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ABSTRACT

Smoke-wire flow visualization and hot-wire anemometry have been used to

study near and far wakes of two-dimensional bluff bodies. For the case of a cir-

cular cylinder at 70 < Re < 2000, a very rapid (exponential) decay of velocity

fluctuations at the Karman vortex street frequency is observed. Beyond this

region of decay, larger-scale (lower wave-number) structure can be seen. In the

far wake (beyond one hundred diameters) a broad band of frequencies is selec-

tively amplified and then damped, the center of the band shifting to lower fre-

quencies as downstream distance is increased.

The far-wake structure does not depend directly on the scale or frequency of

the original Karman vortices; the growth of this structure is due to hydro-

dynamic instability of the developing mean wake profile; it is not caused by

amalgamation of the Karman vortices. Under certain conditions amalgamation

can take place, but is purely ncidenal, and is not the driving mechanism

responsible for the growth of large ale structure. Similar large structure is

observed downstream of paro s flat plates (Re A 6000). which do not initially

shed- arman-type vortices into the wake,

>Hot-wire measurements show that two-dimensional locally-parallel Inviscid

linear stability theory is adequate to explain the growth of downstream struc-

ture. Namely, measured prominent frequencies In the cylinder wake are in close

agreement with those predicted by the theory, when streamwise growth of wake O

width is taken into account.

Finally, three-dimensionality in the far wake of a circular cylinder is briefly

discussed.
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Chapter I

Introduction

S

1.1. Hixtorical Overview

Wakes generated by two-dimensional bluff bodies have been the focus of hun-

dreds of experiments since the early 1900's. For a detailed review or bibliogra- 0

phy of work on this subject, the reader Is referred to Morkovin (1964) or Berger

and Wille (1972). The majority of experimental efforts In the past have dealt pri-

marily with near wakes (only a few diameters downstream). A more limited

amount of work has been done on the far wakes of bluff bodies (up to several

hundred diameters), and that is the subject on which we wish to focus here.

Let us consider the two-dimensional problem. It is well known from dimen- p

sional analysis and simple scaling laws that a plane far wake grows as z while
I

the velocity defect decays as z - T (See for example, Cantwell (1979)). We would

expect therefore, as we go downstream in the wake, that the size of the largest- p

scale structure should increase, while its passage frequency should decrease.

This in fact has been experimentally verified. Taneda (1959), using flow visuali-

zation in the wakes of two-dimensional cylinders and fiat plates, observed a far

wake structure much like the original Karman vortex street. but of larger scale.

He viewed the process as one of changing hydrodynamic stability, i.e.. the origi-

nal street decays ("breaks down") and the wake "rearranges" itself into a new

configuration appropriate to the new (downstream) position. Taneda found that 0

for laminar wakes (50 < Re < 150), the ratio of the secondary vortex street

scale to that of the primary (Karman) street (arq3 j 1 ) varies from 1.5 to 3.5; for

turbulent wakes this ratio is roughly 10, and the secondary street does not _



appear until much further downstream, after the wake has had time to grow

significantly. He also reported that this sequence sometimes repeats Itself.

Other investigators have also reported large scale organized structure in the

far wakes of bluff bodies. Grant (1958) observed quasi-periodic large structures

several hundred diameters downstream of his cylinder at Re = 1300, which he

described as "jets of turbulent fluid proceeding outward from the central plane

of the wake." Successive "jets" arise and decay, their overall size becoming

larger with increasing downstream distance.

Gerrard (1968) studied the downstream development of a cylinder wake at Re

= 113. At z/d =450 he found that the fundamental (Karman) frequency is lost in

the background noise, but a lower-frequency fluctuation is found. The possibil-

ity of a secondary vortex street was suggested, the ratio of secondary to primary

frequencies being about 0.033.

Zdravkovlch (1988) studied the development of the wake behind a set of three

circular cylinders in close proximity. He found that the shed vortices rapidly

decay as they interact with each other. Subsequently, a new vortex street of

larger scale appears downstream. Zdravkovich explained the formation of the

secondary vortex street as a coupling of two mechanisms - shear layer Instabil-

ity, and a rolling up process induced by the distributed vorticity in the wake.

Similar experiments were done more recently by Williamson (1983).

An obvious extension of Zdravkovich's work is the wake of a cluster of many

cylinders - or, in the general case, the wake of a porous two-dimensional body,

such as a screen or perforated flat plate aligned normal to the flow. Investiga-

tions of the latter have been reported by Castro (1971), and more recently by

Valensi(1974). Castro categorized two distinct regimes of flow based on the soli-

dity of the plate: a) For high solidity (low porosity) a Karman vortex street

[ "
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dominates the near wake. b) For low solidity (a< 0.8) the plate does not shed

Karman vortices, but there still is a dominant frequency present downstream,
which he attributed to far wake instability. Yalensi examined the latter regime

in more detail with a 53% solid plate; he shows power spectra and smoke pic-

tures. The dominant near-wake frequency corresponds to a rolling up of the

shear layers on either side of the wake; further downstream (beyond five plate

widths), the dominant frequency Is associated with a Karman-type vortex street,

which forms after the shear layers have merged. Smoke visualization confirms

his hot-wire results.

Another interesting set of experiments was reported by Durgin and Karlsson

(1971). They subjected the cylinder wake to a deceleration, thereby distorting

the Karman vortex street. Their results show an annihilation of the concen-

trated vortices, and the subsequent creation of a new vortex street of lower fre-

quency and longer wavelength. They, like Taneda, attributed this effect to

changing hydrodynamic stability. Although the non-decelerated wake of Taneda

does not experience bending and stretching of vortex filaments, as does the

decelerated wake, the similarity of the two results is remarkable.

In a closely related experiment, Keffer (1965) used a constant-area distorting

duct to impose a strain field upon the wake. His flow visualization results show

a secondary vortex-street-like structure emerging with a frequency 0.36 times

the Karman frequency at Re = 350.

Interest in Taneda's discovery has re-surfaced in the past decade. Based on

an inviscid model. Weihs (1973) suggested that multiple Karman vortex street

modes are possible. In an attempt to compare his model with experiment, he

plotted Taneda's results and obtained the fit (for 60 < Re < 120):

p
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220 =8 220 (1.1)
LI Re

although there in considerable scatter in the data. Matsui and Okude (1980)

made careful hot-wire measurements at Reynolds numbers between 100 and

180, of the velocity fluctuations associated with this secondary-street

phenomenon. They also reported an inverse Reynolds number relation, but

their constant was much different than Taneda's (Eq. 1.1):

ILs 295
al Re (1.2)

Thus it seems that the development of the secondary vortex street is not

independent of experimental facility. (Taneda's cylinders were towed in a water

channel, while Matsui and Okude used a low-speed wind tunnel).

Meanwhile Townsend (1979). using multiple hot-wire arrays, found periodic

flow patterns resembling Karman vortex streets for a much higher Reynolds

number (Re = 8000 at z/d = 170). "Groups" of three to five vortical structures

were observed; the passage frequency within a group being uniform, but varying

considerably from one group to the next. Regions of random fluctuations seem

to fill the gaps between successive groups. Long-time-averaged spectra there-

fore do not show a peak at any particular frequency. Townsend estimated that

these eddy groups contribute 15 to 20X of the total turbulent energy. Such

grouping of structures had previously been suggested by Gupta et al. (1971) for

the turbulent boundary layer.

Matsui and Okude (1981) later abandoned Taneda's original conjecture that

the secondary street results from hydrodynamic instability, following the

. . . . . , ..p• . . . . .. . . . . . . . .
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"breakdown" of the primary street. In its stead they proposed that pairing is

the mechanism for the change in scale. The possibility of amalgamation of

smaller structures, as in mixing layers, had also been speculated by Roshko

(1976). Matsui and Okude's conclusion, however, was based partly on flow visual-

ization, where the flow tracer was introduced upstream of the cylinder. As will

be pointed out in Chapter 3, this type of visualization can be very misleading.

Furthermore, with a pairing mechanism the frequency of the secondary street

should be half that of the primary street, but this is not the case for all Rey-

nolds numbers. Matsui and Okude (1980) measured the frequencies of the pri-

mary and secondary streets. From their Figure 10 one can calculate the ratio of

these two frequencies; fIg/fL ranges from 0.2 to 0.52. Interestingly, at Re = 140

this ratio is approximately 0.44; yet this was the Reynolds number chosen to 0

support their pairing hypothesis (Matsui and Okude (1981)).

At about the same time, Cimbala, Nagib and Roshko (1981) reported strong

expecimental evidence in support of Taneda's stability hypothesis. Namely. they

employed the smoke-wire flow-visualization technique of Corke, et al. (1977) and

hot-wire anemometry to show that concentrated vortices of the Karman vortex

street decay exponentially. As will be discussed in Chapter 3, the very rapid

decay of the Karman vortex street has been known for quite some time (see for

example Roshko (1953)); the full impact of this decay, however, has not been

realized due to misinterpretation of streakline flow visualization. Cimbala, et al.

showed that by 100 to 150 diameters downstream of a cylinder at Re f 100 , the

initial vortex street can no longer be found. Thus, they concluded that the

development of any subsequent structure can not be directly dependent upon

the original vortex street (i.e., amalgamation), but rather must be the result of

a local wake instability of the developing mean velocity profile. Details of these

and subsequent experiments are reported in the present paper. Recal that a

similar conclusion had been reached by Durgin and Karlsson (1971) for the case S



of a decelerated wake.

Matsui and Okude (1983), again studied the wake at Re = 140. Using simul-

taneous hot-wire anemometry and smoke visualization at zx/ =75. they show evi-

dence that the smoke lumps are indeed vortices at this location; therefore they

conclude, based on flow visualization of these lumps, that pairing is the predom-

inant mechanism for the change of scale. The frequency ratio f 21f 1 is not

always exactly one-half because not all of the vortices pair up; a few are left

stranded, causing some irregularity. However, when Matsui and Okude acousti-

cally excite the wake at "L-or L-of the Karman frequency, they observe regular
2 3

pairing or tripling, respectively.

In contrast to the conclusions of Matsul and Okude, Nagib and Desruelle

(1982) and later Desruelle (1983) confirmed the findings of Cimbala, et al. (1981)

with a different flow facility. In addition they used acoustic excitation to experi-

mentally derive the stability characteristics of the wake. Namely, amplification

rates are plotted as a function of disturbance frequency and of downstream

location. As expected, the band of amplified frequencies shifts to lower values

and broadens as downstream distance is increased. 0

Several theoretical and numerical investigations of this matter have also

been made; for example, see Weihs (1973). Aref and Siggia (1981), Schatzman

(1981), and Saffman and Schatzman (1981). For the most part these models are

inviscid, two-dimensional, and assume an infinite array of vortices; only the

subharmonic instability has been given much attention, although Saffman and

Schatzman discuss other possibilities. Robinson (1984) has Investigated three-

dimensional stability of an initially two-dimensional row of staggered vortices.

-S J-

*



-7-

1.2. Objec ve

For the case of a plane free shear layer, amalgamation of small vortices into

larger ones is an important contributor to the growth of coherent structures.

(See for example Brown and Roshko (1974).) To what extent amalgamation

influences the scale of structure in a wake is of concern here. As discussed

above, there is considerable disagreement among researchers as to the

mechanism(s) responsible for the large-scale structure observed in far wakes of

two-dimensional bluff bodies. The two views are summarized here:

a) Hydrodynamic instability of the mean wake profile Is responsible for the

growth of downstream structure, independent of and not directly resulting from

the vortices shed from the body (Karman vortex street).

b) The large structure in the far wake is a result of amalgamation of the Kar-

man vortices into larger vortical structures.

Our overall objective then is to describe definitively the mechanism that

causes the change of scale. The experimental tools we have employed toward

this end are hot-wire anemometry and smoke-wire visualization. We are pri-

marily concerned with the two-dimensional aspect of the problem- three- .

dimensionality is also discussed briefly.

* 0
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Chapter 2 5

Experimental Facility and Instrumentation

2.1. Facility

The flow-visualization experiments, as well as the hot-wire measurements,

were conducted in an open-return, low-turbulence wind tunnel, shown schemati-

cally in Figure 2.1. The test section was 0.5 m square and 2 m long; flow velocity

was variable from 0.5 m/s to 12 m/s. The turbulence intensity u',m/U. of the

freestream was originally measured to be 0.4% at U. = 2 m/ s. We had con-

cluded that this turbulence level was too high for accurate wake measurements,

where the fluctuations in the wake itself are quite low. Therefore we refurbished

the facility with a new test-section and added several screens in the settling

chamber, in the manner suggested by Loehrke and Nagib (1972). The final O

result in the test section is a background turbulence level of about 0.1 to 0.2% at

U. = 2 m/s.

2.2. Models

The circular cylinders used In the experiments varied In diameter from 0.06

cm to 0.5 cm, giving a Reynolds number range from 70 to over 2000 (based on

cylinder diameter, Re = -s-). The cylinders, made of drill rod, spanned the
V

test section and passed through the walls at either end, where they were held in

tension by fasteners outside the tunnel walls. Drill rod provided the required

strength, uniformity of diameter, and smoothness. Before each run, the 0 5

cylinder was polished carefully to remove any dust build-up or corrosion,

Three-dimensionally perturbed cylinders were used as well as the smooth two-

dimensional ones, (see Chapter 6). To make one of these three-dimensional



cylinders, paint was sprayed on the surface of the cylinder at specific intervals,

and for certain lengths along its axis, after masking those sections which were

to remain unpainted. In this manner. the cylinder diameter was increased

where painted, producing a three-dimensional disturbance along the span.

In addition to circular cylinders, porous flat plates were also stretched across

the test section, with their broad-sides facing the flow. The plates were approxi-

mately 2 cm in width and were cut from screens. (Reynolds number based on

this width ranged from 3000 toa 9000.) In the initial stages of this work, done in

cooperation with H. Nagib, we looked at a number of porous plates of various

solidities and mesh sizes. From these we picked one with initially laminar flow,

and one with initially turbulent flow for our smoke-visualization experiments

(see Chapter 4): a) a 29% solidity screen with wire diameter 0.18 mom and mesh

size 1.15 mm, and b) a 47% solidity screen with wire diameter 0.43 mm and

mesh size 1.59 mm, respectively. The screens were held in tension by fasteners

which passed through the tunnel walls.

2.3. SmokeWire Flow-Vsualization Technique

A very simple technique for introducing closely spaced streaklines in wind

tunnels is called "smoke-wire flow visualization." and is described by Corke, et

al. (1977). In the present experiments, the smoke-wire used for flow visualiza-

tion was a 0.13 m~m diameter stainless steel wire which stretched from top to

bottom of the test section through the tunnel walls. The top end of the wire

passed through a No. 27G hypodermic needle and then into a 3.2 mmn hollow

brass cylinder, which was clamped to the outside of the tunnel. This cylinder
*

served a two-told purpose: a) to hold the smoke-wire in place, and b) to serve as

a channel for the oil to reach the wire, as described below. The other end of the

smoke-wire passed through the bottom of the test section where it was clamped

to a hanging weight which provided constant tension in the wire. At either end 6
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electrical connections were made so that current could pass through the wire.

The scenario is as follows: Mineral oil is pumped through the hollow cylinder and

through the hypodermic needle, forcing a large drop to fall down the smoke-

wire. As the drop falls, surface tension causes the oil along the wire to break up

into tiny beads or droplets. Two or three initial drops are typically used to pro-

vide a uniform distribution of smaller droplets along the span of the smoke-

wire. At this point a current is passed through the wire, which heats it up

sufficiently to cause the oil to burn. The result is rows of streaklines which

mark the flow downstream of the smoke-wire. (The amount of current needed

to accomplish this varies with tunnel speed, but is typically one ampere at a

speed of 2 m/ s.) After an adjustable time delay to allow the smoke to convect

completely into the field of view, a camera is electronically triggered along with

a strobe flash to record the streakline pattern on film.

The electronic synchronizing controller for the smoke-wire operation was

built at the Illinois Institute of Technology, where this technique was perfected.

For further details of its usage see Corke, et al. (1977). A Pentax ME-Super 35

mm camera with motor drive was used, along with a General Radio Model 1540

Stroboscope. We had the best success with Kodak Tri-x film pushed one stop, 0

and printed on F-5 high contrast paper. The test section of the tunnel was plexi-

glass on 3 sides (top, bottom and front), and the back was wood that had been

spray-painted a very flat black. The strobe was aligned perpendicular to the

flow, shining up through the bottom, and the camera was positioned about a

meter from the front of the test section.

2.4. Instrumentation 0

Freestream velocities were measured with a United Sensors pitot-static tube

and an electronic Barocel manometer. The pitot-static tube was placed half-way

between the top of the test section and the model axis in order to obtain
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accurate freestream measurements as well as to minimize interference with the

flow over the model.

Fluctuating velocities were measured with miniature hot-wire probes, pur-

chased from T.S.I. (models 1260-T1.5 and 1248-T1.5). The single-sensor probe

was a 4 m platinum-plated tungsten wire, with a length of 1.5 mm (L/d = 375).

It was mounted parallel to the longitudinal axis of the model, and with the probe

body oriented at 450 with respect to the z-axis (direction of freestream). A six

mm cylindrical strut supported the hot-wire assembly from the top; it was

covered with an extruded aluminum airfoil-shaped tube to minimize vibration

and disturbance. The entire assembly was mounted to an z -y traverse which

rested on top of the test section. The dual-sensor probe consisted of two wires

in an "x" configuration, each wire 450 with respect to the freestream, but per-

pendicular to its neighbor. The wires were of the same diameter as that of the

single-sensor probe described above. The dual-sensor probe was mounted paral-

lel to the freestream such that the "x" lay in the z -y plane. In this orientation

u' and ' fluctuations could be measured as described in Appendix B. The

strut, traverse, etc., were identical to those described above for the single-

sensor probe.

A two-channel constant-temperature anemometer circuit was built in-house

by Nosenchuck, et al. (1983). Some modifications to the circuit were required to

obtain a very high signal-to-noise ratio. Its output was analyzed in one of two

ways:

a) For single-sensor real-time spectral analysis an HP 3582A spectrum

analyzer was used, along with an z --y plotter.

b) For dual-sensor time-trace measurements, and for simultaneous hot-wire

and smoke-wire measurements, a digital data acquisition system was used.
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Following the schematic diagram of Figure 2.2, the anemometer output was sent

to a signal conditioner which offset the DC component, amplified the signal to

cover the full range of the 12-bit A/D converter (0 - 10 Volts), and applied a low-

pass filter as an anti-aliasing precaution. An 8-bit microcomputer was used to

sample and record the data digitally onto floppy disk. At a programmable time

during sampling, the smoke-wire could be turned on, as well as the camera and

strobe, in order to record simultaneous hot-wire data and smoke-wire photo-

graphs. The signal conditioner and relay unit were built by the author; the

microcomputer was also built in-house by Nosenchuck, et al. (1983).

The hot-wire data were subsequently analyzed on GAILIT's DEC PDP-1 1 ctm-

puter system.

I
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Chapter 3

The Art of Flow VisualiUtion

3.1. Integation Effect of Streaklines

Flow visualization, though a very useful tool In fluid mechanics research, can

often be misleading, as has been pointed out by Hooker (1938) and more

recently by Hama (1962). The main problem with unsteady flows is that streak-

LUn are not equivalent to stremarnines, even though they are sometimes con-

fused as such. In the laboratory, it is often more convenient to manufacture

streakines than streamlines; hence the former are much more popular among

experimentalists. The most common method of streakline visualization is the

steady introduction of a flow tracer (typically dye or smoke) from a fixed loca-

tion in the flow. For wakes this location is usually upstream of the body, or else

on the surface of the body itself. But a dye or smoke filament is distorted as it

travels downstream, and the streakline pattern seen at some downstream loca-

tion contains information integrated all the way back to its point of introduc-

tion. Thus, when studying a streakline one cannot be sure If a) the flow at a

given location is currentl experiencing the distortions implied by the streakline

pattern, or b) that pattern is merely a remnant of the streakline's past history

(an integrated "memory" as it were). Therefore, in order to visualize the true

nature of the flow at a given location, it Is desirable to introduce the flow tracer

as close to that location as possible. Traditionally the hydrogen bubble tech-

nique in water has been useful because of this advantage; the smoke-wire tech-

nique in air is analogous and has been employed here.

As the case in point consider the two-dimensional Karman vortex street in

the wake of a circular cylinder at low Reynolds number. Figure 3.1 shows a
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series of photographs taken at different times and at progressively increasing

downstream locations in the wake at Re = 90. The flow is from left to right, with

the cylinder ais perpendicular to the plane of view. In each case the smoke-

wire has been placed at the left-most edge of the field of view, and the photo-

graphs are aligned so that any vertical line passes through the same down-

stream location in all of the photographs. In photo a) the smoke-wire is just

downstream of the cylinder; the vortex street is clearly marked and remains

visible to the downstream end of the photograph (x,4'= 200). From photo a)

alone one might conclude that the Karman vortex street is still active at this

downstream location. In photos b) and c) the smoke-wire has been moved down-

stream to 50 and 100 diameters, respectively. The vortices are seen to be much

weaker for these smoke-wire positions than would appear from photograph a)

alone. In photo d) the smoke-wire is at zN = 150 and all the streaklines are

parallel, which implies that the street at this location is so weak it can not be

detected by the smoke-wire technique. This essentially parallel wake profile con-

tinues downstream with no further evidence of discrete vortices all the way to

350 diameters.

The integration effect of streaklines, as described above, is clearly demon-

strated by comparing the flow pattern observed at xzM = 200 in each of the pho-

tographs in Figure 3.1; the pattern is drastically different, depending on smoke-

wire position. Photo a) shows what appears to be the Karman vortex street at

zid = 200. Photos b) and c) show a similar structure but much weaker, while

photo d) indicates that no structure is present at this wake location. Which

photo then can we trust? That is, how can we objectively describe the flow field

from this confusing array of photographs? It is our contention that in order to

accurately discern the flow at some location, the smoke-wire must be placed at a

proper distance upstream of that location. If it is placed too far upstream, the

streaklines become very distorted and may lead us to erroneous conclusions.
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Likewise if it Is placed too close to our observation point, the streaklines may

not have had time to deform, again leaving us confused.

The clue to understanding this figure lies in the following: Suppose a streak-

line rolls up as it marks a vortex moving downstream. The resulting pattern will

clearly indicate that vortex. Now suppose that the vortex, as it travels, decays

at a much faster rate than the smoke diffuses. We can then argue that the

smoke remains in Its integrated pattern, even after the vorticity has largely

diffused (leaving the vortex extremely weak). The streakine pattern is now

fixed, and is simply convecting along with the mean flow, no longer changing its

shape. This is exactly what we observe n photo a) of Figure 3.1: notice that

beyond 100 diameters or so, the steakline pattern no longer changes

significantly - It merely convects downstream. There is of course some shearing

of the pattern, as the outside of the wake convects faster than the center. This

can be seen in photo b) as well as in photo a) of Figure 3.1. Zdravkovch (1969)

shows what he describes as extremely elongated elliptical vortices at zAt I 600;

his smoke was introduced at the cylinder, and therefore suffers the same

integration effect as our photo a).

Keeping these concepts in mind, we can now answer the questions posed

above. Each photograph in the figure is useful only for a finite distance down-

stream of the smoke-wire. To obtain an accurate description of the entire

developing flow field, it is necessary to place the smoke-wire at various positions,

and then look at the collage of pictures as a whole. For example, the very rapid

decay of the Karman vortex street is not clear from any one of the photographs

in Figure 3.1; but when the entire figure is studied simultaneously, the decay is

quite evident. We should mention here that the smoke-wire itself has a wake,

but the Reynolds number based on wire diameter is only about seven. At Rey-

nolds numbers below forty or so, the wake of the smoke-wire is steady and only
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influences the flow immediately downstream. We therefore consider the smoke-

wire as essentially non-intrusive.

At this point the reader may be questioning the validity of the above argu-

ment for air flow, where the ratio of viscous to molecular diffusivity (Schmidt -

number) is of order unity. One may argue that as a structure in the flow is dis-

sipated by viscosity, the smoke particles are diffused at nearly the same rate;

smoke should not remain in a pattern for any longer time period than the life-

time of the structure generating that pattern. A simple explanation concerning

this apparent dilemma is as follows: Smoke in air is actually composed of tiny

aerosol-type particles, whose mass is significantly greater than the mass of sur-

rounding air molecules. Hence diffusion of these particles is extremely slow on a I

molecular scale; we may then define an "effective Schmidt number" which is

orders of magnitude larger than that for air alone. Lapple (1961) has calculated

the diffusion coefficient of particulate matter into air at 25* C. For oil smokes, -

particle size is approximately 0.2 Am, which gives a diffusion coefficient of about

2 x 10- 6 cm2/s. In air, v % O.16cm2/a; Our effective Schmidt number is thus of

order 10'.
* _I

That the diffusion of smoke is indeed slow is clearly seen in Figure 3.1; if one

follows a single streakline in the freestream outside of the wake, no significant

dispersion of that streakline is observed (i.e., it does not broaden as It travels

downstream). We can quantitatively estimate (by dimensional reasoning) that

the width of a streakline in the freestream should grow like

AW (3.1)

where D is the mass diffusivity and w the width of the streakline. In Figure

* 4
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3.1, U. = 115 cm/s, d = 0.13 cm, and the total distance in our field of view (200

diameters) corresponds to about 25 cm. For D k 2 x 10' em/s, the expected

width increase at the end of the photograph is Aw f 6.6 x 10 "
4 cm (5 x 10-'

diameters). Such a small width increase would be hardly noticeable: indeed in

Figure 3.1 the initial width of the streakline is smaller than one cylinder diame-

ter, and does not change significantly downstream.

3.& Numerital Simulation of Streaklines

It is a relatively simple exerci:e to model streakline patterns numerically for

a given velocity field. Following Hama (1962), we introduce marked "particles"

at a fixed point, and track each particle in time as it is carried away by the Yelo-

city field (Lagrangian reference frame). Plotting a curve through each particle

results in a numerical streakline (of infinite Schmidt number). This method was

adapted here to simulate smoke-wire streaklines numerically at various down-

stream positions in a plane wake.

The velocity field chosen for this simulation is a convecting ideal Karman vor-

tex street (Lamb 1945). modified to include the effect of viscosity. This model

was originally suggested by Hooker (1938), and recently has been used by Davies

(1976); details are given in Appendix A.

Figure 3.2 shows numerical results which simulate a cylinder wake at Re = 90.

The "smoke-wire" is located at z/, = 0 and at z/d = 100. Comparison of the

two patterns shows the misleading integration effect of streaklines. When the

point of introduction of the flow tracer is far upstream of the wake location

being considered, its entire history is contained in the streakline pattern, and

may confuse the intepretation. The conclusion from this exercise again is that

extreme care must be taken when interpreting streakline patterns!

,, , . .-. .. .
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Chapter 4

Flow M Juduzation Results

4.1. Decay of the Karman Vortex Street

As discussed in Chapter 3, an observation immediately apparent from Figure

3.1 is the very rapid decay of the Karman vortex street. This decay was found to 0

occur at all Reynolds numbers we investigated. In each case, when the smoke-

wire is placed far enough downstream of the cylinder, the shed vortices can no

longer be found. Furthermore, the location of their disappearance seems to

move upstream with Reynolds number. For Re = 90 it occurs at about 125 to

150 diameters. For Re = 155, where the wake is just on the verge of transition to

turbulent flow, the Karman vortex street can not be visualized beyond 75 to 100

diameters. (Of course, in this case a secondary wake structure is rapidly

developing at this downstream location, as will be discussed in the following sec-

tion.) For transitional and turbulent wakes (Re > 160) the vortices are dissi-

pated much more rapidly, and are not seen beyond zAL = 50. 0

The rapid decay of the Karman vortex street has been known for quite some

time. For example Roshko (1953) found that for Re = 50 and 100. the energy

intensity of the Karman vortices is so low beyond 100 diameters, that back-

ground tunnel turbulence becomes significant. For Reynolds numbers in the

"transition range" (150 < Re < 300). the decay is even more pronounced. For

turbulent wakes Roshko's results are again supported by the present experi- .

ments, where Karman vortices could not be seen beyond 50 diameters.

Nevertheless, it seems that the full implication of this decay, particularly for

laminar vortex streets, has been stifled due to misinterpretation of streakline

photographs. For example, Zdravkovich (1969) shows what appear to be very
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elongated Karman vortices at zd = 800! In light of our discussion of streakline

integration effects in Chapter 3, his elongated ellipses are merely the integrated

pattern from far upstream. Tritton (1977) states that "... the vortex street con-

tinues to all distances downstream." again a misinterpretation of streakline pat-

terns. In actuality, the Karman vortex street has completely decayed by at most

one or two hundred diameters. Indeed, based on this rapid decay, the rows of

vortices should not really be called a "street" at all (the original term having

implied a long, regularly-spaced pattern). In Chapter 5 we take a quantitative S

look at this decay, using hot-wire anemometry.

4.2. The Secondary Vortex "Street"

Because we are able to mount smoke-wires at any desired position, the

smoke-wire technique is convenient for studying development of downstream

structure in a wake. In particular, placement of a smoke-wire at positions

beyond which the Karman vortex street has largely decayed yields some

interesting results. For Reynolds numbers less than about 100, we do not

observe any further reorganization or development of large structure in the far

wake. Figure 3.1 shows a typical case (Re = 90). Notice that beyond z/d = 150,

the streaklines in photo d) are parallel, with no apparent regions of concen-

trated vorticity. For these low-Reynolds-number wakes, large secondary struc-

ture could not be seen as far downstream as we investigated, which was about

500 diameters (not shown in Figure 3.1).

For 100 < Re < 160, a structure quite similar to that of the Karman vortex

street, but of larger scale, is observed. Three cases in this Reynolds number

range are shown in Figures 4.1 through 4.3, at Re = 130, 140, and 155 respec-

tively. The photos are aligned in the same manner described for Figure 3. 1. The

"strength" of the secondary street may be determined by how quickly the

streaklines deform. From these photographs and others, we observe that the •
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strength increases with Reynolds number in the range 100 < Re < 180. The

scale of this structure is roughly 2 to 3 times that of the primary Karman street.

Figure 4.3 shows some of the strongest and most regular secondary structure

that we have recorded on film. Photos b) and c) represent identical tunnel con-

ditions, but were taken about ten seconds apart. Both are included here to illus-

trate that the secondary structure is not always continuous - it comes and goes

in time. Photo b) shows an irregular secondary street; this is a more typical case

than photo c), where an unusually regular and strong street has been captured.

Three-dimensionality may play an important role in determining how regular

the downstream structure appears in these edge views. We discuss three-

dimensionality in Chapter B.

For Re > 160 the wake becomes turbulent, making flow visualization

extremely difficult. Taneda (1959) reports having seen a secondary street at

high Reynolds number, but only after several hundred diameters. Matsui and

Okude (1980) could not find any such street for Re > 180, although they had not

looked as far downstream as had Taneda. In the present experiments we did not

find a well-organized, easily-recognizable secondary "street" for Re > 160. How-

ever, "groups" or "bursts" of large vortical structures can sometimes be

observed, similar to those observed by Grant (1958) and Townsend (1979). Fig-

ure 4.4, for example, shows a cylinder wake at Re = 190. Notice that after the

Karman street decays, the wake becomes very disorganized. However, if we follow

a streakline in the outer edge of the wake at x/d P 200, (photo b)) we see a

somewhat regular wavy pattern, of a scale much larger than the original Kar-

man street. Figure 4.5 shows the wake at Re = 2200; some of this structure can

also be observed in photo b) at zMf f 250. Here the structure is more regular

than for the case at Re = 190.
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4.8. Porous Flat Plate Wakes

It is important to note that in all the above cases, secondary structure

emerges after the primary (Karman) street has largely decayed. The secondary

structure therefore appears to develop independently; for example its scale (or

frequency) is not necessarily in a fixed ratio to that of the primary street. This

observation leads us to suspect that the secondary structure results from an

instability of the mean wake profile. It therefore seems reasonable to assume

that if we can produce a wake which initially has no Karman vortex street, a

street-like structure may emerge downstream due to wake instability. Such a

wake is produced by a porous flat plate aligned normal to the flow direction,

provided the solidity a is lower than about 80%, according to Castro (1971).

Two porous plate wakes are shown in Figures 4.8 and 4.7. In the first case,

the plate is very porous ( a = 29%). and the wake immediately downstream

shows no structure of any scale. Presumably all that exists is a laminar "top-

hat" velocity profile. At about 10 diameters downstream (Figure 4.6a), a shear

layer instability leads to the growth of small vortices on either side of the wake.

These vortices amalgamate, and as they grow they arrange themselves eventu-

ally into a fairly regular vortex street pattern at zMd $t 20, presumably caused

by far-wake instability. At conditions similar to ours, Castro (1971) observed a

dominant frequency in the wake, which he also attributed to hydrodynamic ins-

tability of the mean velocity profile. 0

The second case (Figure 4.?) is for a porous flat plate with a much higher soli-

dity ( a = 47%). but at approximately the same Reynolds number. The obvious

difference here Is the abundance of small-scale turbulent structure immediately

downstream of the plate. Notice however that the body Is still not solid enough

to shed a Karman vortex street. Nevertheless, this wake also goes unstable

downstream, and by 30 or 40 diameters a well-defined vortex street is observed.
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Indeed. if we could ignore the small-scale structure superposed on this fow, Fig-

ure 4.7 is strikingly similar to Figure 4.6. Valensl (1974) shows a similar photo-

graph for a plate with a = 53% at Re = 5 x i04.

Hot-wire measurements for the second case above are discussed In Chapter 5.

I, - - - - ul i ~ i . . . . .
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Chapter 5

Hot-Wire Measuements

5.1. Exponential Decay of the Karman Vortex Street

Smoke-wire flow visualization of the far wakes of bluff bodies has given us new

qualitative insight into Taneda's phenomenon of vortex street breakdown and

rearrangement. We now present the results of hot-wire measurements which

give us qanrctitltie information about this process.

To obtain detailed velocity measurements in the wake, we used a "cross-" or

x-" wire, as discussed in Chapter 2, along with a digital data acquisition system.

The calibration procedure and details of the data acquisition are described in

Appendix B. Specific details, such as freestream velocity, cylinder diameter,

mean velocity profiles, etc., as well as a description of the methods used to

analyze the data, can also be found in that appendix.

First, let us consider the decay of the karman vortex street as downstream

distance is increased. As had been pointed out by Bevilaqua (1975). velocity

fluctuations due to a vortex street are more readily detected in the cross-wake

(v) velocity component. Hence consider the V' fluctuations, where v = V + V'

In Figure 5.1 we plot the amplitude spectrum of v'/U. for a circular cylinder

wake at Re = 150 and at z/d = 25. (Amplitude spectrum is the square root of

power spectrum; the units are in percent of freestream velocity.) As expected, a

delta function spike is seen at the shedding frequency, f*, which is the only

significant frequency in the near wake. Such spectra were taken at each z-

location, averaged at the two y-locations corresponding to inflection points in

the mean velocity profile (one on either side of the wake). Discrete spectral
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amplitude at f = ft is plotted against downstream distance z/d in Figure 5.2

for Re = 140 and well as for Re = 150. For both Reynolds numbers, the amplitude

is seen to decay exponentially for 25 < z/d < 150. By least-squares fitting a

straight line through the first 6 or 7 data points in Figure 5.2, we obtain initial

decay rates of 0.0246 decades per diameter for Re = 150, and 0.0249 decades 0

per diameter for Re = 140. Similar decay rates have been reported for the U,

fluctuations by other investigators as well. Hussain and Ramjee (1976) obtained

hot-wire traces of u' at Re = 145 for various downstream distances. From their

Figure 4, the amplitude of the fluctuations can be seen to decay exponentially in

the region 5 < z, < 60. In our earlier work (Cimbala, et al. (1981)) at Re = 155,

we measured discrete u' fluctuations at the shedding frequency, and found u',,.

to decay exponentially up to 100 diameters. Matsui and Okude (1981) made simi-

lar measurements at Re = 140, while Desruelle (1983) showed an exponential

decay for three different Reynolds numbers. The decay rates for all these cases

are summarized below: 

m# i l
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Reference Velocity Re Decay Rate

(decade/diameter) *

Desruelle (1953) U. 80 0.0143

Desruelle (1983) U' 120 0.0169

Present Results U. 140 0.0187

Present Results V. 140 0.0249

Matsui & Okude (1981) U' 140 0.0170

Hussain & Ramjee (1976) U' I5 0.0156

Present Results U. 150 0.0209

Present Results VI 150 0.0246

Desruelle (1983) U' 155 0.0225

Cimbala, et al. (1981) i' 156 0.0187

Present Results is 500 0.0284

Present Results V' 500 0.0305 "

The general trend is faster decay rates with increasing Reynolds number. This

is especially apparent when we only consider data from one facility (e.g., the 0

three rates of Desruelle, or our present results). There is much scatter in the

data from different facilities; the decay rate is probably sensitive to background

disturbances in the freestream. 0

5.2. Downstream Structure

As downstream distance in the wake is increased, fluctuations appear at fre-

quencies lower than the shedding frequency. Figure 5.3 shows amplitude spec-

tra at several downstream positions for Re = 150. As in Figure 5.1, the spectra

are averaged over the two y-locations where the slope of the mean velocity

profile is a maximum (inflection points). We observe in Figure 5,3 a shift to

L "
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lower and lower frequencies as z/d is increased. In particular, the Karman fre-

quency (fb f 166 Hz) is initially the only significant frequency. At zA = 100 in

Figure 5.3 a broad band of frequencies has arisen with the most-prominent peak

at f 90 Hz, and other peaks at f s 120, 83, and 70 Hz. By x/d = 200, distur-

bances at f u 90 and 70 Hz have amplified significantly, as well as the subhar-

monic (f = 83 Hz); the peaks at f =ft = 166 Hz and at f = 120 Hz have

decayed. With further increase in z/tl, the band of prominent disturbances

shifts to lower frequencies and broadens. At z/d = 400 the most-prominent

band of frequencies is centered around 70 Hz, while all frequencies above 100 Hz

have disappeared. By zd = 750, there are no longer any outstanding spikes;

instead, a very broad hump is seen for 0 < f < 75 Hz. In general, following the

life-cycle of a particular frequency, we notice that the fluctuation amplitude at

that frequency first rises, then decays; the lower the frequency, the further

downstream is its life-cycle. In Figure 5.4 we have plotted spectral amplitudes at

several discrete frequencies versus downstream distance. The growth-decay

cycle is clear.

Notice in Figure 5.4 that there is nothing outstanding about the subhar-

monic, f = 83 Hz. That is to say, disturbances at the subharmonic experience

the same kind of growth and decay as at any other nearby frequency. For exam-

ple, the growth-decay cycle at f f 90 Hz leads the one at the subharmonic by

about 20 diameters, but is almost identical in magnitude and shape.

Figure 5.5 shows amplitude spectra at a lower Reynolds number of 140. Here

the shift to lower frequencies is more "choppy;" i.e., the peaks in the spectra are

not as broad as those for Re = 150 - it appears that a large percentage of the

fluctuation energy is concentrated at discrete frequencies which are almost

integral multiples of 25 Hz. The reason for this behavior is not entirely clear. As

seen in Figure B.8 (Appendix B), tunnel disturbances were strong at 25 Hz and



its harmonics relative to other freestream disturbances -the wake may have

"locked in" at these frequencies in response to the external forcing. Figure 5.6

shows spectral amplitudes at several of these discrete frequencies as a function

of xzd. Their growth-decay cycles are very similar to those of the wake at Re

150.

Figure 5.7a) also shows amplitude spectra, but at a cylinder Reynolds number

of 500, where the wake is turbulent. In this case spectral peaks are much less

prominent because of fluctuations at all frequencies. A broad hump is discerni-

ble, however, and shifts to lower frequencies much more smoothly than for the

lamninar cases above. Notice that the magnitude of the entire spectrum decays

with downstream distance, as energy is dissipated by turbulent mixing. Figure

5.8a) shows growth-decay cycles at Re = 500; we don't really see regions of

growth, but rather decay at each discrete frequency. In this case it is useful to

display normalized spectra where V' is divided by the local mean velocity defect

A U, where A U = U. - U0 = U..WO, instead of by U_. Figures 5.7b) and 5.8b) are

normalized versions of Figures 5.7a) and 5.8a) respectively. These normalized

plots illustrate the growth-decay cycles much more clearly.

In Figure 5.7c) we show normalized spectra at all twelve downstream posi-

tions. Here we have normalized frequency as well as spectral amplitude, in the

manner discussed in Section 5.4 below. The fully normalized spectra show a

self-similar behavior beyond about 100 diameters. The center of the spectral

peak in these coordinates occurs at approximately#~ = 1.5. The band of prom-

inent frequencies is very wide, much more so than for the case of a plane mixing

layer. This is most likely due to the much slower divergence of wakes than mix-

ing layers. In Section 5.4 we compare these results with predictions of linear

stability theory.
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5.3. The Group Phenomenon

By studying time-traces of velocity fluctuations, as in Figure 5.9, at Re = 150,

it becomes evident that the secondary structure occurs in groups. (Groups are

defined as packets of large fluctuations, lasting for several cycles, and followed

by periods of relative calm.) Recall from Chapter 1 that Townsend (1979) had

observed this phenomenon for the turbulent cylinder wake. His results show

that the frequency or scale of the fluctuations is constant within a particular

group but varies from group to group. Here we wish to quantify this variation -

i.e., how much of a spread in frequency is there?

Long-time-averaged power spectra tell us little about the itstantrneous

structure in a flow field. However, much can be learned by examining the short-

time-averaged power spectrum of each group of structures. Details of the

numerical technique used here are presented in Appendix B. Basically, the most-

energetic frequency of each group is recorded; a probability density function

(PDF) of the spectral peaks is then calculated for all these frequencies, weighted

by the amplitude of the fluctuations.

Figure 5.10 shows spectral-peak probability density vs. frequency at several

downstream positions in the cylinder wake at Re = 150. Close to the cylinder, the

shedding frequency (ft f 166 Hz) is dominant and the width of the PDF is

extremely small, as expected. At zxM = 100, the dominant frequency shifts to

about 90 Hz. As we continue downstream we see a shift to lower frequencies as

well as further broadening of the frequency band-width, just as had been

observed in the spectra of Figure 5.3.

The width of the spectral-peak PDF is significant. For a given frequency band

to have non-zero probability density, the passage frequency of at least one

group of defineable structures has to lie within that frequency band. Whereas

power spectra only gi-e us a measure of the energy content of fluctuations at a
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given frequency, probability densities tell us that identifiable groups of energetic

fluctuations occur at discrete frequencies. The broader the width of the PDF, the

more distributed are the frequencies of these groups. Thus our results support

Townsend's (1979) observation that far-wake structure occurs in groups; the

frequency within a group being fairly constant, but varying from one group to

the next. The signlftcance of this result will be more apparent in the following

section, where we compare our data to linear stability theory.

Another interesting result is the average number of cycles. N, within a group.

The original Karman street of course is practically continuous, and n. is

extremely large. Figure 5.11 shows how N varies with downstream distance

beyond 100 diameters, after the Karman street has largely decayed. In general,

n. lies between about 2 and 12, but seems to decrease slowly with z /.

5.4. Comparison with linear Stability Theory

Inviscid linear stability of a parallel wake profile has been analyzed by many

investigators, both in the temporal and spatial modes. Our intent here is to com-

pare predictions from these analyses with our experiment results. Namely, for

the measured mean velocity profiles, how well can linear theory predict which

frequencies are most prominent in the wake? It is convenient to express the

frequency non-dimensionally as in Figure 5.7c). We define

2ir6f (i19 = U_ (5.1)

where f is the dimensional frequency, and 6 is the wake half-width, defined by

the y-location where U* = 0.5. U0 is the normalized mean velocity,

|I
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U -U. (5.2)

and U0 is the mean centerline velocity. Uo and the wake half-width 6 are calcu-

lated by fitting a Gaussian profile to the measured mean velocities, as described

in Appendix B.

For comparison with experiment, spatial stability analysis is preferred over

temporal analysis, as has been pointed out by Mattingly and Criminale (1972).

Kubota (1983) has generated numerical solutions for both cases; inviscid distur-

bances are superposed on a parallel Gaussian wake profile. Details of this effort

are given in Appendix C. Figure 5.12 shows spatial growth rate -a as a function 0 4

of dimensionless frequency P , and for several values of WO, the normalized

centerline velocity defect in the wake. (WO = 1-UO/U..) Recall that for spatial

stability analysis, frequency P is real, while wave number a may be complex. Fig- ..

ure 5.13 shows a similar family of curves for the temporal mode, where a is real

and P may be complex. We plot spatial growth rate g. however, using the

transformation discussed in Appendix C. Notice that there is not a great

discrepancy between the two modes. We are not concerned here with predicting

fluctuation amplitudes exactly; our main concern is the relative amplitude of

fluctuations at various frequencies. Toward this end either mode is applicable;

we have chosen the temporal mode for convenience in our analysis below. 0

Another important thing to note in either figure is that as velocity defect

decreades, the grVwth curve shifts toward higher P. Thus, as we travel down-

stream in the wake, WO decreases, and the relevant growth curve is continually • 4

shifting to the right, as well as decaying in magnitude.

Kubota (1983) has argued that the growth curves shown in Figure 5.12 or 5.13

may be extended to negative growth (de-amplification) beyond the neutral point,
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p,. This is extremely important in the following analysis, where such a de-

amplification region is required in order to predict growth-decay cycles of large-

scale structures. For lack of details in this region, we have extrapolated the

growth curves in Figure 5.13 by straight lines, whose slopes are matched with

those at the neutral points.

Let us consider which prominent frequency fp we expect to find In our meas-

urements; i.e. we wish to predict fp as a function of downstream distance z. At

first glance one may expect fp to equal the locally most-amplified frequency

(the peak in the growth curve). This turns out not to be the case however, due

to non-parallelism of the mean wake. It must be remembered that the growth

rates shown in Figure 5.13 are calculated for a parallel wake (no z-dependence); 0

the real wake of course is not parallel, but widens downstream. Obviously the

best predictions would come from fully-non-parallel stability analysis, where one

includes downstream-widening of the mean wake; nevertheless we expect the

curves in Figure 5.13 to be adequate approximations locally. Hence, a scheme

was developed to approximate non-parallelism (x-dependence) using only paral-

lel stability calculations. Namely, in order to predict how large a disturbance to

expect at some particular frequency, we integrate growth rate at that frequency

with respect to downstream distance x. Doing this for a number of frequencies

gives us disturbance amplitude as a function of frequency for each downstream

distance. It is then a simple matter to find that frequency which is predicted to

be the most prominent, fp, as a function of z, (i.e., the frequency whose ampli-

tude is greatest at a given z-location). The entire process is outlined below:

1. Measure mean velocity profiles at several downstream positions in the wake.

2. Calculate (with least-squares fitting to a Gaussian wake profile) the half-

width 6 and centerline velocity defect No for each z-position. (Examples are
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shown in Figure 5.14.)

3. Fit smooth continuous curves through W0 and 6 so as to obtain WO(z) and

6(z). Examples are shown in Figures 5.15 and 5.16, respectively.

4. The appropriate growth-rate curve g (z4f), such as those shown in Figure e

5.13, is chosen locally for each z according to WG(x), 6(z), and Equation

(5.1). (g is extrapolated to negative growth rates, as discussed above.)

5. Knowing g (z f) , we assume a locally exponential growth of amplitude A;

namely,

8A(,f) g(=J )A (z,). (5.3)

We can predict the amplitude of fluctuations at frequency f and at location

z by integrating the exponential growth from z = 0 to z, i.e.,

A(z,f) =A 0 exp (z, f) dr (5.4)

where Ao(f) is the initial perturbation amplitude at frequency f, and

X = z/S(z) is the non-dimensionalized downstream distance. In Figure 5.17

we show A(z,f) versus z/d for a number of fixed frequencies f at Re = 150.

We have assumed, for simplicity, that AO(f) = 1 = constant for all f. Notice

the growth-decay cycles, similar to our experimental results.

6. To find the frequency fp(z) where the amplitude given by Equation (5.4) is a

maximum, we simply take the partial derivative of A (zf) and set it to zero:

* 0
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OA (xf) =Aoep gx-~z 9( z 0

or atf =fp

O .(=" f ' = 0. (5.5)

7. Compare this predicted peak frequency, fp(z), to the measured peak fre-

quency at each z-location.

Let us now examine our experimental results at Re = 150 in light of the above

discussion. We show in Figure 5.18 a plot of frequency versus zU. The circles

represent experimental frequencies at which the most-prominent disturbances

were measured. The vertical lines represent 70% confidence levels, and give the

reader a feel for the band-width of prominent frequencies. These observed fp

should be compared to the predicted fp as described above - given here as the

solid line. Also shown in Figure 5.18 are the locally neutral frequency (dashed

line), and the frequency corresponding to the locally most-amplified disturbance

(dotted line). Note that, because of the integration, the frequency which is

locally most-amplified is not necessarily the frequency with the largest

(integrated) amplitude.

Close to the cylinder, the Karman frequency is the most-prominent observed

frequency, as expected. Comparison with linearized theory is futile in the very

near wake where the amplitude of fluctuations can exceed 30% (Nishioka and

Sato (1978)). Note that the Karman vortices are initially formed by a mechan-

ism much different than far-wake instability. The mechanism consists of a

* =-



- 34-

complex combination of unsteady boundary-layer separation and near-wake ins-

tability, and is not yet completoly understood. We therefore do not expect f to

match our far-wake predictions. Indeed, it is interesting in Figure 5.18 that the

Karman frequency is well above our predicted peak frequency. In fact, f even

lies above the locally neutral frequency f,, and is thus in the region of damping. 6

according to stability theory. This is consistent with our observation that

fluctuations at Karman frequency f decay exponentially in the region 25 < z/d

< 125.

As disturbances at ft decay rapidly, lower frequencies take over; beyond zod

= 100 the agreement between predicted and observed frequencies is quite good.

Figure 5.19 shows a similar comparison for Re = 140. Again, f (R 149 Hz)

lies above the neutral curve; fluctuations at f decay beyond our first measure-

ment station (zA = 40). Lower-frequency disturbances become prominent

beyond 100 diameters, and the agreement with the predicted frequencies is 0

again quite good. Subharmonic ft/2 P 75 Hz seems to lock in for

125 < z/d < 250. Beyond zd = 250, f'/2 lies above the neutral curve; lower-

frequency fluctuations arise as the subharmonic decays. The 70% confidence

level bars are quite short; this implies very narrow band-widths, as had been

observed previously in the spectra at this Reynolds number. (See Figure 5.5.)

Figure 5.20 shows the comparison between theory and experiment for the S

case of a turbulent cylinder wake at Re = 500. Here, lb is approximately 630 Hz,

and is off the scale. In this case f is prominent only In the very near wake.

Already by z/d = 50, a lower-frequency band (centered around f. : 290 Hz) is I

prominent. Notice that the observed fp decreases quite smoothly with z as we

travel downstream. 90% confidence levels have been chosen; the band of prom-

inent frequencies is very broad. Interestingly, our observed fp lies above the

predicted fp ; in fact, it follows almost exactly the locally neutraI frequency f,.

• _
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It is unclear why our prediction scheme works so well for Re = 140 and 150, but

not for Re = 500. At Re = 500 the wake is turbulent, and fluctuations are strong

at all frequencies in the range of interest. Recall from Figures 5.7a) and 5.8a)

that fluctuations at any given frequency never really have a chance to "grow,"

since the entire power spectrum decays with xMd. The most-prominent fre-

quency 4p is then the one which suffers the least in~tegra~ted decay as the distur-

bances travel downstream. That frequency is apparently the locally neutral fre-

quency f, as Figure 5.20 shows. No attempt has been made in our calculations

to account for the additional rapid decay of fluctuations due to turbulent

stresses. Perhaps a more rigorous model is necessary. We may point out here

that similar results have been shown recently by Wygnanski, et al. (1983) for the

case of a plane turbulent wake at Re = 4000. Namely, the observed prominent

frequency matches well with the neutrally amplified frequency, as predicted by

linear stability theory. Ho and Huerre (1984) have observed this agreement for

the case of a plane turbulent mixing layer as well. Lessen and Singh (1974),

using eddy viscosity models, have postulated a similar behavior for azisym-

mnetric turbulent jets and wakes.

Indeed, it is surprising that such a simple prediction scheme as employed

here (with local parallelism) works as well as it does. We may conclude from this

exercise that two-dimensional inviscid parallel hydrodynamic stability theory,

when interpreted properly, is adequate to predict which frequencies are

expected in a far wake. Furthermore, this agreement supports our hypothesis

that structure appearing far downstream of a bluff body is the result of hydro-

dynamic instability of the mean velocity profile, and is not directly dependent on S

the shed vortices of the Karman vortex street.
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5.5. A Look at y-Dependence

As discussed in Chapter 2, "on-line" spectral analysis was also done with a

single inclined hot wire and a digital spectrum analyzer. In particular, we are

interested in the dependence of amplitude spectrum on distance from the wake

centerline (y-direction). Figure 5.21 shows long-time-averaged amplitude spec-

tra in a circular cylinder wake at Re = 300, at zx/ = 750, and at several y-

locations. Output from the hot-wire anemometer was input directly to the spec-

trum analyzer, without any linearization: the amplitude scale is therefore in

arbitrary (log) units. (Velocity fluctuations are very small this far downstream;

hot-wire response is assumed to be linear.)

Close to the centerline (0 < V/d < 15), no peak in the spectrum can be 0

found. For y/Id > 15 however, a broad-band peak in the spectrum exists; furth-

ermore, the band shifts to lower frequencies and becomes narrower as we travel

outward in the wake. The most-prominent frequency fp is plotted as a function

of yI/d in Figure 5.22; an almost linear decrease in fp is seen.

We can explain this frequency shift as follows: The wake profile at a particular

z-location is unstable to a broad band of frequencies. Fluctuations at high fre- 0

quencies may be measured occasionally, the scale of which is smaller than the

local wake scale. We can think of these structures as originating upstream of

our measurement position. Because of their smaller 3cale, they will be sensed

more readily by a probe nearer the wake centerline. When the probe is near the

outer edge of the wake, it can only sense structures of larger scale (lower fre-

quency), which can be thought of as originating further downstream. These

ideas are sketched in Figure 5.23. Sketch a) shows high-frequency structures

which originate upstream and are sensed at probe position i but not at Y2;

sketch b) shows lower-frequency structures which can be sensed at probe posi-

tion y2.

* S
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5.B. Simultaneous Smoke-Wire and Cross-Wire Records

The microprocessor was programmed such that a smoke-wire photograph

could be taken at any specified time during the data-collection interval. As illus-

trated in Figure 2.2, the microprocessor first sends a pulse to the relay unit,

which turns on the smoke and opens the camera shutter (the room is dark, of

course). After a specified delay to allow the smoke to convect completely into

the field of view, the strobe is triggered to flash once. Subsequently the smoke is

turned off, and the camera shutter closed.

The sequence outlined above enables us to display smoke-wire and hot-wire

records simultaneously: an example is shown in Figure 5.24 for a cylinder wake

at Re = 150. The smoke-wire is at zAd = 275, while the cross-wire is positioned at

z/d = 400 and at yA/ = -4. Note that in order to avoid damage to the hot wires,

the cross-wire assembly was moved slightly out of the plane of smoke. The time

trace in Figure 5.24 has been displayed "backwards" (i.e., time increasing to the

left), so that direct comparison between the flow-visualization photograph and

time-trace is possible. The scales have been matched according to

t =-E- (5.6)
U.

where U, is the local convection velocity (assumed to be the mean velocity at the

location of the probe). In this example, d = 0.0016 m, U_. = 1.528 m/ s. and

U, = 1.397 m/s. The time axis has also been shifted such that the strobe flash

occurs at t = 0.

Because of the integration effect of streaklines, as discussed in Chapter 3, we

do not expect the time-trace to exactly match the distortions of streaklines in

the photograph. Nevertheless, a general agreement is certainly present. Notice

for example the burst of orderly structure at - 60 < t < 0: large-scale vortices

*
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are clearly seen in the photograph at 400 < zid < 460. Just ahead of the probe

(350 < z/d < 390) there appears in the photograph a smaller-scale group of

vortices. This is also recognizable in the time-trace as a very weak higher-

frequency oscillation. Short-time spectra of the fluctuations shown in Figure

5.24 give frequencies of 64 Hz for the larger-scale structure, and 84 Hz for the

smaller-scale structure. Both of these frequencies are within the range of

amplified frequencies, according to linear stability theory, as can be seen in Fig-

ure 5.18 at x/d = 400.

Both the time-trace and smoke-wire photograph of Figure 5.24 support

Townsend's suggestion that far-wake structure appears as groups of several vor-

tices. Such a hypothesis is consistent with the explanation that downstream

structure arises because of wake instability of the mean velocity profile and not

directly because of vortex amalgamation. Furthermore, Figure 5.24 shows that

far-wake structure convects at the local mean velocity; it does not appear to

have unequal group and phase velocities.

5.7. Porous Flat Plate Wake Surveys

Cross-wire surveys were also taken in the wake of a 47% solid flat plate at

Red = 5000, where d is the width of the plate. Mean velocity profiles are shown in

Figure 5.25. As expected, very near to the plate the profile is a sharp "top hat"

which gradually relaxes as the shear layers on either side of the wake begin to

merge. By ten diameters the profiles are far-wake-like, and have been fitted here

with Gaussians.

Amplitude spectra of v'/U, are plotted in Figure 5.26 for several z-locatlons;

each spectrum is averaged at the two inflection points of the mean velocity

profile, as discussed previously. At z/d = 1, spectral energy at low frequencies is

small, but there is a noticeable bump centered around 410 Hz. Recall from our

flow-visualization results that the plate does not appear to shed Karman-type
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vortices; the peak in the spectrum may instead be associated with the plane

shear layers which exist initially on the outer edges of the wake. We can calcu-

late the local Strouhal number of one of these shear layers:

fi
st= Lt (57)

where esL is the shear layer integral thickness,

U=_ U, 1 - u a y, (5.6)

and U Is the average of U, and U 2. At zx/ = 1 in Figure 5.26 we have U, = 2.39

m/s, U2 = 4.54 m/s, and OsL = 0.0507 cm. For f = 410 Hz, Equation (5.7) gives

St = 0.06, which is consistent with the observations of Ho and Huerre (1954) for

a growing free shear layer. Namely, they report that St = 0.032 when the shear

layer first begins to oscillate, and St = 0.079 further downstream as the shear

layer grows. Our value lies between these two extremes, which confirms our

speculation that the peak at f = 410 Hz is associated with the shear layers on

either side of the wake, and not with any kind of Karman-type vortex shedding.

At four diameters downstream the amplitude spectrum is devoid of any out-

standing peaks, except for a very broad band centered at approximately 150 Hz;

the peak at 410 Hz has disappeared. We shall designate the range 4 < z/d < 10

as a transition range, where the stability problem changes from that of two

(independent?) plane shear layers to that of a plane far wake. S

At z/d = 10 the spectrum has increased in magnitude at the lower frequen-

cies, and in particular there is a broad hump centered around 75 Hz. Beyond 10

diameters, in the "far wake" region, the peak in the spectrum shifts to lower

* 4
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frequencies (larger scales) as downstream distance increases.

Figure 5.27 shows a comparison between observed and predicted prominent

frequencies 4p ; the predicted values come from our locally-parallel stability

analysis, as discussed in Section 5.4. The agreement is quite good beyond x/d =

10, in thb far-wake region. 75% confidence levels are also plotted in Figure 5.27

to indicate the band-width of prominent frequencies.

Direct comparison between circular cylinder wakes and wakes of other bluff

bodies can be accomplished by equating leynolds number based on momentum

thickness e, where

1 d- (5.9)

For the case of the 47% solid plate discussed here, we have d = 1.78 cm, el =d

0.35. and U. = 4.54 m/s; Re* is therefore equal to 1750. For our circular

cylinder wakes we found e/d R 0.6 Ree is thus 60% of Red.

L40
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Chapter 6

Three-Dimensional Effects

6.1. Unforced Three-Dimensionality

Up to this point our discussion has been confined to the x-y plane; now let us

consider three-dimensionality. Possibly the earliest experiments on far-wake

structure are those of Townsend (1956) and of Grant (1958). Grant's work, an

extension of Townsend's, consists of measured velocity correlations in the far

wake (A 500 diameters ) of a two-dimensional cylinder at Re = 1300. A pecu-

liar three-di esnional structure was inferred from these time-averaged meas-

urements, and was christened the "vortex-pair eddy," later called the "double-

roller eddy" by Townsend (1970). More detailed calculations by Payne and Lum-

ley (1967) of Grant's data yielded a similar structure.

Since that time, neither the instantaneous nature of this structure nor its

origin have been adequately explained, although there has been some specula-

tion (see for example, Keffer (1985), Townsend (1970). Roshko (1976) and Town-

send (1979)). In particular, Roshko (1978) suggested the structure may actually

be the time-averaged superposition of vortex loops, formed by the pinching off

and joining together of vortices from opposite sides of the street. That long-

time-averaging seriously distorts one's interpretation of the instantaneous

structure was also mentioned by Townsend (1979). He suggested that time-

averaging of the large-scale velocity patterns "makes them appear more com-

plex because of the superposition of patterns from eddies at all stages of ... [his

proposed] growth-decay-renewal cycle." An excellent discussion of some of

these ideas is offered by Wlezien (1983).

vS
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Most recently Mumford (1983), using a pattern-recognition technique, sug-

gests that the double-roller eddies may be even more complex than previously

thought. He found that the structures are often confined to one side of the

wake centerplane, rather than extending across the entire wake. Furthermore,

eddies of similar type tend to occur in groups of two or more, one after another

in the streamwise direction

Regardless of its exact nature, it is interesting that the characteristic large

structure far downstream in a plane wake appears to be three-dimensional.

The smoke-wire flow-visualization setup was modified for plan views by align-

ing the cylinder parallel to the smoke-wire. Figure 6.1 shows both edge (z-y

plane) and plan (z-z plane) views of the cylinder wake at Re = 140. (The two

views were recorded for the same tunnel conditions, though not simultane-

ously.) The edge view illustrates the decay of the Karman vortex street and the

subsequent growth of secondary structure. The smoke-wire was positioned at

zid = 8. 100, and 200 in the manner discussed previously.

For the plan view, the smoke-wire was at the same three z-positions as above,

but at yA/ = 0 (i.e., in the center-plane of the wake), and parallel to the

cylinder. In photo a) one immediately notices the skewed angle at which vortices

are shed from the body. The reason for this is not entirely clear, but similar

observations have been reported by many others. (See for example Tritton

(1969), Gerrard (1966), Nishioka and Sato (1978).) Our own experiments indi-

cate the slantwise shedding to be quasi-stable; i.e., vortices are sometimes shed

parallel, sometimes slanted one way, and other times the opposite way. Subtle

non-uniformities of the freestream, end conditions, or the body itself are the

most likely candidates for triggering transitions between the three "modes." Fig-

ure 6.2 shows an unusual case where we have vortices shed slantwise at two

opposing angles with an "elbow" in between.
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At any rate. in Figure 8.1 the shed vortices are parallel to each other, with no

appreciable spanwise structure. After the decay of the primary street however,

three-dimensionality is seen in the secondary structure beyond 100 diameters

(photos b and c). The honeycomb-like pattern also is skewed in these photo-

graphs; but, just as with the shed vortices, the skewness comes and goes. The 0

size of the cells is approximately 20 cylinder diameters.

What exactly is this structure? What is the mechanism by which it develops?

How, if at all, does it relate to Grant's "vortex-pair eddy?"

Figure 6.3 may provide a hint for at least the second of these questions. For

Re = 150, with the smoke-wire at z/d = 100, we see the gradual formation of

three-dimensional structure. By moving the smoke-wire out of the wake center-

plane ( // = 2), we are able to visualize vortex lines from just one side of the

secondary street. In this particular case, the vortices are initially straight and

parallel. A waviness quickly develops, with successive vortices 180 ° out of phase.

The amplitude of this perturbation grows downstream, eventually to where one

vortex overlaps the next. Presumably the other side of the street has a similar

experience; the interaction between the two sides may be quite complex, but it is

not inconceivable that such an interaction could culminate in vortex "loops."

As was suggested by Roshko (1976), long-time-averaged correlations of these

loops could be interpreted as Grant's "vortex-pair eddies." Some evidence that

vortex loops can exist in a wake is provided by Breidenthal (1980). A three-

dimensionally-perturbed splitter plate in a shear-layer facility was used to pro-

duce the loops, which persist for large downstream distances.

For higher Reynolds numbers, where the wake becomes turbulent, smoke

visualization is encumbered by small-scale structure. In Figure 8.4 however, at

Re = 190, we are still able to recognize wavy structures similar to those of the

laminar wake.

ILS
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6.2. Forcing Attempts

We should point out here that Figures 8.1 and 8.3 represent exceptional

cases. Only rarely is the three-dimensionality as strong as in these photographs.

Nevertheless, it seems that there exists an inherent three-dimensional instabil-

ity, which under proper conditions can become quite significant. We made a

number of attempts at enhancing three-dimensionality; for the most part these

attempts were not successful.

The first such attempt was to modify the cylinder itself. Paint was sprayed on

the cylinder at regular intervals, causing periodic variation of its diameter. The

hope was to generate fixed-wavelength disturbances, which would initiate ord-

erly three-dimensional structure downstream. Unfortunately even a very small

diameter perturbation (s 2%) significantly disturbs the vortex shedding

mechanism, and leads to very irregular unsteady flow patterns downstream.

Orderly three-dimensionality is not enhanced.

Acoustic excitation was also attempted. A loudspeaker was flush-mounted to

the tunnel wall at about 150 diameters, such that the speaker axis was parallel

to that of the cylinder. Theoretically, for certain frequencies of excitation, a

standing wave pattern can be generated between the walls of the tunnel, thereby

imposing a steady fixed-wavelength disturbance on the wake. Practically, how-

ever, it is extremely difficult to generate a steady standing wave; therefore this

technique was also unsuccessful at enhancing three-dimensionality.

p
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I Chapter 7

Discusion and Concluxions

7.1. Interpretauon of Streakline Pattern.

We found smoke-wire flow visualization to be very effective, as well as easy-to-

use, in the study of wakes of bluff bodies. We must emphasize, however, that

extreme caution should be taken when interpreting streakline patterns. In par-

ticular, when the classical case of a Karnan vortex street is visualized by place-

ment of smoke-wires at several downstream locations, the confusing integration

effect of streakLines becomes immediately apparent. The conclusion to be

drawn from this exercise is that in an unsteady flow it is best to introduce flow

tracers at not just one, but several positions in the flow. Only by studying a col-

lage of photographs arranged in the manner described in this paper can one be

confident that he is not being misled by the integration effect of streaklines.

7.2. Decay of the Karman Vortex Street

It has been shown, with flow visualization as well as with hot-wire measure-

ments, that the Karman vortex street shed n the wake of a circular cylinder

does not persist indefinitely, but rather decays exponentially with downstream

distance. In the present experiments, the decay is so rapid that fluctuating

velocity measurements at the Karman frequency are lost in background "noise"

by 100 to 150 diameters at Re = 150. The decay is even faster for turbulent

wakes where small-scale structure is prevalent.

Such rapid decay is by no means a new revelation; however its full impacL has

not been realized up to now because of the misinterpretation of streakline flow

visualization, as discussed in Chapter 3. Reasons for the decay are certainly a)
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viscosity, and b) de-amplification in the sense of hydrodynamic stability. In our

numerical streakline simulations only the first of these, i.e. viscosity, is

included. The decay rate inferred from Figure 3.2 Is not as rapid as that for the

experimental case of Figure 3.1; this shows that viscosity is not the only

mechanism of decay. Desruelle (1983) shows evidence that the second mechan- S

ism, hydrodynamic de-amplification, accounts for at most 77% of the vortex

street decay rate. Other possibilites contributing to the decay include c) cancel-

lation of vorticity from opposite sides of the street, and d) the Karman vortices

may be located differently with respect to the centerline than a regular eigen-

function. This final point was suggested by Desruelle, where he shows that as 6

increases with z, the lateral spacing b between Karman vortices does not

"keep up;" Karman vortices that initially sit on the edge of the wake move closer

to its center as the wake grows. More detailed studies of this phenomenon and

its effect on the decay of a vortex street have not been attempted to date.

7.3. Downstream Structure

As the wake widens with downstream distance, the scale of large structures

must also increase. The mechanism by which this is accomplished is hydro-

dynamic instability of the developing mean wake profile. Frequencies are selec- 0

tively amplified and then damped, according to the local growth rates, as deter-

mined by the local mean wake profile. Observed prominent frequencies agree

fairly well with predictions of parallel inviscid linear stability theory, provided

that streamwise growth of the wake is taken into account.

The distribution of frequencies which are prominent broadens with down-

stream distance. The structure appears as groups of several vortices, separated •

by regions of random fluctuations; the frequency (or scale) of vortices within a

group is constant, while it can vary considerably from group to group, Such a

pattern agrees intuitively with what one expects in a hydrodynamically unstable
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system. As a disturbance grows it convects downstream until it Is no longer

amplified, but damped. Meanwhile, in a somewhat random fashion, disturbances

at other frequencies are amplifled, perhaps originating at different x-positions,

and go through similar life-cycles.

The above scenario is appropriate for turbulent as well as laminar wakes. In

the turbulent case, additional complications arise because of small-scale tur-

bulent structure. Townsend (1968) proposes his equilibrium hypothesis as a

mechanism for the growth-decay cycles of large structures. Namely, large

eddies develop during a period of quiescence, when the turbulence intensity is

low. The large eddies grow in strength and cause rapid entrainment, which leads

to an Increase of turbulent intensity at all scales. Turbulent motion of smaller

scales resists the growth of large eddies by absorbing some of their energy. The

large eddies therefore decay, and another period of quiescence begins. Further

- - downstream, where the wake is wider, larger-scale (lower-frequency) structure

emerges, and the cycle recurs. Our results are not inconsistent with Townsend's

equilibrium hypothesis. We stress in azddition the important role of local hydro-

dynamic stability in the growth aznd decay of large structures.

Let us now address the phenomenon of vortex amalgamation. As discussed in

the introduction, there seems to be some dispute as to the role of vortex pairing

in the changeover to larger-scale structure in wakes. There are those who argue

that pairing instability is paramount in this changeover. It is our contention

however that vortex amalgamation is not necessary for the growth of larger

structure; but rather, hydrodynamic instability of the developing mean velocity

* profile results in the selective amplification of frequencies which are locally A

unstable. If amalgamation does occur it Is purely incidental, not the driving

mechanism of the flow. Wakes of porous flat plates are particularly supportive

of this statement. Wake Instability alone establishes a street-like structure
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downstream - no shed vortices even exist.

Nevertheless, we do observe the subharmonic fl,2 to be a popular frequency

in the data, particularly at 125 < zd < 250 for the cylinder wake at Re = 140.

At z/M m 100, the primary (Karman) street has not completely decayed; it is

likely that disturbances at the subharmonic ft/2 are present because of the

residual Karman vortices. If such is the case, these disturbances have a "head-

start" at being amplified when compared to those at frequencies not close to

f ,A. Thus fk/.2 disturbances may be chosen to be amplified, even though they

are not necessarily the maximally-amplified disturbances predicted by stability

theory. The residual Karman vortices will pair, not due to a pairing instability in

and of itself, but merely in response to the growing subharmonic disturbance. S

For the most part. the frequency of downstream fluctuations shifts gradually,

particularly for turbulent wakes. At Re = 500, for example, no identifiable

trends exist that would indicate amalgamation.

Indeed, except perhaps for the special case of Re = 140, vortex pairing was

not observed by this experimenter. At Re = 150 or 500, for example, there is

nothing outstanding about the subharmonic frequency. That is to say, distur-

bances at the subharmonic experience the same kind of growth and decay as at

any other nearby frequency.

A plot of L2/a, (ratio of secondary-street scale to that of the primary 5

street) versus Reynolds number, as shown for example by Matsu and Okude

(1980), has a great amount of scatter, particularly among different flow facili-

ties. Furthermore, t,/a, is exactly equal to two only for isolated cases. Hydro-

dynamic stability theory adequately explains the scatter. As indicated by Figure

5.13, the wake at a given location is unstable to a broad band of fequencies. If

there exist relatively large background disturbances at specific frequencies

within this band, these will most likely be the ones selected to amplify. It is then
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clear why such facility-dependency exists. Moreover, because a broad band of

scales are amplified in the wake, and because the band of amplified frequencies

shifts to the left with z, a2 can not be defined unambiguously; a plot of a2/al is

thus meaningless. perhaps even misleading.

7.4. Three-Dimensionallty

The far-wake structure behind a two-dimensional cylinder appears to be

three-dimensional. Our flow- visualization experiments reveal that three-

dimensionality begins around 100 diameters, where secondary vortices exhibit a

waviness which amplifies downstream. Waviness of vortex lines in the z-z plane

has been observed previously by other investigators. Hama (1957) and Tritton

(1959) are two of the earliest reporters of this phenomenon. More recently Ger-

rard (1978) and Slaouti and Gerrard (1981) investigated the influence of flow

non-uniformities and end effects on vortex lines. Recent numerical work by

Robinson (1984) indicates that a vortex street can be more unstable to three-

dimensional disturbances than to two-dimensional disturbances over a

significant range of street spacing ratios. Hama (1963) described how a vortex

filament can be distorted three-dimensionaily and progressively by its own

induction. This mechanism, along with influences from other vortices on either

side of the street, is postulated here for our observed progressive three-

dimensionality.

Although the evidence is not conclusive, we may speculate that such distor-

tions eventually lead to "pinching off" of vortices from either side of the wake to

form loops. As pointed out by Roshko (1978), loops of this kind, when averaged

for a long time, may explain Grant's "vortex-pair eddy" which has puzzled us for

so many years.
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Appendix A

Nuimerical Streaklines

A.1. Procedure

Following Hama (1962). Euler's method is used to calculate streaklines gen-

erated in a given velocity field. Particles are released from a fixed point at each

time-step At. The position of each particle is advanced every time-step, accord-

ing to

4.t +At) = 4.(t) + d (At) + L ,t .. (A.1)

dt 2! ct 2

In the computer code Equation (A. i) is calculated to second order for every par-

ticle at each time-step. Connecting a string of these particles together (all of

which had been introduced from the same point) constitutes a streakline.

A.2. Vizcously-Decaying Vortex Street

The two-dimensional velocity field used for the numerical simulation in

Chapter 3 is described here. Following Lamb (1945), the inviscid velocity field of

an infinite row of vortices, each with strength , and coordinates (0,0), (+ a,0),

a( z.)... is

-r sinh(7
UL 2A f2r (A. 2)

coshj 27r-1 Cos27
a
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r sin[ 21r

V If "ZX (A.3)
a- r21 27rz

cosh -cos
aT

To model a Karman vortex street two such rows are superposed. One of the rows

has its vortex centers midway between those of the other row, with the circula-

tion equal but opposite; the two rows are separated by distance b in the y-

direction. Such a configuration has a self-induced velocity in the negative z-

direction,

U= -!-tanh (A.4)

Adding a constant freestream velocity to the array of vortices completes the

inviscid model; each vortex convects downstream with velocity U, = U, - Uj.

To add the effects of viscosity, the vortices are allowed to diffuse as their life-

times increase. Each shed vortex is assumed to be axisymmetric about its

center and viscously decaying, with its induced tangential velocity given by

-'P = 17r - e 4W(A. 5)

where r is the distance from the center, F is the circulation or strength of the

vortex, and v is the kinematic viscosity of the fluid medium. At time t = 0 0

Equation (A.5) reduces to that of an inviscid axisymmetric vortex. As time

increases, the vorticity spreads out (diffuses) in such a manner that total circu-

lation remains constant. Far enough away, the induced velocity of this vortex is
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no different than that for an inviscid rectilinear vortex. Thus, to model viscos-
0

ity, the inviscid vortices of the idealized Karman street are replaced by Equation

(A.5) near regions of interest, i.e., close to the expanding core of the vortex.

Time t is chosen as the "lifetime" of the vortex; in the computer code t = z/U,

where z is the downstream distance the vortex has travelled and U, is its con-

vection speed. Vortices are thus "born" periodically at z = 0, and are con-

vected downstream to form the Karman vortex street pattern.

It should be kept in mind that the above model is not an exact solution of the

equations of motion, but as discussed by Hooker (1936), it is nevertheless a very

reasonable model. The constants in Equation (A.5) were chosen to simulate the

flow represented by Figure 3.1. In dimensionless variables Equation (A.5) 0

becomes

U; I" -(r 2Re
27rr 4t (A. 6)

where

0

U = t /
U_ Uc/U-

, ,- =r-/d , r*
U..d

U .. r S

Re= 
--

For the calculations shown in Figure 3.2, r ° = 1.4, (an experimental result of
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Matsui & Okude (1981)), Re = 90, ~a/ = 6, and b/d 1.89. The latter two

values are close to those measured in Figure 3.1. Based on experimental results

of Hooker (1936), each vortex is given an "apparent age" at z =0 of t 2.
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Appendix B

Cross-Wire Wake Surveys

B.1. Cross-Wire Calibration Procedure

A pitot-static tube and electronic manometer were used to calibrate cross-

wire voltages against tunnel velocity, immediately prior to each run. This was g

done by simultaneously recording the voltage from each wire along with manom-

eter output - the cross-wire probe and pitot-static tube being positioned near

each other and in the freestream of the tunnel. thirty-two two-second averages

were recorded as the tunnel velocity was varied. (The hot-wire voltages were

first conditioned to lie within the range 0 to 10 volts, so as to use the full range

of the A/D converter.) The voltage from each wire was then plotted against velo-

city normal to that wire. A typical calibration (fitted to a fourth-order polyno-

mial) is shown in Figure B.I. This calibration curve was subsequently used to

calculate the instantaneous u and v velocities for each sample in the wake

survey. S

B.2. Wake Surveys

Because of the large (: 550) length-to-diameter ratio of the wires, hot-wire

end effects were neglected, in accord with the experimental conclusions of

Champagne, Sleicher, and Wehrmann (1957). Thus, a simple trigonometric

decomposition (the "cosine law") was used to obtain us and v for each cross-

wire sample; i.e., *

U = (U+.. + U-4.)cos 5 , (B.1)

*
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= (u+45 . -u u_.)cos45, (B.2)

where u+45. and u-. are the velocity components normal to the + and - 450

wires, respectively, as defined in Figure B.2. u and v are the instantaneous

velocities which we now write in terms of mean and fluctuating components,

Us = U + U', (B.3)

V = V+V', (B.4)

For the case of circular cylinder wakes at Re = 150 and 500, the specifics of

the wake surveys are as follows: The cylinder diameter was 0.16 cm; Reynolds

numbers of 150 and 500 were obtained with freestream velocities of 1.52 and

4.97 m/s respectively. Twelve x-locations were chosen, namely z/d = 25, 50,

75. 100, 125, 150, 200, 250. 300, 400, 500 and 750. At each of these, data were

recorded at thirty-two i -positions (the spacing in the i -direction was adjusted

according to the local width of the wake). The sampling rate was 2000 Hz for 0

each of the two wires; the total number of samples per wire at each position in

the wake was 8192. Thus, the total sampling time at each position was slightly

more than four seconds.

The same cylinder was used for the data at Re = 140, at a freestream velocity

of 1.38 m/s. The z-locations chosen for the survey were more compact than

those above; zAd = 40, 50, 60, 75, 100, 125, 150, 175, 200, 250, 300, and 350. The

porous plate chosen for detailed cross-wire surveys was a 47% solidity screen of

width d = 1.78 cm, whose wire diameter and mesh size were 0.43 and 1.59 mm

respectively. Surveys were made at z/d = 1, 2, 4, 7, 10, 15, 20, 25, 30, 40, and 50.

. . . . . .. . n ,n il Imii i . . . . . . .. m = m li iih idl . . . . ... . - - • . . .
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Two channels of data were recorded simultaneously - the voltage output

from the +450 and -45 ° wires. The calibration curve, an example of which is

shown in Figure B.i, was used to calculate u+4 5. and -45.; Equations (B.1) and

(B.2) provide us and v, which we could average over the entire record to

obtain U and V. The fluctuating velocity components ' and 1/ are then

derived from Equations (B.3) and (B.4). Figures B.3 - B.5 show U profiles for

various downstream positions in a cylinder wake at Re = 140, 150, and 500

respectively.

B.3. Analysis of the Data

Let us consider the wake survey for a circular cylinder wake at Re = 150.

Having recorded u and v for each sample, there are many ways to analyze the

data. Firstly the mean velocity U is normalized in the usual manner:

U-U.

U = 9 -on2)V, (B.5)
U0 - U_

where U0 is the centerline velocity, U. is the freestream velocity, and y * is

the normalized transverse coordinate,

Y =  6 (B. 6)

In Equation (B.5), the constant 1n2 was chosen such that U* = - at y = 1 or

-1. 6 is the wake half-width; yo is the transverse distance corresponding to the

centerline of the wake. U0 , 6, and yo were chosen to give the best (least-

squares) fit to Equation (B.5). Figure 5.14 shows an example of how well the

data collapse onto this Gaussian wake profile. The wake half-width 6 Is an

important quantity which is used to normalize frequency f
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2rdf (B.7)
U.

Another important quantity is the centerline velocity defect,

W, = 1 U (B.8)
U_ 

.

Figures 5.15 and 5.18 provide examples of how 8 and W. vary with downstream

distance zAL.

It is not certain why such a large scatter exists in these measurements. Our

conjecture is that non-uniform, unsteady boundary layer transition on the walls

of the test section leads to a low-frequency oscillation of the freestream.

Ideally, data should be gathered at all wake positions simultaneously to avoid

any such problems; this was not possible however, since only one cross-wire was

used. Hence freestream conditions could have changed during the course of a

survey. Four seconds may not have been a long enough sampling period to aver-

age away these (very-low-frequency) fluctuations. 0

In addition, the height (y -direction) of the cross-wire was approximately the

same as the cylinder diameter. Hence, close to the cylinder, where the wake

width is small, we would not expect good resolution in measurements of mean

velocity. For this reason, the smoothing in Figures 5.15 and 5.16 is weighted in

favor of far-wake data.

In all subsequent numerical calculations in which 6 and W. were required,

smoothed values were used rather than the measured values, as shown in Fig-

ures 5.15 and 5.16. It is important to note here that power spectra, probability

density functions, and other quantities based on the instantaneous fluctuations

. . .. .. . . . . . . .S
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are not affected by this smoothing.

There are several methods by which we can search for wake structure, given

the time-traces of u' and V°:

a) Tims plots - An example plot of Vf/U. versus sample time is shown in

Figure 5.9. We have also plotted u'/U., and the instaneous Reynolds stress

-u'v'/U. in Figures B.6 and B.?, respectively.

b) Amplitude spectrumn - A fast-Fourier-transform (FFT) algorithm can be

used to obtain the amplitude spectrum of the signal. This gives us a quanti-

tative description of the fluctuation magnitude as a function of frequency;

an example is shown in Figure 5.1. The method of modified periodograms

waw used to generate power spectra, as discussed in Rabiner and Gold

(1975). (Amplitude spectrum is defined as the square root of the power

spectrum.) Spectra of the freestream tunnel conditions for each wake sur-

vey are shown in Figures B.8 and B.9.

c) Probability density - If, in the time-trace of the fluctuating velocity,

there exist Identifiable "groups" or "bursts" of structure, the power spec-

trum can be calculated for each such group individually. The most prom-

inent frequency fp of each group is then determined, and the results of the

entire time-trace are displayed n terms of probability density of spectral

peaks as a function of frequency. Probability density is a bin-independent

quantity calculated as follows: frequency is divided into bins spaced apart

by Af. We then count the number of times f. falls into each bin. The

result is called a probability distribution, which is not independent of bin-

width Af. Dividing by the total area under the probability distribution

curve gives the probability density, which by definition has unit area, and is

therefore bin-independent. An example of such a spectral probability

DI
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density function (PDF) is given in Figure 5. 10.

To identify a group, an algorithm was written to scan the data, searching

for a place where peak-to-peak fluctuations remain above some velocity

threshold for a longer period than some time threshold. In the code the

velocity threshold ul was chosen to be v V'm, , where v',. was calcu-

lated for the entire time-trace. The factor v2 was chosen since for a sine

wave v',-, = vf ',,. The proper time threshold to choose is somewhat less

clear. If too small, the frequency resolution of the FFT would be poor; if too

large, some of the shorter-lasting groups of structure would not be con-

sidered. The time threshold chosen in our calculations therefore varied

with location and Reynolds number. Typically, tt was chosen so as to allow

at least two cycles of a disturbance at the minimum expected frequency,

The PDF's were weighted by the amplitude of fluctuations within a group

- i.e., those groups with large-amplitude fluctuations contributed more to

the PDF than groups with smaller amplitudes.
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Appendix C 0

Inviseid Linear Stability Calculations

For parallel two-dimensional mean flows, with U= U(y) only, inviscid linear

hydrodynamic stability theory may be applied. Basically, a small unsteady per-

turbation is superposed on the known steady mean solution; analysis of the

resulting set of equations can predict which disturbances are likely to be 0

amplified. Following Gaster (1965), let the perturbation stream function be

given by

i(y; z,t) = (Y) at(a-0s), (C.)

where

U V (C.2)

a is called the wave number, while P is the frequency, in the general case both

a and P may be complex. Substituting * and the known mean solution U(y)

into the equations of motion yields the Orr-Sommerfeld equation. Neglecting

viscosity, the resulting equation is the simpler Rayleigh equation,

(U(Y) - P/a)(9" - a'r) = 0, (C.3)

where primes denote differentiation with respect to V.

For the present case of a far-field two-dimensional wake, an appropriate

parallel mean solution is the Gaussian:

*1
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U(Y) =U(1 - W. ), (C.4)

where

U(Y) - U. (C.)

,. - -

U.

6 is the wake half-width, U, is the wake centerline velocity, and the constant

In2 is chosen so that L = at IL= ± 1. Putting (CA) into (C.3) results in

(C- - a) + 0, (C.7)

with

Kubota (1983) has obtained solutions for wave speed C, given a = real (tem-

poral mode); and also for wave number a . given P = real (spatial mode). In

the latter case, spatial amplification is equal to -a , in Figure 5.12 we have plot- 0

ted -at vs. P for various values of W0 . For the temporal mode, the

corresponding spatial growth rate is approximated by g = at,,V according to

Gaster (1965). This growth rate as a function of Pr is plotted in Figure 5.13.

I S..
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In Figure C.A the calculations at Wo = 0.3 are compared with experimental

results of DeruUe (1983). He measured growth (and decay) rates of S

acoustically-excited fluctuations in the far wakes of circular cylinders at low

Reynolds numbers. Also shown on the plot are recent calculations by Hultgren

(1984) for the case of viscous spatial linear stability of a far wake at W0 = 0.3

and at Re, = 70. Red is based on the wake half-width and velocity defect,

Weo U. 6
Reg = (C.9)V

Reynolds number based on cylinder diameter d is also listed in Figure C.A for

comparison.

* 0

.. .. 0



-83-

1. References

AREF. H. and SIGGIA. E. 1981 Eolution and breakdown of a vortex street in two
dimensions. J. Fluid Mechanics 109. 435-463.

BERGER, E. and WILLE, R. 1972 Periodic flow phenomena, Ann. Rev. Fluid
Mechanics 4. 313-340.

BEVILAQUA, P. 1975 Intermittency, the entrainnent problem, ARL Technical
Report 75-0095. USAF.

BREIDENTHAL, R. 1980 Response of plane shear layers and wakes to strong
three-dimensional disturbances, Phys. Fluids 23, 1929-1934.

BROWN, G. and ROSHKO, A. 1974 On density effects and large structures in tur-
bulant mixing layers, J. Fluid Mechanics 64, 775-81S.

CANTWELL, B.J. 1979 Coherent turbulent structures as critical points in
unsteady flow, Archives of Mechanics 31. no. 5, 707-721.

CASTRO, 1. 1971 Wake characteristics of two-dimensional perforated plates nor-
mal to an air-stream, J. Fluid Mechanics 48, 599-609.

CHAMPAGNE, F., SLEICHER, C. and WEHRMANN, 0. 1967 Turbulence measure-
ments with inclined hot-wires. Part 1. Heat transfer experiments with inclined
hot-wire, J. Fluid Mechanics 28, 153-175.

CIMBAIA, J., NAGIB, H. and ROSHKO, A. 1981 Wake instability leading to new
large scale structures downstream of bluff bodies, Bull. Am. Phys. Soc. 26, no. 9,
1256.

CORKE, T., KOGA, D., DRUBKA, R. and NAGIB H. 1977 A new technique for intro-
ducing controlled sheets of streaklin s in wind tunnels, IEEE Publication 77-CH
1251-8 AES.

DAVIES, M.E. 1976 A comparison of the wake structure of a stationary and
oscillating bluff body using a conditional averaging technique, J. Fluid Mechan-
ics 75, 209-231.

DESRUELLE, D. 1983 Beyond the Karman vortex street, M.S. Thesis, Illinois Insti-
tute of Technology, Chicago, Illinois.

S
SI

0



-64-

DURGIN, W. and KARLSSON, S. 1971 On the phenomenon of vortex street break-
down, J. Fluid Mechanics 48, no. 3, 507-527.

GASTER, M. 1966 The role of s'patially growing waves in the theoryg of hydro-
dynami stability, Prog. in Aero. Sciences 6, 251-270.

GERRARD, H. 1966 The three-dirension.l structure of the wake of a circular
cylinder, J. Fluid Mechanics 25, 143-184.

GERRARD, J. 1978 The wakes of cylindrical bluff bodies at low Reynolds
number, Phil. Trans. Roy. Soc. London A 288, 351-382.

GRANT, H.L. 1958 The large eddies of turbulent motion, J. Fluid Mechanics 4,
149-198.

GUPTA, A., LAUFER. J. and KAPLAN, R. 1971 Spatial structure in the viscous sub-
la-yer, J. Fluid Mechanics 50, 493-512.

HAMA, F.R. 1957 Three-dimensional vortex pattern behind a circular cyLinder, J.
of Aero. Sciences 24, 156-157.

HAMA, F.R. 1962 Strealclines in a perturbed shear flow, Phys. Fluids 5, 644-650.

HAMA, F.R. 1963 Progressive deformation of a perturbed line vortex filament,
Physics of Fluids 6, 526-534.

HO, C.-M. and HUERRE, P. 1984 Perturbed free shear layers, Annual Review of
Fluid Mechanics 16, 365-424.

HOOKER, S. 1936 On the action of viscosity in increasing the sTpacing ratio of a
vortex street, Proc. Roy. Soc. London 154A, 67-89.

HULTGREN, L.S. 1984 Private Communications, Illinois Institute of Tehnology,
Chicago, Illinois.

HUSSAIN, A.K.M.F. and RAMJEE, V. 1976 Periodic wake behind a circular
cylinder at low Reynolds numbers, Aeronautical Quarterly 27, 123-142.

KEFFER, J. 1965 The uniform distortion of a turbulent wake, J. Fluid Mechanics
22, 135-159.

KUBOTA, T. 1983 Private Communications, California Institute of Technology,
Pasadena, California.



-85-

LAMB, H. 1945 Hydrodynamics, 8th edition, Dover, New York, 224-229.

LAPPLE, C.E. 1961 The little things in life, Stanford Research Inst. Jour. 5, 94-
102.

LESSEN, M. and SINGH, P. J. 1974 Stability of turbulent jets and wakes, Phys.
Fluids 17, 1329-1330.

LOEHRKE, R. and NAGIB, H. 1972 Experiments on management of free-stream
turbulence. AGARD Report No. 598; AD749891.

MATTINGLY, G.E. and CRIMINALE, WO. 1972 The stability of an ircorpressible
two-dimensional wake, J. Fluid Mechanics 51, 233-272. 0

MATSUI, T. and OKUDE, M. 1980 Rearrangement of Karman vortex street at low
Reynolds numbers, XVth International Congress of Theoretical and Applied
Mechanics, Univ. of Toronto, August, 1-27.

MATSUI, T. and OKUDE, M. 1981 Vortex pairing in a Karman vortex street,

Proceedings from the Seventh Biennial Symposium on Turbulence, Rolla, Mis-
souri.

MATSUI, T. and OKUDE, M. 1983 Formation of the secondary vortex street in the
wake of a circular cylinder, in Structure of Complex Turbuelnt shear flow, 1 4
IUTAM Symposium, Marseille, 1952, Springer-Verlag.

MORKOVIN, M. 1964 Flow around circular cylinder - a kaleidoscope of challeng-
irg fluid phenomena, Proc. ASME Symposium on Fully Separated Flows, Philadel-
phia, 102-118. 0

MUMFORD, J.C. 1983 The structure of the large eddies in fully developed tur-
bulent shear flows. Part 2: The plane wake, J. Fluid Mechanics 137, 447-456.

NAGIB, H. and DESRUELLE, D. 1982 Controlled excitation of the far wake insta-
bility, Bull. Am. Phys. Soc. 27, no. 9, 1193.

NISHIOKA, M. and SATO, H. 1978 Mechanism of determination of the shedding
frequency of vortices behind a cylinder at low reynolds numbers, J. Fluid
Mechanics 89, 49-60.

I

NOSENCHUCK, D., TAYLOR, S. and ROBEY, H. 1983 Private Communications, Cali-
fornia Institute of Technology, Pasadena, California.

*



- 66 -

PAYNE, F. and LUMLEY, J. 1967 Large eddy structure of the turbulent wake
behind a circular cylinder, Phys. Fluids Supplement, S194-S198.

RABINER, L. and GOLD, B. 1975 Theory and application of digital signal process-
ig, Prentice-Hall, Inc., New Jersey, 414-419.

ROBINSON, A. 1984 Existence and stability of vortices and vortex arrays, Ph.D.
Thesis, California Institute of Technology, Pasadena, California.

ROSHKO, A. 1953 On the development of turbulent wakes from vortex streets,
NACA TN 2913 (see also, NACA Rep. 1191 (1959)).

ROSHKO, A. 1976 Structure of turbulent shear flows: a new look, AIAA J. 14, no.
10, 1349-1357.

SAFFMAN, P. and SCHATZMAN, J. 1981 An inviscid model for the vortex street
wake, Applied Mathematics Department, California Institute of Technology,
Pasadena, California.

SCHATZMAN, J. 1981 A model for the von Karman vortex street, Ph.D. Thesis,
California Institute of Technology, Pasadena, California.

6LAOUTI, A. and GERRARD, J. 1981 An ezperimental investigation of the end
effects on the wake of a circular cylinder towed through water at low Reynolds
numbers, J. Fluid Mechanics 112, 297-314.

TANEDA, S. 1959 Dowstream development of wakes behind cylinders, J. Phys.
Soc. Japan 14, no. 6, 843-848.

TOWNSEND, A.A. 1956 The structure of turbulent shear flow, Cambridge Univer-
sity Press.

TOWNSEND, A.A. 1966 The mechanism of entrainment in free turbulent flows, J.
Fluid Mechanics 26, 689-715.

TOWNSEND, A.A. 1970 E-ntrainment and the structure of turbulent flow, J. Fluid
Mechanics 41, 13-46.

TOWNSEND, A.A. 1979 Flow patterns of large eddies in a wake and in a bmin-
dary layer, J. Fluid Mechanics 95, 515-537.

TRITTON, D.J. 1959 Experiments on the flow past a circular cylinder at lou Rey-
nolds numbers, J. Fluid Mechanics 8, 547-567.



- 67 -

TRIT 3N, D.J. 1977 Physical fluid dynamics, International Student Edition, Van
Nostrand Reinhold, New York, 23.

VALENSI, J. 1974 On the aerodynamic of porous sheets, in "Omaggio a Carlo Fer-
rari: Torino, Libreria Editrice Universitaria Levrotto & Bella."

WEIHS, D. 1973 On the existence of multiple Karman vortex-street modes, J.
Fluid Mechanics 81, no. 1, 199-205.

WILLIAMSON, C.H. 1983 Evolution of a single wake behind a pair of bluff bodies
normal to a stream, University of Cambridge, (to be published).

WLEZIEN, R. 1981 The evolution of the lou-wavenumber structure in a tur-
bulent wake, Ph.D. Thesis, Illinois Institute of Technology, Chicago, Illinois.

WYGNANSKI, I., CHAMPAGNE, F. and MARASLI, B. 1983 On the large scale struc-
tures in two-dimensional small deficit, turbulent wakes, Rough Draft
Manuscript, University of Ariz-, aa.

ZDRAVKOVICH, M.M. 1968 Smoke observations of the wake of a group of three
cylinders at low Reynolds number, J. Fluid Mechanics 32, 339-351.

ZDRAVKOVICH, M.M. 1969 Smoke observations of the formation of a Karman
vortex street, J. Fluid Mechanics 37, 491-496.



-68-

U')

S -

00

14 z

a 0u

ch >

U3 cu 'a-0

4-J

4-I

c ~r1
no 3Lo

CC

10

U.. 0

0 Enp0
0) 4

L



-59-

-.450 hot wire +450 hot wire

Anemometer

Signal Conditioner ]
12-bit A/D converter

8-bit microprocessor

Floppy disk Relay unit Stob

Figure 2.2: Digital data acquisition system.



-70-

0
0

0 0
* 0

m IN

4 3

0 0 0
00 0

0

0 0

'I, S 3

Vi C.)c

a)

(a

oD (a
o

N cn

0 0
/Y

8 0 :3 0
0 U'

L

0 )



*

c00

0n 0

w
Ln M

0

Lf

> 00

CUO

o0 04UN
4n (a

a)

OVc 0 U
ON 0

0 03 0 EML

0 E)

C

L (U
Ifl E L

zw

0 L



-72-

x

00

4J
am

cu

0
LO

m

L



-73-

(00

x
4J

L
0

04
E

Cc

0 0

LC
ma

LC3
HS

LU
NU

0 0-

N, LD

I L
00

Nbond



-74-

o 0

mmm

0 I
In m n IN

0 S
(U

0L 
(

.4 Co
*1~ 0

(U

o 0 r1Q

in InLS

0(

L)

L

0)

0

x



-75-

0

0I

00
m N

0

0 0

E

0

0t 0

8 0

MW 0

0*

'U

00

L 0
x (n

L
00

x



-76-

4J

L

(U

0

0

I

y 0

to 3 "
LaL

a) n

,

L 13

0 L

L '

u x

0

L

-

0

10 0



-77-

0o

U)

00

00
Iq Cu

00

cu ) S 6

a_ D

aco

~c

0

xo



030

L

-r

00
0

-J

0 c0I

U, w

00 0

041J

cu

3n
03V

U-



-79-

c

0
____ ___ ____ ___ ____ ___ ___ Ejc

0x
cn

*rl -
0

0 400 Lr3 r a

N c
*rl

c > L

000c
1- 0)

L E L

L 0
4-3
0.

4.-
N N N If) 0

0 ' ooo
o 0302.,I4.
cu 0 6 c ~4>

r~~- 4 -44 ri

CL07" LC 0
FI I I

Q)

0 0 0 0) 0 0 0 r
o Ur) 0 U) 0 Lo IL

apn4TudwV tJejoads tmn/,A



0

Lfl L

(a

L

00

3I

x
4J03

I 0 VI

1 0 w
I n 0 3

1 U)

0 03

(a M3 04-1

03: t
/ 404-L

/ Q)
U e10

/ o

/ 06
0 CC

4 -ri

0 0
vi 0

)II 4 apnTldw leioadS'n/,



BLUFF IOOIES(U) CALIFORNIA INST OF TECH PASADENA
GIDUATE AERONAUTICAL LABS J N CINlLR 1994

UNCLASSIFIED NO M 4-76-C-0260 F/0 20/4 NL

nauruqllllllllmo*uNuuumi



1 1 1 1 1 .241L3.6
LAO

11 1.25 1111 .4 -

'ii II!1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL SURFAU Of STANDARDS- 1963-A

L i

%~~



0
0
cu

4J

(U

'44-

U

0 60

)4 4J -

U,.

3 ( L
N L (

4J. 61

0L

4J -I

Inco,.

qL 6L

-s r
cu 0 m to cu.

apn4T~~~d.4- ri~aS n ,



0

0 c
wL

4J

,. L

1* 00
0 41

0 L1

A.S.

rtL

m :-
0 0

if Mi-IL

43 o V
01 0

/ 0

0

OL

0 (DO

cu lo

%466

epn44dw toLas n



-03-

0

C

*4J

00

-4.0 0

- ID L

0 CO

L
>0

OC)L

rLII

481 C

VL

-- 0 - -2

xx co IV. . c o 1 ~

op4Iw ta*aS n,



00

0

5 0

00

I. L

cu 4; 0 .0
0 m

~r4 I

4J4
0 0 X

C%45

E 6
e-L

Sg 0
a

0 r_
0 V3

0OL

CD 0

"a. 0 . 0

L

ow 0

0 0 0 0

apn;TdwV t..j~oadS mf/,A



-85-

0

, I 050 4J
S0 0

.4- oI. o
1 :.c L
1. 0 4
-, .. co U
I • 30

I " 0111

am

1:I0 0

1 , : N

vi c
I.a -A..

"* om 0r4

0 L

.-08L

0 a q4

CUX 4* 0

I. L

L 10I.•..I,.

-A IL

0 o.

0In 0 In 0

opn4;TdwV tmJia.ds "rl,A



-86-

O

0B

10 X O

0S

0~

(:11
KI L

I ~ *£ 41 0

0 0

L Li
0. 0

04

E 4J
0 L W

0 041

0 0z0
0,,in

apn4;dw teSDd v,



-87-

E

47

I. 0

L 0

w. LW

I V0M
C 4%- 0

t'.V M -

LL L

2 0 L

0 0

0 I
3 1 3 1 3 3 1 1 1 33 D*L

,~ an

o~ c~0I
Ci 01 r- 4

121
xxxxxxxxxS



00

0

41

00

00
13 0

I : I
13 0 0..

4.

+ ~ 0 0 O

E: L
4 ~4)

0 El

u 0 L
oW ~W

0 0 I,
0 If
00

0 30

0D

0 0

00

spn4~dwytejoadSwn/, q



-99-

0

L

0 a - I.
* 0

* I 0

I *I 0

co

00 Xn@

~U) 0 c
00-

L Lw

00

0
0 CL

00 I

cu 0 L

0 a)L

W200 0

00 L

apn;NldwV tei4oads flv/,A



-so-

00

000 1

ILL-

L

0

00

4)

>10

E '%%

o 4)0C

L
4'

-M 41

o0

L

U-

0 0 0 0 0 0 0 0 0

% nf/, A



cu

000 0
00ig 4JIV I"wI a a I

S S

00

0 cc

0

* 1

c *0

I'-L

CL 0

iii

X 'A4;SUBG ,4Tt~q~qOJd A



-82-

00

coo

0 L

0 4J

0 30

0o 0

P-10

0 >
CL (a

3

LX

Li CL

0 fl -M

0 00

0

0 0 L+

0~

00

0 0 L4

00

00 r

co Cu oc~ Cu
YI)

U '9t~iS ~O 8~WfN SOJBL
3S

cmS



F )4

au -u 00

00300

oCuo 33 CU
C C

~wl0O0

cu E

*.*i
c

.4 J

* '~L L

'9 * ai 4J

/ En

4)4

0 L

U,

T~o- 15 14% t4MOJ) le;4Cu



-94-

L

0 / 0
0000 I

Cu 
:

0

-. ' - -- t- cu U)

a ID

CC

L a.

cuw

In

0 in0 tfl 0 1)0
cr) cu cu

- 5 ~9~fLJ~MJ9 tT~Ld
B '8% t4moj) JO~ed



- ---- -

-95-

o S

4J

0 1

L

C)
+ L

0 u+
0 1u

L

4-)

* NL

CU Iq ra)

r1 1

13*

ID L

4-

CuOn 0nn) *



00

'13

0 4-'
0 U)

0 >

0 'U.

0 mm

W41
U)

mIQ
0 0L

0 *1*1

.1c

0i -'-i-
o 30

0I

0 4)
u-L

0 0 M

0 LDi 0
-0

0 o 0 00
on m
0/ LSs>OtlLI T-THBO



-97-

0

co

00

4-I

0

0 ELI
4) 4-
LCC

00 Xw c

0 0
0

00

0 U) J 1
0 00c

>0
0)

0 0 ) 41I

0 c n

0 1 000- L

0>

00
0 0

p 0

o00 0 0 0r

-00



00

00

c c)

.00

IN
I 30

-00000

:

w 11 m cu

. .. .. . .



0

L

6 .0 0 a0 
-6

D 0 6 LD I
Lwl L 044 8

03 
0

a a c 6O

I. 0

I ~0 X

o Lo

0

0 LI

oM

0 X*

m. % 0 L 6

o- C 0

o -- 0

L

0 0 0 00
0 in) 0

cu I"



0
0

L

w C. aU 0 L

lo. 41 t.
0 0. 3 x C)

0 IL Iv (53

01- 0
I0

I: *0 E
If)

*U 0L

wG 0 0
o0

* C

> 43

* >43

I L
L 0

r C
/v

0

I.-m

* / 00

O 0

0 0I

Cu '4 ~

ZH 'Aouefbej.4



0

1S 0

co

Z,, ..- Sa 41 
-0L W4 C. ol 0 0 L

av4 W.0 gr4-

0 CIL

*0 4J
I ( *

* 0 6

0 X 0

* N

S0 L

* .... 0i

o oo oo :0
00 co

ou J4.1

*0 0
* L C

cqcr

M X 0.1L

L 0

0 0
0 ID

0/ 0

0

00

0~ 0



-100

-50

750

> -50

t3)-50
.41

0 2.

0
L

41 5

0

SV.-

0-50

0

r15.0

4

r-o-50 1.

f0 1 .
m -50

-705

-70

0 200 400 B00 B00 1000

Frequency. Hz

Figure 5.21: Amplitude spectra at several
y-locations : cylinder wake at
Re -300, and at x/d -750.



-103-

L
61 0

-,

cu >

41

C

0

60
o~~ 0%0 I

C

cu

0*
LV

10 C

C~Cu
d I Aouabaj~ 4USTWCU



-104-

U) L

.0 4J
00a
0L :

4'

0>

.4J C

cu LUC
10 L

'p x

4) 00
4J

c .0

4JU

-M3

C

L U

03..

CC

(I)w

cu

I. 7T InL

03m

toL



-105-

(a U
N) L

- 1 LL
0*~

oW c

4))

If) LX
tv 

4 J

rqU

3 U L

4141

E a)0
N Lu

~cr

If) ai*

0 3
o0 a x

C L

(T) tc

En L

0
o o

cu
*q cu 0 cu Iq oU.

I 3
x /V



-10-

1.02

1.0

9~~ 1.0

>1.00
04

INI

41i; 1.0 1

~1.07

1.0 S

0.8

0.6 -d - 1.76 Cm
U- 4.54 rn/s 1

0.4t I
-3.0 -2.0 -1.0 0 1.0 2.0 3.0

y/d

Figure 5.25: Mean velocity profiles for porous
flat plate: o -47%. Re -5000.



-107-

0

0 4J

j~1I 00

mI 0IN N 0p
0i 0

I , o 06
ii B
':1 1 LN1 ,: 10

U: 11 co

0: 1 ' L 44
0. ) 4 1 (a

CUL a 3Q

0 6~

/ /0 EO0
*0 40.L

cu
0 cli

LEID

I IL

L

0 U

In 0 LO 0 inCU CUj Vt

apn;tdwV tei~oas t mn/,A



-108-

0-I

S4JrI4O

.. 0 0 LOI
L.4 L ca41

*4J 4e- 0

o0 aCC IE a 0

00

I. E 0S
4 4. )

x S)

(a c

w 0 d)

m 0

c 4. )

: 3 4)
0 0 a -

M4J

/ 0

L

0 0 0 0 0 0 0 0 0 L
o IV c 0 o CD IV cu

ZH 'Aouanbei. 
-



-109-

'00

N.,1

In II

m '

0 c

in-

(U

10

U-



-Itou

~,,Ij L) T3

INI

3L

L)

)

Ire L



00

a
El

LOl~~ 4,

.cu

H :

0

0
(a 0

0

0L

x

4Jp



-112

4J

(U

0L,

In L

cu m
0U

0

L

0I

1

In

x



-113 -

0 *
In

L
1
L
0

0
4.J

4-I

0

r4

0

5) c

E 1

0.

0
0 41 -

co

L L
0 0r

0 U)

.5 L- L
0o u

5' c

cc 5

L

01 CD U

(8410A) A ';nd~no ja-49wowsuV pauoT;Tpuoo



Cross-wire:

x 

-. 450 
wire

+450 wire

Velocity Decomposition:

U -4

Figure B.2: Cross-wire velocity decomposition.



1.0

1.035

1.0

91.0

S1.0Oi
"0 4

1

Ce
200

1.0

11.00

>1.0

0.

cylnde wak atR 40.



1.0

1.050

1.0

j 1.0

41i

0

w1.0

C

1.0 -5

1.0 -2

0.6 0 8c

-10 -8-6 -4 -20 2 4 6 8 10
y/d

Figure 8.4: Mean velocity profiles for circular
cylinder wake at Re - 150. S



1.0

1.0

1.0

31.0

>1. 00
4 J

a

4) 1.0

I.0 -100

1.0 -50

.1.0 -25

0.8 -d - 0.16S cm
U., - 4.987 rn/a

-15 -10 -5 0 5 10 15
y/d

Figure 6.5: Mean velocity profiles for circular
cylinder wake at Re -500.



L0

L C

09

D
E X

0 C
o ci -

(D CC

oE

03 g

0)

.-M
LL

o CD
Imn/,0



0

0

LLf

cv

0

> C;

~0
CU

o L

4) (n3
(13
E2 0

0

CuC

C).

C)C

.0

0 D V r 0 Sl I

fro; e~nA n



00

-120-

CU c

- CL

to 0

-)4-)

c- -

)f 0

N

EO E cc
..If 0 0 a

~*J4J Ln

LL C.

0)5)
040

L0 r-

0E U) c

0Cu )
000

cc +L

- 0 U- a
0: CR0L 0L

I, cuCN

apn4~dw telad ca/,



0*

*3 4

00

0 C

J 0

o 1410. 0

o 00I

ID4 0-- 0

3
4 J C 4J

c c

.4 JIn 0 0) a)

'CU)

- 0-

00 1 0 0

E 0)

LLIZ

0L 0

0) L

0 0.0 U
m Cru cu

apn4ldwyTejqedS Enl,



-122 -

IV Sqc owc

i *q*q'ww ( 0

0 -M

3.0 0 nC 9 )c

CW; wo C C ) CD C;

0* - + 1 0 

0 + * cu
4 J 4 J1 - - . 04J1

01 rlcu w)

o A!~ / o cA+

co CCL L5%
-c 0 0) jc t

(L) %- it4.

m~~C 3 00 +. 0 -
l,0 1 0

* c~i

a 0 Lcr
<~ CL 0 U)\ a)

.41~ M cw
oo~ .2+ E

CfLO L
0 U)t

C C3rL

I

0) W 00)x

0 C CD CU
c c

5 8U~ Lfl.OJS tT;Gd

LS



61W

~1 .7 .1

aj
.. , A - '

iL4

444

Jr..

r -. 04

9 '* .'

Av'~4* ~ 4 4


