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perturbation theory, in which the perturbation parameter is a
physical quantity, is applied to solutions of the Navier-Stokes
equations in two dimensions. The mathematical perturbation theory,
in which the perturbation parameter is a measure of the difference
between approximate and exact solutions, is applied both to the
three-dimensional potential flow problems and to the two-dimensiona
Navier-Stokes equations. The strained coordinate technique is
used to treat changes in locations of any shock waves or large
gradients. In addition to these steady applications of the per-
turbation theory, both the physical and mathematical versions of
the technique have been satisfactorily extended to two-dimensional
unsteady flow.

An indicial response function for transonic flow that does
not require a lengthy transonic computation was also developed.
This investigation produced a means of radically reducing the
computation time needed for an aeroelastic calculation. A theory
has been developed which requires steady state results at either
extremity of the indicial response and some estimate of the initial
time derivatives.

In transonic flow theory the extension of the transonic per-
turbation method to include flows where shock waves vanish and the
development of the technique to treat separated flows was under-
taken with satisfactory results. Two other topics that were
investigated concerned the application of perturbation theory to
accelerate convergence of numerical solutions to predict potential
flow. Finally, for transonic flow, the development of a "potential
like" theory to more closely approximate the Euler equations was
undertaken.

Some other work on transonic flow theory was concerned with
the existence of multiple solutions in full potential calculations
Since the full potential equation is difficult to analyze compared
with the small disturbance equation, multiple solutions have been
found using transonic small disturbance theory. These results
have been analyzed using the transonic integral equation theory
and indicate that the transonic potential theory is not formulated
uniquely.

A non-linear truncation error analysis was performed on cer-
0 tain Euler equation algorithms to develop corrections for the

solution. An outcome of this work was the derivation of a criteriz
for use in adaptive mesh techniques. The work on adaptive mesh
procedures was concerned with the development of adaptive mesh
strategies and solution procedures for highly clustered adaptive
meshes. It has been found that the strong conservation law form
of the governing equations in computational variables cannot
capture the shock waves correctly for arbitrary clustering.
Methods for correcting this problem have been investigated.

A rational basis for generating solution adpative meshes for
the unsteady two-dimensional Euler equations was developed for

* both explicit and implicit numerical algorithms. It was found
that for unsteady flows, the mesh generation consumed most of the
computational effort required which can negate the efficiency
gained by the reduced number of grid points possible with clustere
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RESEARCH ON TOPICS IN PERTURBATION METHODS,
TRANSONIC FLOW THEORY, NUMERICAL ANALYSIS,

AND ADAPTIVE GRID GENERATION

INTRODUCTION

The investigations conducted under AFOSR contract

F69620-79-C-0054 constitute a variety of subjects concerned with

transonic flow theory and numerical analysis. The topics con-

cerned with transonic flow are perturbation methods and the

validity of potential theory. The numerical analysis study is

concerned with the effects of truncation error on the solution.

The first subject to be studied is a theoretical investi-

gation for the development and examination of validity of pre-

dictive techniques for determining solutions which represent

perturbations in both physical (geometry, flow conditions) and

nonphysical (grid refinement, level of approximation) parameters

for nonlinear transonic flows past aerodynamic configurations.

The primary goal is to develop procedures to extend and enhance

the utility of currently emerging advanced finite-difference

computer codes for calculating both two- and three-dimensional,

steady and unsteady, inviscid and viscous transonic flows by

substantially reducing the computational requirements of these

codes when applied to large number of related cases, as in para-

metric analysis for design or operational studies. In addition,

approximate theories based on these perturbation ideas are

developed which have an application in transonic flutter

analysis.

The second topic is concerned with the development of a

universal transonic indicial function in order to avoid lengthy

computations in deriving such functions. This study was only

partially successful.
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The perturbation theories studied during the initial part of

the contract are restricted to flows in which shock waves are not

generated or destroyed during the perturbation. This can be a

fairly severe restriction and therefore a study to remove this

restriction was initiated with satisfactory results.

A consequence of perturbation theory is that it is theo-

retically possible to devise means of accelerating convergence.

Thus, a study to investigate the possibility of accelerating

convergence of potential equation solutions by using the pertur-

bation theory was initiated. Two approaches were studied,

namely:

a. a grid refinement technique using a sequence of three or

more grids and

b. use the strained coordinate method in conjunction with

the classic ideas of convergence acceleration.

In addition to the above topics the following investiga-

tions, connected with transonic flow theory, but not necessarily

with the transonic perturbation theory, were conducted:

Examine the possibility of using a single equation to ac-

celerate the convergence of the Euler or Navier-Stokes solutions.

Examine the possibility of modeling strong shocks in a

potential formulation by using the concept of an internal energy

to represent the effect of the vorticity transport.

Further work on transonic flow theory concerns an investiga-

tion into the occurrence of multiple solutions for a class of

flow parameters. Specifically, the occurrence of lifting solu-

tions for symmetric airfoils at zero angle of attack.
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The other topics, not related to transonic flows, investi-

gated in this contract are concerned with numerical analysis of

finite difference schemes.

The research objectives in numerical analysis are about the

derivation of the nonlinear truncation errors for the generalized

Lax-Wendroff schemes and the implicit scheme of Beam and Warming

for the two-dimensional Euler equations. Secondly, the imple-

mentation of the correction procedure to suitable existing

practical codes based on the MacCormack scheme and the implicit

scheme. An outcome of this basic idea is the extension to adap-

tive mesh generation techniques so that accurate finite dif-

ference solutions to a set of nonlinear partial differential

equations can be obtained with the minimum number of mesh points.

Some preliminary work on adaptive mesh procedures based on non-

linear truncation error analysis indicated four basic problems

that need to be resolved: (1) clustering makes the numerical

solution of the transformed equations more difficult due to the

extra stiffness introduced in the partial differential equations;

(2) proper clustering functions are necessary to minimize the

truncation errors; (3) the truncation errors must be filtered and

smoothed before they are suitable for use as clustering criteria;

and (4) artificial dissipation (probably depending on the local

mesh size) must be introduced to guarantee smooth and monotonic

solutions at shock waves and other flow discontinuities.

The final piece of work on this contract involved the

generation of solution adaptive meshes for the two-dimensional

unsteady Euler equations solved by a second order accurate ex-

plicit and implicit scheme. This required the extension of the

nonlinear truncation error analysis to the unsteady Euler

equations on an arbitrarily moving curvilinear coordinate

system. The analysis provided for a rational basis for clus-

tering the mesh points. To obtain an efficient grid generator
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several mesh generators were to be investigated and a weighted

interpolation scheme devised so that an initially very coarse

mesh could be used as the starting point for clustered mesh.

Final Status of the Research Effort

Perturbation Theory for Transonic Flow. The main object is

to extend some developments in perturbation theories of transonic

flow. One topic is the extension of the physical perturbation

theory to treat solutions of the Navier-Stokes equation. A

second topic is the investigation into the possibility of cor-

recting lower grade inviscid solutions for viscous effects using

the mathematical perturbation theory. Thirdly, the extension of

the mathematical perturbation theory for potential flows to three

dimensions is considered. The extension of the physical pertur-

bation theory (references 1 and 2) to solutions of the Navier-
Stokes equations is straightforward, the only additional fact to

appear is that the necessary base and calibration solutions

should not be too close together, otherwise the perturbation

quantities can be seriously degraded by the numerical error in

the solution. A typical solution is shown in figure 1; a result

for separated flow is given in figure 2.

Application of the correction technique to upgrade potential

equation solutions to include viscous effects introduced some

interesting problems. The main difficulty proved to be due to

the fact that, for relatively strong shock waves, the potential

theories give shock locations that are much further aft than

those predicted by the Euler or the Navier-Stokes equations.

This raised problems in the application of the concept of nearby

solutions, since the sensitivity of some of the examples to small

geometry changes could allow a flow change from one with a rela-

tively weak shock to one with a strong shock. This led to the
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necessity for a correction (reference 3) for the purely inviscid

effects due the use of the potential equation rather than the

b Euler equations. Examples such as that shown in Figure 3, com-

pared with the subsequent correction theory compare adequately

with direct calculations.

The extension of the mathematical correction theory to

three-dimensions is a straightforward development of the two-

dimensional theory. Both corrections for grid size and for the

use of the transonic small disturbance (TSD) equation are con-

sidered. Within certain limits the perturbation method appears

satisfactory. A result for the ONERA M6 wing is shown in

figure 4. However, in all of the topics discussed above, it is

desirable that a more comprehensive testing procedure be per-

*formed over a wider range of airfoils and wings in order to

assess the range of applicability of the theories.

The direct unsteady flow analogy of the steady perturbation

theory is the transonic indicial theory developed in reference 4.

In the present work the formulae developed in reference 4 have

been incorporated in a computer program CONVOL and the results

are very satisfactory. A typical result is shown in figure 5 and

compared to the results of the Ballhaus-Goorjian code LTRAN2.

Using CONVOL can result in a very substantial savings in

computation time, particularly if a range of frequencies is to be

run. In fact, the pressure distributions for about ten fre-

quencies can be computed in the time that LTRAN2 requires for

one. In the case of multi-parameter perturbations, the potential

for savings is even greater, since an entire n-parameters space

of solutions can be run for little more than the time required

for (n+l) finite difference calculations. The indicial method is

also immediately generalizable to three dimesions.
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The multi-parameter capability, together with the reduced

computation times, opens up the possibility for using CONVOL to

fit the aerodynamic response to the structural model in a com-

bined program. This "tailoring" capability ought to be of par-

ticular value in the development of active control technology for

aircraft.

The extension of the mathematical perturbations theory

(reference 5) to unsteady flow is a straightforward development

of the theory described in reference 5. The correction at each

time step is obtained by computing one exact and one approximate 4

solution and taking the difference. The strained coordinate

method is used to treat shock waves and any rapid gradients in

the flow. The only difference between steady and unsteady appli-

cations of the theory is that in unsteady applications the cor-

rect'ion is applied at each time step. Hence, both coarse and

fine grid solutions for all cases must be at the same time step.

In figure 6 the corrected coarse grid and the directly com-

puted fine grid solutions for a NACA64A410 airfoil at M. = 0.74

and a reduced frequency of 0.2 are shown for a number of times

during an oscillation. The total oscillation starts at 10800.

It may be seen that the correction theory works fairly well

except for the region just ahead of the shock. This discrepancy

is due to the final interpolation in sparsely located coarse grid

points and is mainly due to the coarse grid points not coinciding

with the shock capture points.

Development of a Universal Indicial Function. The main

objective of the work was to develop an indicial response

function for transonic flow that does not require a lengthy tran-

sonic computation. If successful, this investigation would

produce a means of radically reducing the computation time needed

for an aeroelastic calculation. A preliminary theory has been
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developed which requires steady state results at either extremity

of the indicial response and some estimate of the initial time

derivatives. The technique uses the strained coordinate method

(reference 4) and a reparameterization of the time variable. The

existing work is described in reference 6 and a typical result is

shown in figure 7.I
Finally, two outstanding questions about the formal strained

coordinate theory have been addressed, namely the arbitrary

nature of the straining and the use of constructed variables.

These questions have been answered and are the subject of two

short papers, references 7 and 8.

Perturbation Theory with Vanishing Shock Waves. A major

restriction of the present transonic perturbation theory is that

shock waves cannot be generated or destroyed during the pertur-

bation. A study of this problem showed that the interpolation

theory can be used if three (rather than two) solutions are

known. The additional result is necessary because the governing

equation set changes at a critical flow. In the course of this

investigation several points concerning transonic flows arose.

The analysis, which is based on integral equation theory, rede-

rived Morawetz's nonexistence proofs for shock free transonic

flows and also suggested that numerical algorithms which are not

nonlinear may not be mathematically correct. Results for

examples when shock waves vanish have been obtained. In figure 8

an example computed using two subcritical solutions and one

supercritical solution is shown. Since fairly accurate subsonic

solutions can be obtained (reference 9) from an incompressible

solution by the use of compressibility factors, a further simpli-

cation of the theory requires only the incompressible solution

and one supercritical solution. An example is given in figure 9.
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Convergence Acceleration. A consequence of the mathematical

perturbation theory is that data from a coarse and a medium grid

numerical solution can be used to estimate the starting solution

for the fine grid. The investigation showed that considerable

decreases in the computation time (75% decrease) can be obtained

by this means but that this improvement only occurs under certain

circumstances. However, the technique does not, in any of the

cases computed, significantly increase the computational time.

An alternative investigation into convergence acceleration

was to couple the basic ideas of the perturbation theory with the

classic ideas of convergence acceleration. The basic premise of

this idea is that slow convergence of the shock location is the

cause of the failure of the classic applications. A study of

some computed results indicated that this hypothesis is incorrect

and the investigation was terminated.

Strong Shock Potential Theory. A strong shock potential

theory was derived by adding the effect of entropy production to

the isentropic gas law. This theory is approximate and assumes

that grid lines in the near streamwise direction are aligned with

streamlines. It is also assumed that the flow is at most weakly

rotational. An example is given in figure 10. It was also

determined that a back-out formula does not exist. During the

course of this study it was found that the conventional transonic

potential theory is inconsistent since consistency requires that

momentum is conserved through a shock wave. In transonic

potential theory momentum is not conserved. A more consistent

theory can be derived by including the momentum error in the

analysis but it is physically unrealistic since the errors de-

crease entropy. It was also found that conventional transonic

difference schemes do not conserve mass through the shock capture

region although mass is conserved at the shock extremities.

8



Convergence Acceleration of Euler Equations. The basic idea

of this study is to determine if a single equation could be con-

i structed so as to carry the numerical errors in an Euler solution

to some extent, thus avoiding the need to iterate all five con-

servation equations at each step. It is concluded that the modi-

fied potential equation noted in the preceding section is

adequate for this task.

Truncation Error Analysis. The task was to analyze the

nonlinear truncation errors of two finite difference schemes for

the two-dimensional unsteady Euler equations. The method of

correcting for the leading truncation error was extended for the

two-dimensional problem and was very successful for the explicit

scheme. The correction procedure was found to be unstable for

the implicit scheme and was not extended to two dimensions. The

results are given in reference 10.

Adaptive Meshes. The first research objective was to in-

I vestigate means of overcoming the stiffness introduced by the

adaptive meshing. The other three objectives were to determine

the proper clustering functions required to minimize the trun-

cation errors; to determine the proper smoothing and filtering

b operators for the truncation errors before they are suitable for

use as clustering criteria; and to determine a suitable arti-

ficial dissipation to guarantee smooth and monotonic solutions at

shock waves and other discontinuities.

The stiffness is a measure of the range of the eigenvalues

of the flux Jacobian. The greater the range, the stiffer the

problem becomes and more difficult to solve numerically. The

adaptive mesh increases the stiffness in two ways; by a reduction

in the smallest mesh spacing and by the mesh velocity. For

explicit schemes nothing can be done about the reduced mesh

spacing. However, the increased stiffness due to the mesh

9



velocity is more critical for explicit schemes and can be al-

leviated by matrix splitting. The splitting refers to the

splitting of the flux Jacobian so that the effects of the con-

vective velocities are decoupled from the effects of the mesh

velocity. Since the two effects can be decoupled, each can be

treated separately without loss of accuracy and hence arbitrary

mesh velocitites (and arbitrary mesh clustering) can be allowed

in solution procedures with explicit schemes. This decoupling

allows the mesh velocities to be sufficiently high so that the

clustering function can keep up with the flow field features

without violating the stability criteria of explicit schemes.

The most important accomplishment has been the discovery

that the procedure introduced by Viviand, reference 11, for de-

riving the governing differential equation in the strongly con-

servative form of the arbitrary curvilinear coordinate system is

not valid. It is commonly thought that Viviand's form of the

transformed equations are the proper conservation equations which

yield the correct shock strengths and speed for arbitrary mesh-

clustering or mesh velocities. However, it has been shown in the

present study that the shock strengths and speed are modified by

the mesh clustering function and mesh velocity through the shock

transition region. To obtain the proper shock jump and speed

either the mesh clustering function and speed must be uniform

through the shock transition region or the transition region must

be of zero thickness. If the former condition is met then there

is no need for the strongly conservative form of the transformed

differential equation and the much simpler chain rule conser-

vation law form (reference 12) is adequate. If the latter

condition is to be met, then a shock fitting procedure is re-

quired and again the strong conservation law form is not needed.

Some numerical computations have been carried out to test

the effect of mesh clustering and mesh velocity on the shock

10



strengths and speed and the above conclusions have been verified.

These results are directly applicable to the resolution ot the

above mentioned research objectives. This work is reported in

reference 13.

Due to the invalidity of Viviand's transformation for thick

shock waves, the clustering function is no longer simply a

function of the truncation errors. It must also satisfy certain

restrictions so that the proper weak solution is recovered by the

numerical scheme. The restriction is that the mesh should be

nearly uniform throughout the shock (or contact surface) tran-

sition region. Since this is also the region where the trun-

cation errors vary most rapidly there is no possibility of

adapting the mesh so that the truncation error is uniform over

tne entire computational domain. The mesh induced truncation

errors can be greatly reduced (actually completely eliminated) if

the fine but uniform mesh occurs only in regions where the solu-

tion truncation errors are large and the coarse mesh is only in

regions where the truncation errors are small. The transition

between the fine and coarse mesh need not be smooth provided that

they occur only in the regions where the solution is locally

uniform and the mesh transformation metrics are computed ac-

cording to reference 12.

The third research objective was to obtain the proper fil-

tering and smoothing the functions for the truncation errors.

The truncation errors can be considered to be wave packets moving

along with the features of the flow field. The purpose of fil-

tering and smoothing the truncation error is to find the envelope

of the packet. The details within the wave packets are not

important. The nonlinear truncation error analysis provides not

only the envelope but also the details within the wave packet.

The envelope can be determined in many cases by the curvature of

the numerical solution. Thus, it is more efficient in most cases

11



simply to look at trie curvature ot the numerical solution as an

approximation ot tne lowest order harmonics of the truncation

errors. The exact nonlinear truncation errors are not required.

This is fortunate since it is quite expensive to compute the

nonlinear truncation errors.

The final research objective was to investigate the mesn

dependent dissipation required to obtain monotonic and smooth

shock waves. It is known (reference 14) that to ootain monotonic

solutions at shock waves that the mesh spacing must not exceed a

critical value set by the local amount of dissipation (either

artificial or numerical). If, however, the mesh spacing is very

much less than the critical value then the shock becomes exces-

sively diffused or smeared resulting in a loss of the effective

use of the available number of mesh points. To utilize this

trick in an adaptive mesh strategy it is necessary to know the

numerical dissipation rate, which is difficult to determine since

it is a nonlinear function of both the solution and the

metrics. The mesh dependent artificial dissipation was not too

successful in producing monotonic and smooth shock waves.

The above work was extended to the two-dimensional unsteady
Euler equation for both explicit and implicit second order

accurate schemes. This was done by rederiving the nonlinear

modified equations for the Euler equations in an arbitrarily

moving coordinate system. This truncation error analysis pro-

vided for a rational basis of the solution adaptive mesh.

Several mesh generators were investigated and the ones based on

variational principles were found to be the most effective. The

mesh generator is rather costly in terms of computational

effort. A weighted interpolation procedure was developed so that

only a coarse mesh needed to be computed by the mesh generator.

The final mesh is then obtained by the weighted interpolation

procedure.

12



Transonic Multiple Solutions. In recent years multiple

solutions to the numerical approximation to the full potential

equations have appeared in the literature (references 15 and 0

16). Initially the phenomena appeared in computations of the

flow over a symmetric airfoil at zero angle of attack when two

lifting solutions were present in addition to the expected non-

lifting solution. In reference 16 some results for a non- 0

symmetric airfoil, a RAE 2822 section, are also presented.

Steinhoff and Jameson (reference 16) suggested that the change

from one of the solutions to another is discontinuous and noted a

hysteresis effect indicating that the lift coefficient (CL) de- 0

pended on whether the angle of attack (a) was increasing or de-

creasing. More recent work is by Salas (reference 17) who has

extended the computations of the flows considered by Steinhott

and Jameson (references 15 and 16) to show that it is possible to • q

construct a smooth CL - a curve connecting the three solutions

for a symmetric airfoil.

The investigations noted above are meticulously performed

and are essentially numerical experiments. There is a limited

amount of understanding that can be gained from such experiments

and consequently a more analytic technique may yield more infor-

mation. Furthermore, although the numerical results are

invaluable they do not exclude the possibility that the multiple

solutions are due to the numerical approximation to the dif-

ferential equation. The present investigation is based on the

integral equation formulation (reference 18) which allows some

insight into the problem.

The transonic integral equation method of reference 18 is

only applicable to the transonic small disturbance (TSD) equation

rather than the tull potential equation (FPE) that is used in the

earlier work. Consequently, the first step was to reproduce

multiple solutions using the TSD equation. once these solutions

13



were obtainea they were analyzed using the ideas or the transonic

integral equation theory. In this investigation these sug-

gestions have been implemented and the conclusions are as

follows. The study indicated that the formulation ot the TSD

equation (and by implication the FPE) is not unique even with the

Kutta condition entorced. The formulation indicated that eigen-

solutions can exist which can be combined with the correct

solution to give erroneous results. These eigensolutions intro-

duced arbitrary constants into the solution and a preliminary

examination indicated that there is no obvious means of deter-

mining these constants. This work is reported in reference 19.

PERSONNEL

.The Principal Investigator on the steady and unsteady per-

turbation theory is Dr. David Nixon. Dr. Samuel C. McIntosh is

the Co-Principal Investigator on the unsteady flow aspects of the

problem and Dr. G. David Kerlick is closely associated with the

work. For the numerical analysis aspects Dr. Goetz H. Klopfer is

Co-Principal Investigator.

The Principal Investigator on the transonic theory is

Dr. David Nixon. For the adaptive grid aspects, Dr. Goetz H.

Klopfer is Co-Principal Investigator. Dr. David S. McRae of

North Carolina State University is a subcontractor of this work.

PAPERS AND REPORTS

1. Nixon, D.: Development of Perturbation Procedures for Non-
linear Inviscid and Viscous Flows. AFOSR-TR-80-0129, 1980.

2. Nixon, D.: Perturbation Methods in Transonic Flow. AIAA
Paper 80-1367, 1980.

3. Nixon, D.: observations on the Strained Coordinate Method

for Transonic Flows. AIAA Journal, Vol. 18, No. 3, 1980.

14

0 . .. "0.. . . . . .. . . . i . . .. . .. .



4. Nixon, D.: Transonic Small Disturbance Theory with Strong
bShock Waves. AIAA Journal, Vol. 18, No. 6, 1980.

5. Kerlick, G. D. and Nixon, D.: Calculation of Unsteady Tran-
sonic Flows by the Indicial Method. Journal of Applied
Mechanics, Vol. 49, No. 2, 1982.

6. Nixon, D. and McIntosh, S. C., Jr.: Further Observations on
the Strained Coordinate Method for Transonic Flows. AIAA
Journal, Vol. 18, No. 12, 1980.

7. McIntosh, S. C. and Nixon, D.: On the Use of Constructed
Variables in the Method of Strained Coordinates. AIAA
Journal, Vol. 19, No. 3, 1981.

8. Nixon, D.: On the Derivation of Universal Indicial
Function. AIAA Paper 81-0328, 1981.

9. Klopfer, G. H. and McRae, D. S.: The Nonlinear Modified
Equation Approach to Analyzing Finite Difference Schemes.
AIAA Paper 81-1029, 1981.

10. Nixon, D.: Some Comments on the Correction Theory for Tran-
sonic Viscous Flow. NEAR Paper 152, 1982.

, 11. Kerlick, G. D. and Nixon, D.: Convergence Acceleration for
Steady Transonic Flow Calculations by Grid Refinement Cor-
rection. NEAR Paper 157, 1982.

12. Nixon, D. and Klopfer, G. H.: Some Remarks on Transonic
Potential Flows. Journal of Applied Mechanics, Vol. 50,
No. 2, 1983.

13. Nixon, D.: Perturbation Procedures for Nonlinear Viscous
Flows. Journal of Applied Mechanics, Vol. 50, No. 2, 1983.

14. Klopfer, G. H. and Nixon, D.: Nonisentropic Potential For-
mulation for Transonic Flows. AIAA Paper No. 83-0375, 1983,
(in press AIAA Journal, 1984).
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Journal, 1984)

16. Klopfer, G. H.: Weak Solutions, Mesh Transformation, and
Forms of Conservation Law Equations. NEAR Paper 162, May
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17. Nixon, D.: Behavior of the Flow Through a Numerically
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PRESENTATIONS

1. Nixon, D.: Calculation of Unsteady Transonic Flows by the
Indicial Method. Workshop on Unsteady Transonic Aero-
dynamics, NASA/Langley Research Center, February 1980.

2. Nixon, D.: Perturbation Methods in Transonic Flow. Seminar
Series in Aeronautics and Astronautics, Stanford University,
March 1980.

3. Nixon, D.: Perturbation Methods in Transonic Flow. AIAA
Fluid & Plasma Dynamics Conference, Snowmass, Colorado, July
1980.

4. Nixon, D.: On the Derivation of Universal Indicial
Functions. AIAA Aerospace Sciences Conference, St. Louis,
Missouri, January 1981.

5. McIntosh, S. C., Jr.: Rapid Estimation of Aerodynamic
Forces by the Transonic Indicial Method. University of
California, Los Angeles, California, School of Engineering,
May 1981.
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6. Klopfer, G. H.: The Nonlinear Modified Equation Approach to
Analyzing Finite Difference Schemes. AIAA 5th Computational
Fluid Dynamics Conference, Palo Alto, June 1981.

7. Nixon, D.: Some Fundamental Aspects of Transonic Flow
Theory. Stanford University, November 1982.

8. Nixon, D.: Some Fundamental Aspects of Transonic Flow
Theory. NASA/Langley Research Center, December 1982.

9. Klopfer, G. H.: Non-Isentropic Potential Formulation for
Strong Shocks. NASA/Ames Research Center, January 1983.

10. Klopfer, G. H.: Non-Isentropic Potential Formulation for
Strong Shocks. AIAA Aerospace Sciences Conference, Reno,
Nevada, January 1983.

11. Nixon, D.: Multiple Solutions in Transonic Flow. NASA/Ames
Research Center, February 1983.

12. Nixon, D.: Multiple Solutions in Transonic Flow. NASA/Ames
Research Center, April 1983.

13. Nixon, D.: Multiple Solutions in Transonic Flow. NASA/
Langley Research Center, April 1983.

14. Nixon, D.: Multiple Solutions in Transonic Flow. NASA/
Lewis Research Center, April 1983.

15. Nixon. D.: Some Recent Topics in Transonic Flow. United
Technologies Research Center, October 1983.

TECHNICAL APPLICATIONS

The most recent application of the research developed under

this contract was the simulation of aileron buzz on an experi-

mental wing section designed by Gates-Learjet. The indicial

response was generated by the Computational Fluid Dynamics Branch

at NASA/Ames Research Center who solved the Reynolds averaged

Navier-Stokes equations. The aerodynamic response was directly

coupled to a structural model of the aileron. The indicial

method gives enormous savings in computer time since a single

direct calculation takes about two hours on the rLLIAC IV

computer.
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Most of the research sponsored under the present contract is

fundamental and the development of applications is proceeding

under alternate sponsorship. Developments of this research have

been sponsored by the following organizations:

NASA/Ames Research Center (Applied Computational Aero-

dynamics Branch)

NASA/Ames Research Center (Computational Fluid Dynamics

Branch)

Naval Air System Command

Lockheed-Georgia Company

Office of Naval Research

Applied Technology Laboratory, USARTL (AVRADCOM)

The computer code developed to treat strong shock waves in

potential theory has been requested by NASA/Ames Research Center

to use with a boundary layer code.
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