defined 
later. 

Here, as in previous work» ■ ■ we assume the yaw to be sufficiently 
small so that a linearized analysis is applicable; i.e., the flow may be 
considered the sum of a basic unperturbed flow and a perturbation flow. Also 
we specify that the perturbed flow variables have the form* 

J[(l - 1£) T }t - 8] fn (r> Kh (1.1) 

where t is time, t and e are non-dimensional #nutational frequency and yaw 
growth rate.  The t is non-dimensional ized by J, the spin of trie cylinder; r 
and x are non-dimensionalized by a, the cross-sectional radius of the 
cylinder. This form of solution renders the problem time-independent (aside 
from the quasi-steady spin-up perturbation assumption, to be discussed later); 
and it implies that there are no transients present between the angular motion 
of the cylinder and the corresponding response of the flow. One would not 
expect this assumption to be valid early in the spin-up history of the 
rotating liquid, but at least it should be applicable when solid body rotation 
has been attained. Justification for this assumption will depend on 
comparison of the results with those of measurements. 

The second coordinate system used to describe the projectile, Figure 1, 

is the x, y, z non-spinning system which has the x -axis along the projectile 

axis of symmetry; the y and z axes are omitted for clarity. The x = 0 and 

x = 0 values are located at the midplanes of the unyawed and yawed cylinders, 

respectively.  The x -axis is nutating about the x-axis with the angle K^(t); 

the pivot point lies at the midplane. The components of the projection in the 

y, z plane of a unit vector lying on the x -axis are denoted by nY£ and nZE, 

respectively. It is convenient to combine the two components of yaw into a 
single complex variable 

I  H -(nyE + i nZE). (1.2) 

The nomenclature here is that prescribed in Reference 3 and used in References 
2 and 4. 

*Defintion8 of quantities are given in the LIST OF SYMBOLS Section. 
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The projectile motion is specified as: 

I = (Koe
eT^) e1 (T*t} = Kxeh  = K/ f*\ (1.3) 

where 

cxjt Kl = K0
e   •    *1 = T<t>t'    f s (1 - 1«) T . (1.4) 

Here K0 is the magnitude of the yaw at time t = 0; the yaw grows when ex > 0. 

Also ^ is the angular orientation of the x-axis in the x, y, z system as 

shown in Figure 1. 

The specified projectile motion given in Eq. (1.3) was found in gyroscope 
experiments to be applicable to a portion of the coning motion history in 
which the fluid was practically spun up.2,1+ However, this simple motion is 
not expected to occur very early in flight while the spin-up process is domi- 
nating the flow; thus, our model will not simulate the free-flight situation. 
We turn, instead, to forced coning motion and fix T and t as input; in par- 
ticular, we choose e = 0, implying no yaw growth. Emphasis will be placed on 
investigating resonances between the angular motion and free oscillations of 
the liquid. 

After the t, o portion of the solution in Eq. (1.1) is factored out, the 
problem is posed in the r, x plane.  We attempt, as in References 2 and 4, to 
solve it by a modal analysis, i.e., by separation of variables. For solid- 
body rotation, we succeeded in obtaining a rational solution;2 this solution 
required a corrected endwall boundary condition for axial velocity in order 
for it to satisfy the no-slip condition. Because of the simple basic flow 
(fluid angular velocity about the axis = 5> everywhere) the corrected boundary 
condition is a simple one, containing a complex constant, 5c, proportional to 

-1/2 Re   , where 9 
Re = a<>/v (1.5) 

is the Reynolds number and v is the kinematic viscosity of the liquid. 

In the present problem the basic flow is the spin-up flow, for which a 
corrected endwall condition is not available. The Ekman layers (see Reference 
7) should be included in the basic flow but are not in the present analysis. 
The effect that including them would have on a separation-of-variables ap- 
proach is not known at this time. 

Murphy8 has proposed a method of calculating the liquid moment which has 
the intent of bypassing the difficulty; namely, to apply an endwall boundary 
condition on the axial flow identical in form to that for solid body rotation, 
with the difference that the Re in the expression for the 6c previously men- 
tioned is replaced by an "effective Reynolds number," Re^.  This Reynolds 

number is obtained by averaging over a meridional plane some dynamic quantity 
of the basic spin-up flow which varies with r, e.g., azimuthal velocity or 
angular momentum.  In this model the "corrected" endwall boundary condition 
for axial flow is fitted in a least squares sense. 



This procedure is not a rational approximation, defined as one in which 
the next term in the approximation (or the error) can be calculated in 
principle or estimated in an order of magnitude sense. Therefore, it must be 
considered an ad hoc approximation. The solution satisfies an incorrect 
boundary condition approximately; there is no way of estimating the error in 
the moments. Obviously, the approximation is more valid for small departures 
from solid body rotation. This ad hoc procedure forms the basis of the 
present work. 

II.  FLOW PROBLEM 

A.  Flow Equations and Boundary Conditions. 

The equations are stated and solved in the inertial frame. The flow is 
expressed as the sum of a basic axisymmetric spin-up flow and a perturbation:* 

u = U (r.x,f) - K0 u (r,e,x,f) (2.1a) 

v = V (r,x,t) - K0 v (r,e,x,t) (2.1b) 

w = W (r,x,£) - Ko w (r,e,x,t) (2.1c) 

p = P (r,x,t) - Ko p (r,o,x,t), (2.Id) 

where t = Jt.  Here u, v, w are velocity components in the radial, azimuthal, 
* * * 

and axial directions, respectively; U, V, W are the corresponding velocity 
components of the basic flow which is a solution of the axisymmetric Navier- 

•  * 
Stokes equations.  The velocity components of the perturbed flow are u, v, 

and w. The quantity p is pressure, P is the pressure of the basic flow, and 
* 
p is the perturbation pressure.  Velocity is non-dimensionalized by a<f> and 

pressure by pa2J2, where p is the density of the liquid. 

The variables of Eq. (2.1) are substituted into the 3-D Navier-Stokes 
equations (see, e.g., Eqs. (3.33) of Reference 9) and only zeroth and first 
order terms in KQ are retained. At this point we make several simplifications 
to render the problem tractable; these steps are described in detail in 
Sections II and III of Reference 7.  First the basic flow is approximated by 

4 The  negative  signs  in Eq.   (2)  were  employed  to comply with the nomenclature 
of Reference 3. 

9.        H.   Schlichting,   Boundary  Layer Theory,  McGraw-Hill  Book  Co*,   New York, 
NY,   1960. 

10 
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the Wedemeyer model for the spin-up flow (introduced in Reference 10 and 
discussed further in Reference 11). In this model the flow field is divided 
into two regions: (1) the boundary layers adjacent to the endwalls, called the 
"Ekman layers," and (2) the remainder of the flow field called the "core," in 
which the flow variables are designated U, V, W, P. (The need for an addi- 
tional boundary layer at the sidewall is discussed in Reference 11.) These 
satisfy the following set of equations (where subscripts denote partial 
differentiation): 

V£ + U (Vf + V/r) = Re"1 [Vpr ♦ (V/r)p] (2.2a) 

U = V = P = 0      ("Columnar" Flow) (2.2b) 
A      A      A 

U = fn (r,V) (2.2c) 

W = -(x/r) (rU)p     (Continuity Equation) (2.2d) 

Pr ■ V2/r (2.2e) 

Eq. (2.2b) indicates that V = V (r, l)\  Eq. (2.2c) is the "Ekman compatibility 
condition" given by Eqs. (2.8) and (2.9) of Reference 7: 

U = < (a/c) Re" '  (V-r) for laminar Ekman layer 

U = -0.035 (a/c) Re"1/5 (r-V)8/5    for turbulent Ekman layer; 

K = 0.5 will be used here. Boundary conditions for an impulsive start are 

V (r ■ 0) = 0,     V (r = 1) = 1,     V (t = 0) = 0.        (2.3) 

The following linearized equations are obtained to describe viscous 
perturbations in the core flow but not the Ekman layers, according to the 
discussion preceding Eqs. (3.4) in Reference 7: 

10. E. H. Wedemeyer, "The Unsteady Flow Within a Spinning Cylinder," BRL 
Report No. 1225, October 1963. (AD 431846) (See also Journal of Fluid 
Mechanics, Vol.   20, Part 3,   1964, pp.   383-399.) 

11. R.   Sedney   and   V. Gerber,   "Viscous   Effects   in   the   Wedemeyer  Model   of 
Spin-Up From Rest,"    BRL Technical Report    ARBRL-TR-02493,    June  1983. 
(AD  A129506). 

11 



U£ ♦ (V/r) u0 - 2 V v/r = -pp + Re'
1 (v2u - u/r2 - 2 vQ/r

2)          (2.4a) 

5j ♦ (Vf ♦ V/r) u + (V/r) vQ = -pQ/r * Re"
1 (v2v - v/r2 ♦ 2uQ/r2)     (2.4b) 

w^ + (V/r) wQ = -px + Re"
1 V2w (2.4c) 

(ru)r ♦ v0 + r 5x = 0, (2.4d) 

where 

v2 = 32/3r2 + (1/r) 3/3r + (1/r2) 32/392 + 32/3x2. 

The reasons that U and W do not appear in Eq. (2.4) are discussed in Refer- 
ence 7. 

The boundary conditions are: no flow through the bounding walls and no 
slip along them; i.e., 

u (r = 1) = w (r = 1) = 0,      v (r = 1) = 1     (side)     (2.5a) 

u (x = ±A) = w (x = ±A) =0,     v (x = ±A) = r     (end)      (2.5b) 

where u, v, w are non-dimensional cylindrical velocity components in the 

r, 6, x system; A is the half-height, c, of the cylinder divided by a. 

The boundary conditions must be transformed to the variables used in Eq. 
(2.4); a discussion of the transformations is given in Appendix A. The 
resulting non-homogeneous sidewall conditions are 

* 
u (r = 1) = x Real [-i (1-T) exp {i (^t - e)}] + 0 (K_) (2.6a) 

o ■ 

v  (r = 1)  = -x Real  [{Vp  (r=l)  -T) exp  (1   (TJt - 9)}] ♦ 0 (KQ) (2.6b) 

w  (r = 1)  =        Real   [i   (1-T)  exp   {1   (TJt -  0)}] + 0  (KQ)   . (2.6c) 

The complex form is introduced here for later convenience. 
• * * 

The endwall boundary conditions for u, v, w cannot be stated precisely. 
The U, V, and W are valid only in the core, and the Ekman layer flow which 
should be included in the unperturbed solution is not available.   This 

12 



difficulty is responsible for the introduction of the ad hoc endwall boundary 
condition stated in Section I. The motion of the cylinder is expected 
nevertheless, to determine the t, o dependence of boundary conditions so that 

u (x = ±A) = Real {fn (±A,r) exp [i (xt - e)]}, (2.7) 

with similar expressions for v (x = tA) and w (x = ±A). Axial boundary 
conditions will be treated later. 

One further approximation is needed to permit application of a modal 
analysis, namely, the "quasi-steady" condition discussed in Section III of 
Reference 7. Generally, V does not change appreciably over the time scale of 
the perturbations; thus £ can be regarded as a parameter in the solution of 
Eq. (2.4). A possible exception to this might exist for I ■> 0 and an 
impulsive start. 

B.  Modal Analysis: Separated Variable Solutions 

1. Equations and Boundary Conditions for r, x Variation. It is assumed 
that the perturbation can be expressed as a superposition of modes, or a 
triple Fourier expansion in 9, x, and t with coefficients functions of r. It 
is convenient to use complex notation and express the perturbation as 

u = Real (u ) = Real [u (r, x; I) exp (i (T! - e)}] (2.8a) 

J = Real (wQ) = Real [v (r, x; I) exp {i (T! - 9)}] (2.8b) 

w = Real (w ) = Real [w (r, x; I) exp {i (xl - 9)}] (2.8c) 

p = Real (p ) = Real [p (r, x; t) exp {i (it - 9)}] (2.8d) 

*  *  * 
where u, v, w, and p are complex functions. The functions u , v , w , and p 

are clearly also solutions of Eq. (2.4).  The t, 9 portion of the boundary 
conditions in Eqs. (2.6) and (2.7) are satisfied by Eq. (2.8). Substituting 
*  *  *  * 
uc, vc, wc, pc from Eq. (2.8) into Eq. (2.4) yields 

rup+u-i   v+rwx=0 (2.9a) 

i   (t-V/r)u -  (2V/r)v ■ -p^ +  (1/Re)  [u^ + u^/r - 2u/r2 + uxx + 2iv/r2]  (2.9b) 

13 



1(T-V/r)v ♦ (Vr+ V/r)  u = -ip_/r ♦ (1/Re)  [v^* v^r - 

2v/r2 + vxx - 2iu/r2] 

(2.9c) 

i(i-V/r)w = -£x + (1/Re) [w^* wp/r - w/r2 + w_xx]. (2.9d) 

Boundary conditions at the axis are 

u (r = 0) - iv (r = 0) = w (r = 0) = p_ (r = 0) = 0. (2.10) 

These are kinematic conditions, stated in Eq. (4.3) of Reference 7, for m = 1. 
Boundary conditions at the sidewall are 

ujr = 1) = -i(i . T)x (2.11a) 

v (r = 1) = -{Vr(r = 1) -x}x (2.11b) 

w (r = 1) = i(l - r). (2.11c) 

At this point we invoke the ad hoc endwall boundary condition, namely 

w + 6c£ 3w/3x = i (1 - T) r    at    x = ±A, (2.12) 

with the left-hand side identical in form to that of Eq. (29) of Reference 2; 
namely, the corrected homogeneous endwall boundary condition. The right-hand 
side is the same as that of the unconnected inhomogeneous boundary condition 
of Eq. (A.10). The <5Cr is found as follows: 

c£ = 2"1/2 Re£
1/2 (1 - i) (3 - T)

1/2 (2.13a) 

f^ = 2"1/2 ReE
1/2 (1 + i) (1 + T)

1/2 (2.13b) 

*E -[nt 0 - rhy -T% 0 + rb)] ■ <2-13c> 
14 



with the restriction (3 - T) > 0.  The "effective" Reynolds number used here 
is given by 

Re£(t) ■ 
1 

V (r;t) dr 2-, (2.14) 

For solid body rotation, with V = r, the bracketed term is equal to unity and 
ReE = Re.  While the fluid is spinning up, V < r, and ReE < Re.  As an 

example, ReE/Re = 0.76 at I  = 1000 for the case Re = 39772, c/a = 3.12. 

2. Form of Solution. As in Section III-B of Reference 2, we stipulate 
that the solution be a TTnear combination of separated variable solutions, 
i .e., 

u = 2 Ru(r) Xu(x) 

v - I Rv(r) Xv(x) 

w ■ Z  Rw(r) Xw(x) 

£= £ RD(r) XD(x). 

(2.15) 

Substi 
the R' 

ituting these into Eq. (2.9) yields ordinary differential equations for 
's and X's. The X's must satisfy the harmonic equation equati 

d2X/dx2 + x2 X = 0, (2.16) 

where x can be zero or finite.  When x is finite, it is determined from an 
axial eigenvalue problem and labeled with the index k. 

In this work we choose to express the solution as 

KF . NJ 
u_ = u (r) x + z     u,(r) sin x.x + z     d. ü.(r) sin y.: 

o      k = 1 K      K   j = 1 J J      J 
(2.17a) 

v ■ vn(r) x + z      v. (r) sin x^x +  J: d. v. (r) sin u,x o      k = 1 k       K   j = i J J       J 
(2.17b) 

w ■ wn(r) -  £  w.(r) cos x. x -Ed. w.(r) cos u.x 
o    k = 1 K      K   j = 1 J  J      J 

(2.17c) 

£ ■ Pn(r) x +  s  p. (r) sin x. x + z     d. p.(r) sin u.x, 
o      k = 1 k      K   j = 1 J J      J 

(2.17d) 

15 



where the x, *s form a denumerable set of solutions to the functional equation 

(See Eq.   (31) of Reference 2) 

cos  XkA + xk  5cE sin  xkA = 0. (2.18) 

For  |6cE|/A«l, 

X|c  = (kir)/[2  (A -  6cE)]. k odd (2.19) 

Thus, at the endwall each wk(r) cos xkx term in Eq. (2.17c) satisfies Eq. 

(2.12) with the right-hand side replaced by zero. 

The y^'s are eigenvalues of the radial differential equations resulting 

from separation of variables, with homogeneous sidewall boundary conditions: 

Uj (r « 1) - vj (r « 1) ■ 5j(r = 1) = o.        (2.20) 

The parameter T enters here in the same way as the unknown eigenvalue C in 
Reference 7.  In the present situation x is known and p. is the eigenvalue to 

J 

be determined.  The dj's are constants to be determined so as to minimize the 

error in satisfying the endwall boundary condition, Eq. (2.12). The homogene- 
ous boundary conditions, Eqs. (2.10) and (2.20), do not produce unique eigen- 

functions 5., v., w., and p.; these are known to within a common constant. 

The functional values obtained from the integration are a result of the values 
assigned the non-homogeneous quantities at r = 0. The subsequent determina- 
tion of the dj's, however, renders the flow solution unique. 

A A A A 

The uQ, vQ, wQ, p0, corresponding to A = 0, satisfy the sidewall condi- 

tions (the same as for the particular solution in Reference 2) 

u0 (r = 1) = -i (1-T)
2
/(1+T) (2.21a) 

v0 (r = 1) = -[(1-T)2/(1+T)] (2.21b) 

wo (r = 1) = i (1-T). (2.21c) 

This set of conditions was chosen so that w satisfied the total boundary 

condition at r = 1, Eq. (2.11c); better conditions on u (1) and v (1) might be 

selected, and alternate choices are being considered.  The sidewall boundary 
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conditions for second terms of the solution, Eq. (2.17), are  obtained by 
A A 

subtracting the expressions of Eq. (2.21) (times x for u and vQ) from those 

of Eq. (2.11): 

£ uk (r = 1) sin xRx ■ -i [2t (l-x)/(l+x)] x (2.22a) 

t  vk (r = 1) sin A^x = [{(l-x)2/(l+x)} - Vp (r = 1) ♦ x] x     (2.22b) 

Z wk (r = 1) cos xkx = 0. (2.22c) 

For solid body rotation the dj's vanish and the remainder of the solution, Eq. 

(2.17), is the same as that in Reference 2. 

3.  Radial Variation Problem. When each individual term of Eq. (2.17) 
is substituted into tq. (Z.y), a system of linear ordinary equations in r of 
the following form, omitting subscripts k on the dependent variables, is 
obtained, (where ' sd/dr): 

A A A A 

r u' + u - iv + Ak rw = 0 (2.23a) 

Re"1 u" ♦ (Re r)"1 u' + [i (V/r - x) - Re'1 (Z/rl  + A^)] u + 

[2 V/r ♦ 21 (Re r2)"1] v = p' 

Re"1 v" ♦ (Re r)"1 v' ♦ [i (V/r - T) -Re"
1 (2/r2 + A 2)] v - 

(2.23b) 

(2.23c) 

[V/r + Vp + 2i (Re r2)"1] u = -1 p/r 

Re"1 w" + (Re r)"1 w' + [i (V/r - x) - Re"1 (1/r2 ♦ Ak
2)] w = 

(2.23d) 

"\ P + ep P- 
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The quantity ep is equal to 1 when xk = 0; otherwise, it is zero.  The same 

equations apply to ü"., v., w., p., with A., replaced by u,-- 
J  J  J  J      * J 

These equations are converted to canonical form in order to be integrated 
numerically; i.e., 

y^ E dy^dr = fi (r, y1§ y2,...y6),  i = 1,2,....6, 

where 

y^  = u (or u) y4 = w (or w) 

y2 = u - iv (or u - iv)        y5 = w* (or w')   \ (2.24) 

y3 ■ v' (or v') y6 ■ p (or p). 

After the required manipulations are performed, the following sixth order 
A       A       A       A 

system is obtained for the u, v, w, p case: 

*l    = (y2/r) " \  y4 (2'25a) 

y2' 
= " (*2/r) "1 y3 * xk y4 (2.25b) 

y3'   = [Re  (V/r + Vp)  + 2i/r2] y, H   (B t 1/r2)  (y2 - y^  - 

(2.25c) 
y3/r - 1   (Re/r) yfi 

y4'  = y5 (2.25d) 

y5'  -  B y4 -   y5/r - xk Re y6 ♦ e   Re y6 (2.25e) 

y6'  --Byj/Re ♦  (1/Re)  [2 Re V/r + i/r2]  (y? - yj  ♦ 

1 y3/(r Re)  - xk y5/Re, 

18 
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where 

B s (1/r2) + ^ H Re [T - V/r], (2.26) 

The X^'s are replaced by p.'s for the u, v, w, p case. 

4. Boundary Conditions for Radial Equations. There are three boundary 
conditions at r = 0 and three at r = 1. As a consequence of Eqs. (2.10), 
(2.17), and (2.24), conditions at r = 0 are 

y2k(0) = y4k(0) - y6k(0) = o 

y2j(0) =y4j(0) =y6j(0) = 0. 

(2.27) 

In Eq. (2.22) the function x can be expanded in the series 

x ■ £ bk sin x^x, 

where the coefficients, given by Eq. (40) in Reference 2, are 

(2.28) 

bk  " 

(2/\2)  [1 ♦  (\   6cE)
2] sin  xk A 

A  [1   +  (Xk   6CE)
2]  -   6CE 

(2.29) 

These are the coefficients in a series of biorthogonal functions determined by 
solving a non-self-adjoint system, Eq. (2.16). By applying Eqs. (2.21), 
(2.22), (2.24), and (2.29), we obtain the following sidewall conditions for 

fe      4%      A ä 

the uk, v^, wk, pk case: 

ylk(D = -1 (l-£p) [2T (1-T)/(1 + T)] bk -i e [(1-T)
Z
/(1+T)] (2.30a) 

y2k(l) ■ -i (1-Sp) [1 - Vr(l)] bk 

y4k(l) ■ i ep (1-x) 

(2.30b) 

(2.30c) 

For the eigenvalue problem solutions, ü., v., w-, p. case, 
j  j  j  j 
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ylj(1) = y2j(1) = y4j(1) = °- (2'30d) 

5.  Endwall Boundary Condition. When we substitute the ^ solution, Eq. 
(2.17c) evaluated äT x = ± A, into Eq. (2.12) and apply Eq. (2.18) to the 

w. cos u terms, we arrive at the following endwall boundary condition: 

NJ 
F (r, ±A) = f (r) -  E  d. w.(r) (cos u- A + 6cF y. sin M. A) = 0,   (2.31) 

.j = ijj       J     »- J    J 

where 

* (r) = wQ(r) - i (1-x) r « ^ + i ^ (2.32) 

F = FR + i Fj. (2.33) 
and 

As discussed in Section I, Eq. (2.31) is not satisfied exactly; instead we 
determine a set of dj's which will minimize 

g(d1§ <J2,...dNJ) -: (  (FR
2 + Fj2) dr. (2.34) 

A derivation of the formulas for the dj's is given in Appendix B. Thus, the 

ad hoc endwall boundary condition is satisfied approximately, to within the 
accuracy of a least squares fit. An estimate of the relative error is given 
by the quantity 

Er ■ [g/ [  UR
2 + ^2) dr]1/2. (2.35) 

0 

Error estimates have been computed, but we defer the presentation of results 
to a later report. 

C.  Operational Procedures. 

The procedure for solving the radial ordinary differential equations, Eq. 
(2.25), is discussed in detail in Reference 1 for solid-body rotation and in 
Reference 7 for spin-up.      Numerical integration must begin at a small 
finite value, r = eQ, where three independent power-series solutions are 

evaluated. Due to the stiffness of the equations at large Re, the Runge-Kutta 
integration must be combined with orthonormalization of the three solutions in 
order to maintain their linear independence and prevent runaway amplitude 
growth. Both homogeneous and inhomogeneous sidewall conditions are 
encountered in this study. Reference 1 provides details of the application of 
the homogeneous conditions, and Reference 2 describes the treatment of the 
non-homogeneous conditions. The iterative procedure for computing eigenvalues 
is described in Section V of Reference 7. 
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Because the calculation of the p. eigenvalues forms part of our opera- 
%J 

tions, it is most feasible to begin the determination of a spin-up moment 
history at a very large time, near solid body rotation, where initial guesses 
for the eigenvalues are readily available. These are found in tables (see, 
e.g., p. 31 of Reference 3). The operation procedes step-by-step from larger 
to smaller values of time, with initial guesses for the eigenvalues at each 
time step obtained from those at previous times. 

For large t the p.'s can be ordered (j = 1,2, etc) either by the real 
J 

parts of the p-'s or the number of zeros in their corresponding eigenfunc- 
J 

tions.  The mode is then identified by the value of j. However, as t becomes 
small, some of the Real (\i-)  vs t curves often intersect, rendering the ordering 

by Real (n.) inapplicable.  At these times identification of the modes can 

become ambiguous. What frequently happens is that the iterative process 
converges to the solution of a mode other than the one sought because the 
initial estimate was not close enough to the desired eigenvalue. Opera- 
tionally, this can lead to a particular mode appearing more than once in the 
expansion z d. u. (r) sin |j. x, etc (Eq. 2.17a)).  We can remove one of the 

J j       J 

duplicate terms from the series, but we are then left with fewer functions for 
approximating the endwall boundary condition. As the calculation proceeds for 
decreasing time, the number of eigenfunctions decreases by one.  The error, 
Er, then increases. 

Another possible source of difficulty at early time occurs when 
M r T- V/r = 0, i.e., when the nutational frequency equals the frequency of 
the circumferential motion of the fluid, indicating a resonance; see Refer- 
ences 7 and 12. The value of r for which M vanishes is called the "critical 
level" and is denoted by rc; the neighboring region is called the "critical 

layer." The critical level begins at r = 1 for t = 0 and moves inward with in- 
creasing time until it reaches the axis at a finite time and then disappears. 
When inviscid perturbations are treated for constant yaw, as in Reference 8, 
the flow equations become singular at r = rc. The critical layer is discussed 

in References 7 and 12 for viscous perturbations. Figure 4c in Reference 7 
illustrates in this situation that high-frequency large amplitude oscillations 
in the flow solution occur about r = rc under certain conditions; the numeri- 

cal process described in Reference 7 is able to compute these oscillations. 
The number of zeros becomes large and identification of a mode is again made 
ambiguous. 

III.  LIQUID PRESSURE MOMENT 

A.  Pressure and Moment Formulas. 

According to Eqs. (2.Id) and (2.8d) the pressure is 

12. R. Sedney and N. Gerber, "Numerical Study of the Critical Layer in a 
Rotating Fluid," AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, 
January  1984,  AIAA Paper No.  84-0342. 
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p = P . Ko [-gj sin (tjt-e) + pR cos (iJt-G)] + 0 (KQ
2
) (3.1) 

where 

B (r,x) = eR + i pr (3.2) 

Omitting the despin torque, one can express the moment produced by the liquid 
on the spinning and nutating shell as the complex quantity M, ~vp + i M/i7\p« 

A complex moment coefficient, C/,M\P, is introduced as in Eqs. (5) and (6) of 
Reference 2: 

M(LY)P + i M(LZ)P = (2"Pa2c) *2i2 t c(LM)p Kl e 

C(LM)P =: C(LSM)P + 1 C(LIM)P# 

ii}t 

(3.3) 

The Cn$M)p and Cn jM\p represent the moments acting to change the yaw angle 

and the nutation rate, respectively. 

The moment will be evaluated about the center of gravity of the projec- 

tile in the x, y, z system. Details need be shown for only one component, 
say Mn f\p» because of axisymmetry in the transverse motion. Let 

M(LZ)P = M(LZS)P * M(LZT)P + M(LZB)P- (3.4) 

where the three terms on the right-hand side denote the moments on the side, 
top, and bottom walls, respectively; as given in Eq. (53) of Reference 2 they 
are 

M 
(LZS)P ■   (pa5*2) 

f . A     f 2TT 

-A   J 0 

p  (r = 1)  x cos o de dx (3.5a) 

M(LZ~T)P =  -(<*5*2) 

1      r27T 

LJo Jo 
p  (x = A)   r2 cos  0 dö dr (3.5b) 

1     r27T 

M(LZB)P    =   (pd5*2) i! J 0   ■'0 

-2 
p  (x =  -A)  r    cos  o dö dr (3.5c) 
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The non-dimensional cylinder radius occurring in the integrand of Eq. (3.5a) 
is equal to 1. 

B.  Sidewall Moment. 

The pressure must be evaluated at r = 1. The bracketed term in Eq. (3.1) 
may be evaluated at r = 1 without changing the order of the approximation. 
According to Eq. (A4) 

P (r = 1) = P (r = 1) - KQX cos (ift-e) (DP/ar)p = y 

P (r = 1) is a constant, designated by Pj.  From Eq. (2.2e), (3P/3r)p m ^  ■ 
(V2/r)r = ! = 1. Hence 

P (r ■ 1) = P (r ■ 1) - KQ x cos (ijt-e). (3.6) 

Then, from Eqs. (2.Id), (2.8d), and (3.6), with P replacing K 

P (r = 1) = pi - K0 t[x ♦ eR (l,x)] cos (xjt-e) - 

(3.7) 

Pj (l,x) sin (ijt-o)} + 0 (KQ
2
). 

When Eq. (3.7) is substituted into Eq. (3.5a), the P^ term makes no 

contribution to the integral, leaving only KQ terms; thus r, e, x can be 

replaced by r, 0, x without changing the order of approximation.  Then Eq. 
(3.5a) reduces to 

M(LZS)P/(Ko P*5*2) = "[2lT Rea1 (IS)] Sin T^ ' 

[2TT Imag (Ic)] cos  ijt 

where 

(3.8) 

Is = i A3/3 H    x Q (l,x) dx. (3.9) 
3 n 

Upon substitution of Eq. (2.17d), Eq. (3.9) becomes 
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Ic ■ - A3 [p.(D  ♦ 1] + 1     E        Pk(l)[— sin  x A - i- A cos  A. A] + 
b     3 ° k = 1    K        A2 \ 

(3.10) 

NJ 1 . 
i Z      d. p .(1) [-!— sin u.A - — A cos y.A]. 

j = i J J     ^      J    PJ 

C.  Endwall Moments. 

The term P(r) of Eq. (3.1) must be evaluated as a function of r, e at x = 
A in the moment integral of Eq. (3.5b) for the top endwall. As demonstrated 
in Appendix A, Eq. (A7), 

P(r) = P(r) - Ko A (V2/r) cos (xjt-e) + 0 (KQ
2).       (3.11) 

The P(r) term makes no contribution to the integral, leaving only terms of 

0(Ko); then the r, ö, x may be replaced by r, 8, x without changing the order 

of approximation. The remaining part of the pressure is an odd function of x; 

thus, the total endwall moment, M(Lznp ~  M(LZT)P * M(LZB)P = 2 M(LZT)P* 

Eqs. (3.1) and (3.11) are substituted into Eq. (3.5b) to yield 

M(L2E)p/(pa5J2) ■ 2* KQ {[Imag (IE)] cos T{t ♦ 

[Real (IP)] sin T{t} 
(3.12) 

where      , 

IE = i I  r2 [g (r, x = A) + A V2/r] dr. (3.13) 

Jo 
Substituting Eq. (2.17d) into Eq. (3.13) gives 

1 

IE = \  r2 [A po (r) + z      pk (r) sin Ak A + 

\ k = l 

NJ 
Z        d. p. (r) sin p. A + i A V2/r] dr. 

j = 1  J J        J 

(3.14) 
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(3.15) 

D.  Moment Coefficients. 

The moments of Eqs. (3.8) and (3.12) have the form 

M(LZS)P = "Ko (M1S sin T^ + M2S cos T*t^ (pa5*2) 

M(LZE)P = ~Ko (M1E sin T*t + M2E cos T^ (Pa5*2)» 

where 

M1S = 2IT Real (I$),        M2$ = 2* Imag (I$) 

M1E = -2i Real (IE),       M?E = -2rr Imag (IE). 

The total moment is 

M(LZ)P = M(LZS)P + M(LZE)P = ~Ko (pa5*2) (Misin fft + M2 cos T^t)» <3-16) 

where 
M, = M,^ + MjE> M« = M«o ♦ MpE* (3.17) 

Our computational results will be exhibited in terms of the moment 
coefficient, C(LM\p, defined in Eq. (3.3). By Eqs. (3.3), (3.16), and (3.17), 

C(LSM)P = -V[27TT c/a]»    C(LIM)P = "M2/[2lTT c/a]' (3-18) 

Our primary interest lies in C/^xp, which represents overturning moment, and 

we shall present time histories of this quantity. 

IV. RESULTS 

This report does not include the contribution to the moment from the 
shear forces which, as shown in References 3 and 4, can be significant at 
lower Re; shear contribution will be treated in a subsequent work. For the 
present we concentrate on the analysis of the flow problem and procedures for 
solving it, which are needed for both pressure and shear contributions. The 
results given here illustrate the procedure and are compared with those of 
inviscid perturbation calculations by the method of Murphy.8 Side pressure 
moment coefficient histories are presented for four combinations of Re and 
c/a. 
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In Case A, Figure 2, C(LSM)P nistor"'es are shown for five nutational 

frequencies: T ■ 0.04, 0.05, 0.09, 0.12, and 0.14. The curves have very 
pronounced peaks for T = 0.05, 0.09, 0.12, and 0.14. These peaks (except for 
the right-hand peaks on the T = 0.12 and T ■ 0.14 curves) occur at times close 
to those at which the perturbing motion is in resonance with the wave motion 
of the n = 1, k = 3 natural oscillation mode of the liquid in the cylinder.* 
The right-hand peaks on the t = 0.12 and x = 0.14 curves indicate resonance 
with the n = 2, k = 5 mode of the spinning fluid. The eigenfrequency of the n 
= 1, k = 3 mode is approximately CR = 0.04 for solid body rotation; 

consequently the moment will not damp out with increasing time for T = 0.04. 
Outputs of the inviscid perturbation calculations (method of Reference 8) are 
also presented for x = 0.04, 0.05, and 0.09. The predictions of times of peak 
moments differ by less than 0.07 s. between the two methods. For t = -12 and 
.14 only the present results are shown. Reference 8 cannot compute these cases 
because of the presence of the critical layer. 

The results for Case B are shown in Figure 3. The spin-up time (defined 
in Section I of Reference 11) is smaller here than in Case A; therefore, the 

interval of interest occurs for smaller f. The results are qualitatively the 

same, however. The maximum of C/LSM)P occurs near tne time wnen CR = x = 0.15 

for the k = 3, n = 1 mode. The results from the method of Reference 8 are 

also shown in Figure 3.  These disagree with the present results at t = 200. 

For smaller f that method breaks down because of the existence of the critical 
layer.   Our calculation was not carried out for smaller times because of 
difficulties, described in Section II.C, which were encountered in evaluating 
the ,i.'s. 

J 

In Case C the high Reynolds number requires a turbulent Ekman layer. The 

aspect-ratio and nutational frequency are chosen so that CR(t) = x at £ = 

38,500 for the k = 5, n = 1 mode. Both methods exhibit the occurrence of 
resonance near this time. The critical layer occurs beyond the range of these 
curves in this graph. 

The only difference between the parameters of Case C and Case D, Figure 
5, is a 2.55% increase in aspect ratio, yet the moment coefficient histories 
are radically different. Sensitivity to aspect ratio has been noted previ- 
ously in yaw growth rates of projectiles containing liquid payloads in solid- 
body rotation; see, e.g., Figures 10 and 12 in Reference 4. Both methods show 
yaw damping moments at this stage of the spin-up, with maximum damping near 
the time when CR = r; however, the amplitudes differ widely.  Furthermore, the 

curve of Murphy's method exhibits a period of sharply rising and falling 
overturning moment which the present method does not. The results of Case D 
are not yet thoroughly understood.  The following comments may be relevant to 

AThe reader is referred to References 1 and 7 for description of the oscilla- 
tion modes of a liquid cylinder. In this study spin-up eigenvalues were com- 
puted without endwall boundary condition correction. 
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the situation. Because the cylinder is executing forced rather than free 
angular motion, the liquid may under certain conditions exert a yaw damping 
moment. The current treatment of the endwall boundary condition would lead 
one to infer that the theory grows less valid with decreasing time. In the 
inviscid perturbation method the results may deteriorate, when operating 
backwards in time, before the critical layer first appears. 

For each perturbing frequency there is a time t = tM at which the moment 

coefficient has a maximum, C(|_SM)PM* Conversely, at each time there is a 

perturbing frequency TM (t) for which C/|_5M\p = CnsM)PM*  For Case A Figure 

6 exhibits the upper limit to the side moment coefficient that can be experi- 
enced during spin-up compared to that which can be experienced for fully spun- 
up basic flow. The moment coefficient ratio decreases rapidly with decreasing 
time in the present calculation, but the inviscid perturbation result indi- 
cates a very slowly changing ratio. 

V.  SUMMARY 

The interaction between the flow of a liquid payload and the motion of 
the spinning and nutating shell containing it complicates the prediction of 
the angular motion of the projectile and the forces on it. This paper repre- 
sents a first effort using linearized fully viscous equations to determine 
side pressure moments exerted by the liquid on the container during the liquid 
spin-up process. The heuristic approach of Murphy8 is used which makes 
crucial assumptions regarding time-dependence of the flow and the endwall 
boundary condition. The statement of the problem specifies the angular motion 
of the projectile; thus, the present treatment cannot simulate actual flight, 
although it can simulate performable gyroscope experiments. 

Calculations were made for four cases. It is seen that yaw damping 
moments exist under certain circumstances. For three cases good qualitative 
agreement is obtained with the results of inviscid perturbation calcula- 
tions. Side-moment coefficient histories are bell-shaped curves with peaks 
occurring approximately at times when the nutational frequency coincides with 
an eigenfrequency of the liquid. (For the solid-body rotation resonance case 
in Figure 2 the curve has a flat top.) In the fourth case the discrepancy 
between the results of the two methods is large, though both methods predict 
sharp peaks of damping moment coefficient. 

The next step in this investigation is to compute shear force on the 
cylinder walls and then obtain the shear moment on the projectile.  It is 
expected to have a noticeable effect for smaller Reynolds numbers. Inclusion 
of the Ekman layers in the basic flow is necessary in order to have a rational 
approximation to the solution. 
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APPENDIX A:  EVALUATION OF VARIABLES ON BOUNDARIES 

The relationship between the inertial and nutating sets of cylindrical 
coordinates is (Eq. (9) in Reference 2) 

r = r - K1 x cos (ijt-e) + 0(KQ
2) 

6 « 0 - K. (x/r) sin (T}t-ö) + 0(KQ
2) 

x = x + Kj r cos (xjt-e) + 0(KQ
2) • 

(A.la) 

(A.lb) 

(A.lc) 

Recalling Eq. (2.1), velocities are 

u = dr/df = 
*    * 
U - K0u, v = r de/df = 

*   * 
V-Kov 

w = dx/dt ■ 
*   * 
W - K w 

0 

u = dr/dt, v = r de/dt, w ■ dx/d£. 

(A.2) 

The velocity transformation between the earth-fixed and aeroballistic systems 
is obtained by differentiating Eq. (A.l) with respect to time and substituting 
the expressions of Eq. (A.2) for the derivatives.  Here we make an additional 
approximation in order to keep the expressions tractable.  According to the 

-1/2 * 
Wedemeyer model, U and W are both of order Re ' ; we assume the same for U 

* .1/9-9  1/9 ? 
and  W.  We shall neglect K Re '    and Kn

c Rel/C  terms in addition to K c 

terms. We then obtain for e = 0, i.e., K, = K , 

* 
u = U 

* 
v ■ V 

w = W 

KQ u + KQ x (V/r - T) sin (T}t-e) 

K v + K x T cos (x}t-e) 

K0w - KQr (V/r-x) sin (T}t-e). 

(A.3a) 

(A.3b) 

(A.3c) 

A variable may be evaluated at r = 1 by an expansion about r = 1, thus 

h (r = 1) = h (r = 1) + (8h/3r)r m x  (rjT . 1} - 1) + 0(KQ2). 
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By application of Eq. (A.la) 

h (r = 1) = h (r = 1) - KQx cos (TJt-9) (3h/3r)p m x  + 0(KQ
2).    (A.4) 

Equations (A.3) are now evaluated at r = 1.  Recalling that U, W = OfRe"1' ) 

and U 

r « 1: 

and U (r ■ 1) = W (r = 1) = 0, we apply Eq. (A.4) to Eq. (A.3) to obtain at 

0 ■ KQ [-u ♦ x (1-T) sin (ijt-e)] ♦ 0 (KQ
2, Re"1/2 KQ)       (A.5a) 

1 s l + K0 [-J - x {Vr(r = 1) - T} COS (xjt-o)] (A.5b) 

0 a KQ [-w - (1-T) sin (ijt-e)]. (A.5c) 

Finally, replacing V in Eq. (A.5b) by V of the Wedemeyer model we obtain the 

boundary conditions of Eq. (2.6).* 

To evaluate P on the endwall, one applies the expansion 

P (x ■ A, r) = P (x = A, p) ♦ (x- = A - A) (8P/3x)x = A ♦ 

(A.6) 

(r - r) (3P/3r)r m  f + 0(K 2). 

*Eqs,   ( A2) >   (A4),  and (AS)   in Reference 2 contain errors.     The signs directly 

following u,   v,   and   w   in   the   right-hand   sides   of   Eqs,    (A2)   should   all   be 
positive.     The  minus   signs   directly  following  the  equals  signs   in  Eqs,   (A4) 

and   (AS)   should  all   be   changed   to  plus   signs.      Also v   (r -   1)   in   the   last 

equation of Eqs,   (A4)  should be replaced by w (r = 1), 
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In the Wedemeyer model (3P/3x) s 0; (r - r) 1s given by Eq. (A.la). Thus 

P (r, x ■ A) = P (r) + K0 A (V2/r) cos (xjt-e) ♦ 0(KQ2). (A.7) 

The condition of zero normal flow at the endwall is obtained by evaluat- 
*      * 

ing Eq. (A.3c) at x = A, where W = 0 and V/r = 1. The term w (x = A) is zero 
in our approximation. This is shown in the expansion 

w (x = A) = w (x~ = A) + [x (x = A) - A] (3W/3X*); = A + 0(KQ
2).     (A.8) 

By Eq. (2.5b)t w (x = A) = 0; by Eq. (A.lc), [x (x = A) - A] = 0(KQ); by Eq. 

(A.3c), w = W + 0(K ).  In the Wedemeyer model W and its derivatives are of 
-1/2 * 

order Re" ; ; the same is assumed for W and its derivatives. Then w (x = A) = 
-1/2 

0(K Re ' ) and is neglected, leaving 

and 

w (x = A) = -(1-T) r sin (xjt-e), (A.9) 

w (x = A) = i (1-T) r. (A.10) 
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APPENDIX  B:     FORMULAS  FOR (L's   IN EQ.   (2.17) 

We define ej  by 

ejE eRj+ i eu -(cos »jA + 5CE rjs1n "JA) dj 

Eq.   (2.31)   is  now rewritten: 

(B.l) 

NJ 
FR + 1  Pj « * (r) -      z      [eRj + i  e^] [wRj  (r) + i  fty  (r)],      (B.2) 

J      ■*• 

where 

* (r)   = ty* + i   *} ■ wQ(r) - i   (1-T)  r . (B.3) 

The boundary condition at x = A is satisfied if FR(r) and Fj(r) are 

identically zero. Since they are not, we seek 2 NJ constants, the eRj's and 

ejj's that minimize the error defined as 

g (ej) - I  (FR2 ♦ Fj2) dr. (B.4) 

Jo 

The minimizing conditions are 

3g/aeRj  = 0, dg/de{- = 0 j  =  1,...,NJ . (B.5) 

Substituting    the    required    terms    into    Eq.     (B.5)    and    performing    the 
manipulations  lead to the  linear system for the e.'s  (j =  1,...NJ): 

1 NJ f1 

(wRj   ^ + 8y   ^) dr «      Z     eRi   [ I     (wRj wRi  f BI;j wn)  dr] + 
11 Jo 

NJ 

(B.6a) 

T< .   eIi   [        (""RJ *I1  + "lj »Ri>  dr] 

'0 
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'* NJ f1 

|    (*Rj  *I - *Ij  «h> dr " i I , eRi [ ]      (-wIj wRi + WRj WIi} dr] + 

(B.6b] 

1 NJ 

1 f 1 *« C \    (5ii"" + Vi"^ dr]' 

The dj's are then found from Eq. (B.l). 
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LIST OF SYMBOLS 

a 

A 

B 

c 

cR 

C(LM)P 

C(LIM)P 

C(LSM)P 

C(LSM)PM 

j 

k 

KF 

Ko 

Kl 

M 

cross-sectional   radius  of cylinder,   Figure 1  [cm] 

= c/a,  aspect  ratio of cylinder 

biorthogonal   coefficients  for series of axial 
eigenfunctions, Eqs.   (2.28)  and  (2.29) 

function of r defined in Eq.   (2.26) 

half-height of cylinder [cm] 

natural  oscillation frequency of rotating liquid/J 

complex  liquid  pressure moment  coefficient  =  C(|_SM)P + 
1   C(LIM)P»  Ecl*   (3-3) 

pressure in-plane moment coefficient,  Eq.   (3.18) 

pressure side moment coefficient,  Eq.   (3.18) 

maximum value of CnsM)P 

coefficient in series given by the 3rd terms in Eq. 
(2.17); see also Eq. (2.34) 

coefficient defined in Eq. (B.l) 

= (1-ieW, complex representation of angular motion, 
Eq. (1.4) 

endwall boundary condition function of r, Eq. (2.31) 

integral occurring in the endwall moment calculation, 
Eqs. (3.12) and (3.14) 

integral occurring in the sidewall moment calculation, 
Eqs. (3.8) and (3.10) 

index in series given by the 3rd terms in Eq. (2.17) 

index of axial eigenfunction and eigenvalue, 
Eqs. (2.18) and (2.19) 

index of final term of sin x.x series in Eq. (2.17a) 

yaw amplitude at time t = 0 

ET^t 
= K0 e 

= x - V/r 

, yaw amplitude at time t, Eq. (1.4) 
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LIST OF SYMBOLS  (Continued) 

Mj, M2 moment terms,  Eqs.   (3.16)  and  (3.17) 

M(LY)P» ' \\i)? y and z components,  respectively, of liquid moment 
[g cm2/s2] 

M(LZB)P» M(LZT)P 
bottom and top wall  contributions,  respectively, to 

M(LZ)P t9 cm2/s2] 
- 

M(LZE)P, M(LZ\)P endwall  and sidewall  contributions,  respectively, to 
M(LZ)P    tg cm2/s2] 

n index of radial  mode for eigenfrequency,  Cp 

nYE»  nZE components in the y, z plane of a unit vector 

lying on the x-axis 

NJ number of terms in the series given by the 3rd terms 
in Eq.   (2.17) 

P pressure/(pa2J2) 

* 
P perturbation pressure/(K0pa2}2), Eqs.   (2.1)  and  (2.4) 

■ 

* 
complex perturbation pressure/(KQpa2$2),  Eq.   (2.8) 

B  5 BR + 1  Bi r,x  variation of perturbation pressure/(K pa2J2), 
Eq.   (2.8d)                                                          ° 

Pj(D jth eigenfunction  in series  given by the 3rd term in 
Eq.   (2.17d) 

P>) first term in solution to p, Eq.   (2.17d) 

P>) coefficient of kth axial   eigenfunction in series given 
by the 2nd term in Eq.   (2.17d) 

P 
• 

Wedemeyer model   approximation to P in core flow, 
Eqs.   (2.2b)  and   (2.2e) 

% axisvmmetric unperturbed Dressure/(oa2i2).  Ea.   (2.Id) 

Pj P (r = 1) = constant 

rtr (1/a) x radial coordinate in inertial coordinate system 
and non-rotating aeroballistic system, respectively 
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LIST OF SYMBOLS (Continued) 

Re Reynolds number = a2}/v 

ReE "effective" Reynolds number, Eq. (2.14) 

t time [s] 

tM time at which C/LSM\pM occurs for given t 

I $t, non-dimensional time, or total angle of rotation 

u,u (l/[aj]) x radial velocity component in inertial frame 

and non-rotating aeroballistic frame, respectively 

v,v (l/[a}]) x azimuthal velocity component in inertial 

frame and non-rotating aeroballistic frame, 
respectively 

w,w (l/[a$]) x axial velocity component in inertial frame 

and non-rotating aeroballistic frame, respectively 
* * * 
u, v, w (1/[K a<f]) x radial, azimuthal, axial perturbation 

velocity components in inertial system, Eqs. (2.1) 
and (2.4) 

u , v , w (1/[K a$]) x complex radial, azimuthal, and axial 
C   C   C 0 

perturbation velocity components, Eq. (2.8) 

ut v, w (1/[K a$]) x r,x variation of perturbation velocity 

components, Eqs. (2.8) and (2.9) 
A        A        A 

un» v«» W^ lst terms in right-hand sides of Eqs.   (2.17a),   (2.17b), 
000 and  (2.17c) 

uk* vk* wk coefficients of sin A.x and cos x^x in series expansions 
for u, y, w, 2  (2nd terms in Eq. (2.17)) 

u., v., w. coefficients of sin y.x and cos p.x in series expansions 
J  J  J j        j 

for u, y, w, p (3rd terms in Eq. (2.17)) 
* * * 

U, V, W Wedemeyer core flow model approximations to U, V, W 
* * * . 
U, V, W (l/[a<i>])  x radial, azimuthal, and axial   velocity 

components of unperturbed flow, Eq. (2.1) 
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x, y, z 

x. y. z 

y^ •••« *6 

6C 

6CE 

e 

£P m 

0,   9 

Nc 

"J 

V 

— 
6 

p 

T 

*M 

* 

♦ (r) 

LIST OF SYMBOLS (Continued) 

rectangular coordinates in inertia! system (x-axis along 
trajectory) [length/a] 

rectangular coordinates in aeroballistic system 

(x-axis along cylinder axis) [length/a] 

functions describing radial variation of perturbation 
flow variables, Eqs. (2.24) and (2.25) 

correction term in endwall boundary condition for 
solid body rotation 

correction term in ad hoc endwall boundary condition, 
Eqs. (2.12) and (2.13) 

= U/T) x yaw growth per radian of nutation 

= 0 for xk * 0, = 1 for xk = 0 

polar angles (azimuthal coordinates) in inertial and 
aeroballistic systems, respectively 

eigenvalue in the axial problem, Eqs. (2.18) and (2.19) 

eigenvalues occurring in series given by the 3rd terms 
in Eq. (2.17); see discussion preceding Eq. (2.20) 

kinematic viscosity of liquid [cm2/s] 

vector describing angular motion of cylinder, Eqs. (1.2) 
and (1.3) 

density of liquid [g/cm3] 

nutational frequency of cylinder/^ 

T for which C/LSM)PM occurs at a Qiven t 

spin rate of cylinder [rad/s], taken to be positive 

■ w0 (r) - i (1 - T) r, Eq. (2.32) 
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