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Robust contidence intervals tor a scale parameter:
A compromise between the Gaussian and the slash

Stephan Morgenthaler

Technical Report No. 255, Series 2
Department ot Statistics
Princeton University
Princeton, New Jersey 08544

ABSTRACT

In this report we describe a small sample
approach parallel to the one tor a location param-
eter (Morgenthaler (1983a, 1983b). We derive the
torm ot conditional contidence distribution tor

log(o) = v and then discuss the ditticulties 1in
compromising the Gaussian and the slash. We
explore both the strong and the bi-optimal pro-
cedures. And it becomes clear that there is a
ditterence between interence about location and
interence about scale,

1l. Introduction.

Let Y £
X=-

)

Yo £ «ve & Yn be an ordered sample trom the
).

situation F{( In this report we are concerned about interence

]
with regard to the scale parameter o. From the beginning we will

restrict attention to location-invariant and scale-equivariant

statistics S, 1.e.

s(s(t? + %)) = s s(@) .

remark: On the two-dimensional class ot samples

?(s,t) = s(tf + ?) the statistic S 1is known it only S(?) is

Prepared In part in connection with research at Princeton Universi-
ty, Ssupported by the Army Research (Durham). The computing tacili-
ties were provided by the Department ot Energy, Contract DE-ACO2-
81ER10341.

September 21, 19813




-----
________

ad .

00y
J&Jﬂ." p

oy
o)

FON
) 'n/\‘

!~"' A.I . ‘J

RO

«
s,
.

.
P '.l "' S

alue

2 o o
e

. .
J." Yy Yty te "- A
b :. &L * |.

Ny

p

[ RN

Aral
N
.

tixed. We call the representing element ?' a contiguration (see

Morgenthaler (1983a))}).

To simplity the situation, we will transform our parameter space by
t = log(o) .

It is well known that this transtormation symmetrizes the
distributions involved (see e.g. Bartlett and Kendall (1946)).

Furthermore it is ot mathematical convenience.
For a <t-estimator T( ) we now require
T(s(t? + @)) = 7(3) + log(s) .

This is the starting point for our discussion. 1In the next chapter
we will derive the conditional contidence distribution and examine
the resulting strong contidence intervals. The third chapter will

be devoted to the study ot poly- and bi-optimal contidence interval

procedures.

2. Compromising between the Gaussian and the slash: Strong

contidence intervals.

2.1. Introduction

Conditioned on any given contiguration ?, the distribution ot
T( ) is determined by the distribution ot log(s) under the situation
F we sample from. The choice T(?) acts like a location parameter to
an otherwise tixed distribution. This implies that the conditional
variance is not at all intluenced by our choice of T(?) -- whatever

we choose, inside the contiguration the variability will be tixed.

September 21, 19813
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For setting contidence limits we are interested in the distribution
of log(s) conditioned on the contiguration ?’as well,
Let dsF(xlu.c,?W denote the conditional densitylot log(s) given the

contiguration g’under sampling from r(lgﬁ). Then we have

0o
dsF(xlp,a’.?) = J‘ exk(ex,tlu.a,?) dt. (2.1)
-00

where k(s,tlu,a,?ﬁ is the conditional density expressed in terms
of the contiguration parameters s and t given we are in
contiguration 3’ and the underlying parameter values are u and

o .

Eroot:

dsp(xlu,a,c-:)) = aq;?[log(s) £ xln,0,)

X
g% e

= rk(s,tlp,c,?) ds dt.
., |

It then tollows that
dsF(xlu,a’,?) = dsF(x-t'IO,l.t?) (2.2)

where * = log(o). This is a consequence ot a simple change ot

variables (see Morgenthaler (1983a))

00

dsF(xlu,a’,E)) = J‘ exk(ex.tlu.m?) dt
-00
00

s -£°exk(ex t,qu,l,?)%?

- dsF(x-tlo.l,E’).

September 21, 1983
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Now we know, what ettects changes in the parameter values p and o
have. The location parameter p has no ettect at all, whereas the
scale parameter tixes the location ot dsF( ), which is otherwise
unchanged.

This shows us that the t-estimation problem is a location-type

problem with known scale.
remark: The ettects ot changing the class-representing contiguration
? are as tollows:

dsF(xlo.l,é’ + wP) = dsF(xlo,l,?)

dsl_.(xlo.l.v?) = dsg(x+log(v) 10,1,&)
where w € R and v & R+

2.2. Single situation case: known shape F

It we choose
T(?) = —aveF[log(s)lu,c,?d = -thaveF[log(s)lo,l.?d
tor arbitrary values ot p and o we will have

aveF[Tlu',o*,?] = aveF[T(?)+log(s)Iu',a*,?d =

1(2)+avey[log(s) 10,1,214¢" = ¢ - ¢

* *
where t = log(o) and t = log(oc ). Any ot these choices ot T(?)
leads theretore to estimators whose overall mean is equal to all the
conditional means, i.e. it is not tunctionally dependent on 2. 1Its

variance is theretore the average ot the conditional variances which

September 21, 1983




V3 SN RTRTRTR T AWWRNNLTNNTS s A i A (i RN RO RN e eSS D0 B g M

.......... P ) BRI

N

31

N Ts

NN

§5 ~=-- as we have noticed above -- are tixed and can not be intluenced
(E; by choosing another value tor T(?). This estimate tor any choice ot
i;; o has theretore the minimal possible variance.

?} There is an intinite class ot t - estimators with smallest

Sﬁ; variance. The difference ot two such estimators is constant.
gé On the o-scale they are multiples of each other, but there the
;: behavior is more complex.

S

.i;: The problem is in one way simpler than the location point-estimation
_ﬁ; problem, but there is an additional ditticulty. We are completely

ﬁﬁ tree in choosing the standard torm F( ) which is used as a reterence
Eﬁ to describe the scaling. In this sense the scale parameter o is a
»;ﬂ relative parameter, describing the scale relative to a standard

S¢¢ torm. In the case ot the location parameter u we were able to escape
aﬁ this ditticulty by restricting attention to symmetric shapes and

choosing the standard ftorm F( ) such that the center ot symmetry is

at 0.

a = 2
'

h)
W

For the Gaussian situation we could adopt such an escape tor

LAy oy ety % %

s

Y

the scale parameter too and tix the standard torm such that the

Eﬁ} variance is equal to 1. In this case we have detined a target --

jz: the standard deviation -- tor our estimator ot o and it makes sense
e to ask tor the estimator -- now on the t - scale -- which is

S

"‘ . I3 1]

o unbiased and has smallest variance. In order to be unbiased we need
-3

Y

G0N

N aveF[TIO,l.?] = log(l) = 0

(4

éi and hence

7

kL

e
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™) = -aveg[log(s) 10,1,31.

Setting contidence limits is straighttorward it we have a target in

mind. It U( ) is a scale-equivariant upper bound tor v, i.e.
u(s(2+tP)) = log(s) + u(d),
we are concernad about

P(U > log(o)lu,o,&] = Pllog(s) + U(S) > tlu,0,&) =

Pllog(s) > t-U(2)In,o0,21

00

A
v-0(3)

dsF(xl.u,cr,E)) dx = dsF(x-tIO.l.c?) dx

-u (@) S
dsF(xlo,l,E’) dx = 1 - _{o dsp(x10,1,&) ax.

There are two natural choices, the balanced and the conditionally

shortest choice ot upper and lower bound. The length ot contidence

intervals conditioned on contigurations is tixed, since

U(Y) - L(Y) = log(s) + U(d) - log(s) - L(D)

= u(@) - L()

it ? = s(?+tf).

For the balanced contidence interval with conditional contidence

level 100(l-)% we take

u(d) = -dsg %lo.l.é’)
. q
L(d) dsp(1~2|o,1,é’)

where ds (10,1,&) is detined by

September 21, 1983




>
dsg(B10,1,&)

dsg(x10,1,&) dx = p
-00

Again there is the problem ot specitying a target. We have seen that
thare is an intinite class ot t - estimatiors with smallest
variance. Similarly we can create an intinite class of 100(l-q)%
symmetric contidence intervals by moving the one detined in (2.3) by
an arbitrary constant. Ot course it will then be a 100(l1~-dq)%
contidence interval for a ditterent target.

remark: The Gaussian case (F = §)

Using (2.1) with the standard Gaussian §( ) we get

00 2X n

dsé(xlo,l,gﬂ is prop. to I ex(ex)n-lexp(- 35- 2 (t+ci)2) dt
-00 i=]
2x n oo o2%x  _
i.e, prop. to enxexp(- 35- 3 (ci-E)z) I exp(- n} (t.+c)2 de.
i=1 -00

The integral in the last line is proportional to J; and hence

e
2X n
dsé(xlo,l,gﬂ prop. to e(n-l)xexp(- 35- 3 (ci—E)z)
i=]
n-1
_—1 2x n
prop. to (e2*) 2 Texp(- &= 5 (c;-T)%)e?,
i=1

This we recognize as the distribution ot a transtorm ot a xﬁ_l

random variable.

It X has the density dsi(xlo,l,gW then Y = e?® has the density
~ 1 _1_
(Jacobian = 2y)

n-1
-1 n
> - Y3 -T2 L
ty(y|0,1,c ) prop. to y exp( zi:l(ci c)T) vy 2y

September 21, 1983
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"*l
0 and hence a xﬁ_l scaled by 1_ 5. This gets us the normalizing
E(ci-c)
ta constant ot dso(xlo.l,é)) as
3 ,
n-1
n —
oy (5 (e 2
n-1,,-2 =1
F(T)Z
: dso(xlo,l,?ﬁ has two interesting properties
'{ [1] It contains the contiguration only through S = S(ci-E)z.
:$ [2) S only attects the location ot ds‘(xlo,l,?ﬁ.
fi (2] implies that the single situation contidence intervals in the
i Gaussian situation will all be ot the same lengtﬁ even across
s
. contigurations. It we sample from the Gaussian, the precision ot our
knowledge about *t is determined by the sample size and is not
dependent on the point pattern ot our sample. The interval bounds
(2.3) are the usual symmetric x2 intervals transtormed to the
? T - level.
o For more general shapes F({() the above is not true and the length
{ ot the single situation contidence intervals will vary trom
= contiguration to contiguration.
‘a The Gaussian analysis is in tact somewhat naive. The Gaussian
- contidence intervals are too short tor a heavy-tailed situation as
- tor example the slash.
-; The single situation slash intervals are unitormely, i.e. tor all
& contigurations, longer than the Gaussian intervals.
T,
y
1.
L] September 21, 1983
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2.3. The two situation case: Gaussian and slash

In order to get a teeling for the problems we ftace, we intend
to study now the slash behavior ot the contidence interval tor t

based on a "Gaussian analysis".

In order to compute the slash coverage probability we are torced to
specity which parameter we want to cover. It we choose our standard

in the slash tamily as

r x2
t (x) = 1 (1 - exp(- =] (2.4)
-2- 2 2r
(2w) “x
values tor r around % (tl(O) = 1 1 as tor the standard Gaussian)
2 (2l)2

make sense. From (2.2) we know ot course that this implies just a

translation ot dsslash( ).

Now we have identitied our problem as one ot too much treedom.

In order to have a compatible meaning ot a "scale parameter” in two

difterent location and scale tamilies, i.e. two difterent shapes, we

have to tix the relative scale between the two. More simply put, we

have to specity a standard distribution in each tamily.

remark: There are obviously several ways in which we can do this
matching ot tamilies (see: Tukey(1980)). It we restrict attention to
shapes with tinite second moment, one natural choice ot the standard
torm is a member ot the tamily with variance 1. In that case the
target ot our estimator or contidence interval is the standard
deviation.

Another idea is the matching ot percentiles -- in the case ot the

Gaussian and the slash tamily this leads to smaller values ot r it

September 21, 1983
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we match turther out in the tail (see: Rogers and Tukey(1972)).
Finally we need not match at all. We can study estimators like the
median absolute deviation MAD and accept whatever "matching” it

imposes, i.e. accept whatever it estimates on the population level.

It we try to optimize the slash coverage probability tor the
Gaussian-balanced t - intervals, we are lead to values tor r around
%, which corresponds to matching the 97.5% - point. The maximal
slash coverage ot the usual xz-intervals we can achieve in this way
is about 32% tor samples ot size 20 and 44% tor samples ot size 10.
In all ths experimental work we will consider only these two sample
sizes and leave sample size 5 aside.

We se2 trom the above numbers how short the Gaussian intervals are
trom th2 slash point ot view. Furthermore it is clear that r = % is
a bad choice, since it concentrates on "extreme", slash drawn
contigurations and tries to make Gaussian estimation compatible to
"slash needs"”. We should rather try to choose r in such a way that
the slash estimation is compatible to “Gaussian needs"™ on “nicely

behaved", Gaussian-drawn contigurations. In that way we might hope

that the slash analysis gives about the right, i.e, compatible

answer on Gaussian-drawn samples and can be used to extrapolate in a
sensible way to contigurations containing outliers, where the

Gaussian analysis breaks down quickly.

It we were to allow a conditional choice ot r conditioned on

each contiguration, we would tind quite large ditterences between
contigurations. It a contiguration contains outliers, the value ot r

such that the tamilies are compatible goes down; in nicely behavel

;eptember 21, 1983

P U R I R N Y

PRV N R, P VIS, T gt W L ) O RTINS SRS T D S St T

T S . TE T Y TR T TR R TETE e *v-‘

l

el A A RA M A St S e W s MAMMA . s i a A &

B IS DN PN PRI v ¥ PR WL

. AR L,

RS W T

aa'h

PARR LD LRI PO



1y
¥
LN o .

. CANNAK

KRR

e

e T g - - - o
. . AR -‘_‘- .‘. 7»\ o~ _“:._.". K PN v _';*‘T_ - Pl Ak i e iCR U A S St et 4 AR S A

- 11 -

contigurations it is around %. In point estimation this caus

ot problems, since there will be a large part ot the varibil

to "conditional bias™, which we cannot escape.

2.4. Strong contidence intervals tor t = log(o)

In this section we want to study the possibilities tor
intervals which, conditioned on any contiguration, reach at
100(l-q)% coverage probability, both tor the Gaussian and fc
slash, For each contigurgtion we get the balanced v - interw
[Lg,Ug] and [Ls,Us] tor the Gaussian and slash situation (se¢
(2.3)). For reasons discussed above, we are free to move all
intervals relative to each other by a tixed constant. We wil
this by holding the Gaussian intervals tixed and moving the
ones. This can be described by choosing a value r in (2.4).

Only samples ot size 10 and 20 are considered.

It turns out that the slash intervals are longer than 1
Gaussians in each contiguration -- if we were allowed to che
relative scale constant conditioned on the contiguration, w
always get to a case where the slash interval covers the Gar
interval. This is a bit like the contidence intervals for u
samples ot size 5, where Student's t interval "dominates" t
interval.

A simple strong interval is given by
L = min [Lg, LS}

U = max {Ug' Us}

September 21, 1983
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But now we have a relative scale constant at our disposal. Table 2.1

contains the tractions ot contigurations ftalling into the classes

§ e - g A S0 a /N SR i M i et B b .1

(a) L = Ls and U= Us
(b) L = Lg and U= US
(c) L = Ls and us= US .
Table 2.1:
Percentage ot cases (b), (c) and (d)
Gaussian situation slash situation
| | I
I 2 1 (b © (@ | (B (@ ()
' ' 1 2, | .2 2
| 2.6 | 82% 17 5% 3% {17 3% 0% 82 3%
| | . |
| | |
| 2.8 1 64y 353y 23 183k 2v 79 is
3 3 | 3 3
size=20 | !
| | | 2 2 2
| 3.0 | 48% 52% oY | 24 3% 2 5% 72 3%
| | :
| |
| 3.2 1 37 3% 6228 0% | 29 3% 3 3% 57 38
| l ]
] | 1 2 |
| 2.6 | 93 3% 0% 6 3% | 38% 0% 52%
| | |
| | 1 2 |
| 2.8 | 85 3% 10% 4 3% ] 42% 0% 58%
size=10 : : :
| 3.0 | 78% 1838 3 4% | 45 3 24 54%
| | |
1 2 2 1
‘ 3.2 | 73 3% 26% 3% 48 3% 2% 49 3%
r is as in (2.4)
(b): slash dominates
{({c): Gaussian low, slash high
(d): slash low, Gaussian high.

All these percentages are based on 150

The two situations behave ditterently.

the Gaussian interval otten supplies the upper bound -- more

September 21, 1983
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prominently so tor samples ot size 20. Of course we expect this
behavior which shows how much outliers intluence the "Gaussian
analysis”. In most ot the Gaussian-drawn contigurations, the slash
intervals dominate the Gaussian intervals. We learn that the two
situations tavor ditterent choices ot the relative scale constant %,
low tor the Gaussian and high tor the slash. Table 2.2 contains
expected lengths tor the above strong contidence interval

procedures.

Table 2.2: estimated expected lengths tor strong contidence inter-
vals

% Gaussian sitvation slash situation
2.6 1.08 (.66) 2.05 (.72)
2.8 1.10 (.69) 2.00 (.67)
size=20 3.0 1.13 (.74) 1.95 (.63)
3.2 1.16 (.78) 1.91 (.59)
single 0.65 (.00) 1.20 (.00)
2.6 1.63 (.66) 2.41 (.32)
2.8 1.63 (.65) 2.37 (.30)
size=l0 3.0 1.64 (.67) 2.33 (.28)
3.2 1.65 (.68) 2.29 (.26)
single 0.98 (.00) 1.82 (.00)

length y-1,

single situation shortest l.e.

The numbers in parenthesis are (
the mean length deticiencies and the row labelled "single" contains
the length trom the single situation balanced intervals.

Figure 2.1 plots the mean length deticiencies given in Table 2.2,
"x" marks the points tor % = 2.6, 2.8, 3.0 and 3.2 in samples of
size 20, "o" in samples of size 10.

% = 2,8 seems a good choice tor the two sample sizes, in "size=20"
it is roughly minimax, in "size=10" it roughly minimizes the

Gaussian deticiency (the minimum is rather tlat). In Figure 2.1 we

see how the strong contidence intervals tor T lose a lot in the

September 21, 1983
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- Gaussian situation due to the shortness ot the xz-interval, which is

the Gaussian single situation choice. As the sample size decreases,

_§. the slash interval more and more dominates the Gaussian one in the
?&E slash situation (see Table 2.1). In Figure 2.1 we notice that the
55 strong intervals are really guite good in the slash situation tor

ié samples ot size 10. The choice % = 2.8 seems reasonable trom what we
Egi have just said. In the case ot the smaller sample size (10) it

%ﬁ minimizes the Gaussian loss, in the case ot larger samples (20) it
= balances the losses in the Gaussian and the slash. In comparison to
é;} location-parameter intervals the two situations under consideration
;f exchange places. Now the Gaussian based intervals are optimistically
ﬁﬁ short and the slash ones are long. As the sample size decreases, the
-3: slash intervals dominate more prominently.

é. The relatively big slash loss in samples ot size 20 is

'}£ puzzling. It is due to the fact that the strong intervals described
i? above otten are "empty" in the center part tor slash~drawn

f} contigurations, i.e. the two single situation intervals are

fﬁ; separated by a gap = Lg - Us' whichihas a chance ot happening

:E; whenever the contiguration falls into class (d). For % = 2.8 such a
,“J gap occurs in 42% ot the slash-drawn contigurations tor samples ot
ff size 20 and in 19% for samples ot size 10. This is a problem which
;ik did not occur in the case ot contidence intervals tor a location

iif parameter. There the strong intervals might have been "overlong"

§§ when judged by the slash situation., But here the problem is that

%ﬁ neither ot the two situations really "needs" these gaps, they are
i; "empty". It we measure the percentage ot the total length which is
Eﬁ empty, we tind that tor samples ot size 20 as much as 75% ot the

N
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total conditional length can be made up by empty space and tor about
20% ot all slash-drawn contigurations the percentage ot "emptyness"
is above % ot the total length. For samples ot size 10 this peculiar
problem is not so grave -- about 4% of all slash-drawn

1

contigurations are above 3 empty.

The gap problem we have discussed above results trom an
incompatibility of the meaning of the Gaussian and the slash scale

parameters we have chosen.

“Gaussian model"” breaks down and it can no longer be connected with

In contigurations with outliers, the

the "slash model™ in a sensible way. We noticed this in the case ot
contidence intervals tor a location parameter, but it is even more
prominent when we discuss the scale parameter.

For the purpose ot application, the strong intervals tor a

scale parameter as given above are not a helptul description ot what

is going on. We need a detinition at the meaning of the scale

parameter not guided by one shape (usually the Gaussian) tor all
contigurations, but rather splicing together "meanings" guided by
ditterent shapes. In the center section ot d“F( ) (the margingal
density across contigurations induced by sampling trom shape F) the
shape F determines the meaning of the scale parameter. Between the

shapes there will be a problem or relative scaling similar to the

one we have encountered in the case “Gaussian and slash™. Solving

this solves part ot the splicing problem.
From what we have learned about samples ot size 20 and 10 we can
predict what is happening tor size 5. The slash intervals tor * will

be much larger than the Gaussian xz-intervals and it might well be
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i: that for % around 2.8 the slash intervals in nearly all
o contigurations contain the Gaussian intervals. The strong intervals
]i then would conincide with the slash intervals.
L:::
b 3. gi-shortest contidence intervals for * = log(o)
b_;:
- As we have seen in the previous section the compromise holding
._'J
.3 the conditional coverage probabilities tixed is not practical. In
? this section we detine intervals for t which adapt better to the
I ditterences in single situation solutions conditioned on the
;} contigurations and avoid the empty space we encountered in the
ET previously discussed procedure.
: Looking tor the bi-shortest interval procedures on the log(o)-
:~ scale leads to a problems similar to the location parameter case as
;' described in Morgenthaler (1983b). The contidence distribution tor
5 situation F conditioned on contiguration c is
<
N -u
~ Cog(u) =1 - [ ds_(x10,1,@) dx (3.1)
F F
-00
P with density
' cop(u) = [ dsp((-u10,1,)
- =00
_,\
s (see (2.3)).
’l

ta
-

The bi-shortest intervals tor t given the shadow prices pg and Pg

are given by the solution to

K K !
+
o = n-l ey " Ps%s,
k K \ wk + \ wk
*'g g 's’s
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- P.w_+ p w

o L, = h 129 55, (3.2)

e k KO\ WK+ \ wk

L 9°g s's

{:

.:ﬁ where Uk denotes the largest solution and Lk the smallest and

‘;E k=1,...,N. The Lagrange multipliers }g and )s are adjusted so that

=q; both overall coverage probabilities are at least 100(l-d)%. hk( ) is

;fﬁ the mixture of the conditional contidence densities

22X

-y

LTy, k__k k_ Kk

xS ho(y = ngg°°g( ) + )swscos( )

A k \ wk + N\ wk )

25 "9 g "s"s

AT

\W-

s The notations and ideas are the same as in Morgenthaler (1983b).

AL

- Note, however, that cog( ) is now the contidence density in the

i§ Gaussian situation tor the parameter t = log(o).

f_:-

gj The solution is simpler than in eguations (5.5) where we had to use

i

Bg{sl?k] and E_[sIZ,]

_

KOs to adjust tor the "scale"” ditterences between contigurations. This
.\_

“? ditticulty disappears in the t-case since -- as we Saw -- we

ﬁf basically deal with a location problem with known scale.

\.-

.r::-

;:ﬁ We believe that measuring etticiency by expected length on the
- logarithmic scale, i.e. atter transtorming to t = log(o) makes at
;f least some sense. The similar procedures on the original scale, i.e.

< tor o, are less desirable.

L4

?3 3.1. The slash single-situation contidence interval procedure

e -

o

<

-

,.,. We have already pointed out that the Gaussian and slash

:

o

N September 21, 1983
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) situation trade places it we move from p to t (or o). And just as
NN Student's t interval was conservative in the slash situation, we
v have now the slash single-situation interval procedures which are
conservative in the Gaussian situation. To keep things simple we
‘u: will restrict attention to the symmetric slash intervals which have
e tixed conditional contidence coetticients (note that we have tixed
the relative scale between the two tamilies by choosing % = 2.8 as

) in the previous sections!). This is not the bi-shortest contidence
e . . : . Pg .
;R: interval procedure with shadow price ratio 3— = oo, but is probably
i g
o not very ditterent from it,
This symmetric interval has a Gaussian coverage probability of 95.2%
:f;- and 98.6% in samples ot size 20 and 10, respectively. The
oy conditional Gaussian contidence levels are most ot the time very
high and the tail towards low conditional coverages is a lot thicker
in samples ot size 20. Ot course this interval procedure is not
balanced it judged trom the Gaussian point ot view. We can see this
) in Table 2.1 where the columns headed (c) and (d) show a
v:j considerable imbalance. The slash single-situation intervals are
trequently too much to the right and hence miss the true t-value
- most otten by overshooting. The increase in expected length over the
symmetric xz-intervals is considerable. The expected length is

o increased by about a tactor ot 1% tor both sample sizes.

T Just as Student's t interval should not be applied

uncritically, but -- as we have learned -- can be moditied

l‘ 1‘ l' o " 54 n'

f; successtully, the slash single-situation intervals have undesirable

T properties. They are -- in Gaussian-drawn contigurations -- otten
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too pessimistic and wastetul. Introducing the Gaussian expected
length along with the slash expected length hopetully will help us
to tind procedures which correct this wastetulness. But we must tace

the need for contidence intervals longer than the common x2 -based

ones. In the next section the slash single-situation interval will

be used as a means ot comparison to indicate our progress.

3.2. The bi-shortest t-interval for the shadow price ratio 1

Let us consider the bi~shortest contidence intervals tor the
shadow prices pg = pg = 1 (see (3.2)).
Figure 3.1 shows us a plot of the resulting conditional expected
lengths vs. the conditional expected lengths ot the slash single-
situation interval discussed in the previous section. All plots are
based on a sample ot 150 contigurations. The upper halt shows the
samples ot size 20, the lower halt the samples ot size 10. In both
cases we are indeed able to shorten -- and hence "save some
intormation” -- in the Gaussian situation. Note, however, that in
samples ot size 10 the task seems to be more ditticult. Only in
contiqgurations where the slash single-situation interval is short
are we able to shorten considerably. In samples ot size 20, the
bi-shortest are quite efttectively shortened. In the slash situation

we have, of course, to give up something. Most ot the bi-shortest

..'.'
e e et N

4
4

intervals are enlarged, thus balancing the contigurations where

@

LA

introducing the Gaussian along with the slash leads to "erroneously”

.

[N

L

short intervals.

The length ot a t-interval conditioned on the contiguration is
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tixed, i.e. constant, and is, turthermore, not dependent on the

underlying situation. It theretore retlects a property ot the

contiguration, which we can interpret as conditional

(degrees ot treedom) 5. The xz-intervals act as it each
contiguration had the same number ot degrees ot treedom. It we
introduce the slash situation, we learn that this cannot be
tolerated,

In Figure 3.] we see how the ratio 1 contidence procedure recovers
some degrees of treedom in Gaussian-drawn contigurations compared to

the slash single-situation intervals.

On the average we lose about % the "Gaussian degrees of
2

treedom” for both sample sizes -- bit less in samples ot size 20

-- b oing trom the xz-intervals to the slash single-situation
Y g Lo

intervals. Ot course it is true that the slash situation is quite

an extreme challenge along with the Gaussian, but degrees of treedom

only % as large as the usual Gaussian degrees ot treedom is not

“

uncommon (see Gosset(1927) especially Table III).

% &
ERCRRR)

“e'e
LI S ]

The bi-shortest interval procedure tor shadow price ratio 1

s

recovers most ot that loss tor Gaussian-drawn contigurations in

¢

samples ot size 20. It leads to a loss ot about f% ot the Gaussian

I

’c'l‘b.l.l.n-..
PRI I
PR

degrees ot treedom. This recovery, of course, is due partly to the

use of a better center tor the contidence intervals (see Figure

33 3.2). In samples of size 10 we still -- even with the bi-shortest
g intervals ~- lose roughly % of the Gaussian degrees of freedom in
?ﬂ Gaussian-drawn contigurations. Again we see that a compromise
;a between the Gaussian and the slash situations is more easily

~

P e O
A RAY
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possible in larger samples. In contrast to the location parameter
case the sample sizes 10 and 20 are now ftarther apart in the sense
that the “Gaussian loss" is considerable in samples of size 10 no

matter what we do.

The above discussion shows us that contidence intervals tor t
-- or tor ¢ -- need to be enlarged non-trivially over the "pure
Gaussian” ones, if we want to be more realistic about heavy-
tailed underlying situations. And while the slash situation is
certaily an extreme challenge, the conclusions are by no means

unrealistic.

We have already mentioned the importance ot the center ot our
t-intervals. Figure 3.2 shows us tour plots of the bi-shortest
interval centers on the contiguration-scale. For Gaussian-drawn
contigurations, the Gaussian single-situation interval centers serve
as comparison values. In slash~drawn contiqurations, the slash
symmetric interval centers are used (again, of course, with % = 2.8
as relative scale between the tamilies). The upper halt ot the plot
shows us what is going on in sample¢:; of size 20. The bi-shortest
interval with shadow price ratio 1 has a center very nearly the same
as the symmetric slash interval in slash-drawn contigurations. In
the Gaussian situation the bi-shortest interval has a center which
is slightly and almost unitormly, i.e. tor all ot the sampled
contigurations, moved towards higher values. This again retlects the
tact that the choice % = 2,8 is already too large if judged solely

trom the Gaussian point ot view.

In samples ot size 10, the lower halt ot Figure 3.2 shows us

September 21, 1983
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o what is going on. Again the slash-drawn contigurations b
simple way. Playing the bi-shortest game only attects the
(see Figure 3.1) but not -- or only marginally -- the cen
contidence intervals tor * in slash-drawn contigurations.
For Gaussian-drawn contigurations the behavior is dittere
samples of size 10. Note that we now compare to the Gauss

single-situation interval centers. Clearly tor some conti

the bi-shortest center is moved upwards as it was tor alm
contigurations of size 20. But tor & considerable number

Gaussian-drawn contigurations the bi-shortest center is 1
Such a behavior can be explained by the tact that tor siz
distinction between Gaussian-drawn and slash-drawn contig
not as clear as it was tor size 20.

Note that the interval center on the contiguration-scale

the length -- is not the conditional expected center.

Finally, we ought to look at the behavior ot the con
contidence levels ot our bi-shortest interval procedure.
shﬁws the slash ctonditional missing~probabilities of the
t-interval with shadow price ratio 1 in samples ot size ]
points in this plot lie around the diagonal. This, of coi
tollows trom what we have seen in Figure 3.2 -- the cente
bi-shortest intervals are near to the centers ot the sla:
intervals., In samples of size 20, the picture looks some:
"neat". There are a tew contigurations where the bi-shor!

interval does not stretch tar enough towards high t=-valus

.
“"
LN
LS
v .
R
e
v,'
.’

The plot of the missing-probabilities in the Gaussi.
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looks according to our expectations. Most contigurations are close

to the point (0,0), i.e. their conditional coverage is high. From

e T

»

the origin a tail stretches along the x-axis, i.e. it the bi-

A
]
.

shortest interval has a low Gaussian conditional coverage

NPT AU an o
-

probability this is due to the tact that the interval does not

stretch tar enough towards low t-values.

3.2.1. Thi bi-optimal curves

Figure 3.4 shows us the square mean length deticiencies ot the
bi-shortest contidence intervals tor t in samples of size 10 and 20.

These deticiencies are detined by

exp. length of I in situation F

2
minimal exp. length in situation ¥ ~ 1

deticiencyF(I) = (

where tor ths minimal exp. length we use the expected length of the
single-situation symmetric intervals for t. The points for size 20
are marked by "x", the ones tor size 10 by "o".

The minimax interval procedure in size 20 has an etticiency ot
roughly T%? or about 83%. In samples ot size 10 we still could lower
the maximal risk by lowering the shadow price ratio -~ th2 Gaussian
risk is dominating the picture tor this smaller sample size and the

more w2 can push the Gaussian risk down, the better.

The strong intervals we discussed in section 2 would not tit
into th2 above plot. It we compare Figure 3.4 with corresponding
tigures in the location parameter case (sea Morgenthaler (1983b)),
it is obvious that we are no longer able to compromise between our

two situations as ettectively as in the location parameter case.

Figure 3.4 is drawn based on a relative scale ot % = 2.8 between the
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:f: two shapes and we have to keep in mind that tor any choice of the
L relative scale constant there is a ditferent plot.

L]

N
o 4. What have we learned about confidence intervals tor a scale

:'\u

o parameter

)

Ry It is tair to say that the area ot scale estimation has not

'; been explored in a detailed way. This is even more true in the

A

e interval-estimation problem. There is hardly any material on robust
e contidence intervals tor a scale parameter in the literature. The
e present report closes this gap to some extent, but clearly more work
jf is necessary since still more new quastions are raised than old

NG gquestions answered.

R

:.}\
,3: Intervals with conditional coverage probability ot at least

N

( 100(1-dq)% in both situations are not realistic because in some

uf} contigurations the two models are hard to put under one hat and the
_’I:-

o "strong” intervals are partly "empty".
X The bi-shortest interval procedures are a better compromise for
‘Gﬁl the two underlying situations. They detine contidence interval

LN

AN procedures which are short in both the Gaussian and the slash

- situation and reach the 95% contidence level tor both situations.
'%3 They also make us realize that the Gaussian xz-interval is too short
‘J:':

= and has to be enlarged it we want to have a procedure which is sate
o
o even in heavy-tailed situations.

;3 For these bi-shortest procedures we need to understand the behavior
‘ﬁ} in other situations better. And it is also not entirely clear which
L
£ criterion should be adopted ftor bi-optimization.
;:_::
4 \:‘-

e

LA
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It would be ot interest to develop other robust contidence
intervals tor a scale parameter. The only choices available now seem
to be based on jackkniting or bootstrapping robust scale statistics
like the hinge-spread or the median-absolute-deviation (see Hoaglin
et al (1983), chapter 12 tor turther discussion on robust scale

estimators) . None ot these procedures were tried out in this thesis.

The scale parameter may sometimes be the primary parameter ot
interest, though most ot the time it will be a nuisance parameter.
It might well be that the methods developed in this report can help
us in setting contidence limits tor the location parameter. This

idea has not been explored yet.

September 21, 19813
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