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TP2 Orderings

by

James Lynch 1 , Gillian imnmack 2 and Frank Proschan2

Abstract

Uniform stochastic orderings of random variables are expressed as total posi-

tivity of density, survival and distribution functions. The orderings are called

uniform because each is a stochastic order that persists under conditioning to a

family of intervals - for exanple, the family consisting of all intervals of the

*form (-O,x]. This paper is concerned with the preservation of uniform stochastic

ordering under convolution, mixing and the formation of coherent systems. A general

TP" result involving preservation of total positivity under integration is presented
/

and applied to convolutions and mixtures of distribution and survival functions.

Logconcavity of distribution, survival and density functions characterises random

variables that preserve the various orderings under addition. Likewise,random vari-

ables that preserve orderings tnder mixing are characterized by TP distribution

and survival functions.

-N Y.



S. ... 4u**.... .. : . - P .. . . . .: .- . .,-. -- - ..- -

-2-

to shifts in location or changes in scale. In what follows, we extend these

results, considering preservation of uniform ordering under mixing and under the

formation of coherent systems and characterizing random variables that preserve uni-

form stochastic ordering under addition and mixing.

Section 2 contains definitions of the uniform stochastic orderings under con-

sideration. In Section 3 we present a general theorem that applies to convolutions

and mixtures in the context of uniform stochastic ordering and is of interest in its

own right as a result in the theory of TP2 functions. In Section 4 we explcit tte

TP 2 expressions of uniform stochastic orderings to characterize logconcave

distribution and survival functions as those that preserve the appropriate uniform

stochastic ordering under convolution. In Section 5 we use the general preservation

theorem of Section 3 to characterize random variables that will allow uniform

stochastic ordering to be transferred from mixing random variables to mixtures.

Finally, in Section 6, we consider whether stochastic ordering between corresponding

components of identical systems is inherited by the systems. We show, for example,

that if the failure rate of one type of component is larger than the failure rate of

another type of component, then a k-out-of-n system of independent components has

a larger failure rate if components of the first type are used.

2. Definitions and3e iminaries.

Let X be a random variable with distribution function given by F(x) = P(X : x),

survival function F w I - F and, in the absolutely continuous case, density function

f.

The uniform stochastic orderings under consideration may be conveniently ex-

pressed in terms of TP2 ordering of ftnctions. Let g, and g2 be an arbitrary pair

of functions.



Definition 2.1.

TP2
e g2  > g(x)g2

c y) ° g1(Y)g2(x) z 0 for all x < y.

TP 2
It is evident that g, <  2 is equivalent to saying that gi(x) is TP2 in (a,x)

where the domain of g is A x B; in this case A = {1,21 and B is some subset of the

real line. More generally, we could consider a family of functions {g,*cA) where
A is some subset of the real line. Then the statement that g.(x) is TP2 in (c,x)

TP2
wavd indicate that ga4 1 I or a < 1 .

The various uniform stochastic orderings are defind by taking g, and g2 to

be distribution, survival and density functions.

Definition 2.2.

TP2
(i )X2 <alp FI < F2 <=> FI(x) F2 (Y) - Fi(y) F2 (x) 2 0 for all x < y.

_TP 2

(ii) Xl(:)X2 <M> F I < 2 Cy ) - F(y) F2(x) > 0 for all x < y.
TP

2

iii) X I <X2 <=> fI < f2 <=> i (x) f2 (y) - fl() f 2 Cx) z0for all x!y.

If X1 ( ) Xp we say that X is uniformly smaller than X2 in the negative direc-

tion because F1 <2 F2 is.equivalent to the condition P(Xj<xI X1 ) 2P<(XxIX2y)

for all x and y such that x S y. It is evident that this defines a

stochastic ordering of X and X when each is restricted to the same interval of the

form (-,yl, the ordering of X and X2 being the same for all such intervals. Simi-

larly, if X )<X2 we say that X is uniformly smaller than X2 in the p %it ivt q iLo-

tion becaus. the condition FI 2T defines a stochastic ordering of X, and X2 when

-4acr is restricted to an arbitrarily chosen interval of the form [x,m). If X I <
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we say that X is locally stochastically less than X because this condition is

:4i. equivalent to requiring that X1 be stochastically less than X2 whenever X and X2

S are restricted to the same interval of the form [ab]. It is easy to prove that the

local ordering is the most restrictive in that X1 <0 2 implies XI(<)X2 and Xl(<)X 2 ,

that ordinary stochastic ordering (Xl 2) is implied by each of the weaker uniform

stochastic orderings, and that the relationship between positive and negative uniform

stochastic ordering is

1(f<) X2 <>-2(<) -X1.

Another property we shall use is that positive and negative uniform ordering is

preserved under the operation of taking the limit in distribution.

In the case of vectors of random variables, or sets of lifetimes of components
TP

in our context, where f= (f1. "I ' fn) and g= (gl, ... , gn) , we write f < g if

fi <  g. for i a 1, ..., n. By taking j and gto be vectors of distribution, sur-

vival and density functions, we extend the definitions of negative, positive and

local uniform stochastic ordering.

In all that follows, we adopt the conventions that "increasing" means "non-

decreasing' and "decreasing" means "nonincreasing".

3. A general preservation theorem.

The result below is of general interest because it involves preservation of

total positivity under integration. It is therefore given in terms of TP2 functions

although it will be used in later sections concerning convolutions and mixtures.

Theorem 3.1.

Suppose that the distribution fimction Ii(-t) is differentiable with respect

to t.
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(i) f(X,t) is TP 2 in (x,t) <=> f H(X,t)dFe(t) is TP2 in (O,X) whenever

F 0 (t) is TP 2 in (6,t).

*1 (ii) H(X,t) is TP 2 in (xt) <=> f H(Xt)dFe(t.) is TP 2 in (O,x) whenever

Fe(t) is TP2 in (t).

'To prove Theorem 3.1 the following lemma is needed.

Lema 3.2.

If H(x) -1 - e - AX then f H(x-t)dFe(t) is TP2 in (Ox) whenever F (t) is TP2

in (Ot).

Proof of lemma.

Suppose Fe(t) is TP2 in (e,t). Without loss of generality we assume that e

takes only the values I and 2. We need to show that

f F(t)h(x-t)dt f F2 (t)h(x-t)dt
a 0 for X 't y.

f 'l(tlh(y-t) dt  f F2 (t) h(r-t) d t

By the Basic Composition Formula (Karlin (1968), p. 17), the determinant reduces to

fTI(s) V1(t) h(x-s) h(y-s)f f sd
S<t I F2(S) F2(t) h(x-t) h~y-t)

The first determinant above is nonnegative because F. (t) is TP2 in (it) and the

second determinant is nonnegative because h is the exponential density function

which is logconcave.jI

Proof of 1heore.

We prove only (i) as (ii) is proven from (i) since H(x,t) is a distribution

function that iq TV in (v 1) if and only if H(-x, -t) is a survivel function that

is TP2 in (x,t).

I [ ' -. ' " ',:"-" " " "":,t "" " ..- '*"'-'*'."" -"-*.' "*'.*.. ,,' -. ,', '-.-:-,"-
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=> Let HRx,t) be TP2 in (x,t) and e(t) be TP2 in (8,t), where we assume without

loss of generality that e takes only the values 1 and 2. Suppose first that F1(F2)

has density fI(f2). We need to show that

D= J R x-t)xt)fIt)dt f ff(yt)fl(tdt > 0 for x < y.
i ex,t) fn at)dt f Ry,t)f2(t)dt

Using the Basic Composition Formula (Karlin (1968), p. 17) and integrating the

inner integral by parts, we reduce the determinant as follows:

D * I I Hxs) H(x,t) f1(s) f2(s) dt ds
s<t Hiy, s) Ryt) fz(t) f 2 (t)

HRx's) IIx't) /at f (s) f2(s)
- ffdt ds

s<t IH(y,s) aH(y,t)/at F1(t) F2(t)

Since i(x,t) is TP2 in (x,t), we have, for s<t and x<y,

*{y, t)/ at -# _ t) Wx,t)/at -Hxt a 0.

9(yt) H(y, s) ff(x,t) H(y,s)

Thus the first determinant in the integral above is nonnegative. Similarly, since

7(t) is TP2 in (8,t), we have, for s<t and x<y,

fl s) V ( s ) - f 2s ) V 2( ) a 0

Thus the second determinant in the integral above is also nonnegative.

If one or both of F1 and F2 does not have a density, we proceed as follows.

Let ]i(x) L (x-t)dFi(t) where L Ct) a e . From lemma 3.2 we have that
- i A

Fi(x) is TP2 in (i,x) for every X>O. Since F. is the convolution of 2n expulsoLinI
1

Jidtw4. ,,~t fs fmctA,-n unln P It4 hu, a ,..tslity run t.-ca.fo' the proof above

applies. Thus H(x't)dFi(t) is TP2 in (i,x). Then, since F. converges weakly to
1 2
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F. and since H is bounded and continuous in t, we have, by the definition of weak

convergence,

4.--:.i f ff(x,t)dF?(t f iT(x,t)dF.(t) for each x.

As the TP2 reLaticn fcr Jfl(xt)eF1AXt) is preserved under this l-imiting operation,

% we have that jz1(x,t)Fi(t ) is TP2 in (i,x).

<ffi Suppose that f i(x,t)dF0 (t) is TP2 in (e,x) whenever F Ct) is TP2 in CO,t). We

assume without loss of generality that e takes only the values 1 and 2. We need

to show that H(x,t) is TP2 in (x,t). Let F1 (F2) denote the distribution function

of the random variable that is degenerate at s1 (s2) where Sl<S2 . Since Fi(t) is
TP2 in (i,t), we have that f Hfx,t)dFi(t) is TP2 in (i,x). But f H(x,t)dFi(t) =

HRx,si) and therefore the previous statement is equivalent to

H(x,s1 ) H(y,s2) - f(x,s2) iIy,sl) a 0 for x<y.

This is true for any s I and s 2 for which s I<S 2-11

4. Preservation of uniform stochastic ordering under convolution.

We suppose that [ and X2 are uniformly stochastically ordered in some way and

consider the ordering of X Z and X2 + Z. We also consider the reverse question,

namely, if XI + Z and X2 + Z are uniformly stochastically ordered whenever X, and

X2 are, what can be said about Z? Logconcavity enters naturally from the TP 2

-% characterizations of the various uniform stochastic orderings because, as is well-

known, a nonnegative function g is logconcave if and only if g(x-y) is TP 2 in

(x,y). Using this fact, and considering scalars 61 and e2 (0 < I 1 e2) rather

than random variables X and X 2 Keilson and Sumita (1982) show that logconcavity

of the distribution, survival and density functions of Z characterizes the random

variables that can be respectively negatively, positively and locally ordered

according to 81 and 82 - that is, for example, Z has a logconcave distribution
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function if and only if Z + 6<)Z + 02 whenever 01 5 02 . Keilson and Sumita (1982)

%. also point out that if Z has a logconcave density function then uniform stochastic

ordering of X and X is inherited by XI+Z and X2+Z. We extend these results,

characterizing logconcave survival and distribution functions as those that preserve

under addition not only the order of scalars but also the uniform stochastic order of

random variables.,.

Theorem 4.1.

Suppose that Z is a continuous random variable.

(i) The survival function of Z is PF2 <=> X +Z<)2 Z whenever XI(<) 2

(ii) The distribution function of Z is PF2 <=> X1 + Z (X 2 + Z whenever X(X 2 .

Proof.

Suppose Z has survival function R and X1 (X2) has survival function FI(F 2).

The condition that X + Z < l)X2 + Z whenever Xl' X is equivalent to the condition

that ffl(z-t)dFi(t) is TP 2 in (i,z) whenever Pi(t) is TP2 in (i,t). Part (i)

therefore follows immediately from Theorem 3.1(i). Part (ii) follows from Theorem

3.1(ii) in a similar fashion.tI

V

S. Preservation of Ouiform stochastic ordering under Mixture.

We consider the question of whether uniform stochastic order between two

mixing random variables is inherited by the resultant mixtures and the reverse

question, namely, if uniform stochastic order is transferred from mixing random

variables to mixtures, what can be said about the variables over which the mixing

is done? Kil-t1on and Stmita (1982) consider thcso questions primarily in Lho ClvntcAt

I4" , .- , " " . ''° . .. , "" , . " , . . € "' """ , . , " """ . "" . . . , - ,
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of discrete random variables: they show that local stochastic ordering of the mixing

random variables is preserved by the mixtures if and only if the variables to be

mixed form a finite sequence of locally stochastically ordered random variables. In

the same vein, Keilson and Suzita (1982) give conditions under which positive

(negative) uniform stochastic ordering is inherited by mixtures of a finite sequence

of positively (negatively) uniformly stochastically ordered random variables. We

show that the latter results are true in general - that is, positive (negative)

uniform stochastic ordering between mixing random variables is inherited by the

resultant mixtures if and only if the variables to be mixed form a (not necessarily

finite) sequence of positively (negatively) Lmiformly stochastically ordered random

., variables.

Theorem 5.I.

Suppose that X has distribution function H(;cz) which is differentiable with

respect to a, let W have distribution function Fi and let Z. have distribution

function fiH(.,a)dFi(a), i=l, 2.

(i) Xa ( X for < =>Z Z wheneverW ) W2 "

(ii) X < X for a < =>Z whenever W W

Proof.

Since X -, X for a < 8 is equivalent to fi(x,ca) being TP2 in (x,a), and

similarly for Z ) Z and W (i) follows immediately from Theorem 3.1 (i).

Similarly, (ii) follows from Theorem 3.1 (ii). f

6. Preservation of uniform stochastic ordering under the formation of coherent

systems.

The uniform stochastic orderings defined above may also be expressed as follows:

,.I
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F I 2 F2 <=> FI(x)/F 2 (x) is decreasing in x

TP2 P<2- <=> PI(X)/p2(x) is decreasing in x

TP2
f1 < f2 <=> f1 (x)/f 2 (x) is decreasing in x.

N In the context of reliability we may view X1 and X2 as lifetimes of units: if

"I <2 F we see that a unit that has failed by tine t2 is more likely to have

failed by time t I (t1 < t2) if its lifetime has distribution F rather than F2.

Similarly, if Pl < F2 ' a unit of age t1 with lifetime X, is less likely to survive

beyond t2 (t1 < t2) than is a unit of the same age (tI) with lifetime X. This

is equivalent to the condition that the failure rate of XI is greater than or equal

to the failure rate of X2.

-, The characterizations, given above lead to consideration of uniform stochastic
".J ordering of the lifetimes of coherent systems when corresponding components of com-

parative systems are uniformly stochastically ordered. We show first that if the
-W failure rate of one type of component is higher than that of a second type of com-

ponent then certain systems have a higher failure rate if components of the first

type are used rather than components of the second type.

Theorem 6.1.

Let h(p) be the -eliability of a coherent system of n independent and identically

distributed components with failure probability p. If ph' (p)/h(p) is decreasing
TP2  TP2

in p then h(F) < h(G) whenever P c t.

Proof: Suppose first that F(G) is absolutely continuous with failure rate r(s)

where <2 or, equivalently, r k s. Let R() be the system failure rate corres-

-4,-"•-"-";
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ponding to P(G). Since r a s, 5 < G. Using Theorem I of Esary and Proschan (1963)

and the fact that ph'(p)/h(p) is decreasing in p, we have:

R(t) = r(t) F(t) h'(t(t))/h(P(t))

as(t) Q~t) h(C(t))/h( (t))

= S(t).

If F and G are not absolutely continuous, consider instead the convolutions of

F and G with an exponential distribution function with mean rate X. Since these

convolutions are absolutely continuous, the proof above applies. We then use the

fact that TP. ordering of the resulting system reliability functions is preserved as

A *; since the convolution of F(G) and an exponential distribution with parameter

A converges in distribution to F(G) as X o -, we have the required result. I
Since ph'(p)/h(p) is decreasing in p in the case of k-out-of-n systems of

independent and identically distributed components, the following corollary is

immediate.

Corollary 6.2.

Let h be the reliability function of a k-out-of-n system of independent and
TP 2 TP 2

identically distributed components. Then h(P) < h(d) whenever P <TI .

In the case of nonidentical components we show that if each of a set of non-

identical independent components is less (more) reliable than a component of type

"4,- A, say, then a k-out-of-n system is less (more) reliable if the nonidentical com-

ponents are used rather than a set of components of type A.

Theorem 6.3.

Let the reliability functicn of a k-out-of-n system of independent components be

given by h( ), where pa (pl "'" pn) and pi is the failure probability of com-

ponent i.

2-.
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TP TP

2 2
(1) if F. d, i = 1, ... , n then h(F1, ... , Fn) n h(G, ....

TP TP
ii) If ... then h(PF ... ,F ) > h(G, G). G - n then ""

Proof: We prove only (i) since the proofs of (i) and (ii) are similar. Suppose

first that F., ..., Fn and G are absolutely continuous with failure rates r, #TP

rn and s respectively, where fi <2 G or, equivalently, r. s, i = 1, ... n. Let

R(S) be the system failure rate corresponding to FI, ..., Fn(G , ..., G). Now

S for i = 1, ..., n because Fi < G for i = 1, ... , n. By Theorem 4 and

(4.1) of Esary and Proschan (1963), we have:

n 2h/Wpi
(t =M E s~t) d(t) h(p_=_t

n ( r( / pi

. (t), j=l ...n

S= R(t).

* As in the proof of the proceeding theorem, if any of F1 , ... , Fn, G are not

absolutely continuous, we consider convoutionc iiTh tne -Ayonential distribution

forction and use an argument involving limits to obtain the required rocuLt.

The theorem above gives a way to provide upper and lower bounds on the relia-

bility of a k-out-of-n system of nonidentical independent components. The general

case is that in which one set of nonidentical independent components is "less

reliable" than another set of nonidentical independent components. The question of

interest is whether a system would be less reliable if the "less reliable" set of

o..., '. were used rather than t' -..-. set. The answer is in the affirmative,

provido, t-Iiat corresponding corponer.ts bear to each other a relationship stronger

than that involving comparison of rcli, i!4ty functions.

Theorx. 6.1,.

Let h be the reliability function of a system of n independent components. If
1 <2  TP 2

fi g for i - 1, ..., n then h(F1 , ... , Pn) < h(d 1 , ..., G ).

* .. w*gi. ~ * .- *~.
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For the proof of Theorem 6.4 we need the following lemma.

Levea 6.5.

Let h be the reliability function of a system of n independent components.

TP2  2f ff I < gl then hCP., F2a ... )  TP2

! Proof of lemma.

Let {P.I denote the collection of minimal path sets of the system under

consideration. For s and t satisfying 0 t s < t, let

1..-- 1-fma n xi 2 s and max %nyik,t'x,2L)x = 1 if max

j - i x-a 3 ima i
f otherwise

If x2, ... , xn and ..' ' Yn are fixed then whenever xI < YI, we have

• t (Xl' - yI) -t cxx" . 'x"'" x; Yl'0 Y2' ' Yn)

: 9(Y 8x 2 , "'"xn; X1 ' Y2' Yn)

= 1*(yI' xl)

To obtain this inequality, define the following functions for any s k 0:

1 sC(1) = 1 if max min xi a s
j iePj

0 otherwise

5(yl) I if max min yi a s
J iePj

0 otherwise

Since 1(xsy,1 ) ; 3s(xl) t(y, ) . we need to show that s(xl) 1tCyl) > LsCl)itl).

It suffices to show that k t(xl)s(Yl) = 1 implies that Zs(xl)Lt(yl) = 1: this

follows imediately from the fact that Ls(x) is increasing in x and decreasing in

s.
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TP 2
Since f g and I (x, y) L (YIs Xl for xI t y,, we have, by Theorem S.1

of [silson and Sumita (1982) or by Proposition 8.4.2. of Ross (1983):

where X(ly1) has density fl(gl) and [ and Y1 are independent. Rewriting this in

terms of 1, we have
.£(*I,x2 .. ,n ylY2, ...,lyn) 3t (Ylx2, ...,oxn; XIY 2 ... yn)

Consequnt ly:

E(]( , x2, ..., xn; Y1 Y2" " yn)) a E(Z(YIx2' "'s Xn; X1 1 Y2' .'" Yn
)) "

Now let X2 0 ... 9 X, Y2 9 ""' Yn be independent random variables that are inde-

pendent of X and Y1 also and suppose that Xi and Y have distribution fmuction Fi

for I a 2, ..., n. Then we have

ECICXl, X2, ..., xn; Yl' Y2' z"Y) ECI(Yx, X2' o." %; x1, Y2' ... 0Y))"

Since X10, . Y1, ..., Y n are independent, we use the definition of L to

rewite this inequality as

h(Pl(S), P2 (s), ..., In(s)) h(l(t), F2 (t), ... , (t))

a hC lCd 1 () ..,P n(s) ) h(P lt), F2(t), ., t-

This is true for any s s t.Il

Proof of theorem: By repeated application of the lemma, we have
TP, TP TP

h(PlP 2...,P) h(Cl,P2,...,Pn) i h(l,2,F3,...,n ) 2 ...

... h( 1 .. n C 2
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