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", IABSTRACT

Radiation from printed antennas is investigated with emphasis placed on

producing E- and H-plane radiation patterns which are as nearly omnidirectional

as possible. This is achieved using criteria which are derived for a nonzero

radiation field extending down to the layer surface (radiation Into the horizon).

-. It is determined that this phenomenon arises when a surface wave pole coincides

with a branch point in the complex plane. A simple ray optics interpretation

is given for the phenomenon, and graphs are presented to easily enable design

of printed antenna geometry to achieve nearly omnidirectional E- or H-plane

*. patterns.
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I. INTRODUCTION

Investigation of printed circuit antennas and associated substrate effects

(1]-[91 has uncovered certain interesting phenomena. One such phenomenon is the

existence of nonzero radiation along the horizon in either the E- or the H-plane

when the electrical thickness of the substrate satisfies specific criteria.

In particular, H-plane radiation into the horizon is seen to occur when a TE

surface wave mode turns on in the substrate, and E-plane radiation into the

horizon can be observed when a TM mode turns on. This phenomenon is explained

analytically by the coincidence of a pole and a branch point in a Sommerfeld-

type integration, which gives rise to a removable singularity in the steepest

* descent integration for the far-field. A ray optics interpretation is given to aid

in the physical understanding of the phenomenon. Criteria are then determined for

optimum antenna location within a substrate to yield E- or H-plane patterns as
',p

m idirectional as possible in a specified sense. Based on this, graphs are

presented enabling design of proper substrate-antenna geometry to achieve nearly

ounidirectional radiation patterns. These results are then extended to the

more general case of a dipole printed on a substrate with a different super-

strate (cover) material on top.

Although the problem discussed herein is akin to a large number of

Investigations in the propagation of electromagnetic waves in stratified media

[lO]-[14 ],the thrust of this paper is the unique observation of

radiation into the horizon and the generation of nearly omnidirectional radia-

tion patterns.

II. IADIATION INTO THE HORIZON

With reference to Figure la, the problem consists in its simplest form

of a horizontal Infinitesimal dipole in the i direction embedded Inside a

grounded substrate layer. The results which pertain to this configuration

cm be generalized to the case of a dipole in a substrate-superstrate configura-

II'



tion of different materials, shown In Figure lb. However, in order to high-

light the criteria under which radiation into the horizon takes place and to

keep the mathematical complexities to a minimum, the case of Figure la will

be considered in detail, with only results shown for the more general case of

Figure lb.

The far-field due to the elementary horizontal dipole at z - z° in a

substrate of thickness B, relative permittivity and permeability constants

"l, Ul and index of refraction n1  v , is given in spherical coordinates

by [2], [5]

* 2o
Ee k [cosecosn x - sin6ii 1 (1)

e 0 Kz

and

E 'k 2[-sinxI (2)
0 

In these equations ko w= c o and o being the total permittivity and
0 0 0 0 0

permeability of free space.

The Hertz potential components Rx , Iz for z > B are given in cylindrical

coordinates as [2], [ 53 (suppressing e +jwt time dependence)

(" n -jWo f4D ) (-u-B)) ( -) 2 d (3)J= D e 0M 0

and

j$ e( ) L 0 4- + u/o(hrud (7)
z 8,k2  coo () D_(X) e/u H Xrd 4

%1

ubere k ik u and

@.i
o

&M(~ - 2A 2 (1-n 2)n 2cosh(u I)uInhOuI Z') (6)

A). * - •usinh(u 3) + U co. (u 1 ) (7)
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D un cosh(u1B) + ialulsinh(u13) (8)

with 2 2 1/2 2 k2)1/2
u (A 'k 0) u u W X k 1 (9)

The branch interpretation of u is u - j(X
2 - k2)1/21 for X > k and

u -j (X2  211/2,
Th for X < k . The branch interpretation of u1 is arbitrary.

The Sommerfeld contour inferred by Equations (3), (4) is shown in

Figure 2a. If the substitutions ) - k sinC, z - B - RcosO, r - Rsine are intro-
0

duced (where R and e describe spherical coordinates) together with the large

argument asymptotic expansions for )andH ( Equations (3) and (4)

can be written as

. -i f Fo()e ah(C))d (10)XT7 r
and

. O .
S*kR r

where r is the path shown In Figure 2b which can be deformed into the steepest

descent path (S.D.P.) also shown there, and

- koR , h(C) - -Jcos(C-0)

F(~) - (k cos) f(k sin) J-jcO (1 + (1

F(C) --- o(l + (12)D (k sin ) .rsines!

(k 0 cos ) g(k 0sinC ) W 0 1(+
G(C)- D (k sinC (ksn - 2 J____ .(3D o a ok 0irk 1  /isinasin l

The saddle point is at C - Co a 0, and the departure angle from the saddle

point Is a - + - . The roots of D (X) and D (X) give surface wave poles whose

"  residue contributions determine the TE and TH mode surface waves laspectively

[2), [S]. The steepest descent path is deformed to go around the poles as

shown In Figure 2b. However, due to the exponential decay sway from the saddle

point along the steepest descent path, the residue contributions from these poles

-3-

* P * , /

*- .t*' " "":,. . , ,*% * * , O' . ' , v .. ".",; : ""'*""\:. " , ' -. *.e - " ' , , , ...*, ,, ... ". . "- " .,,.* . .. . "4.. , -. "" ...**'_ , *''



do not contribute to the asymptotic expansions of nx and H unless 8 i r/2.
Jx z

For this latter case, the contour of integration can be broken into two parts:

a steepest descent contour and an integration around the poles, as shown in

Figure 2c. The surface wave fields, determined by the integration around the

..poles, contribute at 8~?/2 since we are in the vicinity of the layer material.

These surface wave fields remain distinct from the steepest descent contribu-

tion, however, which gives the radiated far-field which is of interest here.

The method of steepest descents now yields

II '2_ F(O 47r* e (14)

and+.-~T ."/-'j' k R\

1I %cos GI) 27TeJ (15)z k

Equations (1), (2), (12), (13) are combined with (14) and (15) to give

the far-field of the dipole. The far-field clearly decays as 1/k R for k "R 1.

For convenience, the radiated field is defined so as to suppress this radial

dependence, i.e.

aR

. OE e -_ 0 (16
kR

0
and

E ' a +ke 0 (17)
okR

where, by definition,

ER - k2[coscost ine1R] (18)
68 o x z

E R .k21-sn R] (19)
0

and
R +jk R

TI Limr (k R) 0  (20)
k kR b 0X

". 0

".-4-
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SR Lim ( ) e (21)
z 0 Z

0

ER and E are functions of e and * only. The variation of the radiation

field with e is governed by the F(e) and G(e) functions. With reference to

* Equations (12) and (13), it is observed that a factor cose appears in both

F(e) and G(e). This implies that in general,

Lim = 0 (22)
,° -. :.:. e "-- Wn/2 x -

and therefore

Lim ER = 0 (23)

e - 7/2

and
R

Lim E 0 •0 (24)
e -+ V/2

That is, the radiated field tends to zero at the horizon (e I r/2). The only

possible exception is when the terms De(ko sin) or D m(k0 sine) also tend to zero

as e "I V/2. When D e(ko) 0 0, it follows from Eq. (7) that

()A //n? -(m -1/2)12,925

0'
m * 1,2,...

while when DiU(k) 0, then from Eq. (8)

0( ): - - (m-l)/2, (26)
0

. 1,2,...

Is obtained, where A= free-space wavelength.

Iquations (25) and (26) are simply the conditions for a TE and a TH

surface wave mode turning on, respectively.

The characteristic functions De (X) and D a ) have simple zeros at the

location of the surface wave poles in the complex X-plane except when a pole

. -5-
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coincides exactly with the branch point at X - k, which occurs when the

corresponding surface wave mode turns on. In this case, the function D eX) or

D a (X) exhibits a branch point type of singularity there. In particular, as

)'k
0

De(,) M , (-l)M 1  (X2 - k21/2 (27)

when 1 1 (m 1/2)/2

*g'1 and

D (X) (-l)m+n (X
2 -k2)1

/2

.. m 1O-

when - /- ?- (m-l)/2 . (28)

(We are arbitrarily choosing the branch of uI in Eq. (7) and (8) so that

ul - k2 here.)

00
This branch point singularity at X - k 0in the ),-plane when a mode turns

on corresponds to a simple zero in the steepest descent C-plane at 7 - w/2,

since

(X k2)1 /2 = Jk cosC
0 0

This simple zero behavior of D e(k sin) and D m(k sin;) causes the point -; 7/2

to become a removable singularity in the F() and GC) functions with

?) " l)m f (1) C0  C+i)) (TE Mode) (29)

g(ko ) _1
,G(C) (-l) D (TE Mode) (30)

and g(k) 8r1 -

GC) ' j(-l) )(TM Mode) (31)

as C * T/2 in each case. Equation (29) implies that fIR remains nonzero, in

general, as e v f/2 when a TE node turns on. Similarly, Eq. (31) implies that

4o



-.'o. . . . .r n n

°o remains in general nonzero as e I 7/2 when a TM mode turns on. In addition,
z

R
Eq. (30) appears to imply that TI can also remain nonzero when a TE mode turnsz

on. However, when a TE mode turns on, g(k 0 0. These results indicate then

R
that E can extend down to a nonzero value at the horizon only when a TE mode

R R R
turns on,while Ee can remain nonzero only when a TM mode turns on. E and E0

determine the H-plane (€ - -) and E-plane (4 - 0) radiation patterns respectively.

Although this result is true in general, the presence of the term sinh(u zo)

in f() and g(X) causes exceptional cases to occur. In particular, the E- and

H-plane radiation patterns will have a null at the horizon even when a surface

wave mode is at cutoff for the exceptional case of z0 satisfying the relation

sink z I ] -0 (32)

or
"?'1 0l p/2"-o f i , p 0,1,2,... (33)

Comparing this result with Eq. (26), it is observed that the exceptional

case involving a TM mode turning on (E-plane radiation into the horizon) implies

n1(B-z) /2 9 12(34)

"-':o AY_1 2
0' 2

For most practical situations 1 - 0, so z - B; i.e., the antenna is printed

on the interface of the substrate and free space. Similarly, if Eq. (33) is

compared with Eq. (25), then the exceptional case for a null in the H-plane

pattern at e - w/2 with a TE mode turning on occurs when

n (B-z (.t + /2
So , 0,,.... (35).:n?

1

.14 This criterion cannot be satisfied for the TE mode (m - 1) for z > 0, and
*1 0

therefore there will be nonzero H-plane radiation into the horizon when the TE

m-de turns on regardless of the dipole position z7- A null at e =/2 can

L 7-



appear, however, for higher order TE modes.

These results extend directly to the case of Figure lb. H-plane radia-

tion into the horizon occurs for a TE mode turning on 115], giving the condition

n t n - 2" n1B

tan[ cot 27tInJ (36)

while E-plane radiation into the horizon occurs for a TM mode turning on, or

when the condition

2 = ltan E1 tan (T-2r (37)

is satisfied.

In a similar manner, as with the single layer, there is the exceptional

case where radiation vanishes at e - 7/2 despite the surface wave mode turn

on condition. This case is still given by Eq. (33) with n1 corresponding to

the lower layer material (the dipole is assumed to be within the lower layer

here). This does not constrain the dipole from being at the substrate-superstrate

Interface (z° = B) in achieving radiation into the horizon in either the E-plane

or the H-plane, since B is now arbitrary. In fact, Al 1/n, 0 p/2, unless
0

the top layer is of thickness
S /n2 (Z + 1/2)/2 , £ - 0,1,... (TE Mode)

or 0
n t• :i2A 2 ' "2. ' /1/ n? L t-~ 0,... (TM Mode)

•" For this reason, E- and H-plane radiation into the horizon is always observed in

* practical cases involving a dipole at the substrate-superatrate nterface in

li the geouetry of Figure lb.

L. A ray picture can be composed in order to provide an explanation of the

.,. radiation into the horizon effect. With reference to Figure 3, we have plane

.q

X-2 -

.W'0

Fo hsraof n -ln aitonit h oio sawy bevdi
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wave spectrum rays emanating from the dipole and reflecting between the ground

" plane and the dielectric interface, with the rays partially transmitting into

space at each reflection from the interface. For far-field radiation at an

-. angle e, the reflection angle within the dielectric is e1, determined from

- Snell's law ns 1 = sinO. There are two such rays which leave the dipole

as shown in the figure. The reflection coefficient for the rays at z - B is

r =a-- (38).... Z a+Zd
a d

-where

Z i n cose (39)
a 0

. Zd = o  cose1  (40)

- for E in the plane of incidence (E i ) , and

Z Ti fosece (41)
a 0

Zd = o  sece1  (42)

- for E normal to the plane of incidence (E1), where To0- E. The Ee component
0

of the radiated field corresponds to E1 1 while the E component corresponds to

E . In either case, Irl - 1 as e - 1/2. Rays are increasingly trapped in the

substrate as 8 - 7/2 and radiation into space goes to zero with the only excepti

possible when the rays add up in phase after each bounce as 8 7 i/2. This

0." condition arises when a TE mode turns on for E and when a TM mode tur s on for

" Ell. A proof can be provided by considering that as the ray travels from a to b

its radiation contribution experiences a phase shift *ab given by

rab - + arg(r) + Aab + kodab (43)

-9-
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The term t7 in Eq. (43) results from the phase reversal of the tangential

E-field at z - 0 (This is the component for which reflection is being considered.

A similar analysis applies to the normal component). Similarly, arg(r) comesfrom

the phase shift introduced by reflection at the interface (point a). As 8 - 7r/2

arg(r) - !7r for E and arg(r) - 0 for E . The term Aab represents the phase
-,.

shift the ray undergoes in travelling from a to b, while kodab is the phase

shift due to the array factor effect from the separation at a and b, as seen

from an observation point at e - /2. These phase shift terms can be evaluated

using
%2B

dab 2Btan8 2B (44)

X1

and

Aab.x -B d (2B) (45)•. ab -xdab

with

x  konsin1  = k (46)

ez  kosne 1 -k0 /n- . (47)

Thus *b is obtained to be

+ab Tr- 2koB n 2 (48)

For the ray to add in phase after each bounce, it is required that

ab - -2tm , m- 0, ±1,±2,...

and therefore the following criteria are obtained:

(n lB .(m, - 2
2l,1\ , (E0 -field) (49)

'jX2 m7 3  1,2,....

-10-
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-P 7.--- -. 7.4

and

vn-." (m -l)/2
(m 1)./2, (E0 - field) (50)
/ 1 12....

These are simply recognized as the conditions for the turning on of the TE and

TM modes in the substrate, respectively. Hence, ray optics predicts that E

and E can remain nonzero as e - f/2 only when the TE and TM modes turn on,

respectively. This agrees with the steepest descent analysis. Ray theory may

also be used to provide a simple explanation for those exceptional cases where

-.. . a null appears at 6 - 7/2, in spite of the fact that a mode is at cutoff.

To see this, the phase difference between the two plane wave spectrum rays that

leave the dipole must be considered. This phase difference is given by

whe$1,2 Arg(r) - 28 (B-z - 8xd, 2 + kod, 2  (51)::" where

d 2(-z)/ 4ni • (52)

The first three terms on the right-hand side of Eq. (51) represent the phase

difference due to the reflection of Ray #1 from the interface and the extra

distance it travels, while the last term is the array factor term for radiation

along the horizon due to the separation of the two rays. Using (46) - (47),

and setting 1,2' -(21 + 1)7, 1 = 0, -l,±2,... as the condition for the radiation

from the two rays to cancel, there results

-(2Z + 1)7 - 2k° -n 1 (B -z o  . (53)|.'. m

Therefore, the exceptional case for the E-plane requires that (using E1 
)

n (B- z)
[°"n( =0)  e1/2

1 o.- 12 £ = 0,1,2,... (54)

while for the H-plane (using EL)

n (B - z) (Z +)2

0? 1/n?

( " - 1

-'.-°" . .. . . .c.* .. . .
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*'  must hold.

These equations are identical to those derived previously for the exceptional

cases, i.e., Eqs. (34) and (35).

*':. IV. ANTENNA LOCATION OPTIMIZATION FOR OMNIDIRECTIONALITY

When radiation into the horizon occurs, the corresponding E- or H-plane

pattern broadens and remains nonzero as e - W/2. In some cases, this -ay cause

the pattern to become very nearly omnidirectional, depending on the dipole height

z . Figure 4 shows E-plane radiation patterns with the TM2 mode (m W 2) turning

on for various dipole positions in the geometry of Figure la. The patterns

remain nonzero at e - 7/2 in all except the last one where z - B, which is the
n z

exceptional case. Of particular interest is the case where -o - 0.375.
0

This pattern is omnidirectional to within the width of the grid lines. Similarly,

Figure 5 shows H-plane patterns for different values of z with the TE1 mode
01n z

(i - 1) turning on, with 0.188 corresponding to almost perfect omnidirection-
0

ality. In fact, the deviation of this pattern from omnidirectionality is only

' 0.002 dB, which cannot be distinguished on the plot. Plots of the E- and H-plane

patterns for the case of Figure lb would be similar in appearance to these, show-

ing nearly omnidirectional behavior for certain choices of z 0 . An effective cri-

terion can be developed for choosing the dipole height z° to achieve very nearly

omunidirectional patterns. The criterion is to choose z° so that the radiation

power density is equal at e - 0 and e - 7r/2. For each case of E- and H-plane radia-

tion, this gives a transcendental equation for the normalized dipole height o0
which must be solved. The numerical solution is shown in Figures 6a and 6b for

r . the case of a nonmagnetic substrate (Vi = 1.0) for the TM2 and TE1 modes at cutoffSnB

respectively. Figures 7a and 7b show the solution for !-- for the geometti of
0

Figure lb when z = B for nonmagnetic layers, with curves shown for various substrate

dielectric constants C (for the TM2 and TE1 modes, respectively).
2 1e

-12-
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As an illustration of how well this method works, Figure 8 shows E-plane

patterns corresponding to several different C€ values of Figure 6a. As I

tends to 1.0, the degree of omnidirectionality obtained using this criterion

worsens. For C> 2.0, the patterns are omnidirectional to within the width

of the lines and cannot be distinguished on the plots, so only cases with

*C, < 2.0 are shown.

Although it is easy to obtain nearly omnidirectional patterns this way,

this may not be the desired goal for certain applications. In some cases, it

my be desired to suppress the radiation in a certain direction by a specified

* amount relative to the peak field strength. This can be achieved by slightly
'..

,* modifying the appropriate transcendental equation for the dipole position.

Figures9a and 9b show cases for which a desired 10 dB suppression at 8 - 0 has

been achieved for the cases of E- and H-plane radiation into the horizon.

V. CONCLUSION

- It has been seen that the radiation patterns for printed antennas always

..- tend to zero as 8 - w/2 unless a surface wave mode is exactly at cutoff.

When a TE mode turns on, the H-plane pattern remains nonzero at 0 - /2, and

when a TM mode turns on the E-plane pattern remains nonzero at e = i/2. The

only exceptions are for A ?/ = p/2, p - 0,1,2,...
0

These results can be explained from the coinciding of a pole and a

*2 branch point in the complex plane for the Soimerfeld integrals, which causes a

removable singularity to occur in the steepest descent integrations for the

- far field. A ray optics interpretation has been given to help explain the

phenomenon physically. In addition, a criterion for choosing the antenna posi-

tion within a substrate to achieve a nearly oiidirectional E- or N-plane pattern

has been given and graphs showing this optimum antenna location are presented.

These results are extended to the case of an antenna at the interface of a sub-

strate-superstrate geometry involving different materials. Plots are shown

-13-



.... to indicate the degree of omnidirectionality obtainable with this method and

,'*"its limitations for small . Finally, it is indicated that the criterion can

~be extended to produce E- or H-plane patterns with arbitrary suppression at a

. ,:.desired angle B.
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FIGURE CAPTIONS

Figure la - Substrate with Dipole Embedded

Figure lb - Dipole in Substrate with Superstrate

Figure 2a - Somerfeld Contour of Integration

Figure 2b - Steepest Descent Contour of

Integration

Figure 2c - Steepest Descent contour for e - W/2

Figure 3 - Ray Optics Geometry

Figure 4a - E-Plane Radiation into the Horizon
nlz

for Different Values of
0

*,-. Figure 4b - E-Plane Radiation into the Horizon

for Different Values of 1

0

Figure 4c - E-Plane Radiation into the Horizon
n z
l o

for Different Values of-
,o 00

Figure 4d - E-Plane Radiation into the Horizon
n z

for Different Values of
0

Figure 4e - E-Plane Radiation into the Horizon
n z

for Different Values of

Figure 4f - '-Plane Radiation into the Horizon

-. 
for Different Values of 1o

70
Figure 5a - H-Plane Radiation into the Horizon

n z
for Different Values of 

0

Figure 5b - H-Plane Radiation into the Horizon
n Z

for Different Values of
0

__' Figure 5c - -Plane Radiation into the Horizon

for Different Values of
0
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FIGURE CAPTIONS (Cont'd)

Figure 5d - H-Plane Radiation into the Horizon
nlzo

for Different Values of -x---

n Iz 
0

Figure 6a - 1 v for E-Plane Omni-
0directionality Condition

nlz
Figure 6b vs. i for H-Plane Omni-

A 0 1

directionality Condition

nIB
Figure 7a vs. 2 for E-Plane Omni-

0directionality Condition

nlgn_

Figure 7b vs. 2 for H-Plane Omni-
0

directionality condition

Figure 8a - E-Plane Radiation into the Horizon
nlz

using optimum condition for*. O
0

P. different values of c

Figure 8b - -Plane Radiation into the Horizon
nlz o

using optimum -- condition for
0

. different values of c

Figure 8c - E-Plane Radiation into the Horizon
nlzo

using optimum-- condition for
0

different values of _

Figure 8d - E-Plane Radiation into the Horizon
n z

0 using optimum ---- condition for

0
different values of £1

Figure 9a - K-Plane 10 dB Suppressed Pattern at
n B

Se - 0. c 1 - 4.0, u1  1.0, -.--
n 0S0.580 o 0.480. (Peak gain is

6.753 dB at e - w/2.)
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FIGURE CAPTIONS (Cont'd)

Figure 9b - -Plane 10 dB Suppressed Pattern

aatG 0 . Cw40 ,m10

T-- 0.865, - -0- 0.450. (Peak
0 0)

gain is 7.665 dB at e - if.

.119
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