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CHAPTER 1

INTRODUCTION -

1.1 OBJECTIVES

The primary objective of this research has been to

develop a methodology tor etticient implementations of

high-level operations in nonprocedural definitional

programming languages. The developed methodology has been

applied to the MODEL language and automatic program

generator.

1.2 MOTIVATION

Based on the degree of abstraction, programming

languages can roughly be classified into three categories:

low-level, high-level, and very high-level. Low-level

languages, such as assembly languages, provide abstractions 5

at the machine instruction level, alleviating the need for

the user to think about programming in terms of instruction
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or data codes. High-level languages such as FORTRAN, PL/I

or PASCAL, have more function and control abstractions as

well as richer data types. They offer advantages such as

machine-independence, suppression of irreverent details, and

reduction of the scope of programming errors. Very

high-level definitional languages carry the abstraction even

further. The elimination of explicit sequencing control

allows the programmer to specify the desired outcomes as a

function of the input, free from concern with the

step-by-step statements of a computation. This applies not

only to operands which are elementary data but also to

complex structured data entities.

Very high-level languages which have no explicit

sequencing control are generally referred to as

nonprocedural languages [Leav74]. The underlying concept of

nonprocedural programming languages is to discard the

conventional von Neumann view of sequential computation,

thus allowing the expression of computations to be more

natural, easier, and less error-prone. Nonprocedural

languages are also more powerful because of their high-level

data structures and the high-level operations.

Despite the many advantages, nonprocedural programming

languages have limited acceptance because of the

inefficiencies of their implementations, especially for

D I
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high-level operations. Although optimization of high-level

operations has been incorporated in some language

processors, it has been ajl..ied locally, treating the

high-level operations as indivisible entities and thus

retaining the user's global structuring of the computation.

In the area of database access languages, decomposition and

optimization have been used, however, only for queries and

not for general computations. Abstract data type has also

been suggested for high-level operations in nonprocedural

languages. The approach has solved the modularity problem,

while the efficiency problem remains.

MODEL is a general purpose nonprocedural programming 4

language. The MODEL processor accepts very high level

specifications and compiles them into a high-level target

language (PL/I). Important features of the MODEL system 4

include its abilities to verify the completeness and

consistency of specifications and to resolve some

inconsistencies and ambiguities automatically. However, the

lack of high-level operations in the initial MODEL

implementation made the specification of some complicated

computations lengthy and inconvenient. It has been

necessary to increase the expressive power of the language

by providing high-level operations. Since efficiency is an

important issue in nonprocedural programming languages,

efficient implementation has been a major concern in the
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0
incorporation of these operations. It has also been

necessary to retain in the extension the powerful analytical

methods incorporated in the processor to perform checking

and global optimization.

1.3 HIGH-LEVEL OPERATIONS PROVIDED

This section briefly describes the operations that were

selected for the implementation in MODEL. Generally, all

the operations operate on tree structured operands. The

selected tree (or subtree) data structure is assigned a

name.

The implemented operations are: 5

1. Simple assignments and operations:

Assignments such as A=B and the operations +, , * and

/, for example A=B+C. The latter means that respective

terminal nodes of B and C are added to define the

respective terminal nodes of A. In addition, the

conditional operation A=IF cond THEN B ELSE C ... may be

used.

2. Matrix operations: a

Transposition, multiplication, and inversion.

A constant UNIT may also be used as operand.

3. Relational operations
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UNIQUE: Eliminate duplicated elements from a one-
dimensional array.

UNION: Form a one-dimensional array with elements from
two one-dimensional arrays.

DIFF: Eliminate those elements from a one-dimensional
array which are in another one-dimensional
array.

PRODUCT: Form a one-dimensional array which is the S

Cartesian product of two one-dimensional
arrays.

4. Miscellaneous data manipulations

SELECT: Select elements from a one-dimensional array to
form another one-dimensional array.

MERGE: Merge two one-dimensional arrays to form another
one-dimensional array.

SORT: Sort elements of a one-dimensional array.

COLLECT: Convert a one-dimensional array to a two-
dimensional array.

FUSE: Convert a two-dimensional array to a one-
dimensional array.

CONCAT: Concatenate two one-dimensional arrays to form
a one-dimensional array.

These operations are selected based on a survey and

comparison of high-level operations provided in various

languages. A general improvement provided here over the 0

surveyed operations is the extension to allow more general

tree structures as operands. A flexible selection scheme

allows any node in a structure to be operated on. The 0
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operations provided in MODEL are therefore not limited to

only certain kind of fixed structures.

Several operations are selected based on the experience S

of APL. APL has illustrated that some array operations are

useful in rearranging or selecting array elements. SELECT,

MERGE, COLLECT, SORT and FUSE are the important ones among -

the array operations. They are provided in MODEL to handle

arrays of general structures.

The matrix operations are taken from the matrix

algebra. They are provided because of the frequent needs to

write equations and expressions involving vectors and

matrices. Besides matrix multiplication, inversion and

transposition, basic operations are also extended

piecewisely to accept vectors and matrices as operands.

S

The Relational Algebra has been used as a standard of

comparison for the theoretic expressive power of relational

database access languages. In order to make MODEL at least

as powerful as the Relational Algebra, or relational

complete, four more operations - UNIQUE, UNION, DIFF and

PRODUCT are added.

The provided high-level operations described above

constitute a basic set of frequently used ones. Their power

and the flexibility in using them essentially eliminate the
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need of the user to define additional operations.

1.4 CONTRIBUTIONS S

This research has accomplished the development of a

source-to-source transformation methodology for efficient

implementation of high-level operations in nonprocedural

languages. The methodology has been applied to the MODEL

language in providing matrix operations and general data

structure manipulation functions. Efficiency is achieved S

via decomposition of high-level operations into elemental

ones, thus allowing general global optimization at various

level to be applied. More specifically, the accomplishments S

include:

a) A new source-to-source transformation scheme which

enables automatic selection of data representations and

allows the applications of global optimization at the

source, the scheduling, and the code generation levels.

b) The structured operands are not restricted to rectangular

arrays of scalars (as in APL) or flat tables (as in

relational database languages). They can be *

multi-dimensional arrays of arbitrary hierarchical

structures. This makes the operations more powerful.

c) To obtain efficiency the transformation especially use

*
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subscript expressions of selected forms and secondary

indirect indexing arrays. In particular, sawtooth arrays

and sublinear arrays are introduced.

d) The efficient implementation of high-level operations

required a new type of building blocks in the array graph

used to represent the specification. Integral operations

are suggested to facilitate the decomposition of

high-level operations which are procedural in nature.

e) A complement of high-level operations has been selected

for incorporation in the MODEL language. This increases

the expressive power of the language and makes the

specification of computations easier. The data-flow

analysis philosophy and the verification power of the

MODEL processor have been preserved.

1.5 APPLICABILITY OF THE METHODOLOGY

The question of how widely is the methodology usable

can be answered by examining the elements upon which the

methodology relies. Basically, the methodology is based on:

a) Source-to-source transformation,

b) Data flow graph, and

c) Global optimization on memory usage.

The first element, source-to-source transformation, does not

3
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impose any restriction on a language processor, since it can

always be realized as an independent processing phase. The

other two elements, data flow graph and global optimization

on memory usage, do depend on the language processor.

For nonprocedural programming language processors, the

methodology is directly applicable, since the data -

dependency relationships are readily available from the

source specification. It is equally applicable to other

language processors provided they internally use data flow

representations.

As an example of illustrating general applicability of

the methodology, consider a procedural language processor.

Since the source program specifies the execution sequence

rather than data dependencs, data flow graphs showing data

dependency between variables have to be constructed before

the methodology can be applied. The processing therefore

contains:

a) analyze the program,

b) construct data flow graph,

c) optimize use of memory, and

d) generate code.

S
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1.6 ORGANIZATION OF THE DISSERTATION

This dissertation consists of nine chapters.

Chapter 1 is the introduction to the dissertation. It

gives the objectives and motivation of the research, and

summarizes what have been accomplished.

Chapter 2 surveys the related work in the area of

nonprocedural programming languages and high-level

operations. Various efforts in providing efficient

implementations of high-level operations are examined.

Chapter 3 presents the extended MODEL language. It

briefly introduces the basic MODEL language, and then

describes in detail the high-level operations provided,

including their syntax, the checking performed, and some

examples of using them.

Chapter 4 discusses the main issue in nonprocedural

language implementation - efficiency. Justification of

achieving efficiency via source-to-source transformation is

given.

Chapter 5 gives an overview of the extended MODEL

processor. It describes various phases of the processor,

from syntax analysis to code generation. The internal data

flow model employed by the processor is described.
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0

Chapter 6 describes in detail how the source-to-source

transformation is carried out in the MODEL processor. The

transformation process involves mainly two phases - the

preprocessor which extracts data structure information, and

the syntax analyzer which invokes the transformation

procedures.

Chapter 7 analyzes the source-to-source transformation

problem and gives the transformation rules for every

high-level operations provided in the MODEL language.

Techniques used in deriving the transformation rules are

given.

Chapter 8 describes the analysis and checking performed

for achieving higher efficiency.

Chapter 9 summarizes the work and suggests some further

researches.

The syntax of the extended MODEL language (in EBNF/WSC

- Extended BNF with Subroutine Calls) is included as

Appendix A. Complete examples of the transformations are

given in Appendix B.



CHAPTER 2

SURVEY OF RELATED WORK

The idea of operating on high-level structured data

objects as a whole was initially introduced in the

programming language APL [Iver62] in the early 60's.

Operations on vectors and matrices were incorporated into

the language to allow less procedural specification of

computations. The extensive use of APL has also

demonstrated the flexibility of array structures for various

types of problems. In Section 2.1, the APL language is

examined. Various proposals for extending the APL data

structures are surveyed.

Section 2.2 reviews the programming language LISP

because of its functional properties and its need for

efficient handling of lists. It faces some similar problems

as far as selecting efficient data structures is concerned.

- 12 -
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The use of abstract data type to implement high-level

operations is reviewed in Section 2.3. Although the

abstract data type approach has mostly been proposed for

procedural high-level languages, it may readily be used in

nonprocedural ones [Sang80].

Section 2.4 reviews the very high-level language for •

set manipulations, SETL. The selection of efficient data

structures in SETL and its storage optimization techniques

are examined.

Section 2.5 reviews some database access languages.

The way queries are decomposed for optimization is similar

to the decomposition technique suggested in this research.

They both are ways of reducing the complexities of

operations for easier analysis.

2.1 APL

APL has a number of distinguishing characteristics;

among them are high-level operations on entire data

structures, very simple sequence control, and very simple

syntax and semantics. It recognizes only two types of

scalar data - numeric and character, and one type of

structured data - rectangular array of homogeneous scalars.

There are no explicit variable declarations. The

recognition of array structure allows functions and

. . ... . . . . . . . . . . . . l - - I I i I | l ii m - l / . . . . . . . . . . . .
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operations to be applied to elements in the whole arrays.

This implicit application eliminates the need for a

programmer to write loops or save intermediate results as

required in other languages.

However, the simplicity of APL's data structures also

limits the usefulness of the language for some applications. 0

The limitation that arrays must be rectangular and

homogeneous makes the representation of nonhomogeneous set

of data difficult. This inconvenience has prompted 0

continuous interest in generalizing the APL data structures.

There have been a number of proposals on how to incorporate

non-uniform data structures into APL. The approaches can be 0

basically divided into three categories. All of them deal

with generalized arrays, or tree-like structures.

The first category is to generalize the definition of

an array to allow nested arrays. A nested array is a

recursive data structure where the elements of an array may

be arrays themselves. The nested view of array suggests

that the structure and selection functions of current APL

may be extended without modification. However, new

primitive functions are still needed to manipulate the

nesting level ot arrays, and new operators to assist the

item-wise operations [Gull79] [Ghan73].
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The second category of approaches is simply to add a

new data structure to APL, separate from the original array

structures. Recursively defined trees have been suggested

as a new data type for this approach [Alfo76] (Vass73].

Because the newly introduced data structure is separate from

the existing arrays, a completely new set of functions has

to be added to manipulate the new data structures. This

complicates the language. The approach is considered too

radical.

The third category of approaches extends the current

APL arrays to a less general multi-dimensional ragged

arrays, rather than recursively nested ones. With the S

introduction of carrier array [Lown8l], the data-driven

semantics of the primitive functions and operators is

preserved. The rank structure of the array, which permits S

the implicit iterations, is maintained. But some primitive

functions are given extended definitions in order to apply

to both scalar and non-scalar data objects uniformly. S

Besides the limitations of its data structure discussed

above, APL has storage allocation problem when large amount

of data are to be manipulated. This is due to the limited

amount of storage space allocated for the work space

associated with each APL session. Even with the
ig
incorporation of file handling functions to create, remove
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or update components of files, the user still can not view a

file as a whole and apply high-level operations in single

steps, as it is done with structures residing in the work

space. This in a sense forces the user to return to the

'word at a time' looping and procedural processing style of

lower level languages.

The techniques proposed in this research allow the

incorporation of high-level operations with the preservation

of high-level data abstraction. As will be described in the S

following chapters, the user still can view a structure,

including files, as a whole unit and apply high-level

operations on it with single assertions. The MODEL S

processor automatically employs suitable storage allocation

schemes to avoid the allocation of main storage for the

entire structure.

2.2 LISP

*D
LISP is a well known functional language. LISP data

can be either atoms or lists. Atoms are numbers or strings

of characters. Elements in a list can be either atoms or
SD

other lists. Basic operations in LISP include:

CAR(s) - returning the first element of the list s.

CDR(s) - returning the list that remains when the
first element of s is deleted.
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CONS(a s) - returning the list that results from
prefixing the atom a to the list s.

In spite of semantic elegance, excessive runtime 0

storage overhead is required because of the repeated copying

of list structures implied by the nature of the operations.

Most LISP implementations allow explicit store operations 0

such as RPLACA, shifting the responsibility of storage

management to the user. This destroys the functional

property of the language. S

A technique of improving LISP's efficiency is using

lazy evaluation [Hend76]. This can be illustrated by the

evaluation of

CAR(CONS(x y))

The evaluation of list y can be avoided by delaying it until

it is needed, which may never happened. The result of the

above evaluation is always equal to the result of evaluating

x alone. The general problem with this method is how to

determine when an evaluation step is really necessary.

Propagation schemes must be used to pass the 'need to be

evaluated' property.
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Another technique for efficient list handling is by

using the I-structures [Arvi80]. An I-structure is a list

with monotonic creation and consumption. This property

allows a language processor to acquire storage only when an

element is to be produced, or to release it as soon as the

element is consumed, thereby to retain only as many elements

in main storage as needed, instead of the whole structure.

It is interesting to note that the properties of the

I-structures are recognized in MODEL automatically. Virtual

or window storage allocation schemes (described in the next

chapter) are used in the MODEL processor for those variables

whose values are defined and used in a monotonic fashion.

2.3 ABSTRACT DATA TYPES

Like structured programming, abstract data type

emphasizes locality of related collection of information.

The properties of a data structure and its operations are

specified in a separate unit of the program. The idea is to

treat the data structure thus defined as a whole, operated

on only by those operations defined for it. The programmer

is then only aware of the data type and its operations, not

their implementations. It is a way of extending the set of

available types for the programmer while at the same time

keeping the data referencing simple and program logic
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manageable.

A number of high-level programming languages provide

some facilities for supporting abstract data type. Pascal

has a set of data structuring constructs that are suitable

for defining data abstractions. The Package construct in

ADA can be used to isolate a set of related definitions from

the rest of the program. It also has generic definitions

which allow many similar abstractions to be generated from a

* simple template.

CLU [Lisk77] and Alphard [Shaw77J are languages

designed to support the use of abstract data type in program

construction. They both provide a mechanism to enforce

information hiding - or encapsulation - for better control

over the scope of names, a type definition mechanism for

separation of the specification and representation of a data

type, and an operator definition mechanism for defining type

specific operators.

Abstract data type has been applied to the

nonprocedural language NOPAL [Sang8O]. It was primarily

used as a tool to achieve modularity. The specification of

an abstract data type is independent of its use. The

sub-unit where an abstract data type is defined could be

different from the sub-unit which uses it. An abstract data

type can also be recursively defined to obtain more

[ • S



- 20 -

200

complicated structures such as stack of stacks. The main

advantage is in decomposition of a problem. It allows

operations on larger units of data. When these larger units

of data correspond to some concept naturally occurring in

the problem domain, the specification can be conveniently

written in terms of these concepts.

The major disadvantage of the above approach is the

inefficiency in storage usage. First, in the generated

program for the specification of an abstract data type, 9

storage space is allocated for the representation of each of

the variables of abstract data type. The storage space can

not be shared or used again. Secondly, the module that

defines the type and the one that uses it are analyzed

independently, eliminating the possibilities for global

optimization.

For the incorporation of high-level operations, the

decomposition techniques introduced in this dissertation

solves the efficiency problem by transforming each

high-level function into an equivalent set of basic

operations (without using additional interim variables).

The decomposed function is analyzed together with other

parts of the specification, thus allowing global

optimization.
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2.4 SETL

SETL is a very high-level set oriented language. The

basic data structures of SETL are sets and tuples. Sets are 0

unordered collections of objects with the constraint that a

given element can not appear more than once. Tuples are

actually one-dimensional vectors except that they have -

dynamic length. They are used to represent ordered

sequences and unordered "bags" where identical elements may

occur. The primitive data types include integers, real S

numbers, and strings. SETL provides the usual set theoretic

operations (union, intersection, etc.), existential and

universal quantifiers, and set formers. For execution *

control, SETL uses conventional control structures similar

to those of PASCAL.

SETL is weakly typed and requires no variable

declarations. The selection of internal representations for

various data types thus becomes very important in achieving

both storage and execution efficiencies. Basically, tuples

are represented by arrays and sets by linked hash tables, as

illustrated in Figure 2.1. While the linked hash tables

provide flexibilities in adding and deleting set members, 5

they require large overhead in storage space and involve

time-consuming hashing operations.

* 4
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60

49

26 250

51

0-0

null

The hash code for an integer is assumed to be
its value mod 4.

Figure 2.1 Linked Hash Table Representation for the set

149,2,60,12,50,26,511

The early approach to resolve the efficiency problem

was to allow the programmer to supply the variable usage

information manually to the compiler via a set of data

declarations [Dewa79]. The idea is to share internal

representations, mainly in the linked hash tables, based on

the knowledge about all possible values each variable may

assume. For example, if A is always a subset of B, then A

and B can share one representation, through some pointer

mechanism, as opposed to having their own copies. The data
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declaration sublanguage used to control the data

representation selection is a supplement to the 'pure' SETL

language. A program of the pure SETL language to which data

structure declarations have been added is called a

supplemented program. The SETL system is designed to ensure

that the function of the supplemented program is equivalent

to the base-language program which it incorporates.

The technique of manual data structure selection,

described above, has been improved so that the selection of S

appropriate data representations are automatically done

during the compile-time without the help from the user

[Scho8l]. Instead of obtaining the information about data •

usage from the user, the system performs a global analysis

of the way in which variables are used and related to each

other.

Besides reducing the number of hash tables and their

sizes, the SETL processor also employs conventional

optimization techniques such as moving of invariant code out

of a loop, removal of unnecessary copying operations

[Fred83], and common subexpression elimination [Fong77].

S q
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2.5 DATABASE ACCESS LANGUAGES

The information represented in a database is made

accessible to its users by database access languages. Since 0

a database system is set up based on certain data model, the

operations provided by a database access language depend

very much on the nature of the data structures allowed in S

the model.

For network and hierarchical data models, the database

access languages are usually coupled to the database systems

either by defining subroutines that execute database

requests when called (e.g., DL/I-PL/1 of IMS), or by

embedding database constructs into an existing language and

using a preprocessor to translate these constructs into

run-time calls on the database systems (e.g., DML of DBTG).

One major characteristics of the languages for these models

is that the user always has to explicitly specify the

navigation needed in the network or hierarch to reach the

desired records. These languages are basically procedural.

For relational data models [Codd70], the user perceives

the database as a collection of flat tables of tuples. The

operations are set-oriented in that the retrievals and

modifications are specified for all appropriate tuples in a

relation (or set) simultaneously. The user does not specify

the sequencing of traversals and need no position

I
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indicators. It is a higher-level approach in terms of

nonproceduralness. Languages for relational data models can

be either algebraic (e.g., ALPHA), predicate calculus (e.g.,

QBE) or a combination of both (e.g., SEQUEL). They all

provide basic set and tuple operations. These languages are

usually added to the database systems as independent new

languages in which database facilities are integrated into

the language environment.

An important part of processing database access S

languages is the optimization of queries. Since the plan

(or procedure) to access data is formulated by the language

processor, the choice of an efficient access path becomes

its primary task. The general strategy in query

optimization is to transform a multivariable query into a

set of simpler queries. There are two categories in this

kind of transformation:

(a) Substitution. Let Q(Xl,...,Xi,...,Xn) be a n-variable

query, where the X's denote variables ranging over n

relations. The query can be transformed into a set of

(n-i) variable queries by substituting Xi with all its

possible values. After the transformation, the simpler

querien are of the form Q(Xl,...,w,...,Xn), where w is

one of the actual value Xi may have. Repeated

substitution may eventually reduce the query to a set of

S
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1-variable queries.

(b) Reduction. A query Q(Xl,...,Xi,...,Xn) can be divided

into two queries Ql(Xi,...,Xn) and Q2(Xl,...,Xi-l,Yi) of 5

n-i+l and i variables respectively, where Yi is the

result of Q. In other words, an interim relation is

obtained by evaluating the given query partially and use -

the partial result for the evaluation of the remaining

simpler one. This procedure can be repeatedly applied

to the reduced subqueries.

The abstract database access language proposed by Codd

[Codd72], the relational algebra, has been used as a

standard of comparison for the theoretic expressive power of

relational database access languages. A language is

relationally complete if it can formulate a manipulation

that yields the same result as any relation definable in the

relational algebra. There are five basic operations in the

relational algebra: Union, Set Difference, Cartesian

Product, Projection, and Selection. The method proposed in

this research is used to provide all these operations to

show the feasibility of the suggested techniques, and to

make MODEL at least as powerful as the relational algebra.



CHAPTER 3

THE EXTENDED MODEL LANGUAGE

MODEL is a nonprocedural language for specifying

computations. The language provides facilities for 6

specifying what the data objects are and their

inter-relating equations, rather than how to compute them.

For example, there are no explicit loops or I/O controls.

Equations in MODEL have the same meaning as in mathematics.

There are no side effects. The order in which the

statements appear in the specification is irrelevant. S

A specification in MODEL is accepted by the MODEL

language processor. It is checked for completeness and

consistency, and a program in the target language (currently

PL/I) is generated. The detailed description of the

language can be found in (LuKS82] and (Schw83]. Here in

this chapter, Section 3.1 briefly reviews the elementary

operations in the language. Section 3.2 describes the

- 27 -
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extensions for high-level structure operations which are of

concern here.

3.1 ELEMENTARY OPERATIONS IN MODEL

There are three kinds of statements in MODEL: the

header, the data description, and the assertions. The

header statements name the generated program and the

external files. Data description statements describe the

structures and attributes of the variables. Assertions are

equations which define some variables in terms of others. A

collection of statements which can be processed as a unit is

called a specification.

3.1.1 DATA STRUCTURES

Data objects in the MODEL language can be

hierarchically structured. They can be represented by

trees. The nodes in the tree represent variables. A group

of nodes with a common parent can be referenced by using the

name of the parent node. The name of the root is the name

of the entire tree structure. Terminal nodes of the tree

represent unstructured elemental. data items such as numbers

or character strings. The nodes are labelled with variable

names. The repetition of a variable is indicated by

appending to it the number of repetitions in parentheses, or

I
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alternatively by use of an asterisk if the number of

repetition is not fixed.

Figure 3.1 is an example of a MODEL data structure.

The tree shows that the structure DEPT consists of a field

called DEPTNO, an unspecified number of EMPLOYEEs, and ten

PROJECTs. An EMPLOYEE consists of two fields, EMPNO and

NAME. A PROJECT consists of a PJNO and an unspecified

number of EQUIPs, which in turn consists of the ITEMNO and

DESC fields. 0

* 0

* 0

* S

. . . .. . i iiIB il a l . . . . . . . . SI- - I l . . . .
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DEPT

+- - - - - - -

DEPTNO EMPLOYEE(*) PROJECT(10)

I .

EMPNO NAME PJNO EQUIP(*)

0 S•
ITEMNO DESC

Figure 3.1 An Example of a Data Definition Tree

A repeating node variable may be viewed as an array.

If there are n repeating nodes along the path from the root

node to a node, then the node variable represents an

n-dimensional array. The range of a dimension (number of

repetitions) may vary depending on the indices of higher

level dimensions. Hence the shape of the array may be

jag-edged. A n-dimensional jag-edged array can be viewed as

an n-level nested list. A two-dimensional array with
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constant ranges m and n is an m by n matrix. A

one-dimensional array with range n is also referred to as a

vector. Arrays in MODEL can also be viewed as sets, if all

elements in an array have distinct values.

Data structures are declared using data description

statements. They are essentially the linearized form of the 5

respective data definition tree, plus the type

specifications for the terminal variables. The variables at

the lowest level of the tree (or terminal nodes) are denoted

as fields. A field must have a primitive data type

attribute such as a number or a character string. Variables

at nonterminal nodes may be either records or groups, where 0

a record is unit of transfer of information from or to an

external device. Root variables may be denoted as files.

Variables denoting fields are called field variables, and 0

those denoting records, groups, or files are called

structured variables. The data description statement for

the data structure of Figure 3.1 is:

1 DEPT IS FILE,
2 DEPTNO IS FIELD(NUM(4)),
2 EMPLOYEE(*) IS GROUP,

3 EMPNO IS FIELD(NUM(6)),
3 NAME IS FIELD(CHAR(30)),

2 PROJECT(10) IS GROUP,
3 PJNO IS FIELD(NUM(5)),
3 EQUIP(*) IS GROUP,

4 ITEMNO IS FIELD(NUM(10)),
4 DESC IS FIELD(CHAR(30));
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3.1.2 ASSERTIONS

Assertions are essentially equations. The basic format

of an assertion is S

<variable> = <expression>;

The variable on the left hand side of the equal sign, called

the target variable, is defined by the expression on the

right hand side. Variables referenced in the expression are

* called source variables. A more general form of the

assertion is:

<variable> = IF <condition>
THEN <expression>
ELSE <expression>;

The following are examples of assertions:

A = B + 5;
C(3) = IF A<O THEN X(l) ELSE Y(2);

A special kind of variables, called

* subscript variables, are used to denote indices of

referenced structures. A subscript variable assumes all the

values of positive integers from 1 through the respective

dimension range of the array. For example, let I and J be

subscript variables, then

A(I,J) = IF I=J THEN 1 ELSE 0;
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defines a unit matrix.

3.1.3 AN EXAMPLE OF A MODEL SPECIFICATION

Figure 3.2 is a complete example of a MODEL

specification. It specifies a task of separating a sequence

of sorted records into groups, where all records in a group

share a common property, in this case the same account

number. The specification views the input and the output

files as one-dimensional and two-dimensional arrays of

records respectively, and expresses the correspondence

between the input and output records in terms of the indices

of respective records. Two interim indexing arrays are used S

for the two dimensions of the output records.

The first three lines of the specification in Figure

3.2 constitute the header statements. They specify the name

of the specification - GROUPING, the source file - Fl, and

the target file - F2. Lines 5 to 8 describe the structure

of the source file Fl, consisting of unspecified number of

records (F1R(*)), with two fields in each record FlR, an

account number - ACCT and a description of the account -

DESC. The statement in lines 10 to 14 declares the

structure of the target file F2, which consists of groups -

F2G. Each group has record structures - F2R, which in turn

contain two fields with the same names as those in the input

. . . . . . . . . I | T m n - l n l . ... . . . . . .. . . . . . .
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records - ACCT and DESC. Ambiguities in referencing are

avoided by prefixing field names with the corresponding file

names, such as F2.ACCT AND FI.ACCT.

The subscript I is used to index the one-dimensional

input records FiR. It is declared in line 21. X and Y are

declared in lines 18 and 19. They are declared without any

information on their dimensionalities. This information is

resolved by the MODEL processor automatically. They denote

the indices of elements of the two-dimensional output

records. The assertion in lines 23 to 27 defines the values

of the elements of array X in terms of I. It indicates that

when an input record account number changes, i.e.,

FI.ACCT(I)-=F1.ACCT(I-1), a new group is initiated and the

group index is incremented by 1, otherwise the the group

index remains the same. The assertion in lines 29 to 33

defines the elements of array Y also in terms of I. It

indicates that in each group the indices start from 1 and

are incremented by 1.

The assertion in line 16 defines the number of input

records. The assertion in line 38 defines the number of

output groups, as equal to the value of the last element in

X, or X(SIZE.FIR). The assertion in lines 39 and 40 define

sizes of output groups, as equal to the values of the last

element of the respective group in Y, i.e., when
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FI.ACCT(I)-=NEXT.Fl.ACCT(I).

Finally the assertions in lines 35 and 36 define the

output fields in terms of appropriate input fields, indexed

by the two arrays X and Y.
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* 4

1 MODULE: GROUPING;
2 SOURCE: Fl;
3 TARGET: F2;
4
5 1 Fl IS FILE,
6 2 F1R(*) IS RECORD,
7 3 ACCT IS FIELD(NUM(10)),
8 3 DESC IS FIELD(CHAR(30));
9

10 1 F2 IS FILE,
11 2 F2G(*) IS GROUP,
12 3 F2R(*) IS RECORD,
13 4 ACCT IS FIELD(NUM(10))
14 4 DESC IS FIELD(CHAR(30);
15
16 al: SIZE.F1R = r23;
17
18 X IS FIELD(NUM(5));
19 Y IS FIELD(NUM(5));
20
21 I IS SUBSCRIPT;
22
23 a2: X(I) = IF I=l
24 THEN 1
25 ELSE IF F1.ACCT(I)-=FI.ACCT(I-1)
26 THEN X(I-1)+1
27 ELSE X(I-1);
28

29 a3: Y(I) = IF I=l
30 THEN 1
31 ELSE IF FI.ACCT(I)-=F1.ACCT(I-1)
32 THEN 1
33 ELSE Y(I-1)+I;
34
35 a4: F2.ACCT(X(I),Y(I)) = FI.ACCT(I);
36 a5: F2.DESC(X(I),Y(I)) = FI.DESC(I); q
37
38 a6: SIZE.F2G = X(SIZE.F1R);
39 a7: SIZE.F2R(X(I)) = IF I=SIZE.FIR
40 FI.ACCT(I)-=NEXT.F1.ACCT(I)
41 THEN Y(I);

F q

Figure 3.2 An Example of a MODEL Specification
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3.2 HIGH-LEVEL OPERATION EXTENSIONS

This section describes the extensions made to the MODEL

system for supporting use of high-level operations. Some

conventions and notations in referencing high-level

structured data are described first in Section 3.2.1.

Sections 3.2.2 and 3.2.3 describe the high-level operations •

in two categories - matrix operations and array manipulation

functions. Section 3.2.4 gives an example of use of

high-level operations. 6

3.2.1 DEFINITIONS AND SYNTAX

This section summarizes referencing structured data and

the requirement of structured variable compatibility.

3.2.1.1 Referencing Structured Data

When using high-level operations, the operands can be

referenced in two ways: on a structure aggregate level - S

which is generally simpler, and on a

structure instance level - which is more flexible.

A reference at the structure aggregate level refers to

the collection of all instances of the fields in a

structure. The syntax of such reference can either be a

structured variable name or a field variable name
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subscripted with asterisks. For example, consider the data

structure:

1 A IS GROUP, 0
2 AG(3) IS GROUP,
3 AH(2) IS GROUP,
4 AF(2) IS FIELD;

ad 0

which define a three-dimensional array of field AF. The

collection of all the 3x2x2 elements can be referenced with

the structured variable name - A, or with the field variable

name subscripted by asterisks - AF(*,*,*). Asterisks and

other subscript variables may be mixed in referencing

substructures. For example, AG(I) and AF(3,*,*) refer to

the I-th and the third 2x2 matrix respectively. As, an

example of referencing structured operand in assertions on

the aggregate level, assuming two more matrix, B and C,

defined as:

1 B IS GROUP, 1 C IS GROUP,
2 BG(2) IS GROUP, 2 CG(2) IS GROUP,

3 BF(2) IS FIELD; 3 CF(2) IS FIELD;

then either the following assertions (the operators I, I/

and 1* denote matrix transposition, inversion and

multiplication respectively):

AG(l) = j B;
AG(2) = I/B;
AG(3) = B 1* C;
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or

AF(l,*,*) = J B;
AF(2,*,*) = B;
AF(3,*,*) B 1* C;

define the three matrix AG(1), AG(2) and AG(3) as the

transposition of B, the inverse of B, and the product of B

and C respectively.

For structures with more than one field descendent, the 6

only way to reference substructures containing only one

field is by subscripting with asterisks. For example, if

the data structure of B is: S

1 B IS GROUP,
2 BG(2) IS GROUP,

3 BF(2) IS FIELD,
2 BE(5) IS FIELD;

The 2x2 matrix of field BF in this structure can only be

referenced by BF(*,*), since B in this case refers to the

combination of the array BF(*,*) and the vector BE(*).

References of structured operands on the instance level

are used when the indices of the elements in the resulting

array needs to be explicitly expressed in terms of the

indices of the elements in the defining array. For example,

selecting elements (using the function SELECT, to be

, , , , , ± . . .
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described subsequently) from array B to form array A can be

written as

A(L) = SELECT(B(I),cond(I,L));

meaning that the I-th elements of array B is selected to

become the L-th element in A if the condition 'cond(I,L)' is

true. This kind of array references are allowed in order to

make the array operations more powerful.

3.2.1.2 Structured Variable Compatibility

When defining a structure variable from another

structured variable, a correspondence implied between

respective fields in the two structures. It is therefore

necessary that, corresponding to each field in the defined

structure, there is a field in the referenced structure with

the same dimensionality and the same data type. Namely the

structures of the dependent and the independent variable

must match. Let T and S be the dependent and independent

variables respectively, the compatibility can be determined

in two ways:

by name: for every field t in the structure T, there is aI

field s in the structure S such that t and s share the

same name, same data type and same dimensionality.

by structure: for every field t in the structure T, there is
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a field s in the structure S such that t and s share

the same sibling position, same dimensionality, and

same data type.

Note that compatibility is determined either by name or

by structure. The conditions for them can not be mixed.

The user has the option of selecting them when using the

high-level functions. By default, by-name has a higher

priority than that of by-structure.

3.2.2 MATRIX OPERATIONS

Matrix operations are denoted by special matrix

operators. The operators may be unary (for inversion or

transposition) or binary (for multiplication). The

following symbols denote the matrix operations:

* matrix multiplication

/ matrix inversion

matrix transposition

The operands for these operations are all two-dimensional

arrays. However, a one-dimensional array with range n can

be treated as a 1 by n matrix. The shapes of the operands

referenced in a matrix operation must conform with the shape

requirements of that operation. The language processor will

•
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issue error messages if the shapes do not match.

The precedences of the unary matrix operators (j/ and

IA) are higher than that of the binary operator (1*), which

is in turns higher than those of the basic operators (*, /,

+ and -).

In the following sections, matrices are denoted by a

single capital letter for clarity. In fact, each of them

can be a collection of instances along any two dimensions in

a multi-dimensional arrays such as

AF( .... *

where AF is a multi-dimensional field variables.

3.2.2.1 Matrix Transposition

The unary transposition operator I- is used to reverse

the roles of rows and columns of a matrix. The assertion

B = K A

defines B as a matrix whose element at row i and column j is

equal to the element at row j and column i of matrix A. If

the shape of A is m by n, B must be n by m. If the shape of

B is not specified, it will be defined by the processor

automatically through propagation.

I
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0

A * /B

3.2.3 ARRAY MANIPULATION FUNCTIONS

The section describes the use of the following array

manipulation functions:

1. SELECT: Select elements from a one-dimensional array to
form another one-dimensional array.

2. MERGE: Merge two one-dimensional arrays to form another
one-dimensional array.

3. SORT: Sort elements of a one-dimensional array.

4. COLLECT: Convert a one-dimensional array to a two-
dimensional array.

5. FUSE: Convert a two-dimensional array to a one- 0
dimensional array.

6. CONCAT: Concatenate two one-dimensional arrays to form
a one-dimensional array.

7. UNIQUE: Eliminate duplicated elements from a one-
dimensional array.

8. UNION: Form a one-dimensional array with elements from
two one-dimensional arrays.

9. DIFF: Eliminate those elements from a one-dimensional S

array which are in another one-dimensional
array.

10.PRODUCT: Form a one-dimensional array which is the
Cartesian product of two one-dimensional
arrays.

The arrays referenced in the above functions are arrays of

structures, not restricted to array of scalars. The

structure of the array elements can be a branch in the data

S
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0
structure tree declared in the user specification. The

bran- is specified by the user with the variable name

associated with the root of the branch.

Consider the following data structure:

1 A IS FILE,

2 Al(10) IS GROUP, 0
3 A2(20) IS GROUP,

4 A3(30) IS GROUP,
5 AFI IS FIELD,
5 AF2(7) IS FIELD;

1 B IS FILE,
2 B1(10) IS GROUP,

3 B2(20) IS GROUP,
4 B3(30) IS GROUP,
5 BFI IS FIELD,
5 BF2(7) IS FIELD;

1 C IS FILE,
2 Cl(*) IS GROUP,

3 C2(*) IS GROUP,
4 C3(30) IS GROUP,

5 CFl IS FIELD,
5 CF2(7) IS FIELD;

and the function CONCAT, whose two arguments are

one-dimensional arrays of structures. The assertion

C1(*) = CONCAT(Al(*),Bl(*));

concatenaftes an array of 10 Al substructures and an array of

u 0 u r1ctures to form an array of 20 Cl substructures.

The ruperttin rj) the Cl substructure, 20, is automatically

detined by the language processor. While the following

assertion
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C2(I,*) = CONCAT(A2(I,*),B2(I,*));

concatenates the I-th (of 10) row of 20 A2 substructures and

the I-th (of 10) row of 20 B2 substructures to form the I-th

(of 10) row of 40 C2 substructures. Note that substructure

Cl is compatible to substructure Al and to substructure BI,

and C2 is compatible to A2 and to B2. -

Furthermore, the MODEL processor allows the omission of

subscripts on the left end of the parentheses (the more

significant ones) if they are the same and are use at the

same positions. Thus the last assertion can also be written

as

C2(*) = CONCAT(A2(*),B2(*));

3.2.3.1 The SELECT Function

SELECT defines an array of structures by selecting

elements from another array of compatible structures. An

assertion using the SELECT function has the following

format:

A(L) = SELECT(B(I),cond(I,L)); 0

The assertion states that if cond(I,L) is true, then the

L-th element of A is equal to the I-th element of B. When

the condition does not depend on L, it can be stated as

* 5
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A(*) = SELECT(B(I),cond(I));

Consider the following example involving the files:

1 F IS FILE,
2 G(*) IS RECORD,

3 K IS FIELD (CHAR(4)),
3 X IS FIELD (NUM(4));

1 E IS FILE,
2 H(*) IS RECORD,

3 KEY IS FIELD (CHAR(4)),
3 Y IS FIELD (NUM(4));

The SELECT function is used to define E as containing only

those records in F whose X field is positive:

H(*) = SELECT(G(I),X(I)>0);

A more powerful application of this function is to use

more complex conditional expression involving the subscript

of H. For example, the following assertion selects only the

first of every subsequence of G which have the same value in

field K:

H(L) = SELECT(G(I),KEY(L-I)-=K(I));

The resulting size is automatically defined by the

SELECT function.
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3.2.3.2 The MERGE Function

Given two arrays of structures, MERGE defines a new

array by interleaving the elements of the two source arrils.

An assertion using the MERGE function has the folltr'-Wl

format:

A(L) = MERGE(B(I),C(J),cond(I,J,L) );

The assertion states that the L-th element of array A

is defined as the I-th element of B if cond(I,J,L) is true,

otherwise it is defined as the J-th element of C.

Consider the data structures:

1 F IS GROUP,
2 P(*) IS FIELD(NUI;

1 G IS GROUP,
2 Q(*) IS FIELD(NUM);

1 H IS GROUP,
2 R(*) IS FIELD(NUM);

Assume that G and H are sorted in ascending order, then

the assertion

P(*) = MERGE(Q(I),R(J),Q(I)<=R(J));

defines the array P, remaining sorted in ascending order, by

merging elements in arrays Q and R.
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3.2.3.3 The SORT Function

rhe SORT function defines a one-dimensional array of

structures by sorting the elements of another

one-dimensional array of structures. The format of using

the SORT function is:

A = SORT(B,key,order);

where 'key' is a field variable in B, and 'order' is the key

word ASC (for ascending) or DSC (for descending). The

assertion states that all the elements of the array B are

sorted according to 'key' in the order 'order'.

As an example, consider the following data:

1 P IS GROUP, 1 X IS GROUP,
2 Q(*) IS RECORD, 2 Y(*) IS RECORD,

3 R IS FIELD, 3 U IS FIELD,
3 S IS FIELD; 3 V IS FIELD;

The assertion

P = SORT(X,U,ASC);

sorts the one-dimensional array Y(*) of records, according

the field U in ascending order, resulting in the

one-dimensional array Q(*).
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3.2.3.4 The COLLECT Function

The COLLECT function converts a one-dimensional array

of structures into a two-dimensional jagged-edge array of S

structures. The format of using this function is:

A(I,J) = COLLECT(B(K),cond(I,J,K));

The one-dimensional array B(*) is divided into array of

arrays A(*,*) in such a way that A(l,1) is defined as B(1),

A(1,2) as B(2), etc. And, when cond(I,J,K) is true, J is *

the range of array A(I,*).

As an example, let B(*) be a one-dimensional array

containing the integers 1 through 15.

11,2,3,4,5,6,7,8,9,10,11,12,13,14,151

The assertion

A(I,J) = COLLECT(B(K),I=J & K<10);

defines a two-dimensional array A(*,*): 5

Row 1: I
Row 2: [2,31
Row 3: 14,5,61
Row 4: 17,8,9,10,11,12,13,14,151 5

• m il i i0
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3.2.3.5 The FUSE Function

The FUSE function is the inverse of COLLECT. It

defines a one-dimensional array from a two-dimensional *

jagged-edge array. It has the following format:

A(*) = FUSE(B(*,*));

There is no conditional expression involved in the

definition of A(*). It is simply the concatenation of all

rows in B(*,*).

3.2.3.6 The CONCAT Function

The CONCAT function concatenates two one-dimensional

arrays of compatible structures. The format of using this

function is:

A=CONCAT(B,C);

The concatenation is done in such a way that the first

element of array C follows the last element of array B. •

Consider the following data:

1 A IS GROUP, * E
2 AF(*) IS FIELD;

1 B IS GROUP,
2 BF(*) IS FIELD;

1 C IS GROUP, 0
2 CF(*) IS FIELD;
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The assertion A=CONCAT(B,C) defines A as an array of size

SIZE.BF+SIZE.CF, whose elements are obtained by appending 0

array C to array B. The relative orders of the elements

withir. their original arrays are maintained.

3.2.3.7 The UNIQUE Function

The UNIQUE function eliminates duplication in a

one-dimensional array. The format of using this function

is:

A=UNIQUE(B,key);

where 'key' is a field in B or the keyword ALL. When a

field name is used as the key, elements in B with the same

value in that field are considered duplicated, disregarding

contents of other fields in the structure. For example,

consider the structure:

1 A IS GROUP,
2 AG(*) IS GROUP,

3 AF IS FIELD,
3 AF2 IS FIELD,
3 AF3(*) IS FIELD;

1 B IS GROUP,
2 BG(*) IS GROUP,

3 BF IS FIELD,
3 BF2 IS FIELD,
3 BF3(*) IS FIELD;

3 BF(*)IS FELD
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The assertion

A=UNIQUE(B,AFI);

defines A as containing elements in B, omitting those

elements whose AFI values are duplicated.

If 'ALL' is used as the key instead of a field name,

fields with the same dimensionality as those of B's elements

will be used in determining duplication. Therefore,

assuming the same data structures defined above, the

assertion

A=UNIQUE(B,ALL);

eliminates those elements of B whose combined values of AFl

and AF2 are duplicated. 5

3.2.3.8 The UNION Function

When two one-dimensional arrays, say A and B, are

viewed as sets, their union can be obtained by using the

UNION function as follows:

C=UNION(A,B);

The resulting array C contains all elements in A and B, with

duplicated elements eliminated. The order of elements in C

A " l i - " - • - -| I I .. . . .. . . . . . . . . . . . . . . . . .. .
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is undefined.

There is a restriction on array structures in using

UNION. The elements of the arrays must contain single

fields only. Two elements in the array are considered

duplicated if corresponding fields in both elements contain

the same value. For example, consider the data structures: -

1 A IS GROUP,
2 AR(3) IS GROUP,

3 AFl IS FIELD(CHAR(l)),
3 AF2 IS FIELD(CHAR(I)),
3 AF3 IS FIELD(CHAR(l));

1 B IS GROUP,
2 BR(2) IS GROUP,

3 BF1 IS FIELD(CHAR(l)),
3 BF2 IS FIELD(CHAR(I)), S
3 BF3 IS FIELD(CHAR(l));

1 C IS GROUP,
2 CR(*) IS GROUP,

3 CFl IS FIELD(CHAR(I)),
3 CF2 IS FIELD(CHAR(I)), S
3 CF3 IS FIELD(CHAR(l));

and assume the actual data are:

AR(1): IC,A,R0
AR(2): IC,A,TI
AR(3): IC,A,BI

BR(1): IC,A,NI
BR(2): jC,A,Rj

then C=UNION(A,B) defines C as:
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CR(1): IC,A,RI
CR(2): IC,A,Ti

CR(3): [C,A,BI
CR(: 0C,A,N1

3.2.3.9 The DIFF Function

When two one-dimensional arrays, A and B, are viewed as •

sets, their difference can be obtained by using the DIFF

function as follows:

C=DIFF(A,B);

The resulting array C contains all elements which are in A

but not in B. The DIFF function has the same restriction on

its arguments like in using the UNION function. Both A and

B must contain single fields only. As an example, assume A

and B have the same structures and values as shown in the

last section (the UNION function example), then the

assertion C=DIFF(A,B) defines array C as:

CR(1): SC,A,T]
CR(2): jC,A,Bj
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3.2.3.10 The PRODUCT Function

Let arrays A and B be one-dimensional arrays of

structures containing n and m single fields respectively.

The PRODUCT function defines a one-dimensional array of

structures containing n+m single fields, whose first n

fields are taken from A and the last m fields are from B. 0

The format of using the PRODUCT function is:

C=PRODUCT(A,B);

The data structures of the source and target arrays are

illustrated as follows:

A B

AR(*) BR(*)

S I I I I
Al A2 ... An BI B2 ... Bm

C

CR(*)

-------------- I ------------------

Cl C2 ... Cn Cn1+ Cn+2 ... Cn+m
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As an example, consider the following structures of A,

B and C:

N 1 A IS GROUP,
2 ARC3) IS GROUP,

3 AFi IS FIELD(CHAR(3)),
3 AF2 IS FIELD(NUM(2)),

I. B IS GROUP,
2 BR(2) IS GROUP, 4

3 BFl IS FIELD(NUM(4));

1 C IS GROUP,
2 CR(*) IS GROUP,

3 CFl IS FIELD(CHAR(3)),
3 CF2 IS FIELD(NUM(2)), S
3 CF3 IS FIELD(NUM(4));

assuming the actual value of A and B are:

ARMl: [JAN,153
AR(2): IMAY,311
AR(3: IDEC,l1

BR(2): [19841

Then C=PRODUCT(A,B) defines C as:

CR(l): [JAN,15,19831
CR(2): JJAN,15,19841
CR(3): IMAY,31,19831
CR(4: UIAY,31,19841
CR(S): [DEC,1,19831
CR(6): IDEC,l,19841
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1S

3.2.4 AN EXAMPLE OF A SPECIFICATION USING. HIGH-LEVEL

OPERATIONS

Figure 3.3 shows an example of a MODEL specification

using the high-level function SORT.

The first three lines specify names of the

specification - S, the source file - SB, and the target file

- SA. Lines 5 through 12 describe the source file

structure. It consists of records B, which are many-leveled

structures. Lines 14 through 21 describes the structure of

the target file, which is compatible with the source file.

The size of the source file is specified in line 23. Line

25 defines the target file SA as obtained from sorting

elements of SB in ascending order (ASC). The key used in

the sorting is the field Bi in input record B. By treating

the whole structures as high-level data objects, only one

assertion - SA=SORT(SB,Bl,%SC) - is sufficient in specifying

the desired sorting.

* I

* I
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A

1 MODULE: S;
2 SOURCE: SB;
3 TARGET: SA;
4
5 1 SB IS FILE, 0
6 2 B(*) IS RECORD,
7 3 B1 IS FIELD(CHAR(3)),
8 3 B2(3) IS GROUP,
9 4 B21(2) IS GROUP,

10 5 B211 IS FIELD(CHAR(5)),
11 5 B212 IS FIELD(CHAR(5)), S

12 4 B22 IS FIELD(CHAR(4));
13
14 1 SA IS FILE,
15 2 A(*) IS RECORD,
16 3 Al IS FIELD(CHAR(3)),
17 3 A2(3) IS GROUP, S

18 4 A21(2) IS GROUP,
19 5 A211 IS FIELD(CHAR(5)),
20 5 A212 IS FIELD(CHAR(5)),
21 4 A22 IS FIELD(CHAR(4));
22
23 SIZE.B = 30;
24
25 SA=SORT(SB,B1,ASC);

Figure 3.3 An Example of a Specification using High-level

Operations
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CHAPTER 4

EFFICIENCY CONSIDERATIONS

The major problem in the use of high-level operations

has been in the inefficiency of their implementations,

especially when the data structures on which they operate

are large files. Efficiency issues therefore have become be

the major concern in incorporating high-level operations

into a programming language. This chapter discusses the

efficiency issues, reviews the various levels of

optimization in the MODEL processor, and shows how the

approach via decomposition achieves an efficient

implementation.

4.1 THE EFFICIENCY ISSUES

From a user's point of view, high-level operations

operate on structures. Both the operations and the operands

are viewed as indivisible units. The user needs not be

-60-

*
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concerned with the sequence of operations on components

which comprise the data structures. In actual

implementation, however, straightforward interpretation of

this view is often unnecessary and undesirable, mainly

because of excessive storage demand. The efficiency problem

becomes serious when the variables referenced represent

large amount of data. Optimization can be done in several

areas as follows:

(a) At the implementation level, high-level operands should

not be treated as indivisible units. Individual

components within a data structure should be analyzed

independently. The advantage of this is that operations

on a data component can be performed as soon as its

predecessor operands are available, disregarding whether

those for other components are available or not. The

result of this is that each component of a structure can

have its optimal storage allocation scheme, without

regard to whether other data component that belong to

the same structure can be operated on. For parallel

machines, this view is even more important as it

facilitates parallel execution.

(b) The second area of potential improvement is the sharing

of storage space by different instances of variables.

The objective is to retain in main storage only as many
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variable instances as necessary. Depending on the

nature of the operations involved, the definition of a

variable (generation) and its use in defining others

(consumption) may be in sequence. Very often storage

space for only one or just a few instances is enough to

be shared by the entire array. Note that this area of

optimization does not conflict with item(a) above.

(c) For implementation on sequential machines, the

computations of array elements are enclosed in loops. S

Arrays of the same range can be put in the same loop and

share the loop control. From storage efficiency's point

of view, an even more important aspect is that the

variables defined and only referenced in a loop do not

require simultaneous storage. It is therefore desirable

to enlarge loop scopes by putting more variables, even

those with different but related ranges, in a loop in

order to reduce storage requirements.

(d) In code generation, there is another possibility for

optimization. Some unnecessary copy operations can be

recognized and avoided. This results also in the

sharing of the same memory space by the variable

instances involving the copy operation.
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The approach adapted to provide efficient high-level

operations is via decomposition of those operations at the

source level. References to structures in high-level

operations are transformed into references to components of

the structures. This allows independent analysis of

individual components, as required in item(a) above.

Decomposition also facilities storage reduction described in

item(b). As will be discussed in the following section, the

reduction in storage to represent an array depends on the

subscript expressions used in referring to the respective

array. High-level operations can be decomposed into a set

ot basic operations with the use of special subscript

expressions for achieving the storage reduction.

The decompositions of high-level operations results in

a specification entirely at the elementary operations level.

Therefore a uniform approach can be employed in verifying

the entire user specification. Also the optimization, as

described above in items b, c and d is performed uniformly

at the elementary operations level.

The following sections describe the optimization

techniques used, including loop scope enlargement and the 0

use of storage allocation schemes.
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4.2 LOOP SCOPE ENLARGEMENT

When loops in a procedural language program have the

same range, they often can be combined to achieve better

efficiency. For example, consider the task of incrementing

the value of each element in an integer array by a constant

k. Assuming the array resides in an external device, one

possible way of performing the task is:

Do for the range of the array;
* Read one element of the array; S

End;
Do for I from 1 to the range of array;

Increment the I-th element of the array by k;
End;
Do for the range of the array;
Write one element of array;

End;

Since the above three loops have the same range, they may be

combined as:

Do for I from 1 to range of array;
Read the I-th element of the array;
Increment the I-th element of the array; *
Write the I-th element of the array;

End;

The advantage of combining loops together as shown above is

the saving in storage space for the entire array.

. .. . . .. . . . . .. II III I II[ .. . . . . . . . . . . . .
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Loops of different ranges may also be merged if the

ranges are related. Consider the specification shown in

Figure 4.1.
* 4

1 MODULE: G; 4
2 SOURCE: NFILE;
3 TARGET: LFILE;
4
5 1 NFILE IS FILE,
6 2 NR(*) IS RECORD,
7 3 NAME IS FIELD(CHAR(30)),
8 3 SNO IS FIELD(NUM(4));
9

10 1 LFILE IS FILE,
11 2 LR(*) IS RECORD,
12 3 NAME IS FIELD(CHAR(30));
13
14 I IS SUBSCRIPT; 0
15
16 INX IS FIELD(NUM(5));
17
18 INX(I)= IF I=l
19 THEN IF SNO(I)>l81

20 THEN I
21 ELSE 0
22 ELSE IF SNO(I)>181
23 THEN INX(I-l)+l
24 ELSE INX(I-1);
25
26 LFILE.NAME(INX(I)) = IF I=l & INX(I)=1 j S
27 INX(I)>INX(I-l)
28 THEN NFILE.NAME(I);

Figure 4.1 A Specification Example for Merging Loops
with Different Ranges
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The specification has one source file - NFILE, and one

target file - LFILE (lines 2 and 3). Lines 5 to 8 describe

the structure of the source file. It contains records of

two fields: a name (NAME) and its associated serial number

(SNO). Lines 10 to 12 describe the structure of the target

file, which is simply a list of names. The specification

defines the target file as a list of names whose associated

serial number is greater than 181. The idea in defining

this file is to use an intermediate integer array which

serves as a link between the indices to the names in the

source file and the indices to the names in the target file.

This indexing array is INX, as declared in line 16 and

defined with the assertion in lines 18 to 24. The array

value is monotonically incremented by 1 whenever the

corresponding instance of SNO is greater than 181. The

assertion in lines 26 to 28 uses INX to relate the instances

of the NAMEs in the source and the target files.

Because the value of the array used to subscript

LFILE.NAME, INX(I), increases as I does, and at a rate

slower than I, the definition of LFILE.NAME can be put in

the scope of I as follows:

S
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Do for I from 1 to range of NR;
Read one instance of record NR;
Define INX(I);
If I=l & INX(I)=l or INX(I)>INX(I-1)
then 0

Do;
LFILE.NAME(INX(I))=NFILE.NAME(I);
Write one instance of record LR;

End;
End;

Loops of different ranges can be merged together depending

on how the two loop indices, I and INX(I), are related. The

indexing array INX must satisfy the following conditions:

a) monotonically increasing: INX(i)>=INX(j) for i>j, and

b) increases slower than the indices: INX(i)<=i for all i.

An integer array satisfying the above conditions is referred

to as being sublinear. Syntactically, the indexing array

must have the following format:

INX(I) = IF I=i
THEN [1101
ELSE IF any condition

THEN ["NX(I-1)+I INX(I-1)]
ELSE [INX(I-1)+I I INX(I-1)]];

The values of the elements of a sublinear array can be

viewed as an orderly enumeration (with repetition) of the

indices along the dimension it subscripts. The dimension
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indexed by the subscript I is then called the

major dimension having a major range, as related to the

dimension indexed by INX(I), which has its subrange. A

subrange relative to a major range may be the major range of

some other subranges. Therefore, these sublinear

relationships may form a tree with the maximal major range

at the root. The scheduling process will attempt to place

all variables involving the tree into one loop which

iterates for all the instances of the maximal major range.

The scope of the loop will also contain conditions that will

check that only a single instance within the major range is

evaluated for each of the variables with the subranges.

The sublinearity can be generalized for the merging of

more than one ranges into another. Consider the assertion:

B(Z1(I),Z2(I),...,Zn(I))=A(I);

where B is an n-dimensional array and A is one-dimensional.

The source variable A, the assertion, and the target

variable B can all be scheduled in a loop of range I as

follows:

S S.. . ..
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Z1 i ii ;i ; x -*- X x -X- :

111111111112222222222

Z2
S11222223331111111222

Z3
12 3122341231234456123

Figure 4.2 An Example of Sawtooth Index Sequence

Syntactically, except for the first array in the

sawtooth array sequence, which must conform with the

sublinear array syntax as stated above, the rest of them

must have the following format:

I S

I S 6
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Zk(I) = IF I=l
THEN Zk-l(I)
ELSE IF Zk-l(I)-=Zk-l(I-l)

THEN 1

ELSE [ Zk(I-1)+l
IF any condition
THEN [Zk(I-l)+l Zk(I-l)]
ELSE [Zk(I-l)+l Zk(I-l)j ;

4.3 STORAGE ALLOCATION SCHEMES IN MODEL

A program generated by the MODEL processor incorporates

loops where the value of each loop control variable is

stepped from one to the range of the loop. The storage

allocation requirements for a variable in the generated 5

program depend mainly on how instances of the variable are

referenced.

Three storage allocation schemes are used in the MODEL

system for various requirements. They are described in the

following paragraphs. Specification examples are given to

illustrate the circumstances in which they are used. Note

that these schemes concern the storage associated with each

dimension of a variable. If a variable is

multi-dimensional, each dimension of the variable may have

its own different storage allocation scheme, independent of

those for other dimensions.
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4.3.1 VIRTUAL STORAGE ALLOCATION SCHEME

Virtual storage allocation scheme for a variable

dimension refers to the allocation of one single element

space for an entire dimension. When an instance of a

variable dimension is defined and referenced in a

monotonically sequential manner, the dimension can be

virtual. Consider the specification example in Figure 4.3:

S S

1 MODULE: D;
2 SOURCE: PF;
3 TARGET: DF;
4 S
5 1 PF IS FILE,
6 2 PREC(*) IS RECORD,
7 3 TIME IS FIELD(DEC FLOAT),
8 3 XPOS IS FIELD(DEC FLOAT),
9 3 YPOS IS FIELD(DEC FLOAT);

10 S
11 1 DF IS FILE,
12 2 DREC(*) IS RECORD,
13 3 TIME IS FIELD(DEC FLOAT),
14 3 DIST IS FIELD(DEC FLOAT);
15
lb I IS SUBSCRIPT; S
17
18 DF.TIME(I)=PF.TIME(I);
19 DIST(I) =
20 SQRT(XPOS(I)*XPOS(I)+YPOS(I)*YPOS(I));

10 0

Figure 4.3 An Example of Virtual Storage Allocation
Scheme

0 S
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The specification defines a distance vs. time file (DF)

from a file containing X- and Y-positions and respective

times (PF). It calculates the distances of points from

their X- and Y-positions. The assertion in lines 19 and 20

shows this definition, where SQRT is the square root

function. In this assertion the i-th instance of DIST is

obtained from the i-th instances of both XPOS and YPOS. The

program needed to be generated for this specification can

therefore be outlined as:

Do for the range of I;
Read one instance of record PREC;
Define one instance of DF.TIME;
Define one instance of DIST;
Write one instance of record DREC; 5

end;

As a result, only one storage space is needed for the entire

array of each variable. In this example, the dimensions of

both DIST and TIME can be assigned virtual storage

allocation scheme.

4.3.2 WINDOW STORAGE ALLOCATION SCHEME

For cases where a variable instance does not strictly S

depend on the same corresponding instance of another

variable, as it does in the case of Figure 4.3, the

allocation of one storage space for the entire defining

array instances is not enough. However, if the dependant
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variable instances referenced are limited to those which

precede the current instance, then it is possible to

allocate a fixed number of storage spaces for the entire

array instances. This type of storage allocation scheme is

referred to as window, meaning that a window of fixed

storage spaces can be viewed as shifting over the array

instances as the computation goes along. To ill-istrate this

situation, consider the specification in Figure 4.4.

. ,
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1 MODULE: V;
2 SOURCE: PF;
3 TARGET: VF;
4
5 1 PF IS FILE,
6 2 PR(*) IS RECORD,
7 3 TIME IS FIELD(DEC FLOAT),

8 3 XPOS IS FIELD(DEC FLOAT),
9 3 YPOS IS FIELD(DEC FLOAT);

10
11 1 VF IS FILE,
12 2 VR(*) IS RECORD,
13 3 TIME IS FIELD(DEC FLOAT),

14 3 VX IS FIELD(DEC FLOAT),
15 3 VY IS FIELD(DEC FLOAT);
16
17 I IS SUBSCRIPT;
18
19 DF.TIME(I)=VF.TIME(I);
20
21 VX(I) = IF I=l
22 THEN 0
23 ELSE (XPOS(I)-XPOS(I-1)) /
24 (TIME(I)-TIME(I-1));
25
26 VY(I) = IF I=1
27 THEN 0
28 ELSE (YPOS(I)-YPOS(I-1)) /
29 (TIME(I)-TIME(I-I));

Figure 4.4 An Example of Window Storage Allocation
* Scheme

* The specification computes the velocities in the X and

Y directions based on the X- and Y-positions and the

corresponding time. The velocity is calculated by dividing

the difference in positions by the difference in times. The

source file (PF) is defined in lines 5 to 9. Its records
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consists of three fields - TIME, XPOS and YPOS. The target

file (VF) structure is defined in lines 11 to 15. Its

records contains the fields TIME, the velocity in the X

direction - VX, and the velocity in the Y direction - VY.

The TIME in PF is the same as the TIME in VF (line 19). The

assertion in lines 21 to 24 and the one in lines 26 to 29 *

defines the velocities in the X and Y directions

respectively. The important thing here is the use of

subscript I-1. It indicates that the current and the

previous instances of XPOS, YPOS and TIME are needed in

defining the current instance of VX and VY. Therefore two

storage spaces are needed each for PF.TIME, XPOS and YPOS.

The computation can be carried out with the following

program logic:

Do for the range of I; 0

Read one instance of record PR;
Define one instance of VF.TIME;
Define one instance of VX;
Define one instance of VY;
Write one instance of record VR;

end; q

4.3.3 PHYSICAL STORAGE ALLOCATION SCHEME S

There are cases where main storage space for an entire

array dimension is needed because reterences to the elements

along that dimension are not in any order. This storage
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allocation scheme is referred to as physical. This is

illustrated in Figure 4.5.

1 MODULE: P;
2 SOURCE: MF,NF;
3 TARGET: RF;

4
5 1 MF IS FILE,
6 2 MR(*) IS RECORD,
7 3 NAME IS FIELD(CHAR(30));
8
9 1 NF IS FILE,

10 2 NR(*) IS RECORD,
11 3 SNO IS FIELD(NUM(4));
12
13 1 RF IS FILE,

14 2 RR(*) IS RECORD,
15 3 NAME IS FIELD(CHAR(30)); 0
16
17 I IS SUBSCRIPT;
18
19 RF.NAME(I) = MF.NAME(SNO(I));

Figure 4.5 An Example of Physical Storage Allocation
Scheme

Two source files, MF and NF, are used in the

specification (line 2). MF is a list of names (lines 5 to

7) and NF is a list or serial numbers (lines 9 to 11). The

specification defines a report file (RF) as containing the

names from MF in the order according to the numbers in NF.
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The assertion in line 19 defines this order. It states that

the I-th name on the report file is the SNO(I)-th name on

the source file. Since the relationship between SNO(I) and 0

I is unknown, the definition (input from an external device)

of MF.NAME instances and references to them will have to be

scheduled in separated loops as: 4

Do for the range of I;
Read one instance of record in MF;

end;
Do for the range of I; 0

Read one instance of record in NF;
Define one instance of RF.NAME;
Write one instance of record in RF;

end;

Furthermore, all instances of MF.NAME have to reside in main

storage in order to be used in defining an instance of

RF.NAME, because we don't know which instance of MF.NAME is

to be used. The storage allocation scheme for MF.NAME is

therefore physical.

4.4 SUBSCRIPT EXPRESSIONS THAT SUPPORT VIRTUAL AND WINDOW

ALLOCATIONS

The storage allocation scheme used for a dimension of a

variable determines 1) the type of subscript expression used

for that dimension, and 2) whether the variable is used in

defining other variables with different ranges. From the S

examples in the previous sections, it can be seen that if
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the subscript expression is of the form I, the storage

allocation scheme can be virtual. If it is of the form I-k,

where k is a positive integer, then a window of k+l is

sufficient. The MODEL processor recognizes the following

subscript expressions for virtual and winoow allocation:

1. 1
2. 1-1
3. I-k
4. X(I), X is sublinear
5. X(I)-l, X is sublinear
6. X(I)-k, X is sublinear
7. Sawtooth subscript expressions

If the subscript expression is of the form I or X(I), and

the definition and all references can be placed in one loop, 0

only the storage space for one element is needed. For I-i

or X(I-l)-l, a window of 2 suffices. I-k and X(I)-k are

generalized forms of the previous case. They indicate the •

need for k+l elements. Sawtooth subscript expressions are

used in merging a set of ranges into another. For subscript

expressions having formats other than those mentioned above, 0

the system quits further analysis and physical allocation

schemes are used.

* 4
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4.5 OPTIMIZATION IN CODE GENERATION

In code generation, the MODEL processor performs

another level of optimization [Szym821 . It analyzes

statements inside a loop, checks whether the window storage

may be further reduced, and removes unnecessary copying

operations.

0 I

* I

L . . . . . . .. . I I I I - " . . .. .. I l I l I l . . I
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1 MODULE: STACKOP;

2 SOURCE: DATA;
3 TARGET: ST;
4
5 1 DATA IS FILE,
6 2 INREC(*) IS RECORD,
7 3 SEQNUM IS FIELD(DEC FIX(4)),

8 4 VALUE IS FIELD(DEC FLOAT);
9

10 1 ST IS FILE,
11 2 VERSION(*) IS RECORD,
12 3 S(*) IS FIELD(DEC FLOAT);
13
14 (I,J) ARE SUBSCRIPT;
15 SIZE.S(I) = IF I=l THEN 1

16 ELSE IF SEQNUM(I)>SEQNUM(I-1)

17 THEN SIZE.S(I-1)+]
18 ELSE SIZE.S(I-1);
19 IF I=l
20 THEN S(I,J)=VALUE(I);
21 ELSE IF SEQNUM(I)=SEQNUM(I-1)
22 THEN S(I,J) = IF J=SIZE.S(I)
23 THEN S(I-1,J)+VALUE(I)
24 ELSE S(I-1,J);
25 ELSE S(I,J) = IF J=SIZE.S(I)
26 THEN VALUE(I)
27 ELSE S(I-l,J); 0

Figure 4.6 An Example of Optimization for Stack-like
Structure

This optimization is illustrated by the example shown

in Figure 4.6. The source is a file of records (INREC)

consisting of a sequence number SEQNUM and an associated

value VALUE. The target is a two-dimensional array S of *

sums obtained by adding up those values in the source

*
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records which contain the same sequence number. Figure 4.7

illustrates the organization of the source and target data.

The definition of the target data, the elements of each row

with the exception of the first element in the row, are

obtained by copying the data from the previous row. These

copy operations can be saved if the last same storage is

used for the row, adding only the new element. The saving

is not just the time spent in the copy operation, the

reduction in memory space is even more significant.

_!
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1 #1,Vl Vi

2 #1,V2 Vl+V2

3 #2,V3 VI+V2 V3
4 #2,V4 VI+V2 V3+V4

5 #2,V5 Vl+V2 V3+V4+V5

6 #3,V6 Vl+V2 V3+V4+V5 v6

7 #4,V7 Vl+V2 V3+V4+V5 V6 V7

8 #4,V7 Vl+V2 V3+V4+V5 V6 V7+V8

Source Target

Figure 4.7 Illustration of Source and Target File in the
Specification in Figure 4.6.

S

This optimization consists of three steps. First, a

list of structures which are possibly eligible for window

size reduction is produced. The program is scanned to see

whether there are any unnecessary assignments on the

structures. The result of this step is a list of structures

*
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whose dimensions can be reduced. The second step is to mark

all unnecessary copy operations as removable. And the final

step is to modify the data structures and the object code

involved based on the results from the first two steps,

resulting in an equivalent, but more efficient, object

program.

S
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CHAPTER 5

OVERVIEW OF THE EXTENDED MODEL PROCESSOR

The MODEL language processor accepts a MODEL

specification as input, verifies its correctness, and

generates a program in the target language. The sequence of

processing is illustrated in Figure 5.1. Boxes in the

figure represent major phases of the processor. The arrows

indicate the flow of execution. Between boxes are various

representations of the user specification. Starting with

the source specification, the MODEL processor performs a 4

series of transformations until a program in the target

languages is obtair.ad.

- 85 -
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Source specification

Data Structure
Preprocessor

Syntax Analysis &
Source-to-Source
Transformation 5

Specification
in internal form

-------4I------
I Precedence Analysis I

-- •
Array Graph

------ -------
I Dimension Propagation I

I Range Propagation I

Scheduling I

-- .
Schedule

- - - -- --------- -----

Code Generation

Program in
target language

Figure 5.1 The MODEL language processor
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The first two boxes show a source MODEL specification

scanned in two passes. First pass is by the Data Structure

Preprocessor for the extraction of data structure

information needed in the transformation of high-level

operations. The second pass is by the Syntax Analysis and

Source-to-Source Transformation module which parses the

specification and transforms the high-level operations into

elementary operations. After being analyzed syntactically,

the source statements are stored in an internal form for

efficient retrieval.

The next box analyzes precedence among statements and

creats a data-flow network, called the array graph. It is a 0

directed graph where nodes represent variables or

assertions, and edges show dependency relationships between

nodes.

The next series of boxes perform consistency checks by

evaluating consistency of attributes along the edges.

Attributes such as number of dimensions and dimension sa.ze

are propagated from node to node to detect and resolve any

inconsistencies and incompleteness.

Finally, depending on the type of the target machine

(von Neumann or others), the verified array graph is

rearranged topologically to obtain a schedule for that

particular type of machine. It is then further translated

* 5
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into the desired target language.

The array graph representation is universal in the

sense that it does not depend on any particular type of

machine or language. So is the verification process.

However, scheduling is machine type dependent, and code

generation depends further on the chosen target language.

This implementation is based on the conventional von Neumann

machine and the PL/I target language.

The overview of the expanded version of the MODEL

processor, modified to incorporate high-level operations, is

described in this chapter. The processing phases of the

modified MODEL processor have been modified to include a new

Data Structure Preprocessor as a separate phase.

Additionally, the following phases have been modified as

follows:

a) Syntax Analysis -

Addition of source-to-source transformation routines. S

b) Precedence Analysis -

Recognition of integral operations and the creation of

edges for them. The integral operations are implemented

by generating a block of PL/I code to be inserted in the

object program. This phase also recognizes the various

types of subscript expressions (such as the indirect

IS



- 89 -

'sawtooth' indexing).

c) Range Propagation -

Processing of propagating sawtooth subscript expressions

has been added. As described in Chapter 3, the sawtooth

subscript expression defines index values which increase

monotonically and then are reset to the value of 1. This 4

sequence of subscript values needs special handling to

obtain efficient implementation.

d) Scheduling -

Extensions for the handling of sawtooth subscript

expressions.

e) Code Generation -

Generation of procedure calls for integral operations.

The following sections describe briefly the above

mentioned modifications, as well as how various phases of

the processor work. Detailed descriptions of the extensions

is given separately in the following chapters.

5.1 DATA STRUCTURE PREPROCESSOR

The data structure preprocessor performs a preliminary

scan ot the user's specification and extracts data structure

information. During this first pass, all variable names,

.... . " . ... ... .. .. . . .... .. .. .. . . . . I n 0
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their types, and the hierarchical relationships are saved in

a table accessible to later processing phases. The

preprocessor thus facilitates the transformation of

high-level operations. The source-to-source transformation

requires data structure information of variables. Since

there is no restriction on statement order within a MODEL

specification, the declaration of a variable may or may not

appear before the reference to it.

For example, the assertion SA=SORT(SB,BI,ASC) in the •

specification shown in Figure 3.3 involves the high-level

function SORT. The structures SA and SB must be determined

for checking their compatibility and the declaration of S

interim variables, prior to transforming the SORT operation.

The information gethering on SA and SB and the

transformation of SORT are handled separately in two S

different passes. The preprocessor saves information about

SA and SB in a table in the first pass, and the syntax

analyzer (described in the next section) invokes the *

transtormation process in the second pass.

The data structure preprocessor does not modify the

source specification at all. It simply scans every source

statement and stores the extracted information in a separate

area.
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5.2 SYNTAX ANALYSIS AND SOURCE-TO-SOURCE TRANSFORMATION

The user specification is scanned the second time by

the syntax analyzer which, besides parsing and storing the

source statements, performs the transformation of high-level

operations.

The syntax analyzer scans the MODEL specification

statement by statement. Entries are created in the data

dictionary for data description statements, to store the

variables and their attributes. Source assertion statements

are converted into internal assertion trees. When an

assertion references a high-level operation, the associated

transformation routine is called to replace the assertion

with a set of statements according to the transformation

rule. The source statements generated as a result of the

transformation replace the high-level operations. These

system generated statements are processed just like others

written by the user. Thus, during this phase of syntax

analysis, the input stream may 'grow' in length whenever a

source-to-source transformation takes place.

The process of transformation is illustrated as 0

follows, using the SORT example shown in Figure 3.3. The

specification defines a tile (SA) whose records are those of

another file (SB) sorted in ascending order according to the

value of the field Bl. This is expressed in the assertion

....* . . . ". . " . .... 0l m I
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SA=SORT(SB,Bl,ASC). When the transformation is being

carried out for SORT, this source statement is replaced by

system generated statements as follows:

1 O1$CG IS GROUP(O1$C(*));
2 O1$C IS FIELD(CHAR(3));
3 O1$C=Bl;
4 Ol$IG IS GROUP(Ol$I(*));
5 Ol$I IS FIELD(NUM(5));
6 O1$IG=SORTC(O1$CG,l,SIZE.B);
7 SIZE.OI$B=SIZE.B;
8 A1(SUBI)=B1(O1$I(SUBI));
9 A211(SUB1,SUB2,SUB3)=B211(O1$I(SUBI),SUB2,SUB3);

10 A212(SUBI,SUB2,SUB3)=B212(O1$I(SUBl),SUB2,SUB3); g
11 A22(SUBl,SUB2)=B22(O1$I(SUBl),SUB2);
12 SIZE.B=30;

These system generated statements specify in detail the

desired SORT operation. The idea is to use the interim

array variable O1$C (declared in lines 1-2) for the key

field B1 (line 3), then define an integer array O1$I which

indicates relative order of the elements in O1$C (line 6). 0

SORTC stands for sorting character strings. Array O1$I is

then used to express the index correspondences between the

source field indices and the target field indices (lines 8 0

through 11).

5.3 THE ARRAY GRAPH REPRESENTATION 0

The array graph of a MODEL specification is a directed

graph which shows precedence relationships among data and

assertions. A node in the graph represents either a

, 0i-I
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variable or an assertion. A variable may have a number of

elements and an assertion may repeat for all subscript

values within respective ranges. A node in the array graph

in general represents either an array of variable

occurrences or a multiple applications of an assertion. An

edge between two nodes shows their hierarchical (both nodes

are variables) or data dependency (one variable and one

assertion) relationship.

Associated with each node are a number ot attributes:

number of dimensions of the node, each dimension range, etc.

Edge attributes include the difference in number of

dimensions between the source and the target nodes and how

respective dimensions correspond to each other. Information

associated with nodes can be propagated back and forth along

the edges for the detection of possible conflicts and their S

corrections.

. . .. .. .. | . . . I l . . . . i l . . . I SI I i I ..
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Figures 5.2 and 5.4 illustrate array graphs for two

examples. Figure 5.2 is the array graph of the MODEL

specification example shown in Figure 3.2. Both elliptical

and rectangular boxes represent nodes, with the former for

variables and the latter for assertions. Nodes with the

same number of dimensions are grouped together in the same

area for clarity. Arrows represent edges. A hierarchical

edge, such as the one from FlR(*) to F1.ACCT, indicates that

the structure has to be accessed (a FIR record is read) 0

before its components can be available (F1.ACCT field

unpacked). A data dependency edge such as the one from

F1.ACCT to a3 indicates that the evaluation of the target 0

(assertion a3) depends on the availability of the source

(field F1.ACCT). The dashed edges shows that accessing the

next structure (e.g., FlR(*)) must follow the current

element (FI.DESC).

As far as high-level operations are concerned, array

graph represents the specification after source-to-source

transformation. For example, the transformation of the

specification in Figure 3.3 results in the one shown in

Figure 5.3. The array graph is created based on the *

specification shown in Figure 5.3, not the original one

shown in Figure 3.3. This array graph is shown in Figure

5.4. 0 0

. . . . .. .. . .I I I . . . .. . . .. . . .. .. .
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MODULE: SORTREC;
SOURCE: SB;
TARGET: SA;

1 SB IS FILE,
2 B(*) IS RECORD,

3 BI IS FIELD(CHAR(3)),
3 B2(3) IS GROUP,

4 B21(2) IS GROUP,
5 B211 IS FIELD(CHAR(5)),
5 B212 IS FIELD(CHAR(5)),

4 B22 IS FIELD(CHAR(4));

1 SA IS FILE,
2 A(*) IS RECORD,

3 Al IS FIELD(CHAR(3)),
3 A2(3) IS GROUP,

4 A21(2) IS GROUP,
5 A211 IS FIELD(CHAR(5)),
5 A212 IS FIELD(CHAR(5)),

4 A22 IS FIELD(CHAR(4));

O1$CG IS GROUP(O1$C(*));
01$C IS FIELD(CHAR(3));

bi: O1$C=B1;
O1$IG IS GROUP(O1$I(*));
01$OlI IS FIELD(NUM(5)); S

b:01$IG=SORTC(01$CG,1,SIZE.B);
b3: SIZE.O1SB=SIZE.B;
b4: Al(SUB1)=B1(Ol$I(SUBl));
b5: A211(SUB1,SUB2,SUB3)=B211(O1SI(SUBl) ,SUB2,SUB3);
b6: A212(SUBl,SUB2,SUB3)=B212(O1$I(SUB1) ,SUB2,SUB3);
b7: A22(SUB1,SUB2)=B22(O1$I(SUBl),SUB2);
b8: SIZE.B =30;S S

Figure 5.3 Result Specification of Figure 3.3 after
Trans format ionS S
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5.4 PRECEDENCE ANALYSIS

This section describes how edges are created to form an

array graph. The extensions to the precedence analysis

phase for the incorporation of high-level operations involve

only the handling of integral operations.

Precedence analysis determines various relationships

between variables and assertions and enters t'

relationships in the array graph with edges. There e

basically three categories of edges - hierarchical, a

dependency, and data parameter. Hierarchical edges

drawn between components of a data structure to show the

structure hierarchy. They are created from the data

description statements. Data dependency edges are drawn

trom source variables to an assertion and from the assertion

to the target variable, to indicate the order in which

variables are accessed and evaluated. Data parameter edges

are drawn between a data parameter variable node using

keyword prefixes such as END, SIZE or NEXT and the data node

in the prefix.

The information associated with an edge includes the S

following:

1) edge type,

2) the source node of the edge,

. . . . . m~~ ~ ~ ~~~~~~ Sli m,. . .i n .n . . . .. . ,-
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3) the target node of the edge,

4) difference in the numbers of dimensions between the

source and the target nodes, 5

5) subscript expressions of the source dimensions.

Hierarchical edges are created by the Enter •

Hierarchical Relationships program (ENHRREL). The program

basically traverses the data definition trees, determines

the hierarchical relationships between nodes, and enters

these relationships as edges in the array graph. These

edges play an important role in the I/O activities of the

generated program. They not only show the order of I/O

operations (e.g., a record must be read before the unpacking

any field), they also indicate how the I/O activities are

repeated (e.g., next record can not be read unless the last

field of the current record is unpacked).

Data dependency edges are created by the Enter

Dependency Relationships program (ENEXDP). For each

assertion in the specification, this program scans the

expressions on both sides of the equal sign to obtain the

target variable and the source variables of the assertion.

An edge is created from each source variable to the

assertion, and from the assertion to the target variable.

They simply mean that the source variable must be available •

before the assertion can be applied and that the target

, 1 i ,,* a • I - I I II II I ll l I I . .. . . . . . . . . . . . . . .. . . .
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variable will be available only after the assertion is

evaluated.

For integral operations, which may reference high-level

variables, edges are drawn from all fields in each source

variable to the assertion, and from the assertion to all

fields in the target variable. 0

The ENEXDP program also creates the data parameter

edges for all the control variables used in the

specification. Control variables are of the form

<control prefix>.<variable name>, where <controlprefix>

could be POINTER, SIZE, END, FOUND, NEXT, MALDATA, or

SUBSET. An data parameter edge is drawn from the control

variable to the variable whose parameter is being defined.

The control variables define properties associated with the

array denoted by <variable-name>. The meanings of

individual control variables are given in detail in

[LuKS82].

5.5 DIMENSION AND RANGE PROPAGATIONS

When the array graph is first constructed, the number

of dimensions and the dimension ranges associated with each

node in the graph may not be explicitly stated, because

subscripts in assertions can be implicit and that the data

descriptions for some interim variables may be omitted.

S S
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However, because each edge bears the information about the

difference in source and target dimensionalities, the

incompleteness can be resolved by propagating the dimensions

and the ranges along the edges until a solution that

satisfies all-nodes in the graph is obtained.

The process of dimension propagation is based on the

idea that the dimensionality ot a node should agree with

those of its neighboring nodes, taking into account the

dimension differences associated with the connecting edges. 0

The process starts with creating a queue which contains all

nodes in the graph. The nodes are taken from the queue one

by one and are checked to see whether the neighboring nodes S

agree with the dimension differences associated with the

corresponding edges. For any neighboring node which does

not agree, the number of dimensions may be increased. It is S

then appended to the queue to be checked again. The process

may or may not converge. If the process converges, then

every node in the graph has a finite number of dimensions. S

If it diverges, the processor will issue an error message

showing those nodes which have inconsistent numbers of

dimensions.

Another property of a node which can be obtained by

propagation is the range of a dimensions. Range propagation

refers to the partitioning of node dimensions into a number
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of range sets. All node dimensions in a range set share a

common dimension range. The partitioning starts with

assuming that every node dimension constitutes a range set.

Then based on any one of the following relations, node

dimensions of two range sets are merged together to form a

larger one:

1) Two node dimension both subscripted by the same global

subscript.

2) One of the node dimensions corresponds to a data node and 5

the other corresponds to the same dimension position of

the associated control variable.

3) The two node dimensions occur on the same dimension S

position of two data nodes in the same data structure.

4) One node dimension is associated with an assertion node

and the other with a source variable of the assertion. S

5) One node dimension is associated with an assertion node

and the other with the target variable of the assertion.

Associated with each range set is a termination

criterion by which its range is defined. The criteria are

derived from the user specification and can be one of the

following:

1) The range set has a constant range.

2) The range is specified by a END control variable.

* , .. .... ... .. . . . .
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3) The range is specified by a SIZE control variable.

4) The range is implicitly defined by the end-of-file

condition at run-time.

5) The range is implicitly defined by the end-of-record

condition

When the partitioning of node dimensions into range

sets is completed, each range set will have one of the above

range termination criteria associated with it. If there is

a range set which does not have a termination criterion

defined, a message will be issued by the processor to report

the error.

For the purpose of optimization, certain indirect

subscript patterns associated with variables in the

specification are recognized as sawtooth subscript

expressions. The association with such a sequence is also a

property that can be propagated along edges. The sawtooth

subscript expressions are propagated to determine which

other nodes in the graph can also be associated with such

indirect indices. The result of this propagation is used to

* improve efficiency.

*
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5.6 SCHEDULING THE ARRAY GRAPH

The array graph shows only the data dependency of a

computation, not its execution sequence. To realize the

computation on a given machine, it is necessary to transform

the array graph into another representation, called a

schedule, which resembles more closely the execution style

of the machine.

A schedule depends on the type of the target machine,

but is independent of the target language. This section

describes briefly the scheduling for von Neumann type

machines. Scheduling data-flow machines is discussed in

[Gokh83].

The execution style of a von Neumann machine is

sequential in nature. A schedule is essentially a linear

rearrangement ot the nodes in the array graph according to

the partial order imposed by the edges. The general

approach to this scheduling consists of creating a component

graph, with each component containing an MSCC (maximally

strongly connected component) in the array graph, and the

* edges connecting the MSCC's. The component graph is an S

acyclic graph and hence can be topologically sorted. When

the component graph is sorted, a gross-level representation

of the schedule is obtained.

* S 1 I I I .. . .... .. . . .. . .. ..
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Before sorting an MSCC, it is decomposed first by

deleting edges which have an I-k or a X(I)-k type of

subscript expression associated with it. This will result

in an acyclic subgraph which can be further sorted.

In addition to sorting the nodes as described above,

the scheduler also tries possible enlargement of loop scopes 0

as described in Section 4.2. It is based on the information

about subscript expressions in order to produce a more

efficient program. When a node in the graph is associated 0

with a sawtooth subscript expression, its dimensions covered

by the subscript expression can be all scheduled in a single

loop, as opposed to many nested ones. This eliminates the 0

unnecessary loop opening end closing, which usually impose

additional storage requirements in the generated program.

If an array graph cannot be fully decomposed by the

scheduling process, the MSCC is interpreted as representing

a set of simultaneous equations. An iterative numerical

method is employed for evaluating the equations [Gree8l].

The scheduling phase has been extended to handle nodes

which are related through the use of sawtooth subscript

expressions. Such related nodes are scheduled together as

conditional blocks for the generation of more efficient

object code. Detailed description is given in Chapter 8. *

E..
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5.7 CODE GENERATION

Code generation is a process of translating the

schedule into a program in the target language. There are

three types of elements in the schedule: node-element,

for-element and cond-element. A node-element corresponds to

a basic statement in the target language such as assignment •

or I/O operation. A for-element corresponds to a loop such

as DO-FOR or DO-WHILE. A cona-element represents a

conditional block of code which is only to be executed S

conditionally, not for every loop instance of the enclosing

loop. The cond-elements are used for those nodes whose

range is different from, but sublinear to, the range of the

enclosing loop. These nodes are scheduled within the major

loop for optimization purpose.

Code generation is a straightforward translation of

elements in the schedule:

1) Scan elements in the schedule. For each element, perform *

steps 2 through 4.

2) If the element is a node-element, generate the

corresponding target language statement for that node. *

3) If the element is a for-element, open a loop, generate

code for the enclosed elements recursively, and close the

loop. *

4) If the element is a cond-element, generate an IF

0 5
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condition and a DO block header, generate code for the

enclosed elements recursively, and close the block with

an END.

The above procedure sets up the control structure of

the generated program. For individual nodes (step 2), the

correspondence between node types and the generated program

statements are as follows:

FILE node - OPEN/CLOSE a file 0
input RECORD node - READ a record to input buffer
output RECORD node - WRITE a record from output buffer
interim GROUP node - nothing
input FIELD node - unpack a field trom input buffer
output FIELD node - pack a field to output buffer
interim FIELD node - nothing S
assertion node - an assignment
integral operation - a procedure call

Extensions to the code generation phase include 1) the S

generation of more efficient code for conditional blocks

resulting from the use of sawtooth subscript expressions,

and 2) the generation of procedure calls for integral 0

operations. They are described in detail in Chapter 8.

LI
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CHAPTER 6

PREPROCESSING AND SYNTAX ANALYSIS

The MODEL syntax analyzer is automatically generated.

It recognizes components of the MODEL language in a I

top-down, recursive manner. When a component such as a

variable or an assertion is recognized, it calls a

subroutine specific to that component to do the desired I

analysis and storing. The automatic generation of the

syntax analyzer makes it very straightforward to extend the

syntax of the language. To take advantage of this, •

high-level operations are transformed as soon as they are

recognized. This allows the transformation procedures to

perform only the transformation related tasks, leaving the

syntax related problems to the syntax analyzer. This 'on

the spot' transformation process requires that the

information needed for the transformation be generated in a

prior pass. The module that preprocesses the data

description statements is the data structure preprocessor

- 108 -
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(PRESAP). It is the very first module executed in

processing a MODEL specification. Its relationship with the

normal syntax analyzer (SAP) is shown in Figure 6.1. a

* S
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solid boxes: program modules
dashed boxes: data modules
solid arrows: execution sequence
dashed arrows: data flow

1st pass Preprocessor
- (PRESAP)

I I

UserIr

I User Variable I
I specification 2nd pass Table
I(untransformed)L -T r -I I I -

I I I

Syntax Analyzer Source-to-source
(SAP) transformation

procedures

I

iSpecification
in internal
form r

(transformed) I

other phases
of the processor *

Figure 6.1 Syntax Analysis for Source-to-Source
Transformation

* S

*
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which references them. Since the transformation of a

high-level operation depends on the attributes of the

referenced variables and the hierarchical relationships

involved, it is necessary to assemble the required

information before the transformation can be carried out.

Data descriptions can be written in two ways in MODEL.

The first one follows the PL/I structure declaration format,

where level numbers are used to express the hierarchical

relationships. The following data description, taken from

the data structure example in Figure 3.1, uses this format.

1 DEPT IS FILE,
2 DEPTNO IS FIELD(NUM(4)), 0

2 EMPLOYEE(*) IS GROUP,
3 EMPNO IS FIELD(NUM(6)),
3 NAME IS FIELD(CHAR(30)),

2 PROJECT(10) IS GROUP,
3 PJNO IS FIELD(NUM(5)),

3 EQUIP(*) IS GROUP, 0

4 ITEMNO IS FIELD(NUM(10)),
4 DESC IS FIELD(CHAR(30));

The other format uses parentheses to indicate the immediate 0

descendents of a variable:

I S

I
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C URRE NT V
Variable n

Lp

Variable n-i

S S

Variable I

Each entry in the table contains:

VNAME - variable name, unqualified
VTYPE - variable type, file, record, group, or field
LEVEL NO - level number used in data definition
FATHER - father of this variable
SON - the first son of this variable
BROTHER - the immediate younger brother
OCCUR - repetition of the variable
CIMAGE - the line image which contains the data

definition statement
LAST DUP - the next variable in the table with the same

name
NEXTV - pointer to next entry

Figure 6.2 Data Structure of the Variable Table

. . . . - . . . .. . . . .. . . .. . . . . p
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Algorithm 6.1 ADD FlENTRY

Given a line of data description statement of format-l,

enter the variable into the variable table.

Input: NM - Variable name, unqualified.

TY - Node type of the variable, file, group, record

or field.

LN - Level number of the variable declared by the

user.

OC - Occurrence, single, fixed multiple or variable

multiple.

Data structure: 1. The Variable Table.

2. The ancestor stack ANCESTOR STK,

initially empty.

Method:

1. Allocate one entry for the input variable. Set the VNAME

field to NM, VTYPE to TY, LEVELNO to LN, and OCCUR to

OC.

2. If the variable table is empty, then push the current

variable on ANCESTOR STK.

3. If there is an variable in the table with the same name

as NM, then set up the LASTDUP link.

4. If LN equals LEVEL NO of the last entered variable, then
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set up the FATHER link of this entry and the BROTHER link

of the last entry.

5. It LN is greater than LEVELNO of the last entered

variable, then set up the SON link of the last entry and

the FATHER link of the current entry. Also push current

entry in ANCESTOR STK.

6. It LN is less than LEVELNO of the last entered variable,

pop ANCESTORSTK until LN is equal to LEVEL NO of the top

element on stack. Then set the current variable to be

the BROTHER of the variable on top of the stack.

Algorithm 6.2 ADDF2_VENTRY

Given a line of data description statement of format-2,

enter the variable into the variable table.

Input: NV - Number of variables appeared in the line.

NM - Array of NV variable names.

OC - Array of NV variable occurrences

TY - Type of NM(l)

Date structure: The Variable Table

Method:

I. It TY is 'FLD', then for each name in NM, search for the

entry which has the same name, enter 'FLD' as VTYPE of

the entry. Also set the SON link ot the entry to null.

* 4
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2. Search for the entry with VNAME equal to NM(1). If

found, set its VTYPE to TY If not found, create an entry

for this variable, enter the SON link and save the

pointer to this entry as COMMONFATHER.

3. For every variable in the array except NM(1), create an

entry in the table, set their FATHER link to

COMMONFATHER and BROTHER to its next neighboring

variable.

Algorithm 6.3 VTLOC

Locate an entry in the Variable Table with the specified

variable name. 0

Input: NM - variable name, may be qualified with a file

name. *

Output: Pointer to the entry whose name matches NM, null

if not found.

Data structure: The Variable Table. 0

Method:

i. If NM is qualified (with a dot '.'), extract the two 0

subnames to NAMEl and NAME2 respectively. If NM is not

qualified, set NAMLI to empty string and NAME2 to NM.

2. Search the variable table for the entry whose VNAME is

the same as NAME2. If not found, return null.

. . . .. . . . . . . . . . .. . . . .. • II I I0
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S

3. If NAMEl is null, return with the pointer obtained in

step 2.

4. Check whether any ancestor of NAME2 is NAME1. If so,

return with the pointer obtained in step 2. Otherwise

return null.

6.2 THE SYNTAX ANALYZER

The MODEL syntax analyzer is automatically generated by

Syntax Analysis Program Generator (SAPG). The syntax of the

MODEL language and the associated processing is specified

using the meta language EBNF/WSC (extended BNF with

subroutine calls). SAPG accepts the EBNF/WSC and generate a

corresponding Syntax Analysis Program (SAP) to parse the

MODEL specification in a top-down fashion. The following is

an example showing the definition of arithmetic expression

in EBNF/WSC:

<ARITH EXP> ::= /E(81)/ /SAVE/ [ <SIGN> /SVOPl/ I <TERM>
/SVCMPI/

[ <OPS> /SVNXOP/ <TERM> /SVNXCMP/ ]* /STALL/

where nonterminals are enclosed in angle brackets < >, the

square brackets [ ] denote an optional component, and the

asterisk (*) indicates a zero or more repetitions. It

specifies that <ARITHEXP> consists of one or more <TERM>s

separated by <OPS>, possibly prefixed with a <SIGN>. Names

inside slashes (/) are subroutines to be invoked at that

.. ..0 .. . . . ' " • • " . . . . . . H l • I I
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specific point during parsing. Thus, for example, SVOPI is

called when <SIGN> is present, and STALL is executed when

the whole right hand side is successfully recognized.

To process high-level operations, the EBNF/WSC is

extended to recognize both the matrix operations and the

high-level functions. For matrix operations, expressions

formed via matrix operators are treated as a new component,

denoted by <MFACTOR>, with a precedence between those of

<TERM> and <FACTOR>. Processing involved includes saving

the operators (SVOPI and SVNXOP), remembering the

nonterminal type (SVMFAC), and saving the expressions formed

by the operators (SVCMPI and SVNXCMP). The EBNF/WSC

statements for <MFACTOR> is shown in Figure 6.3. The other

two new subroutines, BMOPREC and UMOPREC, are used to

recognize the binary matrix operators (1* and I/) and unary

matrix operators (1/ and Î ) respectively.

EL
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(TERM> /E(87)/ /SVTERM/ (MFACTOR> /SVCMPl/
[(MOPS> /SVNXOP/ (MFACTOR> /SVNXCMP/]* /STALL/

<M~FACTOR> /SVMFAC/ <FACTOR> /SVCMPl/
(BMOP> /SVNXOP/ <FACTOR> /SVNXCMP/ ]- /STALL/

(FACTOR> (UMOP> /SVMFAC/ /SVOPl/ (PRIMARY> /SVCMPl/
/STALL/

I/E(85)/ /SVFAC/ [- /SVOP1/] <PRIMARY> /SVCMPl/
[<EXPON> /SVNXOP/ (PRIMARY> /SVNXCMP/I* /STALL/

<BMOP /BMPREC

<BMOP> /BMOPREC/

Figure 6.3 EBNF/WSC Statements for Matrix Operations

General array manipulation operations are treated as

(PRIMARY>, as shown in Figure 6.4. The arguments to the

called functions are also treated as (PRIMARY>. These

recursive definitions enable the composition of functions to

be recognized and processed automatically.



- 121 -

<PRIMARY>::= /E(86)/ /SVPRIM/ <ISPRIM> /SVCMP1/ /STALL/

<IS-PRIM>::= <BOOLEAN-EXPRESSION> /E(24)/ )

SELECT < PRIMARY> /SLARG1/ , <BOOLEANEXPRESSION>

/SLCOND/ ) /SLTRAN/

IMERGE ( <PRIMARY> /MGARG1/ , <PRIMARY> /MGARG2/
<BOOLEAN-EXPRESSION> /MGCOND/ ) /MGTRAN/ 4

ISORT ( <PRIMARY> /SRARG1/ , <PRIMARY> /SRKEY/
<PRIMARY> /SRORDER/ ) /SRTRAN/

FUSE ( <PRIMARY> /FSARG1/ ) /FSTRAN/

COLLECT ( <PRIMARY> /CLARG1/ ,<BOOLEANEXPRESSION>

/CLCOND/ ) /CLTRAN/

CONCAT ( <PRIMARY> /CCARGI/ ,<PRIMARY> /CCARG2/
/CCTRAN/

UNIQUE ( <PRIMARY> /UQARG1/ )/UQTRAN/

UNION ( <PRIMARY> /UNARG1/ ,<PRIMARY> /UNARG2/
/NT RAN!

DIFF ( <PRIMARY> /DFARG1/ ,<PRIMARY> /DFARG2/
/DFTRAN/

IPRODUCT ( <PRIMARY> /PRARG1/ I (PRIMARY> /PRARG2/
/PRTRAN/

<NUMBER> /STNUM/
0

I<STRINGFORM>

(FUNCTIONCALL>

I<SUBVARIABLEl>
0

Figure 6.4 EBNF/WSC Statements for General Array
Operations

0
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As can be seen in Figure 6.4, three groups of

subroutines are added for the syntax analysis of high-level

tunctions. They are named as XXARGn, XXCOND and XXTRAN,

where XX is a pair of characters identifying the functions.

Subroutines XXARGn store the pointers to the corresponding

<PRIMARY> recognized. Subroutines XXCOND store the

conditions <BOOLEANEXPRESSION>. Subroutines XXTRAN are the

ones which perform the transformations based on the

arguments saved by XXARGn and XXCOND. These transformation

procedures will be explained in more detail in the next

section.

A complete listing of the EBNF/WSC statements can be

found in Appendix A.l. Note that it is for the second pass

processing. Since the first pass involves only the

extraction ot data structure information, many subroutines

called in the second pass are not needed. EBND/WSC

statements for the first pass is a simplified version of

those for the second one, with most of the subroutine calls

(those enclosed with slashes '/°) eliminated. Appendix A.2

shows the EBNF/WSC statements for the first pass.

* 6
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6.3 TRANSFORMATION PROCEDURES

When the recognition of a high-level function is

completed, the associated transformation procedure is

invoked. These procedures have names ending with 'TRAN',

such as SLTRAN for SELECT, MGTRAN for MERGE, etc. (shown in

Figure 6.4). They are essentially the transformation rules

for the corresponding functions written in PL/I. Inputs to

each procedure are the arguments to the function, in the

form of interim tree representation. Outputs from the

procedure are the transformed MODEL statements, including

both data declarations and assertion, in the form of source

statements. Individual transformation rules are discussed

in Chapter 7, this section describes only the conventions

and frameworks common to all the transformation procedures.

Because many interim variables are used for the

transformation and the same function may be referenced more

than once, different tags of character strings are used to

prefix interim variables for different activations of a

transformation procedure. The tag used for a particular

activation is the concatenation of 1) a character

identifying the function, 2) an integer for the sequence

number of the activation, and 3) the special character '$.

For example, the transformation procedure for the SELECT

tunction uses L1$C for the interim selection array when
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I

called the first time. If called again, it switches to L25C

just to differentiate the two activations. The same is true

for declaring interim structured variables compatible to the

user's data definition. For example, if a file is declared

as

1 A IS FILE,
2 AR(*) IS RECORD,

3 AFI IS FIELD(CHAR(3)),
3 AF2 IS FIELD(NUM(5));

and SELECT(A,AFl='ABC') is to be transformed, then the I

following interim structure is used for the first

activation:

S

1 LI$ IS GROUP,
2 Ll$AR(*) IS GROUP,

3 Ll$AFl IS FIELD(CHAR(3)),
3 Ll$AF2 IS FIELD(NUM(5));

In generating the above data definition, the Variable Table

(Section 6.1) is searched to obtain the information about

the hierarchical structure.

For nested tunction calls, because inner level calls

are processed first, outer level calls can be transformed by

simply using the interim result (Ll$ in the above example)

tor all the inner calls which have been processed up to that

point. This is done without having to know how the inner

calls are composed. The interim result is stored in p

variable RESULT in the SAP program. It automatically

I 0
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then the last interim variable used (or intended to be

used), 01$, will never appear in the transformed source

statements. The overall transformation for the assertion

consists of the definitions of the fields in Ll$ in terms of

those in A, and the fields in B in terms of those in Ll$.

Note that interim structured variables are always generated

compatible to the source structured variable. The

compatibility checking is performed only when necessary,

i.e., at the very last moment between Ll$ and B.

6.4 CHECKING OF VARIABLE COMPATIBILITY

The compatibility checking is done either by-name or I 0

by-structure, as described in Chapter 3. It is performed by

procedures BYNAME and BYSTRU respectively. If the MODEL

user does not specifically indicate which criterion to take,

then by-name will have a higher priority than by-structure.

If the checking is successful, the correspondence between

the target field variables and the source field variables is

saved in a table for later access. The checking involves

traversing the data definition tree, which can be done

following the links set up in the variable table described

in Section 6.1. The following two algorithms describe the

two ways of checking compatibility.

Aigorithm b.4 BYNAME

. .. . .. . . . .. . ... . . . . . . . I II Il II



I

- 128 -

Algorithm 6.5 BYSTRU

Given two structured variables, T (target) and S (source), b

check whether they are compatible by structure. In other

words, for every field t in the structure of T, there is a

field s in the structure of S such that t and s share the 0

same sibling position, same dimensionality, and same data

type.

Input: Two pointers P1 and P2 to the two structured

variables.

Output: FND=TRUE if P1 is compatible to P2, FND=FALSE

otherwise.

Method (the procedure is recursive): S

1. It the repeating factors of the two variables (Pl->OCCUR

and P2->OCCUR) are different, return with FND=FALSE.

2. If both P1 and P2 have a son, call

BYSTRU(Pl->SON,P2->SON,FND). If FND=FALSE, return.

3. If both P1 and P2 are fields, check for same type. If

so, add the pair to the compatibility table and return

with FND=TRUE. Otherwise return with FND=FALSE.

4. If both P1 and P2 have brothers, call

BYSTRU(Pl->BROTHER,P2->BROTHER, FND). If FND=FALSE,

return.
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If structure T is found to be compatible with structure

S, then there exists a mapping trom fields in T to those in

S which satisfies the dimensionality and data type

requirements for being compatible. The mapping is stored in

the compatibility table by BYNAME or BYSTRU after the check

is completed. The compatibility table (CT) is a flat table

with two attributes: target field name (TFLDNAME) and

source field name (SFLDNAME). Each entry in CT stores a

pair of fields which corresponding to each other. The

compatibility table is reterenced mainly by the

source-to-source transformation procedures when defining

target fields in terms of source fields.

*



CHAPTER 7

TRANSFORMATION OF HIGH-LEVEL OPERATIONS

This chapter describes source-to-source transformations

for high-level operations, including analysis of the

transformation problem, the transformation techniques, and

the transformation rules for the high-level operations

provided in the MODEL language.

The general transformation problem is presented in

Section 7.1. It discusses the analysis conducted for the !
transformation of all high-level operations. It also shows

how a high-level operation can be decomposed into a set of

elemental ones. Section 7.2 provides some guidelines for

setting up the transformation rules. Arrays with certain

properties are suggested as useful tools in establishing

indexing correspondences. Sections 7.3 and 7.4 describe the

transformation rules for the matrix operations and the array

manipulation functions respectively.

- 130 -
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7.1 ANALYSIS OF THE TRANSFORMATION PROBLEM

Elemental assertions define variables which are fields

of target data structures. Any assertion that references

structured variables has to be transformed into a group of

elemental assertions which define and reference fields in

rS
those structures. The transformation is guided by the data

declarations of the structured variable. The analysis that

identities the field is conducted on two levels: structural

and indexing. The structural analysis consists of matching

the trees of the referenced structures. It shows which

field in a referenced structure is used to define a field in

the target structure. The indexing analysis defines the •

subscript expressions to be used with the referenced

variable. The establishment of these two correspondences is

discussed in Sections 7.1.1 and 7.1.2, respectively. The •

reduction of the high-level operation transformation problem

to the problem of establishing structural and indexing

correspondences is discussed here first. S

A high-level operation may be classified as belonging

to one, or a combination, of the following classes:

a) reordering or reshaping,

b) field projection,

c) algebraic computation.

S S
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Reordering refers to the rearrangement of array

elements such as merging or selection. Reshaping refers to

changing array dimensionality such as 'flattening' a

two-dimensional matrix into a one-dimensional vector. Most

of the high-level operations discussed here involve

reordering or reshaping. The transformation of operation of

this class employs mainly indexing correspondence.

Subscript expressions can be used to indicate the

relationships between indices o the defined array and those

of the referenced arrays. Arrays of integers are frequently

used as subscripts for indirect indexing.

Field projection refers to the removal of fields from a

structure or the rearrangement of the fields inside the

structure. The PROJECTION operation in Relational Algebra

belongs to this class. An application example of field

projection is the creation of a report of employee names and

addresses from a file of employee records. The employee

record might contain many other fields besides name and

address. In this case, not every source field is selected

for output, and the order in which selected fields appear in

the report might be different from that in the source

record. Field projection is accomplished by structural

correspondence, or matching the source structure and the

target structure tor finding out the correspondence between

the fields.

Ile
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A example of computational operations is matrix

inversion, where a set of data (two-dimensional matrix

elements) is used as the operand of the operation to produce

another defined set of data. This class of operations can

be handled more efficiently by computing the high-level

operations as integral units. They are transformed into

special built-in functions referred to as

integral operations. In code generation, integral

operations are translated into calls to precoded procedures.

To summarize the above discussion about

source-to-source transformation, consider a high-level

operation F which defines structured variable B from

structured variable A:

B=F(A); (7.1)

The assertion can be decomposed into a group of simple ones

of the form:

FBi(expl,exp2,...,expn) =

[IF cond THEN] FAi(expl',exp2',...,expm'); (7.2)

where: (1) FAi and FBi are fields in structures A and B

respectively,

(2) m and n are the numbers of dimensions of FAi and

FBi, and

(3) The exp's are subscript expressions.

. . . ... . . . . . .. . .. .. , , , i | , , m l - -



- 134 -

(4) The condition enclosed in brackets may not be

required, depending on individual operations.

The task of transforming assertion (7.1) is then equivalent

to:

1) Structural correspondence problem: For each field FBi in

target structure B, find a corresponding field FAi in

source structure A, and

2) Indexing correspondence problem: Use subscript

expressions to express the rearrangement of the field

occurrences.

The following two subsections further discuss these two

problems.

7.1.1 STRUCTURE COMPATIBILITY

The compatibility problem between structured variables

has been described earlier in Section 3.2, where the

high-level operations in MODEL are presented. Given a

structured target variable T and a structured source

variable S, the compatibility can be established in two

ways:

by name: for every field t in the struct- ot T, there is a

field s in the structure of S such that t and s share

the same name, same data type and same dimensionality.

. . . . .S .. . . . . . . . . . . . i . . . . . . . • i i
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by structure: for every field t in the structure of T, there

is a field s in the structure of S such that t and s

share the same sibling position, same dimensionality,

and same data type.

If the correspondence exists, T is said to be

compatible to S. The total injective mapping from the set

of all fields in T to those of S is then used in the

transformation of high-level operations of the form:

T = S; (7.3)

or

4 T = IF condl THEN Sl
ELSE IF cond2 THEN S2 (7.4)

or

T = F(S) (7.5)

For the first two cases (eqs. 7.3 and 7.4), the

transformations are simply

t s;

* or

t IF condl THEN sl
ELSE IF cond2 THEN s2

I S

.. . . .. . S"i I I | - - m
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for all the t and s pairs. As to the third case (equation

7.5), the equation T=F(S) is transformed into a set of

assertions like equation 7.2 after the indexing

correspondence is established.

7.1.2 EXPRESSING REORDERING AND RESHAPING

Consider the equation B=F(A) again, with the fields in

B and A denoted by FBi and FAi respectively, as in eqs. 7.1

and 7.2. If the argument of the function is an

Ns-dimensional array of structures and the result is an

Nt-dimensional array of structures (Ns and Nt are usually 1

or 2), since FBi and FAi are the fields corresponding to

each other, their numbers of dimensions are the same.

Therefore, except for the first Ns dimensions of FAi and the

first Nt dimensions of FBi, the rest of the subscript

expressions should be the same, i.e., there exists an

integer k such that Ns+k=m and Nt+k=n, and assertion (5.1)

becomes

FBi(expl,exp2,...,expNt,Ii,12,...,Ik)

= FAi(expl',exp2,...,expNs',Ii,12,...,Ik);

To illustrate the point, let the structures of the two

variables, A and B, be
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A B

I I
AR(*) BR(*)

I I

FAl AG(*)Fi BG)

I I I I
FA2 AH(*) FB2 BH(*)* I I I

FA3 FB3

where A is a one-dimensional (Ns=l) array of record AR and B

is a one-dimensional (Nt=l) array of record BR. Let the

function be the selection of every even number record in A

to form the new array B. We can express the target fields

in terms of the source fields as:

FB1(I) = FA1(X(I));
FB2(I,J) = FA2(X(I),J);
FB3(I,J,K) = FA3(X(I),J,K);

with the use of an interim array X, whose value is

12,4,6,8,...I

This interim indexing array has to be defined separately as

part ot the transformation. But assume its existence for

this illustration.
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The above example shows that as long as a 'suitable'

indexing array X is found, the corresponding subscript

expressions on the left hand side and the right hand side

could be as simple as I vs. X(I). Therefore, aside from

the checking of variable compatibility, the problem of

transforming an operation on structures can be reduced to

the problem of transforming the same operation on elemental

data items. E.g., sorting an array of structures can be

reduced to sorting an array of integers.

7.2 TECHNIQUES FOR ESTABLISHING INDEXING CORRESPONDENCES

A Unlike the problem of structural correspondence, which

depends only on the structures of the operands, the problem

of indexing correspondence depends very much on the nature

of individual operations. Some may be straightforward,

while others may be very complicated. This section

introduces some useful tools in obtaining the desired

indexing relationships.

7.2.1 SUBSCRIPT MANIPULATION

Subscript manipulation can be used in simple reordering

of array elements. For example, the transposition of a

matrix A (of elements AF) to obtain a new matrix B (of

elements BF) can be written as

* I
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BF(I,J) =AF(J,I);

And the concatenation of two arrays A (of AF) and B (of BF)

to form a new array C (of CF) can be written as

CF(I) = IF I<=SIZE.A
THEN AF(I)
ELSE BF(I-SIZE.A);

7.2.2 SELECTION ARRAYS

A selection array is an array of O's and l's indicating

whether the corresponding elements in another array are

selected. In many cases, it is easier to convert a given

selection condition to a selection array and then reference

the later afterwards. The size of the resulting array after

the selection can also be obtained by counting the 1's in

the selection array.

As an example, let F be a function which selects from

array A those elements satisfying the condition 'cond': •

B=F(A,cond);

The selection array C based on the condition 'cond' can be 0

defined as

C(I)=IF cona THEN I ELSE 0;

From this array, the size of the resulting array B can be

* S
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expressed simply as the sum of all the elements in C:

SIZE.B=SUM(C(I),I);

7.2.3 SUBLINEAR ARRAYS

As introduced in the Chapter 4, a sublinear array X is

an array of integers satisfying the following conditions:

a) monotonically increasing: X(i)>=X(j) for ij, and

b) increases slower than the indices: X(i)<=i for all i. p

An important thing about sublinear arrays is that it

serves as a link between a selection array and the final

field definition in the transtormation. For example, let C

be an selection array, then the sublinear array X can be

defined as the integration of C:

X(I) = IF I=l
THEN IF C(I)=l

THEN 1
ELSE 0

ELSE IF C(I)=l
THEN X(I-I)+l
ELSE X(I-l);

and a target field can be expressed in terms of the

corresponding source field with the assertion (using the

same variables as in eqs. 7.1 and 7.2):

FBi(X(I),II,I2,. ..,In)=FAi(I,Il,12,...,In); 0

I 0
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Figure 7.1 shows an example of how the sublinear array

relates the two sets of indices of the source and target

arrays.

1 - - --- -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 *

selection array : j0,i,0,i,i,0,0,0,1,0,1,1,1,0,0I

7 ------------------- x x x
6 -x
5 - - - - - - - - - - - - - - - -x

4 - --------- xx 

x x x
1 -- -x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 •

sublinear array : j0,i,1,2,3,3,3,3,4,4,5,6,7,7,7j

Figure 7.1 An example of using sublinear arrays

• S
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Note that sublinear arrays are usually used in the cases

where the resulting array is smaller than that of the source

array. In the example shown above, the source array size is

15 and that of the resulting array is 7.

7.2.4 SAWTOOTH ARRAYS

When the number ot dimensions of the defining and the

defined arrays are different, the sublinear array alone can

not be used to establish the indexing correspondence. In

this case, the sawtooth array can be used together with the

sublinear array to accomplish setting up the correspondence.

As an example, consider the function COLLECT(B,cond)

converting a one-dimensional array B to a two-dimensional

array A. If the condition 'cond' is satisfied, a new row of

A is formed. To transform the assertion *

A = COLLECT(B,cond);

with the following operand structures: •

1 A IS GROUP, 1 B IS GROUP,
2 AG(*) IS GROUP, 2 BR(*) IS RECORD,

3 AR(*) IS RECORD, 3 BF IS FIELD;
4 AF IS FIELD;

we can use a sublinear array Z1 and a sawtooth array Z2,

defined as

I S
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ZI(I) = IF I=l THEN 1
ELSE IF cond THEN ZI(I-1)+1

ELSE Zl(I-l);

Z2(I) = IF I=1 THEN ZI(I) 0 0

ELSE IF Zl(I)>Zl(I-1) THEN 1
ELSE Z2(I-1)+l;

to establish the indexing correspondence as:
* S

AF(Zl(I),Z2(I))=BF(I);

* S

7.2.5 INTEGRAL OPERATIONS

In many cases a desired index array may not be

constructed from other arrays easily, especially when the

definitions are procedural in nature. These situations can

be more efficiently handled with integral operations. As

mentioned earlier, an integral operation defines an

high-level variable, including arrays, from other variables,

with the flexibility provided by the object language. An

example of its usage is in sorting a given array and

returning the indices as an index array to show the

rearrangement needed. Thus, if A is an array of integers:

18,2,3,2,71

an integral operation, say SORTN for sorting an array of

integers, can be used to construct an index array X:

II I I I I I I IU II
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X=SORTN(A);

yielding

12,4,3,5,11

The desired sorted array B can then be expressed as

B(I)=A(X(I)); I

which is

12,2,3,7,81.

7.3 TRANSFORMATION OF MATRIX OPERATIONS

This category of operations includes

1) matrix transposition (denoted by the unary operator I),

2) matrix multiplication (denoted by binary operator 1*),

3) matrix inversion (denoted by the unary operator I/), and

4) elementary arithmetic operations (+, -, * and 7).

These operations are grouped together because of the

common properties of their operands: rectangular shape and

homogeneous components. They can be easily expressed in

basic MODEL expressions with a little subscript

manipulations.

Consider t: e t(I11,)winj data descriptions:

I A IS RECORD, 0
2 AG(*) IS KROUP,

3 AF(*) IS FIELD;

I 0
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1 B IS RECORD,
2 BG(*) IS GROUP,

3 BF(*) IS FIELD;

1 C IS RECORD,
2 CG(*) IS GROUP,

3 CF(*) IS FIELD;

The matrix transposition A=I-B and matrix multiplication

A=BI*C are transformed to

AF(I,J) = BF(J,I)

and AF(I,J) = SUM(BF(I,K)*CF(K,J),K)

respectively. For matrix inversion A=I/B, since the

computation is much more efficient if implemented as a

procedure in the target language, it is transformed into a 5

function assertion A=MATINV(B), which will later be

interpreted as procedure call to a matrix inversion

subroutine. In case where the inversion is applied to an 0

expression such as

A = J/ (B 1* C),

an interim variable

1 T IS GRP,
2 TG(*) IS GRP,

* 3 TF(*) IS LD;

is needed to replace whatever is inside the parentheses:

0 TF(I,J) = SUM(BF(I,K)*CF(K,J),K);
A = MATINV(T);

' " - --- .. ... .. .. IS | 1 I I



- 146 -

Basic arithmetic operators applied on high-level

operands such as

C=A*B;

are transformed with subscripts to reflect the piecewise

application of the operations:

CF(I,J)=AF(I,J)*BF(I,J);

Since matrix operations can be combined together to I

form expressions in the same way as that with ordinary basic

operations, when transtorming an assertion containing

compositions of matrix operations, one has to take into

account operator precedence and variable dimensionalities.

This is done recursively by a procedure called MATRIFY. For

each assertion, this procedure checks to see whether it

involves matrix operations. If so, expressions containing

matrix operators and high-level operands are transformed

into another one containing only elemental arithmetical

operators and field variables. The procedure has three

input parameters:

a) EXP - The expression (in the form of a character string)

to be translated.

b) SUB1 - Subscript variable to be used as the subscript of

the first (or row) dimension in the translated

S S
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4) The expression is a built-in function

5) The expression is a whole assertion

The following subsections describe in detail each of the 0

five cases. Note that at the very top level, MATRIFY

accepts the given assertion and returns the transformed one.

7.3.1 VARIABLES OR CONSTANTS

There is no transformation for constants. The

expression to be returned, TEXP, is exactly the same as the

given expression, EXP. And SHAPE is always 'scalar'.

For variables, since they may appear in the assertion 0

with or without subscripts, it is processed based on the way

the subscripts are written. Let A be an m-dimensional field

variable, and the J's be subscript variables in the given *

expression EXP.

Vl. EXP = A

It m=U, return TEXP=A and SHAPE='scalar'.

If m=l, return TEXP=A(SUB2) and SHAPE='row'.

If m>1, return TEXP=A(SUB1,SUB2) and SHAPE='matrix'.

V2. EXP = A(J1,... ,Jm)

Return TLXP=EXP and SHAPE='scalar'.

V3. EXP = A(J1,....*)

. .. . .. ... ... . . . l l l l . . . . .
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The processing for this class of expression depenas on

whether OP is 1-, I/, or simply a non-matrix operation.

UI. OP = a non-matrix unary operator

Call MATRIFY(EXPI,SUBI,SUB2,TEXPI,SHAPE1)

Return TEXP = OP EXPI, and SHAPE=SHAPE1.

U2. OP = 
^, matrix transposition

Call MATRIFY(EXP1,SUB2,SUB1,TEXPI,SHAPEI)

Return TEXP=TEXPl and

SHAPE = IF SHAPEl='scalar' or 'matrix'
THEN SHAPE1
ELSE IF SHAPEl='column'

THEN 'row'
ELSE 'column'

U3. OP = j/, matrix inversion

Call MATRIFY(EXPI,SUB1,SUB2,TEXPI,SHAPEI)

If SHAPEI is not 'matrix', report an error condition.

If it is an matrix, two auxiliary matrices are declared:

G IS GROUP (R(*))
R IS RECORD (AUX(*),INV(*))
(AUX,INV) ARE FIELDS (NUM)

Also generate the assertions to define them:

AUX(SUBI,SUB2) = TEXPI

INV = MATINV(AUX,SIZE.AUX)

Then return TEXP=INV(SUB1,SUB2) and SHAPE='matrix'.

MATINV will be a built-in function for computing the
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inverse of a square matrix.

7.3.3 BINARY OPERATIONS

Let the given expression be

EXP = EXPi OP EXP2

where EXPI and EXP2 are two subexpressions. The processing

of this type of expression is also depending on the type of

the binary operator OP. 0

BI. OP = a non-matrix binary operator

Call MATRIFY(EXPI,SUB1,SUB2,TEXP1,SHAPEI)

Call MATRIFY(EXP2,SUB1,SUB2,TEXP2,SHAPE2)

Return TEXP = TEXP1 OP TEXP2 and
SHAPE = IF SHAPE1=SHAPE2

THEN SHAPE1
ELSE IF SHAPEl='scalar'

THEN SHAPE2
ELSE IF SHAPE2='scalar'

THEN SHAPE1
ELSE 'matrix'

B2. OP = 1*, matrix multiplication

Let K be a system generated subscript variable.

Call MATRIFY(EXP1,SUB1,K,TEXP1,SHAPE)

Call MATRIFY(EXPI,K,SUB2,TEXPI,SHAPE2)

The following cases are error conditions due to

uncomformable shapes of the operands:

a) SHAPE1 = 'scalar'

. . .. .. .. . . • n b i ni a a - - , - - • n _ - L - I - n I
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b) SHAPE2 = 'scalar'

c) SHAPE1 = 'column' and SHAPE2 = 'matrix'

d) SHAPE1 = 'matrix' and SHAPE2 = 'row'

e) SHAPE1 = SHAPE2 but not 'matrix'

It no error, return TEXPtSUM(TEXPl*TEXP2,K), and

SHAPE = IF SHAPE2='matrix'
THEN SHAPE1
ELSE IF SHAPEl='matrix'

THEN SHAPE2
ELSE IF SHAPEI='row'

THEN 'scalar'
ELSE 'matrix'

B3. OP = I, matrix division

As mentioned before the expression EXPI f/ EXP2 is

equivalent to EXPI * I/ EXP2. Let E be

EXPI 1* 1/ EXP2,

Call MATRIFY(E,SUB1,SUB2,TEXPI,SHAPEI)

Return TEXP=TEXPI and SHAPE=SHAPE1.

7.3.4 BUILT-IN FUNCTIONS

The built-in functions here refer to the existing MODEL

tunctions of field variables such as SUM, MAX or MiN. Let

EXP be F(ARGl,...,ARGr), where ARGi is the i-th argument to

the tunction F. For each ARGi, i = 1 to r,

Call MATRIFY(ARGi,SUBI,SUB2,TEXPi,SHAPEi)

Return TEXP=F(TEXPI,...,TEXPr). SHAPE is a value depending

on F.

.... .*I I I I I I I I I - - I .. .. I I I I
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7.3.5 ASSERTIONS

Let EXP be TARGET=SOURCE, where TARGET is the variable

to be defined, and SOURCE is the expression on the right

hand side of the assertion, then

Call MATRIFY(TARGET,SUB1,SUB2,TEXPI,TSHAPE)

Call MATRIFY(SOURCE,SUBI,SUB2,TEXP2,SSHAPE)

It TSHAPE=SSHAPE or SSHAPE='scalar ', return TEXP1=TEXP2

as the translated assertion. For other cases where the

shapes of the target and the source do not contorm to each

other, report an error condition.

7.4 TRANSFORMATION OF ARRAY MANIPULATION FUNCTIONS

This section describes the transformation for the

following array manipulation functions:

SELECT, MERGE, SORT, COLLECT, FUSE,

* CONCAT, UNIQUE, UNION, DIFF, PRODUCT

They all have described in detail in Chapter 3. In this

section, the transformation rule for each of them are given.

Unless specifically mentioned, array variables used in

the presentation are assumed to have general structures as
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1A IS GROUP
2 AR(*) IS GROUP,

3.

AFi IS FIELD;

1 B IS GROUP,
2 AR(*) IS GROUP,

3.

BFi IS FIELD;

I C IS GROUP,
2 CR(*) IS GROUP,

3.

CFi IS FIELD,

Root variable A, B or C refers to the entire array. Field

variables such as AFi are used with subscripts for

referencing particular field occurrences such as

AFi(I0,Ii,...,Ik),

where k is the difference in the numbers ot dimensions

between AR and AFi. Note that tor special cases like arrays

of integers, there will be only one field variable in the

structure and the value of k is 0.

i * n . . . . . . . • . . . . l ia n n
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7.4.1 THE SELECT FUNCTION

Let A be an array of structures, SELECT(A,cond) defines

an array by selecting those elements from A which satisfy

the condition 'cond'.

The transformation of assertions containing the SELECT

function such as

B=SELECT(A,cond);

consists of the following:

First convert the conditional expression to a condition

array:

D(I)=IF cond THEN 1 ELSE 0;

From this condition array, a sublinear array X is defined to

express the relationship between the indices ot A and those

ot B:

X(I)=IF I=l
THEN IF D(I)=l

THEN 1
ELSE 0

ELSE IF D(I)=l
THEN X(I-l)+l
ELSE X(I-l);

Then express the resulting array in terms of source array

via indirect indexing:

BFi(X(IO),Il,...,Ik)=AFi(IO,II, ... ,Ik);

* S
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And define the size of the resulting array as

SIZE.BR=SUM(D(I),I);

7.4.2 THE MERGE FUNCTION

Given two arrays of structures A and B, MERGE(A,B,cond)

defines a new array by interleaving the elements of arrays A

and B in an order accoraing to the specified condition

'cond'.

To transform an assertion containing the MERGE function

such as *

C=MERGE(A,B,cond);

the following interim variables are used:

SEL : Indicates whether the next element to be

selected for C is from A (SEL=l) or B (SEL=O).

ADONE : Indicates whether elements in A have all

been selected (ADONE=l).

BDONE : Indicates whether elements in B have all

been selected (BDONE=I). *

X : A sublinear array for subscripting array A

whenever A is selected.

Y : A sublinear array for subscripting array B *

whenever B is selected.
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The assertions tar defining the above arrays are:

SEL(I)=ADONE(I)I(-ADONE(I)&cond);0

ADONE(I)=IF I~1
THEN 'O'B
ELSE ADONE(I-1) I(X(I-1)=SIZE.AR & SEL(I-1));

BDONE(I)=IF I=l
THEN 'O'B
ELSE BDONE(I-1) I(Y(I-1)=SIZE.BR & -SEL(I-i.));

X(I)=IF 1=1
THEN 1
ELSE IF SEL(.I-1) & -ADONE(I)

THEN X(I-1)+1
ELSE X(I-1);

Y(I)=IF 1=1
THEN 1
ELSE IF SEL(I-1)]BDONE(I)

THEN Y(I-1)
ELSE Y(I-1)+l;

and the assertions for defining the target array C are:

CFi(IO,I1,...,Ik) =IF SEL(IO) 5
THEN AFi(X(IO),Il,...,Ik)
ELSE BFi(Y(IO),Ij,...,Ik);

SIZE.CR=SIZE.AR+S IZE. BR;

7.4.3 THE SORT FUNCTION

Let A and 8 be arrays of structures, the assertion S

B=SORT (A ,key ,order )

defines array B by sorting array A accoLding to 'key' in S

ascending (order='ASC' ) or descending (order='DES') order.
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The problem of sorting an array of structures can be

reduced to a simpler one of sorting an array of integers or

character strings by first defining an array from the given

keys and then sort the keys to obtain an index array which

shows the sorted order. The actual sorting is performed by

a procedure, SORTC (for sort character strings) or SORTN

(for sort numbers), in object language PL/I. They

correspond to integral operations at the source level. The

transformation is therefore as follows.

First define an array for all keys, assuming they are

character strings:

EG IS GROUP(E(*));
E IS FIELD(CHAR(10));
E(I)=key(I);

and declare an array of integers for the sorted array:

XG IS GROUP(X(*));
X IS FIELD(NUM(5));

Then use an function assertion to sort the keys: *

XG=SORTC(EG,order,SIZE.AR);

And the sorted array is defined as

BFi(10,Il,...,Ik)=AFi(X(I0),Ii,o...,Ik);

Also define the size of the resulting array:
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SIZE. BR=SIZE.AR;

7.4.4 THE COLLECT FUNCTION

The COLLECT function is used to convert a

one-dimensional array to a two-dimensional one. The 0

function enables the user to perform some grouping on

elements of arrays. Let A be a one-dimensional array of

structures and B be a two-dimensional one, then 0

B=COLLECT(A,cond);

breaks A in such a way that whenever an element in A

satisfies the condition 'cond', a new row is formed with

that element as the first one of the new row.

The transformation of the COLLECT function needs two

interim indexing arrays X and Y for subscripting B:

X(I)=IF I=1
THEN 1
ELSE IF 'cond'

THEN X(I-I)+l
ELSE X(I-l);

Y(I)=IF I=l
THEN I
ELSE IF 'cond °

THEN I
ELSE Y(C-1)+I;

The assertions tor defining the target array elements are:

BFi(X(IO),Y(I0),II,...,Ik)=AFi(I0,II,...,Ik);

i i i I I I . . . ... . . . .. . . . . . . . . . . . .. . .. .. . . S
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7.4.5 THE FUSE FUNCTION

The FUSE function is the inverse of the COLLECT

function in the sense that it defines a one-dimensional

array from a two-dimensional one. It has the following

format:
I

B=FUSE(A);

There is no conditions involved in using the function. The

rows in the two-dimensional array A are simply concatenated

together to form B.

Two indexing arrays are needed to do the

transtormation:

X(I)=IF I=l
THEN 1
ELSE IF Y(I-l)=SIZE.AR(I-1)

THEN X(I-1)+l
ELSE X(I-l);

Y(I)=IF I=l
THEN 1
ELSE IF Y(I-I)=SIZE.AR(I-l)

THEN 1
ELSE Y(I-l)+l;

And the new one-dimensional array B is defined as:

B i (Ii, II ..... 4k) =AFi ( X(10) , I (0) , 1, . . ., k);

Ihe size of the resulting one-dimensional array is:

SIZE.BR=SUM(SIZE.AR(1),I);

I 0
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7.4.6 THE CONCAT FUNCTION

Let A and B be arrays of structures, CONCAT(A,B)

defines an array C with size equal to the sum of the two,

SIZE.AR + SIZE.BR, whose first SIZE.AR elements is taken

from A and last SIZE.BR elements from B. The original

relative orders of the elements in A and B are unchanged.

The transformation of the CONCAT function is simply the

manipulation of subscripts:

SIZE.CR=SIZE.AR+SIZE.BR;

and

CFi(1)=IF I<=SIZE.AR S
THEN AFi(I)
ELSE BFi(I-SIZE.AR);

7.4.7 THE UNIQUE FUNCTION

Let A be an array of structures, UNIQUE(A) defines an

array containing all elements in A without any duplication.

To transform the assertion

B=UNIQUE(A);

First, an interim matrix M(I,J) is used to mark whether the

I-th and the J-th elements of A is the same:

* S
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A
M IS FIELD(NUMI));

M(l,J) = IF I>J
THEN IF AF1(I)=AF1(J)

0& AF2CI)=AF2(J)
&

& AFn(I)=AFn(J)
THEN 1

F ELSE 0
bi ELSE 0;

A vector V is then used to sum up values of the elements in

the rows of matrix M:

V IS FIELD(NEJM(3));
V(I) =SUM(M(I,J),J);

01.

Since V(I)=0 means that the I-th element is not a duplicate,

the transformation is now equivalent to selecting array A

with V(I)=0 as the condition. The rest of the

transformation is therefore the same as that for the SELECT

tunction, with Q as the selection array and X as the

sublinear indexing array:

Q IS FIELD(NUM(2));
Q(I) = IF V(I)0O THEN 1 ELSE 0;

X IS FIELD(NUM(5));
*X(I) = IF 1=1

THEN IF Q(I)-=0
THEN I
ELSE 0

ELSE IF Q(I)V=0
THEN X(I-1)4-l

* ELSE X(I-1); 5

WG IS GROUP(IX(*));

L
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W IS FIELD(NUM(5));

W(X(I)) = IF Q(I)^=O THEN I;

BF1(J)=AF1(W(J));
BF2(J)=AF2(W(J));

BFn(J)=AFn(W(J));

7.4.8 THE UNION FUNCTION

The set union of two arrays is obtained by using the

UNION function. Let A and B be two such arrays, then

UNION(A,B) defines another array C, where every element in C

appears either in A or in B.

The composition of CONCAT and UNIQUE is equivalent to

UNION. The transformation of UNION(A,B) is therefore the

combination of those for CONCAT and UNIQUE:

7.4.9 THE DIFF FUNCTION 6

The DIFF function is used to obtain the set difference

between two arrays. Let A and B be two such arrays, then

DIFF(AB) defines a set C where every element in C is

contained in A but not in B.

* I

.. .. . . . . ... I I I 3 l 4
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The transformation of the DIFF function, as in the

following assertion:

C = DIFF(A,B);

is similar to the one for the UNIQUE function. First, an

interim matrix M(I,J) is used to mark the duplications:

M IS FIELD(NUMl));

M(I,J) = IF AFI(1)=BF1(I)
& AF2(I)=BF2(I)

& AFn(I)=AFn(J)

THEN 1
ELSE 0;

And a vector V is used to sum up values of the elements in

the rows of the matrix M:

V IS FIELD(NUM(3));
V(I) = SUM(M(I,J),J);

Then use a selection array D and a sublinear indexing array

X to define the selection:

D IS FIELD(NUM(2));
D(I) = IF V(I)=O THEN I ELSE 0;

X IS FIELD(NUM(5));
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X( I IF 1=1
THEN IF D(I)-=0

THEN 1
ELSE 0

ELSE IF D(I)V=0
THEN X(I-1)+l
ELSE X(I-l);

WG IS GROUP(IX(*));
W IS FIELD(NUM(5));

W(X(I)) = IF D(I)-=0 THEN I;

BFlCJ)=AF1(W(J) );

BF2(J)=AF2(W(J))

BFn(J)=AFn(WCJ));

7.4.10 THE PRODUCT FUNCTION

Let A and B be arrays of records whose constituents are

all single fields.

1 A IS GROUP,
2 AR(*) IS GROUP,

3 Al IS FIELD,
3 A2 IS FIELD,

3 An IS FIELD;



- 166 -

I B IS GROUP,
2 BR(*) IS GROUP,

3 BI IS FIELD,
3 B2 IS FIELD,

3 Bm IS FIELD;

then the Cartesian product of the two arrays PRODUCT(A,B) is

an array of the following structure:

1 C IS GROUP,
2 CR(*) IS GROUP,

3 Cl IS FIELD,

3 C2 IS FIELD,

3 Cn IS FIELD,
3 Cn+1 IS FIELD,
3 Cn+2 IS FIELD,

3 Cn+m IS FIELD;

whose first n fields are from A and the last m tields are

trom B. The transformation of PRODUCT(A,B) is accomplished

by manipulating the subscripts as follows.

CI(I)=AI(I+(I-1)/SIZE.B);
C2(I)=A2(1+(I-1)/SIZE.B);

Cn(I)=An( +(I-I)/SIZE.B);



CHAPTER 8

ANALYSIS, CHECKING AND CODE GENERATION

This chapter describes the processing performed for

high-level operations in the analysis and code generation 0

phases, subsequent to syntax analysis. During precedence

analysis, sawtooth arrays are identified, and subscript

expressions involving sawtooth arrays are collected and 0

saved. Edges between structured operands and assertions

using integral operations are also created during the

precedence analysis phase. These two topics are presented S

in Sections 8.1 and 8.2. Section 8.3 describes the

extension to the range propagation phase, where sawtooth

subscript expressions are propagated. Section 8.4 describes

the scheduling of different ranges which are related via

their sawtooth subscripting reiationships. This results in

the creation of conditional blocks in the schedule. The S

handling of the conditional blocks is presented in Section

8.5. Section 8.6 describes the translation of integral

- 168 -
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(SWTHREL). The following algorithm describes the

recognition by SWTHINX:

Algorithm 8.1 SWTHINX

Given an assertion in internal tree format, determines

whether the assertion defines a sawtooth array.

Input: Pointer to the assertion tree.

Output: An entry in the sawtooth array table, if the

* assertion defines a sawtooth array.

Data structure: Sawtooth array table SWTHREL.

Method:

The recognition of a sawtooth array is based on the syntax

of the assertion. The following functions, each of which

recognizes a small part of the right hand side of equation

8.1, are used:

* SWEXPI: The boolean expression I=i.

SWEXP2: The subscript variable Z(I).

SWEXP31: The expression Z(I)-=Z(I-).

* SAME NUM: The constant 1.

SWEXP33: The expression X(I-1) or X(I-l)+1.

SWEXP3: The IF clause (by calling SWEXP31, SAME NUM, and

SWEXP33):

..
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IF Z(I)-=Z(I-l)
THEN 1 ELSE [ X(I-1)+l I

IF any condition
THEN IX(I-1)+1 X(I-1)]
ELSE jX(I-1)+l X(I-1)]];

The whole recognition process is:

If the right hand side of the equal sign is an IF-THEN-ELSE

conditional expression and the IF condition is recognized by

SWEXPI, the THEN part by SWEXP2, and the ELSE part by

SWEXP3, then enter the X and Z pair in the sawtooth array

table SWTHREL.

Table SWTHREL is used in detecting sawtooth expression

sequences. Consider a variable, A, subscripted indirectly

as:

A(Zl(I),Z2(I),...,Zn(I)) (8.2)

If Zi is sublinear and Zi, for l<i<=n, is a sawtooth array

based on Zi-1, then Zl,Z2,...,Zn constitute a sawtooth S

expression sequence. The recognition of 'a savitooth

expression sequence is actually a process of checking

whether all neighboring subscripting array pairs appear in 0

the sawtooth array table SWTHREL. When a sawtooth

expression sequence is recognized, it is saved in another

table, SWSEQ, as shown in Figure 8.1. Each entry in the 0

table contains the following fields:

*
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NODENUM - The node number of the subscripted variable, i.e.,

A in equation 8.2.

HEADPOS - The subscript position where the first element of

the sequence appears. E.g., n in equation 8.2.

NELEMNT - The length of the sequence. This field is not

necessary the same as HEADPOS, since a sawtooth

expression may be just part of all the subscript

expressions in the parentheses such as

INDRARYi - The variable name of the i-th sawtooth array in

the sequence.

i IS

NODENUM HEADPOS NELEMNT INDRARYl INDRARY2 ...

Sequence 1 I

Sequence 2 III

Sequence n j

Figure 8.1 Data Structure of the Sawtooth Subscript
Expression Sequence Table

S I S I I II I I
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The recognition and storing ot the sequences are

accomplished by procedure STTHSEQ in INDRINX, as described

in algorithm 8.2. p

Algorithm 8.2 STTHSEQ

Given a subscripted variable, determine whether a sequence

of consecutive dimensions are subscripted indirectly by

sawtooth expressions.

Input: Pointer to the tree structure representing the

variable.

Output: Addition of an entry to the sawtooth expression

sequence table.

Data structure: The sawtooth array table SWTHREL and the

sawtooth subscript expression sequence

table SWSEQ.

Method:

1. From the most significant position, examine the subscript

expressions one by one. If a sublinear array is found,

mark it as a possible head of a sawtooth expression

sequence. It a sublinear array could not be found,

return.

2. Starting trom the subscript next to the head found in

step 1, check each subscript to see whether it is ot the

IS I llS.. . .. . . . .
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form X(I) and whether X is a sawtooth array defined based

on its immediate left neighboring indexing array. If so,

append X to the expression sequence. Repeat until the

last (the least significant) subscript is examined or

until a non-sawtooth array subscript is encountered.

3. It the sequence obtained in step 2 is of length 1, ignore

the sequence. Otherwise add the sequence to the sequence

table.

8.2 CREATING EDGES FOR INTEGRAL OPERATIONS

Assertions using integral operations are in the form of

T = P(Sl,S2,...Sn);

where T is the target variable, P is the name of the

integral operation, and the S's are the source variables.

These type of assertions are different from other assertions

in that their source and target variables are potentially

structured, though not necessary so. They are to be

recognized by every phase of the processor, from syntax

analysis to code generation.

The recognition ot the procedure name P is handled the

same way as the MODEL built-in functions such as SIN or LOG.

The names of procedures to be used are entered in the form

of a table (FCNINFO) by program INITIAL ot the MODEL

. . . ... .... S I I | i m | I -
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procussor. INITIAL also sets some properties of the

procedures, such as whether a procedure involves structured

variables or whether it is a PL/I built-in function. The

information entered into the table by INITIAL not only is

used in recognizing integral operations, it is also used in

building dependency edges for the assertions, and in

gener,,ing the corresponding target codes. Besides INITIAL,

the names of procedures also have to be entered in the

reserved identifier table (in program RESERVED).

In array graph, just like ordinary assertions, an

assertion using a integral operation is also represented by

a single node. However, in building up edges for the

assertion, if a source variable is structured, there will be

an edge drawn from every field to the assertion, with

dimension difference appropriately set. The same is true S

for a structured target variable, edges are drawn from the

assertion to all fields of the target variable. The

creation of these edges are done in procedures SCANRGT and s

SCANLFT of ENEXDP respectively, the same as the creation of

edges for ordinary assertions.
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8.3 SAWTOOTH EXPRESSION SEQUENCE PROPAGATION

The sawtooth expression sequence associated with a node

can be propagated along edges to other nodes in the array

graph, if certain conditions are satisfied. To explain

this, consider the assertion

al: A(I,J,K) = B(I,J,K);

Since every subscript appears on both sides of the assertion

and at the same dimension position, the shapes and sizes of

A, B and al are identical. If there is a sawtooth

expression sequence associated with B, then the same

sequence can also be used to enumerate all instances of A.

The association of the sequence with A can be derived by

propagating the sequence along the edge from B to al and the

one from al to A. More specifically, the conditions for

propagating a sawtooth expression sequence along an edge

are:

1) the APRMODE field of every subscript must be 1, i.e.,

the subscript expressions must be simply I, J or K.

2) the LOCALSUBS$ fields of all subscripts must be in

sequence, e.g., subscripts I,J and K appear on both sides

consecutively in the same relative order.

* I

* I I
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The propagation is done by procedure SSEQPROP, called

by the range propagation module RNGPROP after both dimension

and range propagations are completed. The following

algorithm describes SSEQPROP.

Algorithm 8.3 SSEQPROP

Propagate sawtooth expression sequences along edges.

Input: Sawtooth expression sequence table.

Output: Updated sawtooth expression sequence table.

Method:

1. Starting from the first entry in the sawtooth expression

sequence table, get a sequence from the table.

2. Get the list of successor edges (XSUCC LIST) of the node 0

associated with the sequence.

3. For each successor edge, and for each dimension covered

by the sequence, it APRMODE=1 and LOCALSUBS is greater 0

than the previous one by 1, then the current position of

the sequence can be propagated. It any dimension

position covered by the sequence can not be propagated, 0

the whole sequence can not be propagated along the

successor edge.

4. If the sequence can be propagated along the edge, add a 0

new entry to the sequence table with
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NODENUM = the target node.

HEADPOS = the corresponding LOCALSUB$ of the edge.

NELEMNT = same as that of the source node.

INDARYi = same as those of the source node.

5. It the sequence can not be propagated along any ot the

edge on the successor edge list, get next sequence from

the sequence table and go to step 2. Terminate it all

sequences in the table have been examined.

8.4 SCHEDULING FOR CONDITIONAL BLOCKS

In scheduling the array graph, nodes belonging to

different ranges can be scheduled in the samt loop if they

have tha same range or subrange of the same range of one of

their dimensions. The major range vs. subrange

4relationship is established from the recognition of

sublnear arrays and from the way they are used in indexing.

The scheduling a subrange inside the scope of an iteration

0 on its major range requires also the creation of conditional

blocks in the scope of the iteration. Since an indexing

sawtooth expression always depends on a sublinear array, the

0 conditional blocks need to include the node of an indexing

expression. As a matter ot tact, a single sublinear array

is a suecial case at sawtooth expression sequence ot 1i ngth

* 1.

0
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During the scheduling, when a set of nodes are

determined as schedulable in the scope ot an iteration on a

certain major range, it not only means that all noce

dimensions belonging to the major range can be put in the

loop, it also means that those node dimensions belong to any

of the subranges (the major range may have more than one

subrange) can also be put in the same loop, as long as they

are enclosed in a conditional block with a condition which

detects the value change of the sublinear array. This can

be illustrated using the following assertion, assuming Z1 is

sublinear:

al: A(ZI(I))=B(I);

Since Zl is sublinear, the range of array A is a subrange of

that of B. Thererore A can be scheduled inside the loop ot

the range of B as:

Do i=l to the range of B;

Io

Define B(i);
If Z(i)>Z(i-l)
then define A(Z(i));

end;

This can be extended further for cases like:

a2: A(ZI(1),Z2(I),...,Zn(I)) = BIII);

. . .. . . . .0 i i i | i
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where Zl,Z2,...,Zn constitute a sawtooth expression

sequence. Because the combined index of the sequence

enumerates all instances of A as I increases from 1 to the

range of B, the definition of array A can be included in the

loop for B as:

Do i=l to the range of B;

Define B(i);
It not Zj(i)=Zj(i-l) for all l<=j<=n
then define A(Z(i));

end;

It is possible to have more than one sequences involved

in the above situation, with one of them as a subsequence of

others. Consider the following assertions:

A(ZI(I),...,Zn(I)) =B(I);

where l<=m<n. These two assertions still can be put in the

loop ot major range B as follows:

S , | . . , , ,. . .
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Do i=l to the range of B;

Define B(i);
If not Zj(i)=Zj(i-1) for all 1<=j<=n
then Do;

If not Zj(i)=Zj(i-l) for all l<=j<=m
then define C;
Define A;

end;

end;

Note that there are two places where conditions are used to

control whether a node associated with a sawtooth array is

to be executed in the generated program. The first place is

the entry point to the conditional block. The condition at

this point allows the execution of the block only if there

is a change in the indexing provided by the sawtooth arrays.

Another place for the condition is inside the block, for

checking whether the combined index of a subsequence

changes. It so, the associated node will then be executed.

. . . . .I* 1 i I 1 1 i I I I. . . . . . . . . ..
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8.5 CODE GENERATION FOR CONDiTIONAL BLOCKS

The main program for code generation is a recursive

procedure called GENERATE. When a conditional block

(NLMN TYPE=4) is passed from the scheduler to be translated

into PL/I, it generates a conditional block header, calls

itself recursively to generate code tor the block body, and

then generates an END statement to close the block.

The block header is generated by the procedure

CONDBLK. It first produces an IF statement to control

whether the block is to be executed. The block will be

executed only when the value of the combined index changes.

Let the sawtooth arrays associated with the block be

Z1,Z2,...,Zn, then for each array Zj in the sequence, there

is a boolean variable SBINTERIM.Zj declared in the

generated program. The boolean variable is set to TRaiL it

the index changes, i.e., Zj(I)^=Zj(I-). The IF statement

for detecting changes in the combined index is then

IF $B_INTERIM.ZI
$BINTERIM.Z2

$B INTERIM.Zn
THEN

DO;

(block body)

END;

*I i I l
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In other words, if any index changes ($B INTERIM.Z 3  is

TRUE), the combined index changes, and the conditional block

is executed.

Beside the IF statement described above, the block

header also includes the definitions ot new subscripts:

$Xl = Zl(I);
$X2 = Z2(I);

SXn = Zn(I);

which are to replace all indirect subscripts occurred inside

the conditional block.

8.6 INTEGRAL OPERATIONS

Integral operations are used as building blocks in

setting up the transformation rules for high-level

operations. They appear in the array graph and are analyzed

exactly the same as assertions. The important capability

they provide is the definition ot a structured variable

using procedures, not just expressions.

In code generation, integral operations are translated

into procedure calls. In program GENASSR of the code

generation phase, assertions are normally handled by PRINT, 5

whicL simply rewrites the assertions as assignments in the

S
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target language, with appropriate subscripts inserted. For

integral operations, all the source variables and the target

variable are written as arguments to the procedure calls.

As an example, let matrix C be defined as the inverse of

matrix A in the source specification as:

C =I/A;

This high-level operation is transformed using the integral

operation MATINV as follows:

1 GA IS GROUP,
2 GRA(*) IS GROUP,

3 AUX(*) IS FIELD (DEC FLOAT);

I GI IS GROUP,
2 GRI(*) IS GROUP,

3 INV(*) IS FIELD (DEC FLOAT);

AUX = A;
GI = MATINV(GA);
C = INV;

In code generation, the assertion GI=MATINV(GA) is

translated into:

0

CALL MATINV(INV,AUX,ALARM$);

IF ALARM$ THEN PUT SKIP LIST
('Inversion failed for matrix ',AUX);

As can be seen from the above example, besides translating

integral operations into procedure calls, the code generator

also generates code for handling abnormal conditions.
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U S

The precoded procedures are stored in the MODEL system

tile UFCNLIB.DAT. In order for the system to recognize

these procedures, their names are entered to the system

tunction and procedure table FCNINFO by the initialization

program INITIAL.

* S

a 'S
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CHAPTER 9

CONCLUSION

9.1 SUMMARY

This dissertation presented the source-to-source

transformation approach for efficient implementation of

high-level operations in nonprocedural programming

languages.

Etficiency issues were discussed and justification for

achieving efficiency via source-to-source transformation was •

given. The main idea has been not to treat high-level

operands as indivisible entities in implementation, thus

allowing global considerations to be applied to individual S

constituents of high-level structures.

The problem of source-to-source transformation has been

analyzed and, as a result, guidelines and tools have been

suggested tor the decomposition of high-level operations

- 186 -
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into elemental ones.

The methodology has been applied in incorporating

high-level operations in MODEL. Transformation rules for

the provided high-level operations are derived and examples

or their use are shown. The implementation ot high-level

operations in MODEL has demonstrated the feasibility ot the

methodology.

The contributions of this research can be summarized as

follows:

a) A source-to-source transformation scheme for efficient

implementation of high-level operations,

b) Operations are made more powerful by allowing more

generally structured operands,

c) Special indexing patterns are identified and used for the

application of efficient storage allocation schemes,

d) New building blocks for the underlying array graph model

0 are suggested, and

e) The expressive power of the MODEL language is increased

substantially through the incorporation of high-level

operations. 0.

p
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9.2 FUTURE RESEARCH

Several areas can be further investigated to improve or

generalize the current results. They include:

a) To make the use of high-level operations more flexible,

it is desirable that the user be able to define his own

operations, in addition to the ones provided by the

system. The immediate question then is how flexible

should these operations be. Is the user expected to

participate in the source-to-source transformation, or

just to define the high-level operations from the system

provided ones? There seems to be a conflict between

efficiency and flexibility in this area. Since the

efficiency considerations built in the transformation

vary from operation to operation, more efficient

customized transformation rules can always be derived for

a given high-level operation.

b) The scheduling and code generation processes described in 0

this dissertation are basically for sequential von

Neumann machines. Since array graph is machine type

independent, the effect of assuming different types of

machines remains to be investigated. Research in thib

area for data flow machine3 may have more promising

result since all the data flow intormation is already 0 S

contained in the array graph and the nature of the data

... ... . . . .. . . . .. ..
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flow machines allows parallel execution.

c) In allocating storage space tor variables in the

generated programs, when the use of virtual or window

storage allocation scheme is not possible, dynamic

storage allocation techniques may be employed to minimize

the storage demand of the physical storage allocation

scheme. Different variables physically allocated may

share a common storage area if they are not referenced at

the same time.

A I

* I
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E LXLD D tMOD E L LANGUAGE

<MODEL SPECIFIC2ArION)-:=[ <MODEL BODY STMTS> /CLRERRF/ I
/STMT FL/ 'MODELSPECIFicA TION>

(MODEL BODY S'rMTS>::= /E(80)/
MODULL <MODULE NAME STMT>

rib SOURCE (SOURCE FILES STMT>
TARGET (TARGET FILES STMT>

@#_END#@ /ENDIfNP/
(D5CL DESCRIPTION>
(BLOCfKBEGIN>
(BLOCKEND>
<OLD FILE STMT>

* /ASSfNIT/ (ASSERTIONS> /STRHS/

(DCL DESCRIPTION> :=1 /INTDCL/ /INTMVAR/ /MEMINIT/ /SVMEM/
(DATA ISPEC> [, /E(108)/ (INTEGER>
/CRDCf/ /INTMVAR/ /MEMINIT/ /SVMEM/
(DATASPEC> I* /STDCL/ (ENDCHAR>

(DATASPEC> (DCL MVAR> [( (OCCSPEC> )] [(<IS> I
<ATTRSPEC> /SVDCL/

<ATTR SPEC> (FILE> /SVF/ /SVFLNM/ (FILE DESC>
(STORAGEDESC> /STDEV/

q (RECORD> /SVR/
(FIELD STMT> /STDFLD/ /SVD/
[<GROUF>I /SVG/

(BLOCK-BEGIN> BLOCK /BLKINIT/ [ (NAME> /SVLBL/ I /E(2)/
( BLOCKSPEC> I* /SVBLOK/ <ENDCHAR>

(BLOCKSPEC> (SOLUTION> < ITERATION> I RELERROR>

<SOLUTION> [ SOLUTION IMETHOD [<IS> ] /E(62)/
(METHODS> /SVMETH/ [I

< METHODS> NEWTON IGAUSS-SEIDEL GS JACOBI

<ITERATION> [ (MAXIMUM> I KITER> I 'S> I /E(4)/
(NUMBER> /SVITER/ ,I

(MAXIMUM> MAX MAXIMUM

(ITER> ITER ITERATION ITERATIONS
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<REL ERROR> :-[RELATIVE I (ERROR> < IS> I/E(5)/
(NUMBER> /SVERR/(,I

(ERROR> -ERR IERROR

(BLOCK-END> <END> /BLKEND/ [(NAME> /CHKLBL/
(EN DCHAR>

(END> ::/ENDID/

(ASSERTIONS>: :=/E(14)/(CONDITIONAL>
/SVASSR/ /1NTMVAR/ (MVAR> /STMVAR/ /SVCMPI/
(IS/SVNXOP/ZDDLORRHS>

(CONDITIONAL>::=IF /SVAAS1/ /SVOP1/ /SETBIT/ /E(18)/
<BOOLEAN EXPRE2SSION> /SVCMPl/ /E(38)/
THEN /SVNXOP/ (SIMPLE ASSERTION> /SVNXCMP/

* E[ELSE /SVNXOP/ (ASSERTFION> /SVNXCMP/]
/RSETIF/ /STALL/

<ASSERTION>::= /E(14)/ <CONDITIONAL> I<SIMPLEASSERTIO0N>

(DDL OR RHS>::=/INTODDL/ (DATA DESC STMT> /FREETMP/
- I ~/E(33)/ (INTOAS> (KSSERTIONBRANCH> 4

<ENDCHAR>

(ASSERTIONBRANCH>::= <DEF EXPRESSION>
I<BO-oLIEAN EXPRESSION>/SVNXCMP/ /STALL/

(DEFEXPRESSION>::= /INTSUB/ (VALUELIST) I /FREESUB/

(VALUE-LIST>::= (/CRSUB/ /DECPP/ (VALUE LIST>
[, (VALUE LIST> ]- ) /INTCPP/
[<(SIGN> /SVOPP/] (NUMBER> /STNUM/ /STASS/

* (<INTOAS>: :/INTOASS/

(SIMPLE-ASSERTION>::=/SVASAEl/ /INTMVAR/ (MVAR> /STMVAR/
/CKUNIK/ /SVCMPl/ /E(23)/ = /SVNXOP/
(BOOLEAN EXPRESSION> /SVNXCMP/ /STALL/
(EN DCHAR>

(SUBVARIABLE>::= /SETSUBV/ (VAR> /SVCKMV/ /SVCMP1/
I(/SVNXOP/ /SETBIT/ /E(22)/
(EXPRORSTAR> /SVNXCMP/ /SVCKSUB/ [,/SVNXOP/
<EXPRORSTAR) /SVNXCMP/ /SVCKSUB/ J

/F,(24)/ )]/CLCKSUB/ /STALL/
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(SUB-VARIABLE1>::= /SETSUBV/ <VAR> /SVCMP1/
[(/SVNXOP/ /SETBIT/ /E(22)/
<EXPRORSTAR> /SVNXCMP/ 1,/SVNXOP/
(EXPRORSTAR>/SVNXCMP/] *

/E(24)/ ) I /STALL/

(EXPRORSTAR>::= <STARSUB> I (BOOLEAN-EXPRESSION>

<STARSUB>:: /STARSUB/

(BOOLEANEXPRESSION>::= /E(82)/ /SVBEXP/ (COND EXP>4
1 <BOOLEAN TERM> /SVCMPTf/

[(OR> /SVNXOP/ 7BOOLEANTERM> /SVNXCMP/]*
/STALL/

(COND EXP>::=IF /SVCOND/ /E(3)/ <BOOLEAN EXPRESSION>
/SVCMP1/ /E(79)/ THEN /SVNXOP/ TBOOLEANEXPRESSION>
/SVNXCMP/ [/E(12)/ ELSE /SVNXOP/
(BOOLEANEXPRESSION> /SVNXCMP/I /STALL/

<OR>::= /ORREC/

(BOOLEAN-TERM>::= /E(83)/ /SVBT1/ <BOOLEAN FACTOR> /SVCMP1/
(& /SVNXOP/ (BOOLEANFACTOR> /S VNXCMP/]* /STALL/

(BOOLEAN-FACTOR>:: = /E(82)/ /SVBF1/ <CONCATENATION> /SVCMP1/
[(RELATION> /SVNXOP/ <CONCATENATION>
/SVNXCMP/] * /STALL/

(RELATION>::= /RELREC/

<CONCATENATION>::= /E(84)/ /SVCON/ (ARITH EXP> /SVCMP1/
I (CONCAT> /SVNXOP/ (ARITffEXP> /SVNXCMP/] *
/STALL/

(CONCAT>: : /CATREC/0

<ARITH EXP>::= /E(81)/ /SVAE/ [<SIGN> /SVOP1/I
(TERM> /SVCMP1/ [(OPS> /SVNXOP/ (TERM> /SVNXCMP/I*
/S TALL/

<TERM>::= /E(87)/ /SVTERM/ <MFACTOR> /SVCMP1/
[(MOPS> /SVNXOP/ <MFACTOR> /SVNXCMP/I* /STALL/

(MFACTOR> /SVMFAC/ (FACTOR> /SVCMP1/
(BMOP> /SVNXOP/ (FACTOR> /SVNXCMP/ ]* /STALL/
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<FACTOR>::= <UMOP> /SVMFAC/ /SVOPI/ <PRIMARY> /SVCMPl/
/S TAL L/
I/E(85)/ /SVFAC/ [- /SVOP1/] (PRIMARY> /SVCMP1/
(c<EXPON> /SVNXOP/ <PRIMARY> /SVNXCMP/I* /STALL/

<BMOP>:: /BMOPREC/

(UMOP>: : /UMOPREC/

(EXPON>: := /EXPREC/

<PRIMARY>::= /E(86)/ /SVPRIM/ <ISPRIM> /SVCMP1/ /STALL/ 0

(ISPRIM>::= (ISPRIMI> I (ISPRIM2>

<IS PRIM1>::= < BOOLEAN EXPRESSION> /E(24)/)
*SELECT ( ( PRIMARY> /SLARG1/.&

<BOOLEAN EXPRESSION> /SLCOND/ ) /SLTRAN/
MERGE ( (PRIMARY> /MGARG1/ , (PRIMARY>
/MGARG2/ , (BOOLEANEXPRESSION> /MGCOND/
/MGTRAN/
SORT ( (PRIMARY> /SRARGI/ < PRIMARY> /SRKEY/

( PRIMARY> /SRORDER/ ) /SRTRAN/
*IFUSE ( (PRIMARY> /FSARG1/ )/FSTRAN/ 9

COLLECT ( <PRIMARY> /CLARG1/I
(BOOLEAN-EXPRESSION> /CLCOND/ ) /CLTRAN/

<IS PRIM2>::= CONCAT ( (PRIMARY> /CTARG1/ < PRIMARY>
/CTARG2/ ) /CTTRAN/
UNIQUE < PRIMARY> /UQARG1/ )/UOTRAN/ 0
UNION < PRIMARY> /UNARG1/ < PRIMARY>
/UNARG2/ ) /UNTRAN/
DIFF ( (PRIMARY> /DFARG1/ < PRIMARY>
/DFARG2/ ) /DFTRAN/
IPRODUCT ( (PRIMARY> /PRARG1/ , (PRIMARY>

0 /PRARG2/ ) /PRTRAN/ 9
<NUMBER> /STNUM/
<STRING-FORM>
<FUNCTION CALL>
(SUBVARIKBLEI>

* <STRINGFORM>::= ' /SETSTRN/ [ <STRING> /SVSTRNG/I
/E(26)/
I/ADLEX/ [B /STBIT/ /E(1)/ (BSUFX>I

/STN UN!

<FUNCTION-CALL>::= (FUNCTION-NAME> /STFUN/
* /SETFUNC/ [(/SVNXOP/ (BOOLEANEXPRESSION>

/SVNXCMP/ [,/SVNXOP/ (BOOLEAN-EXPRESSION>
/SVNXCMP/ 1*)I/STALL/
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<FUNCTIONNAME>::= /FNCHECK/

<MVAR>::= < SUB VARIABLE> /SVMVAR/
[, <SUGB VARIABLE> /SVMVAR/ 1
<SUBVARIABLE> /SVMVAR/

<VAR>::= /SETVAR/ /INITQNM/ /E(68)/ <NAME> /ADLEX/ /MKQNM/
[. /ADLEX/ /E(68)/ <NAME> /ADLEX/ /MKQNM/I* /STRCON/

<DCL MVAR> ::(<VAR> /SVCKMV/ /SVMVAR/ [, <VAR> /SVCKMV/
I ra /SVMVAR/ ]* )*

<VAR> /SVCKMV/ /SVMVAR/

<BSUFX>::= /BITSTR/

* <QNAME>::= /INITQNM/ /E(68)/ <NAME> /MKQNM/

(./E(68)/ <NAME> /MKQNM/ I*

<STRING>::= <STRING CONST>

<OPS>::= /OPREC/

<MOPS>::= /MOPREC/

<TEST>:: /TESTBIT/

<MODULE NAME STMT>::= /E(63)/: /E(64)/ <NAME>
/STMOD/ TENDCHAR>

<SOURCE FILES STMT>::= [(FILE KEYWORD>] /E(75)/ /INITSFL/
<SOU'RCE FIfLELIST> /STSRC/-<ENDCHAR>

<FILEKEYWORD>::=FILESIFILE

*<SOURCE FILELIST>::= /E(76)/ <NAME> /SVSRC/

(,7/E(76)/ <NAME> /SVSRC/I*

<TARGET FILES STMT>::= [<FILE KEYWORD>] /E(77)/ /INITTFL/
<TARGETFYfLELIST> /STTKR/ <ENDCHAR>

0 <TARGET FILELIST>::= /E(78)/ <NAME> /SVTAR/
(, 7E(78)/ <NAME> /SVTAR/ 1*

<DATA DESC STMT>::= (DATA-DESCRIPTION> <ENDCHAR>
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(DATA DESCRIPTION>::
<FILEE STMT> /STFILE/
<RECORD STMT> /STREC/
(GROUP STMT> /STGRP/
<FIELD STMT> /STFLD/
< SUBSTMT> /STSUBST/

(SUB STMT>::=(SUBSCRIPT>/MEMINIT/ /SVMEM/ U OCCSPEC> )

<SUBSCRIPT>::= SUB I SUBSCRIPI SUBSCRIPTS

<FILE>::= FILE I REPORT IFILES jREPORTS

(RECORDSTMT>::= <RECORD> /MEMINIT/ [(] (ITEM-LIST> I)

(RECORD> := REC IRECORD I RECORDS

0 (ITEM LIST' ::= /E(52)/(ITEM> [[,] <ITEM>]*

(ITEM>::=(NAME> /SVMEM /[.<NAME> /SVMEM/ 1
[( <OCCSPEC> )

(OCCSPEC>::= (STAR> /SVSTAR/ I<MINOCC>/SVMNOC/ (<MAXOCC>j

(STAR>::= /STARREC/

(MINOCC>: :(INTEGER>

<MAXOCC> :: [:/E(51)/]<INTEGER> /SVMXOC/ /CKMNMX/
< INTEGER> /SVMXOC/ /CKMNMX/

(GROUPSTMT>::= (GROUP>/MEMINIT/ [U] <ITEMLIST> ]

(GROUP> :=GRP I GROUP I GROUPS

<FIELDSTMT>::= (FIELD> /SVFLD/ (FIELD ATTR>

[cON CND> : <OPT> /SV0P7

(ONCND> :=ONCNVERR IONCERR

<OPT> :=STOP j<NUMBER>

S (FIELD> := FLD jFIELD IFIELDS0

(FIELDATTR>::= [( <TYPE> /SVFDTP2/[ (LENG SPEC>]
[] [(LINESPEC>] [,] [(CULSPEC>]
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<LENG SPEC> :: (/E(48)/ <MIN-LENGTH> [ <MAX-LENGTH>
/E(49)/)

I<MINLENGTH> [<MAXLENGTH>]

<MINLENGTH>::= <INTEGER> /SVMNFLN/

<LINESPEC>::= LINE /E(53)/ /E(54)/ /E(55)/ (<INTEGER>
/SVLINE/)

<COL SPEC>::= COL /E(9U)/ /E(91)/ /E(92)/ ((INTEGER>
/SVCOL/)

<TYPE>::= /E(47)/ <PIGDESC> I <STRINGSPEC> <NUM SPEC>

<PIG DESC>::= (PIG TYPE> /E(67)/ /SVPIC/

(<STRING> /SVPICST/ 1'/STPIC/

<PIGTYPE>::= PIC I PICTURE

<STRINGSPEC>::= <STRINGTYPE> /SVSTRTP/

(STRING TYPE>::= CHAR ICHARACTER I BIT INUM NUMERIC

<NUMSPEC>::= <NUMTYPE> /SVNUMTP/ <FlXFLT> /SVMOD/I

<NUMTYPE>::= BIN I BINARY I DEC IDECIMAL

<FIXFLT>::= FIX jFIXED I FL I FLOAT I FLT

<MAXLENGTH>::=I: <INTEGER> /SVMXFLN/
/NE(4) <SINTGR> /SVSCALE/
<ITGER> /SVMXFLN/

<SINTGR>::= - /E(50)/ <INTEGER> /NEGATE/ I <INTEGER>

<NUMBER> ::= /SETNUM/ <INITNUM> /E(65)/ <RECNUM> S

(RECNUM>: : /RECNUM/

<INITNUM>::= /INITNUM/

<SIGN>::= + I - 0

<RECG>::= <RECORD> I(GROUP>

(KEY>: :=KEYISEQUENCE

<CODE>:: =EBCDIC IBCDIJASCI I

<ANY>: := <NAME>j<INTEGER>
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<NOTRKS>::= 719

<DENSITY>::= 200155618001160016250

<PARITY>::= ODDIEVEN

(TYPEDSK>::= 2314123111333012305 1 3330-1

(ORG>: :=ORG IORGANIZATION

(ORGTYPE>::= /E(7)/ISAMISEQUENTIALISAMIINDEXED SEQUENTIAL

(ENDCHAR>::= /E(74)/ (END-CHAR> /STMTINC/

(ENDCHAR>::= /SVENDC/

(STRINGCONST>: :=/CHARSTR/

(NAME>: : /NAMEREC/

(INTEGER>: :/INTREC/

<IS>::= IS =IARE

(FILESTMT>::= (FILE> /SVFLNM/ /MEMINIT/ (SON DESC>
(FILEDESC> (STORAGE DESC> /STDEV/

(SON DESC>::=( (ITEM LIST>)
- jI (RECG> [NAME] [(IS>] [(] (ITEM> [)]I

(OLD FILE STMT>::= (FILE> [NAME] [<IS>] /E(56)/ /MEMINIT/
/INTMVAR/
(DCL MVAR> /SVFLNM/
(RECG> [NAME] [(IS>] [(1 (ITEM> [)l
(FILE DESC> /STFILE/ S

<STORAGE DESC> /STDEV/ <ENDCHAR>

(FILEDESC>::= (STORAGE (NAME] [<IS>] /E(44)/ (NAME>
/SVSTNM/]
((KEY> [NAME] (<IS>] /E(45)/ (NAME>
/SVKEY/1

[(ORG> [<IS>] (ORGTYPE> /SVORG3/]

(STORAGE DESC> ::= [DEVICE [<IS>] (DEVICE>] /SVDEV/
[RECORD /E(57)/] [FORMAT [<IS>] (REC FMT>1/SVRECF/
<BLK REC VOL>
[(TAPE D ESC>] [(DISK DESC>]
[HARDWARE] [SOFTWARE]
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<DEVICE> /E(61)/ TAPE DISK/SETDEVB/
CARD /SETDEVC/ IPRINTER /SETDEVP/

IPUNCH /SETDEVU/ jTERMINAL /SETDEVT/

(RECFMT> /E(69)/ FIXEDIVARIABLEIVAR-SPANNEDIUNDEFINED

(BLK REC VOL>
[[MAX] /E(70)/ /E(71)/ BLOCKSIZE [<IS>] (INTEGER>
/SVBLK/ I
[ MAX/E(59)/] RECORDSIZE [<IS>] /E(72)/<INTEGER>
/SVRCS z/]

[VOLUME [NAME] [<IS>] /E(60)/ <NAME>/SVVOL/
[,/EC60)/<NAME>]* I

(TAPE DESC> ::= [(TRACKS> [<IS>] /E(66)/<NO TRKS>/SVTRK2/]
[PARITY [<IS>] /E(66)/ <PARITY>/SVFAR2/]
[DENSI*TY [<IS>] /E(66)/ <DENSITY> /SVDEN2/I
([TAPE] LABEL [<IS>] <LABEL TYPE>/SVLAB2/1

[START [1FILE1 (<IS>] /E(66)/ <INTEGER> /SVSTFL2/1
[[CHAR] CODE [<IS>] <CODE> /SVCC/

(TRACKS> :=NOTRKS I TRACKS

<LABELTYPE> /E(58)/ IBMSTDIANSI-STDINONEIBYPASS

<DISK DESC> [UNIT [<IS>] /E(9)/ <TYPEDSK> /SVUNIT2/]
[<CYLINDERS>/SVUCYL/ [<IS>] /E(66)/ <INTEGER> /SVQTY2/]

<CYLINDERS> :=NOCYLS ICYLINDERS

<HARDWARE>::= [[COMPUTER] MODEL [<IS>] <ANY>

<SOFTWARE>::= [[OPERATING] SYSTEM [<IS>] <ANY>]
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A.2 EBNF/WSC FOR THE PREPROCESSOR

<MODEL SPECIFICATION>::=
[(MODEL BODY STMTS> /STMT FL/ /CLRERRF/ ]*

/STMT_FL/ <MODELSPECIFICATION>

<MODEL BODY STMTS>::= MODULE <MODULE NAME STMT>
SOURCE <SOURCE FILES STMT>

TARGET <TARGET FILES STMT>
@# END#@ /ENDPASS/ -

<DCL DESCRIPTION>
<OLD FILE STMT>

<ASSERTIONS>

<DCLDESCRIPTION> ::= 1 /LEVEL 1/ <DATA SPEC> /SVL F 1/

[, <INTEGER> /LEVEL_N/ <DATA_SPEC> /SVL_F/]*

<DATA SPEC> :: <DCL MVAR> H <OCCSPEC> )] [ <IS> ]

<ATTRSPEC>

<ATTR SPEC> ::= <FILE> /SETFLE/ <FILE DESC>
<STORAGE DESC>
<RECORD> /SETREC/

<FIELD STMT> /SETFLD/

[ <GROUP> I /SETGRP/

<ASSERTIONS>::= <MVAR> /SBOUND/ [<IS>] <DDL OR RHS>
/SVLF2/

<DDLORRHS>::= <DATADESCSTMT>

<SUBVARIABLE>::= <VAR>

<SUB VARIABLE1>::= <VAR>

<MVAR>::= ( <SUB VARIABLE> /SAVV1/
[, <SUB VARIABLE> /SAVVN/ ])
<SUBVARIABLE> /SAVV1/

<VAR>::= /SINIT/ <NAME> /SSET/ [. <NAME> /SCON/]*

<DCLMVAR> :: ( <VAR> /SAVVI/ [, <VAR> /SAVVN/ ]*
<VAR> /SAVV1/

<STRING>::= <STRINGCONST>

<MODULE NAME STMT>::= <NAME> <ENDCHAR>

S S
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<SOURCE FILES STMT>::= [<FILE KEYWORD>]
- - <SOURCEFILELIST> <ENDCHAR>

<FILEKEYWORD>::=FILESIFILE

<SOURCE FILELIST>::= <NAME> [, <NAME> ]*

<TARGETFILESSTMT>::= [<FILE KEYWORD>] : <TARGETFILELIST>

<ENDCHAR>

<TARGETFILELIST>::= <NAME> [, <NAME> 1* S

<DATADESCSTMT>::= <DATA DESCRIPTION> <ENDCHAR>

<DATA DESCRIPTION>::=
<FILE STMT> /SETFLE/
<RECORD STMT> /SETREC/ S

<GROUP STMT> /SETGRP/
<FIELDSTMT> /SETFLD/

<FILE>::= FILE I REPORT I FILES I REPORTS

<RECORDSTMT>::= <RECORD> [(I <ITEMLIST> [)] S

<RECORD> ::= REC I RECORD I RECORDS

<ITEMLIST>::= <ITEM> [[,] <ITEM>]*

<ITEM>::= /S INIT/ <NAME> /S SET/ < (NAME> /SCON/ ]•
[(-<OCCSPEC> )l /SAVVN/

<OCCSPEC>::= <STAR> /OC STAR/
<MINOCC> /OCMIMA/ [<MAXOCC> /OCMIMA/ ]

<STAR>::= /STARREC/ 5 5

<MINOCC>::=<INTEGER>

<MAXOCC> ::= [:]<INTEGER> <INTEGER>

<GROUPSTMT>::= <GROUP> [( <ITEMLIST> [)] 

<GROUP> ::= GRP I GROUP I GROUPS

<FIELDSTMT>::= <FIELD> <FIELDATTR> [<ONCND> : <OPT>

<ONCND> :: ONCNVERR I ONCERR

<OPT> :: STOP I <NUMBER>

S 0
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<FIELD> FLD IFIELD FIELDS

<FIELDATTR>::= [(] (TYPE> [ <LENGSPEC>]
fLI [<LINESPEC>] LI (<COLSPEC>] [)I

<LENG SPEC> :=(<MIN LENGTH> [<MAX LENGTH>
<MINLENGTH> [<MAX-LENGTH>]

<MINLENGTH>::= <INTEGER>

b <LINESPEC>::= LINE (<INTEGER>)

<COL SPEC>::= COL (<INTEGER>)

<TYPE>::= <PIGDESC> I<STRINGSPEC> <NUM SPEkL.>

(PIGDESC>::= <PIGTYPE> ' [ <STRING>I 5 0

<PIG TYPE>::= PIG I PICTURE

<STRING-SPEC>::= <STRING-TYPE>

<STRINGTYPE>::= CHAR I CHARACTER I BIT NUM NUMERIC

<NUMSPEC>::= <NUMTYPE? [ <FIXFLT> I

<NUM TYPE>::= BIN IBINARY IDEC I DECIMAL

<FIXFLT>::= FIX I FIXED I FL IFLOAT IFLT0

<MAXLENGTH>::= [:] <INTEGER> I ,<SINTGR> <INTEGER>

<SINTGR>::= - <INTEGER> I<INTEGER>

<NUMBER> ::= /SETNUM/ <INITNUM> <REGNUM> 0

<RECNUM>: := /RECNUM/

<INITNUM>: := /INITNUM/

<SIGN>::= + I -

<RECG>::= <RECORD> I<GROUP>

<KEY>: :=KEYISEQUENCE

<CODE>::=EBCDICIBCDIASCII

<ANY>: := <NAME> <INTEGER)
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(NO LRKS>::= 719

<DENSITY>::= 200155618001160016250

(PARITY>:: ODDIEVEN

(TYPEDSK>::= 2314123111333012305 1 3330-1

(ORG>: :=ORGIORGANIZATION

(ORGTYPE>::= ISAMISEQUENTIALISAMIINDEXED SEQUENTIAL

(ENDCHAR>::= <ENDCHAR>

(END-CHAR>::= /SVENDC/

(STRINGCONST>::=/CHARSTR/

(NAME>: :=/NAMEREC/

(INTEGER): :=/INTREC/

4 <IS>::= IS = ARE

(FILESTMT>::= (FILE> (SON DESC>

(FILEDESC> (STORAGE DESC>

(SON DESC>::=( (ITEM LIST>) 0
1(RECG> [NAME] [<IS>] [(1 (ITEM> [)] l

(OLD FILE STMT>::= <FILE> /SETFLE/ [NAME] [<IS>)
(DCL MVAR> /SBOUND/
'<RECG > [NAME] [<IS] [(] (ITEM>[
/SVL F2/
(FILEf DESC>
<STORA GEDESC> <ENDCHAR>

(FILEDESC>::= [STORAGE [NAME] [<IS>] (NAME>]
[(KEY> [NAME] [<IS>] (NAME>

[<ORG> [<IS>] (ORGTYPE>

(STORAGE DESC> :=[DEVICE [<IS>] (DEVICE>]
[RECORD] [FORMAT [<IS] (RECFMT>]
(BLK REC VOL>
[(TAPE DEfSC>] [(DISK DESC>]

*[HARDWA RE] [SOFTWARE]

(DEVICE> :: TAPE I DISK CARD I PRINTER IPUNCH
TERMINAL
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<RECFMT> FIXEDIVARIABLEIVAR_SPANNEDIUNDEFINED

<BLKRECVOL>
[MAX] BLOCKSIZE [<IS>] <INTEGER> ]

[ [MAX] RECORDSIZE [<IS>] <INTEGER>]
[VOLUME [NAME] [<IS>] <NAME> [,<NAME>]*]

<TAPE DESC> [<TRACKS> [<IS>] <NO TRKS> ]
[PARITY [<IS>] <PARITY>]
(DENSITY [<IS>] <DENSITY> ]
[ [TAPE] LABEL [<IS>] <LABEL TYPE>]
[START [FILE] [<IS>] <INTEGER> ]
[[CHAR] CODE [<IS>] <CODE> ]

<TRACKS> NOTRKS I TRACKS

<LABELTYPE> IBMSTDIANSI_STDINONEIBYPASS

<DISKDESC> [UNIT [<IS>] <TYPEDSK>]
[<CYLINDERS> [<IS>] <INTEGER>]

<CYLINDERS> NOCYLS I CYLINDERS

<HARDWARE>::= [[COMPUTER] MODEL [<IS>] <ANY>

<SOFTWARE>::= [[OPERATING] SYSTEM [<IS>] <ANY>]

I S

S S
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B.1 MATRIX OPERATIONS

1 MODULE: MINVSE;
2 SOURCE: AFILE;
3 TARGET: CFILE;
4
5 1 AFILE IS FILE,
6 2 A IS RECORD,
7 3 AG(3) IS GROUP,
8 4 AF(3) IS FIELD (PIC'S99V99');
9

10 1 B IS GROUP,
11 2 BG(3) IS GROUP,
12 4 BF(3) IS FIELD (DEC FLOAT);
13
14 1 CFILE IS FILE,
15 2 C(5) IS RECORD,
16 3 CG(3) IS GROUP,
17 4 CF(3) IS FIELD (PIC'SZZ9.V99');
18
19 * BF=f((1,2,3),(2,3,4),(3,2,1)) ;
20 BF (1 ,1 )=l ;
21 BF (1 ,2 )=2 ;
22 BF (1 ,3 )=3 ;
23 BF (2 ,l )=2 ;
24 BF (2 ,2 )=3 ;
25 BF (2 ,3 )=4
26 BF (3 ,l )=3
27 BF (3 ,2 )=2
28 BF (3 ,3 )=I
29

30 * C(1) A I* B
31 (ROW$1,COL$1) ARE SUBSCRIPTS;
32 SUM$1 IS FIELD(DECIMAL FLOAT);
33 SUM$1(ROW$1,COL$1)=

SUM(AF (ROW$1 ,SUB1 )*BF (SUB1 ,COL$1 ),SUB1);
34 CF (I ,ROW$1 ,COL$1 )=SUM$1 (ROW$1 ,COL$1 );
35 C(2) = I- A;
36 (ROW$2,COL$2) ARE SUBSCRIPTS;
37 CF (2 ,ROW$2 ,COL$2 )=AF (COL$2 ,ROW$2 );
38 C(3) = I/A;
39 (ROW$3,COL$3) ARE SUBSCRIPTS;
40 (AUX$1,INV$1) ARE FIELDS(DECIMAL FLOAT);
41 GRA$1 IS GROUP (AUX$1(*));
42 GRI$1 IS GROUP (INV$1(*));
43 GAS1 IS GROUP (GRA$1(*));
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B.2 THE SELECT FUNCTION

1 MODULE: SEL;
2 SOURCE: FB;
3 TARGET: FA;
4
5 1 FB IS FILE,
6 2 B(30) IS RECORD,
7 3 Bi IS FIELD(CHAR(3)),
8 3 B2(3) IS GROUP,
9 4 B21(2) IS GROUP,

10 5 B211 IS FIELD(CHAR(5)),
11 5 B212 IS FIELD(CHAR(5)),
12 4 B22 IS FIELD(CHAR(4);
13
14 1 FA IS FILE,
15 2 A(*) IS RECORD,
16 3 Al IS FIELD(CHAR(3)),
17 3 A2(3) IS GROUP,
18 4 A21(2) IS GROUP,
19 5 A211 IS FIELD(CHAR(5)),
20 5 A212 IS FIELD(CHAR(5)),
21 4 A22 IS FIELD(CHAR(4);
22
23 SIZE.B = 30;
24
25 FA=SELECT(FB,B1='XXX');
26
27 L1$C IS FIELD(NUM(2));
28 L1$C = IF B1='XXX' THEN 1 ELSE 0;
29 L1$X IS FIELD(NUM(5));
30 L1$X(SUB1)=IF SUB1=1
31 THEN IF L1$C(SUB1)-=0
32 THEN 1
33 ELSE 0
34 ELSE IF L1$C(SUB1)-=0
35 THEN L1$X(SUB1-1)+1
36 ELSE L1SX(SUB1-1);
37 L1$SZ IS FIELD(NUM(5));
38 L1SSZ=SUM(L1$C(SUB1),SUB1);
39 LiSIG IS GROUP(L1$I(*));
40 LiSI IS FIELD(NUM(5));
41 L1$I(L1$X(SUB1))=IF L1$C(SUB1V-=0 THEN SUBi;
42 SIZE.L1$I=L1$SZ;
43 A1(SUB1)=B1(L1$I(SUB1));
44 A211(SUB1,SUB2,SUB3)=B211(L1$I(SUB1),SUB2,SUB3);
45 A212(SUB1,SUB2,SUB3)=B212(L1$I(SUB1) ,SUB2,SUB3);
46 A22(SUB1,SUB2)=B22(L1$I(SUB1),SUB2);
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B.3 THE MERGE FUNCTION

1 MODULE: MERGE;
2 SOURCE: MA,MB;
3 TARGET: M;
4
5 1 MA IS FILE,
6 2 MAREC(*) IS RECORD,
7 3 MAI IS FIELD(CHAR(3)),
8 3 MA2(3) IS GROUP,
9 4 MA2I(2) IS GROUP,

10 5 MA211 IS FIELD(CHAR(5)),
11 5 MA212 IS FIELD(CHAR(5)),

*12 4 MA22 IS FIELD(CHAR(4);
13
14 1 MB IS FILE,
15 2 MBREC(*) IS RECORD,
16 3 MB1 IS FIELD(CHAR(3)),
17 3 MB2(3) IS GROUP,
18 4 MB21(2) IS GROUP,
19 5 MB211 IS FIELD(CHAR(5)),
20 5 MB212 IS FIELD(CHAR(5)),
21 4 MB22 IS FIELD(CHAR(4));
22
23 1 M IS FILE,
24 2 MREC(*) IS RECORD,
25 3 Ml IS FIELD(CHAR(3)),
26 3 M2(3) IS GROUP,
27 4 M21(2) IS GROUP,
28 5 M211 IS FIELD(CHAR(5)),
29 5 M212 IS FIELD(CHAR(5)),
30 4 M22 IS FIELD(CHAR(4));
31
32 SIZE.MAREC=10;
33 SIZE.MBREC=15;
34
35 M=MERGE(MA,MB,MA1<MB1);
36 M1$X IS FIELD(NUM(5));
37 MiSY IS FIELD(NUM(5));
38 M1$X(SUB1)=IF SUB1=1 THEN 1 ELSE
39 IF Ml$S(SUB1-1) & -M1$D(SUBI)
40 THEN MI$X(SUB1-1)+l

*41 ELSE M1$X(SUB1-1);
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42 MI$Y(SUB1)=IF SUB1=1 THEN 1 ELSE
43 IF M1$S(SUB1-1) I Ml$E(SUBl)
44 THEN M1$Y(SUBl-1)
45 ELSE M1$Y(SUB1-1)+1;
46 M1$D IS FIELD(BIT(1));
47 MiSE IS FIELD(BIT(1)); 4
48 M1$D(SUB1)=IF SLIBI=1 THEN '0'B
49 ELSE M1$D(SUB1-1)1
50 (M1$X(SUB1-1)=SIZE.MAREC & M1$S(SUB1-1));
51 Ml$E(SUB1)=IF SUBL=1 THEN 'O'B
52 ELSE M1$E(SUB1-1)I
53 (M1$Y(SUB1-1)=SIZE.MBREC & -Ml$S(SUB1-1));0
54 MiSS IS FIELD(BIT(1));
55 M1$S(SUB1).=M1$E(SUBI) I Ml$D(SUBl) &
56 (MAI(MI.$X(SUBl)) < MB1(M1$Y(SUB1))));
57 M1$SZ IS FIELD(NUM(5));
58 M1$SZ=SIZE.MAREC+SIZE.MBREC;
59 SIZE.MREC=Ml$SZ; I
60 M1(SUB1)=IF M1$S(SUBl)
61 THEN MA1(M1$X(SUB1))
62 ELSE MB1(M1$Y(SUB1));
63 M211(SUB1,SUB2,SUB3)=IF Ml$S(SUB1)
64 THEN MA211(Ml$X(SUB1),SUB2,SUB3)
65 ELSE MB211(M1$Y(SUB1),SUB2,SUB3); I
66 M212(SUB1,SUB2,SUB3)=IF Ml$S(SUB1)
67 THEN MA212(M1$X(SUB1) ,SUB2,SUB3)
68 ELSE MB212(M1$Y(SUB1),SUB2,SUB3);
69 M22(SUBi,SUB2)=IF M1$S(SUB1)
70 THEN MA22(MI$X(SUBl),SUB2)
71 ELSE MB22(M1SY(SUB1),SUB2); 4
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B.4 THE SORT FUNCTION

1 MODULE: SORTREC;
2 SOURCE: SB;
3 TARGET: SA;
4
5 1 SB IS FILE,
6 2 B(30) IS RECORD,
7 3 Bi IS FIELD(CHAR(3))#
8 3 B2(3) IS GROUP,
9 4 B21(2) IS GROUP,

10 5 B211 IS FIELD(CHAR(5)),
11 5 B212 IS FIELD(CHAR(5)),

*12 4 B22 IS FIELD(CHAR(4));
13
14 1 SA IS FILE,
15 2 A(*) IS RECORD,
16 3 Al IS FIELD(CHAR(3)),
17 3 A2(3) IS GROUP,
18 4 A21(2) IS GROUP,
19 5 A211 IS FIELD(CHAR(5)),
20 5 A212 IS FIELD(CHAR(5))t
21 4 A22 IS FIELD(CHAR(4));
22
23 SIZE.B = 30;

24
25 SA=SORT(SB,B1,1);
26
27 O1SCG IS GROUP(O1$C(*));
28 O1$C IS FIELD(CHAR(3));
29 O1$C=B1;
30 OlSIG IS GROUP(O1$I(*));
31 01$1 IS FIELD(NUM(5));
32 01SIG=SORTC(01$CG,1,SIZE.B);
33 SIZE.A=SIZE.B;
34 A1(SUB1)=B1(01$I(SUB1));

*35 A211(SUB1,SUJB2,SUB3)=B211(01$I(SUB),SUB2,SrjB3);
36 A212(SUB1,SUB2,SUB3)=B212(O1$I(SUB1) ,SUB2,SUB3);
37 A22(SUBI,SUB2)=B22(O1$I(SUB1)fSUB2);
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B.5 THE COLLECT FUNCTION

1 MODULE: COLT;
2 SOURCE: Cl;
3 TARGET: C2;
4
5 1 Cl IS FILE,
6 2 CIR(*) IS RECORD, S
7 3 Al IS FIELD(CHAR(3)),
8 3 A2(3) IS GROUP,
9 4 A21(2) IS GROUP,

10 5 A211 IS FIELD(CHAR(5)),
11 5 A212 IS FIELD(CHAR(5)),
12 4 A22 IS FIELD(CHAR(4)); 0
13
14 1 C2 IS FILE,
15 2 C2G(*) IS GROUP,
16 3 C2R(*) IS RECORD,
17 4 Bi IS FIELD(CHAR(3)),
18 4 B2(3) IS GROUP, 0
19 5 B21(2) IS GROUP,
20 6 B211 IS FIELD(CHAR(5)),
21 6 B212 IS FIELD(CHAR(5)),
22 5 B22 IS FIELD(CHAR(4));
23
24 SIZE.CIR=20; 0
25
26 C2 = COLLECT(C1,A1=' I);

27 C1$C IS FIELD(NUM(2));
28 CI$C = IF A1 =' I THEN I ELSE 0;
29 C1$X IS FIELD(NUM(5));
30 C1$X(SUB1)=IF SUB1=1 THEN 1
31 ELSE IF C1$C(SUB)V=0
32 THEN C1$X(SUB1-1)+1
33 ELSE Cl$X(SUB1-1);
34 Ci$Y IS FIELD(NUM(5));
35 C1$Y(SUB1)=IF SUB1=1 THEN 1

36 ELSE IF C1$C(SUBI)-=O
37 THEN 1 ELSE C1$Y(SUB1-1)+1;
38 SIZE.C2G=CI$X(SIZE.C1R);
39 SIZE.C2R(C1$X(SUBI))=IF SUBI=SIZE.C1R
40 THEN C1$Y(SUBI)

41 ELSE IF Cl$C(SUBI+I)>O
42 THEN C1$Y(SUBI);
43 B1(C1$X(SUBl),Cl$Y(SUB1))=Al(SUB1);

. . .. . . . . . .. . . . .. . . . . .
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44 B211(C1$X(SUB1) ,C1$Y(SUB1) ,SUB2,SUB3)=
A211(SUB1,SUB2,SUB3);

45 B212(C1SX(SUB1) ,C1$Y(SUB1) ,SUB2,SUB3)=
A212(SUB1,SUB2,SUB3);

46 B22(Cl$X(SUBl),Cl$Y(SUBl),SUB2)=A22(SUB1,SUB2);
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B.6 THE FUSE FUNCTION

1 MODULE: Y;
2 SOURCE: Y2;
3 TARGET: Y1;
4
5 1 Y2 IS FILE,
6 2 Y2G(2) IS GROUP,
7 3 Y2R(6) IS RECORD,
8 4 Bi IS FIELD(CHAR(3)),
9 4 B2(3) IS GROUP,

10 5 821(2) IS GROUP,
11 6 8211 IS FIELD(CHAR(5)),
12 6 B212 IS FIELD(CHAR(5)),
13 5 B22 IS FIELD(CHAR(4));
14
15 1 Y1 IS FILE,
16 2 Y1R(*) IS RECORD,
17 3 Al IS F[ELD(CHAR(3)),
18 3 A2(3) IS GROUP,
19 4 A21(2) IS GROUP,
20 5 A211 IS FIELD(CHAR(5)),
21 5 A212 IS FIELD(CHAR(5)),
22 4 A22 IS FIELD(CHAR(4));
23
24 SIZE.Y2G=2;
25 SIZE.Y2R=6;
26
27 Y1 = FUSE(Y2);
28 U1$X IS FIELD(NUM(5));
29 U1$Y IS FIELD(NUM(5));
30 UISX(SUBI>=IF SUB1=1 THEN 1
31 ELSE IF U1$Y(SUB1-1)=SIZE.Y2R(U1$X(SU81-1))
32 THEN U1$X(SUB1-1)+1
33 ELSE U1$X(SUB1-1);
34 U1$Y(SUB1)=IF SUB1=1 THEN 1
35 ELSE IF U1$Y(SUBI-1)=SIZE.Y2R(U1$X(SUB1-1))
36 THEN 1
37 ELSE U1$Y(SUB1-1)+1;
38 SIZE.Y1R=SUM(SIZE.Y2R(SUB1),SUB1);
39 A1(SUB1)=B1(U1$X(SUB1),UlSY(SUB1));
40 A211(SUB1,SUB2,SUB3)=

B211(U1$X(SUB1),U1$Y(SUB1),SUB2,SUB3);
41 A212(SUB1,SUB2,SUB3)=

B212(Ul$X(SUB1),Ul$Y(SUB1),SUB2,SUB3);
42 A22(SUB1,SUB2)=

B22(U1$X(SUBI),U1$Y(SUBI),SUB2);
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B.7 THE CONCAT FUNCTION

1 MODULE: CONCAT;
2 SOURCE: CTMA,CTMB;
3 TARGET: CTM;
4
5 1 CTMA IS FILE,
6 2 MAREC(*) IS RECORD,
7 3 MAI IS FIELD(CHAR(3)),
8 3 MA2(3) IS GROUP,
9 4 MA21(2) IS GROUP,

10 5 MA211 IS FIELD(CHAR(5)),
11 5 MA212 IS FIELD(CHAR(5)),
12 4 MA22 IS FIELD(CHAR(4));0
13
14 1 CTMB IS FILE,
15 2 MBREC(*) IS RECORD,
16 3 MB1 IS FIELD(CHAR(3)),
17 3 MB2(3) IS GROUP,
18 4 MB21(2) IS GROUP,
19 5 MB211 IS FIELD(CHAR(5)),
20 5 MB212 IS FIELD(CHAR(5)),
21 4 MB22 IS FIELD(CHAR(4));
22
23 1 CTM IS FILE,
24 2 MREC(*) IS RECORD, 0
25 3 Ml IS FIELD(CHAR(3)),
26 3 M2(3) IS GROUP,
27 4 M21(2) IS GROUP,
28 5 M211 IS FIELD(CHAR(5)),
29 5 M212 IS FIELD(CHAR(5)),
30 4 M22 IS FIELD(CHAR(4)); 5
31
32 SIZE.MAREC=10;
33 SIZE.MBREC=15;
34
35 CTM=CONCAT(CTMA,CTMB);
36 SIZE.MREC=SIZE.MAREC+SIZE.MBREC;
37 M1CSUB1)=IF SUB1(=SIZE.MAREC
38 THEN MA1(SUB1)
39 ELSE MB1(SUB1-SIZE.MAREC);
40 M211 (SUB1,SUB2,SUB3 )=IF SUB1(=SIZE.MAREC
41 THEN MA211(SUB1,SUB2,SUB3)
42 ELSE MB211(SUBl-SIZE.MAREC,SUB2,SUB3);
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43 M212(SUB1,SEJB2,SUB3 )=IF SUB1<=SIZE.MAREC
44 THEN MA212(SUB1,SUB2,SUB3)
45 ELSE MB212( UBI-SIZE.MAREC,SUB2,SUB3);
46 M22(SUB1 ,SUB2)=IF SUB1<=SIZE.MAREC
47 THEN MA22(SUB1,SUB2)
48 ELSE MB22(SUB1-SIZE.MAREC,SUB2);
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B.8 THE UNIQUE FUNCTION

1 MODULE: Q;
2 SOURCE: 01;
3 TARGET: Q2;
4
5 101l IS FILE,
6 2 Q1R(*) IS RECORD,
7 3 SF1 IS FIELD(CHAR(1)),
8 3 SF2 IS FIELD(CHAR(2)),
9 3 SF3 IS FIELD(CHAR(3)),

10 3 SF4 IS FIELD(CHAR(4)),
11 3 SF5 IS FIELD(CHAR(5)); S
12
13 1 02 IS FILE,
14 2 Q2R(*) IS RECORD,
15 3 TF1 IS FIELD(CHAR(1)),
16 3 TF2 IS FIELD(CHAR(2)),
17 3 TF3 IS FIELD(CHAR(3)),
18 3 TF4 IS FIELD(CHAR(4)),
19 3 TF5 IS FIELD(CHAR(5));
20
21 SIZE.Q1R = 20;
22
23 Q 2 =UNIQUE(Qi);
24 QiSM IS FIELD(NUM(3));
25 Q1SVG IS GROUP(Q1$V(*));
26 Q1SV IS FIELD(NUM(3));
27 Ql$M(SUB1,SUB2)=IF SUB1>SUB2 THEN IF
28 SF1 (SUB ) =SF1 (SUB2)
29 & SF2(SUB1)=SF2(SUB2)
30 & SF3(SUB1)=SF3(SUB2)
31 & SF4(SUB1)=SF4(SUB2)
32 & SF5(SUB1)=SF5(SUB2)
33 THEN 1 ELSE 0 ELSE 0;
34 01$V(SUB1)=SUM(Q1$M(SUB1,SUB2),SUB2);
35 SIZE.Q1$V=SIZE.Q1R;
36 Q1SC IS FIELD(NUM(2));
37 Q1$C =IF Q1$V0O THEN 1 ELSE 0;
38 QI$X IS FIELD(NUM(5));
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rS

39 Q1$X(SUB1)=IF SUB1=1
40 THEN IF QlSC(SUBl)-=0
41 THEN 1
42 ELSE 0
43 ELSE IF Q1$C(SUBI)V=0
44 THEN Q1SX(SEJB1-1)4-1l
45 ELSE QI$X(SUBl1);
46 Q1SSZ IS FIELD(NUM(5));
47 QlSSZ=SUM(Q1$C(SUBl),SUBl);
48 QlSIG IS GROUP(Q1$I(*));
49 Q1ST IS FIELD(NUM(5));
50 Ql$I(01SX(SUBl))=I' Ql$C(SUBl)-=0 THEN SUBI;
51 SIZE.Ql$I=QlSSZ;
52 TFI(SUB1)=SFI(Q1$I(SUB1));
53 TF2(SUB1)=SF2(QlSI(SUB1));
54 TF3(SLJB1)=SF3(Ql$I(SUBl));
55 TF4(SUB1)=SF4(Q1$I(SUBl));
56 TF5(SUB1)=SF5(Q1SICSUB1)); 0

rd*
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B.9 THE UNION FUNCTION

1 MODULE: UNION;
2 SOURCE: UL,U2;
3 TARGET: U3;
4
5 1 Ul IS FILE, 0 4
6 2 U1R(*) IS RECORD,
7 3 SF1 IS FIELD(CHAR(1)),
8 3 SF2 IS FIELD(CHAR(2)),
9 3 SF3 IS FIELD(CHAR(3)),

10 3 SF4 IS FIELD(CHAR(4),
*11 3 SF5 IS FIELD(CHAR(S));

12
13 1 U2 IS FILE,
14 2 U2R(*) IS RECORD,
15 3 RF1 IS FIELD(CHAR(1)),
16 3 RF2 IS FIELD(CHAR(2)),

*17 3 RF3 IS FIELD(CHAR(3)),
18 3 RF4 IS FIELD(CHAR(4)),
19 3 RF5 IS FIELD(CHAR(5));
20
21 1 U3 IS FILE,
22 2 U3R(*) IS RECORD,
23 3 TF1 IS FIELD(CHAR(1)),
24 3 TF2 IS FIELD(CHAR(2)),
25 3 TF3 IS FIELD(CHAR(3)),
26 3 TF4 IS FIELD(CHAR(4)),
27 3 TF5 IS FIELD(CHAR(5));
28
29 SIZE.U1R = 20;
30 SIZE.U2R = 15;
31
32 U3=UNION(U1,U2);
33 1 U1$ IS GROUP,
34 2 U1SUIR(*) IS GROUP,
35 3 U1$SF1 IS FIELD(CHARC1)),
36 3 U1$SF2 IS FIELD(CHAR(2)),
37 3 U1SSF3 IS FIELD(CHAR(3)),
38 3 U1SSF4 IS FIELD(CHAR(4)),
39 3 U1SSF5 IS FIELD(CHAR(5));
40 SIZE.Ul$U1R=SIZE.U1R*ISZE .U2R;
41 U1$SF1(SUB1)=IF SUBI(=SIZE.U1R
42 THEN SF1(SUB1)
43 ELSE RF1(SUB1-SIZE.UlR);
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44 U1$SF2(SUBI)=IF SUBI<=SIZE.UIR
45 THEN SF2(SUB1)
46 ELSE RF2(SUB1-SIZE.U1R);
47 Ul$SF3(SUB1)=IF SUB1(=SIZE.U1R
48 THEN SF3(SUBl)
49 ELSE RF3(SUB1-SIZE.U1R);
50 Ul$SF4(SUB1)=IF SUB1<=SIZE.U1R
51 THEN SF4(SUBl)
52 ELSE RF4(SUB1-SIZE.UlR);
53 Ul$SF5(SUB1)=IF SUB1<=SIZE.U1R
54 THEN SF5(SLJB1)
55 ELSE RF5(SUB1-SIZE.U1R);
56 U2$M IS FIELD(NUM(3));
57 U2$VG IS GROUP(U2$V(*));
58 U2$V IS FIELD(NUM(3));
59 U2$M(SUB1,SUB2)=IF SUB1>SUB2 THEN IF
60 U1$SF1(SUB1)=Ul$SF1(SUB2)
61 & Ul$SF2(SrJB1)=U1$SF2(SUB2)
62 & U1$SF3(SUB1)=USF3(SUB2)
63 & U1$SF4(SUB1)=USF4(SUB2)
64 & U1$SF5(SUB1)=U1$SF5(SUB2)
65 THEN 1 ELSE 0 ELSE 0;
66 U2$V(SUB1)=SUM(U2$M(SUB1,SUB2),SUB2);

*67 SIZE.U2$V=SIZE.Ul$U1R;
68 U2$C IS FIELD(NUM(2));
69 U2SC = IF U2$V0O THEN 1 ELSE 0;
70 U2$X IS FIELD(NUM(5));
71 U2$X(SUB1)=IF SUB1=1
72 THEN IF U2$C(SUBl)-=0

473 THEN 1
74 ELSE 0
75 ELSE IF U2$C(SUBl)V=0
76 THEN U2$X(SUB1-1)+l
77 ELSE U2$X(SUB1-1);
78 U2SSZ IS FIELD(NUM(5));

*79 U2$SZ=SUM(U2$C(SUB1),SUBl);
80 U2SIG IS GROUP(U2$I(*));
81 U2SI IS FIELD(NUM(5));
82 U2$1(U2$X(SUB1))1IF U2$C(SUB1)-=0 THEN StiBi;
83 SIZE.U2S1=U2$SZ;
84 TF1(SUB1)=UlSSFI(U2$I(SUBl));

*85 TF2(SUBI)=U1$SF2(U2$I(SUB1));
86 TF3(SUB1)=Ul$SF3(U2$I(SUBl));
87 TF4(SUBI)=U1$SF4(U2$I(SUBl));
88 TF5(SUB1)=Ul$SF5(1J2$I(SUBl));
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B.10 THE DIFF FUNCTION

1 MODULE: DIFF;
2 SOURCE: D1,D2;
3 TARGET: D3;
4
5 1 Dl IS FILE,
6 2 D1R(*) IS RECORD,
7 3 SF1 IS FIELD(CHAR(1)),
8 3 SF2 IS FIELD(CHAR(2)),
9 3 SF3 IS FIELD(CHAR(3)),

10 3 SF4 IS FIELD(CHAR(4)),
11 3 SF5 IS FIELD(CHAR(5));
12
13 1 D2 IS FILE,
14 2 D2R(*) IS RECORD,
15 3 RF1 IS FIELD(CHAR(l))p
16 3 RF2 IS FIELD(CHAR(2)),

rd17 3 RF3 IS FIELD(CHAR(3)),
18 3 RF4 IS FIELD(CHAR(4)),
19 3 RF5 IS FIELD(CHAR(5));
20
21 1 D3 IS FILE,
22 2 D3R(*) IS RECORD,
23 3 TF1 IS FIELD(CHAR(1)),
24 3 TF2 IS FIELD(CHAR(2)),
25 3 TF3 IS FIELD(CHAR(3)),
26 3 TF4 IS FIELD(CHAR(4)),
27 3 TF5 IS FIELD(CHAR(5));
28
29 SIZE.D1R =20;

*30 SIZE.D2R = 15;
31
32 D3 = DIFF(D1,D2);
33 D1$M IS FIELD(NUM(3));
34 D1$VG IS GROUP(D1$V(*));
35 D1$V IS FIELD(NUM(3));

*36 D1$M(SUB1,SUB2)=IF SF1(SUB1)=RF1(SUB2)
37 &SF2 (SUB ) =RF2 (SUB2)
38 &SF3(SUB1 )=RF3(SUB2)
39 &SF4 (SUB1)=RF4(SUB2)
40 &SF5(SUB1 )=RF5(SUB2)
41 THEN 1 ELSE 0;

*42 D1SV(SUB1)=SUM(D1$M(SUB1,SUB2),SUB2);
43 SIZE.DISV=SIZE.DlR;
44 DiSC IS FIELD(NUM(2));
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45 DiSC = IF D1$V=0 THEN 1 ELSE 0;
46 Dl$X IS FIELD(NUM(5));
47 D1$X(SUBl)=IF SUB1=1
48 THEN IF D1$C(SUB1V-=0
49 THEN 1
50 ELSE 0
51 ELSE IF D1$C(SUB1V-=0
52 THEN 1+Dl$X(SUBl1l)
53 ELSE Dl$X(SUBl-1);
54 Dl$SZ IS FIELD(NUM(5));
55 D1SSZ=SUM(D1$C(SUBI),SUB1);
56 D1$IG IS GROUP(D1$I(*));
57 Dl$I IS FIELED(NUM(5));
58 D1SI(DlSX(SUB1))1IF Dl$C(SUB1)-=O THEN SUBI;
59 SIZE.D1SI=D1SSZ;
60 TF1(SUB1)=SF1(D1SI(SUBl));
61 TF2n(SUB1)=SF2(D1$I(SUBI));
62 TF3(SUB1)=SF3(D1SI(SUBI));
63 TF4(SUB1)=SF4(D1$I(SUB1));
64 TF5(SUBI)=SF5(Dl$I(SUBl));
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B.11 THE PRODUCT FUNCTION

1 MODULE: PROD;
2 SOURCE: P1,P2;
3 TARGET: P3;
4
5 1 PI IS FILE,
6 2 P1R(*) IS RECORD,
7 3 Fl IS FIELD(CHAR(l)),
8 3 F2 IS FIELD(CHAR(1)),
9 3 F3 IS FIELD(CHAR(1));

10
*11 1 P2 IS FILE,

12 2 P2R(*) IS RECORD,
13 3 FA IS FIELD(NUM(3)),
14 3 FB IS FIELD(NUM(5));
15
16 1 P3 IS FILE,

*17 2 P3R(*) IS RECORD,
18 3 PF1 IS FIELD(CHAR(1)),
19 3 PF2 IS FIELD(CHAR(1)),
20 3 PF3 IS FIELD(CHAR(1)),
21 3 PFA IS FIELD(NUM(3)),
22 3 PFB IS FIELD(NUM(5fl;
23
24 SIZE.P1R=3;
25 SIZE.P2R=5;
26
27 P3=PRODUCT(P1,P2);
28 SIZE.P3R=SIZE.P1R*SIZE.P2R;
29 PFI(SUB1)=Fl(1+(SUB1-1)/SIZE.P2R);
30 PF2(SUB1)=F2(1+(SUB1-1)/SIZE.P2R);
31 PF3(SUB1)=F3(1+(SUB1-1)/SIZE.P2R);
32 PFA(SUB1)=FA(-fMOD(SUB1-1,SIZE.P2R));
33 PFB(SUB1)=FB(1+MOD(SUB1-1,SIZE.P2R));
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