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SECTION I

INTRODUCTION

I.
The classical theory of optimal sensor signal processing is based on

statistical estimation and hypothesis testing methods [I1. The salient fea-

tures of classical signal processing theory is that all sensor signals are

implicitly assumed to be available in one place for processing. In recent

years, however, there has been an increasing interest in distributed sensor

systems. This interest has been sparked by large-scale systems such as power

systems, surveillance systems, etc., where because of considerations such as

cost, reliability, survivability, communication bandwidth, compartmentaliza-

tion, or even problems caused by flooding a central processor with more infor-

mation than it can process, there is never centralization of information in

practice. Thus, extensions are needed to the classical framework of detec-

tion and estimation theory if it is to be relevant to the design of distrib-

uted sensor systems. Such extensions need to take into account (besides the

decentralization of information) issues like the timeliness as well as the

accuracy of the decisions of the detectors. To illustrate these issues, con-

sider the following example from surveillance systems.

Consider two airplanes flying over a surveillance area and having to

decide by some finite time T whether or not there are targets in that area.

The airplanes do not communicate so that they are not easily detected. The

1-
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longer the airplanes take measurements the better is the quality of informa-

tion they collect and the more reliable are their decisions. On the other

hand, the longer the airplanes remain over the surveillance area the bigger

are the chances that they will be detected and the longer is the time they

cannot be used for some other purpose. Thus, accumulation of information is

costly and there is a tradeoff between the quality of information upon which

the decisions of the airplanes are based and the timeliness of their decisions.

Such an example captures a lot of the basic features of distributed

detection problems. The airplanes are the two sensors each one with its own

information. The presence or nonpresence of targets in the area can be repre-

sented by two hypotheses h (h = 0,1). The final assessment of the two air-

planes, as to whether targets are present or not, can be represented by their

decisions ui(ui - 0,1 i - 1,2). Since information is costly we assume that

each measurement (after the initial one) taken by each airplane costs c. The

fact that the airplanes have the same goal (i.e. detect targets) can be repre-

sented by a common terminal cost J(u1 , u 2, h) which couples their decisions.

The overall objective is to minimize the cost due to the measurements and the

penalty due to errors in detection. Thus, there is a tradeoff between the

quality of information upon which the decisions ui are based and the timeli-

ness of these decisions. The requirement that the airplanes do not communi-

cate can be incorporated as an information constraint on the decision problem.

The example described above is one of the simplest distributed detection

problems; it can be formulated as a decentralized Wald problem and serves as

the starting point of a detection theory for distributed sensors described in

this report.

2
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SECTION 2

OVERVIEW OF PREVIOUS RESEARCH

I
The problem of constructing decentralized estimation and hypothesis test-

ing rules can be viewed in the framework of decentralized stochastic optimal

control. Decentralized stochastic control problems have been studied over

the past 15 years (see [21 and references therein). The investigation of

these problems has shown that they are in general very complicated. Even the

classes of decentralized stochastic control problems which are the easiest to

analyze (such as LQG static team problems [3], or team problems with partially

nested information structure [4]) have solutions which are considerably more

complicated than the solution of the corresponding centralized stochastic

control problems. This characteristic carries over to decentralized estima-

tion and detection problems.

h There are, however, static or quasistatic decentralized estimation and detec-

tion problems for which the solution has been analytically derived. Tenney

and Sandell [5] considered the first simple distributed detection problem

where there are two hypotheses, denoted 0 or 1, and two detectors. In their

formulation, Tenney and Sandell assumed that the detectors have a common ob-

jective (i.e., their detection problems are coupled through the cost) and each

detector takes one measurement (or a set of measurements) and makes a decision

based on his own information. The measurements of the detectors are assumed

to be independent conditioned on the hypothesis. Under these assumptions it

3
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was shown (51) that the team optimal strategies of the two detectors are

described by thresholds which are determined by the solution of two coupled

o nonlinear algebraic equations.

Lauer and Sandell [6]-[10] extended the results of [5] to the case of

correlated waveform observations. They found that in general the determina-

3tion of the optimal decision rules of the two detectors requires the solution

of two coupled nonlinear functional equations. Then, Lauer and Sandell exam-

ined several special cases and suboptimal approaches. For the special case

of detecting linearly dependent signals in white noise, they determined that

the local likelihood ratio is a sufficient statistic for detection and they

computed numerical examples for the case where the signal is a random process.

They examined a suboptimal solution consisting of local likelihood ratio tests

with jointly optimized thresholds, and obtained results for a number of inter-

esting cases.

*Ekchian [II] considered a problem similar to that of Tenney and Sandell

[5) but assumed in addition that a unidirectional communication link exists

between the two detectors. Ekchian found that the team optimal decision rules

of the two detectors are described by thresholds, the computation of which is

coupled. In addition, he found that the detector receiving the communication

uses one of two thresholds depending on the decision of the other detector.

The work on distributed detection reported in [51-[111] assumes a model

with static hypotheses (i.e., the true hypothesis does not change with time)

and static observations (i.e., the detectors take one measurement or a set of

measurements and make a decision).

Teneketzis 121 considered a distributed detection problem with static

hypotheses and dynamic observations (i.e., at each instant of time, each

4
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detector can either stop and make a decision or request more information at

some cost). Teneketzis [12] formulated a finite horizon decentralized optimal

0 stopping problem with two hypotheses and two detectors, which is the decen-

tralized version of Wald's problem. He found that the optimal decision rules

of the two detectors are described by thresholds. The thresholds of the two

* detectors are time varying and coupled, and are determined by the solution of

4N-2 nonlinear algebraic equations in 4N-2 unknowns, where N is the horizon

of the problem.

Subsequently, Teneketzis and Varaiya [13] solved a distributed detection

problem with dynamic events (i.e., the case in which the true hypothesis

changes with time) and dynamic observations. They formulated an infinite

horizon decentralized optimal stopping problem, with two hypotheses and

detectors, which is the decentralized version of a quickest detection pre - .

They found that the optimal decision rules of the two detectors are described

Is by time-varying thresholds which can be determined by the solution of two

coupled dynamic programming equations.

Kushner and Pacut [14) studied a decentralized detection and coordina-

Ih tion problem via simulation. They considered two hypotheses, 0 or 1, and

two detectors. Each detector takes an observation at time I and may, if it

wishes, take an observation at time 2. The second observation costs C. The

detectors do not communicate with each other. At the end of its "observation

period" each detector transmits its conditional probabilities of the hypoth-

eses to a coordinator who then computes the posterior probability and decides

on either 0 or 1. Kushner and Pacut [141 investigated the effects of prior

probabilitiy and parametric dependencies on the decision rules, as well as

sensitivity to the data, asymmetries in the design rules and other phenomena.

5
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The problems studied in 151-[141 are decentralized detection problems.

Barta, [151, first formulated a decentralized estimation problem. He

considered two agents (estimators) who have access to different information,

do not communicate, and want to estimate a Gaussian random variable. The

estimation rules of the agents were coupled through the cost function. Barta

* restricted attention to linear estimation rules and derived a recursive solu-

tion for the best linear estimates of the agents.

The objective of the problems studied in [5]-115] was the determination

of the optimal decision rules of the agents in distributed estimation and

detection problems.

Borkar-Varaiya [16], Tsitsiklis-Athans [17], Washburn-Teneketzis [18]

and Teneketzis-Varaiya [19] considered a different class of distributed esti-

mation and detection problems. Namely, [161-119] consider a set of distrib-

uted communicating agents; each agent makes a decision (estimate, detection,

etc.) according to a fixed prespecified rule, and communicates it to the other

agents who update their decisions according to the same rule. The convergence

and agreement of the decisions (estimates, detections, etc.) is the topic of

h investigation in [161-119].

Borkar and Varaiya [16] investigated the consensus pioblem when the

agents generate and exchange the conditional expectations of the random vari-

able they want to estimate. They showed that the agents' estimates eventually

agree. Tsitsiklis and Athans [17] extended the results of [16] to the case

where the objective function is an arbitrary convex function of the decision

variables of the agents. They showed that when the decisions generated by

the optimal decision rule are communicated, then asymptotically the decisions

of the distributed agents agree.

6i
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Washburn and Teneketzis 118] considered a setup similar to that of 1161

and [171 and characterized the properties which any decision rule must satisfy

in order to result in agreement among the communicating agents.

The results reported in [16]-[181 assume that all the communicating

agents have the same probabilistic description of the random variables they

*I attempt to estimate or detect. .

Teneketzis and Varaiya [19] considered the consensus problem for a dis-

tributed estimation problem where the agents have a different probabilistic

- description of the random variables they want to estimate and where they 0

exchange their conditioned expectations; they demonstrated the effect of dif-

ferent models in the outcome of the estimation process.

7I
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SECTION 3

SUMMARY OF RESEAR"' RESULTS

7
During the first two years of our research we concentrated on distributed

detection problems with static hypotheses and static observations. The main

features of these problems are: There are two or more detectors and two -

hypotheses; the true hypothesis does not change with time; the detectors have

access to different information, do not communicate, they take one observation

and make a decision; the decisions of the detectors are coupled through their -

common objective.

The results of our research on distributed detection with static hypothesis

and static observations have been documented in [61-[10]. As pointed out in

Section 2, Lauer and Sandell ([6]-[101) treat distributed detection problems

with correlated waveform observations, and examine optimal and suboptimal

k approaches for the solution of these problems.

During the third year of our research we concentrated on distributed

sequential detection problems. The main features of these problems are:

There are two or more detectors who have access to different information and

have to detect one of two possible events as quickly and as accurately as

possible. The detectors may or may not communicate. If they communicate

they can only exchange limited information.

We have formulated and studied three distributed sequential detection

problems: (1) The Infinite Horizon Decentralized Wald Problem, (2) An

8
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Extension of the Decentralized Quickest Detection Problem and (3) A distrib-

uted sequential detection problem with limited communication and ordered

* stopping times.

For the infinite horizon decentralized Wald problem (1201) we derived

the qualitative properties of the optimal decision rules of the detectors.

We showed that the team optimal decision rules of the detectors are charac-

terized by time invariant thresholds whose computation requires the solution

of two coupled sets of dynamic programming equations. Since the numerical

solution of those equations is difficult, we developed a suboptimal algorithm

which captures the basic features of the optimal solution, and it is easy to

implement. The study of the qualitative properties of the optimal solution

of the infinite horizon decentralized Wald problem appears in Appendix B.

The description of the suboptimal algorithm as well as the numerical results

derived from its implementation appear in Appendix C.

* The decentralized Quickest Detection Problem (1211) studied during this

year is an extension of 1131. We consider two detectors who take independent

noisy observations of a two-state Markov chain and have to decide when the

Ichain jumps fiom state 0 to state 1. The decisions of the detectors are

coupled through a common cost function where delays in detection of the jump

as well as false alarms are linearly penalized. It is shown that the opti-

mal decision rules of the detectors are characterized by thresholds. These

thresholds are time-varying and their computation requires the solution of two

coupled sets of dynamic programming equations. Numerical solution of these

equations is very difficult; thus, the paper provides only a qualitative char-

acterization of the optimal decision rules of the detectors. However, a com-

parison with the thresholds of a class of centralized finite horizon quickest

9
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detection problems is possible. Such a comparison reveals the nature of the

coupling. The results of our study on the Quickest Detection Problem are

I documented in Appendix A ([211).

Distributed sequential detection problems without any communication among

the detectors are in general team problems with static information structure.

I When the detectors are allowed to communicate and exchange limited informa-

tion, then this limited communication results in dynamic team problems which

are not sequentially decomposable. It is very difficult to analyze these

.- problems, that is why good suboptimal solutions are necessary.

We considered a simple distributed sequential detection problem with

limited communiction and ordered stopping times; and we developed a subopti-

mal algorithm which is simple to implement. The proposed algorithm is very

similar to the one proposed for the infinite horizon decentralized Wald

problem; the thresholds used are the same as in the suboptimal algorithm for

U the Wald problem; a simple suboptimal interpretation of the comunicating

message is suggested; such an interpretation avoids the difficulties intro-

duced by signaling. Further testing of the proposed suboptimal algorithm is

needed. The formulation of the distributed sequential detection problem with

communication as well as the suboptimal algorithm proposed for its solution

are documented in Appendix C (22]).

1
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I
ABSTRACT

Two detectors take independent noisy observations of a two-state ((0,1))

a
Markov chain and have to decide when the Harkov chain jumps from state 0 to

state 1. The decisions are coupled through a common cost function where de-

lays in detection of the jump as well as false alarms are linearly penalized.

It is shown that the optimal decision rules of the detectors are character-

ized by thresholds. These thresholds are time-varying and their computation

requires the solution of two coupled sets of dynamic programming equations.

Numerical solution of these equations is not possible; thus the paper pro-

vides only a qualitative characterization of the optimal decision rules of

the detectors. However, a comparison with the thresholds of a class of cen-U
tralized finite horizon quickest detection problems is possible. Such a com-

parison shows the structure of the coupling.

Key Words: Decentralized Quickest Detection, Markov chain, Stopping
Rules, Dynamic Programming, Threshold.
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1. INTRODUCTION

Two detectors make independent observations of a Marko. chain xt which
n

jumps from state 0 to state I at some random time 0. Each detector has to

detect the time of the jump based on its own noisy measurements; let Ti be

the time detector I declares that the jump has occurred. The problem is to

find stopping times Ti which minimize the expected cost EJ(T 1 ,T2,8).

If the cost is separable, i.e., J(TlT 2,0) - J(Tl,0)+J( 2,90), then the

decisions of the two detectors are decoupled. In such a case for certain

costs Ti, (see [11,[21) the optimal decision T* is to stop and declare thei

jump the first time instant the probability of "false alarm" drops below a

time-invariant threahold li, i.e.,I
* -minjtlProb(6>tl~ i ) 4 1i1)-l

i t

where yi is the information available to detector I at time t. The threshold
It

property holds for the cost functions

J(T,O) - C(T,0) I(T>0) + I(T<e) (1-2)

and

J(T,0) - C(T-o) I(T>o) + k(O-T) l(T<O) (1-3)

If the cost J(T1 ,r2,0) is not separable, then there is an interaction

between the optimal decisions. Detection problems with nonseparable costs

have been previously investigated in [31-[8). The problem investigated in

17
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this paper has a nonseparable cost but is essentially different from those of

151-181 which are not sequential; it is also different from the problem of [41

where the Karkov chain is frozen in one of two states; it is similar to the

problem considered in [31, but is has a cost function different from that of

[31. The cost function considered in [3) was

S- C(TO) I(Te) + C(T 2-e) I(T 2 ) + i(y(e) 2<0 )

(1-4)

This cost puts a constant penalty for false alarms and, for each detector, a

penalty proportional to the delay in detecting the jump.

The cost function considered in this paper is

J(,lT 2,e) - k( -,1+8- 2 ) i(Ti<e) l(T2<e) + C(rl-e) 1(Tl>e) + C(r2-0) l(T2>)

(1-5)

This c-st puts, for each detector, a penalty proportional to the delay in

detecting the jump and a penalty proportional to how early false alarms

occurred. Thus, the coupling of the detectors (described by the term

S k(O-TI+B-T2 ) I(T<O) l(T2<O)) is different from that of [3). Because of

the coupling through the cost function, there is an interaction between the

optimal decisions of the detectors. The interaction is simple since there

Is no communication between the detectors.

In this paper we show that the member by member optimal (m.b.m.o.) deci-

sions of the two detectors are described by thresholds as in [3). These

thresholds are time varying, as in [31, and their computation requires the

solution of two coupled sets of dynamic programming equations. It is not

possible to solve numerically these equations, thus the paper provides only

18



a qualitative charecterization of the optimal decision rules of the detectors.

However, it is possible to compare the m.b.m.o thresholds with the thresholds

of a centralized problem. We prove that for each instant of time t the m.b.m.o.

thresholds lie above the thresholds at t of class of finite horizon N (N>t)

centralized quickest detection problems; the thresholds of these centralized

* problems are time-varying. A similar comparison was achieved in [3). However,

whereas in [31 the m.b.m.o. thresholds were compared to a stationary threshold,

such a comparison is impossible for the present problem.

The remainder of the paper is organized as follows: The formal model is

presented in Section 2. The characterization of the m.b.m.o. solutions of the

decentralized quickest detection problem is presented in Section 3. In Section

4 the comparison of the m.b.m.o. thresholds with the thresholds of a class of

finite horizon centralized quickest detection problems is made. Concluding

remarks appear in Section 5.

1
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2. THE MODEL

Consider of Markov chain {xt,t=l,2,...) with values in (0,11, known

transition probabilities

Prob(xt+I = llxt=0) = p (2-1)

Prob(xt+ 1 = lIxt=1) = 1 (2-2)

and

Prob(xl=O) = 1 (2-3)

Thus, the chain makes a jump to state 1 at the random time e A min{t:xt-1.

Detector i's observation at time t is

yi = gi(x ,wi) i = 1,2 (2-4)
t t t

h where it is assumed that {wi), 1=1,2, are mutually independent i.i.d. sequences
t

which are also independent of {xt}.

The problem the detectors are faced with is the following:

Min Min E{k(e-T + G-r2 ) 1(x =o) 1(x =0)
TI T2  1 1

P
TI-I T2-1

+ c I 1(xt=i) + c I 1(xt=1)} (2-5)
t=I t=l

subject to Eqs. 2-1 through 2-4.

20



where Ti is a Yi stopping time and
t

yi A O(yi, set) (2-6)
t s

Problem (P) is a team problem. In this paper we shall derive certain quali-

tative properties of the solution of problem (P). We shall prove that the

m member by member optimal stopping rules of the detectors are characertized by

time varying thresholds whose computation requires the solution of two coupled

sets of dynamic programming equations.

-21
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K
3. CHARACTERIZATION OF THE OPTIMAL SOLUTION

In this section we shall characterize the member by member optimum solu-

tions of problem (P). The main result of the paper which we shall prove in

this section can be summarized by the following theorem:

Theorem 3.1

The member-by-member optimum decision rules of the detectors are char-

acterized by thresholds as in the case of a single detector. However, the

thresholds are time-varying and their computation requires the solution of

two coupled sets of dynamic programming equations.

The proof of this theorem proceeds in various steps.

Fix t 2AT (possibly at the optimum). Then, the problem faced by detector

i is

Min EJ() Min E k(- + 0-t) 1(xO) (x-0)

Ti Tl 2

Tl-1 (3-1)

+ C t 1(xt-1)

o Define

A Prob(xtfOIyt) - Prob(e>tjY1 ) (3-2)
t t t t

Then, we can alternatively write the cost in Eq. 3-1 as follows:

22



L#
Ti

EJ(T ) - E{C I (li-WI) + III s (3-3)
1 tT "rT TI

where

HI k E (1-p) 1- p Ell(T<0)I-t+1j
t co

+ k I Prob(T*4rl0>r) + I Prob(T24t+XI0>t+1)(l-p)X
r=0 2 11

- (3-4)
- k (-p) -1 Prob(O>T2JO>t+t)

+ k[D + (t-ET*)t] E [(I-p)( 2)

and

[zl t = max(O,z) (3-5)

The equality of the cost functions in Eqs. 3-1 and 3-3 is shown in Appendix A.

Thus, detector 1 has to determine a Y1 stopping time to minimize Eq. 3-3.
t

Since the detectors do not communicate and T2 is fixed, a Y1 stopping time
t

for detector I can be determined by Dynamic Programming. If HI were constantt

then the problem faced by detector 1 for fixed T2 would be a quickest detec-

tion problem similar to that studied in [1],[2). Since HI is time-varying it
t

is necessary to study the value function of the dynamic program.

3.1 DYNAMIC PROGRAMMING

To study the value functions we first consider (as in [31) a finite

horizon problem.
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Finite Horizon

Fix the final time T (T<-) and consider the problem

M Minimize EJ(T (3-6)
1 e.r I

The dynamic programming argument for this problem shows that the value func-

tion VIT(w), i.e.,
t

VIT(u) . mi E HII (xTI-O + C 1(X1) Tl.1 I  (3-7)
t ( T rt t

is obtained by

V-T(11) HI il (3-8)
T T

v1T(NI) . min{H I 11 (L V IT )(wI) + C(I-wI)} t<T (3-9)
t t t+1

5 where

(LV)(wI) f V(A(wIy)) q(yl) dy (3-10)

q(yjw1 ) - w1 (1-p) PI(y) + wl p PI(y) + (1-0l) Pl(y) (3-11)

A(wl,y) = Ir(I-P) Pl(y)/q(y!p) (3-12)

0

and

P1(y) is the probability density of the measurement yl under the assumption
i t

that xt-i. The term H1 W1 in Eq. 3-9 describes the cost incurred by the
t

decision to stop at time t and the term C(1-w l) + (L V IT ) (n1 ) describes the
t+1

cost incurred by the decision at t to continue taking measurements. Thus, it

is optimal for detector I to stop if and only if

24



H1 4 C(I-NI) + (L VIT )(-1 ) (3-13)
t t t+1 t

The value function V IT (w) has the following important property:It
Lemma 3.1

VIT (w) is a nonnegative concave function of w(t-1,2,...,T). (L V IT )(w)
t t+1

1 is also a nonnegative concave function of w. (t-1,2,...,T)

Proof: The proof is the same as that of Lemma 3.1 in [3]. Q

Lemma 3.2

At w=O

H1 w < C(1-w) + (L ViT ) (W) (3-14)
t t+1

At w-I

H 1 w > C(I-w) + (L VIT ) (w) (3-15)
t t+1

1 Proof: See Appendix B. 0

Lemmas 3.1 and 3.2 imply the threshold property of agent l's optimal

policy for fixed (arbitrary) T2 and for the finite horizon problem.

Infinite Horizon

To minimize Eq. 3-3 let t+-. Since the set of stopping times T of

- , agent 1 increases as T increases, it follows that

V I(T+I ) (ml) 4 VIT (NI) (3-16)
t t

and since the value functions VIT (NI) are nonnegative, the following limit
t

is well defined:
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V1 (w) A lim VIT (w) i inf VIT (.i) (3-17)
t t-4 t T t

We can show that the value function V1 (w) has the following properties
t

Lemma 3.3

The value function V1 (T) satisfies the equation

* t

V1 (01) - min{ HI 11, C(I-wI) + (L VI ) (ir1) t,2.. (3-18).
tt t+l

V 1 (w) as well as (L V1 ) () are nonnegative and concave functions of w.
t t+l

Moreover, at i0 and x-1, Eqs. 3-14 and 3-15 hold respectively.

Proof: Eq. 3-18 is obtained by Eq. 3-9. The nonnegativity and concavity of

V I (w) and (L V 1  ) (w) follow from Lemma 3.1. The inequalities at w=O and
t t+1

w-l follow from Lemma 3.2. 0

Furthermore, it is possible to show that the value functions have the

following additional property.

Lemma 3.4

The value functions {V1 ()} are the unique solution of
t

Zt(W) - min HI w~, C(I-ir) + (L Zt+l) (i) ,t-1,2,... (3-19)
t

Proof: See [3), Theorem 3.2. 0

£ The properties of the value function V 1 (w) imply the following charac-
t

terization of agent I's optimal policy for fixed T2.

Lemma 3.5

For fixed T2 the optimal stopping time for detector I is

* mnit: WI 4 1 1} (3-20)
t t
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The threshold LI is defined by the solution of:
t

H1 I - C(1-w) + (L V1  ) (N) (3-21)
t t+l

Proof: The concavity of (L VI ) (w) and the inequalities 3-14 and 3-15 imply
t+l

imply that the functions HI w and C(l-w) + (L V1 ) (W) intersect at one point.
t t+l

* The solution of Eq. 3-21 defines this point. From Eq. 3-18 the optimal deci-

sion optimal decision rule of agent I at time t is to stop if and only if

V1 (w) - Hl 1 (3-22)
t t

Equation 3-22 gives the rule (3-20) QED. 0

We are now in a position to prove the main result of this paper which was

summarized by Theorem 3.1.

Proof of Theorem 3.1

Since the optimum policy of agent I is characterized by thresholds for anyI
arbitrary fixed policy of agent 2, it will also be characterized by thresholds

when the policy of agent 2 is the optimum. By symmetry, the optimal policy of

agent 2 is characterized by thresholds. Hence, the member-by-member optimal

policies of the agents are characterized by thresholds {ll* , 12,}. These
t t

thresholds are determined by the solution of a set of coupled dynamic program-

ming equations which are of the form

H1({I 2*}) 1l* - C(1_l*) + (L V 1  )(11*) t-1,2,... (3-23)
t t t t t+l t

Ht({ll*}) 12" - C(1_£ 2*) + (L VI )(L2*) t-1,2,... (3-24)
t t t t+l t

The proof of Theorem 3.1 is now complete. 0
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It is not possible. to solve numerically the set of coupled dynamic programming

equations described by Eqs. 3-23 and 3-24; thus, the results of this paper

provide only a qualitative characterization of the optimal decision rules of

the detectors. It is possible, however, to compare the thresholds {t ,I
C t

with the thresholds of centralized quickest detection problems as shown in

the next section.

28
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4. COMPARISON WITH A CLASS OF CENTRALIZED QUICKEST DETECTION PROBLEMS

In this section we shown that for each time t it is possible to compare

the m.b.m.o. thresholds of problem (P) with a class of finite horizon cen-

tralized quickest detection problems. The thresholds of these centralized

problems are time-varying. Thus, the results obtained in this section are

different from those of [3] where comparison of the m.b.m.o. thresholds with

a time-invariant thresholds was possible.

Let (l* , j2 ) be two m.b.m.o. thresholds for problem (P) at time t.
t t

Consider a finite horizon centralized quickest detection problem [1],[2] with

final time N>t and cost

i J(T,e) = E N 1(T<) + C 1(xt.1) (4-1)

t=l

where

l N-t 1
GN K{ Z £(l-p)X-1 p + N + 2 (4-2)

t b glP

and

N

b l (l-p)- 1 p (4-3)

It is well known, [11,[2], that the optimal stopping rule for the above

N
problem is described by thresholds [AN which are determined by the solu-

t t=1

tion of a set of equations in the form
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GN AN C(1,XN) + [L MN J (AN) (4-4)
t t t t+l t

where MN (w) is defined by
ot

MN (i) k N + 2 -)W (4-5)N p

MN (w) min {GN wr C(l-w) + [L MN =1, **,- (4-6)

and [L MN ] (s) is defined in a way analogous to Eqs. 3-10 through 3-12.
t+1

The main result of this section is summarized by the following theorem:

Theorem 4.1

Let ( 1i* , 12*) be two m.b.m.o. thresholds for problem (P) at time t,

t t

and let AN be the optimal threshold at time r for the centralized quickest
t

detection problem with final time N and cost given by Eq. 4-1. Then, for

5n all t<N

AN < Xi* 1-1,2 (4-7)
t t

The proof of the theorem proceeds in various steps. First, we prove the

following lemmas:

Lemma 4.1

For any t,s , t>s

GN < GN (4-8)
t s

Proof: Follows directly from the definition of GN. 0
t
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Lemma 4.2

For any t,s , ts

Hi > Hi (i=0,2) (4-9)
t s

where Hi is defined by Eq. 3-4.
t

Proof: See Appendix C.

Lemma 4.3

For all t<N,

Hi < GN , (1-1,2) . (4-10)
t t

Proof: Follows directly from the definitions of Hi and GN.
t t

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1

It suffices to prove that for any stopping rule Tf the corresponding
2

threshold of 11 satisfies.
t

AN < £1 (4-11)
t t

From Lemma 3.5, i > 11 if and only if
t

W > (H1)-' min E H1 1(xT=0) + C I 1(xs-l) lt= (4-12)
T )t T S=t

Because of Lemmas 4.1 through 4.3, Eq. 4-12 gives

G T-1

min E l(xr=0) + (IN)-  1(sx=l) Iit=.n (4-13)

t(N CN t s)t
t
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Equation 4-13 implies that

GN 7 > MN( ) (4-14)
t t

Consequently

11 > XN (4-15)
t t

- QED.

The result of this theorem is similar to that of [31. However, whereas

in [3] comparison with a stationary threshold of a centralized problem is pos-

sible, such a comparison is impossible for problem (P). Intuitively, this can

be explained as fojiows: For the problem considered in [3) at each instant of

time each detector has to account for an average penalty due to a false alarm

of the other detector. Such a penalty varies with time, however, it remains

bounded for all times (actually it is less than one). This feature makes pos-

sible the comparison of the decentralized m.b.m.o. thresholds with a station-

ary centralized threshold. For the problem considered in this paper, the aver-

age cost faced by each detector is not necessarily bounded. This feature of

the cost makes the comparison of thresholds a more subtle problem; comparison

with a centralized threshold is only possible if that threshold corresponds to

a cost which has similar features as the average cost due to a false alarm in

problem (P). This can be accomplished if one restricts attention to finite

horizon centralized problems which result in time-varying thresholds.
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5. CONCLUDING REMARKS

The problem considered in this paper is similar to those of [31-[8) in

that there is no communication between the two detectors. Even though the

problem treated here is one of the simplest decentralized sequential detection

problems, the coupling induced by the cost structure causes, (as in [3) and

[4]), considerable complexity in the optimal stopping rules. Computation of

the optimal thresholds is impossible as it requires the solution of two sets

of coupled dynamic programming equations. It is possible, however, to lower-

bound the optimal decentralized thresholds by the thresholds of certain finite

horizon centralized quickest detection problems. The thresholds of these cen-

tralized problems are time-varying. A similar comparison was achieved in [3].

I However, whereas in [3] the optimal decentralized thresholds are compared to

a stationary centralized thresholds, such a comparison is impossible for the

present problem.

iThe results of this paper provide only a qualitative characterization of

the optimal decision rules of the detectors. The qualitative properties of

the optimal decision rules as well as the comparison between the optimal de-

centalized thresholds and a class of optimal centralized thresholds provide

the basis for the development of practical algorithms for the problem studied

in this paper.
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APPENDIX A

Proof of the Equality of Cost Functions (3.1) and (3.3)
I

Consider first the term

C I L(xI=1) (A-1)

According to [1, pp. 151-152), Eq. A-I is equal to

E C t (I-)} (A-2)

Next consider the term Elk(e-t) 1(t<e) I(T*<6)}.

I
Elk(O-t) 1(t<6) I(T*<e)Iylt} = E{k(O-t) 1(t<e) h(e)lylt} (A-3)

where

b h (e) = E{ I1(r*<)IO} (A-4)

The equality of Eq. A-3 holds because the observations of the detectors are

independent conditioned on the time of the jump.

We can write

Efk(6-t) 1(t<6) h I(e)Iyltl = k I h M£ (X-t) Prob(O=flyl
t )

1=t+1

k h (t+9)£ Prob(O=t+Z4Y't) (A-5)
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But

Prob(e-t+XIYlt) =Prob(8>tlYlt) Prob(6=t+tlxt=O) = 0T (1-p)XV1 p

(A-6)

*Consequently, Eqs. A-3 and A-5 give

1Efk(O-t) l(teO) I(T*<B)IYlt1 = k I (I-p)I-l p EfI(T*<e)Jo=t+Xj W1
2= 1 t

(A-7)

Using the equality

Prob(T *<6 10t) = Prob(T*<0jO=t+X)(1-p)Il1 p (A-8)
2L 1

we can also write Eq. A-7 as

Efk(O-t) 1(t(O) I(T*<8)Ityl = k j (1-p)-t-I Prob(8>T~je>t+X)

(A-9)

Finally, consider the term Ejk(O-r*) 1(r2 <e) i(te6)}.

bk Ef(O-T*) 1(T*<O) 1(t<e)jItl = k Efl(t<e) h (6)Yltl (A-10)

where

h (0) = EI(O6-T*) l(T*<0)je} (A-11)

Equality in Eq. A-11 holds because the observations of the detectors are

independent conditioned on the time of jump.

Using Eqs. A-10 and A-6 we can write

35



E (0-T*) I(T*e)j I(te) Ylt Zi E (0-T*) 1(T*e0)j et+X (I-P)I-1 p 711
2 12 1 2= 2 )t

0 ( ~~t+L- etLI (tk-k Pro(T*k 6=~j} (i-p)F'- p 1
Sk=O

t Prob(T*4k e=t+X) } (1-p)Zl- p -1
= rIo Prob(T *-r Ot) + Prob(T*4t+LteOt+L)(1-01 W]

(A-1 2)

Note that when r~t

Prob(T 4rIO>t) = Prob(T*4rI6>r) (A-13)

Consequently, Eqs. A-12 and A-13 give

k E{I(O-T*) i(T*<e) l(t<e)jylt } roProb(T *r Or)

1 (A- 14)

+ 1Prob(T* t+t OT+L(-p r I'

An alternative expression for kE[(O-T*) 1(-*<e) I(te8)IYit} can be derived

as follows:

Using Eqs. A-6 and A-10 we can write
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k E { *< e- ) 1 (t<) e It }

*-k E (8- ) (T*<0 e t t PrbOr) et Os)
2 t

=k E (e6-*) I e>.* vt Pro(e>.r* Ot) i
I2 2 2

=k E j(O-T* Vt) + T* Vt-T*1(0-Tr Vt)>O}

[ E(e) + E(T* vt-'r*) Prob(e> r*-c) 'al (A-15)L 2

where

T£ Vt -MaX(T *,t) (A-16)

Because of Eqs. 2-1 and 2-2 we can write Eq. A-15 as

-k [ + t -E,{T* Vt-T* E{(1-P) 2 W1~

t (A-i17)

- k L + (t 2'T)) j 2 W1)

where

[xit -max(x,O) (A-i18)

Combining Eqs. A-i, A-2, A-7, A-9, A-14, and A-17 we obtain the equality of

the cost functions (3.1) and (3.3).
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a
APPENDIX B

Proof of Lemma 3.2

The inequality (Eq. 3-14) at w-0 is true because C0 and (L VIT ) (W) is
t+1

nonnegative.

To prove Eq. 3-15 note that because of Eqs. 3-9 through 3-12

(L VIT ) (w) -(l-p) HI T w (B-1)
t+1 t+l

Thus, to complete the proof of the lemma, it is enough to show that

(l-p) HIT 4 HI T  (B-2)
t+1 t

We can easily show, following the arguments in Appendix A, that
*

H T - I (1-p)l-1 Prob(e>T O>t+t) + - I Prob(TL e1 )
t B.2 B

(B-3)
* k T-t

+ - I Prob(ir*4t+t9>t+1)(1-P)L
B jL2 1"2

where

T
B- ) (iP)F1 p (B-4)

L-I1

The inequality B-2 then follows directly from Eqs. B-3 and B-4. QED
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APPENDIX C

Proof of Lemma 4.2| .
By definition (Eq. 3-4)

H 1 " k (1-p)1 - 1 Prob(e>T2Ie>t+t)
t 2.=1

(c-i)

+ k 1 + (t - E(.r))t ] E -p(rt)

When t>s, then

- + (t- E*)t E(-). t >

(C-2)

+ (s - E(r*))t ] E )(1-p)(T2s)

It remains to show that

Prob(O>-r;IO>t+1) > Prob(O>T*I6>s+.t) (C-3)

for any £, when t>s.

But Eq. C-3 is true because of Corollary 4.1 of [3). Hence HI > H 1. It can
t s

be similarly shown that H2 > H2  QED.
t s
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ABSTRACT

A Markov chain is frozen in one of two states 0,1. Two detectors making

independent observations must decide what is the state of the Markov chain.

The observations are costly and the decisions of the detectors are coupled

through a common cost function. It is shown that the optimal decision rules

of the detectors are characterized by thresholds whose computation requires

the solution of two coupled sets of dynamic programming equations. Numerical

solution of these equations is very difficult; thus, the results derived in

this report provide only a qualitative characterization of the optimal solu-

tion of the infinite horizon decentralized Wald problem.

43



* ALPHATECH, INC.

CONTENTS

Abstract .. ........... .. ........... .. ...... 43

1.* Introduction .. .. .. .. .. .. .. .. .. .. . 45

2. Problem Formulation......................... ... 47

3. Review of the Finite Horizon Decentralized Wald Problem. . . . 49 -

4. Solution of Problem (P)................. .oo . .o...* * 53

5. Conclusions.o............. ... ................ 58

References...................................................* 59

Ilk

44



ALPHATECH, INC.

SECTION I

INTRODUCTION

In recent years there has been an increasing interest in distributed

sensor systems. This interest has been sparked by large-scale systems such

as power systems, surveillance systems etc., where because of considerations

such as cost, reliability, survivability, communication bandwidth, compart-

mentalization, or even problems caused by flooding a central processor with

more information than it can process, there is never centralization of infor-

mation. Thus distributed estimation and detection problems have recently

received considerable attention as evidenced by [I]-[I]*.

The basic features of the distributed estimation and detection problems

studied so far are: There are more than one agents (detectors, estimators)

which have access to different information and have either to detect an event

(111-[101) or estimate a random variable Cii]). The agents' decisions (esti-

h mates) are coupled through their common objective. The agents may (81) or

may not communicate ([11-171, [91-[111), but even if they are allowed to com-

municate they cannot exchange their raw data (so that there can be no central-

ization of information). In addition, the agents' decisions may be made at

fixed instants of time ([1]-[4), [8]) or sequentially in time (15)-[7), [91).

The results available so far have shown that the distributed information pat-

tern and the coupling of the decisions through the cost introduce considerable

*References are indicated by numbers in square brackets, the list appears at

the end of the main body of this report.
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complexity in the computation of the optimal decision rules. Nevertheless,

the same results have revealed a lot of interesting properties of the optimal

D solutions of distributed detection and estimation problems; these properties

can be used to guide the design of simple suboptimal algorithms for these

problems.

*The goal of the present report is to extend the results of [51 to the

infinite horizon decentralized Wald problem. The results derived in this

report provide only a qualitative characerization of the optimal solution of

the infinite horizon decentralized Wald problem. However, the basic proper-

ties of the solution derived here will be used elsewhere, [121, to guide the

design of a simple suboptimal algorithm which is easy to implement.

The report is organized as follows: In Section 2 the formulation of the

infinite horizon decentralized Wald problem is presented. In Section 3 a

brief summary of the basic results of the finite horizon decentralized Wald

K! problem is presented. These results are extended to the infinite horizon

problem in Section 4. Conclusions appear in Section 5.
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SECTION 2

PROBLEM FORMULATION

m IConsider a two-state "{O,I) Markov chain h which is "frozen" in one of its

states. Assume that

Prob(h=O) = p (2-1)

Two agents (detectors) attempt to detect the state h of the chain by taking

noisy observations of h. The observations of the two agents are described by

yi(t) = gi(h, xi(t)) i = 1,2 (2-2)

It is assumed that {vl(t)}, {v2(t)} are mutually independent i.i.d. noise

isequences which are also independent of h. It is further assumed that each

observation after t=1 costs c. Let ui(i = 1,2) be the final decision of

agent i (ui - 0 or 1), and Ti be the time that decision was made. Then the

hcost incurred by these decisions is assumed to be

CT + cT2 + J(ul, u2, h) (2-3)

Under these assumptions the infinite horizon decentralized Wald problem

is:
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Minimize E{ct 1 ( IY) + c-r 2 (y 2) + J(U I u 2 , h) I

*IErl, Y2CF2

a Subject to

ui A ji(Y i) (p)

iTi

ri  A set of stopping rules that are
measurable functions of the data
of detector i.

Problem (P) is the infinite horizon version of the problem studied in 15J.

In the next section we shall briefly state the main results of 15] and then

we shall extend them to solve problem (P).
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SECTION 3

RV.'IEW OF THE FINITE HORIZON DECENTRALIZED WALD PROBLEM

The finite horizon decentralized Wald problem formulated in [5] is the

same as problem (P) with the additional constraint

STi 4 T , i = 1,2 T < (3-1)

i.e., the agents' decisions have to be made no later than T.

It was shown in [5] that the finite horizon decentralized Wald problem is

a sequential team problem with static information structure; thus the member-

by-member optimal (m.b.m.o.) strategies of the two agents can be determined by

dynamic programming methods.

IL The main results obtained in [51 are the following:

Theorem 3.1

h The m.b.m.o. stopping rules of the two agents are described by thresholds

al, a1, a 2 , B2, yl, g,2 , k = 1,2,...,T-1 (T = horizon of the problem). The
k k k k T T

thresholds of the two agents are coupled; namely, the thresholds of agent 1(2)

at any time t are coupled with the thresholds of detector 2(1) at all times,

past, present and future. The computation of these thresholds requires the

solution of 4T-2 nonlinear algebraic equations in 4T-2 unknowns. The nonlin-

ear algebraic equations which result from dynamic programming arguments and

whose solution determines the thresholds for agent I are of the form
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a r p(u 2 1h0)[ct 2 + J(1, u2 , o))k u

tl + (- ,, 1 .P(u 2 1h..i)[ct 2 + J/i, u2 , 1)
2

k 
u

c + EyCk+l ) I k IIik+1 alp(yl(k+l) lh=O)+ 1a)pykl j-+(3-2)

81 1 P(u 2 1h0)[c 2 + J(o, u 2 , 0)]
k u 2

+ (1-1.) 1 P(u 2Ih=1)cCT 2 + J(O, u 2, 1)]

k u 2

Ey2 lp(}(k+l)lh-O)
kv l p (Y (k+1) h-0) + (I- B 1) p (y (k+1 h

(3-3)

for k = 1,2.,...,T-1 and

A(T)

T D(T)

b A(T) ff -p[u 2 Jhl) J O, u,, 1) - J ,u, 1)] (3-5)
u 2

D(T) - A(T) + 1 P(u 2 Ih=o)[J(l, u 2 , 0) - J(o, u2' 0)) (3-6)
u 

2

In Eqs. 3-2 and 3-3 VIT is the value function of the dynamic program for
k

agent 1. Similar equations hold for agent 2.

The conditional probability ni A p(hOlyit) is a sufficient statistic
t

for decisionmaking for agent i (i - 1,2). At any time t (t = 1,2,...,T-1) the

action of agent i, based on the statistic vi, can be described as follows:
t
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1. If P1 > 8, declare ui = 0 and stop.
t

2. If ai < i < 61, continue taking measurements.
t t t

3. If P 4 ai, declare ui = I and stop.
t t

At time t=T the decision of agent i is:

1. If Ni ) £i, declare ui = 0
t T

m 2. If wi < li, declare ui = 1.
t T

Thus, the stopping times Ti (i = 1,2,) have the following property:

- min t: i4 a ci or ,7i > 81 I = 1,2 , 1 - t < T} (3-7)
t t t t

If there is no t such that Eq. 3-7 holds, then

Ti = T (3-8)

The coupling of the thresholds of the two agents arises because of the

presence of the terms p(u 2 mh=i) in Eqs. 3-3 through 3-6; these terms are

functions of (2, 02 ,...,a 2  , , 2).
1 1 T-1 T-1 T

The value functions ViT(w i) have the following properties:
k tk

Lemma 3.1

The value function VIT(wl) is a nonnegative concave function of wl and
t t t

satisfies the folljwing equations:

T TITu2

+ (-0) u P(u2 Ih=1) J(o, u 2 , i)

"P u2 p(u2 lIh'o) (i , u2, o) ± (i-w'.) } pru 2 Ih=1) 4il, u2' '/. 9

T T2
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VIT(7rl) =mini min 71 p(uIh-0~) J(u1 , u2 ' a)

1 + (1-_1) p(u 2 1h_1) J(ul, u2 ' 1)
t u 2

c+ Ey,(t+I) 1 IT~i 1 ttI=)~
t+ n p ( (t+ h-0) +(I- II) p (y(t1h1IIt I

(3-10)

Similar properties and equations hold for V2T( 2). J
t t

The results of Theorem 3.1 and Lemma 3.1 will be used to solve the

infinite horizon decentralized Wald problem.
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SECTION 4

SOLUTION OF PROBLEM (P)

Problem (P) is the infinite horizon version of the problem investigated

in [51. Thus, in order to solve it, it is sufficient to study the behavior

and properties of the value functions viT(w1l) i = 1,2) as T + -. Let T +
t t

Since the set of stopping times Ti {Ti 4 T) increases with T it follows that

for all t

ViT(7r) c Vi(t+l)(.n) i = 1,2
9- t t

Consequently the following limit is well defined:

Vi (w) A lim viT( 7) a Inf viT( n) = Vi( 7r) (4-1)
t T+w t T t

It is possible to show that the value functions Vi() have the following

properties:

Lemma 4.1

The value function VI(n) is a nonnegative concave function of w which

satisfies the equation

V 10i 1 ) = minjmin F1  1u 2  h- J( u2 ' 0)

+ (1-Wl) X P(u2 h-l) J(u,, u2, I)lu 
2

c + E y V 1  n. .. ..h= O
1 W p(y+lh-O)+ (l( ) p(yllh=l) (4-2).
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Moreover, E V, p(yh=O)is a nonnegative concave

o1( F1 p(YI h=O) + (I-70) P(Y II-- i)

function of wi and the following inequality holds at both wi = 0 and I = 1

min J1 J P(u~lh=O)j(ul, u2' 0)+ (1-" ) I P(u21h=l)J(uI, u2' l -UIU{O1 u2  u 2

< c + EyI 1  ( . P(Yllh= I)

P~yl l=O) +(4-3)

Similar properties and inequalities hold for V 2(7 2).

Proof: The proof that Ey ( V(yis ay p(y lh=O) + (1_-0) p(y 1lh=l)

nonnegative concave function as well as the inequalities at w1 = 0, 7r = 1

follow directly from Lemma 3.2 of [5). At(it) then is nonnegative and concave

3 as the minimum of nonnegative concave functions QED.

In Eq. 4-2 the term

min 7' I P(u 2 lh=0) J(ul' u 2 .0) + (1-,1 ) 1 P(u 2 h=l) J(u1, u2'1

describes the cost incurred by stopping at a certain time and the term

c + Ey I  
p 1 (h 0) + (1-it) P(l

describes the cost incurred by continuing to take observations at that time.

This fact and Lemma 4.1 can be used to prove the main result of this report

which is given by the following theorem:
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Theorem 4.1

The member-by-member optimal strategies of problem (P) are described by

thresholds (a1 , 01, a2 , 82). The thresholds of the two detectors are coupled

and their computation requires the solution of the following set of nonlinear

algebraic equations:

a ci _ P(u2jh=O) J(l, u 2, 0) + (1-a 1 ) P P(u 2 I h=1) J(I, u 2 , I)
u 2  U2

=c + Ey Yj 1 (l c1 p(y1 Ih=o) _
=al P(Yll h - 0) + (1-al) p(y 1lh=l ) j (4-4)

B1 1 p(u2jh=0) J(o, u2, 0) + (1-11) 1 p(u 2 h=l) J(0, u2 , 1)
u 2  u 2

= c + Ey1  81 81 +(yIh=0) P(4-5)
p(yijhO) + (1-01) p(y1jhl (-

Equations similar to 4-4 and 4-5 hold for a2 , a2, respectively.

The conditional probabilities wi A Prob(h=Otyit) are sufficient statistics for
t

h decisionmaking. At any time t the action of agent i based on the statistic Wi
t

can be described as follows:

1. If i ) Bi, declare ui - 0 and stop.
t

2. If ui < wi < 01, continue taking measurements.
t

3. If nI 4 ai, declare ui I and stop.
t

Hence, the stopping times Tj (i = 1,2) of the two agents have the following

property:

TI = min t: i > Bi or i 4 (4-6)
t t

55

, q



ALPHATECH, INC.

Proof: The threshold property of the m.b.m.o. solutions follows directly from

Lemma 4.1. Equations 4-4 and 4-5 follow from Eqs. 3-2, 3-3 and 4-1. The

action an agent has to take at any time t as well as the property 4-6 of the

stopping times TI follow from Eq. 4-2 and the interpretation of each one of

the terms of the right-hand side of Eq. 4-2. QED

3 The threshold properties of the m.b.m.o. solutions resulting from Lemma

4.1 and Theorem 4.1 are shown in Fig. 4-1. The coupling of the thresholds

results because of the presence of terms p(u 2 lh=O) and P(u2 h-1) which are

functions of (a2, 82). In general, p(u 2 Ih=0) and p(u2Ih=l) are very compli-

cated functions of (a2, 02) and that is why it is very difficult to solve

Eqs. 4-4 through 4-5 and their counterparts for a2, 02 numerically. Thus, the

results of this note describe only the qualitative properties of the m.b.m.o.

solutions of the infinite horizon decentralized Wald problem. Nevertheless,

the qualitative properties of the m.b.m.o. solutions can be used to guide the

design of simple suboptimal algorithms which are easy to implement. Such an

algorithm will be described in [123.
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PPO

CHOOSE H1  ICHOOSE HO

CONTINUE

0 0

Jw R-0103A

Figure 4-1. The Threshold Property of the m.b.m.o Solutions
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K

SECTION 5

CONCLUSIONS

The results presented in this report extend the results of [51 to the

infinite horizon decentralized Wald problem. Even though the infinite horizon

results in m.b.m.o. solutions which are described by stationary thresholds,

it is still very difficult to compute these thresholds because the coupling

of the agents through the cost results in extremely complicated dynamic pro-

gramming equations for the two agents. Thus, the design of suboptimal algo-

rithms which take advantage of the qualitative properties of the m.b.m.o. and

are easy to implement is necessary.
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ABSTRACT

Two Sequential Distributed Detection Problems are considered: (1) The

Infinite Horizon Decentralized Wald Problem and (2) a problem with communicat-

ing detectors and ordered stopping times. The qualitative properties of the

optimal solution of the Infinite Horizon Decentralized Wald problem are known,

but the computation of the optimal solution is very difficult. Sequential

Distributed Detection problems with communication are in general not sequen-

tially decomposable, therefore very difficult to solve.

Suboptimal algorithms are proposed for the solution of the problems above.

These algorithms combine the qualitative features of the optimal solution of

the Infinite Horizon Decentralized Wald problem and results from Sequential

Analysis. They are simple, easy to implement and the numerical results

obtained are intuitive.
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SECTION 1

INTRODUCTION

1 Distributed estimation and detection problems have recently received

considerable attention [1]-[3), [51-[121. The interest in these problems was

sparked by large-scale systems such as surveillance systems, power systems,

etc., where there is no centralization of information.

The distributed detection problems studied so far can be classified into

(1) static problems without communication [5]-[7], (2) static problems with

communication, and (3) sequential problems without communication [11-131, [8].

The distributed sequential detection problems solved in [11-[3], [81 are

hypothesis testing problems where there are two or more detectors who have

access to different information and have to detect the correct hypothesis

quickly and accurately. The detectors do not communicate but they all have

a common objective, thus they are coupled only through their cost function.

Even in this simple case it has been shown ([1]-[3], [81) that the coupling

through the cost causes considerable complexity in the computation of the

optimal stopping rules of the detectors. More specifically, it has been shown

that the optimal decision rules are characterized by thresholds whose computa-

tion requires the solution of a set of coupled dynamic programming equations.

Numerical solution of these equations is in general very difficult, hence

*References are indicated by numbers in square brackets, the list appears at

the end of the main body of this report.
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simple suboptimal solutions which exploit the qualitative features of the

optimal solutions are needed.

The purpose of this report is to describe a suboptimal solution for two

sequential distributed detection problems.

1. The infinite horizon decentralized Wald problem; and

* 2. A distributed sequential hypothesis testing problem with
communication.

The report is organized as follows: The sequential distributed detection

problems mentioned above are formulated in Section 2 and their basic features

are discussed in Section 3. The proposed suboptimal algorithms for their

solution appear in Section 4. Numerical results for the infinite horizon

decentralized Wald problem appear in Section 5. The report concludes with a

summary and suggestions for further research which appear in Section 6.
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SECTION 2

PROBLEM FOKMULATION

Consider a hypothesis testing problem where one of two events is true,

i.e., if h is the event to be identified, then h c {0,1).

Consider two detectors who observe the event in a noisy environment; the

observations yi of detector i (I - 1,2) are described by

yi(t) - h + vi(t) (2-1)

It is assumed that (vi(t)) (i - 1,2) are independent identically distributed

sequences which are independent of each other and independent of the event h.

Thus, conditioned on the event, the observations of the two detectors are

independent. The noise sequences {vi(t)), i - 1,2 are zero mean normal random

variables with variance a. It is further assumed that the observation at time

t - 1 is free for both detectors, but each additional obsevation is costly.

IIk
Let C be the cost of each additional observation after t - 1.

Denote by ui the decision of detector i and let ti be the time this decision

was made. If h is the true hypothesis, then the cost incurred by the deci- 4

sions u,, u2 is assumed to be

0 if U, =u= h

J(u, u 2 , h) 
=  I if U uC2 (2-2)

k if u u 2  h k > I
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Under these basic assumptions (and some additional ones which are character-

istic to each problem) the infinite horizon decentralized Wald problem and

the sequential distributed detection problem with communication and ordered

stopping times can be formulated as follows:

2.1 THE INFINITE HORIZON DECENTRALIZED WALD PROBLEM

Consider that the two detectors do not communicate; thus, each detector's

decision is based only on the data available to it.

Then, under all the above assumptions the decentralized Wald Problem is

Minimie E {c + cT 2 + J(u1 , u2, h)} (2-3)
Y cr ,  Y2 r 2

where Ti is the stopping time of detector i

Y = ( Y Ti )  
(2-4) (Q1 )

and

yiT: (y1(1), yi(2 ),...,yi( i)) (2-5)

bJ

2.2 A SEQUENTIAL DISTRIBUTED DETECTION PROBLEM WITH COMMUNICATION
AND ORDERED STOPPING TIMES

Consider that detector I makes a decision first and communicates this

decision to detector 2. Then, based on its information and the message

received by detector 1, detector 2 makes a decision at some time.

Under the basic assumptions and the assumption above a sequential detec-

tion problem with communication and ordered stopping times can be formulated

as follows:
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Minimize E {C'tI + C-12 + J(u1, 2 P H)} (2-6)
"I c fY 2 c 2

where Ti is the stopping time of detector i

T1 = y TI) (2-7)
(2)

T 2 . "y2 y , UI, T1  (2-8)

T2  1 (2-9)

and y i TI is defined as in Eq. 2-5.

7

"h

.q
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B

SECTION 3

DISCUSSION

Since k > 1 the cost J(ul, u 2, h) is in general not separable (i.e.,

J(u1, u2 P h) * J(U, h) + J(u 2, h)), consequently in both problems the deci-

sions of the two detectors are coupled.

The absence of communication between the detector makes the decentralized

Wald problem a sequential static team problem. Thus, the member-by-member op-

timal decision rules of the detectors can be determined by backward induction.

It was shown in (31 that the member-by-member optimal decision rules are char-

acterized by thresholds whose computation requires the solution of two coupled

sets of dynamic programming equations. Numerical solution of these equations

is very difficult, thus a simple suboptimal solution is desirable.

When the detectors communicate then the problem of determining the opti-

mal stopping rules becomes much harder, because in this case the information

of one detector depends on the stopping rule used by the other thus resulting

in a dynamic team problem which is not sequentially decomposable. That is why

good suboptimal solutions are very valuable.

In the next section a simple suboptimal solution to the problems above

will be presented. The proposed solutions combine the features of the member-

by-member optimal solutions of the decentralized Wald problem with some stan-

dard results from statistical sequential analysis [4).
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SECTION 4

A SUBOPTIMAL SOLUTION FOR THE PROPOSED PROBLEMS

4.1 A SUBOPTIMAL SOLUTION FOR THE INFINITE HORIZON DECENTRALIZED WALD PROBLEM

The basic idea of the proposed suboptimal solution is the following.

Let a (8 ) be the probability of error of type I for detector 1(2) (i.e.,

the probability that if h = 0 detector 1(2) will declare h - 1); similarly,

let a2 (8 2) be the probability of error of type 2 for detector 1(2) (i.e., the

probability that if h 1 1 is true detector 1(2) will declare h - 0). We shall

write the cost (Eq. 2-4) as a function of these four quantities and then we

shall minimize that cost jointly over al. a2, 81 82. After al, a2, 0, 82

are determined, standard results from statistical sequential analysis will be

L used to determine the thresholds for the two detectors and afterward the solu-

tion of problem (QI) will be determined graphically.

From statistical sequential analysis ([4]) it is known that the average

number of observations required to reach a decision with errors a1 and a2 is

approximately

I(0) 2 aI log + (1 - al)log(_ (4-1)

when the event h - 0 is true, and a 2I- a 2  a2
n, (1) = 2o - a 2 )log + a2 log (4-2)
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when the event h - I is true.

Relations similar to Eqs. 4-1 and 4-2 hold for detector 2 with B and 2

in place of aI and a2, respectively. Using Eqs. 4-1, 4-2 and 2-3 we can

approximately write the cost to be minimized as

E cTI + cT2 + J(u1 , u2, h)}

= 2oc(l-p) FI - a2)log + a log -- + (- 02)log

L 1 -  02 22+0 2 log *-- 2ocp Fai log -~ + (1 a a)log a

'~ 1a -a

+ 01 log .+ (0 - 0 )log 2 + ( - 2
11 1+1 1 (1 P)

+ a a(1 --)p + ( - a p + k ala 1p

+ k a2 02( - p) f(a, a2) 01, 02) (4-3)

The minimization of f(a1 , a2P 01, 02) over these four parameters gives their

optimal values. Then the relations

A1 = log 2 (4-4)
a I

a

A log 2 (45)
2 - a1
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1 2

B1 = log - (4-6)

8

B 2 = log 2 (4-7)
1 - 81

* * from standard sequential analysis ([4]) can be used to determine the thresholds

of the detectors. After the thresholds are specified by Eqs. 4-4 through 4-7

the decisions of the two detectors can be graphically determined by Fig. 4-1.

At any time t, the sum of observations I yl(t) up to that time is a

t
sufficient statistic for decisionmaking for detector 1. As long as the sum

I yl(t) remains between the two parallel lines 1i £2 (Fig. 4-1) detector I

t
continues to take measurements. The first instant of time the sum I yl(t) is

t
above LI or below £2 detector 1 stops and accepts h = 1 if I y1 (t) is above

t

I and h - 0 if I yl(t) lies below £2. Similar results holds for detector 2.

t

The proposed algorithm is suboptimal because the expressions 4-1 and 4-2

for the average number of measurements are only approximate; the exact compu-

tation of the average number of measurements is very complicated. Even though

suboptimal, the algorithm proposed above captures some of the basic features

of the optimal solution of the infinite horizon decentralized Wald problem;

namely, the decision rules of the two detectors are described by thresholds

and the thresholds are given in terms of the probabilities of error of type 1

and type 2 which are determined by joint optimization for the two detectors.

The joint optimization is very simple as it only requires the minimization of

Eq. 4-3 with respect to al, a2' ai 82. As it will be seen in Section 5, the

numerical results obtained by the algorithm are intuitively appealing.
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Sy1(t)
t

ACCEPT h X

A I a I a 2)

11 2

)b t

A2 (al a2)SLP 

1/

ACCEPT h =0
R- 1971

Figure 4-1. Detector I 's Decision Rule
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4.2 A SUBOPTIMAL SOLUTION FOR A SEQUENTIAL DISTRIBUTED DETECTION PROBLEM
WITH COMMUNICATION AND ORDERED STOPPING TIMES

The basic idea of the suboptimal solution for the problem (Q 2) of Section

2 is the following:

Let al, a2 p 8, 82, be the probabilities of error of type 1 and type 2

for detector i and detector 2, respectively. Following the procedure of sub-

section 4.1 we can determine (off-line) first the probabilities al, a2 , al, 82,

which minimize the cost (Eq. 4-3) and afterwards the thresholds A(a, a2 ),

A2 (al, a 2) B1C81, 82) , B2(81, 82) using Eq. 4-4 through 4-7. Then, the deci-

of the two detectors can be graphically determined as follows: Detector l's

decision is determined in exactly the same manner as in subsection 4.1 (Fig.

4-1). Detector 2 uses detector l's decision as well as the time that decision

was made and treats them as an additional observation in the following manner:

If the decision of detector i is uI = 1 and is made at t = Ti, this means

that

|I

TI T

I yl(t) )A 1 (al, a2 ) + (4-8)t=l 2

then, detector 2 treats the decision u= I at T1 as an additional measure-

1
ment with value A(al, a2 ) + 2 Ti, adds it to his previous measurements and

proceeds from that point on to make a decision in the same way as in subsec-

tion 4.1.

If the decision of detector 1 is u I = 0 and is made at t =sip this means

that

s| s

yl(t) A 2(a , a ) + (4-9)
t=1 2
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then, detector 2 treats the decision u I = 0 at s I as an additional measure-

ment with value - A(a , a2 ) + 1) , adds it to the previous measurements2

and proceeds from that point to make a decision in the same way as in subsec-

tion 4.1 (Fig. 4-1).

The suboptimal algorithm proposed here is graphically depicted in

i Fig. 4-2.

In the suboptimal algorithm proposed above, the interpretation of the

first detector's message by the second detector is very easy because it is

assumed that the stopping rules used by the detectors are arbitrarily fixed

and known beforehand to both of them. When the optimal solution to problem

0Q2) is sought, then the interpretation of the message of detector 1 depends

on the stopping rule used by that detector; since the stopping rule has to

be determined, the interpretation of the message by the second detector is a

highly nontrivial task and leads to optimization problems which are not se-

quentially decomposable. Since it is in general very difficult to solve such

problems, simple suboptimal solutions like the one proposed above must be

investigated and evaluated.

h
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d

d ACCEPTch)
11 2

j t

A 2(al. a 2) 
d)

21 2

Figure 4-2a. Detector I's Decision Rule

Xy2(t)

B B1(O1  02)

t

4 6 8 10

ACCEPT h =0

B21a 2) d... d2
2 ~R- 1972

Figure 4-2b. Detector 2's Decision Rule
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SECTION 5

NUMERICAL RESULTS

U
In this section the numerical results obtained by the implementation of

the algorithm proposed in subsection 4.1 are presented. The probabilities

of error (al, a 2 1, 82) as well as the thresholds A (all a2) , A2(al, a2) ,

BI(l, a2 ), B2 (a, a2 ) have been computed for various values of the following

parameters:

1. The prior probability p = Prob(h = 0);

2. The variance a of the observation noise;

3. The cost c of the observations;

4. The penalty k arising when both detectors' decisions
[ are wrong.

We shall present each one of our parametric studies separately, and we shall

interpret the results obtained by these studies. Note that the cost (4-3) is

h a nonconvex function of (al, a 2, al 82), thus the values of (a1, a 2, a' 82)

determined by the minimization of Eq. 4-3, correspond to local minima. These

minima depend on the initial guess of (a1 , a2, a, 82) used in the minimiza-

tion of Eq. 4-3; as it will be shown below different initial guesses give

rise to different solutions for a1, a2 ' all 82 and A(l, a2 ), A2(al, a2) ,

B (819 2 2(Bit 2). Some of the local minima of Eq. 4-3 result in = 8

and 2 = 8 Such local minima are obtained when the minimization of Eq. 4-3

is initiated with ain  a i n = ain = oin. The numerical results we present
1 2 1 2

below correspond to minima for which a1 = al A 2 = 82
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5.1 THE VARIATION OF al, a2, 81, a2p A 1(a,, a2), A2 (all a2), B1 ( si t2),

B2 (B, 82), AS A FUNCTION OF p, k

Figures 5-1 through 5-3 present the variation of the probabilities of

error of type I and 2 as well as the variation of the thresholds as functions

of the prior proability p for fixed c, k, o. It is expected that as p, the
U

prior probability of h = 0, increases, the likelihood that the final decision

will be h = 1 decreases. Using the results of [3] we can justify this claim

as follows:

The final decision of detector i is h = I only if

p(h = Olyit) < PI at time t and

1i < p(h = 0lyit) < 1i for 1 4 s < t
1 t 2

where Li and 1i are the thresholds determined in [31. As the prior proba-
1 2

bility p of h - 0 increases the probability of the sest of measurements yit

that could cause p(h = 0yit) to drop below 1i decreases, thus decreasing the1

probability of error of type 1. On the contrary, as p increases, the proba-

bility of the set of measurements yit that would result in p(h - Oyit) < £i
2

increases, consequently the probability of error of type 2 increases. This

is indeed shown in Figs. 5-1 and 5-2.

The thresholds AI(al, a2), A 2(al, a2), B 1ip1 12), B 2(Oi, 82) are also ex-

pected to vary with p as follows: As p increases each detector would be

biased more and more towards declaring h = 0. Consequently, as p increases,

the area where h = 0 is accepted in Fig. 4-1 would increase and the area

where h = I is accepted in Fig. 4-1 would decrease; hence, the thresholds
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AI(al , a 2 ) (BI(al, 02)) and A2 (al, ai) (B 2 B1, a2)) defined by Eqs. 4-4

through 4-7, should both increase as p increases. This is indeed shown in

Fig. 5-3. The results of Figs. '1 through 5-3 assume that k = 4, c - 0.1,

a = 0.5. When the cost of observations and the noise variance in the obser-

vations remain unchanged but the terminal cost k due to two errors changes,

* then it is expected that the probabilities al, a2 , a1, a2 as well as the

thresholds A 1(al, a2 ), A 2(al, a2), B1 (al, 02), B2(OI, a2) will change.

More specifically, it is intuitively expected that as k increases the error

probabilities al, a2 21, B2 will decrease for a fixed p. Such a behavior is

expected for the following reason: As the penalty due to errors increases,

the detectors tend to become more conservative and more cautious, thus they

tend to base their decisions on more reliable information; consequently, the

probability of error is reduced. This can be verified by comparing Figs. 5-1

and 5-2 with Figs. 5-4 and 5-5. It can be seen from this comparison that for

IL
the same p, c, 0,

aI(kff 6) < aI(k = 4)

2a(k 6) < a2(k 4)

A continuous variation of the probabilities of error versus k is shown in

Fig. 5-6. (Some of the local minima result in a, = a1  01 - B2 when p - 0.5

and the minimization of Eq. 4-3 is initiated with ain = ain - n - fin.
1 2 1 2

Thus, Fig. 5-6 describes the variation of al, a2, 01, 02 as a function of k).

As far as the behavior of the thresholds A(al, a2), A2(al, a2) , B1(i, 02)

and B2 (1, 2) as a function of k is concerned, we can expect the following:
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Since as k increases, the two detectors become more conservative and more

cautious, the areas of Fig. 4-1 where h = 0 and h = 1 are accepted should

1 get smaller. Consequently, as k increases, the upper threshold A1 (al, a2)

(B1 1 , 82)) should increase whereas the lower threshold A2 (al, a2)

(B2 (o1 , B2)) should decrease. This behavior can be verified by comparing

* • Figs. 5-3 and 5-7. The continuous variation of the thresholds versus k is

shown in Fig. 5-8.

5.2 THE VARIATION OF al, a2, oi 82' A1 (al, a2), A 2(al, a2)' B1 (all a2)2

B2(sit a2 ) AS A FUNCTION OF c, o

Figures 5-9 and 5-10 present the variation of the probabilities of error

of type I and 2 as well as the variation of the thresholds as a function of

the observation cost c for fixed p, k, o. We set p = 0.5; then some of the

local minima result in a, a 2 = 1 = S2 when the minimization of Eq. 4-3 is

L initiated with ain = ain = $in = $in; thus, Fig. 5-9 describes the variation1 2 1 2

of al, a2 , 81, 82 as a function of c. It is intuitively expected that as the

cost of observations increases the detectors would tend to take less obser-

h vations, therefore, the quality of information upon which their decisions

are based would get worse with increasing c, consequently the probabilities

a1, a2, 8i 02 would increase. This behavior is actually shown in Fig. 5-9.

The variation of the thresholds with c is expected to be the following: As

c increases the detectors would tend to make a final decision more quickly,

consequently the areas where h = 0 and h = 1 are accepted in Fig. 4-1 will get

larger with increasing c. Hence it is expected that as c increases, the lower
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threshold A2 ( a, a2 ) (B2 (01 , B2)) will increase whereas the upper threshold

A 1 (al, a2 ) (B1 (al, 82)) will decrease. This behavior is indeed shown in

O Fig. 5-10.

Figures 5-11 and 5-12 present the variation of the probabilities of error

of type 1 and type 2 as well as the variation of the thresholds as a function

i of the noise variance a for fixed p, k, c. We set p = 0.5; then some of the

local minima result in a, = a2 - 0 = a when an = ain Sin = $in. Such
2 2 1 2 1 2

minima are shown in Figs. 5-11 and 5-12. It is intuitively expected that as

the noise variance a increases the quality of information of the detectors

gets worse, hence the probabilities of error al a 2' B' 82 increase. This

behavior is actually shown in Fig. 5-11. Notice that for a ) 20 the proba-

* bilities of error al, a2, 81, 02 approach the value 0.5, hence for a ) 20 the

observations provide the detectors with very little additional information,

thus the observations are practically useless.

As far as the behavior of the thresholds is concerned, we can expect the

following: As the quality of observations gets worse, the detectors would

tend to rely more and more on their prior information, thus they would tend

to make decisions more quickly. Consequently as a increases, the areas where

h - 0 and h = 1 are accepted would tend to increase; hence, the upper thresh-

old Al(al, a2 ) (B1(si, 82)) will decrease and the lower threshold A 2 (', a2)

(B2 (01 , 82)) will increase with increasing a. This behavior of the thresh-

olds is shown in Fig. 5-12. As noted before, for a ) 20 the observations are

practically useless, therefore the thresholds AI(al, a2 ) (B1(al, 82)) and

A2 (a 2, (B2 (si, 82)) approach very close to each other because the detec-

tors make decisions based practically on their prior information.
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So far the results presented in this section correspond to local minima

for which a, = al. a2= 82. There are many local minima (Eq. 4-3) other than

the symmetric ones. Below we present such a solution.

5.3 A NONSYMMETRIC SOLUTION

When the initial values of aP a2, l a2 used for the minimization of

U Eq. 4-3 are such that ain = $in = ain  8in then the symmetric local minima
1 1 2 2

of subsections 5.1 and 5.2 result. However, if the initial values of

al, a2, a1, 82 used in the minimization of Eq. 4-3 are ain * ain * ain in
1 2 1 2

then the resulting local minimum are not symmetric. An example of such a

local minimum is given below.

For p - 0.9, k = 4, c = 0.05 and initial values

ai n = 0.2 ain  0.5 in = 0.74 Bin 0.3
1 2 1 2

the resulting local minimum is

a1 = 0.000164 a2 m 0.999457

a1 = 0.1150 82 t 0.5694

and the thresholds (al, a2 ), A2 (a,, a2 ), B1 (Si, 82) , B2 (01, 82) are

A, = 1.1972429 A 2 = -0.0003791

B, = 2.791737 B 2 = -0.4410045

It is expected that the behavior of the nonsymmetric solutions as a function of

p, k, c, a will be qualitatively the same as that of the symmetric solutions.
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SECTION 6

SUMMARY - CONCLUSIONS

In this report we presented suboptimal solutions for two sequential

distributed detection problems: (1) The Infinite Horizon Decentralized Wald

Problem and (2) A Sequential Distributed Detection Problem with Communication

and ordered stopping times.

The suboptimal algorithm proposed for the solution of the infinite hori-

zon decentralized Wald problem captures the basic features of the optimal
I

solution and is easy to implement. The numerical results obtained by the

proposed algorithm, and presented in Section 5, are intuitively appealing.

When communication is allowed between the detectors, the resulting dis-

tributed sequential detection problems are not sequentially decomposable in

general. That is why simple optimal solutions are valuable. The algorithm

proposed in subsection 4.2 is simple and very easy to implement as it requires

the same amount of computation as the algorithm proposed for the infinite

horizon decentalized Wald problem.

The simplicity of the proposed algorithms is one of their major advan-

tages. A performance analysis would be desirable to determine how close to

the optimal these algorithms perform.
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