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ABSTRACT

. Radiation from printed antennas is investigated with emphasis'placed,nn
producing‘i; and ﬁ;plane radiation patterns which are as nearly omnidirectional
as possible. This is achieved using criteria which are derived for a nonzero
radiation field extending down to the layer surface (radiation into the horizon).
It is determined that this phenomenon arises when a surface wave pole coincides
with a branch point in the complex plane. A simple ray optics interpretation
is given for the phenomenon, and graphs are presented to easily enable design
of printed antenna geometry to achieve nearly omnidirectional E- or ﬁ;plane

patterns.
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1. INTRODUCTION
[

Investigation of printed circuit antennas and associated substrate effects

[1]-[9] has uncovered certain interesting phenomena. One such phenomenon is the
existence of nonzero radiation along the horizon in either the E- or the ﬁ;plane
when the electrical thickness of the substrate satisfies specific criteria.

In particular, i;plane radiation into the horizon is seen to occur when a TE
surface wave mode turns on in the substrate, and i;plane radiation into the
horizon can be observed when a TM mode turns on. This phenomenon is explained
analytically by the coincidence of a pole and a branch point in a Sommerfeld-

type integration, which gives rise to a removable singularity in the steepest

descent integration for the far-field. A ray optics interpretation is given to aid

in the physical understanding of the phenomenon. Criteria are then determined for

optimum antenna location within a substrate to yield E- or ﬁ;plane patterns as
omnidirectional as possible in a specified sense. Based on this, graphs are
presented enabling design of proper substrate-antenna geometry to achieve nearly
omidirectional radiation patterns. These results are then extended to the
more general case of a dipole printed on a substrate with a different super-
strate (cover) material on top.

Although the problem discussed herein is akin to a large number of
investigations in the propagation of electromagnetic waves in stratified media
{10)-[14], the thrust of this paper is. the unique observation of .

radiation into the horizon and the generation of nearly omnidirectional radia-

tion patterns.

1I1. RADIATION INTO THE BRORIZON

With reference to Figure la, the problem consists in its simplest form
of s horizontal infinitesimal dipole in the £ direction embedded inside a
grounded substrate layer. The results which pertain to this configuration

can be generalized to the case of a dipole in a substrate-superstrate configura-
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tion of different materials, shown in Figure 1b. However, in order to high-
light the criteria under which radiation into the horizon takes place and to
keep the mathematical complexities to a minimum, the case of Figure la will
be considered in detail, with only results shown for the more general case of
Figure 1b.

The far-field due to the elementary horizontal dipole at z = z, in a
substrate of thickness B, relative permittivity and permeability comnstants
el. ul and index of refraction n, = JE;ﬁI » 18 given in spherical coordinates
by (2], [5]

Eq " k>[cosbcosll ~ sindll ) 'eh)
and
2
In these equations ko = wJuoeo » € and Yo being the total permittivity and

permeability of free space.

The Hertz potential components Hx, Hz for z > B are given in cylindrical

+jwt

coordinates as [2], [ 5] (suppressing e time dependence)

-jwu 4o
T OI 10 e PP ana Ay

and
e = Oﬂki cost L., Deig) nm'—(x) e L (Ar)dA %)

vhere k1 = kbn and

1
£Q) = Zhili.nh(ulzo) (5)
g(\) = 212(1-ni)nicooh(u13)linh(ule) (6)
n.(x) - uluoinh(ull) +uy co.h(uln) €D
-2-
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2
qm(k) unlcosh(ulB) + ululsinh(uln) (8)
with
- (22 2,1/2 - (22 2,1/2
u (A - O) » ul (x - kl) . (9)
2 2,1/2
The branch interpretation of u isu = I(A - ko) | for A Z.kb and
us jl(kz - k:)llzl for A f_ko. The branch interpretation of uy is arbitrary.

The Sommerfeld contour inferred by Equations (3), (4) is shown in
Figure 2a. If the substitutions A = kosinc, 2 - B = Rcosf, r = Rsinb are intro-
duced (where R and 6 describe spherical coordinates) together with the large
argument asymptotic expansions for Hiz)(kr) and Hiz)(lr), Equations (3) and (4)

can be written as

1 fth(Z)
I ==2— ) rpe™ By (10)
x JiZOR T
and
n =228 | g™ lar (11)
AR T

where I is the path shown in Figure 2b which can be deformed into the steepest

descent path (S.D.P.) also shown there, and

0= koR » h(Z) = ~jcos(L-B)

(k_cosz) f(k sinZ) /-juwu
e Xo® z Bwkl /T8inBsint
(k_cosl) g(k sinl) /~jwu
GX) = 3 %k sinZ) Do(k sin;)( g — &) (13)
e o m o 8ﬂk1 VTginBsing

The saddle point is at [ = Co = 0, and the departure angle from the saddle
point isa = 4'% . The roots of De(k) and Dm(k) give surface wave poles whose
residue contributions determine the TE and TM mode surfacé waves Tespectively
[2), [S). The steepest descent path is deformed to go around the poles as
shown in Pigure 2b. However, due to the exponential decay away from the saddle

point along the steepest descent path, the residue contributions from these poles
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A
Z: do not contribute to the asymptotic expansionsof l'lx and Hz unless 6 = /2.
LI 1)
N3
'f; For this latter case, the contour of integration can be broken into two parts:
(- . a steepest descent contour and an integration around the poles, as shown in
AN
:.' Figure 2c. The surface wave fields, determined by the integration around the
poles, contribute at 8 = 7/2 since we are in the vicinity of the layer material.
These surface wave fields remain distinct from the steepest descent contribu-
- tion, however, which gives the radiated far-field which is of interest here.
The method of steepest descentsnow yields
& L -jkOR
M~ F@®) JIme |8 (14)
- X kOR
{
- and n [/ -3k R
- 4le
T, v cosd GB) V2T e iR . (15)
X, |
:'_:- Equations (1), (2), (12), (13) are combined with (14) and (15) to give |
a* ‘
> the far-field of the dipole. The far-field clearly decays as 1/k°R for kOR > 1.
i
For convenience, the radiated field is defined so as to suppress this radial
~
'_:: dependence, 1i.e.
< z‘; -1k R
- Ee N ? e (16)
:: and R
- E, -jkR
b n o
!-:¢ TR e 17)
°
vhere, by definition,
o R 2 R R
. - - 8
‘ Eq kolcosecostbnx nineﬂz] (18)
R 2 R
E¢ kol linbﬂx] 19)
and
R +jk°R
I = Lim (k R) e n (20)
X gkre+o © x
°
by
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43k R
I = Lim (k R) e °n . (21)

Eg and E: are functions of 6 and ¢ only. The variation of the radiation

field with 0 is governed by the F(6) and G(O) functions. With reference to
Equations (12) and (13), it is observed that a factor cosb appears in both

F(6) and G(8). This implies that in general,

Lim m® -0 (22)

g + w2 %%

and therefore

Lim ng =0 (23)
6+ /2
and
R
Lim E¢ =0 . (24)
6 » 7n/2

That is, the radiated field tends to zero at the horizon (8 + m/2). The only
possible exception is when the terms De(kosine) or Dm(kosine) also tend to zero
as 0 + ©/2. When De(ko) = 0, it follows from Eq. (7) that

ny8)\ / )

—) 1-1/n] = (m-1/2)/2, (25)

A0

m=1,2,...

wvhile when Dm(ko) = 0, then from Eq. (8)

n.B
(—}—) A -1ad = @i, (26)
(v]

me=1,2,...
is obtained, where Ao = free-space wavelength.
Equations (25) and (26) are simply the conditions for a TE and a T™M
surface wave mode turning on, respectively.
The characteristic functions D‘(X) and qn(k) have simple zeros at the

location of the surface wave poles in the complex A-plane except when a pole

S R L S L h‘
PRI LN s LN ¢
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coincides exactly with the branch point at A = ko’ vhich occurs when the
[ 4
corresponding surface wave mode turns on. In this case, the function De(x) or

Dm(X) exhibits a branch point type of singularity there. In particular, as

A ko
D () v 3 (-1, 02 - 2t/ 27)
vhen (n—g).'{ - 1/2? = (@ - 1/2)12
and

o+l 2,.2 2.1/2
Dm(k) v (~1) nl(k - k)

n, B
when (—A—) J( - l/ni = (m-1)/2 . (28)

Ao

(We are arbitrarily choosing the branch of uy in Eq. (7) and (8) so that
u, = +jJ£z - k2 here.)
1 1 o
This branch point singularity at A = ko in the A-plane when a mode turns
on corresponds to a simple zero in the steepest descent [-plane at [ = 7/2,

since

2 1/2

2
(\° - ko) jkocosc .

This simple zero behavior of De(kosinc) and Dn(kosin;) causes the point Z = 7/2

to become a removable singularity in the F(Z) and G(Z) functions with

-Jwu
F() ~ (-1)f(k ) (—1-—)(8 o L ”) (TE Mode) (29)
°o" \M T Jr
) gk ) -Juwu
G(T) ~ (-1)® —=C (—1—)( o lﬂ*j)) (TE Mode) (30)
Du k) \iy smci ¥
and
. 6(o) ~ 31" = ( )(s 2 ) (TM Mode) (31)
| 2.0 e hen?

88 [ + 7/2 in each case. Equation (29) implies that ﬂ: remains nonzero, in

genersal, as 0 + 7/2 when a TE mode turns on. Similarly, Eq. (31) implies that
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Hi rema}ns in general nonzero as 8 + 7/2 when a TM mode turns on. In addition,
Eq. (30) appears to imply that H: can also remain nonzero when a TE mode turms
on. However, when a TE mode turns on, g(ko) = 0. These results indicate then
that E: can extend down to a nonzero value at the horizon only when a TE mode
turns on,while Eg can remain nonzero only when a TM mode curns on. E; and Eg
determine the H-plane (¢ = g) and E;plane (¢ = 0) radiation patterns respectively.
Although this result is true in general, the presence of the term sinh(ulzo)

in £()) and g()) causes exceptional cases to occur. In particular, the E- and

i;plane radiation patterns will have a null at the horizon even when a surface

wave mode is at cutoff for the exceptional case of z, satisfying the relation

sin[kozo/n2 -11=0 (32)

1

or

lo. PI2_ o -0,1,2,... (33)
° ¢£-1/ni
Comparing this result with Eq. (26), it is observed that the exceptional

case involving a TM mode turning on (EFplane radiation into the horizon) implies

n_(B-z )
1o _Y2_ | g.0,1,2,... (34)

A .
° ¢1-1/ni

For most practical situations X = 0, so z = B; i.e., the antenna is printed
on the interface of the substrate and free space. Similarly, if Eq. (33) is
compared with Eq. (25), then the exceptional case for a null in the H-plane
pattern at 8 = 1/2 with a TE mode turning on occurs when

1
n_(B-z ) (L +3)/2
1 _o . 2 £=0,1,... (35)

A .
© J{-llni

This criterion cannot be satisfied for the TE1 mode (m = 1) for z > 0, and

therefore there will be nonzero i;plane radiation into the horizon when the TEl

mode turns on regardless of the dipole position z,- A null at 6 = /2 can
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appear, however, for higher order TE modes.

'} .

::Z ) These results extend directly to the case of Figure 1b. ﬁ;plane radia-
(:. tion into the horizon occurs for a TE mode turning on [15] , giving the condition
.
B /2
RS n,t n R R n -1 n B
" )\2 = 2 tan~! u—z S - cot<2'ﬂ + v’l-l/ni) (36)
. ° i 1Akl ©

‘{:j while E—plane radiation into the horizon occurs for a TM mode turning on, or

when the condition

5 n2t nz -1 82 ni-l nlB >

"\ 5 = tan - tan <277 > fl-l/nl > (37)
= °  ankla ' nda °

» is satisfied.

aaa

In a similar manner, as with the single layer, there is the exceptional

:"‘ case where radiation vanishes at 6 = m/2 despite the surface wave mode turn
l.(
i a on condition. This case is still given by Eq. (33) with n, corresponding to
o the lower layer material (the dipole is assumed to be within the lower layer
?.'j here). This does not constrain the dipole from being at the substrate-superstrate
. interface (z_ = B) in achieving radiation into the horizon in either the E—-plane
) o
- or the H-plane, since B is now arbitrary. In fact, 5= 1—1/nl ¢ p/2, unless
: )
o the top layer is of thickness
o n,t
s = A—I/ng - (L+1/2)/2 , £=0,1,... (TE Mode)
or o
~. n,t
8 2 A-1md <X pe0,1,... (TM Mode) .
" Ao 2 2 .
- For this reason, E- and H-plane radiation into the horizon is always observed in
.‘ practical cases involving a dipole at the substrate-superstrate interface in

the geometry of Figure 1b.
III. A RAY OPTICS INTERPRETATION

. A ray picture can be composed in order to provide an explanation of the

radiation into the horizon effect. Hitﬁ reference to Figure 3, we have plane
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-.E‘;\ wave spectrum rays emanating from the dipole and reflecting between the ground
i '

:,::.: plane and the dielectric interface, with the rays partially transmitting into
-:‘..:,

t space at each reflection from the interface. For far-field radiation at an
\(_ angle 6, the reflection angle within the dielectric is 61, determined from
a2
{::: Snell's law nlsinel = ginf. There are two such rays which leave the dipole
-\-l.

. as shown in the figure. The reflection coefficient for the rays at z = B is

Y AR YA

A = __8 d

e r Z +Z (38)
*..':\" a d
“ »

~e where

i Z = cos® (39)
- f: a = Notos

. ‘ ™
oS Zd = no\/—e; ¢:osBl (40)

for E in the plane of incidence (EI |), and

A‘." 4
L)

.
Y
ot

{
f-‘_. : z, = n,sech (41)
= iy
Zg = Mo secG:L (42)
Cy 1
i - o
s for E normal to the plane of incidence (El)’ where =y & - The Eg component
e o
::.‘(_-:: of the radiated field corresponds to EII while the IZ-:¢ component corresponds to
N
A 9 E.L' In either case, Il"l + 1 as 6 = /2. Rays are increasingly trapped in the
) substrate as 6 + 7/2 and radiation into space goes to zero with the only excepti
N possible when the rays add up in phase after each bounce as 6 + /2. This
.’ condition arises when a TE mode turns on for E.L and wvhen a TM mode tur~s on for
:- Ei|. A proof can be provided by considering that as the ray travels from a to b
".::::: its radiation contribution experiences s phase shift ¢ab given by
o .

<N Ogp = I+ arg(T) + 8, +kd, - (43)




?he term ¥ in Eq. (43) results from the phase reversal of the tangential
E-field at z = 0 (This is the component for which reflection is being considered.
A similar analysis applies to the normal component). Similarly, arg(l') comesfrom
the phase shift introduced by reflection at the interface (point a). As 6 + n/2

and arg(l) = 0 for

arg(l) = v for E . The term Aab represents the phase

E
I 4
shift the ray undergoes in travelling from a to b, while kodab is the phase
shift due to the array factor effect from the separation at a8 and b, as seen

from an observation point at 6 = /2. These phase shift terms can be evaluated

using
2B
d.p ZBtane1 - (44)
nl-l
and
by = -84, - B8,(2B) (45)
with
By = knsin® =k 46)
2 !
B, = konlcose1 - kov/nl-l . %7

Thus ¢ is obtained to be
ab

0 E
=t - 2k /21 . (48)
() 1
b E||
|

For the ray to add in phase after each bounce, it is required that

Ogp = -2™m , m=0, ¥1,%2,...

and therefore the following criteria are obtained:

a B\ (- 3)/2
(X°>. , (E, - field) (49)

¢
4_i/n§ m=1,2,...

-10- {




and

n_ B
( 10) - 2o1J/2 (Eg - £ield) (50)

A {——————
_llni me= 1,2..-- .

These are simply recognized as the conditions for the turning on of the TE and

T modes in the substrate, respectively. Hence, ray optics predicts that E¢
and Ee can remain nonzero as 8 -+ 1/2 only when the TE and TM modes turn on,
respectively. This agrees with the steepest descent analysis. Ray theory may
also be used to provide a simple explanation for those exceptional cases where
a null appears at 6 = 7/2, in spite of the fact that a mode is at cutoff.

To see this, the phase difference between the two plane wave spectrum rays that

leave the dipole must be considered. This phase difference is given by

here ¢1’2 = Arg(T) - ZBZ(B-zo) - exd1’2+ kodl’z (51)
51‘2 = 2(B-zo)/v$f-1 . (52)

The first three terms on the right-hand side of Eq. (51) represent the phase
difference due to the reflection of Ray #1 from the interface and the extra
distance it travels, while the last term is the array factor term for radiatiom
along the horizon due to the separation of the two rays. Using (46) - (47),

and setting ¢1’2- -(2% + 1)7, L = 0, ¥1,%2,... as the condition for the radiation
from the two rays to cancel, there results

0 E
~(22 + 1) = L - 2k Vni -1(3B-2z) . (53)
i’ﬂ E [+ o
i

Therefore, the exceptional case for the E;plane requires that (using E")

n,(B-2)

o 1l o . 2/2 ,  2=0,1,2,... (54)
:E ° J{-I/ni

s _
F!E . while for the H-plane (using gl?
2 1

> nl(B -z) 2+ 3)/2
E-.:: A = » 2 - 0.1.2,-.0 (55)
N
e ° A-1/n?
1e;
e -11-
‘..'.‘.
b e e A e e e e )
. AP A Y N A AR P S VR A O WO RN NI S At e T N W NN
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must hold.

These equations are identical to those derived previously for the exceptional

cases, i.e., Eqs. (34) and (35). !

IV. ANTENNA LOCATION OPTIMIZATION FOR OMNIDIRECTIONALITY

When radiation into the horizon occurs, the corresponding E- or ﬁ;plane
pattern broadens and remains nonzero as 6 + m/2. In some cases, this may cause
the pattern to become very nearly ommidirectional, depending on the dipole height 1
z . Figure 4 shows E-plane radiation patterns with the TMZ mode (m = 2) turning
on for various dipole positions in the geometry of Figure la. The patterns
remain nonzero at 6 = m/2 in all except the last one where z = B, which is the

n,z

exceptional case. Of particular interest is the case where i 2 = 0.375.
o)

This pattern is omnidirectional to within the width of the grid lines. Similarly,

Figure 5 shows ﬁ;plane patterns for different values of z with the TEl mode
n,z
(m = 1) turning on, with i 2 = 0.188 corresponding to almost perfect omnidirection-
0

ality. In fact, the deviation of this pattern from omnidirectionality is only

& 0.002 dB, which cannot be distinguished on the plot. Plots of the E- and H-plane
patterns for the case of Figure 1lb would be similar in appearance to these, show-
ing nearly omnidirectional behavior for certain choices of z. An effective cri-
terion can be developed for choosing the dipole height z, to achieve very nearly
omnidirectional patterns. The criterion is to choose z so that the radiation

pover density is equal at 6 = 0 and 6 = 7/2. For each case of E- and H-plane radia-

n.z
tion, this gives a transcendental equation for the normalized dipole height i 2

0
vhich must be solved. The numerical solution is shown in Figures 6a and 6b for

the case of & nonmagnetic substrate (u1 = 1.0) for the TH2 and TE1 modes at cutoff

ny B
respectively. Figures 7a and 7b show the solution for il_ for the geomet:; of
o

Figure 1b when z, - B for nonmagnetic layers, with curves shown for various substrate

dielectric constants el(for the THZ and TEl modes, respectively).




As an illustration of how well this method works, Figure 8 shows E;plane

patterns corresponding to several different €, values of Figure 6a. As €

1
tends to 1.0, the degree of omnidirectionality obtained using this criterion
worsens. For €, > X 2.0, the patterns are omnidirectional to within the width
of the lines and cannot be distinguished on the plots, so only cases with

€ < 2.0 are shown.

Although it is easy to obtain nearly omnidirectional patterns this way,
this may not be the desired goal for certain applications. In some cases, it
may be desired to suppress the radiation in a certain direction by a specified
amount relative to the peak field strength. This can be achieved by slightly
modifying the appropriate transcendental equation for the dipole position.
Figures9a and 9b show cases for which a desired 10 dB suppression at 6 = O has

been achieved for the cases of E- and i;plane radiation into the horizom.

V. CONCLUSION

It has been seen that the radiation patterns for printed antennas always
tend to zero as O + N/2 unless a surface wave mode is exactly at cutoff.
When a TE mode turns on, the H-plane pattern remains nonzero at 6 = 7/2, and

vhen a TM mode turns on the E;plane pattern remains nonzero at 6 = /2. The

n.z
only exceptions are for i 2 J{-I/ni =p/2, p=0,1,2,... .
o

These results can be explained from the coinciding of a pole and a
branch point in the complex plane for the Sommerfeld integrals, which causes a
removable singularity to occur in the steepest descent integrations for the
far field. A ray optics interpretation has been given to help explain the
phenomenon physically. In addition, a criterion for choosing the antenna posi-
tion within a substrate to achieve a nearly omnidirectional E- oriilplane pattern
has been given and graphs showing this optimum antenna location are presented.
These results are extended to the case of an antenna at the interface of a sub-

strate-superstrate geometry involving different materials. Plots are shown
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.":'f to indicate the degree of omnidirectionality obtainable with this method and
- [

" its limitations for small €. Finally, it is indicated that the criterion can

(t be extended to produce E- or i—plane patterns with arbitrary suppression at a

desired angle 6. 1
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FIGURE CAPTIONS

Figure 1la - Substrate with Dipole Embedded
Figure 1b - Dipole in Substrate with Superstrate
Fizure 2a - Sommerfeld Contour of Integration
Figure 2b - Steepest Descent Contour of
Integration
Figure 2c - Steepest Descent contour for 6 = w/2
Figure 3 - Ray Optics Geometry
Figure 4a - E-Plane Radiation into the Horizon
n.z
for Different Values of i ©
o]
Figure 4b - E-Plane Radiation into the Horizon
n,z
for Different Values of i 2
°
- i
Figure 4c - E-Plane Radiation into the Horizon ‘
n,z
for Different Values of i =
o]
Figure 4d - E-Plane Radiation into the Horizon
n,z
for Different Values of i 2
o
Figure 4e - E-Plane Radiation into the BRorizon
n.z
for Different Values of i 2
o}
Figure 4f - E-Plane Radiation into the Horizon
n.z
for Different Values of i 2
(¢]
Figure Sa - B-Plane Radiation into the Horizon
n.z
for Different Values of i 2
o
Figure 5b - H-Plane Radiation into the Horizon
L3 n,z
S for Different Values of -%—9
o - _ (0
?C: Figure 5c - H-Plane Radiation into the Borizon
o] n,z
i for Different Values of i 2
e o
L
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Figure 5d - H-Plane Radiation into the Horizon
n,z
. for Different Values of i 2
nlz _ °
Figure 6a ey 2 vs. el for E-Plane Omni-
o]

directionality Condition

n.z
Figure 6b - —13 vs. 61 for H-Plane Omni-
0

directionality Condition

n.B
Figure 7a - —%— vs. €, for E~Plane Omni-
o}

directionality Condition

n,B
Figure 7b - il~ vs. €, for H~Plane Omni-
o}

directionality condition

Figure 8a - E-Plane Radiation into the Horizon
n,z
using optimum i © condition for
o]

different values of €

1

Figure 8b ~ E~Plane Radiation into the Horizon
n,z
using optimum i 2 condition for
o]
different values of €

1

Figure 8¢ - E-Plane Radiation into the Horizon
n.z
using optimum i © condition for
o)

;? different values of €

- Figure 8d - E-Plane Radiation into the Horizon
.. n. .z

'... using optimum i 2 condition for

< )

. different values of ¢,

': Figure 9a - E-Plane 10 dB Suppressed Pattern at
i . nlB
O 6=0. €y = 4.0, u, = 1.0, -
’ 0,z 0

- 0.580, - 0.480. (Peak gain 1is
. (o]

6.753 dB at & = 1/2.)
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Figure 9b - H-Plane 10 dB Suppressed Pattern
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