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Robust contidence intervals tor a scale parameter:
A compromise between the Gaussian and the slash

Stephan Morgenthaler

Technical Report No. 255, Series 2

Department ot Statistics
Princeton University

Princeton, New Jersey 08544

ABSTRACT

In this report we describe a small sample
approach parallel to the one tor a location param-
eter (Morgenthaler (1983a, 1983b). We derive the

torm ot conditional contidence distribution tor
log(o) = v and then discuss the ditticulties in

compromising the Gaussian and the slash. We
explore both the strong and the bi-optimal pro-
cedures. And it becomes clear that there is a
ditterence between interence about location and
interence about scale.

1. Introduction.

Let y < Y2 < " < Yn be an ordered sample trom the

situation F(-6p). In this report we are concerned about interence

with regard to the scale parameter a. From the beginning we will

restrict attention to location-invariant and scale-equivariant

statistics S, i.e.

S(s(tt + - s S(.)

remark: On the two-dimensional class ot samples

(s,t) = s(tf + c) the statistic S is known it only S(C,) is

Prepared in part in connection with research at Princeton Universi-
ty, supported by the Army Research (Durham). The computing tacili-
ties were provided by the Department ot Energy, Contract DE-ACO2-
81ER10841.
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tixed. We call the representing element a contiguration (see

Morgenthaler (1983a))

*"-. To simplity the situation, we will transform our parameter space by

- log (CO

It is well known that this transformation symmetrizes the

distributions involved (see e.g. Bartlett and Kendall (1946)).

Furthermore it is ot mathematical convenience.

For a t-estimator T( ) we now require

T(s(tf + c)) T(e) + log(s)
.5.

This is the starting point tor our discussion. In the next chapter

we will derive the conditional contidence distribution and examine

the resulting strong confidence intervals. The third chapter will

be devoted to the study ot poly- and bi-optimal contidence interval

procedures.

2. Compromising between the Gaussian and the slash: Strong
4.

contidence intervals.

2.1. Introduction

Conditioned on any given contiguration c , the distribution ot

T( ) is determined by the distribution ot log(s) under the situation

F we sample trom. The choice T(c) acts like a location parameter to

an otherwise tixed distribution. This implies that the conditional

variance is not at all intluenced by our choice ot T(c) -- whatever

we choose, inside the contiguration the variability will be tixed.

September 21, 1983
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For setting contidence limits we are interested in the distribution

ot log(s) conditioned on the contiguration c as well.

Let dsFlxt,,)l denote the conditional density ot log(s) given the

contiguration c under sampling trom F Then we have

00
FlxlUJ' ) "- eXk(eX,tI,,.,I) dt. (2.1)

F.-00

where k(stlua,c ) is the conditional density expressed in terms

ot the contiguration parameters s and t given we are in

contiguration c and the underlying parameter values are ju and

proot:

dsF (x1'jo,) - xP[log(s) < xIj,C,€]

F x.

"" d oo •e

= .A' I rk(stI..a.€ ) ds dt.
Ioo

. It then tollows that

dsF(xI ,o,) - dsF(x-.10,l,c) (2.2)

where V - log(a). This is a consequence ot a simple change ot

*"" variables (see Morgenthaler (1983a))

FdslxI',, - eXk(eX,tlp,a,c) dt
-00

I e ek(e qlO,I,c)

-00

= d S F ( X 
- I Or l 

, ) .

. "September 21, 1983
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Now we know, what effects changes in the parameter values ;j and a

have. The location parameter p has no effect at all, whereas the

scale parameter tixes the location ot dsF(), which is otherwise

unchanged.

This shows us that the t-estimation problem is a location-type

problem with known scale.

remark: The ettects ot changing the class-representing contiguration

", are as follows:

ds F (xIO,l,e + wt ) - dsF(XIO,l, )

dsF(XIO,l,v) - dsF(x+log(v)I0,1,c)

where w G R and v G R

2.2. Single situation case: known shape F

It we choose

4 4 4
T(c)1  -aveF(log(s) Ipa,c - -t-aveFClog(s) 10,l,c I

for arbitrary values of u and a we will have

aveF[TIli *,a*,d] - ave [T(C-)+log(s)IM ,a ,c ]

4
* *

Tlc>l+ave F(logls) 10,1,c]+ = c

where or a log(a) and r - log (a . Any ot these choices of T()

leads therefore to estimators whose overall mean is equal to all the

conditional means, i.e. it is not tunctionally dependent on . Its

variance is therefore the average of tne conditional variances which

September 21, 1983
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-- as we have noticed above -- are tixed and can not be intluenced

by choosing another value for T(L). This estimate tor any choice of

-Y has therefore the minimal possible variance.

There is an infinite class of t - estimators with smallest

variance. The difference o two such estimators is constant.

On the oa-scale they are multiples of each other, but there the

behavior is more complex.

The problem is in one way simpler than the location point-estimation

problem, but there is an additional difficulty. We are completely

tree in choosing the standard form F( ) which is used as a reference

to describe the scaling. In this sense the scale parameter a is a

relative parameter, describing the scale relative to a standard

form. In the case ot the location parameter Aj we were able to escape

this difficulty by restricting attention to symmetric shapes and

choosing the standard form F( ) such that the center of symmetry is

at 0.

For the Gaussian situation we could adopt such an escape for

the scale parameter too and fix the standard form such that the

variance is equal to 1. In this case we have defined a target --

the standard deviation -- for our estimator of a and it makes sense

to ask for the estimator -- now on the v - scale -- which is

unbiased and has smallest variance. In order to be unbiased we need

ave F(TI,l,P1] log(l) - 0

and hence

. September 21, 1983
J. .--.
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.T()= -ave Flog(s)1O,1,?].

Setting contidence limits is straighttorward it we have a target in

'V mind. It U( ) is a scale-equivariant upper bound tor r, i.e.

U(s(l+ ti) log(s) + Ulc),

we are concerned about

P(U > logal),,' = P[log(s) + U(*) > vIpJ,',c"J
Pflogls) > t-u(c ) l , c , c I

4,4
00 . 4004

= r ds F(x IJ c ;j dx I - ds F(x-tIOI,c )dx
't-U (C

00 -u (cP
d S(XIO,lc) dx = 1- dsF(xIOgl,c) dx.

-U (c) -00

There are two natural choices, the balanced and the conditionally

- shortest choice ot upper and lower bound. The length ot contidence

* intervals conditioned on contigurations is tixed, since

, U(y) - L(J) = log(s) + U(e) - log(s) - L(c)

= u(t) - L( )

it .

" For the balanced contidence interval with conditional contidence

*level 100(1-c)% we take

U( - -ds (9IO l,e )F 2

L(c) -dsF(l-10l, ) (2.3)

4where dsF(PIO,l,c) is detined by

September 21, 1983 71
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~dsC P10,1, ,

dsF xIO,i, ') dx -
-00

Again there is the problem ot specifying a target. We have seen that

there is an intinite class ok 'r - estimatiors with smallest

variance. Similarly we can create an infinite class ok 100(1-4)%

symmetric confidence intervals by moving the one defined in (2.3) by

an arbitrary constant. Ok course it will then be a 100(1-11%

confidence interval for a different target.

remark: The Gaussian case (F =

Using (2.1) with the standard Gaussian J1 ) we get

00 2x n-- x oo n-I e... 2

.. dsXll,, is prop. to ( eXex) - 2 (t+c i ) dt
-00 i= d

. 2x n 00 n 2x

i.e. prop. to enXexp(- x -2 00i.
...... (c~i-)2 I exp(- =---t )

i-l -00

The integral in the last line is proportional to -L and hence
e

d(XIO,l,- ) prop. to e (n-I)xx(. e 2x n c-) 2)

n-1- 1  2x n 2 2x

prop. to (ex) 2  exp(- - (ci-c) )e

This we recognize as the distribution ot a transform ot a X2n- 1

random variable.
" " e2X

ds1(xIO ~ then Y eXhatednsy
0 % It X has the density ds(xl0, then has the density

(Jacobian

n-l-
-n -2 1

. (yI0,l,1 1 prop. to y exp(- " (-c) ) y 2-
, .2.-, i 2

September 21, 1983
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2  1and hence a X scaled by This gets us the normalizing
n-1 21

1;(ci- Z)

constant ot ds (xO,l,,c ) as

n-1
1n -2 2

n-3 ( (ct-c)
.n-1 2

2 )

ds 1 lxIO,l,c ) has two interesting properties

2I1] It contains the configuration only through S = 1(ci-E)

[2] S only attects the location ot dsf(xIO,l,C*)

(21 implies that the single situation confidence intervals in the

Gaussian situation will all be ot the same length even across

configurations. It we sample trom the Gaussian, the precision ot our

knowledge about T is determined by the sample size and is not

dependent on the point pattern ot our sample. The interval bounds
2

(2.3) are the usual symmetric X intervals transtormed to the

- level.

For more general shapes F(V) the above is not true and the length

ot the single situation confidence intervals will vary from

configuration to configuration.

The Gaussian analysis is in tact somewhat naive. The Gaussian

confidence intervals are too short for a heavy-tailed situation as

tor example the slash.

The single situation slash intervals are unitormely, i.e. tor all

configurations, longer than the Gaussian intervals.

September 21, 1983
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2.3. The two situation case: Gaussian and slash

In order to get a feeling for the problems we face, we intend

to study now the slash behavior of the confidence interval for -t

based on a "Gaussian analysis".

In order to compute the slash coverage probability we are forced to

specify which parameter we want to cover. It we choose our standard

in the slash family as

r (1 - exp(- x._ (2.4)r2r 2

2 2 2r
(2w) x

values tor r around (tl(O) = 1 as for the standard Gaussian)

(2)2

make sense. From (2.2) we know ot course that this implies just a

translation at dSslash().

Now we have identified our problem as one ot too much freedom.

In order to have a compatible meaning ot a "scale parameter" in two

different location and scale families, i.e. two different shapes, we

have to fix the relative scale between the two. More simply put, we

have to specify a standard distribution in each family.

remark: There are obviously several ways in which we can do this

matching ot families (see: Tukey(1980)). It we restrict attention to

shapes with finite second moment, one natural choice at the standard

form is a member ot the family with variance 1. In that case the

target ot our estimator or confidence interval is the standard

deviation.

Another idea is the matching ot percentiles -- in the case ot the

Gaussian and the slash family this leads to smaller values at r it

September 21, 1983
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we match turther out in the tail (see: Rogers and Tukey(1972)).

Finally we need not match at all. We can study estimators like the

median absolute deviation MAD and accept whatever umatching" it

imposes, i.e. accept whatever it estimates on the population level.

It we try to optimize the slash coverage probability tor the

Gaussian-balanced r - intervals, we are lead to values tor r around

1- which corresponds to matching the 97.5% - point. The maximal
.4,
slash coverage ot the usual X2 intervals we can achieve in this way

is about 32% tor samples o size 20 and 44% tor samples ot size 10.

In all the experimental work we will consider only these two sample

sizes and leave sample size 5 aside.

We see trom the above numbers how short the Gaussian intervals are
1

trom the slash point o± view. Furthermore it is clear that r = is

a bad choice, since it concentrates on "extreme", slash drawn

contigurations and tries to make Gaussian estimation compatible to

"slash needs". We should rather try to choose r in such a way that

the slash estimation is compatible to "Gaussian needs" on "nicely

behaved", Gaussian-drawn contigurations. In that way we might hope

that the slash analysis gives about the right, i.e. compatible

answer on Gaussian-drawn samples and can be used to extrapolate in a

sensible way to contigurations containing outliers, where the

Gaussian analysis breaks down quickly.

It we were to allow a conditional choice ot r conditioned on

each contiguration, we would tind quite large ditterences between

contigurations. It a contiguration contains outliers, the value ot r

such that the tamilies are compatible goes down; in nicely behave|

September 21, 1983
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1

contigurations it is around . In point estimation this cau
,2

at problems, since there will be a large part ot the varibil

to "conditional bias", which we cannot escape.

2.4. Stronq contidence intervals tor C = log(a)

In this section we want to study the possibilities tor

intervals which, conditioned on any contiguration, reach at

I00(I-c)% coverage probability, both tor the Gaussian and tc

slash. For each contiguration we get the balanced -r - inter%

[Lg,U ] and L s,U s ] tor the Gaussian and slash situation (s(

*(2.3)). For reasons discussed above, we are tree to move al]

" intervals relative to each other by a tixed constant. We wi]

this by holding the Gaussian intervals tixed and moving the

ones. This can be described by choosing a value r in (2.4).

* Only samples at size 10 and 20 are considered.

It turns out that the slash intervals are longer than I

Gaussians in each contiguration -- it we were allowed to chc

*. relative scale constant conditioned on the contiguration, wi

always get to a case where the slash interval covers the Ga

*,[ interval. This is a bit like the contidence intervals tor p

* samples at size 5, where Student's t interval "dominates" t

.. interval.

*) A simple strong interval is given by

L = min L, L }
9 5

U = max {Ug, U
9 s

September 21, 1983
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But now we have a relative scale constant at our disposal. Table 2.1

contains the tractions ot configurations talling into the classes

(a) L Ls  and U= U

(b) L - Lg and U = U5

(c) L Ls  and U U

Table 2.1:
Percentage ot cases (b), (c) and (d)

Gaussian situation slash situation

1 (b) (c) (d) (b) (c) (d)
1 1

12.61 82% 17 17 % 4% I 1722

I 2 2
2.8 64% 35 Z % 18 *% 2% 79 1%

size=202 22

"3.0 48% 52% 0% 24 -j% 2 2% 72 %

1 11
I3.2 37 % 6 22% 0% g29 .% 3 1% 67 %

- -

*I2.6 I93 .% 0% 6 .%I38% 0% 52%

2.8 85 1% 10% 4 2% 42% 0% 58%

size=10
2 I 84 1 2

I3.0 I78% 18s '% I45 7 %54
II2I2I

3.2 73 -1% 26% 2% 48 1% 2% 49 1%
3 3 3 3

r is as in (2.4)
(b): slash dominates
(c): Gaussian low, slash high
(d): slash low, Gaussian high.

All these percentages are based on 150 sampled contigurations.

The two situations behave ditferently. In slash-drawn configurations

the Gaussian interval otten supplies the upper bound -- more

September 21, 1983
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prominently so tor samples of size 20. Of course we expect this

behavior which shows how much outliers influence the "Gaussian

analysis". In most ot the Gaussian-drawn configurations, the slash

intervals dominate the Gaussian intervals. We learn that the two 1

situations favor different choices ot the relative scale constant 1

low tor the Gaussian and high tor the slash. Table 2.2 contains

expected lengths for the above strong confidence interval

procedures.

Table 2.2: estimated expected lengths tor strong confidence inter-
vals

1 Gaussian situation slash situation
r

2.6 1.08 (.66) 2.06 (.72)
2.8 1.10 (.69) 2.00 (.67)

size=20 3.0 1.13 (.74) 1.95 (.63)
3.2 1.16 (.78) 1.91 (.59)

single 0.65 (.00) 1.20 (.00)

2.6 1.63 (.66) 2.41 (.32)
2.8 1.63 (.66) 2.37 (.30)

size=l0 3.0 1.64 (.67) 2.33 (.28)
3.2 1.65 (.68) 2.29 (.26)

single 0.98 (.00) 1.82 (.00)

.- '.'-"length
The numbers in parenthesis are (single ti.e.sigesituation shortest~ ,ie
the mean length deficiencies and the row labelled "single" contains

the length from the single situation balanced intervals.

Figure 2.1 plots the mean length deficiencies given in Table 2.2.

" marks the points for I = 2.6, 2.8, 3.0 and 3.2 in samples of

size 20, "o" in samples of size 10.

1
r= 2.8 seems a good choice for the two sample sizes, in "size=20"

it is roughly minimax, in "size10" it roughly minimizes the

Gaussian deficiency (the minimum is rather flat). In Figure 2.1 we

see how the strong confidence intervals for vt lose a lot in the

September 21, 1983
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Gaussian situation due to the shortness of the X2-interval, which is

the Gaussian single situation choice. As the sample size decreases,

the slash interval more and more dominates the Gaussian one in the

slash situation (see Table 2.1). In Figure 2.1 we notice that the

strong intervals are really quite good in the slash situation tor

samples of size 10. The choice . - 2.8 seems reasonable from what we
r

have just said. In the case ot the smaller sample size (10) it

minimizes the Gaussian loss, in the case of larger samples (20) it

balances the losses in the Gaussian and the slash. In comparison to

location-parameter intervals the two situations under consideration

exchange places. Now the Gaussian based intervals are optimistically

short and the slash ones are long. As the sample size decreases, the

slash intervals dominate more prominently.

The relatively big slash loss in samples of size 20 is

puzzling. It is due to the tact that the strong intervals described

above often are "empty" in the center part for slash-drawn

configurations, i.e. the two single situation intervals are

separated by a gap = Lg - us , which has a chance ot happening
1

whenever the configuration talls into class (d). For - = 2.8 such a

gap occurs in 42% of the slash-drawn configurations tor samples ot

size 20 and in 19% for samples ot size 10. This is a problem which

did not occur in the case of confidence intervals for a location

parameter. There the strong intervals might have been "overlong"

when judged by the slash situation. But here the problem is that

neither of the two situations really Oneeds" these gaps, they are

"empty". It we measure the percentage of the total length which is

empty, we find that tor samples ot size 20 as much as 75% ot the

O* September 21, 1983
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total conditional length can be made up by empty space and for about

20% ot all slash-drawn configurations the percentage ot *emptyness"

is above -s ot the total length. For samples ot size 10 this peculiar

problem is not so grave -- about 4% ot all slash-drawn

configurations are above 1 empty.

The gap problem we have discussed above results trom an

-" incompatibility of the meaning of the Gaussian and the slash scale

parameters we have chosen. In configurations with outliers, the

'Gaussian model" breaks down and it can no longer be connected with
,% .'

the "slash model" in a sensible way. We noticed this in the case of

contidence intervals tor a location parameter, but it is even mare

prominent when we discuss the scale parameter.

For the purpose of application, the strong intervals for a

scale parameter as given above are not a helpful description of what

is going on. We need a detinition at the meaning of the scale

parameter not guided by one shape (usually the Gaussian) for all

configurations, but rather splicing together *meanings" guided by

difterent shapes. In the center section of dpF( ) (the margingal

density across contigurations induced by sampling from shape F) the

shape F determines the meaning of the scale parameter. Between the

shapes there will be a problem or relative scaling similar to the

one we have encountered in the case "Gaussian and slash". Solving

• Othis solves part of the splicing problem.

From what we have learned about samples of size 20 and 10 we can

predict what is happening tor size 5. The slash intervals tor tr will

*7 be much larger than the Gaussian X2-intervals and it might well be

V.- September 21, 1983
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that for . around 2.8 the slash intervals in nearly all

configurations contain the Gaussian intervals. The strong intervals

then would conincide with the slash intervals.

,'-

3. Bi-shortest confidence intervals for vt = log(o)

As we have seen in the previous section the compromise holding

the conditional coverage probabilities fixed is not practical. In

this section we define intervals for r which adapt better to the

differences in single situation solutions conditioned on the

configurations and avoid the empty space we encountered in the

previously discussed procedure.

Looking for the bi-shortest interval procedures on the log(o)-

scale leads to a problems similar to the location parameter case as

described in Morgenthaler (1983b). The confidence distribution tor

situation F conditioned on configuration c is

-U
CoF(u) 1- 4 dsF(xl0,1,c ) dx (3.1)

-00

with density

-u
coF(u) - 00 dsF((-u) 1,0, P )

-00O

(see (2.3)).

The bi-shortest intervals tor tr given the shadow prices pg and Ps

are given by the solution to

" k wk4'. up . kpWg + Ps sw

k.k w kW + *sws

4.- .

-. September 21, 1983
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k + k

LPgw+ PS (3.2)
k hk k+ kO\.v 9~ ( 9 + "\w

where Uk denotes the largest solution and Lk the smallest and

kal,...,N. The Lagrange multipliers \9 and Osare adjusted so that

both overall coverage probabilities are at least lO0(l-)%. h ( ) is

the mixture ot the conditional confidence densities

h" , w 9co ( + OX wco S( )

hk( ) ='gw () + - \w

S\9 9 Os s

The notations and ideas are the same as in Morgenthaler (1983b).

Note, however, that co ( ) is now the confidence density in theIg

Gaussian situation tor the parameter V - log(o).

The solution is simpler than in equations (5.5) where we had to use

E~~ ss~ I and
g[sic kI and Es[S k

to adjust tor the "scale" differences between configurations. This

difficulty disappears in the t-case since -- as we saw -- we

basically deal with a location problem with known scale.

We believe that measuring efticiency by expected length on the

logarithmic scale, i.e. after transforming to r a log(o) makes at

least some sense. The similar procedures on the original scale, i.e.

tor a, are less desirable.

3.1. The slash single-situation confidence interval procedure

We have already pointed out that the Gaussian and slash

September 21, 1983
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situation trade places it we move from p to tr (or a). And just as

Student's t interval was conservative in the slash situation, we

have now the slash single-situation interval procedures which are

conservative in the Gaussian situation. To keep things simple we

will restrict attention to the symmetric slash intervals which have

*tixed conditional contidenc'e coefficients (note that we have tixed

the relative scale between the two families by choosing I a 2.8 asr

* in the previous sections!). This is not the bi-shortest confidence

interval procedure with shadow price ratio a- oo, but is probably

not very different from it.

This symmetric interval has a Gaussian coverage probability ot 96.2%

and 98.6% in samples of size 20 and 10, respectively. The

conditional Gaussian confidence levels are most of the time very

high and the tail towards low conditional coverages is a lot thicker

in samples ot size 20. Of course this interval procedure is not

-. balanced it judged trom the Gaussian point ot view. We can see this

in Table 2.1 where the columns headed (c) and (d) show a

considerable imbalance. The slash single-situation intervals are

frequently too much to the right and hence miss the true tr-value

.. most often by overshooting. The increase in expected length over the

2
-" symmetric X -intervals is considerable. The expected length is

increased by about a factor of 14 for both sample sizes.

Just as Student's t interval should not be applied

*. uncritically, but -- as we have learned -- can be modified

S-successfully, the slash single-situation intervals have undesirable

properties. They are -- in Gaussian-drawn configurations -- often

* September 21, 1983



20

too pessimistic and wasteful. Introducing the Gaussian expected

length along with the slash expected length hopefully will help us

to tind procedures which correct this wastefulness. But we must face

the need for contidence intervals longer than the common -based

ones. In the next section the slash single-situation interval will

be used as a means ot comparison to indicate our progress.

*° -. % 3.2. The bi-shortest r-interval for the shadow price ratio 1

Let us consider the bi-shortest contidence intervals tor the

shadow prices pg a P5 = 1 (see (3.2)).

Figure 3.1 shows us a plot of the resulting conditional expected

lengths vs. the conditional expected lengths of the slash single-

situation interval discussed in the previous section. All plots are

based on a sample ot 150 configurations. The upper halt shows the

samples of size 20, the lower halt the samples of size 10. In both

cases we are indeed able to shorten -- and hence "save some

information" -- in the Gaussian situation. Note, however, that in

samples of size 10 the task seems to be more difficult. Only in

configurations where the slash single-situation interval is short

are we able to shorten considerably. In samples of size 20, the

bi-shortest are quite effectively shortened. In the slash situation

we have, of course, to give up something. Most of the bi-shortest

" intervals are enlarged, thus balancing the configurations where

introducing the Gaussian along with the slash leads to "erroneously"- CC:

short intervals.

The length of a t-interval conditioned on the configuration is

S r., .'.September 21, 1983
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tixed, i.e. constant, and is, turthermore, not dependent on the

underlying situation. It therefore reflects a property ot the

contiguration, which we can interpret as conditional

1

(degrees ot treedom) - . The X -intervals act as it each

configuration had the same number of degrees ot treedom. It we

introduce the slash situation, we learn that this cannot be

tolerated.

In Figure 3.1 we see how the ratio I contidence procedure recovers

some degrees ot treedom in Gaussian-drawn configurations compared to

the slash single-situation intervals.

On the average we lose about 2 of the "Gaussian degree ot

treedom" tor both sample sizes -- a bit less in samples ot size 20

-- b going from the X2-intervals to the slash single-situation

intervals. O course it is true that the slash situation is quite

an extreme challenge along with the Gaussian, but degrees ot treedom

1
only -1 as large as the usual Gaussian degrees of treedom is not

uncommon (see Gosset(1927) especially Table III).

The bi-shortest interval procedure tor shadow price ratio I

recovers most ot that loss tor Gaussian-drawn contigurations in

3samples ot size 20. It leads to a loss ot about T0 ot the Gaussian

degrees o± freedom. This recovery, o± course, is due partly to the

use ot a better center tor the contidence intervals (see Figure

3.2). In samples of size 10 we still -- even with the bi-shortest

intervals -- lose roughly ot the Gaussian degrees ot freedom in

Gaussian-drawn contigurations. Again we see that a compromise

between the Gaussian and the slash situations is more easily

September 21, 1983
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possible in larger samples. In contrast to the location parameter

case the sample sizes 10 and 20 are now farther apart in the sense

that the "Gaussian loss" is considerable in samples of size 10 no

matter what we do.

The above discussion shows us that confidence intervals for r

-- or for a -- need to be enlarged non-trivially over the "pure

Gaussian" ones, it we want to be more realistic about heavy-

tailed underlying situations. And while the slash situation is

certaily an extreme challenge, the conclusions are by no means

unrealistic.

We have already mentioned the importance of the center of our

t-intervals. Figure 3.2 shows us tour plots of the bi-shortest

interval centers on the contiguration-scale. For Gaussian-drawn

configurations, the Gaussian single-situation interval centers serve

as comparison values. In slash-drawn configurations, the slash
.I = 2.8

symmetric interval centers are used (again, of course, with 2.8
r

as relative scale between the families). The upper halt of the plot

shows us what is going on in sample:; of size 20. The bi-shortest

interval with shadow price ratio 1 has a center very nearly the same

as the symmetric slash interval in slash-drawn configurations. In

the Gaussian situation the bi-shortest interval has a center which

is slightly and almost uniformly, i.e. for all of the sampled

configurations, moved towards higher values. This again reflects the
r

tact that the choice I 2.8 is already too large it judged solely

from the Gaussian point of view.

In samples of size 10, the lower halt of Figure 3.2 shows us
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what is going on. Again the slash-drawn configurations b

simple way. Playing the bi-shortest game only affects the

(see Figure 3.1) but not -- or only marginally -- the cen

confidence intervals for r in slash-drawn configurations.

- - For Gaussian-drawn configurations the behavior is dittere

samples ot size 10. Note that we now compare to the Gauss

single-situation interval centers. Clearly for some conti

the bi-shortest center is moved upwards as it was for alm

configurations of size 20. But for a considerable number

Gaussian-drawn configurations the bi-shortest center is 1

*Such a behavior can be explained by the tact that for siz

* distinction between Gaussian-drawn and slash-drawn contig

not as clear as it was tor size 20.

Note that the interval center on the contiguration-scale

the length -- is not the conditional expected center.

Finally, we ought to look at the behavior of the con

contidence levels of our bi-shortest interval procedure.

shows the slash conditional missing-probabilities of the

r-interval with shadow price ratio 1 in samples of size I

points in this plot lie around the diagonal. This, of co

follows from what we have seen in Figure 3.2 -- the centE

bi-shortest intervals are near to the centers of the sla!

*, intervals. In samples of size 20, the picture looks some

-neat". There are a few configurations where the bi-shor,

- interval does not stretch tar enough towards high t-valuf

The plot ot the missing-probabilities in the Gaussi

,September 21, 1983
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looks according to our expectations. Most configurations are close

to the point (0,0), i.e. their conditional coverage is high. From

the origin a tail stretches along the x-axis, i.e. it the bi-

shortest interval has a low Gaussian conditional coverage

probability this is due to the tact that the interval does not

stretch tar enough towards low t--values.

3.2.1. Thi bi-optimal curves

Figure 3.4 shows us the square mean length deficiencies of the

bi-shortest confidence intervals for It in samples of size 10 and 20.

These deticiencies are defined by

n exp. length o I in situation F 2

YF(I) minimal exp. length in situation F) - I,

where for the minimal exp. length we use the expected length of the

single-situation symmetric intervals for e. The points for size 20

are marked by "x", the ones for size 10 by "o".

The minimax interval procedure in size 20 has an efficiency ot

roughly 1 or about 83%. In samples of size 10 we still could lower1.2
the maximal risk by lowering the shadow price ratio -- the Gaussian

risk is dominating the picture for this smaller sample size and the

more we can push the Gaussian risk down, the better.

The strong intervals we discussed in section 2 would not tit

into the above plot. It we compare Figure 3.4 with corresponding

figures in the location parameter case (see Morgenthaler (1983b)),

it is obvious that we are no longer able to compromise between our

two situations as effectively as in the location parameter case.
1

Figure 3.4 is drawn based on a relative scale ot a 2.8 between the
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two shapes and we have to keep in mind that for any choice ot the

relative scale constant there is a difterent plot.

4. What have we learned about confidence intervals tor a scale

parameter

It is tair to say that the area ot scale estimation has not

been explored in a detailed way. This is even more true in the

interval-estimation problem. There is hardly any material on robust

* contidence intervals tor a scale parameter in the literature. The

present report closes this gap to some extent, but clearly more work

is necessary since still more new questions are raised than old

questions answered.

Intervals with conditional coverage probability ot at least

100(1-c)% in both situations are not realistic because in some

configurations the two models are hard to put under one hat and the

"strong" intervals are partly "empty".

The bi-shortest interval procedures are a better compromise tor

the two underlying situations. They detine contidence interval

procedures which are short in both the Gaussian and the slash

situation and reach the 95% confidence level tor both situations.

They also make us realize that the Gaussian X 2 interval is too short

and has to be enlarged it we want to have a procedure which is sate

*- even in heavy-tailed situations.

For these bi-shortest procedures we need to understand the behavior

in other situations better. And it is also not entirely clear which
01
V-: criterion should be adopted for bi-optimization.
q'.m
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It would be ot interest to develop other robust contidence

intervals tor a scale parameter. The only choices available now seem

to be based on jackkniting or bootstrapping robust scale statistics

like the hinge-spread or the median-absolute-deviation (see Hoaglin

et al (1983), chapter 12 tor turther discussion on robust scale

estimators) . None ot these procedures were tried out in this thesis.

The scale parameter may sometimes be the primary parameter ot

interest, though most ot the time it will be a nuisance parameter.

It might well be that the methods developed in this report can help

us in setting contidence limits tor the location parameter. This

idea has not been explored yet.

l.c
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