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Although computer-aided design is widely accepted in the efEEironics
industry, where it is essential to the design of any modern commercial

integrated circuit, research on computer-aided control system design has

been held back by the primitive electro-mechanical and hydraulic hardware
with which control systems have historically been implemented. Indeed,

computer aids are not required for the design of the type of low order

(usually) single loop control systems which can be implemented on such

hardware. With the development of the modern microcomputer, however, it is

now feasible to implement a sophisticated high orcder multi-loop control

strategy and, as such, the control community has begun to look towards CAD

with renewed interest.8.9.10.11

Unlike manual design techniques, wherein the designer's intuition can
compensate for the lack of a complete analytic theory, a CAD package must

te based on a precise analytic theory if it is to be successfully

implemented. Indeed, the alternatives of brute force optimization and/or
disorganized interactive searches are neither cost effective nor "socially"
acceptable to the engineering community, As such, the goal of the research
described in the present proposal is the development of an analytic theory
which czn serve as the basis of a CAD package., 1In rarticular, we are in
the process of developing a complete anslytic theory for the incorporation
of the fundamantal asymptotic and, hopefully, initiat-yalue constrezints

\\\

inte a CAD package. Specific research topies will include:
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(i) pole placement

(ii) initial value corstraints
(iii) design of time-varying systems
(iv) simultaneous design

Our theory is predicted on the, now classical, stabilization theory

18,19,20 and its

developed during the mid-seventies by Youla, et al.
extension into a general purpose asymptotic design theory as formulated by

the author, Desoer, Liu, Vidyasagar, Francis, et al.u’5’11’12'13’1u'17

Since the theory is now well known we will simply review the essentials

here, formulating the notation which will be required in the sequel. For. --

brevity this review will be restricted to the single variate case though,
in fact, most of the theory can be extended to the general linear case.

{§ usual, we let p(s) denote a single variate rational plant. Here,
p(s) may be unstable or even improper. Of course, as with any rational
function p(s) can be represented as the ratio of polynomials. For our
purposes, however, we find it more convenient to express p(s) as the ratio

of stable raticnal functions, n(s) and d(s).

p(s) = n(s)/d(s) (1.1)

As with the classical polynomial representation we require that n(s) and
d(s) be coprime, though in the context of our raticnal fractional
representation it suffices to only require that ni(s) and d(s) L.ve no
cormmon (closed) right helf plane zcros. Indecd, "real world" ccontrol

Syetem decigners often permit left half-plane pole/zoro cantellations,
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Interestingly, this coprimeness condition manifests itself in the Bezout

equality

u(s)n(s) + v(s)d(s) = 1 (1.2)

i.e., stable rational functions n(s) and d(s) are coprime in the sense that
they have no common right half-plane zeros if and only if there exists

stable rational functions, u(s) and v(s), such that 1.2 is satisfied.

y
Given the above notation it can be shown 19 that a compensator, c{s),
will stabilize a unity gain feedback systems with plant, p(s),.as

illustrated in Figure 1 if and only if it takes the form

zd(s)w(s) *+ u(s)
cfs) T Tn(s)u(s) + v(s) (1.3)

where w(s) is an arbitrary stable rational function (which serves as our

design parameter). ey

Figure 1. Single loop unity gain feedback system.
i

Moreover, the various feedback systems gains 2ll turn out tc be lincar in

: b . :
the decign parac~ters, w(s), For instance, the system input/cutyut galn

tawes the form

'®



h{s) = -n(s)w(s)d(s) + n{(s)u(s) (1.4)

As such, one can formulate a design theory in which the stability question

is totally resolved and at the same time the remaining design problem is

simplified by the linearity of the feedback system gain expressions.

Indeed by restricting w(s) to stable rational functions of the form

w(s) = a(s)w(s) + b(s)

where a(s) and b(s) are appropriately defined stable rational functions and

:(s) is a new stable rational design parameter we can incorporate

essentially any asymptotic design constraint into our theory. Specific

i
constraints which we have investigatedw'1

include:
(i) tracking
(ii) disturbance rejection
(iii) robust design
(iv) model matching
(v) pole placement
{vi) design with restricted compensators
(vii) simultaneous design

The goal of the research is to refine the above described results,

esp2cially with regard to the pole placement. To extend the theory to

cermit the inclusion of initial value constraints, znd to investigate the

porsibility of epplying the theory to linear time-varying syctem via the

moZium of a recontly developaed generalized frequency domain theery.
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During the past year our work has been ccncentrated on the solution of

2,6,18

the single and multivariate pole placement problems and on the

extension of our theory to the case of linear time-varyving systems.

SINGLE-VARIATE POLE PLACEMENT: By the pole placement problem6'1u in
our frequency domain setting we refer to the problem of finding a
stabilizing compensator, c(s), for a given plant, p(s), such that the

input/output gain, h(s), for the feedback system of Figure 1 takes the form

h(s) = r(s)/q(s) (2.1)
where q(s) is a prescribed Hurwitz polynomial and r(s) is an arbitrary

polynomial such that
o(r) < o(q) (2.2)

Here o( ) denotes the order of its polynomial argument and equation 2.2 is
required to guarantee that h(s) has no poles at infinity. It is
Interesting to compare this "frequency domain pole placement™ problem with
the classical state-space pole (actually eigenvalue) placemsnt problem. In
the latter case memoryless state feedback is employed, thereby fixing the
order of the resultant feedback system, whereas, in our case dynamic
feedback is employed allowing the designer to change the degree of the
System. Indeed, as we will see, the dugree ¢f the resulteant system is of

primary importance in cur thcory.
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About a year ago we gave what we thought to be a correct solution to
the "fregquency domain pole placement™ problem to the effect that the

problem admitted a solution if and (generically) only if
o(q) > w(p) = 1 (2.3)

where w#{(p) is the total number of (closed) right half-plane poles and zeros
of the plant transfer function, p(s), including poles and zeros at
infinity. 1In the process of trying to extend the result to the

rultivariate case, however, it became apparent that 2.3 was in error by

"one" in certain cases. As such, a major endeavor during the past year has

been the formulation of a correct pole placement theorem for the single-

variant case.
To formulate the pole placement theorem we let p(s) have a rational
fractional representation as per equations 1.1 and 1.2 and then further

decompose the numerator and denominator functions as

n(s) - 2l2ials) (2.3)
and
B(s)b(s)
d(s) = = nls) (2.4%)

Here a(s) and a(s) are polynomizals representing the left and right half-

~

plane zeros of n(s), b(s) and b(s) are polynomials rcpresenting the le¢flt

end right half-plane zeros of d(s), and m(s) is a Hurwitz common
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denominator for n(s) anc d(s). OCur pole placement theorem then results

from the following lemma.12

LEMMA: The single-variate pole placement problem admits a solution if

and only if the polynomial equation

a(s)x(s) + b(s)y(s) = qls) (2.5)
admits polynomial solutions, x(s) and y(s), such that
o(x) < olq) + o{a) - o(m) (2.6)
2.1)

oly) < olq) + o(b) - o(m)

Mcreover, q(s) and r(s) are (polynomial) coprime if and only if x(s)

and y(s) are (polynomial) coprime.
To obtain 2.3 from the lemma all that is necessary is to count

equations and unknowns in 2.5 through 2.7. 1In fact, however, the

reguirement that x(s) and y(s) be polynomial induces additional constraints

te the effect that x(s) and y(s) have noni-negative order. Surprisingly,
these constreints can become active just to the extent that the "1" in

equation 2.3 may drop out. Counting equaticns and unwnowns with this

additicnal constreint then yields the following ccorrected single-varicte

pole plzoement theorem. hote that the linear independence of the set of

~

linear cquitions dofined by 2.5 follows from the coprimencos of &l{sg) ond

THEJRELM:  Tre single-variate pole placerent provlom «Cimits a sclution

£ und (ponerically) only if
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o(q) > =(p) ~ j

where j is either 1 or 0 as indicated in Table 1.

(2.8)

Table 1.

MULTIVARIATE POLE PLACEMENT:

pole placement theorem.

J =1 j=0
p(s) o(m) = o(a) > 1 o(m) - o(a) = 0
and or
proper o(b) > 1 o(b) =0
p(s) o(m) - o(b) > 1 o(m) - o(b) = 0
and or
improper o(b) > 1 o(b) = 0
Perturbation factor for the single-variate

As a starting point for our research on

the multivariate pole placement problem we have considered a stable

rational multivariate plant characterized by an n by n transfer function

matrix, P(s).

Since P(s) is stable it admits a trivial rational fractional

representation with numerator P(s) and denominator equal to the identity.

Of course, this representation is trivially (right and left) coprime via

the equality

fellp(e)] + [13[1] =1

znd, as such, it is stabilized by compunsator:

y
of the form

— I




0(s) = [W(s)P(s) + 13 '[W(s)] (2.10)

where W(s) is an arbitrary stable rational matrix. Moreover, in this
special case the input/output gain for the resultant feedback system takes

the form
H(s} = P(s)W(s) (2.11)

In this highly specialized multivariate case we formulate the pole

placement problem by requiring that W(s) be chosen to stabilize the system

LA ,

and yield an input/output gain of the form t

I

H(s) = R(s)/q(s) (2.12)

where q(s) is a prescribed Hurwitz polynomial and R(s) is an arbitrary n by 5
e
n polynomial matrix such that £
o(R) < o{qg) (2.13)
where the orcer of a matrix is d¢efined to be the maximum of the orders of
its components.
Given P(s) one may factor out a (Hurwitz) common denominator, b(s),
and then trernsform the numerator into Smith canonical forrm, Eltrer
L
replacing the common denominator this then yields the Jeith-MocMillan form &

for P(s) of 2.4,

v :,‘ 3
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P(s) = U(s)D(s)V(s) (2.14)

where U(s) and V(s) are unimodular polynomial mztrices znd [(s) is a

-

diagonal matrix with (possibly zero) stable rational entries: :
. = a, . b, 2.1
dl(s) al(s)al(s)/bl(s) (2.15)
Letting Vi(s) denote the ith row of V(s) we then obtain the following
theorem.6
THEOREM: 1) If the multivariate pole placement problem admits a i
.
solution then :
o(q) > o(b;) = o(3;) = o(V,) (2.16)
for all i = 1, ... ,n.
' e
ii) The multivariate pole placement problem admits a &
solution if -
o(q) > o(b,) - o(a,) (2.17)
for all i =1, ... ,n.
Unfortunately, the necessary end sufficient conditicns of 2.1€ and
2.17 do not coincide except in the single-varizte czse where they coincide -
with the (ccrrected) single-variate thecrem.
Needless to say the above theorem leaves rzny unancwored guostions,
Ir particular, cince the Zrith form is not unigue the necefzary condition -
P
of the thesrum can concecivably be tipghtened by oiz;ly varying the Drith
form vmployed, Bven here, howover, it is nobt clear if & ninple Srith form
will minivize the expreccion of equiution 2,16 i htoro . Soly ‘oo Ll g
IR
R




[\

—

{perscnally 1 doubt it). Furithermcre, what happens if we formulate
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necessary condition in terms of the columns of U(s)?
TIME-VARYING SYSTEMS: Although many of the above techniques can be
formulated in an abstract operator theoretic setting their power and

potential applicability to the CAD problem lies with the simple freguency

domain formulation employed. As such, during the past year we have

enceazvored to formulate a viable frequency domain theory which is

applicable to time-varying systems and, yet still preserves tt character
of the classical time-invariant frequency domain concept. Of ‘rse, many

such generalized frequency domain concepts have been formul: ! sver the

years (including several by the principal investigator) using :unctions of v
¥
several variables, matrix and operator valued functions, ete. -
In the present formulation, motivated by the work of Arveson and his
: . 1,7 - .
students, we represent a time-varying system by an operator valued
: s - e
function of frequency* which, we believe, has every analytic property of .
the classical frequency response for time-invariant operators, though it b
does not yield the expected computational simplification except in the
. . 2,15
tits-invariate case,
In its rocst general form (2 Hilbert resolution space or its
goriralizntions) the requirea frequency response takes the form: <
') n -1|v'f I [of
Llw) = W(w) AUw) (2.18)
|
.
.
¥
¥Iy firct PR R S S A A 2ant Lo reprecont o osingle opdrataor, Lhe given
tiro-virying oy U, by an o) rotor velued function (Whose value ot 2, ty
e ey, . : : n Taet, nLow vir Wit (
PR SRS cr fre Sy
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i -~ vem e ~ - ' it - .
Will simply illustrate tne concopt in the "rool worlI™ continit.r tirs o
wnere U(w) is, vizs olzssizal - [, tranzficrn thacry, the cperabtor whion

CU()FY = explict)f(t) {(2.19)

X' = A(E)X + 2(t)u

C(e)YX + D(W)u (2.20)_

g
"

~

w) Is given by the surprizingly simple expression

[wI + A(LYIX + 3(t)u

B
"

(2.21)
s .~ n/ Nl el
y = C{t)X + D{t)u
nere, w is the parcoater and, zs such, 2.21 ghould b2 interproted oo
TiM0erontinl mperztie valued funciion of frejuoncy.  Altnougn Sne simple
-y -~ ~ o - - .y - - ER ~ - »e R e . .
eLprLIzion 01 2.2 15 scrmosaniat surprisi g if one suoitte NP
Llme=inviriant case we then cobtzin
1 M P
A - . a i JOVY
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Now, this yields the classical frequency response valued function of w
given by
~1

Alg,w) = [C(wI - wIl - A) ' B + D] (2.23)

As such, even though 2.23 technically has two frequency variables (w is a

parameter and ; is the variable of a multiplication operator) they are

clearly redundant and may be eliminated by the change of variable

w=w-w (2.24)
whence we cobtain the classical frequency response function
- - -1
Alw) = [C(wI - A) B + D] (2.25)

Although the above formulation does not yield the kind of
computational simplification associated with the classical time-invariant

freguenty response it eppears to retain every analytic characiericstice
1 ¥ I

. . . 2,15
usually zssociisted with the classical freguuncy recponse, Ac such, we

believe that it can serve as the ideal medium with which to extend cur
certrol syctem design concopis to the time-varying cnase anc have uniortaden

Loy lirinary investigetion of tnis poocibilivy.

CUALR RCTIVITING: In eddition to the above desceribed rooonooh Wi Luve

: . T2,
conline d cur praversligallon of the dirultancous doslipn probtlem 7 .nag
initiated & e lirannry rvectipation of fne oasntive contrel protien Srom

A

b
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the pcint of view c¢f cur design thecry. The formar prcblem has proven to

be extremely hard especially in the discrete case. In tnis endeavor we

have completed our abstract algebraic-geomatric characterization of the

Simultaneocus stabilization problem which yields a complate but

noncomputations solution., Furthermore, we have continusd our work on the

discrete problem, recucing it to an (albeit unsolvable) interpoclation

problem. Int2restingly, some parallel work by Byrnas, et al. has yielded

3

some generic, but egually untestable results.
In the adaptive control area we have formulated an approcach to the

problem which yields a solution which is always globally stable but is only

locally stable when the model for our plant is sufficiently close to the

actual plant. At the present time we are trying to determine "how close"
is sufficiently clese. To this end we have conjectursd that the model must

lie in the samz connected compeonent {of an appropriate space of plants) as

the actual plant. At the present time this work is in a very preliminary

i

orm and, indeed, the precise definition of the appropriate "space of
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