
D-R143 430 THREE DIMENSIONL CIRCUIT LRYOUTS(U) 
MASSACHUSETTS INST i/i.

OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE

T LEIGHTON ET AL. JUN 84 MIT/LCS/TM-262

UNCLASSIFIED N00014-80 C G622 F/G 9u1 N

END



111j1 11113 2

II 1.8

1 11.2 LA j 1.6

MICROCOPY RESOLUTION TEST CHART
NATtONAL eUREAU OF STANDARDS- 1963-A



LABORATORY FOR i II ,%IIIL II tCOMPUTER SCIENCE i'FcoiNOL (JtY

MIT/LCS/TM-262

0

(n)

THREE-DIMENSIONAL CIRCUIT LAYOUTSI

Thomas Leighton

Arnold Rosenberg

C.) " , .

June 1984 : "

. .1V .r-

ii . . c.. ,.

515 TECINOI.OGY SQUARE. CAMBRIID,E, M..\%%\(1 i ISII V' I

84 07 23 1io



%-

Unclassified
" - SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Sneered)

-' '. REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

°,". BEFORE
r 

COMIPLETING FORM

. .' i.REPORT UMBIER 2. GOVT ACCESSION NO. . RECIPIENT'S CATALOG NUMBER

m T/LCS/TM-262 AN
4. TITLE (and Subtitle) S. TYPE OF

r 
REPORT & PERIOD COVErRED

Three-Dimensional Circuit Layouts Interim Research

6. PERFORMING ORG. REPORT NUMBER

____ ___ ____ ___ ___ ____ ___ ____ ___ ___ MIT/LCS/TM-262
7. AUTHOR(@) . CONTRACT OR GRANT NUMBER(a)

Leighton & DARPA/DODC
• Tom N0g01-80!f0622

Arnold L. Rosenberg 
N00014

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

MIT Laboratory for Compvter Science
545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD June 1984
1400 Wilson Boulevard i. NUMBEROFPAGES

Arlington, VA 22209 33
14. MONITORING AGENCY NAME & AOORESS(1I different two Controlling Office) 15. SECURITY CLASS. (of thle repot)

ONR/Department of the Navy Unclassified
Information Systems Program ,S. OECLASSIFICATION/OOWWGRAOING

Arlington, VA 22217 SCHEDULE

1S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstracd t ltered in BIock 20. If different from Report)

Unlimited.

A I$. SUPPLEMENTARY NOTES

IS KEY WORDS (Continue on reveres aide it neceaairy and idntIly by block number)

area, bifurcator, decomposition tree, multiple layers, placement

and routing, three-dimensional layouts, very large scale
integration, volume, wire length.

20. ABSTRACT (Continue ael reveree aide It noceossrf Mod identify by block 1161b16)

Recent advances in fabrication technology have rendered imminent
the fabrication of multilayer chips, wafers and circuit boards.
In this paper, we examine the savings in material and communica-

- tion time afforded by the development of three-dimensional tech-
nology. In particular, we derive close upper and lower bounds on
the volume and maximum wire length with which circuits can be
realized in a multilayer medium. For example, we find that the

-a- DORA 1473 EOITION OF INiV 66 IS OBSOLETEU
D, A14, Unclassified

SEC[URITY CLASSIFICATION OF' T14iS PAGE (l1he Dotm anlte)

*..-...'aa V * ', "a,._*" _.. .. ,-. . . . . . . . -, .. .- ' . . .. '' .. " • ,, ' ..



.................-7

1 sauINV CLASIFICATION OF THIS PA. O 8Sfta(

srougly)t volueo an maximumiemeingth layo/H f moderatve umbr
of laes H. Twoe thnteworthy) feaures ofrAi the alldy are:

1) thto-ithnina loaiti ofatoertW iniaed sviog cant
bficenl reazed m wit layout- htuetetiddimensiona oaoto aenlymxi

for interconnect; and
42) that the indicated savings can be realized algorithmically:

we present polynomial-time algorithms that transform a given
two-dimensional layout into a more efficient three-dimnen-
sional layout.

.4

.. 7



Three-Dimensional Circuit Layouts

Aceeesson For

Toi Leighton NTIS GRA&I
DTI ,  TA':

Mathematics Department and U:'jn:nor-cd F
Laboratory for Computer Science JU-tificn ion-

Massachusetts Institute of Technology
Cambridg', MassaelhuseL'ts 02139 By-_

Di-stribution/
Ara- iabi 1tv Codes

Arnold L. Rosenberg A- ilbiit Cole

Department of Computer Science

Duke University
, Durham, North Carolina 27706

and
Microelectronics Center of North Carolina

Research Triangle Park, North Carolina 27709

Abstract: Recent advances in fabrication technology have rendered imminent the fabrication of
multilayer chips, wafers and circuit boards! In this papcr we examinethe savings in material and
communicatjon time afforded by the development or three-dimensional technology. In particular,

>Lwe.derive~iose upper and lower bounds on the volume and maximum wire length with which
circuits can be realized in a multilayer medium. For example, weAlid that the smallest volume
or any three-dimensional layout of an N-device circuit is no more than (roughly) (AN)3,
where A is the smallest area of any two-dimensional layout of the circuit.--W also show,/how
to efficiently transform a two-dimensional layout of area A and maximum wire length L into a
three-dimensional layout of volume (roughly) V = A/I and maximum wire length L'= L1II
for moderate numbers of layers II. Two noteworthy features of the study are:

1) that, within logarithmic factors, the indicated savings can be realized with layouts that
use the third dimension only for interconnect; and

2) that the indicated savings can be realized algorithmically: we present polynomial-time
algorithms that transform a given two-dimensional layout into a more efficient three-
dimensional layout. k

Key Words: area, bifurcator, decomposition tree, multiple layers, placement and routing, three-
dimensional layouts, very large scale integration, volume, wire length.

Tom Ieighton waa supported by Air Force Contract A'OSR-82-0326, DARPA Contract N00014-80-0622 and a
Iiantrell Fellowship. Arnold Rosenberg was supported by NS" Grants MCS-81-16522 and MCS-83-01213.

u! :,- ,.'.



THREE-DIMENSIONAL CIRCUIT LAYOUTS

4 1. INTRODUCTION

Recent advances in fabrication technology [4-8.10-12,17-19,22,28] have allowed

circuit and system designers to begin using the third dimension in realizing their

designs. Multilayer packages with impressive performance have been fabricated

[9,10,20], and there has been extensive research toward the goal of three-dimensional

chips [8,12,17-19,28]. The rapid rate of progress in VLSI technology suggests that mul-

tilayer chips and packages will be commonplace in the not-distant future. Indeed, the

'president of Texas Instruments (quoted in [8]) predicts the production of three-

dimensional chips by the end of the decade.

One expects (at least) three benefits to accrue from the use of the third dimen-

sion in circuit realization. First. wire-routing should become easier and more sys-

tematic. Next, since one can avoid obstacles by using the third dimension, runs of

wire should be shorter, at least in the worst case. Finally, since avoiding obstacles in a

two-dimensional environment can require area-consuming circuitous routing of wires,

one would expect savings in material: the Volume of a three-dimensional realization of

a circuit should be less than the Area of any two-dimensional realization of the circuit.

In order to realize these expected benefits, we must develop effective techniques for

devising and analyzing multilayer circuit layouts. Such is the goal of this paper: we

develop and analyze an algorithmic strategy for laying out VLSI circuits -- viewed here

as undirected graphs -- in three-dimensional chips -- viewed here as three-

dimensional grids.

Our notion of the layout of a circuit follows the two-dimensional framework of

[2,13,14,16,26,27], as adapted for the third dimension in [23,24]: circuits are

-!6-
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undirected graphs whose vertices correspond to active devices (transistors. gates.

etc.) and whose edges correspond to wires connecting these devices. The media in

which the circuits are to be realized are (two- or three-dimensional) rectangular

grids. A circuit layout is an edge-disjoint embedding of the circuiL-graph in the grid.

Two models have been proposed for studying three-dimensional VLSI [23.24]. The first,

oye-active-layer, model requires that all active devices be placed on a designated

4 layer of the chip. The second, unrestricted, many-active-layer, model allows devices

to be placed arbitrarily throughout the chip. It is clear how these two possibilities

- manifest themselves in our formal setting. Although the many-active-layer model4'1

affords one more flexibility when laying out one's circuits, it places significantly more

stringent demands on the fabrication technology; cf. [24]. There is thus a tradeoff
-S.

between the cost of fabricating a chip with multiple layers of devices and the savings

(in terms of Volume and maximum wire run) resulting from the increased layout flexi-

bility. One of our more surprising results here is that, at least within our abstract

framework, many-active-layer layouts are little or no more efficient than one-active-

layer layouts when the number of layers is relatively small: either mode of using the

third dimension affords one appreciable savings over any two-dimensional layout.

Additionally, we show that multiple layers are effective in reducing Volume and max-

imum wire run only up to a certain point, after which they are wasteful. Although

these results are definitive only for the theoretical model our analysis is based on,

they suggest strongly that VLSI chips that have a higher (and costlier) degree of

sophistication (in terms of number of layers and placement of devices) may not be

more efficient for many applications than significantly more modest chips.

Although there has been a substantial amount of work on the two-dimensional

version of the layout problem, related work on the three-dimensional problem has

largely been confined to one of:

the study of routing in the presence of a few extra layers [3,9.21];

-2-



S.C.

* the study of optimal multilayer layouts for a few special networks [20,23,29];

* the study of optimal multilayer layouts for the class of "hardest-to-realize"

networks [23,24].

Notable among the results in these papers, for our purposes, is the use in [23,24] of

optimal three-dimensional layouts of the N-input Benes permutation network [1] to

prove:

Every small-degree N-vertex graph can be laid out in a three-dimensional

grid with Volume 0(N31 2 ) and wire-length 0(N1 1 2 ).

A (There exist graphs that do not admit any more compact layout; for such graphs,

these bounds contrast with the lower bounds of Area Q(N 2 ) and wire-length O(N)

[12,26] in the two-dimensional case. In effect, the contribution of the present paper is

to generalize the specialized three-dimensional results of Rosenberg and Preparata

(among others) to a level of generality comparable to the two-dimensional work of

Bhatt, Leighton, Leiserson, Thompson, and Valiant (among others). Perhaps the most

important contribution of this paper is an algorithm that transforms a two-

dimensional circuit layout of Area A and maximum wire run L into a three-dimensional

layout of the circuit that is within logarithmic factors of Volume A/H and maximum

wire run L/H, for moderate values of H. The layouts produced are close to optimal in

the sense that using H layers rather than just one layer (which is how the two-

dimensional case is viewed in our formal framework) can never improve Area or wire-

length by a smaller factor than 1/H. Certain special situations wherein the loga-

rithmic factors can be avoided are described in [15], wherein is also a special case of

our algorithm.

The remainder of the paper is divided into four sections. In Section 2 we review

basic definitions and cite work on two-dimensional layouts that is relevant to our

study. Sections 3 and 4 are devoted to the development and analysis of our three-

dimensional layout strategy, with particular attention paid to issues of Volume and

-3-



maximum wire run. We conclude in Section 5 w;th some remarks on the implications

of our work.

2. PRELIMINAUiES

Underlying Assumptions. The formal framework of our study carries with it cer-

tain implicit assumptions:

- 1. Our associating circuits with graphs limits our study to circuits with two-point

nets.

2. Our associating chips with grids limits our circuits to having small vertex-degrees.

3. Our adherence to the models of VLSI layout theory renders the vertices of our

circuits as unit-side squares or cubes.

4. Our method of extending the two-dimensional model assumes isometry in all

4$ dimensions: a unit of height is eqivalent to a unit of width.

It is worthwhile placing these assumptions in perspective.

1. The restriction to two-point nets is a significant one: although extending our

results to circuits with three- or four-point nets is not difficult, extending the

results to circuits with arbitrary multipoint nets remains an inviting challenge.

2. Techniques that are now standard can be used to generalize our results to

include circuits with high vertex-degrees, but the associated analysis is techni-

cS, cally somewhat more complicated.

'- 3. Restricting attention to unit-side devices is a purely clerical device; extending the

analysis to any uniform-size devices should present no problem [2,13].

4. Aside from clerical simplification, the isometry assumption acknowledges the

potential problem of cross-talk between parallel runs of wire [24].

The FbrrnaL Frameniork. An undirected graph comprises a finite set V of vertices

and a set of two-element subsets of V, called edges. We say that the edge ju,vj is

-4-
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incident to vertices u and v. The degree of the vertex v is the number of edges

incident to v; the degree D(G) of G is the largest degree of any of its vertices.

The WXL planar grid is the graph whose vertex-set is the set or pairs [W]x[L] and

whose edges connect vertices <a,b> and <c,d> just when la-cl + Ib-dJ = 1. (Here and

throughout, [n] denotes the set [n] = J1, 2. ni.) The HxWxL solid grid is the graph

whose vertex-set is the set of triples [H]x[W]x[L] and whose edges connect vertices

-. <a,b,c> and <d,e,f> just when Ja-d + Ib-eJ + le-ft = 1.

An embedding or layout of the graph G in the grid P (solid or planar) is a one-to-

one association of the vertices of G with vertices of r, together with a one-to-one asso-

ciation a of the edges of G with edge-disjoint paths in r. An embedding in a solid grid I

of dimensions HxWxL is a one-active- layer embedding if it associates all vertices of C

with vertices of r of the form <i0 , j, k> for some fixed layer i0 in [H].

We gauge the cost of an embedding of a graph in a grid in terms of the amount of

material consumed by the embedding (Area in the two-dimensional case and Volume in

- . the three-dimensional case), and in terms of the maximum length of any run of wire

that does not encounter a device.

"- The Volume (resp., Area) of an embedding of the graph G in a solid (resp..

-' planar) grid r is the product of the dimensions of r. The Volume (resp.,

Area) of the graph G, VOL(G) (resp., AREA(G)), is the minimum Volume (rev, Area) of

any embedding of G in a solid (resp., planar) grid. The one-active-layer Volume of the

graph G, VOL 1_A(G), is the minimum Volume of any one-active-layer embedding of G in

a solid grid. When we relativize either VOL(G) or VOLlAL(G) with the integer parameter

H, as in VOL(G;H) or VOL 1_A(G;H), it is to be understood that the volume minimization

is done over all H-layer embeddings (of the appropriate kind).

Say that we are considering an embedding of the graph G in a grid, with the

(graph edge)-(grid-path) association a. The wire-length of the embedding is the max-

imum length of any path a(e) over all edges e of G. This corresponds informally to the

-5-
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length of the longest run of wire that does not encounter a device. The .olid (resp.,

planar) wire -length of the graph G, WL.(G) (resp., W 2(C)). is the minimui wir,-

length of any embedding of G in a solid (resp., planar) grid. The one-act tve-layer

wire-Length of the graph G, WLIAL(G), is the minimum wire-length of any one-active-

layer embedding of G in a solid grid. As before, relativization of these measures with

the integer parameter H, as in Wl (G;H) or WLIAL(G;H), restricts the indicated minini-

zation to H-layer embeddings of the appropriate kind.

Leiserson [16] and Valiant [27] showed that the "decomposition structure" of a

graph could be exploited in order to find an efflcient two-dimensional layout of the

graph. Leighton [14] and Thompson [26] proved that the Leiserson-Valiant strategy

could not be improved in general, though it often produced layouts that could be

d.matically improved. Bhatt and Leighton [2,13] significantly improved the layout

strategy by recasting its framework. Specifically, they reformulated the underlying

notion of the "decomposition structure" of a graph to one in which the Leiserson-

Valiant strategy yielded layouts that were provably good, in the sense of being within

logarithmic factors of optimal, for any graph. One of the central ideas in the Bhatt-

Leighton framework is that of a decomposition tree for a graph. The graph G has an

(F0 ,F1 , .,.Fr)-decomrposition tree if G can be decomposed into two subgraphs Go and G,

by removing at most F0 edges from G; each of Go and G, can be decomposed into two

subgraphs by removing at most F, edges from each; and so on, until each subgraph

produced by the decomposition is either empty or an isolated vertex. See Fig. 1.

.4 Decomposition trees for which the F decrease at a uniform rate are of particular

importance to us, A graph that has an (F, F/p, F/p 2. . 1)-decomposition tree for

• ' some real p > 1 is said to have an (F, p)-bifurcator or, equivalently, a p-bifurcator of

size F. Since the decomposition tree of an N-vertex graph must have at least log N lev-

els, it is clear that F >_ NIOEP. (Unless otherwise indicated, all logarithms are to the

bale 2.) For convenience, we shall also assume that F < N/2 for all graphs.

-6-
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Returning t- the issue of efficient two-dirricrisioric IIalt i"t' 1h ,

proved that finding a small 2/, 2 -bifurcator for the graph to o.. lWt tt , , r ,;

story, in the sense of the following result.

.heorem 2.1. [2,13] Let F be the size of the siallest 2 1"-bifutt J o- of til N-vro!,,X

graph G. Then

F 2 AREA(G) (cons)F 2 log2 (N/l).

and

(const)F2 /N < WL2(G) !c (const)F log(N/F)/loglog(,N/F).

A key step in the proof of these bounds is the demonstration th;t irt irbitrriirv

decomposition tree can be fully balanced at little or no cost, in the sense thil

(1) each graph G in the tree is split into two equal-size subgraphs, G, and G;

and

(2) the number of edges of C having precisely one end in the (arbitrary) tree-

vertex/subgraph Gia of G is at most a small fixed multiple of the nurjiber of edges

leaving Gia to go to its brother subgraph G,,.

The notion "fully balanced" applies to p-bifurcators in the obvious way. Hhatt and

Leighton prove the following basic result, via a polynomial-time algorithm for con-

structing a fully balanced bifurcator from a given arbitrary one.

Lemma 2.2. [2,13] There is a fixed constant c>O such that., if the graph 0 has a

bifurcator of size F, then it has a fully balanced p-bifurcator of size cF.

Lemma 2.2 guarantees that any graph with an (F, p)-bifurcator has a decomposi-

tion tree in which any subgraph Cw on level i of the tree is incident to at most cF/p1

edges of G that are not wholly contained within Gr. Lacking the Lemma, we would

know only that at most F/p' edges of G linked G, to its brother in the dccorTIposit toi

tree (as opposed to any other subgraph at level i of the tree).

A second technical lemma is crucial to our layout stritcgy. A MrUligraIph

comprises a set V of vertices and a multiset. M of dolbleton subsets of V, cotlod (e" .'s

-8-



Thus a multigraph can be viewed as a graph in which each pair of vertices can be con-

nected by several edges. The notions of "incidence", "degree of a vertex", and "degree

of a multigraph" derive immediately from the corresponding notions for graphs. An

edge-coLoring of a multigraph is a labelling of the edges of the multigraph with "colors"

in such a way that edges incident to the same vertex get labelled with distinct colors.

Shannon [25] showed, via an efficient algorithm for edge-coloring multigraphs, that

one needs never use a lot of colors to edge-color a small-degree multigraph.

Lemnmra 2.3. [25] Any multigraph G can be edge-colored using at most I 3D(G)/2

colors. Moreover, this bound is existentially tight.

3. EFFICIENT THREE-DIMENSIONAL LAYOUTS

3.1. One-Active-Layer Layouts

We consider first the problem of embedding a graph in a three-dimensional grid in

accordance with the one-active layer model, i.e., so that all of the graph's vertices

reside on a single layer of the layout. We assume that we have in hand a minimal-size

(F. 2-12)-bifurcator for the graph to be laid out. as well as an associated recursive

decomposition of G.

Thearem 3.1: THE ONE-ACTIVE-LAYER LAYOUT THEOREM

Let G be an N-vertex graph, and let F be the size of its minimum 2'/ 2 -bifurcator.

Hight- H Layout.

There is a constant h>O such that, for any height H in the range

!g F~ h t-L og(N/F),

N"'2

the height-H one-active-layer layouts of G satisfy

max[FNI/2 , f ; VOL,-_L(G;H) ! (const)--log2(N/ F);

and,,- F F LgNF

,,.(const)mrax F Fe- !r WLI _AL(G; H) (const) I- lgNF.

kN/2 HNI
~-9-
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Unrestricted-Height Layout.

The minimum-resource one _-tive-layer layout of C satisfies

,,FNI2 VOL,_,L(G) < (const)FN1/21og(N/F);

and

(const) N / WLjAL(G) _ (const)N ,/ 2;

moreover, the number of layers (H) that minimizes VOL.,u. is at most
p..

(const) Nj/jlog(N/F).

Given F and an associated recursive decomposition of G, the embeddings yielding the

upper bounds can be found in time polynomial in N.

Proof. Let G and F be as in the statement of the Theorem.

The Lower Bounds.

We present two proofs that expose different aspects of the situation.

Proof 1. Consider an arbitrary one-active-layer layout of G, having Volume V,

. height H, and base area B. Let us recursively bisect this "box" across the smaller of its

base dimensions, in such a way that the base area is halved with each bisection. The

boxes we bisect at stage i of this recursion (we start at stage 0) have height H and

base area B/2'. When we bisect each of these boxes, we are severing no more than

(B/2)1 2 H edges of G, since the area of the cutting plane is no greater than this, and

wires have unit cross-sections. This means that G has a (B3/ 2 H, 2/' 2 )-bifurcator.

Since F is the size of G's smallest 2 1/ 2-bifurcator, it is immediate that F < W3/ 2 h so

2 ! B H2 = VH. which yields immediately that

F2
H

Since, moreover, B N (since all the vertices of G lie on one layer), we conclude that

*1F t9 V _

whence

-10-
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Since we have been looking at an arbitrary height-H one-active-layer layout. of G, the

lower bounds on Volume follow.

Proof 2. Our second, indirect, proof yields a lower bound on wre-length also.

The key step here is to transform an H-layer layout of the graph G with Volume V

= BH (B being the area of the base of the layout) into a two-dimensional layout with

Area BH 2. We shall then be able to conclude that

AREA(G) - BH 2 = VH,

so that

NV=: ' A

Since (as before) B ; N, we shall also be able to conclude that

-. ,,V 2  V
AREA(G) ! BH2 = V2- V-,

so that

V L (AN) 1/ 2 .

By Theorem 2.1 we know that AREA(G) ! F2, and thus

The desired transformation is obtained by projecting the H-layer grid onto the

plane, as illustrated in Fig. 2. Ignoring for the moment that the projection produces

diagonal edges, it converts an HxWxL solid grid into an HWxHL planar grid. We remove

the diagonal edges by rerouting the wire segments they contain. These segments are

precisely the ones that run between adjacent layers of the original multilayer layout.

By the rules of our model, at most one wire can pass through an intersection point

".1 that contains a wire that changes layers. Hence a wire that runs in a diagonal edge

can simply be rerouted in the neighboring "right angle". (Any wire that already

[-' resides in a segment of that right angle must be electrically equivalent to the wire

being rerouted.) The area of the resulting two-dimensional layout. is

-12-
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, WLH = BH 2,

as was claimed.

The same transformation yields the lower bound on wire-length: the projection

maps unit-length vertical and horizontal segments into length-H segments. Unit-

length segments that run between layers are transformed into segments of length 2 (!

*H) when rerouted. Thus a wire of length Le in the H-layer layout is transformed into a

wire of length L q! HL9 in the two-dimensional layout. We can now apply Theorem 2.1

to conclude that

F2Ls> (const) 1-.

Since all of the vertices lie on a single layer, we know also that Lu H/2, which com-

bines with the previous inequality to show that

•' .4
. L;t (const)

as was claimed.

Although we did not do so here, we could also show that the averTage H-layer wire-

length for any N-vertex graph is at least

(const)rnax k 1/2.)H

Mhe Upper Bounds.

The upper bounds are substantially more intricate to establish. Our task is

lightened, though, by the fact that we can establish both the restricted-height and

unrestricted-height upper bounds via a single construction, the latter bound following

from the former by assigning to H its maximum allowed value. We shall, therefore,

prove only the restricted-height upper bound, assuming that a legitimate target

height H has been specified; this H is fixed henceforth. We eltablish the bound by

means of a construction that recursively produces an embedding with the desired

Volume for a subgraph G of G on level i of C's decomposition tree, given the appropri-

• A e -' - 1 ! 3 -
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ate embeddings of the four subgraphs comprising Gi.which occur on level i+2 of the

U tree. Our main task will be to route wires for those edges that have precisely one enid-

point in a subgraph. Our strategy will be to route wires for such edges in a bottorn-up

manner, and to connect up these edges only when we process the level of the dec-orn-

position tree where these edges were removed. To aid the reader in following this pro-

cedure, we include Figs. 3 and 4.

Let us concentrate on one graph Cq at level i of G's decomposition tree, and on the

four subgraphs comprising G at level i+2 of the tree. Assume inductively that we have

at hand one-active-layer layouts for these four subgraphs, each layout having height

H1+2 and a square base of side

Si+2 =d! h F log(N/ F) 2-(i+2)/2
H

(h being the constant in the statement of the theorem). [Since Si+ 2 : (N/ 21+'2)1/2 when

H is in the indicated range, the base of the layout is indeed big enough to accomrnmo-

date one-fourth of Gj's vertices.) Assume further that each edge of C that has pre-

cisely one end in one of the subgraphs, is represented by a wire routed from the

appropriate vertex of that subgraph to the top layer of the layout. Finally, assume

that each one of these "dangling" edges terminates at a port at the top of the layout

and that these ports are evenly distributed across the top layer of the layout. (By a

port here we mean an end of a wire that can be extended upwards if additional layers

are added to the top of the embedding; our assumption about even distribution means

-p' that the ports are spaced uniformly, as suggested in Fig. 3.) We show now how to con-

struct from the layouts of these level-(i+2) subgraphs of Gj an inductively consistent

layout of Gj, having height
H1-' 1~2+ H

Hi = Hj+2 + d log(N/ F)

for some suitably large constant d.

We begin by merging the layouts of the four subgraphs into a single "box" having

-J.
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height HI+ 2 and having a square base of side
Si = g h F log(N/F) 2-1/2

H

We then add h/(d log(N/F)) new (empty) layers to the top of the box, thereby building

it up to height HI; see Fig. 4. Next we establish the ports at the top of the new box.

that will be needed to extend this construction to a yet-higher level of G's decomposi-

" tion tree. By Lernma 2.2. no more than bF/2t/ 2 edges of G have precisely one end in

G1. for some specified constant b; hence we need create at most this many ports at the

top of the new box. We create these ports, spaced evenly throughout the top layer.

Finally, we are ready to turn to the task of routing the wires incident to the ports of

the original boxes (in layer Hi. 2 ). Some of these wires must get routed to other ports

in the same layer and some to the new ports at the top of the new box.

We effect the necessary routings by using each of the new layers to route an aver-

V age of Sj/2 wires to their appropriate row and column (in one of the new layers). Final

connections will then be a simple matter. Since we need to route at most -bF/2/
2

wires in all, the allotted number of empty layers (namely, H/(d log(N/F))) will suffice.

provided that h was chosen sufficiently large. We now describe the details of the rout-

ing.

Layer Assignment. The first phase of the routing assigns each wire to the layer of

the embedding on which it will be routed. To this end, we temporarily superimpose

layers H1+2 and Hi of the embedding; and we partition the resulting pseudo-layer into

SI/4 square regions of area 4S, each. Let M denote the multigraph which has one ver-

tex corresponding to each of these square regions and one edge linking vertices R,

and Ry of M for each wire that must be run in the embedding to connect a port of the

square region R with a port of the square region Ry. Since the number of ports per

unit area in the pseudo-layer is at most

F/V2 3b 21/ 2H2
3b ' - Flog2(N/F)'

-17-
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the maximum vertex-degree of M does not exceed

D 12b H
h log(N/F)

( the iumber of ports per square region). Recall that (by Lemma 2.3) M can be

edge-co ored using at most 3D/2 colors. Therefore, provided only that the constant h

is chosen sufficiently large (h > log bd suffices), it is now an easy matter to allocate

wires to layers: we use each layer H3+2 +k of the embedding to route all wires that

correspond to edges of M that received the color k.

Inra-layer Routing. The second phase of the routing gets each wire to the

appropr ate row and column of its assigned layer. This is a two-dimensional problem
'4

consistig of routing Sj/4 wires in a square grid of side Sj. In the absence of further

informa.ion, this might be an impossible task, since the endpoints of the wir,3s to be

routed might be configured in a way that did not afford enough room to route the

wires. In our case, however, we have distributed the wires' endpoints sufficiently

sparsely that the routing is guaranteed to be possible: at most four wires terrrdnate in

each sqiare region of area 4S, We have the luxury, therefore, to assign dedicated

rows and columns to the wires to be routed. We leave to the reader the details of veri-

tying that this phase of the routing can be accomplished. Note that this routirg phase

complets the processing of wires that correspond to edges of G1: all connections are

made at one of the levels Hi+ +k.

Por, Connections, The final phase of the routing connects those wires that

correspond to edges having an endpoint outside of G, to one of the ports at level Hj.

This, however, is a triviality, since wires are already in the appropriate row and

column, and there is no contention for the interlayer route that the wire must

traverse.

771h Costs of the Layout It remains to assess the efficiency of our embedding. If

S.,we applr Lemma 2.2 carefully (as do 13haLt and Leighton [2,13] when treating two-

dimensional layouts), we find that we can always force the edges in a fully balanced
~-18-
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decomposition tree of a graph having an (F, 21 ")-bifurcator to stay in the top c

log(N/F) levels of the tree, for some appropriate constant c. We find thereby that if we

have chosen the constant d in the height-recurrence judiciously (it suffices that d>c),

then the recurrence for the height Ho of the final layout solves to H0 9 H. The area of

the base of the layout never changes throughout the construction: it is always

S2 = [h Flog(N/F)12 .
H

Since the Volume of the layout is just HoS2, we have established the claimed upper

bound on VOL, AM(G;H).

With regard to Wire-Length, it is straightforward to verify that the longest path an

uninterrupted wire is stretched over, is proportional to the sum of the linear dimen-

sions of the layout, i.e., (const)(S0 +H0 ), whence the claimed bound.

Finally, we remark that no appreciable further decrease in Volume can be

obtained by further increasing the height: when H assumes its maximal value, the area

of the base of the layout is just some small constant multiple of N. Since all of G's N

vertices must reside on a single layer, this area can not decrease further, so subse-

quent increases in the height can only increase the Volume.

Computtatitm 7sne. The only part of the described layout procedure that is not

-S ".clearly doable in polynomial time is the generation of an (F, 21"2)-decomposition tree

for G. And, we assume that we are given such a tree as input to the layout procedure.

As an equally efflcient alternative to our being given the decomposition tree, we could

be given a two-dimensional layout for G as our starting point. We expand on this

momentarily. []

Theorem 3.1 affords us the following strengthened version of Rosenberg's f241

results about arbitrary graphs.

brollary 3.2. For any N-vertex graph C and any height H o hN1,1,

VOL AL(G;H) (cnt' (const)W

-19-
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N
WLI-L(G;H) (const)

IH
At most (const)N'" 2 layers are needed to minimize VOLIAL. ConsLructions achievir i

these results can always be found in time polynomial in N.

Proof. The worst case in Theorem 3.1 is when F = N/2, wheric the claimed bounds. In

this case, the bifurcator is trivial, and the recursive construction has just one level. [

By judiciously combining two-dimensional layout results with Theorem 3.1, it is

not difficult to derive the following AREA-VOL,_A tradeoff.

Thearem 3.3: THE ONE-ACTIVE- LAYER AREA- VOLUME TRADEOFF

Let G be an N-vertex graph, and let A = AREA(C).

Height- H Layouts.

There is a constant h>O such that for any height H in the range

I g h log(2/ A),

.,A.Imax((NA)1 / 2, A-):5 VOL._A(G;H )  ! (eonst) A-log(N2/A);

and

(const)max A t/ 2  A -1/ 2 l (t2A A).
• :, cons~max Nl/l~g(N/A)'HN lgZ(N/A L - AL (G;H)! g (const) -o(N/)

NI/21og(N 2 / A'HN log 2(N~ A)J! WLI

Unrestricted- Height Layouts.

(NA) 1/ 2 !r VOL,_L(G) ! (const)(NA)I/ 2 log(N 2/A)

and

(cost A1 / 2 T)9 L
NI/ 2 log(N2 / A)-_L(G)- (eonst)NI / 2.

Moreover, the value of H that minimizes VOL 1_. is at most

(const)JA /lo(2A).

4Finally, given the Area-A layout of C. the embeddings yielding the upper bounds can be

found in time polynomial in N.

-20-
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Proof.

7he Lower Bounds.

The lower bounds follow from the lower bound arguments of Theorem 3.1 and the

fact [2,13] that A F,2 log 2 (N/A).

The Upper Bounds.

As in Theorem 3.1, we can establish both the restricted-height and rnany-active-

layer-height upper bounds simultaneously, since the latter bound follows from the

former by merely plugging in the maximum permissible value for H. We obtain the

*. restricted-height upper bound in stages. First we recall from Theorem 3.1 that

VOL,_AL(G:H) < (const) -log(N/F).
H

and

WLI-AL(G;H) - (const) F-log(N/F).

We next note from Theorem 2.1 that

F' 9 A.
2,.

Finally, we claim that 1/F < N/A so that

log(N/F) < log(N2 /A),

which completes the proof of the upper bound. This final claim is the culmination of

the following sequence of inequalities, each following from its predecessors and/or

Theorem 2.1.

-. For x>1, x < 2K; hence, log(N/F) < N/F. so F log(N/F) < N. By Theorem 2.1.

then, A < FN, whence the claim.

The efficiency of actually computing the embeddings that yield the upper bounds

follows as in Theorem 3.1, once one performs a recursive decomposition of G by cut-

ting the two-dimensional layout recursively along the lines of the proof of the lower

bound in Theorem 3.1. []

-21-
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It is worth noting that the upper bounds in iheorcrri r. 1 ever)yhre exist'!1-

tially tight (within constant multiples) for every, vale:e of N, F', and :; i.e., the fact ors of

log(N/F) cannot be avoided. To verify this, one needs recall thait leight on 13] prov:d

that the upper bounds in Theorem 2.1 are everywhere exist,'rltially tYi1Lt:

For all N and F, there exist N-vertex graphs whs. (rrullest 2r/ 2 -bifurtuItors

have size F such that

c[F log(N/ F)] 2 < AREA(G) < c2[ F log(N/F )]2

For any one of the., naximal-AREA graphs G, the lower bourds of Theorem '3.3i assure(

us that VOL.AL(G;h) Ls no smaller than sone constant multiple of

F2

rnax(N1 / 2 F log(N/ F). -log 2 (N/F)).

This information combines with the upper bounds of Theoreri 3.1 to establish the

claimed tightness. We do not know that the upper bounds of Theorem 3.3 are similarly

tight, and, indeed, we conjecture that they are not.

Conjecture 3.4: THE ONE-ACTIVE-LA YER AREA- VOLUME TRADEOFF

Let G be an N-vertex graph, and let A AREA(G). There is a constant h>O such that,

for any height H in the range

1 -< H ! h(AN)1 / 2 ,

we have

A
VOL=AL(G;H) (const)

For larger H, no additional decrease in volume can be obtained.

3.2. Unrestricted Layouts.4

We turn now to the task of proving analogs of Theorems 3.1 and 3.3 for many-

active-layer three-dimensional layouts. We shall be less thorough in our pursuit of the

analogs, for the following reasons.

-22-
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1. The major ideas required to obtain compact three-dimensional embeddings

appear already in the one-active-layer case, which we have looked at in great

detail.

2. While the one-active-layer case can already be considered to have been realized

(say, in IBM's TCM [10.22]), it is not yet clear that many-active-layer three-

dimensional layouts will ever be more than a theoretical construct.

3. The many-active-layer results that we develop suggest that only relatively minor

gains are achieved by abjuring the one-active-layer restriction.

4. The technical details of obtaining height-restricted many-active-layer layouts are

substantial and may not be worth the gains over the one-active-layer case.

The major change in layout strategy in the many-active-layer model is that we must

use 22 1 3-bifurcators in order to obtain compact layouts. Indeed, the feature that

renders restricted-height layouts prohibitively complicated with the many-active-

layer model is that one must play off 21 1 2-bifurcators against 2213-bifurcators. We

satisfy ourselves, therefore, with the following many-active-layer results.

Theorem 3.5: THE UNRESTRICTED THREE- DIMENSIONAL LAYOUT THEOREM

Let G be an N-vertex graph, let F be the size of its minimum 22 13-bifurcator, and let A

".4 = AREA(G). The many-active-layer three-dimensional layouts of G satisfy

F 1 2 ! VOL(G) < (const)[F log(N/ F)] 3 ' 2 .

and

(const) Nog I/ 2(N/F) - WL3(G) ! (const)[F log(N/F)]"2 .

Proof. We establish the lower and upper bounds in turn.

7he Lower Bounds.

Let G be laid out in an HxWxL grid, where with no loss of generality, HKW!L.

We establish the lower bound on Volume by recursively bisecting the layout of G,

much as we did in the lower-bound proof of Theorem 3.1. We slice the HxWxL grid

-23-
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holding the layout into two HxWx(L/2) grids, purposely choosing to bisect thu bigge'st

of the dimensions. We then recursively continue this bisecting, each time halving the

biggest dimension of the grid being sliced. Now, at stage i of this bisecting, we are slic-

ing boxes of volume HWL/2' (we started at stage 0). When slicing each such box, the

plane of the slice has area at most (tHWL/ 2i)2/3 -- the longest dimension is at least

(HWL /21) / 3 , leaving only the indicated area for the plane. Since wires have all

unitcross-sections, each slice cuts no more than (HWL/ 2i)2/3 wires. Since C can be so

bisected recursively, and since we have been looking at an arbitrary three-
_'

dimensional layout of G, it follows that G has a 2 2/-bifurcator of size (VOL(G)) 2/ 3.

Since this bifurcator is at least as big as G's minimum such bifurcator F, we have thus

shown that

F'' 2 q  VOL(G).

The lower bound on wire-length depends on the fact that any graph with a

bifurcator of size r has a 22/-bifurcator of size

i'.-.F 9 NI/8/ S.

To verify this, we need only check that

N P NI/SF2/3
min( N-,

for all i. (Recall that at most min(N/ 2', F/ 2i/2) edges are cut in any i-th level partition

of a 2 / 2 -bifurcator.) This inequality is easily verified since

2 22 / 3

2213p/3

for i t 2 log(N/P), and 2 2 22t3

for i ! 2log(N/P).

By inverting the preceding inequality, one can show that the smallest 2l/2 -

4 bifurcator F of any N-vertex graph G is at least

V . N /7
V',

.- 24-
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where F is the size of the graph's smallest 2 2 3-bifureator. We can now invoke the

arguments of Theorem 3.1 to conclude that

WL,2 (G)

WI 3 (G) m (VOL(G)) 1/ 3

",'.i -(const) P
N(VOL(G)) 3s

; Fconst- F3

,o N2 [F log(N/ F)] 1 2

= (const) Nog 2
N2IogI 2 (N/ F)'

which is the claimed lower bound.

he Upper Bounds.

As in Theorem 3.1. the upper bounds here are significantly more complicated to

establish than the lower bounds. Once again, our proof is via an explicit inductive

construction. In this case, the construction will lay out a subgraph Gi of G that resides

at level i of a (2 2 ' 3-)decomposition tree of G, by combining the layouts of the eight

subgraphs of G, that reside at level i+3 of the tree.

Let us assume: (1) that we are given layouts of the eight level-(i+3) subgraphs, in

"boxes" of dimensions HIt 3xWI+SXLi+3 each, (2) that the boxes are all similarly oriented

in space (so we can talk about their fronts and tops, etc.). and (3) that each of the

boxes has on its front face a connection grill which is a set of

b F 1+3
"" Hi+3

length-Hi+ columns, spread evenly across the width-Wj+3 front face, collectively

comprising the

F

(22/3)1+3

ports through which we shall wire these subgraphs to each other and to the remainder

of G. See Fig. 5.

As the first step in laying out G1, we place our eight boxes in a big box of dimen-

-25-
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Rgure 5. Coalescing the mrany-active- layer layouts of the sutgrapbs of Gj.
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sions HixWixL,, where

Hi = 2H1i3

* ~F, 5 +3~

W, = 2Wj+s + 2b i- -

Fi~s

1i-= 2Lj+3+ 4b Hi+  +- W,

for appropriately chosen constants bc. We place the small boxes as follows. Four of

the boxes are placed at the four corners of the back of the big box. In front of these

' boxes we place bFi* 8/H+8 empty layers that will be used for wire-routing. In front of

these empty layers, we place the four remaining small boxes, in the corners. In front

of these boxes we place 3bFi+sq/Hi+3 + eFI,3/W i empty layers for wire-routing. We corn-

,' plete the placement by placing 2bF,+3/Hi+ 3 empty layers between the left and right

•~ :tiers of small boxes. Finally, on the front face of the big box, we uniformly spread out

a new connection grill with bFi/H i columns of Hi ports each, containing the bFj ports

* , that are guaranteed to be sufficient to wire G, up to the rest of G. See Fig. 5.

- Now we turn to the task of routing the wires that leave the level-(i+3) graphs

(through their connection grills), both among each other and to the new connection

grill. As the first step of this routing, we use the bF 1 a/ H1. empty layers in front of

the four rear boxes to route the wires from these boxes' connection grills into one big

[Hjx2(bF1. /Hi s)] rectangular connection patch in between and in front of the four

rear boxes (a grill is spread out, while a patch is compressed); this can be accom-

plished by having the innermost columns of the grills move in on one layer to meet one

-another, the next-to-innermost move in on the next layer to be adjacent to the inner-

most ones, and so on; see Fig. 6. The next step is to run the connection patch, which

occupies 'the 2bF+s/ H,+, routing layers between the left and right tiers of boxes, to

the empty layers that we have placed front of all the boxes (also depicted in Fig. 6).

Now we take the big connection patch we have just run from the back of the layout,

-27-
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. and the small connection grills on the front tier of small boxes, and we use 2bFi,s/ Hi

of the empty layers at the front of the box to distribute these columns of ports so that

they are evenly spaced across the front of the layout, i.e., so that they become a con-

nection grill. (There are 4bFj+s/Hi+s columns to be distributed across a face of width

Wi. so the columns are spaced with

4bF+s

empty columns intervening between full columns.) As the next-to-final step, we assign

the ports of this new connection grill to the layers on which they will be routed to

their appropriate rows and columns. This assignment is done using the same device as

in Theorem 3.1. We partition the face with the ports into rectangles of height cFi/Wi

and width (WHi+s)/ (4bF,+3). By design, each of these rectangles contains no more

" * than cFj/W ports. Hence, when we follow our ploy from Theorem 3.1 and form the

multigraph M from the partition, and edge-color M, we are assured by Lemma 2.3 that

.4,% we need use no more than (3/2)cFj/Wj colors. Hence, when we assign wires to layers

'4 by their colors, as in Theorem 3.1. we need use no more than (3/2)cj F/W layers. As

in Theorem 3.1, it is an easy matter from this point, to complete the routing using the

as-yet-unused reserved routing layers, once having assigned layers. We leave details

to the reader.

It remains to assess the efficiency of the layouts produced by the preceding con-

. struction. If we arbitrarily set

H = H0 = h[F log(NI F)],

which is acceptable providing that the constant h is chosen judiciously, then we find

that the recurrences for length and width solve to

W = WO = (const)[F log(N/ F)] ' /2 ,

and

L = LO = (const)[F log(N/ F)]"'.

(In solving these recurrences, one must keep in mind that F is the size of G's smallest

-29-
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22/3-bifurcator.) The claimed upper bound on Volume follows by just multiplying these

linear dimensions; the upper bound on Wire-Length follows by summing them, for our

layout scheme requires a wire to traverse each linear dimension only a small number

of times. []

The bounds of Theorem 3.5 can be shown to be existentially tight via inheritance

from the bounds of [13].

As with one-active-layer embeddings, we can derive from our general layout

theorem an Area-Volume tradeoff.

Theorem 3.6.: THE GENERAL AREA- VOLUME TRADEOFF.

Let G be an N-vertex graph, and let A = AREA(G). The many-active-layer three-

dimensional layouts of G satisfy

max(N. A8 '4 ) ! VOL(G) 29 (const)(AN) 1 2.

and

.? WLS(G) <: (const)(AN)',"e.

Proof.

The Lower Bounds.

The lower bounds follow by previously enunciated principles: the vertices of G

alone, ignoring wires, consume volume N; and any HxLxW layout of G (where H g LW)

can be transformed into an LHxWH two-dimensional layout for G. whence AREA(C)

- VOL(G) 4 / 3 .

The Upper Bounds.

The upper bounds follow from the construction of Theorem 3.5 and the fact that

any graph admitting an Area-A layout has a 211 2-bifurcator of size A11 2, hence a 22"3_

bifurcator of size (NA) 11" -- cf. the proof of Theorem 3.5. If we plug this 22"-

bifurcator into the upper bound of Theorem 3.5, we find that

VOL(G) ! (const)(NA)/ 2 ogS/ 2(N2 / A)

-30-



and

Wla(G) ! (const)(NA)n/elog// 2 (N2 /A)

A careful analysis of the layout of C hidden in this upper bound indicates that we

are really cutting more edges of G at each step than a smaller 22/3-bifurcatcr of C

would force us to (since our bound on F is very conservative). Hence, when we calcu-

late in detail the dimensions of the layout produced with this big bifurcator, we find

that we actually avoid the logarithmic factor, and we obtain the bounds of the

Theorem. []

4. CONCLUSIONS.

The work in this paper leaves the reader with a number of messages, which we

now encapsulate.

* Three-dimensional layouts can be appreciably more conservative of resources.
".4

both material and wire-length, than can two-dimensional layouts.

* Three-dimensional layouts are not appreciably harder to "compute" than are

two-dimensional layouts; in fact the former can be produced from the latter lgo-

rithmically.

For many classes of graphs, one-active-layer three-dimensional layouts are as

efficient as many-active-layer layouts. In general the best bounds that can be

proved in terms of A (optimal two-dimensional Area) and N (number of vertices)

for the two classes of layouts differ by at most a logarithmic factor. Thus no gen-

eral layout procedure is uniformly better than our one-active-layer layout pro-

cedure. If this phenomenon occurs also in practice, then the value of fabricating

transistors on multiple levels is limited.

* Even in the one-active-layer model, only a limited numbers of layers are helpful.

Roughly speaking, only (A/N)'' 2 or F/N / 2 layers lead to increased efficency or

multilayer layouts: additional layers cannot further decrease Volume. It is worth

~-31-
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noting that the quantity (A/N) 1/ 2 is closely related to the complexity of two-

dimensional placement and routing: this is the average channel width in a two-

dimensional layout of the circuit. Although we did not prove it in this paper, we

.. suspect that additional layers are also not useful in decreasiog wire-length. We

know this to be the case for many families of graphs.

Although we have not paid attention to issues like the size of constants here, it

seems likely that the method of layer assignment that we employed in the upper-

bound proof of Theorem 3.1 can be adapted to produced computationally efficient

assignments in practical situations.
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