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I. INTRODUCTION

The study of the motion and stability of a liquid-filled projectile
requires a knowledge of the internal motion of the liquid which determines the
moment exerted by the liquid on the projectile. The motion of the spinning
liquid can be divided into two categories: (1) solid body rotation, the
condition attained for "large" time, and (2) spin-up, the transient state
before solid body rotation is attained. Investigations have been directed
along two lines: (1) the determination of the frequencies and decay rates of
inertial oscillations, and (2) prediction of the moment on a spinning liquid-
filled cylinder executing angular motion. These are referred to as the
“eigenvalue problem" and "moment problem," respectively.

For solid body rotation rational theories have been developed and applied
both to the eigenvalue problem! and to the moment problem with restrictive
conditions.2*3*% The works of Stewartson® and Wedemeyer® form the basis of
these efforts. Clearly, to include the transient spin-up effects requires a
non-trivial extension of those works. Eigenfrequencies and decay rates have
been obtained for spin-up;’>® the solutions did not satisfy the no-slip
condition at the endwalls. In Reference 7 it was shown that calculated
frequencies compared with experimental results to within a few percent, but
decay rates could be off by as much as a factor of two. If an endwall cor-
rection for solid body rotation is applied during spin-up (obviously an ad hoc
correction) the prediction of decay rate is improved for late time but not

1. C. W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid
in a Rotating Cylinder: Part I. Solid Body Rotation," BRL Technical
Report ARBRL-TR-02081, June 1978. (AD A057759)

2. N. Gerber, R. Sedney, and J. M. Bartos, "Pressure Moment on a Liquid-
Filled Progjectile: Solid Body Rotation," BRL Technical Report ARBRL-TR-
02422, October 1982. (AD A120567)

3. C. H. Murphy, "Angular Motion of a Spinning Projectile with a Viscous
Liquid Payload," BRL Memorandum Report ARBRL-MR-03194, August 1982.
(AD A118676) (See also Journal of Guidance, Control, and Dynamics, Vol.
July-August 1983, pp. 280-286.)

4. N. Gerber and R. Sedney, "Moment om a Liquid-Filled Spinning and
Nutating Projectile: Solid Body Rotation,"” BRL Technical Report ARBRL-

TR-02470, February 1983. (AD A125332)

5. K. Stewartson, "On the Stability of a Spinning Top Containing Liquid,"
Journal of Fluid Mechanics, Vol. 5, Part 4, 1959.

6. E. H. Wedemeyer, "Viscous Corrections to Stewartson's Stability
Criterion," BRL Report No. 1287, June 1966. (AD 489687)

?. R. Sedney and N. Gerber, "Oscillations of a Liquid in a Rotating
Cylinder: Part II. Spin-Up," BRL Technical Report ARBRL-TR-02489, May

1983. (AD A129094)

8. C. H. Murphy, "Moment Induced by Liquid Payload During Spin-Up Without a
Critical Layer," BRL Report in preparation. Also AIAA 22nd Aerospace

Sciences Meeting, Reno, Nevada, January 1984, AIAA Paper No. 84-0229.
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early time. In this paper we calculate the contribution of the pressure to

the moment during spin-up of a liquid that fills a right circular cylinder
undergoing coning motion at constant frequency and constant yaw angle. The
contribution of the wall shear will be treated in a later report.

Two coordinate systems will be used. The first is an inertial system;
i.e., the unyawed reference frame shown in Figure 1, with rectangular

coordinates (x, y, z) and cylindrical coordinates (r, 8, x), where r = (y2 +
2,1/2
z7)

later.

and 6 = arctan (z/y). The second reference frame will be defined

. 1 2,3,4 s 3
Here, as 1in previous work,“’"’" we assume the yaw to be sufficiently

small so that a linearized analysis is applicable; i.e., the flow may be
considered the sum of a basic unperturbed flow and a perturbation flow. Also
we specify that the perturbed flow variables have the form*

L1 - de) v ot - 0] er 4y, (1.1)

where t is time, t and e are non-dimensional_ nutational frequency and yaw
growth rate. The t is non-dimensionalized by ¢, the spin of the cylinder; r

and x are non-dimensionalized by a, the cross-sectional radius of the
cylinder. This form of solution renders the problem time-independent (aside
from the quasi-steady spin-up perturbation assumption, to be discussed later);
and it implies that there are no transients present between the angular motion
of the cylinder and the corresponding response of the flow. One would not
expect this assumption to be valid early in the spin-up history of the
rotating liquid, but at least it should be applicable when solid body rotation
has been attained. Justification for this assumption will depend on
comparison of the results with those of measurements.

The second coordinate system used to descr1be the projectile, Figure 1,
is the X y, z non- splnn1ng system which has the X -axis along the projectile
axis of symmetry; the y and z axes are omitted for clarity. The x = 0 and
x =0 values are located at the midplanes of the unyawed and yawed cylinders,
respectively. The X -axis is nutating about the x-axis with the angle Kl(t);
the pivot point lies at the midplane. The components of the projection in the
¥, 2z plane of a unit vector lying on the X -axis are denoted by nyp and nge,
respectively. It is convenient to combine the two components of yaw into a
single complex variable

€z =(nye + 1 nyp). (1.2)

;he gogenclature here is that prescribed in Reference 3 and used in References
and 4.

*Defintions of quantities are given in the LIST OF SYMBOLS Section.
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The projectile motion is specified as:

~ $ : ° i¢ . .
P = (Koeer¢t) ~| (tot) _ Kle S Koel f¢t’ (1.3)

where

K, = K ecTot 4 = Tit, f=(l-ie)te (1.4)

1 o

Here K, is the magnitude of the yaw at time t = 0; the yaw grows when et > 0.
Also % is the angular orientation of the x-axis in the x, y, z system as
shown in Figure 1.

The specified projectile motion given in Eq. (1.3) was found in gyroscope
experiments to be applicable to a portion of the coning motion history in
which the fluid was practically spun up.2’* However, this simple motion is
not expected to occur very early in flight while the spin-up process is domi-
nating the flow; thus, our model will not simulate the free-flight situation.
We turn, instead, to forced coning motion and fix t and ¢ as input; in par-
ticular, we choose ¢ = 0, implying no yaw growth. Emphasis will be placed on
investigating resonances between the angular motion and free oscillations of
the liquid.

After the t, o portion of the solution in Eq. (1.1) is factored out, the
problem is posed in the r, x plane. We attempt, as in References 2 and 4, to

solve it by a modal analysis, i.e., by separation of variables. For solid-
body rotation, we succeeded in obtaining a rational solution;2 this solution
required a corrected endwall boundary condition for axial velocity in order
for it to satisfy the no-slip condition. Because of the simple basic flow
(fluid angular velocity about the axis = ¢ everywhere) the corrected boundary
condition is a simple one, containing a complex constant, &c, proportional to

Re-llz, where 5.
Re = a“¢/v (1.5)

is the Reynolds number and v is the kinematic viscosity of the liquid.

In the present problem the basic flow is the spin-up flow, for which a
corrected endwall condition is not available. The Ekman layers (see Reference
7) should be included in the basic flow but are not in the present analysis.
The effect that including them would have on a separation-of-variables ap-
proach is not known at this time.

Murphy 8 has proposed a method of calculating the liquid moment which has
the intent of bypassing the difficulty; namely, to apply an endwall boundary
condition on the axial flow identical in form to that for solid body rotation,
with the difference that the Re 1n the expression for the &c previously men-
tioned is replaced by an "effective Reynolds number,” Reg. This Reynolds

number is obtained by averaging over a meridional plane some dynamic quantity
of the basic spin-up flow which varies with r, e.g., azimuthal velocity or
angular momentum. In this model the "corrected" endwall boundary condition
for axial flow is fitted in a least squares sense.

9




This procedure is not a rational approximation, defined as one in which
the next term in the approximation (or the error) can be calculated in

principle or estimated in an order of magnitude sense. Therefore, it must be
considered an ad hoc approximation. The solution satisfies an incorrect

boundary condition approximately; there is no way of estimating the error in
the moments. Obviously, the approximation is more valid for small departures
from solid body rotation. This ad hoc procedure forms the basis of the
present work.

I1. FLOW PROBLEM

A. Flow Equations and Boundary Conditions.

The equations are stated and solved in the inertial frame. The flow is
expressed as the sum of a basic axisymmetric spin-up flow and a perturbation:*

u =10 (rx,E) - K, U (r,0,x,E) (2.1a)
vl () - Ky v (r,0,x,E) (2.1b)
W= (rxE) - KW (r,0,x,E) (2.1c)
p =P (rax,E) - K, P (r,0,x,8), (2.1d)

where t = ¢t. Here u, v, w are ve]oc1ty components in the radial, azimuthal,

and axial directions, respectively; U V N are the corresponding velocity
components of the basic flow which is a solution of the axisymmetric Navier-
* *

Stokes equations. The velocity components of the perturbed flow are u, v,
* *
and w. The quantity p is pressure, P is the pressure of the basic flow, and
* -
p is the perturbation pressure. Velocity is non-dimensionalized by a¢ and
pressure by pa2¢2, where p is the density of the liquid.
The variables of Eq. (2.1) are substituted into the 3-D Navier-Stokes
equations (see, e.g., Eqs. (3.33) of Reference 9) and only zeroth and first
order terms in K, are retained. At this point we make several simplifications

to render the problem tractable; these steps are described in detail 1in
Sections II and III of Reference 7. First the basic flow is approximated by

* The negative signs in Eq. (2) were employed to comply with the nomenclature
of Reference 3.

9. H. Sehlichting, Boundary Layer Theory, McGraw-Hill Book Co., New York,
NY, 1960.
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discussed further in Reference In this model the flow field is divided
into two regions: (1) the boundary layers adjacent to the endwalls, called the
"Ekman layers," and (2) the remainder of the flow field called the "core," in
which the flow variables are designated U, V, W, P. (The need for an addi-
tional boundary layer at the sidewall is discussed in Reference 11.) These
satisfy the following set of equations (where subscripts denote partial
differentiation):

the Wedemeyer model for the SF;?-UP flow (introduced in Reference 10 and

Vg + U (V_+ V/r) = ReTh [V + (V/r) ] (2.2a)
U, = Vx = Px =0 ("Columnar" Flow) (2.2b)
U= fn (r,v) (2.2¢c)
W= -(x/r) (rU)r (Continuity Equation) (2.2d)
P.= V¥r (2.2e)

Eq. (2.2b) indicates that V =V (r, £); Eq. (2.2c) is the "Ekman compatibility
condition" given by Eqs. (2.8) and (2.9) of Reference 7:

[ g
L]

x (a/c) Re~1/2 (V-r) for laminar Ekman layer

= -0.035 (a/c) Re~1/ (r‘-V)8/5 for turbulent Ekman layer;

=
I

« = 0.5 will be used here. Boundary conditions for an impulsive start are

V(r=0)=0, Vi(ir=1) =1, V(t=0)=0. (2.3)

The following Jlinearized equations are obtained to describe viscous
perturbations in the core flow but not the Ekman layers, according to the
discussion preceding Eqs. (3.4) in Reference 7:

10. E. H. Wedemeyer, "The Unsteady Flow Within a Spinning Cylinder,” BRL
Report No. 1225, October 1963. (AD 431846) (See also Journal of Fluid

Mechanics, Vol. 20, Part 3, 1964, pp. 383-399.)

11. R. Sedney and N. Gerber, "Viscous Effecte in the Wedemeyer Model of
Spin-Up From Rest," BRL Technical Report ARBRL-TR-02493, June 1983.
(AD A129506).
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S + (/e Sy - 2V /e = b+ Re”h (WP - W/e? - 2 v /et (2.4a)
CE + (Vr + V/r) 3 + (V/r) ;e = -Bo/r + Re'1 (st - ’\;/r2 + ZJG/rZ) (2.4b)
we + (V/r) Wy = -p, + Re v (2.4c)
(r;)r + Ce +r ;x = 0, (2.4d)

where

# = 32/ar2 + (1/r) 3/3r + (1/r2) 3%/ 08% + az/axz.
The reasons that U and W do not appear in Eq. (2.4) are discussed in Refer-
ence 7.

The boundary conditions are: no flow through the bounding walls and no
slip along them; i.e.,

=
—~——
]
[}
—
St
i
b
E )
]
]
p—
e
]
o
-
<
—
5
]

1) =1 (side) (2.5a)

tA) = r (end) (2.5b)

=
-
b
"
-+
>
N
"
.
——
x
"
[ o
>
e
]
o
-
<
——
>
]

where J, J, W are non-dimensional cylindrical velocity components in the
rs, 8, x system; A is the half-height, c, of the cylinder divided by a.

The boundary conditions must be transformed to the variables used in Eq.
(2.4); a discussion of the transformations is given in Appendix A. The

resulting non-homogeneous sidewall conditions are

U (r=1) = xReal [-i (1-1) exp {i (¥4t - 6)}] + O (K,) (2.6a)
v (r=1) = -x Real [(V_ (r=1) -1} exp (i (vit - 8)1] + 0 (K,) (2.6b)
wi(r=1)= Real [i (1-1) exp (i (rit - 0)31+0 (K ) . (265 )

The complex form is introduced here for later convenience.
* * *
The endwall boundary conditions for u, v, W cannot be stated precisely.

The U, V, and W are valid only in the core, and the Ekman layer flow which
should be included in the unperturbed solution is not available. This

12




difficulty is responsible for the introduction of the ad hoc endwall boundary
condition stated in Section I. The motion of the cylinder 1is expected
nevertheless, to determine the t, 0 dependence of boundary conditions so that

*

u (x = tA) = Real {fn (#A,r) exp [i (<t - 0)]}, (2.7)

* *
with similar expressions for v (x = tA) and w (x = $A). Axial boundary
conditions will be treated later.

One further approximation is needed to permit application of a modal
analysis, namely, the "quasi-steady" condition discussed in Section III of
Reference 7. Generally, V does not change appreciably over the time scale of
the perturbations; thus £ can be regarded as a parameter in the solution of
Eq. (2.4). A possible exception to this might exist for € » 0 and an
impulsive start.

B. Modal Analysis: Separated Variable Solutions

1. Equations and Boundary Conditions for r, x Variation. It is assumed
that the perturbation can be expressed as a superposition of modes, or a
triple Fourier expansion in 6, x, and t with coefficients functions of r. It
is convenient to use complex notation and express the perturbation as

*

u = Real (ﬁc) = Real [u (r, x; ) exp (i (<t - 8)}] (2.8a)
vV = Real (CC) = Real [v (r, x; €) exp (i (<f - 8)}] (2.8b)
W = Real (Qc) = Real [w (r, x; ) exp {i (<t - 0)}] (2.8c)
; = Real (;c) = Real [p (r, x; t) exp (i (<t - 8)}] (2.8d)
* * * *
where u, v, W, and p are complex functions. The functions u., v_, w_, and p_

are clearly also solutions of Eq. (2.4). The t, 0 portion of the boundary
conditions in Eqs. (2.6) and (2.7) are satisfied by Eq. (2.8). Substituting

* * * * . .
Ucs Voo Wes Pe from Eq. (2.8) into Eq. (2.4) yields
ru_ . +u-iv+rw =0 (2.9a)

i (e=V/rju - (2V/r)v = -, * (1/Re) [Err + Er/r - Zg/rz tut Zixjrzl (2.9b)

u
—X

13




i(r-V/r)v + (Vr+ V/r) u = -ip/r + (1/Re) Elrr+ xr/r -

(2.9c)
2v/re 4 Yoy - 2iu/r?]
i(=V/r)w = -+ (1/Re) [w, .+ w/r - w/r? +w 1. (2.9d)
Boundary conditions at the axis are
u(r=0)-iv(r=0)=w(r=0)=p (r=0)=0. (2.10)

These are kinematic conditions, stated in Eq. (4.3) of Reference 7, for m = 1.
Boundary conditions at the sidewall are

u(r=1)=-i(l - 1)x (2.11a)
v(r=1)= -0 (r=1) -1k (2.11b)
wr=1)=i(l - 1. (2.11c)

At this point we invoke the ad hoc endwall boundary condition, namely
W F s aw/ax =i (1 -1r at x = tA, (2.12)

with the left-hand side identical in form to that of Eq. (29) of Reference 2;
namely, the corrected homogeneous endwall boundary condition. The right-hand
side is the same as that of the uncorrected inhomogeneous boundary condition
of Eq. (A.10). The scg is found as follows:

o = 272 Re M2 (1 - 4) (3 - ))/2 (2.13a)

B = ~1/2 ReEI/2 (1 +1) (1 + 1)1/2 (2.13b)
T 1 2 1 2

scE-[z—qE- (1'1-1)” 75 (1+ 1_,{)], (2.13c)

14




with the restriction (3 - t) > 0. The "effective" Reynolds number used here
is given by -

1
ReE(f) =| 2 S V (r;t) dr a2$/v. (2.14)
0

For solid body rotation, with V = r, the bracketed term is equal to unity and
Rer = Re. While the fluid is spinning up, V < r, and Reg < Re. As an

example, Reg/Re = 0.76 at T = 1000 for the case Re = 39772, c/a = 3.12.

2. Form of Solution. As in Section III-B of Reference 2, we stipulate
that the solution be a Tinear combination of separated variable solutions,

i.e.,

=
"

z Ru(r) Xu(x)

|
n

L Rw(r) Xw(x)
(2.15)

v =1 Rv(r) Xv(x) p=2ct Rp(r) Xp(x).

Substituting these into Eq. (2.9) yields ordinary differential equations for
the R's and X's. The X's must satisfy the harmonic equation

d®x/dx% + 2 X = 0, (2.16)
where ) can be zero or finite. When A is finite, it is determined from an

axial eigenvalue problem and labeled with the index k.

In this work we choose to express the solution as

u = Jo(r) X + E:Fl Jk(r) sin A x +j g:dl dJ. Gj(r) sin HyX (2.17a)

v o= vgr) x + L v (r) sin A x + j z ldj v, (F) sin ugx (2.17b)

W = Qo(r) - ) f . Qk(r) oS A X = f dj ﬁj(r) cos “jx (2.17¢)
= j=1

P = 5o(r) x + f 5k(r) sin A x + . f : d; 5j(r) sin uj%s (2.17d)

15




where the xk's form a denumerable set of solutions to the functional equation
(See Eq. (31) of Reference 2)

cos NA + sce sin AkA = 0. (2.18)
For |6cE|/A<<1.

N = (km)/[2 (A - scg)]. k_odd (2.19)

Thus, at the endwall each Qk(r) cos A x term in Eq. (2.17c) satisfies Eq.
(2.12) with the right-hand side replaced by zero.

The uj'S are eigenvalues of the radial differential equations resulting

from separation of variables, with homogeneous sidewall boundary conditions:
u, (r=1) =v, (r=1) =w.(r=1) =0. (2.20)

The parameter t enters here in the same way as the unknown eigenvalue C in
Reference 7. In the present situation t is known and by is the eigenvalue to

be determined. The dj's are constants to be determined so as to minimize the

error in satisfying the endwall boundary condition, Eq. (2.12). The homogene-
ous boundary conditions, Eqs. (2.10) and (2.20), do not produce unique eigen-

functions Gj, Gj, Qj, and p.; these are known to within a common constant.

The functional values obtained from the integration are a result of the values

assigned the non-homogeneous quantities at r = 0. The subsequent determina-
tion of the dj's, however, renders the flow solution unique.

~ Y

The u , v, W,» Py» corresponding to A = 0, satisfy the sidewall condi-
tions (the same as for the particular solution in Reference 2)

Gy (r=1) = - (1-1)2/(1+7) (2.21a)
v, (r=1) = -[(1-0%/(1+1)] (2.21b)
Go (r=1) =i (1-1). (2.21c)

This set of conditions was chosen so that W satisfied the total boundary
condition at r = 1, Eq. (2.11c); better conditions on Go(l) and Qo(l) might be

selected, and alternate choices are being considered. The sidewall boundary
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conditions for second terms of the solution, Eq. (2.17), are obtained by
subtracting the expressions of Eq. (2.21) (times x for u_ and ;o) from those

of Eq. (2.11):

0

A

L uy (r = 1) sin M X = -i [2t (1-1)/(1+1)] «x (2.22a)
£V, (r=1) sin yx = [((1-0)2/(1+1)} -V, (r = 1) + 1] x (2.22b)
L &k (r = 1) cos A X = 0. (2.22c)

For solid body rotation the dj's vanish and the remainder of the solution, Eq.
(2.17), is the same as that in Reference 2.

3. Radial Variation Problem. When each individual term of Eq. (2.17)
is substitufed 1nto Eq. (2.9), a system of linear ordinary equations in r of
the following form, omitting subscripts k on the dependent variables, is
obtained, (where ' = d/dr):

Pl o+u - iy o+ A rWw =0 (2.23a)
Re™l ¢ + (Re r)~Y 4* + [i (V/r - 1) - Re™Y (2/r2 + xkz)] o+
(2.23b)
. 2017 ~ _ =,
[2V/r+2i (Rer®) "Jv=0p
Re™ v+ (Re ) 7h 4 [i (V/r - 1) el (2P A D)1V -
(2.23c)
[V/r + V. +2i (Re r®)"13u = =i p/r
Re™ W' + (Re )7l w' 4 [i (W/r - 1) - ReTh (1708 4 0 P)] W =
(2.23d)

-A‘kp+€pp'
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The quantity €p is equal to 1 when A = 0; otherwise, it is zero. The same

equations apply to uj. Vs wj. pj. with A replaced by Wy

These equations are converted to canonical form in order to be integrated
numerically; i.e.,

yi| = dyi/dr L] f.i (r, yl, y2,..._y6), i= 1,2,...,6,

where
yy = u (or @) yq = W (or W)
yp = U - iv (or i - iV) yg = W' (or @) (2.24)
y3 = v' (or ¥') yg = p (or p).

After the required manipulations are performed, the following sixth order
system is obtained for the u, v, W, p case:

yll = (yzlr) = '\k Ya (2.25a)
.Vzl = |- (.Yz/r) -i Y3 - Ak Ya (2.25b)
y3‘ = [Re (V/r + Vr) + 2i/r2] yp + 1 (B + 1/r2) (y2 - yl) -
(2.25¢)
y3/r - i (Re/r) yg
¥s' = ¥s (2.25d)
ys‘ = B Yq - y5/r = A Re Yo * € Re Y6 (2.25e)
Yg' =-By;/Re + (i/Re) [2 Re V/r + i/rZJ (o - ¥p) +
(2.25f)

i yy/(r Re) - & yc/Re,
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where

B = (1/r%) + A2 +1Re [t - V/rl. (2.26)

The X 's are replaced by p.'s for the U, v, W, P case.

J

4., Boundary Conditions for Radial Equations. There are three boundary
conditions at r = 0 and three at r = 1. As a consequence of Egs. (2.10),
(2.17), and (2.24), conditions at r = 0 are

Yo (0) = ygy (0) = yg, (0) = 0
2k 4k 6k (2.27)
ij(o) " Y4j(0) b yﬁj(o) = 0.
In Eq. (2.22) the function x can be expanded in the series
x = £ by sin ax, ' (2.28)

k

where the coefficients, given by Eq. (40) in Reference 2, are

(Z/sz) 1+ (a 6cE)2] sin A A
bk = 5 i (2.29)
ALl + (2 scE) 1 - s

These are the coefficients in a series of biorthogonal functions determined by
solving a non-self-adjoint system, Eq. (2.16). By applying Egs. (2.21),
(2.22), (2.24), and (2.29), we obtain the following sidewall conditions for

the Ups Vi» Wp» Py case:

Y (1) = =i (1-¢)) [27 (1-1)/(1+0)] by -7 ¢, [(1-1)2/(141)] (2.30a)
Yo (1) = =i (1-g)) [1 -V (1)] by (2.30b)
Yo (1) = 1 ¢ (1-1). (2.30c)

For the eigenvalue problem solutions, ﬁj. Vj, Wj, 5j case,
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ylj(l) = .Yzj(l) = .Y4j(1) = 0. (2.30d)

5. Endwall Boundary Condition. When we substitute the w solution, Eq.
(2.17¢) evaluated at x = ¢ KR, into Eq. (2.12) and apply Eq. (2.18) to the

-

W COS A X terms, we arrive at the following endwall boundary condition:

NJ
F(r, tA) = p (r) - j f 1 dj wj(r) (cos b A+ scg uy sin ug A) =0, (2.31)
where
p(r) =w (r) =i (l-1) r =y +1 y (2.32)
and .
F=Fp+iFp (2.33)

As discussed in Section I, Eq. (2.31) is not satisfied exactly; instead we

determine a set of dj's which will minimize

1
_ 2 2
A derivation of the formulas for the dj's is given in Appendix B. Thus, the

ad hoc endwall boundary condition is satisfied approximately, to within the
accuracy of a least squares fit, An estimate of the relative error is given
by the quantity
1
Er = [g/S (wRZ + wlz) ar3l/2, (2.35)
0

Error estimates have been computed, but we defer the presentation of results
to a later report.

C. Operational Procedures.

The procedure for solving the radial ordinary differential equations, Eq.

&2.25), is discussed in detail in Reference 1 for solid-body rotation and in
eference 7 for spin-up. Numerical integration must begin at a small

finite value, r = €99 where three independent power-series solutions are

evaluated. Due to the stiffness of the equations at large Re, the Runge-Kutta
integration must be combined with orthonormalization of the three solutions in
order to maintain their linear independence and prevent runaway amplitude
growth. Both homogeneous and inhomogeneous sidewall conditions are
encountered in this study. Reference 1 provides details of the application of
the homogeneous conditions, and Reference 2 describes the treatment of the
non-homogeneous conditions. The iterative procedure for computing eigenvalues
is described in Section V of Reference 7.
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Because the calculation of the b eigenvalues forms part of our opera-

tions, it is most feasible to begin the determination of a spin-up moment
history at a very large time, near solid body rotation, where initial guesses
for the eigenvalues are readily available. These are found in tables (see,
e.g., p. 31 of Reference 3). The operation procedes step-by-step from larger
to smaller values of time, with initial guesses for the eigenvalues at each
time step obtained from those at previous times.

j‘s can be ordered (j = 1,2, etc) either by the real

parts of the ‘ﬁ's or the number of zeros in their corresponding eigenfunc-

tions. The mode is then identified by the value of j. However, as t becomes
small, some of the Real (“j) vs t curves often intersect, rendering the ordering

by Real ('ﬁ) inapplicable. At these times identification of the modes can

For large t the

become ambiguous. What frequently happens is that the iterative process
converges to the solution of a mode other than the one sought because the
initial estimate was not close enough to the desired eigenvalue. Opera-
tionally, this can lead to a particular mode appearing more than once in the
expansion I dj uj (r) sin 3 x, etc (Eq. 2.17a)). We can remove one of the

duplicate terms from the series, hut we are then left with fewer functions for
approximating the endwall boundary condition. As the calculation proceeds for
decreasing time, the number of eigenfunctions decreases by one. The error,
Er, then increases.

Another possible source of difficulty at early time occurs when
M=1t-V/r=0, i.e., when the nutational frequency equals the frequency of
the circumferential motion of the fluid, indicating a resonance; see Refer-
ences 7 and 12. The value of r for which M vanishes is called the "critical

level” and is denoted by r.; the neighboring region is called the "“critical

layer." The critical level begins at r = 1 for t = 0 and moves inward with in-
creasing time until it reaches the axis at a finite time and then disappears.

When inviscid perturbations are treated for constant yaw, as in Reference 8,
the flow equations become singular at r = r.. The critical layer is discussed

in References 7 and 12 for viscous perturbations. Figure 4c in Reference 7
illustrates in this situation that high-frequency large amplitude oscillations
in the flow solution occur about r = Fe under certain conditions; the numeri-

cal process described in Reference 7 is able to compute these oscillations.
The number of zeros becomes large and identification of a mode is again made
ambiguous.

I[TI. LIQUID PRESSURE MOMENT

A, Pressure and Moment Formulas.

According to Eqs. (2.1d) and (2.8d) the pressure is

12. R. Sedney and N. Gerber, "Numerical Study of the Critical Layer in a
Rotating Fluid," AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada,
January 1984, AIAA Paper No. 84-0342.
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p=P-K [-EI sin (tét-0) + Pp €OS (tot=-0)] + 0 (Koz), (3.1)
where

R (rsx) =pp+1py. (3.2)

Omitting the despin torque, one can express the moment produced by the liquid
on the spinning and nutating shell as the complex quantity M(L?)P + 1 M(Li)P'

A complex moment coefficient, C(LM)P’ is introduced as in Eqs. (5) and (6) of
Reference 2:

- - - - 2 2'2 i'r&t
M(LY)P + i M(LZ)P (2mpasc) a4¢? 1 C(LM)P Kl e

(3.3)
Coamyp = Cusmye * 1 CrLimype
The C(LSM)P and C(LIM)P represent the moments acting to change the yaw angle

and the nutation rate, respectively.

The moment will be evaluated about the center of gravity of the projec-

tile in the x, ¥, Z system. Details need be shown for only one component,
say M(Li)P’ because of axisymmetry in the transverse motion. Let

Mozye = MLzsye t Mzmye t MLzsyee (3.4)

where the three terms on the right-hand side denote the moments on the side,
top, and bottom walls, respectively; as given in Eq. (53) of Reference 2 they
are

A 2m B

M(LiS)P = (pa%42) S S p (r=1) x cos ¢ do dx (3.5a)
-A "0 A
1 (2na 7]

M(LiT)P = -(pad4?) g S p (x = A) r2 cos 6 de dr (3.5b)
0 “0 A
1 (2n ]

L] -~ ~2 - - ~

M(LiB)P = (pa42) S s p (x=-A)r cos 0dsdr |. (3.5¢)

0“0 4
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The non-dimensional cylinder radius occurring in the integrand of Eq. (3.5a)
is equal to 1.

B. Sidewall Moment.

The pressure must be evaluated at r = 1. The bracketed term in Eq. (3.1)
may be evaluated at r = 1 without changing the order of the approximation.

According to Eq. (A4)

-~

P(r=1)=P(r=1)-Kx cos (t¢t-8) (aP/ar)  _ ;-

P (r =1) is a constant, designated by Py. From Eq. (2.2e), (aP/ar)r -y 2
(V2/r). . 1 = 1. Hence

P(r=1) =P (r=1)-K, x cos (tét-8). (3.6)
Then, from Eqs. (2.1d), (2.8d), and (3.6), with P replacing P,

p (r=1) = P1 - Ko {([x + Br (1,x)] cos (tt-o) -
(3a7)

p; (1,x) sin (t4t-0)} + O (Koz).

When Eq. (3.7) is substituted into Eq. (3.5a), the P; term makes no

contribution to the integral, leaving only K, terms; thus r, 8, x can be

replaced by r, 6, x without changing the order of approximation. Then Eq.
(3.5a) reduces to

MiLzsye! (Ko pas42) = -[2x Real (I)] sin =it -

. (3.8)
[2n Imag (IS)] cos t¢t

where

A
Io =3 A3/3 + i S x p (1,x) dx. (3.9)

S
0
Upon substitution of Eq. (2.17d), Eq. (3.9) becomes

23




(-

[.=1a3 [5 (1) + 1] +4 ¢ 6 (1)[—3— sin A A - LA cos AA +
3 0 k k K

S - 2
k =1 A A
(3.10)
iz dj pj(l) [— sin ujA - =— A cos ”jA]'
j=1 u.? U,

J J

G Endwall Moments.

The term P(r) of Eq. (3.1) must be evaluated as a function of F, o at x =
A in the moment integral of Eq. (3.5b) for the top endwall. As demonstrated

in Appendix A, Eq. (A7),
P(r) = P(r) - K A (V/r) cos (tit-6) + 0 (Ky2)- (3.11)

The P(F) term makes no contribution to the integral, leaving only terms of
O(KO); then the r, 8, x may be replaced by r, 8, x without changing the order

of approximation. The remaining part of the pressure is an odd function of x;

Egs. (3.1) and (3.11) are substituted into Eq. (3.5b) to yield

ML7g)p/ (02°47) = 2n K ([Imag (1g)] cos it +

. (3.12)
[Real (IE)] sin tét}
where 1
IE = S r2[p (r, x = A) + AV2/r] dr. (3.13)
0
Substituting Eq. (2.17d) into Eq. (3.13) gives
1
Ig = S r2 [A Po (r) + . f . P (r) sin a A+
0 (3.14)
NJ )
; f 1 dj P; (r) sin uy A+ i AV2/r] dr.
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D. Moment Coefficients.
The moments of Eqs. (3.8) and (3.12) have the form

MLis)p = Ko (Mg sin it + Myg cos tit) (pa®4?)
(3.15)
M(LiE)p = Ko (Myg sin Tét + Mpp cos wit) (pas?),
where

M

ls £ 21[ Rea] (Is), MZS Zﬂ Imag (Is)

M -2x Real (IE), Mo = -2n Imag (IE).

1E

The total moment is

M7ye = Misyp * MLiEyp = Ko (p2%2) (Mysin it + M, cos jt), (3.16)

where

Mp = Mis * Mg Mp = Myg + Mpg. (3.17)

Our computational results will be exhibited in terms of the moment
coefficient, C(LM)P’ defined in Eq. (3.3). By Egs. (3.3), (3.16), and (3.17),

CiLsmyp = -My/[2nt c/a),  Cipquyp = -Mp/[2n7 c/al. (3.18)

Our primary interest lies in C(LSM)P’ which represents overturning moment, and
we shall present time histories of this quantity.

IV. RESULTS

This report does not include the contribution to the moment from the
shear forces which, as shown in References 3 and 4, can be significant at
lower Re; shear contribution will be treated in a subsequent work. For the
present we concentrate on the analysis of the flow problem and procedures for
solving it, which are needed for both pressure and shear contributions. The
results given here illustrate the procedure and are compared with those of
inviscid perturbation calculations by the method of Murphy.® Side pressure
moment coefficient histories are presented for four combinations of Re and
c/a.
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In Case A, Figure 2, C(LSM)P histories are shown for five nutational

frequencies: t = 0.04, 0.05, 0.09, 0.12, and 0.14. The curves have very
pronounced peaks for t = 0.05, 0.09, 0.12, and 0.14. These peaks (except for
the right-hand peaks on the t = 0,12 and t = 0.14 curves) occur at times close
to those at which the perturbing motion is in resonance with the wave motion
of the n = 1, k = 3 natural oscillation mode of the liquid in the cylinder.*
The right-hand peaks on the t = 0.12 and t = 0.14 curves indicate resonance
with the n = 2, k = 5 mode of the spinning fluid. The eigenfrequency of the n
= 1, k = 3 mode is approximately Cp = 0.04 for solid body rotation;

consequently the moment will not damp out with increasing time for t = 0.04.
Outputs of the inviscid perturbation calculations (method of Reference 8) are

also presented for t = 0.04, 0.05, and 0.09. The predictions of times of peak
moments differ by less than 0.07 s. between the two methods. For t = .12 and
.14 only the present results are shown. Reference 8 cannot compute these cases
because of the presence of the critical layer.

The results for Case B are shown in Figure 3. The spin-up time (defined
in Section I of Reference 11) is smaller here than in Case A; therefore, the

interval of interest occurs for smaller €. The results are qualitatively the
same, however. The maximum of C(LSM)P occurs near the time when Cp = v = 0.15
for the k = 3, n = 1 mode. The results from the method of Reference 8 are
also shown in Figure 3. These disagree with the present results at t = 200.

For smaller T that method breaks down because of the existence of the critical
layer. Our calculation was not carried out for smaller times because of

difficglties, described in Section II.C, which were encountered in evaluating
the 15 Ss
J

In Case C the high Reynolds number requires a turbulent Ekman layer. The
aspect-ratio and nutational frequency are chosen so that Cp(t) = © at t =

38,500 for the k = 5, n = 1 mode. Both methods exhibit the occurrence of
resonance near this time. The critical layer occurs beyond the range of these
curves in this graph.

The only difference between the parameters of Case C and Case D, Figure
5, is a 2.55% increase in aspect ratio, yet the moment coefficient histories
are radically different. Sensitivity to aspect ratio has been noted previ-
ously in yaw growth rates of projectiles containing liquid payloads in solid-
body rotation; see, e.g., Figures 10 and 12 in Reference 4. Both methods show
yaw damging moments at this stage of the spin-up, with maximum damping near
the time when CR = 1; however, the amplitudes differ widely. Furthermore, the

curve of Murphy's method exhibits a period of sharply rising and falling
overturning moment which the present method does not. The results of Case D
are not yet thoroughly understood. The following comments may be relevant to

*The reader is referred to References 1 and 7 for description of the oscilla-
tion modes of a liquid cylinder. In this study spin-up eigenvalues were com-
puted without endwall boundary condition correction.
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the situation. Because the cylinder is executing forced rather than free

angular motion, the liquid may under certain conditions exert a yaw damping
moment. The current treatment of the endwall boundary condition would lead
one to infer that the theory grows less valid with decreasing time. In the
inviscid perturbation method the results may deteriorate, when operating
backwards in time, before the critical layer first appears.

For each perturbing frequency there is a time t = ty at which the moment
coefficient has a maximum, C(LSM)PM- Conversely, at each time there is a

perturbing frequency L (t) for which C(LSM)P = C(LSM)PM' For Case A Figure

6 exhibits the upper limit to the side moment coefficient that can be experi-
enced during spin-up compared to that which can be experienced for fully spun-
up basic flow. The moment coefficient ratio decreases rapidly with decreasing
time in the present calculation, but the inviscid perturbation result indi-
cates a very slowly changing ratio.

V. SUMMARY

The interaction between the flow of a liquid payload and the motion of
the spinning and nutating shell containing it complicates the prediction of
the angular motion of the projectile and the forces on it. This paper repre-
sents a first effort using linearized fully viscous equations to determine
side pressure moments exerted by the liquid on the container during the liquid
spin-up process. The heuristic approach of Murphy® is used which makes
crucial assumptions regarding time-dependence of the flow and the endwall
boundary condition. The statement of the problem specifies the angular motion
of the projectile; thus, the present treatment cannot simulate actual flight,
although it can simulate performable gyroscope experiments.

Calculations were made for four cases. It is seen that yaw damping
moments exist under certain circumstances. For three cases good qualitative

agreement is obtained with the results of inviscid perturbation calcula-
tions. Side-moment coefficient histories are bell-shaped curves with peaks
occurring approximately at times when the nutational frequency coincides with
an eigenfrequency of the liquid. (For the solid-body rotation resonance case
in Figure 2 the curve has a flat top.) In the fourth case the discrepancy
between the results of the two methods is large, though both methods predict
sharp peaks of damping moment coefficient.

. The next step in this investigation is to compute shear force on the
cylinder walls and then obtain the shear moment on the projectile. It is

expected to have a noticeable effect for smaller Reynolds numbers. Inclusion
of the Ekman layers in the basic flow is necessary in order to have a rational

approximation to the solution.
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APPENDIX A: EVALUATION OF VARIABLES ON BOUNDARIES

The relationship between the inertial and nutating sets of cylindrical
coordinates is (Eq. (9) in Reference 2)

rero-K x cos (tjt-0) + O(K 2) (A.1la)
0= 0 - K, (x/r) sin (t§t-0) + 0(K,2) (A.1b)
X = X + K, rcos (14t-0) + 0(K 2) . (A.1c)

Recalling Eq. (2.1), velocities are

u = dr/df = D - Koﬁ, v=rde/dE =V - KOC
- * *
w = dx/dt = W - Kow (A.2)
u = dr/dt, v = r de/dE, w = dx/dE.

The velocity transformation between the earth-fixed and aeroballistic systems
is obtained by differentiating Eq. (A.1l) with respect to time and substituting
the expressions of Eq. (A.2) for the derivatives. Here we make an additional
approximation in order to keep the expressions tractable. According to tEe

Re'1/2; we assume the same for U

terms in addition to K02

—_—

Wedemeyer model, U and W are both of order

-1/2 2 o 1/2

and ﬁ. We shall neglect K0 Re and K0 Re

terms. We then obtain for ¢ = 0, i.e., Kl = Ko’

- * * * .

u=1U- Ky U+ K x (V/r - 1) sin (t4t-8) (A.3a)
~ * * .

v=V- Kov + K0 X 1 cos (t4t-6) (A.3b)
~ * * * . .

W=W-Kw-Kr (V/r-1) sin (t¢t-9). (A.3c)

A variable may be evaluated at r= 1 by an expansion about r = 1, thus

=
—
)
]
—
S
"

h (r=1)+ (ah/ar)r -1 (r; SN - 1) + O(KOZ).
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By application of Eq. (A.la)

h(r=1) =h (r=1) - Kx cos (tgt-0) (ah/ar). _ 1 + 0K, 2). (A.4)

. - . 50 -1/2
Equations (A.3) are now evaluated at r = 1, Recalling that U, W = O(Re )

and i (r =1) = W (r =1) =0, we apply Eq. (A.4) to Eq. (A.3) to obtain at
r=1:

0 = K, [-u + x (1-1) sin (xjt-0)] + 0 (Koz, Re~1/2 K,) (A.5a)
151 +K [-v - x {Vr(r = 1) - 1} cos (tt-0)] (A.5b)
0= K [-w - (1-7) sin (tit-8)]. (A.5¢)

Finally, replacing U in Eq. (A.5h) by V of the Wedemeyer model we obtain the
boundary conditions of Eq. (2.6).*

To evaluate P on the endwall, one applies the expansion

P(x=A,r) =P (x=A,r)+ (x; A A) (aP/ax)X “pt
(A.6)

(r - r) (3P/3r) . + O(K?).

=

*Eqs. (A2), (A4), and (A5) in Reference 2 contain errors. The signs directly
% % *

following :4, ;, and w in the right-hand sides of Eqs. (A2) should all be
positive. The minus signs directly following the equals signs in Eqs. (A4)

and (AS) should all be changed to plus signs. Also b (r = 1) in the last
equation of Eqs. (A4) should be replac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>