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Statistical Analyses for
Nondestructive Testing
D. B. Owen
Southern Methodist University
Abstract

A statistical method is developed for making an inference about a performance variate
based on an observation of a screening variate. This is the typical situation in nondes-
tructive testing where to measure the variable of primary interest would destroy or
degrade the item under study. Typically the performance variable is lifetime. The non-
destructive testing engineer must look at other related variables and based upon some
mathematical analysis and engineering judgments, decide if the item can meet the
minimum lifetime requirements.

The method described in this paper allows the engineer to make this inference
from the screening variable to the performance variable based on a training set. That
is. data are gathered on the screening variable and the performance variable for a set of
n items. Then all future items are screened according to the rule developed and among
the accepted items there is a preassigned probability that at least a given proportion of
the items will have minimum lifetimes. The method is simple and easy to apply.

1 INTRODUCTION

In the typical ncndestructive testing situation measurements are made on one
random variable while the inference is to a second random variable. For exam-
ple. a structural part of an aircraft may be X-raved or measured using ultra-
sound devices. Based on those measurements we wish to have some high
assurance that the aircraft part will last at least for some preassigned length of
time.

Until recently the inference has been made based on the presence or
absence of any cracks at all showing in the X-ray. However, X-ray technology
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160 Owen

has now advanced to the point where cracks are shown which may not have any
significant effect on the desired lifetime of the item on test. Packman, et al.
{1976) point out the need for statistical methods in handling problems of this
type.

A nondestructive testing engineer evaluates the X-ray photographs and
based upon his best engineering judgment and what calculations he can make
decides whether the structure will last for the required length of time. The
method described here allows him to make the inference from the X-rays to
the lifetime based on a statistical model. Each item is subjected to a test and
some composite measure of the X-ray density is developed which is then corre-
lated with the performance variable (lifetime) which has the specification placed
on it. Hence the model takes into account the engineer’s judgment through the
method of developing the screening variable over a training set; and then the
process can be automated. In this way human errors are eliminated from the
process. The technique also leads to greater consistency in the judgments that
are applied.

Let us be clear at this point that development of this measurement to
represent the X-ray will not be trivial. It will take a great deal of cooperative
effort between engineers and statisticians to develop meaningful and consistent
estimators. Each application will probably require a new development effort.

I do not want to underestimate the effort that will be required to do this
properly in each case. On the other hand, in this paper I will assume that the
X-measurement (on the correlated variate) and the Y-measurement (on the
performance variate), have been developed and are jointly bivariate normally
distributed.

In mathematical terms we want to be, say, 99% sure that the remaining
lifetime of the part is at least L flying hours.

The technique which will be discussed develops the statistical model for
this problem and gives the procedure which must be followed to arrive at the
assurance which is sought.

Table 1 gives, for example, the increase in the proportion of aircraft
meeting our criterion (in our example, at least L flying hours) if we start off
with 70% of the aircraft meeting the criterion and we select a proportion (selec-
tion ratio) with the highest scores on their X-rays where the correlation
between the X-rays and the lifetime is indicated in the left column. For exam-
ple. if we choose those aircraft which are in the upper 40% in X-ray scores and
we have a correlation 0.75 we will increase our percentage of aircraft with the
nceded flying time from 70% to 95%. Of course, the use in this context would
usually be ftor special missions. However, the technique which has been
devcloped here is much more general than that.

Now let me show you Table 2 where you can use two criteria 1o select the
aircraft for the special mission. Here the subscript one (1) refers to the perfor-
mance variable. (ifetime) and the subscripts two and three (2 and 3) refer to
the screening variables. This time you may want to think of the second vari-
able as some measure of the structure of the aircraft and the third variable as a
measure of the engine viability. The first variable is still the lifetime of the air-
craft and we consider that we are successful when the lifetime is at least L
flving hours.
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Table 1 Proportion meeting requirements after screening 3
when proportion meeting requirements before Screening is y =
0.70

Correlation Selection Range B

P 010 020 030 040 050 060 0.70
.00 070 070 070 070 0.70 0.70 0.70
10 07% 075 074 073 073 072 072
AS 079 077 076 075 074 073 073
.20 08 079 078 077 076 075 0.74
.25 084 081 080 078 077 076 075

30 08 084 082 080 078 077 075
.35 089 08 08 082 08 078 076
40 091 088 085 083 081 079 077
45 093 0% 087 085 083 081 078
50 094 091 089 087 084 082 080

.60 097 095 092 0% 087 085 082
10 099 097 09 093 051 088 084
75 100 098 097 095 092 089 086

If the proportion meeting the criterion of at least L flying hours is 0.70

before selection and if the correlation between flying hours and structural
strength is p,; = 0.5; correlation between flying hours and engine viability is
P13 = 0.4, and the correlation between structural strength and engine viability
is py; = 0.1, then selecting the 40% of all aircraft with 62.1% in the high struc-
tural strength and 62.1% in the high engine viability categories will raise the
success of the mission from 70% to 88.2%. The technique of having two
screening variables is especially important when we have a minimum require-
ment for two screening variables, as in our example, which cannot be combined
into a single variate. In other words for most missions it would nor be desirable
to allow an extra high structural measurement to offset a low engine measure-
ment.

Table 2 Proportion meeting requiremeants after screening 5 when proportion meeting re-
quirements before screening is y = 0.70

True Selection Ratio
1 2 3 4 ) 6 7 8
BUIYTT | (4 T339) | (6217 | (B89 | (7690 | (B33V | (890)]
Py P12 Py

col 4 4 943 912 886 .861 841 813 768 763
vl s 4 962 935 908 .882 .860 829 .801 m
[ s 978 954 929 902 .880 846 815 782
i BT | (41D (518) (.601) (.689) (.761) (.828) (.889)
C2 X 4 937 907 881 859 833 810 187 762
2 N 4 957 929 902 879 852 826 799 771
L2 R 5 973 948 923 899 870 842 812 780
| BL2S8Y | (393) | (S02) | (.595) | (.678) | (.754) | (823 | (.8R&)
o3 4 4 932 902 876 8S3 830 800 78S 761
3 5 4 952 923 897 873 R48 823 797 770
|3 5 5 968 942 917 892 8635 838 810 779
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162 Owen

However, there are situations where a combination is quite reasonable.
For example, if our concern was only with two structural components on a mis-
sile we form a new variable

U= (Xz"';lxz)+

Xy X3

(XJ _l".\‘_!)

where (x;, x;) are measurements on the two structural components with means
(p,z, pxj) and standard deviations (o,,, o, ) and where

P12 — P13 P P13 —P12PA

A= B=
V1-phJl-ph-4 Vi-ph1-ph-4

and
A=1-ph~pt—ph+ 20000

Then the correlation between the performance variable (say, ) and U is given
by

) _\ll—Pzzs—A
YW T —
Vl—Pzzs

In other words, it is possible to add measurements of several variables as indi-
cated above and reduce everything to a single screening variables and a single
performance variable. This is a viable approach as long as there are not
separate minimum requirements for the screening variables. For more infor-
mation on this see Thomas, Owen and Gunst (1977).

We now will confine the rest of our discussion to a single screening vari-
able (X) and a single performance variable (}).

2 CASE WHERE ALL PARAMETERS ARE KNOWN

We assume that we have a bivariate normal distribution with a performance
variable Y (say, lifetime) and a lower specification limit on Y, which we will
designate L. The proportion of the total population of lifetimes (}) greater
than L is designated y. We propose to screen on the correlated variable X (say,
voltage) so that we raise the proportion of Y's greater than L to 8, i.e., in
mathematical terms.

where X and Y have a joint bivariate normal distribution with positive correia-
tion, p.

The mean and standard deviation of X are u, and o . respectively, and
K is a standardized normal deviate corresponding to 1008% of a standardized

G g o i
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normal distribution in the lower tail of the normal distribution.

Table 3 gives what amounts to the inverse of Table 1. That is, here we
set a goal that the proportion 8 must meet the requirements on the perfor-
mance variable and we tabulate the proportion 8 which must be selected using
the screening variable to reach our goal. Table 3 is representative of much
more extensive tables which are available in Odeh and Owen (1980).

For example, if we wanted to raise the proportion of acceptable items
from 0.75 to 0.95 and the correlation p is 0.90 then we would select the upper
68.82% of the X measurements, i.e., select all X 2 u, — 0.4989c,.

In our example the original population can be divided into 4 parts:

(1) Those which are accepted by Screening and meet Specifications,
ie, PlY 2 Land X > u, — Kgo,} = 88 = 0.654.

(2) Those which are rejected by Screening but meet Specifications,
ie., PlY 2 L and X > u, — Kgo,} =y — 88 = 0.096. Note
that these two add toy = P{Y 2 L}.

(3) Those which are accepted by Screening but fail Specifications, i.e.,
PlY > Land X > u, — Kzo,} =B - 88 = 0.034.

(4) Those which are rejected by Screening and fail Specifications, i.e.,
PlY< Land X < pu,— Kgo, = 1—y— B+ 88 = 0.2l6.
Note that these four proportions add to one.

Table 3  Table of values of 3 where proportion acceptable after selec-
tion = § = 950

—

Proportion | T |

Correlation = p

} Acceplable |
| in IL - ] 1 i
- Non-Selected '
| Population | 600 1 700 750 ' 800 | 900 | 950 | 1000
=y | ; | |
prrTrTerL oo mmmopoiTme oo =
750 | 2812 | 4282 | 4989 | Se66l | 6882 | 7432 | 7895 |
: 760 I 3035 1.4509 5206 | .5863 | 7043 | 7567 | 8000
| 770 I3 ‘ 4745 | 5430 | 6070 | .7205 | 7703 | 8105
f 780) ' 3527 | 4991 | seel | 6281 | 7368 | 7839 | 8211
790 | 3798 | 5246 | SB9B | 6496 | 7532 7975 | 8316 |
© B0 o6 | 5S11 G e1a2 | eS| 769 | 810 | a2t |
810 | 4392 785 | 6392 | 6938 | 7862 ‘ 8246 | 8526 .
820 4716 | 6069 . 6648 I 7165 | 8028 , 8381 | 8632,
) 830 | S060 1 6362 | 6910 | 7395 | 8194 | 8516 | 8737 |
| 840 5323 1 6664 | 7178 | 7628 | 8360 | 8651 | 8842 |
850 5806 | 6975 | 7450 | 7863 | 8526 l 8784 | 89471
860 [ 6209 | 7293 ' 7727 | 8100 | 8691 | 8917 ‘<9053|
870 | 6629 7618 | 8007 | 8338 | 88ss | 9048 | 015yl
880 1 7067 | 7947 | 8288 | 8575 90l6 | 9177 | 9263
890 | 7519 | 8280 | 8569 | BII | 9176 | 9305 | 9368 |
900 i 7981 | 8612 ( 8848 | 9043 | 933 !,9430 ‘9474i
: 910 | 8446 | 8940 | 9121 | 9268 | 9482 | 9552 | 9579 |
' 920 _ 8905 | 9256 1 9382 . 9484 | 9627 | 9671 | 96nd:
; 930 L9341 | 9552 1 9626 ' 9684 | 9763 | 9785 | 9789 |
| 940 9727 | 9811 | 9840 | 9861 | 9889 | 9894 l 9895 |
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This population is then divided into two populations, one of which is
accepted by screening:

Those which meet Specifications are
P{Y > Lgiven X 2 pu, — Kgo,] =86 =095.

Those which fail Specifications are

e e e v

PlY < Lgiven X > u,— Kgor,} = 1 — 8 = 0.05.

And in the population which is rejected by Screening;
Those which meet Specifications are

PLY > L given X < pu, — Kgory) = 11—'_—'? - 0.309,

Those which fail Specifications are

et PY < L given X < p, — Kgo,) = l;%%%ﬁﬁ = 0.691

In the original population 25% fail to meet specifications while in the population
selected by screening only 5% fail to meet specifications. On the other hand in
the rejected group 30.9% do meet specifications.

Now it might be well to digress to remark that we have assumed that we
had a lower specification limit and a positive correlation.

The procedure is also applicable for the situations where X and Y are
negatively correlated or if there is an upper specification limit, U, on Y. In par-
ticular these situations would be handled as follows:

) 1. Negative correlation and upper specification limit U on Y:

a. enter the table with the absolute value of correlation,
b. accept all units whose value X exceeds u — Kgo, and
¢. reject all other submitted units.

2. Negative correlation and lower specification limit L on Y:

a. enter Table 3 with the absolute value of the correlation,
b. accept all units whose value X is less than 4 + Kgo, and
c. reject all other submitted units.

3. Positive correlation and upper specification limit U on Y:

a. accept all units whose value X is less than u + K,,(r, and
b. reject all other submitted units.

g AL T AL
: 3
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3. CASE WHERE ALL PARAMETERS ARE UNKNOWN

In most applications the parameters of the distributions will be unknown and
they will have to be replaced by estimates obtained from a preliminary sample
of size n (a training set). The steps in the screening procedure will now be
given. These steps require several tables to be entered to obtain the mathemat-
ical quantities required for the procedure. Odeh and Owen (1980) give tables
for each of these quantities.

(D

()

3)
4)

(5)

(6)

A preliminary sample of size n is obtained of paired values
(xi, y1) ... (x,, ¥,) and the usual estimators of the parameters
are computed.

A lower 1000% confidence limit on p is computed and called p *
If this is positive, we proceed to step (3). If it is negative an
upper 100n% limit is also computed. If this is positive, the pro-
cess stops since the two variabies X & Y could then be indepen-
dent. If the 100n% upper confidence limit on p is also negative,
then we proceed, making modifications indicated above in Section
2 for a negative correlation.

A 100n% lower confidence limit on ¥ = P{Y 2 L} is computed
and labeled y *

Enter a table of the normal conditioned on T distribution with
parameters (and estimates) and degrees of freedom = n— 1,

,y‘
n
*
P n+1’
5.

This table is like Table 3 except that it also varies with degrees of
freedom.

All product items are accepted if

+ 1
n

X23-15/2s

We can then be at least 100(2n — 1% sure that at least 1008% of
the Y's are above L in the selected population.

For example, if a4 preliminary sample of size 17 is taken and r = 0.94 then

choosing 7
0.8558.

= 95 we obtain a 95% lower contidence limit on p 1o be p* =

If Kk =(3 = L)/s, = 2.0 then a 95% lower confidence limiton y is y* =

0.90.

Fre o
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We enter the normal conditioned on t-table with (16,0.90, 0.8317,0.95)
for (/. v, p, 8) and obtain 1z = 1.384. Our criterion is to select all items for
which X > X — 1.424s,. Then in the selected group we can be at least 90%
sure that at least 95% of the performance variable, Y, is greater than the lower
specification limit L.

If this screening is performed on a finite group of say M, items then the
items in that group follow a binomial distribution with parameters M and §.
The situation is very similar to what is called prediction intervals in the litera-
ture, except that we say we are at least 100 (2% — 1%) sure that the probability
of z or less defectives is at least that given by the binomial distribution. Hence,
if M =10 for the example above with an n = 95, then we are at least 90%
sure that the probability of zero defectives in this group is 0.5999. See the
paper by Owen, Li and Chou (1981) for more details on this.

4. TWO-SIDED SPECIFICATION LIMITS, KNOWN PARAMETERS

Now let us consider extensions of these procedures to two-sided limits, i.e.,
where we are interested in controlling the P{L € Y € U}. Here things
become much more complicated and it is convenient to define a y, and y,
which are the y’s of the one-sided procedure, i.e., let

PlY 2 L) =1y, L-p.,—K,lo'7
PlYS Ul=y;, U=p,+K, 0/

Before screening, the proportion of acceptable product is y; + y; ~ I.
After screening, y, + y, — 1 is raised to 3.

Because of the many combinations of y, and y, possible we sought a solu-
tion first when

Y =727
In this case we accept all items for which
iy — Kgo, £ X <, + Kgo,
where K is read from tables obtained from solving

8+
2

BVN(K,. K,) — BVN(K,.— Kp = 231 28— h =0,

where BVN is the bivariate normal cumulative with the variates stand-
ardized.
Table 4 gives values of K, that solves this equation when & = 090
More extensive tables may be found in Li and Owen (1979).
Note that in the one-sided case we can select so few product that we can
raise 8 to any preassigned value. That is, there is no mathematical limit on §;
although there are clearly practical ones depending upon how much good pro-
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Table 4 Table of K for two-sided
specifications with vy, = y,= y and
proportion acceptable after selection of §

= 0.90
Correlation
Gamma
90 95 1.00
18 3313 6657 .8820
.79 4368 7231 9239
.80 5252 7814 9674
e - 81 6085 | 8411 | 1.0129
) 82 6894 9026 | 1.00G4
83 7699 | 9664 | 1.1108 |
.84 8517 | 1.0329 | 1.1639
.85 9357 | 1.1029 | 1.2206
.86 1.0234 { 1.1771 1.2816
.87 1.1159 | 1.2565 | 1.3476
.88 1.2151 | 1.3424 | 1.4202
.89 1.3231 | 1.4370 | 1.5011
.90 1.4432 | 1.5428 [ 1.5932
91 1.5804 | 1.6644 | 1.7013
92 1.7438 | 1.8102 | 1.8339
93 1.9522 | 1.9983 | 2.0099
.94 2.2622 | 2.2842 | 2.2865

duct you are willing to screen out. For the two-sided case the largest value that
8 can attain is

2G K, 1
V1 - p? .
When y,; # y, we accept all items for which
K — Kﬁlax X< my T KB: Ty

where K. Kg, are obtained from tables in equal-tailed cases. The proportion
of ¥'s meeting the specification is

A=Pl-K, < Z) < K, |-Ky < Z; € Ky)
5 ' fk”f-KB‘( ) dud
=8 ——— | g(u,v) dudv
By +By— 1 JK, Jokg
= § — adj. 8,

where g(u, v) is the density function for a standardized bivariate normal distri-
bution.

We then computed values of this adjustment to § and obtained the results
given in Table 5.

A
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Table § Values of maximum adjustments to §
when using equal tail specifications in unequal
tail cases
& =090 adj. 8 is largest when p = 0.70
Y1 Y2 ad). &
.88 .89 .004309
.88 .90 .006953
.88 91 .008708
L 88 92 009912
88 93 010772
- | e ‘ 88 94 011446 A
all other combinations of p and ;. ¥,
max. adj. § = 0.006
5 =095 max. adj. § = 0.006
F 5 =099 max. adj. & = 0.0C]

Now let us illustrate the procedure by an example:

Y = voltage at an internal point of a device hac
X = voltage at an external point of a device
] L =12 volts U = 16 volts

w#, =138 volts o, =213 volts p =090
Then,

K, =0845 K, =1033
or

PlY 2 L}=vy, =080, P{[Y < U}l=y,=085

For 5 = 0.90, we get Kg, = 0.5252, Kz, = 0.9357 and we will accept all items ’
for which

pe— 052520, < X € u, + 093570,

In the selected group, at least 89.4% of the Y values will be between 12 volts
and 16 volts.

5. TWO SIDED SPECIFICATION LIMITS AND UNKNOWN PARAME-
TERS

i e - When parameters are unknown we start with a training set of size » and . -
o proceed through the following four steps:

1. Find v, y; such that
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Plyi 2yl v22 7l =n
where y,, y; can be obtained from a table of a bivariate noncentral I
distribution. See Owen (1965) for a short table of this and sce Owen and Fraw-
ley (1971) for a larger table.
2. Find p * such that
Plp 2 p*) =1,

Odeh and Owen (1980) give a table for obtaining this easily.

n
n+1

L. , +
K, _, and similarly, to obtain K, , Compute Kﬁ.- .‘/ ntl K, , KB-=
8 8 ! n 8, 2

n+1
n

3. If o, is known, enter table with ’p‘ . 9, y,'l to obtain

K, . If o, is unknown, tables have not yet been prepared.
B,

4. Select all X for which

x-K,.o.<X<x+K_o,.
B8 By

Then, in the se'ected population we will be at least 100(2n — 1)% confident
that approximateiy 1008% of the Y’s are between L and U.

6. CONCLUSION

The screening procedures given here are all based on a bivariate n.\rmal model.
If such a model does not obtain, the solution seems to lie in the direction of
transformations to bivariate normality. A comprehensive approach to such
transformations is needed.

A great deal of work will probably be required for each application in
devising the variable or variables to be used as screening variables. This also is
a topic for further work.
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