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Although computer-aided design is widely accepted in the efectronics

industry, where it is essential to the design of any modern commercialRt
I n I integrated circuit, research on computer-aided control system design has

M. been held back by the primitive electro-mechanical and hydraulic hardware

with which control systems have historically been implemented. Indeed,

computer aids are not required for the design of the type of low order

(usually) single loop control systems which can be implemented on such

hardware. With the development of the modern microcomputer, however, it is

now feasible to implement a sophisticated high order multi-loop control

strategy and, as such, the control community has begun to look towards CAD

with renewed interest.8 '9'10,11

Unlike manual design techniques, wherein the designer's intuition can

compensate for the lack of a complete analytic theory, a CAD package must

bc based on a precise analytic theory if it is to be successfully

implemented. Indeed, the alternatives of brute force optimization and/or

disorganized interactive searches are neither cost effective nor "socially"

acceptable to the engineering community. As such, the goal of the research

described in the present proposal is the development of an analytic theory

which can serve as the basis of a CAD package. In particular, we are .n

the process of developing a complete analytic theory for the ircorporation

of the fundame.ntal asymptotic and, hopefully, initia- yalue constraints

into a CAD package. Specific revtarch toplcs will incljde:
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(i) pole placement

(ii) initial value constraints

(iii) design of time-varying systems

(iv) simultaneous design

Our theory is predicted on the, now classical, stabilization theory

developed during the mid-seventies by Youla, et al. 18 ,19 ,2 0 and its

extension into a general purpose asymptotic design theory as formulated by

45,11,12,13,14,17
the author, Desoer, Liu, Vidyasagar, Francis, et al.45 , 1 ,

Since the theory is now well known we will simply review the essentials

here, formulating the notation which will be required in the sequel. Foc .

brevity this review will be restricted to the single variate case though,

in fact, most of the theory can be extended to the general linear case.

As usual, we let p(s) denote a single variate rational plant. Here,

p(s) may be unstable or even improper. Of course, as with any rational

function p(s) can be represented as the ratio of polynomials. For our

purposes, however, we find it more convenient to express p(s) as the ratio

of stable rational functions, n(s) and d(s).

p(s) - n(s)/d(s) (1.1)

As with the classical polynomial representation we require that n(s) and

d(s) be coprime, though in the context of our rational fractional

representation it suffices to only require that n(s) aid d(s) 1-,ve no

cor=>Dn (closed) right half plane zcros. 1!,dccd "real world" control

sy-temn do: igncr. often pormit left half-plclne ,o./z-'o cino- Ia: ions.
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Interestingly, this coprimeness condition manifests itself in the Bezout

equality

u(s)n(s) + v(s)d(s) = 1 (1.2) 6

i.e., stable rational functions n(s) and d(s) are coprime in the sense that

S
they have no common right half-plane zeros if and only if there exists

stable rational functions, u(s) and v(s), such that 1.2 is satisfied.

Given the above notation it can be shown4 ,19 that a compensator, c(s),

will stabilize a unity gain feedback systems with plant, p(s), as

illustrated in Figure 1 if and only if it takes the form

C(s) -d(s)w(s) + u(s) (1.3)e). -n(s)w(s) + vs

where w(s) is an arbitrary stable rational function (which serves as our

design parameter).

Figure 1. Single loop unity gain feedback system.

Moreover, the various feedback systems gains all turn out tc be 1irlear in

4
tnv d'rign parar..,ters, w(s). Fcr instarjie, the sy-tr. inputi:ut ut E:,ln

t: :es the form



h(s) - -n(s)w(s)d(s) + n(s)u(s) (1.4)

As such, one can formulate a design theory in which the stability question

is totally resolved and at the same time the remaining design problem is

simplified by the linearity of the feedback system gain expressions.

Indeed by restricting w(s) to stable rational functions of the form

w(s) - a(s)w(s) + b(s)

where a(s) and b(s) are appropriately defined stable rational functions and .

w(s) is a new stable rational design parameter we can incorporate
4

essentially any asymptotic design constraint into our theory. Specific

constraints which we have investigated 1 3 ,4 include:

(i) tracking

(ii) disturbance rejection

(iii) robust design

(iv) model matching 5

(v) pole placement

(vi) design with restricted compensators

Cvii) simultaneous design

The goal of the research is to refine the above described results,

ese'cially with regard to the pole placement. To extend the theory to

p'-r.it the inclusion of initial value constraints, and to investigate the

po sibility of applying the theory to linear time-varying sy).tem via the

m,:-Ium of a rc,-r~ty deveiopo!d genEralized frequency domain theory.



During the past year our work has been concentrated on the solution of

the single and multivariate pole placement problems 2 ,6 ,1 8 and on the

extension of our theory to the case of linear time-varying systems.

SINGLE-VARIATE POLE PLACEMENT: By the pole placement problem in

our frequency domain setting we refer to the problem of finding a

stabilizing compensator, c(s), for a given plant, p(s), such that the

input/output gain, h(s), for the feedback system of Figure 1 takes the form

h(s) = r(s)/q(s) (2.1)

where q(s) is a prescribed Hurwitz polynomial and r(s) is an arbitrary

polynomial such that

o(r) < o(q) (2.2)

Here o( ) denotes the order of its polynomial argument and equation 2.2 is

required to guarantee that h(s) has no poles at infinity. It is

interesting to compare this "frequency domain pole placement" problem with

the classical state-space pole (actually eigenvalue) placement problem. In

the latter case memoryless state feedback is employed, thereby fixing the

order of the resultant feedback system, whereas, in our case dynamic

feedback is employed allowing the designer to change the degree of the

system. Indeed, as we will see, the d cgr.e of thc rt-sultant sytem is of

primary importance in our thory.



About a year ago we gave what we thought to be a correct solution to

the "frequency domain pole placement" problem to the effect that the

problem admitted a solution if and (generically) only if

o(q) > W(p) = 1 (2.3)

where 7(p) is the total number of (closed) right half-plane poles and zeros

of the plant transfer function, p(s), including poles and zeros at

infinity. In the process of trying to extend the result to the

multivariate case, however, it became apparent that 2.3 was in error by

"one" in certain cases. As such, a major endeavor during the past year has

been the formulation of a correct pole placement theorem for the single-

6
variant case.

To formulate the pole placement theorem we let p(s) have a rational

fractional representation as per equations 1.1 and 1.2 and then further

decompose the numerator and denominator functions as

n(s) a(s)a(s) (2.3)ins)

and

b(s)b~s)d(s) - --- -s( .4

Here a(s) and a(s) are polynomials representing the left and right half-

plane zeros of n(s), b(s) and b(s) are polynomials representing the ]ICft

and right half-plane zeros of d(s), and m(s) is a Hurwitz corrn.c'n



denominator for n(s) and d(s). Our pole placement theorem then results

from the following lemma.
12

LEMMA: The single-variate pole placement problem admits a solution if

and only if the polynomial equation

a(s)x(s) + b(s)y(s) = q(s) (2.5)

admits polynomial solutions, x(s) and y(s), such that

o(x) < o(q) + o(a) - o(m) (2.6)

o(y) < o(q) + 0(b) - o(m) p2.7)

S
Moreover, q(s) and r(s) are (polynomial) coprime if and only if x(s)

and y(s) are (polynomial) coprime.

To obtain 2.3 from the lemma all that is necessary is to count

equations and unknowns in 2.5 through 2.7. In fact, however, the

requirement that x(s) and y(s) be polynomial induces additional constraints

to the effect that x(s) and y(s) have non-negative order. Surprisingly,

these constraints can become active just to the extent that the "I" in

equation 2.3 may drop out. 6 Counting equations and un.:,owns wit, this

additloral constraint then yields the following corrected single-variate 5

pole cl'uemert theorem. Note that the linear indepcridence of the set of

linear cquations defind by 2.5 follows from the corencs of a s) Lnd

r}iE]:.LM: 7?'x. inglc-var' te pole F3, cc'.crt prc ' j cm}::.ts a ui or,

f r (.n(rica2 ly) only if



o(q) > r(p) j (2.8)

where j is either 1 or 0 as indicated in Table 1.

j j 0

p(s) o(m) = o(a) > I o(m) - o(a) = 0
and or

proper 0(b) >1 0(b) = 0

p(s) o(m) - o() > 1 o(m) - o(b) = 0
and or

improper ob) > I o(b) = 0

Table 1. Perturbation factor for the single-variate

pole placement theorem.

MULTIVARIATE POLE PLACEMENT: As a starting point for our research on

the multivariate pole placement problem we have considered a stable

rational multivariate plant characterized by an n by n transfer function

matrix, P(s). Since P(s) is stable it admits a trivial rational fractional

representation with numerator P(s) and denominator equal to the identity.

Of course, this representation is trivially (right and left) coprime via

the equality

[o][P(s)] + [i][1] = 1 (2.9)

and, as such, it is stabilized by comp,;nzat(cr' of the form



0(s) = [W(s)P(s) 1]- 1[W(s)J (2.10)

where W(s) is an arbitrary stable rational matrix. Moreover, in this

special case the input/output gain for the resultant feedback system takes

the form

H(s) = P(s)W(s) (2.11)

In this highly specialized multivariate case we formulate the pole

placement problem by requiring that W(s) be chosen to stabilize the system

and yield an input/output gain of the form

H(s) = R(s)/q(s) (2.12)

where q(s) is a prescribed Hurwitz polynomial and R(s) is an arbitrary n by

n polynomial matrix such that

o(R) < o(q) (2.13)

where the order of a matrix is defined to be the maximrum of the orders of

S6
its components.

Given P(s) one may factor out a (Hurwitz) common denominator, b(s),

and then trarsfcrm the numerator into Smith canon' cal form. After

,., .i - common denominator this th, n yields c hc. 2r. ithM..ilin form

for F(s) of 2. 11.

IL~

I: .



P(s) = U(s)D(s)'(s) (2.14)

where U(s) and V(s) are unimodular polynomial matrices and D(s) is a

diagonal matrix with (possibly zero) stable rational entries:

di(s) = ai(s)ai(s)/bi(s) (2.15)

Letting Vi(s) denote the ith row of V(s) we then obtain the following

6
the or em.

THEOREM: i) If the multivariate pole placement problem admits a

solution then

o(q) > o(b.) - o(a.) - o(V.) (2.16)

for alli=I .... ,n.
y

ii) The multivariate pole placement problem admits a

solution if

o(q) > o(bi) - o(a.) (2.17) 4

for all i =1 ... ,n.

Unfortunately, the necessary and sufficient conditions of 2.1L Cnd

2.17 do not coincide except in the single-variate ease where they coi'cide

with the (corrected) single-variate theorem.

NeedlesE to say the above theorem leaves ri-ny 'ar w,' cu.'" s

In particular, ,i rcc thc wi th form is not unique thr r, z:try ;-r ,i:n-

of the the~rim can conoci vatLy be tightened ty i7, 1y vary >,g I(e Er: th

form umrplcy,d. Ev' n hre, how(ver, it isrot ] -r i f a >,] th r:r

i.1: ,-rini c th-( (lxpr.fninD, of equ-t ion 2.1C :.



(persnally I doubt it). Furtner.re, "ahapens if we f.rm....te a ia

necessary condition in terms of the columns of U(s)?

TIME-VARYING SYSTEMS: Although many of the above techniques can be

formulated in an abstract operator theoretic setting their power and

potential applicability to the CAD problem lies with the simple frequency

domain formulation employed. As such, during the past year we have

endeavored to formulate a viable frequency domain theory which is

applicable to time-varying systems and, yet still preserves tr <haracter

of the classical time-invariant frequency domain concept. Of ,rse, many

such generalized frequency domain concepts have been formulz -iver the

years (including several by the principal investigator) using Lunctions of"

several variables, matrix and operator valued functions, etc.

In the present formulation, motivated by the work of Arveson and his

students, I1 7 we represent a time-varying system by an operator valued

function of frequency* which, we believe, has every analytic property of

the classical frequency response for time-invariant operators, though it

does not yield the expected computational simplification except in the

c s .2,15

In its most general form (a Hilbert resolution space or its
-ralz tionz) the rtqLirea fr'qu.noy response ta ,es the for:

--.

IDAt , frri. t r ' n .. .. r',.: r 1,t rt to rn;r,. t a s .. _ op ,
". : " . . .. ... .o"'~ Jr: ct,_ v IC r v ;- , r-,
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muli-' a fu-rntion, f, by exp(iw.t)

XI A(t)X + BO

y = t(+ (2.20)

A()is gi:ven by the surprisingly simple exPrEssion

[wI + A(t)"'X - B(t)u

y =C(t)X + 't)u(.1

nere,~ s te pr ;7,e or an, .1 s s2, L .2 zhoi t Je ir.e: i

ed~~~~' f ')n y

ei~rez o of 2 .21 i z : Scm:-. z i f n .A.

w we t'- en c-, a n



Now, this yields the classical frequency response valued function of w 0

given by

A(ww) = [C(wI - wI - A) B + D] (2.23)

As such, even though 2.23 technically has two frequency variables (w is a

parameter and w is the variable of a multiplication operator) they are

clearly redundant and may be eliminated by the change of variable

AS

W= - W (2.24)"

whence we obtain the classical frequency response function

A(W) = [C(WI - A) B + D] (2.25)

Although the above formulation does not yield the kind of

coDputational simplification associated with the classical time-invariant

frequency response it appears to retain every analytic caracteriszic

usually associuted with the classical fr(uxi;rcy rpse. 215 sch, we

believe that it can serve as the ideal rcdium with which to e>xtnd our

ccr.trol y yte, d-sigr corj:cpts to the t .. i. g c'""

;.ci, -r i'' n y 01cs !£ t i n o t,! .:'i i i Y.

..:-. A-': i ": In addition to the - ,_ dirc.,'iboc r I

of' t w!. tl!tOUS . r,14

tn i t,.c - ] ' r;:ry 'rv,.:t F t rr. of : ' r ;.-tivt ,:.;'r', ;r t[ tr.
• . ... QJ.



tne pcimt of view of ou-r design thecry. The former probem has proven to

be extremely hard especially in the discrete case. In tnis en.eavor we

have completed our abstract algebraic-geometric character .zation of the

simultaneous stabilization problem which yields a complete but

noncomputations solution. Furthermore, we have continued our work on the

discrete problem, reducing it to an (albeit unsolvable) interpolation

problem. Interestingly, some parallel work by Byrnes, et al. has yielded

some generic, but equally untestable results.
3

In the adaptive control area we have formulated an approach to the

problem which yields a solution which is always globally stable but ison ly

locally stable when the model for our plant is sufficiently close to the

actual plant. At the present time we are trying to determine "how close"

is sufficiently close. To this end we have conjectured that the model must

lie in the same connected component (of an appropriate space of plants) as

the actual plant. At the present time this work is in a very preliminary

form and, indeed, the precise definition of the appropriate "space of

phants" is still vague.

0
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