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£ 1 . . 2 2
). James Lynch™, Gillian Mimmack™ and Frank Proschan
f’ Abstract
Uniform stochastic orderings of random variables are expressed as total posi-
$ tivity of density, survival and distribution functions. The orderings are called
'." ,
g uniform because each is a stochastic order that persists under conditioning to a
family o§ ift'ltervals - for example, the family consisting of all intervals of the
17 intin Y
z‘g . form (-¢,x). This paper is concerned with the preservation of uniform stochastic
33 ordering under convolution, mixing and the formation of coherent systems. A general
ke
‘I'Pi‘ result involving preservation of total positivity under integration is presented
’
i:’: and spplied to convolutions and mixtures of distribution and survival functions.
; logconcavity of distribution, survival and density functions characterises random
EN
variables that preserve the various orderings under addition. Likewise,random vari-
;jﬁ«" ables that preserve orderings under mixing are characterized by TP; distribution
‘«3; -
-*'t,} and survival functions.
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to shifts in location or changes in scale. In what follows, we extend these

results, considering preservation of uniform ordering under mixing and under the
formation of coherent systems and characterizing random variables that preserve uni-
form stochastic ordering under addition and mixing.

Section 2 contains definitions of the uniform stochastic orderings under con-
sideration. In Section 3 we present a general theorem that applies to convolutions
and mixtures in the context of uniform stochastic ordering and is of interest in its
own right as a result in the theory of TPZ functions. In Section 4 we exploit thre
'l'P2 expressions of uniform stochastic orderings to characterize logconcave
distribution and survival functions as those that preserve the appropriate uniform
stochastic ordering under convolution. In Section 5 we use the general preservation
theorem of Section 3 to characterize random variables that will allow uniform
stochastic ordering to be transferred from mixing random variables to mixtures.
Finally, in Section 6, we consider whether stochastic ordering between corresponding
components of identical systems is inherited by the systems. We show, for example,
that if the failure rate of one type of component is larger than the failure rate of
another type of component, then a k-out-of-n system of independent components has

a larger failure rate if components of the first type are used.

2. Definitions and preliminaries.

Let X be a random variable with distribution function given by F(x) = P(X < x),
survival function F =1 - F and, in the absolutely continuous case, density function
£f.

The uniform stochastic orderings under consideration may be conveniently ex-
pressed in terms of TP, ordering of functions. Let 8; and g; be an arbitrary pair

of functions.

................................
---------
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Definition 2.1.

TP
2
8 < 8 * 5,(Xgy(y - g;()gy(x) 20 for all x < y.

TP
It is evident that 8 3 8, is equivalent to saying that gi(x) is TP2 in (4,x)

where the domain of g is A x B; in this case A = {1,2} and B is some subset of the
real line. More generally, we could consider a family of functions {ga,act\} where
A is some subset of the real line. Then the statement that gu(x) is 'l‘P2 in (a,x)
would indicate that ga‘“:z & for a < 8.

The various uniform stochastic orderings are defined by taking 8, and g, to

be distribution, survival and density functions.

Definition 2.2.

TP
2
(1) xl(f)xz <=> Pl < Fz <=> Fl(x) Fz()') - Fl(y) Fz(x) 2 0 for all x< y.
= TPy _ - = _
(ii) XH¥% <> F < F) <=>F (D K - F,(») Fy(x) 2 0 for all x < y.
TP,

(iii) Xl < xz <==>f1 < fz <a> fx(x) fz(y) - fl(y) f2 (x) 20 for all x < y.

1f Xl(:) X}Pwe say that )(1 is uniformly smaller than x2 in the negative direc-
tion because Fl & Fz is equivalent to the condition P(X15x| XISy) zP(XZSxIXZSy)
for all x and y such that x S y. It is evident that this defines a
stochastic ordering of xl and )(2 when each is restricted to the same interval of the
form (-=,y], the ordering of )(l and X, being the same for all such intervals. Simi-
larly, if xl(g)xz we say thatT:; is uniformly smaller than X, in the positive dlico-

tion because the condition Fl < l=2 defines a stochastic ordering of x1 and )(2 when

-each is restricted to sn arbitrarily chosen interval of the form [x,»). If x1 < )(2
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we say that X, is locally stochastically less than X because this condition is

1
equivalent to requiring that )(1 be stochastically less than xz whenever )(1 and x2
are restricted to the same interval of the form [a,b]. It is easy to prove that the
local ordering is the most restrictive in that )(1 <£X2 implies )(1 (f)xz and xl (f) xz,
that ordinary stochastic ordering (xlsi xz) is implied by each of the weaker uniform

stochastic orderings, and that the relationship between positive and negative uniform

stochastic ordering is |

H% = N -
Another property we shall use is that positive and negative uniform ordering is
preserved under the operation of taking the limit in distribution.
In the case of vectors of random variables, or sets of lifetimes of components

TP

< 2 .
in our context, where f = (fl, cens fn) and g = (gl, cees gn), we write f <" g if

TP
1 2 2 for i =1, ..., n. By taking £ and g to be vectors of distribution, sur-

vival and density functions, we extend the definitions of negative, positive and

local uniform stochastic ordering.

In all that follows, we adopt the conventions that "increasing' means '"non-

decreasing"” and '‘decreasing' means "nonincreasing".

3. A general preservation theorem.
The result below is of general interost because it involves preservation of
total positivity under integration. It is therefore given in terms of TP2 functions

although it will be used in later sections concerning convolutions and mixtures.

Theorem 3.1.

Suppose that the distribution fimction H(*,t) is differcntiable with respect

to t.

AT I G AARIERL R AL SR LR TR L Chr S, .-J
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(i) Hx,t) is TP, in (x,t) <=> [ H(x,t)dFy(t) is TP, in (6,x) whenever

2 2

Fe(t) is 'l'l’2 in (6,t).

(ii) H(x,t) is TP, in (x,t) <=> [ H(x,t)dF (t) is TP, in (6,X) whenever

2
Fe(t) is TPZ in (o,t).
To prove Theorem 3.1 the following lemma is needed.

Lemma 3.2.
If H(x) = 1 - ¢ then [ A(x-t)dFg(t) is TP, in (g,X) whenever F (t) is TP,

in (8,t).

Proof of lemma.
Suppose ?b(t) is TP2 in (6,t). Without loss of generality we assume that ©

takes only the valuesl and 2. We need to show that

/ F, (t)h(x-t)dt | F,(t)h(x-t)dt
_ _ 20 for x < y.
/ F, (t)h(y-t)dt J Fy(t)n(y-t)de

By the Basic Composition Formula (Karlin (1968), p. 17), the determinant reduces to

[ [ Fl(s) Fl(t) h(x-s) h(y-s) ds dt
s<t ?Z(s) T-"z(t) h(x-t)  h(y-t)

The first determinant above is nonnegative because ?}(t) is TP2 in (i,t) and the
second determinant is nonnegative because h is the exponential density function

which is logconcave.| |

Proof of tCheoren.

We prove only (i) as (ii) is proven from (i) since H(x,t) is a distribution

function that js 'I"Pz in (v.*) if and only §f H(-x, -t) is a survival function that

is ‘l'P2 in (x,t).

-----
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=> Let H(x,t) be TP, in (x,t) and ?S(t) be TP, in (6,t), where we assume without

2
loss of generality that 6 takes only the values 1 and 2. Suppose first that Fl(FZ)

has density fl(fz). We need to show that

f H(x,t) f,(t)dt J By, )£ (t)de

D=
] H(x,t) £,(t)dt [ H(y,t)£,(t)dt

20 for x < y.

Using the Basic Composition Formula (Karlin (1968), p. 17) and integrating the

inner integral by parts, we reduce the determinant as follows:

H(x,s) H(x,t) £.(s)  £,(s)
D= f / — - dt ds
s<t | H(y,s) H(y,t) fltt) £,(t)
H(x,s) 8H(x,t)/at £.(s) £,(s)
= ! f _ - __1 _2 dt ds
s<t | H(y,s) aH(y,t)/at Fi(t) F,(t)

Since H(x,t) is TP, in (x,t), we have, for s<t and x<y,

#(y,e)/at  H(y,t) . M(x,t)/at H(x,0) 20
H(y,t) H(y,s) H(x,t) H(y,s)

Thus the first determinant in the integral above is nonnegative. Similarly, since

Fg(t) is TP, in (6,t), we have, for s<t and x<y,

£, (s) Flcs) ) £,(s) cms) Co
Fi(s) Fi(t) Fs) Fypv)

Thus the second determinant in the integral above is also nonnegative.

If one or both of Fl and Fz does not have a density, we proceed as follows.
Let i:(x) = fk(x-t)dFi(t) where f&(t) = e, From lemma 3.2 we have that
F:(x) is TP2 in (i,x) for every A>0. Since F; is the convolution of an eapuncutinl

distritition fimction und Pl' it hae a dunsity and thescforo the proof above

spplies. Thus | ﬁlx.t)dF:(t) is TPz in (i,x). Then, since Fg converges weakly to

--------
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Fi and since H is bounded and continuous in t, we have, by the definition of weak

convergence,

lin [ ﬁ(x,t)dp’i‘(t) = J H(x,t)dF (t) for each x.

Adco
As the TPé relaticn fcr fﬁ(x,t)d?ix(t) is preserved under this limiting operation,
we have that fﬁ(x,t)dl-‘i(t) is TP, in (i,X).

<= Suppose that f ﬁlx,t)dFe(t) is TP, in (0,%) whenever fs(t) is TP, in (8,t). We

2
assume without loss of generality that © takes only the values 1 and 2. We need

to show that H(x,t) is TP, in (x,t). Let Fl(FZ) denote the distribution function

2
of the random variable that is degenerate at 51(52) where 515, Since ?;(t) is
TP, in (i,t), we have that [ H(x,t)dF,(t) is TP, in (i,x). But [ H(x,t)dF(t) =

ﬁ(x,si) and therefore the previous statement is equivalent to
ﬁtx,sl) ﬁly,sz) - ﬁtx,sz) ﬁ(y,sl) 2 0 for x<y.
This is true for any s, and s, for which s <52'||

1

4. Preservation of uniform stochastic ordering under convolution.

We suppose that xl and xz are uniformly stochastically ordered in some way and
consider the ordering of Xl + Z and X2 + Z. We also consider the reverse question,
namely, if X1 + Z and Xz + Z are uniformly stochastically ordered whenever X1 and
x2 are, what can be said about Z? Logconcavity enters naturally from the TPZ
characterizations of the various uniform stochastic orderings because, as is well-
known, a nonnegative function g is logconcave if and only if g(x-y) is TP2 in
(x,y). Using this fact, and considering scalars 81 and 62 (0 < 61 < 62) rather
than random variables xl and Xz, Keilson and Sumita (1982) show that logconcavity

of the distribution, survival and density functions of Z characterizes the random

variables that can be respectively negatively, positively and locally ordered

according to 91 and 62 - that is, for example, Z has a logconcave distribution
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function if and only if Z + gKf)Z + 62 whenever 61 < 62. Keilson and Sumita (1982)
also point out that if Z has a logconcave density function then uniform stochastic

ordering of xl and xz is inherited by X.+Z and Xz#Z. We extend these results,

1
characterizing logconcave survival and distribution functions as those that preserve
under addition not only the order of scalars but also the uniform stochastic order of

random variables.

Theorem 4.1.

Suppose that Z is a continuous random variable.

(i) The survival function of Z is PFZ <=> X1+Z(§)x2 + Z whenever xl(g)xz.
(ii) The distribution function of Z is PF, <=> X; + Z(f)x2 + Z whenever xl(f)xz.

Proof.
Suppose Z has survival function H and Xl(xz) has survival function FI(FZ).
The condition that xl * Z(i)x2 + 7 whenever xl(g)xz is equivalent to the condition

that fﬂ(l-t)dFi(t) is TP, in (i,z) whenever F, (t) is TP, in (i,t). Part (i)

2
therefore follows immediately from Theorem 3.1(i). Part (ii) follows from Theorem

3.1(ii) in a similar fashion.||

5. Preservation of pmiform stochastic ordering under Wixture.

We consider the question of whether uniform stochastic order between two
mixing random variables is inherited by the resultant mixtures and the reverse
question, namely, if uniform stochastic order is transferred from mixing random

variables to mixtures, what can be said about the variables over which the mixing

is done? Keilson and Sumita (1982) consider thcso questions primarily in tho contcat
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:t' of discrete random variables: they show that local stochastic ordering of the mixing
Q\l

Y random variables is preserved by the mixtures if and only if the variables to be

2}: mixed form a finite sequence of locally stochastically ordered random variables. In

the same vein, Keilson and Sumita (1982) give conditions under which positive

.\" s - - . - - * - - s

:;S (negative) uniform stochastic ordering is inherited by mixtures of a finite sequence

igi of positively (negatively) uniformly stochastically ordered random variables. We
A

; show that the latter results are true in general - that is, positive (negative)

Vft; uniform stochastic ordering between mixing random variables is inherited by the

o resultant mixtures if and only if the variables to be mixed form a (not necessarily
, finite) sequence of positively (negatively) tvniformly stochastically ordered random
AR

e variables.

..":;

SN

.

N Theorem S5.1.

{

NN Surnose that X, has distribution function H(-2) which is differentiable with
-y

AN respect to a, let W, have distribution function F, and let Z, have distribution

.\ .,

function fﬁ(-,u)dFi(u), i=1, 2,

;%t (i) xu (:) XB for a < B <=> 21 (5) Z2 whenever.w1 (f) WZ'

;2: (ii) Xa (f) XB for a < B <=> Z1 (f) Z2 whenever Wl (f) W2.

3

o Proof.

oy

oS - .
- . . .

;;-., Since Xa (<’) XB for a < B is equivalent to H(x,a) being 'I'P2 in (x,a), and

47ﬁ similarly for Zl (f) Z2 and Wl (5) Wz, (i) follows immediately from Theorem 3.1 (i).
.

o Similarly, (ii) follows from Theorem 3.1 (ii). ||

6. _Preservation of uniform stochastic ordering under the formation of coherent
szstems .

The uniform stochastic orderings defined above may also be expressed as follows:
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TP
Pl 2 Fz <=> Fl(x)/Fz(x) is decreasing in x

TP
Fl <2 ?2 <=> Fl(x)/ﬁz(x) is decreasing in

=

TP
fl <2 f2 <s> fl(x)/fz(x) is decreasing in x.

In the context of reliability we may view X
T,
Fl < Fz, we see that a unit that has failed by time t, is more likely to have

1 and X2 as lifetimes of units: 4f

failed by time t1 (t1 < t2) if its lifetime has distribution F1 rather than Fz.

TP

Similarly, if Fl <2 Fz, a unit of age t

beyond t, (t1 < tz) than is a unit of the same age (tl) with lifetime X,. This

with lifetime X1 is less likely to survive

is equivalent to the condition that the failure rate of X, is greater than or equal

1
to the failure rate of Xz.

The characterizaticns given above lead to consideration of uniform stochastic
ordering of the lifetimes of coherent systems when corresponding components of com-
parative systems are uniformly stochastically ordered. We show first that if the
failure rate of one type of component is higher than that of a second type of com-
ponent then certain systems have a higher failure rate if components of the first

type are used rather than components of the second type.

Theorem 6.1.
Let h(p) be the —-=liability of a coherent system of n independent and identically
distributed components with failure probability p. If ph'(p)/h(p) is decreasing

_ T, TP,
in p then h(F) < h(G) whenever F <“ §.

Proof: Suppose first that F(G) is absolutely continuous with failure rate r(s)

where F <% &, or, equivalently, r 2 s. Let R(S) be the system failure rate corres-




...................

Y LR Sohe et 3 v B A e ave e B4 e
) . yegepererevLeLe g I A e A e S b RRNASMN A R ey e AN A g sy ‘41_ '.v "
P IS N NP AN A N P L PN A A PR et

: ] - 11 -

——
14

ponding to F(G). Since r 2 s, F < G. Using Theorem 1 of Esary and Proschan (1963)
and the fact that ph'(p)/h(p) is decreasing in p, we have:

R(t) = r(t) F(t) h'(F())/h(F(t))

[ ¥, X

v

s(t) G(t) h'(5(t))/h(E(t))
S(t).

i A

Iy P
']

o

If F and G are not absolutely continuous, consider instead the convolutions of
F and G with an exponential distribution function with mean rate A. Since these
: convolutions are absolutely continuous, the proof above applies. We then use the
; fact that TPz ordering of the resulting system reliability functions is preserved as
. A + =; since the convolution of F(G) and an exponential distribution with parameter

A converges in distribution to F(G) as A + =, we have the required result.||

Loy O W

Since ph'(p)/h(p) is decreasing in p in the case of k-out-of-n systems of

independent and identically distributed components, the following corollary is

Vals's 2.

immediate.

Corollary 6.2.

Let h be the reliability function of a k-out-of-n system of independent and

TP TP
identically distributed components. Then h(F) P h(G) whenever F <G,

Bas 8 8 A 2D

In the case of nonidentical components we show that if each of a set of non-
identical independent components is less (more) reliable than a component of type

A, say, then a k-out-of-n system is less (more) reliable if the nonidentical com-

ol . .,
a'elats’saa £

- ponents are used rather than a set of components of type A.

Theorem 6.3,
Let the reliability functicn of a k-out-of-n system of irdependent components be

iven by n(p}, where p = (p,, ..., p.) and p, is the failure probability of com-
g 24 ) .1 pl n i

ponent i,
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_ TR, _ TP, )
(1) 1f Fi < G6,i=1, ..., n then h(?l, ceey Fn) <® h(G, ..., G)
TP TP

) 1R P& i=1, .., nthenh(F, ..., F) >2h@E, ..., O

Proof: We prove only (i) since the proofs of (i) and (ii) are similar. Suppose

first that Fl' ceey Fn and G are absolutely continuous with failure rates Tis coes
TP

r, and s respectively, where F, < G or, equivalently, r,2s,i=1, ..., n Let

i

R(S) be the system failure rate corresponding to F .y Fn(G, evey G). Now

T
Fi <G fori=1, ..., n because ?i &G fori-= 1, ..., n. By Theorem 4 and

(4.1) of Esary and Proschan (1963), we have:
s (t) =1£1 s(t) &) (_3%{%§1_]

n = 3h/32
53y Ty (t) Fi(t) ("‘ﬂ'{ﬁﬂ—] l p.<F.(t), j=1,...n

)} ]
= R(t).

=G(t)

As in the proof of the preceeding theorem, if any of F e Fn’ G are not

1’
absolutely continuous, we consider convolutione with Th¢ caponential distribution

g

e

fonction and use an argument involving limits to obtain the required rocule. ||

~\fh3'thooren above give; a way to provide upper and lower bounds on the relia-
bility of a k-out-of-n system of nonidentical independent components. The general
case is that in which one set of nonidentical independent components is 'less
réiiable" than another set of nonidentical independent components. The question of
interest is whether a system would be 1less reliable if the "less reliable" set of
corpuniort3 were used rather than tie +%2>r set. The answer is in the affirmative,
provided thiat corresponding cocpenents bear to each other a relationship stronger

than that involving cormparison of rclinki'lty functions.

Theorun G.a.

Let h be the reliability function of a system of n independent components. If
' TP TP
2

- 2 -
£, < g for i =1, ..., n then h(F, ..., ?n) < h(ﬁl, cees 6.

(R P .
I

b N 1 e e it
VRS LSRN, PO S P AP APV PR AL I PR L
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2
=
5!
N For the proof of Theorem 6.4 we need the following lemma.
{ .
;:\. Lemma 6.5.

v

s Let h be the reliability function of a system of n independent components.
o TP, ) ™, )

If f1 < g then h(Fl. ?2, cees Fn) < h(Gl’ Fz, cens Fn).

&

")

4
&xﬁ Proof of lemma.
e
}::I Let {Pj} denote the collection of minimal path sets of the system under
! consideration. For s and t satisfying 0 < s < t, let
0.
b
2 = .
::: £(x,y) 1 if mng i" nox; 2 s and m?x i? noy; 2t
S J J

e 0 otherwise
o
‘\s:: If xz, ceey xn and 72’ ceny Yn are fixed then whenever X < Yy we have
oY

N £2(x), ¥) 2 R(Xy, Xy eaes X5 Yys Ygs eees ¥y

:‘3

X 2 8(Yys Xps cees X3 Xyu Yos eees V)
. q

=)

= 9%

j: To obtain this inequality, define the following functions for any s 2 0:
R
il

3 1

is 23(x1) = 1 if max min x, 2s

: j iep

- 4 j
2 0 otherwise
} ":‘ . L

) ‘3

., !.s(yl) = {1 if max min Ys 2s

e ) j ieP
-— 1 j

3 hd
;‘ L 0 otherwise

’ (]

}’\ Since 2 (xl,yl) = "s(xl) l't.(yl.)' we need to show that zs(xl) "t(yl) 2 zs(yl) zt(xl).
ﬁ,‘ It suffices to show that nt(xl)ls(yl) = 1 implies that ls(xl)zt(yl) = 1: this
, . follows immediately from the fact that is(x) is increasing in x and decreasing in
.

i Ao At oo At ~"~ ‘ '\‘&‘\ > '- "J“.“ v( T AP IO RN O AT (ﬁq. -'\f -'\-"\!.“’ R -“
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TP

Since £ <2 g and z.(xl, yl) 2 t'(yl. xl) for x, S Yyr We have, by Theorecm 5.1

1
of Keilson and Sumita (1982) or by Proposition 8.4.2, of Ross (1983):

v, ) g, xp

where xlfrl) has density fl(gl) and xl and Y1 are independent. Rewriting this in
terms of £, we have

R UL TIEREIE S P8 FYRRTS A ¥ LOY oXg0e s Xpi XpuYgseeeayy)

n
Cbnsequeatly:
a(z(xl. Xys coon X3 Yl Ygr -oo ,yn)) 2 E(E(erz. oo Xpoi xl. Ygs «ees yn)),

Now let Xz. vees Xn, Yz, ceey Yn be independent random variables that are inde-
pendent of x1 and Yl also and suppose that X, and Yy have distribution function F,

for i = 2, ..., n. Then we have

a(z(xl. Xz, cesp !h; Yl' Yz, ...,Yn)} 2 E(I(YI, Xy cony Xn; Xl. Yz, eees Yn)).

Since xl. ...xh, Yl' cees Yn are independent, we use the definition of £ to

rewrite this inequality as
h(Fl(S). PZ(S). coes Fn(S)) h(cl(t). ?z(t). coes Fn(t))

2 h(8 1 (LF,(s), ..., E () h(F (0], Fa(t), ..., P_(2)).
This is true for any s < t.||

Proof of thooren By repeated application of the lemma, we have

LTCI U 2 T2 nd, By b)) 72 TGN N T2

™ ™,
RS V(TN TR ) R V(MO I b

n-1’"n

™ TP
since < 1s transitive, h(F,,....0) < h(§;,...,8).]I
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