
A-RiOl 384 POINT RESPONSE FUNCTIONS FOR UNFILLED OPTICAL RRAYS 1/1
1) (U) NAtVAL RESEARCH LRB MASNINOTON PC
I J N SPENCER ET AL. 27 JUL 64 NRL-MR-5355

UNCLAISSIFIED FO 2/6'SNL

EmE~



Q8 M2

1 .8igi1 2  111 . 11 . -111IL2 Jil

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

S



77*

-ResonseFunctions for Unfilled Optical Arrays
J.H. SPENCER AND R.S. SIMON

Radio and JR Astronomy Branch
Space Science Division

00

1 July 27, 1984

I t I

- .JUL 2 51984

NAVAL RESEARCH LABORATORY ~

Watshington, D.C. U A

Approved for public release, distribution unlimited

84 07 2509



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
24& SECU1RITY CLASSIFICATION AUTHORITY 3 OISTRIBUTIONAVAILABILITY OF REPORT

2b DECLASSIFICATIONDOOWNGRAOING SCHEOULE Approved for public release; distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMOERISI S. MONITORING ORGANIZATION REPORT NUMBERIS)

NRL Memorandum Report 5355
Ga NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION . *

Naval Research Laboratory Code 4130• .. .

5, ADDRESS IL t 11 Sand 11AP Code, 7b. ADDRESS ICIv, State and ZIP Cod,, -

Washington, DC 20375 -

go. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NU"%R
ORGANIZATION II[dppicabI.k

Office of Naval R esarcI
Sc ADDRESS C,y. Stat.e ZIP Cod0 10 SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO NO

11 TITLE I.,,Wd, S...,Ity CI.awfwt, Point Response 61153N RR034-06- DN880-09941
Functions for Unfilled Optical Arrays

12 PERSONAL AUTHORISI

Spencer, J.H. and Simon, R.S.
13L TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT IY,. Mo.. Day' S PAGE COUNT

Interim FROM To July 27, 1984 43
IS. SUPPLEMENTARY NOTATION

1? COSATI CODES IS. SUBJECT TERMS (Contnue on MWl it wcefCfWT and Identify by block number)

FIELD GROUP SUs. GR. Optical Modulation function Imaging
I Array Point response Image processing

( 9 ABSTRACT ICone-Ir O. PleI.er rII eCemU @5d ,dentiVy by block nmber

Two problems relating to the design of arrays for imaging complex fields are the sidelobe levels and the
energy within those sidelobes. While designers often know the performance of a filled aperture, the much
larger number of parameters involved in array design lead to great difficulty evaluating the performance
level. This report describes a family of optical arrays whose parameters were evaluated by a computer
analysis system. For simplicity all the arrays considered were in the same family (a circular ring of evenly
spaced array elements), so that comparisons could be made as the number of array elements was varied.
Arrays with 3, 7, 15, and 27 elements were considered in detail, including the proper corrections for both
finite elementsize and finite bandpass.

We conclude that a spaceborne, unfilled, minimum-redundancy array can be built for earth viewing that
has performance similar to a filled aperture significantly reducing the cost of space based imaging systems.

(Continues)

20 OISTRI BUTIONAVAILASILI"y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFED UNLMITE0 2 SAME AS RFT - OTC USERS c UNCLASSIFIED
220 NAME OF RESPONSIBLE INDIVIDUAL 221 TELFPHONE NUMBER 22c OFFICE SYMBOL

J. H. Spencer (202) 767-3050 Code 4130

00 FORM 1473.83 APR EDITON OF I JAN 73 IS OBSOLETE

- - -. SECURITY CLASSIFICATION OF THIS PAtuf

*1 - !-



SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued)

The sidelobe levels and energy in the sidelobes can be controlled through the appropriate selection of
design parameters. However a final, detailed design will depend upon target characteristics and cost-
benefit tradeoffs, as well as upon the center wavelength, bandpass, desired resolution, and the allowable
sidelobe levels. The analysis methods we have developed have general applicability to the design problem.

S C

.0 4

SECURITY CLASSIFICATION OF THIS PAGE

I0



CONTENTS

INTRODUCTION ................................... ........................... 1

THE THEORY OF ADDITION CORRELATORS ....................................... 2

THE POINT RESPONSE OF A FILLED APERTURE .................................. 3

THE CIRCULARLY SYMMETRIC INTERFEROMETER ............. ... 6

THE DISCRETE ELEMENT ANALYSIS..... ................... . .. .......... 6

RESULTS............. ....................... 22

CONCLUSIONS ..... ................. ... . ...... ........ . ... 23

REFERENCES ........ ... ..... o.....o......................oo................... 24

APPENDIX A - BANDWIDTH EFFECTS. ................ . ...... .. .. . ..... o25

APPENDIX B - PROGRAM SOURCE CODE AND DATA FILES........................ 33 .

B. FILES USED IN RUNNING FAKE ....... .. .... o ........ 34

B.2 BANDPASS PROGRAM........ .. .. o. ............. ... . .... 35

B.3 PROGRAM TO FIND RADIAL POINT RESPONSE FUNCTION PROFILES........ 41 -.--

B.4 MIRROR PROGRAM.......................... . ... . ....... . ... . ..... o43

~Act

S 4



POINT RESPONSE FUNCTIONS FOR UNFILLED OPTICAL ARRAYS

ABSTRACT

Two problems relating to the design of arrays for imaging complex fields 0
are the sidelobe levels and the energy within those sidelobes. While design-
era often know the performance of a filled aperture, the much larger number of
parameters involved in array design lead to great difficulty evaluating the
performance level. This report describes a family of optical arrays whose
parameters were evaluated by a computer analysis system. For simplicity all
the arrays considered were in the same family (a circular ring of evenly

spaced array elements), so that comparisons could be made as the number of
array elements was varied. Arrays with 3, 7, 15, and 27 elements were con-

sidered in detail, including the proper corrections for both finite element
size and finite bandpass.

We conclude that a spaceborne, unfilled, minimum-redundancy array can be
built for earth viewing that has performance similar to a filled aperture

significantly reducing the cost of space based imaging systems. The sidelobe
levels and energy in the sidelobes can be controlled through the appropriate

selection of design parameters. However a final, detailed design will depend
upon target characteristics and cost-benefit tradeoffs, as well as upon the

center wavelength, bandpass, desired resolution, and the allowable sidelobe
levels. The analysis methods we have developed have general applicability to
the design problem.

INTRODUCTION

The use of interferometer systems in applications where they previously
could not be used is now possible because of great advances in both inter-
ferometer and image processing techniques in the past decade. This is par-
tially due to better signal processing hardware and software and because
imaging problems arose which needed novel solutions. While interferometers

provide increased resolution at low cost, their increased sidelobe levels can
create major problems, especially for an imaging system. In a simple field

where the received signal is localized to a small percentage of the total
image, high sidelobes can be tolerated and elementary methods restore the

original brightness distribution satisfactorily. However, in the case of a
down-looking system from high altitudes or space, the image brightness is
complicated; there is information in every part of the image, much of which is
irrelevant and must be removed to recognize a target. Removing the background

is almost impossible if the point response function of the system has high
sidelobes extending across the image, because objects are not localized. We

describe an optical array that has low sidelobe levels and a high percentage
of the power in the main beam.

Of possible greater importance, this technical memorandum also describes
a new computer analysis system for examining the sidelobe levels and their

effect upon an image. A family of spaceborne optical arrays have been ex-
amined to demonstrate these techniques. It should be emphasized that there is

nothing special in the demonstration array. Using this analysis system, a
completely different configuration could be thoroughly examined with a few 0

weeks of work.

Manuscript approved March 12, 1984. 1



Radio astronomers are not able to build filled apertures to achieve the
resolution they desire. Since adequate sensitivity can be achieved with an
unfilled aperture, they have built interferometer systems (ref. 1, 2). They
have had the problem of high sidelobes for many years because of practical
limits to the number of elements in any array. As a result, extensive soft-
ware has been developed for calculating point response functions for realistic
cases using arbitrarily located elements. The basic approach of this memo-
randum is therefore to apply some of these special computer programs to the
specific case of an optical array, writing new programs to aid the interfacing
or to do peculiar cases.

We first review the optical theory which leads to the point response
function of addition correlators. This is a different situation from the more

familiar multiplication correlators used at radio wavelengths. Before exami-
ning complex interferometers, the radial distribution of the point response

function for a filled aperture is derived and compared to a circularly sym-
metric interferometer. Finally the discrete element broad bandpass case is
synthesized.

THE THEORY OF ADDITION CORRELATORS

The first step in understanding optical interferometers is to review the
physics of addition correlators. At the present it is not technically poss-
ible to make multiplying optical interferometers similar to conventional radio
interferometers. Following the basic development of Born and Wolf (ref. 3),
we see that for a plane wave the total intensity is related to the electric
vector by:

e-it}
where the electric vector, E(r,t) Re (A(r)e , is a function of 3pace
and time. Now consider the superposition of two monochromatic waves E1 and E
at a point in space, P

E=E1 +E2

r te =t e<2>s+i, 2, 4pi .2)

1 2 > E1 2>(2

Hence the total intensity, I, at point P is

I = 1 1 + 1 2 + J 12 (3)

where we have made use of the definitions

1 1= <El2 > ; 12 = <E2 2>; J 12 
= 2 <E1 " E2 >

Notice that the intensities I , 12, and I are positive definite by this for-
mulation, but no such requirement exists for J12 . Radio astronomers are able
to measure the interference term J1 ? separately in eq. 3 because they use a
multiplication correlator instead o the addition correlator as was used in
obtaining eq. 3. As a result radio astronomers can obtain negative sidelobes

2



and negative portions of their images, while that is impossible for the addi-
tion correlator.

Expanding this analysis to n elements is relatively easy.

E1 2 n.I Z <'E12 + <'E2> + + <'En2>

+ 2 <E "E > + ... + 2 E En >

+ +.. 2 <En 1 " En >  (4)

The sum of all the cross terms J divided by the number of cross terms is
what radio astronomers call the Wynthesized beam". There are standard com-
puter programs for computing the synthesized beam, so it is easy to analyze
the characteristics of an optical array using the synthesized beam as a start-
ing point. For an interferometer with n identical elements there are n(n-1)/2
cross terms, and eq. 4 simplifies to:

I = n (I, + (n-i) [Synthesized Beam]) (5)

This result is for infinitesimally small point interferometer elements and
monochromatic waves. For finite elements the equation must be multiplied by
the individual element response which is an envelope or gain function for the
intensity as given in eq. 5. For a finite bandpass the fringe functions add

out of phase so as to apply a taper to the synthesized beam for angles off
axis (See Appendix A). Therefore a bandpass effect is applied only to the
second term on the right hand side of eq. 5. If we denote the (normalized)
response of the individual elements by A(x,y) and the bandpass effect by
B(x,y) we obtain,

I(x,y) = n A(x,y) [11(x,y) + (n-i) B(x,y) b(x,y)] (6)

where we have finally denoted the synthesized beam by bx,y). We will be able
to examine these terms more closely by using several special cases. A most
important special case is when the number of elements approaches infinity and
the aperture is filled. This limiting case is examined next.

THE POINT RESPONSE OF A FILLED APERTURE

Interferometers do not measure the brightness of the image directly, _•
but measure the Fourier transform of the image which is the image visibility
V(u,v). In the case of a point source at the (x,y) origin, the visibility is
a constant vector with zero phase and an amplitude equal to the flux density
of the point source. The synthesized beam of an array of interferometers can
be written as

b(x,y) [0 *J S(u.v) w(u,v) (7)

where

b(x,y) = synthesized beam. •
S(u,v) = sampling function that represents the distribution of

the data points in the (u,v) plane.

3



SI

w(u,v) - weighting function of the data including any applied
tapering. S(u,v) w(u,v) is the optical modulation
transfer function.

[C *] denotes Fourier transformation.

The function S(u,v)w(u,v) is entirely real so b(xy) is symmetrical.

In real situations there is finite bandwidth. The mathematics for two
element interferometers with finite bandpass and for a simple 5 percent rec-
tangular bandpass array are derived in Appendix A. The two element result is
a reduction in the fringe amplitude (reduction in the sidelobe level) as the
distance from the delay center increases with the functional relationship of

sin(x)/x where this x is w times angular distance divided by baseline. The
general case of discrete arrays with large bandpass is not solved in closed

form; for the calculations of this report we sum the n(n-1)/2 sin(x)/x terms
directly using a computer.

The monochromatic point response function of a circular filled aperture
is then simply the Fourier Transform of a uniform disk, the first order Bessel
function J1(ir/a)/(r/a) where a is the diameter of the aperture. This radial
dependency is shown in Fig. 1 where we have assumed a diameter of 10 meters
and a center wavelength of 500 nm. When the effects of the finite rectangular

bandpass from 350 nm to 650 nm are taken into account, the point response
function is effectively multiplied by the delay response, shown in Fig. 2a.
The broadband result is shown in Fig. 2b.

FILLED P RTURE MNPCHRMATTC

0.01

1 000

E-10I

0 200 400 600 800 1000
MILLI ARC SEC

Figure 1. Point response function of a monochromatic filled aperture 5 meters
in radius.
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THE CIRCULARLY SYMMETRIC INTERFEROMETER

We next calculate the results for the case of an infinite number of
point elements arranged in a circle. This important case is solvable in

closed form (ref. 4) and the synthesized beam b(x,y) is given by

b(x,y) = J0o(r/a) (8)

where a is used to denote the radius of the circle. This function (shown in
Fig. 3) does not decrease with r nearly as rapidly as J (x)/x which we found
for a filled aperture. However, in realistic cases finite element size and
bandpass provide a taper to lower the sidelobe level more rapidly than eq. 8.

Combining eqs. 6 and 8 leads to

I(x,y) = A(x,y) B(x,y) J0 (rr/a) (9)

because as n approaches infinity the first term of eq. 6 can be neglected.
This is the same result as for a multiplication correlator.

At a distance of 1 arosecond the sidelobes have dropped to 30 dB down
from the central maximum, but are 50 dB higher than for the circular aperture
case. Because these profiles are well known and understood, it is easy to use
spatial filtering to make the ring response match the filled aperture. The
matched filter is [x J(x)/J 1(x)]'.

If the effects of finite element size are included into the profile
shown in Fig. 3a, the function drops more rapidly. The 10 cm elements assumed
here have a minimum at a full width half maximum of 1 arcsecond. If a single
detector is used at each element (as in a radio interferometer), then the
finite bandpass response will severely narrow the array response, providing an
additional sidelobe suppression. The combined effects of finite elements and
bandpass are shown in Fig. 3b.

THE DISCRETE ELEMENT ANALYSIS

The problem of simulating the point response function at the origin of a
complex array with finite elements and a broad bandpass is the special case of
simulating the response to any image. To allow for more general cases, the
best approach is to simulate the array (using software) for a specific array
geometry, wavelength, bandpass, etc. We chose a ring geometry for the ele-
ments, since that maximizes the two dimensional resolution and yields a rea-
sonable compromise for the minimum element spacing. Thus, a ring is a system
with a wide range of spatial frequencies. We analyzed the realistic case of
finite circular elements arranged on a ring. We have considered in some
detail ring arrays of 3, 4, 7, 9, 15, 27, 45, and 99 elements, but we have not
applied the full details of the analysis in all cases. As the number of
elements in the ring increases, they are closer spaced, which pushes the first
grating ring further out. Within this ring the discrete element case is
closely approximated by the infinitesimal ring discussed above.

For our analysis, we have assumed a geometry consisting of a 10 meter
array operating at a wavelength of 500 nanometers. The analysis includes both
point elements and the more realistic case of 10 cm elements. For broadband

6
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effects we assume a uniform wavelength response between 350 and 650 nano-
meters. Unless specifically stated however, results are for monochromatic
light at 500 nanometers. The analysis assumes the beams from array elements
are combined coherently. This assumption implies that the interferometer is
built away from the degrading effects of the atmosphere. System noise and
other operational degradations are not a part of the point response function,
and were not considered. Conceptually, the interferometer we are considering
consists of an array of elements on a ring, whose individual beams are brought
to a common focus.

The analysis system we have developed is a collection of specialized
programs from two different image analysis systems with the addition of a few
programs specially written for this project. The basic flow shown in Fig. 4
is to assume an interferometer configuration, generate fake data for it using
the Caltech Very Long Baseline Interferometer (VLBI) package (ref. 5), convert
the fake data to the NRAO image processing package AIPS (ref. 6), and invert
the data to obtain the synthesized beam. This is the synthesized beam for
monochromatic point elements. Using the interactive data language IDL (ref.
7), we generate the element responses for the interferometer and convert it
into AIPS format where it can be combined with the synthesized beam and plott-
ed in a variety of ways. The bandpass correction function was introduced
separately from a special-purpose Fortran program.

Because both of the major packages we use are organically growing at the
present time, a detailed step-by-step description of the method would be obso-
lete when the next release is received within the month. Of more value is a
flow description which leads to an understanding for the need for each step.
The exact modeling done here is necessarily quite complicated and requires
many stages through the software.

The first step in the analysis (see Fig. 4) was to create an artificial
interferometer data set, using the Caltech VLBI program FAKE. In appendix B
are the 3 files used to run this program in the case of the 15-element array.
The parameters in the FAKE.COM file were selected to give a "noise-free" data
set symmetric about the V axis in the UV plane. The file STATIONS.DAT con-
tained the element positions; POINT.MOD contained the parameters for a dummy
input source model (for the purposes of our analysis, the type of input source
model used was irrelevant). The original maps made from the model (using the
data generated by FAKE) did not include either bandpass or finite element
effects and thus could not be used directly. The model source data is dis-
carded following the UVSRT program step. The elements were located on a
circle; for convenience a circle of latitude was used with the frequency being
scaled so as to give a circular interferometer with the desired size of 20
million wavelengths. Further explanation of the parameters used for FAKE can

be found in the documentation for the Caltech VLBI package (ref. 5).

The fake data was then translated into the AIPS format using the AIPS
program TOAIP, (or FRMVB for more than 27 elements), sorted as necessary using
UVMAP, and then Fourier transformed by UVMAP. UVMAP has 2 output images: the
normalized synthesized beam b(x,y) for the array under consideration and the
so-called "dirty-map", the latter of which was discarded. The synthesized
beam is the point response function for the monochromatic, point-like element
case, with a zero-level offset (see eq. 6). As an example, the synthesized
beam b(x,y) for a 15-element array is presented in Fig. 5.

8
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Figure 4. Computer analysis logical flow. The flow chart shows the relation-
ship between the various programs to produce point response functions for
finite bandpasses and finite elements. The numbered points on the flow chart
refer to intermediate images as follows:

(i) FAKE.IBEM is the monochromatic synthesized beam b(x,y) in
equation 6.

(2) BW.MAP is the bandpass correction function B(x,y).
(3) PRF1.MAP is the term [Il(x,y) + n-1 B(x,y) b(x,y)J in

equation 6, which represents the normalized point response
function for an array of point elements with finite
bandpass.

(4) MI.MAP is the term A(x,y) in equation 6, representing the
beam from the individual elements in the array.

(5) PRF.MAP is I(x,y), the normalized point response
function for finite bandpass and finite element size.
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The taper due to the finite bandpass must next be accounted for. For the
special case of an odd number of elements arranged symmetrically on a ring,
program BAND (Appendix B) generates the bandpass array B(x,y) by which the
synthesized beam must be multiplied. For a generalized array with arbitrary
element locations, BAND could not be used as it stands, but would have to be
modified to read the UV data to get the position angle and scaling for the
sin(x)/x calculations. An example of the B(x,y) function for the 15-element
array is shown in Fig. 6.

The array from BAND is copied into an existing dummy AIPS image file

using IDL for convenience in getting the correct format. To use IDL in this
way, one first opens and reads the data file into an internal array in IDL.
Next, the AIPS dummy file is opened using an OPENU statement (see the IDL
documentation, ref. 7, for details). Next, a variable is associated with the
AIPS file. Then the internal array is copied into the associated variable
with a statement like A(O)=B. Finally the AIPS file is closed in the standard
way. Care must be taken not to corrupt the normalization of the AIPS file too
badly, or unpredictable things can happen. Also, IDL must write the file with
the correct data type needed by AIPS.

The multiplication of the synthesized beam b(x,y) by the bandpass func-
tion B(x,y) is performed by the AIPS task COMB. In the same operation, the
(n-i) factor for the product (see eq. 6) is applied and the constant I term
in equation (6) is added to produce the intermediate map PRF1. PRF1 il the
normalized point response function for an array of point elements having a
finite bandpass. PRF1 MAP for the 15-element array is presented in Fig. 7.
There is a dramatic improvement in the sidelobe level due to BCx,y).

The final step in producing the point response function is to apply the
finite element correction A(x,y). This correction was generated using the IDL
procedure MIRROR (see appendix B) and copied into AIPS using IDL (see above).
COMB was then used to multiply and renormalize the two arrays resulting in the
final image of the point response function for the finite-sized element,
finite-passband array. See Fig. 8. It is important to emphasize that the
point response functions in Fig. 8 are what a detector array in our

"conceptual" interferometer would measure for a point source.

While the point response functions for the type of arrays under con-
sideration are necessarily two dimensional, the high degree of symmetry in the
class of arrays we studied means that the average radial dependence of the 0
point response function is of interest. We used the program POWER (listed in
Appendix B) to read the AIPS map file and average over azimuth to obtain the
profiles shown in Fig. 9. The broad pedestal in each profile is the remnant
of the individual response.

In the case of a complex source, the response would be simply the con-
volution of the point response function we have calculated with the true
source. Deconvolution to obtain the maximum possible resolution with high
dynamic range is possible.

13
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One approximation made in our calculations of point response functions
was the assumption that the individual elements were small in comparison with

the overall size of the array. In AIPS, to account for identical finite
elements exactly would require adjusting the convolution function to be used
for gridding the data into the UV plane so that the gridded data would be the
autocorrelation (weighted UV coverage) of the individual array elements. This
would be a minor correction in the analysis we did.

RESULTS

The point response functions in Fig. 8 are the principal result of this
report. The images in Fig. 8 are the accurate two-dimensional representation
of the point response functions for the finite-bandpass, finite-element,
unfilled arrays which we studied using the analysis of the previous section.
The point response functions have been shown using a color wedge which sup-
presses the central maximum (which appears only as a few pixels of red in the

lower left of each image) in order to make the differences between the point
response functions apparent. The six radial sidelobe arms in the 3-element
case and the fourteen radial sidelobe arms in the 7-element case are remnants
of incomplete sidelobe suppression by the delay function of the type shown in
Fig. 6. As the number of elements increases, this delay sidelobe supression
becomes more complete.

In comparison, the point response functions for the circularly-
symmetric, monochromatic cases we considered are both simpler and much easier
to calculate. The two dimensional point response functions shown in Fig. 8
are more complex, but are easily understood in terms of the circularly sym-
metric cases.

The sidelobes of the point response functions shown in Fig. 8 for the
3-, 7-, 15-, and 27-element unfilled apertures with finite bandpass and finite
element size have two major components: (1) A pedestal caused by the response
of the individual elements in the array, and (2) Oscillations about this
pedestal due to the synthesized beam component. The peak level of the smooth
pedestal component decreases as 1/N, as can be seen in Fig. 9 where the point
response functions have been averaged in azimuth. The rms noise level of the
synthesized beam component also decreases as 1/N. Thus the sidelobes decrease
rapidly as the number of elements increases until approximately 7 to 15 ele-
ments are in the array. Larger numbers of elements then continue to improve
the performance, but only at a slower rate; a specific desired imaging cap-
ability may lead to arrays of these dimensions. At the same time, the samp-
ling in the U,V (Fourier transform) space is becoming more complete and the
synthesized beam sidelobes are decreasing. By the time N is 7, the first
sidelobe is 19% but the average oscillations about the 1/N pedestal level of
14% are at the 2% level. For the array geometries studied in this report, the

larger number of elements also decreases the minimum spacing in the U,V plane,
lowering the lowest spatial frequency sampled, and moving the first grating
sidelobe (a circular ring for this geometry) further from the center.

22



The point response functions in Fig. 8 could be improved through image
processing, with the degree of improvement depending on the field to be imaged
as well as on the array characteristics. Because the array geometry, wave-
length, and bandpass would be known, the point response function could be used
to deconvolve the measured image and yield an accurate representation of the
true image. A limitation is that the presently popular algorithms for decon-
volution yield better (higher contrast) results as the sidelobes are lower,
and as the measured signals fill a smaller percentage of the image pixels.

It is thus possible to specify the required number of elements for an
array in two ways. First, the raw (no image-processing) contrast ratio re-
quired in the output image could be specified. Since the number of elements
determines the sidelobe level more or less directly for this family of un-
filled arrays, it is possible to invert the process and specify a required
contrast ratio for the unprocessed image and yield the number of elements.
For instance, in a satellite surveillance system where image processing in
space is prohibited, a requirement of a 25:1 raw contrast specifies 25 ele-
ments. However, it should be emphasized that most applications do allow image
processing, even if not with electronic digital computers, and such processing
can improve the images significantly. This suggests the second method to
specify the required number of elements: select the desired contrast ratio for
a processed image. Since the contrast in a deconvolved, processed image
depends not only on the array configuration but also on the complexity of the
image and the signal-strength in the image, some broad characteristics for the
field being imaged would need to be specified. Depending on the field being
imaged, 10- to 50-fold increases in contrast ratio could be achieved. This

sort of improvement is routinely achieved in images produced from radio inter-
ferometers.

CONCLUSIONS

This report demonstrates a new technique for modeling point response
functions for complex interferometer systems taking into account both finite
bandpass and finite element size. New interferometer systems can be fully
evaluated with a few weeks of effort. While the analysis system is not
trivial to use, it is straight forward as shown in Fig. 4.

In view of the limits to the overall size of the point response function
imposed by the effects of broad bandwidth (see above), it is possible to
choose between the two .basic types of interferometers used in imaging. The
first type, commonly used in radio-frequency imaging arrays such as the VLA,
uses phase steering to map an image. The maximum image size is limited both
by the UV coverage of the interferometer (the usual case) and the bandpass
response of the array and receivers. With the narrow bandwidths available to
radio-frequency detectors, this is a practical technique and allows the map-
ping of large fields with high resolution. The second type using delay steer-
ing is required where broad-band phase stable correlators are impractical to
construct, such as at optical wavelengths. The advantage of the second method
(where beams from the individual elements are combined coherently using
mirrors and focused onto a detector array) is that large bandwidth is easily
achieved along with a narrow point response function. The detectors for such
an interferometer are directly measuring the convolution of the point response
function with the true image; for many sorts of images reliable deconvolution
(restoration) techniques exist, resulting in interferometer performance which
equals that from a filled aperture.
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The problem of restoring a complex image is expected to be worse for the
case of a quasi-optical system viewing the earth than for the case of the
radio images of celestial objects that radio astronomers typically restore.
However, many of the standard radio astronomy image processing techniques are
directly applicable. It is important to note there are proven techniques to
deconvolve images to reduce the sidelobe levels below those presented in Fig.
9. The exact effects of sidelobe levels and the extent to which they could be
removed will depend on the exact constraints and design parameters for a real
system as well as on the characteristics of the field under observation.

As a demonstration of the discrete analysis system, a spaceborne earth
monitoring optical (350-650 nm) interferometer system was modeled to determine
the number of elements needed to provide satisfactory performance. We fixed
the maximum baseline length at 10 m, the size of each element at 10 cm, the
geometry to evenly spaced elements on a ring, and varied the number of ele-
ments between 3 and 99.

We find the sidelobe level for a monochromatic system varies as the
reciprocal of the number of elements over the range of interest in this study.
This establishes an upper limit for any realistic system, because the finite

element size reduces sidelobes as was shown above.

We find the realistic bandpasses of interest limit the sidelobes to such
a level that they are of little concern for arrays with more than a few ele-
ments.

We find that the difference between an addition correlator and a multi-
plication correlator is not significant in either the difficulty of analysis
or the performance of a large number of elements.
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APPENDIX A

BANDWIDTH EFFECTS

INTRODUCTION

The following discussion closely follows the development of Thompson
(1982) which was for the particular case of the VLA for radio astronomy.
First the two element interferometer with rectangular bandpass is considered.
Non rectangular bandpasses only make the mathematics harder to solve in closed
form, but are not intrinsically difficult. The solution for two elements is a
sin(x)/x function. In going over to the array case, a superposition of
solutions with the correct weighting is required. In practice it is appro-
priate to restart the analysis. However, this approach requires the
fractional bandpass to be small (0P 5%) in order for the mathematics to reduce
to simple form. For wide bandpasses, the mathematics probably gets more
involved, and a computer summation is the expediant solution. The paper of
Thompson paraphrased in part here sets the framework for more detailed
analysis at a later time.

BANDWIDTH EFFECT FOR 2 ELEMENT INTERFEROMETER

The part of the interferometer in which the signals are combined is the
correlator, which is basically a voltage multiplier and a time averager. Its
output is the real part of V' and is related to the input voltage waveforms V1
and V2 by:

*

R CV') = < V Ct) V2 (t+T)> (A-i)

where the angular brackets represent a time average and we have taken the
complex conjugate of the first waveform.

Let I(s,v) represent the brightness (intensity) of the target in the
direction of unit vector s at a frequncy v. The signal power received in a
bandwidth dv from the source di is A(s) 4 I(s) d2 dv, where A(s) is the
effective collecting area in direction s which is assumed to be the same for
each interferometer element.

If the inputs to the correlator are represented by the complex analytic
signals the received power is equal to the square of the modulus, and thus:

Iv1 1
2=Iv 212=1v v 2 = A()I()ddv. (A-2)

In the case where the elements are not identical, A is replaced by the product
of the complex voltage responses of the elements. The arguments of v 1 and v2
are given by:

argv) 2lvt (A-3)

arg[v2 = 2wv(t+)
2

where T is the difference between the geometrical and instrumental delays in
Fig. A-I. If B is the baseline vector for the two antennas,
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= 9gT - - (A-4)

Then from (A-I) with appropriate integration we obtain the total response:

V (.,Ti)dv = _ S  2rv( C 1 - dadv CA-5)

where S indicates that the integral with respect to a is taken over the sur-
face of the hemisphere. If we take the Fourier transform of V' with respect
to T we obtain:

= = r' (g,.i)e12 TVi dT

iV( ,v)-1 . iT§cCA6

0 +Av/2 12vv§_S"/

V(§,V) = AV' I As,v)I(s,v)e do dv (A-6)AV -iv/2
0

and the integral over frequency depends upon the bandpass*. Often over the
bandwidth Av the quantities V, A and I can be assumed constant and we can
write them as functions of A or s only, with the understanding that they refer
to a center frequency v0 . Thus (A-6) simplifies to

V(s) = I A(C)CI)e o2v°0 /c do CA-7)

This is the monochromatic result that is usually used for narrow band-passes.

If we assume A(a,v) is a rectangular bandpass from v -Av/2 to v +Av/2,
then the Fourier transform of a rectangle is a sin(x)/x ?unction yielding

=v(s) sln  AV§ °(* -L )/ ] A(C)I()e o o do (A-8)

0
Here we have assumed that the passband is rectangular with center frequency v
and width Av, and ; is the direction for which the instrumental delay is 0

adjusted to compens2te for the geometrical delay. In the simple inter-
ferometer in Fig. Al the direction ' is indicated by the angle e
measured with respect to a plane normal to the baseline. Since Bs-s 0
B(9-9 ) cos 9 we see from (A-8) that for a point source at position a the
effect of theofinite bandwidth is to multiply the response by the sinc function

sin[ vAvbC e-eo ) cOSec
c - J

0 0 0 (A-9)
-l

irAvB(O-e )cose c
0 0

*The sign convention for the exponential, here positive for transforming from
I to V, varies between authors but is inconsequential in these general discus-
sions.
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Figure Al. Angles of the incident radiation.

As a function of 0, the output is a product of the fringe pattern and the sinc
function which modulates the fringes. The latter term can be regarded as
resulting from the decorrelation of the signals produced by the inequality of
the time delays for directions other than 0 . From the Weiner-Khinchine
theorem the autocorrelation function of the signals is the Fourier transform
of the power spectrum, and hence the rectangular passband gives rise to the
sinc function term. This term limits the response in a manner that has some
similarity to an antenna beam, and the result is sometimes referred to as the
"delay beam". It is an example of what has been more generally referred to as
space-frequency synthesis. Swenson and Mathur (1969) have shown that there is
an exact correspondence between frequency and antenna spacing in determining
the spatial frequency response of a pair of radio antennas. Some radio arrays
have been constructed to make particular use of this principle; see, for
example, Douglas et al. (1973). It is also of particular importance in very
long baseline interferometry (Robertson et al. 1982). Note however tha the
envelope function falls to half amplitude-at (0-0 ) = 0.6c(B cos 0 Av)-', i.e.
the delay 'beamwidth' depends upon the projected antenna spacing B cos 6o .

For an array with numerous element spacings the beamwidth concept is
inappropriate and it is better to examine the problem as in the following
section.

BANDWIDTH EFFECT FOR AN ARRAY

The relationship between the measured visibility, V(u,v), and the distribu-
tion of intensity of brightness, I(x,y) can, with certain assumptions, be writ-
ten as V(u,v)S(u,v)w(u,v) 'I(x,y) * ' b(x,y) (A-1O)
where

S(u,v) = sampling function that represents the distribution of the data
points in the (u,v) plane.

w(u,v) = weighting function of the data including any applied tapering.
S(u,v)w(u,v) is the optical modulation transfer function.

b(x,y) = synthesized beam.
I(x,y) = brightness distribution as modified by the beams of the

individual elements.
= denotes Fourier transformation.

* * = denotes two-dimensional convolution.
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The synthesized beam is defined as the Fourier transform of S(u,v)w(u,v), and
it is equal to the response to a point source at the (x,y) origin. (To be
precise, the response to a point source is often defined as the mirror image
of the beam, i.e. b(-x,-y). In this case S(u,v)w(u,v) is entirely real so
b(x,y) is symmetrical and the distinction can be ignored. The effects dis-
cussed here that result in distortion of the response to a point source are
usually zero at the (x,y) origin, which is why we have stated that b(x,y) is
pthe response to a point source at that position. If b(x,y) varies over the m
(x,y) plane equation (A-la) does not, of course, hold. In using (A-l0) we
therefore assume that the various distorting effects to be described are
negligible; in particular we shall apply (A-la) only to an incremental
frequency bandwidth dv centered at frequency v within the receiving passband.
Let (uv,vv) be the spatial frequency coordinates that correspond to frequency
v. In reducing the visibility data in the usual way for continuum observa-
tions we treat the data derived from the full receiving passband as though all
of the signal was at the center frequency v . Thus, since u and v are mea-
sured in wavelengths, the assigned values f8r frequency v are

V 0u vV 0v

C-u---,T-)
wavelengths. For the frequency increment dv equation (A-10) becomes

V VC- -- - -Tuv ~ ~ ~ ) - (1-- I(_ -, J b(x ,y) (A- 11)

0 0 0

Here we have used the similarity theorem of Bracewell (1965) which, in one
dimension, can be stated as follows:

if g(u)- f(x), then g(au) f(.X

Note that in (A-11) it has been assumed that V and I do not vary appreciably
with v over the receiving passband. Because we assign values of u and v that
do not vary with v, it follows that S, w and b do not vary with v. However,
this assignment introduces a scaling error V/Vo in the brightness coordinates.
The measured distribution is obtained by averaging the right-hand side of

(A-11) over the receiving passband:

Ii(x,y) 0 )o o* * b(x,y)

0 P(v)dv

where p(V) is the power response of the receiving system. In deriving (A-12)
we have integrated over bandwidth after Fourier transformation to the (x,y)
domain, but the end result is identical to integration over bandwidth in the
(u,v) domain which is implicit in the usual data-processing

The variation of the scale of x and y with V in (A-12) is clearly a radial
effect, and averaging over the bandwidth therefore results in a radial
broadening or smearing of the detail. We see from (A-12) that the measured
brightness distribution is a modification of the true brightness in which the
radial smearing is first applied and then the resulting distribution is
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convolved with the synthesized beam. The extent of the smearing increases in
proportion to the distance from the (x,y) origin. However, ringlobe responses
of the synthesized beam are smeared to the same extent as the main beam
response, even if they fall near the origin, as illustrated in Fig. A2. Note

y

Main Beam
Response

Source

Ringlobe
Response

X

Figure A2: Response to a point source displaced from the (x,y) origin when
the synthesized beam contains a ringlobe. The main beam and all
sidelobes are broadened in the radial direction by convolution
wfth the radially-smeared point source.

that the synthesized beam, as we have defined in above, does not vary over the
map. However, the response to a point source does vary, because of the radial
smearing, and this response is often regarded as defining the beam for
practical purposes. Statements about the behavior of the 'beam' can therefore
lead to confusion if the meaning of ttie term is not made clear.

The radial smearing reduces the amplitude of the response to a source by
an amount that depends upon the source position and the radial width of the
response. As an example we can calculate the reduction for a point source for
a case where the synthesized beam is represented by a Gaussian distribution.
Figure A3 shows a radial section through the response to such a source at a
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e-[( r-r,)2/20-2]

r(I-Ai/2v0 )- rIl +AV/2z o )

Figure A3: Radial section through point source at r1 which is spread into a
rectangular distribution by the finite receiving bandwidth. The
Gaussian function represents the syntehsized beam.

distance r from the origin. We shall represent the bandpass function P(v) by
a rectangular function of width Av, and ignore the factor (v/vo)2 in the
numerator of (A-12) since it is unlikely that it differs from unity by more
than 5%. Then the broadened source is represented by the rectangle in Fig.
A3, and the peak response by the area under the product of the two function.
The ratio, RB, of the peak response relative to that when Av tends to zero is

r ( 1+Av/2vo ) rAV

R O r -(r-:v 1 / 0 erf ) (A-13)B r1A r 1r(1.Av/2vo )  r 1 2V7 01 00

where erf C ) is the normal error function. The half-power width of the
synthesized beam, 8b, is 2.35a, and in terms of eb

S V 0.832r 1AV (A-14)
= )erf b vo

A graph of this function is shown in Fig. A4. The response is reduced by
a factor 12when (r AV/ebv?) = 2.1, and for rlAv>ebvo, the response
decreases y as ?r1 v)
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Figure A4: Decrease in the response to a point source with increasing
distance from the field center, from equation (A-14).

Although the peak response to a point source i.e. the apparent brightness
in the map is decreased by the radial smearing, the response is also broadened
and it is easy to see that the integrated flux density remains unchanged. The
broadening of the response for a point source can be calculated by convolving
the bandpass function with the synthesized beam profile as indicated by
equation (A-12).
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APPENDIX B

PROGRAM SOURCE CODE and DATA FILES

I. Files used in running FAKE:

The following DCL command procedure runs the Caltech VLBI program FAKE
for the case of 15 elements whose locations are specified in the
STATIONS.DAT file. The start time has been selected so as to give one
baseline exactly north-south, for compatibility with later programs.

FAKE. COM

I Assignment to specify station position file:
$ ASSIGN STATIONS.DAT STATIONS
$
$ FAKE I Start the program

OUTPUT='15STA.DAT' I Name of output data file
MODEL='POINT.MOD' I Name of input model file

YEAR=1983 I Year, date, start and stop selected so
DAY 356 1 as to give a single integration period
START 23:56:00 1 for the data set with the correct
STOP 00:03:00 1 orientation
INTEG 600 1

FREQ 27037 1 This frequency, in combination with
the STATIONS.DAT file gives an array of

I diameter 20 million G

RA 00:00:01 1 Source position
DEC 89:50:00

STATIONS '15NI', '15N2', '15N3', '15N4', '15N5',
'15N6', '15N7', '15N8', '15N9', '15N10',
'15Nl1' ,'15N12' ,'15N13' ,'15N14' ,'15N15'

PHASES 0. ERRADD 0.000001 ERRMULT 0.0
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Data files used by FAKE

The following is an example of the STATIONS.DAT file used by FAKE.
Note that in its current incarnation, FAKE requires this to be in fixed
format.

STATIONS DAT

15N1 0. 89.0 24.0 80.0
15N2 0. 89.0 48.0 80.0
15N3 0. 89.0 72.0 80.0
15N4 0. 89.0 96.0 80.0
15N5 0. 89.0 120.0 80.0
15N6 0. 89.0 144.0 80.0
15N7 0. 89.0 168.0 80.0
15N8 0. 89.0 192.0 80.0
15N9 0. 89.0 216.0 80.0
15N10 0. 89.0 240.0 80.0
15N11 0. 89.0 264.0 80.0
15N12 0. 89.0 288.0 80.0
15N13 0. 89.0 312.0 80.0
15N14 0. 89.0 336.0 80.0
15N15 0. 89.0 360.0 80.0

I 4

The following is an example of the fake source file POINT.HOD

POINT.MOD
------------------------------ -- - - - - --------

I Sample fake data file

I The following is a 1-Jy point source.
I Flux Radius Theta Axis Ratio Phi Type

1 0 0 0 0 0 1

4 -j
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II. Bandpass program

C Program BAND
C
C BAND computes the bandwidth-dependent beam for an interferometer
C by summing the appropriate sinc functions into an array. It
C assumes the elements are evenly spaced on a ring; only odd numbers
C of elements up to MAXS elements are allowed.
CC When linking this program, both the Caltech VLBI object library

C and the Caltech public object library need to be accessed.
C
C Parameters:

CHARACTER*(*) VERSION
CHARACTER*12 ELAPSE
INTEGER*4 INC,OUTCOUTDAT, MAXS, MAXB,MAXP, NPARS
REAL*8 PI,VELC
PARAMETER (VERSION='1.0 - 1983 January 28')
PARAMETER ( INC=5,OUTC=6,OUTDAT=10)
PARAMETER (MAXS=99) I maximum number of stations
PARAMETER (MAXB= (MAXS-1) 'MAXS/2)
PARAMETER (MAXP=MAXB) I maximum number of u,v-points
PARAMETER (NPARS=14) I input parameters
PARAMETER (PI=3.141592653589793D0) I pi
PARAMETER (VELC=2.997925D8) I speed of light

C
REAL*8 PARS(NPARS) ,VALS(NPARS) ,ENDMRK
REAL§4 POSANG(MAXS) ,BUFFER(512,512)
INTEGER*2 IARRAY(512),IX,IY
CHARACTER*64 OUTDSN
EQUIVALENCE (OUTDSN0VALS(7))
CHARACTER TODAY*9,NOW'8
DATA PARS/ 'NSTA', 'DIAMETER', 'FOV', 'LMIN',

1 'LMAX', 'PIXELS', 'OUTFILE', 70 ' /
DATA VALS/ 3DO, lODO, 2048D0, 3500D0,

1 6500D0, 512D0, 8" ' /
DATA ENDMRK/ '/' /

C
C Introduction
C

CALL DATE(TODAY)
CALL TIME(NOW)
WRITE(OUTC,1001) VERSION

C
C Control parameters
C

10 WRITE(OUTC,1001) ' Parameters (type HELP for details):'
MODE = 1
IF (ISTERM('SYS$INPUT')) MODE = 2
CALL KEYIN(PARS,VALS,NPARSENDMRK,MODEINC,OUTC)

C

C Check parameter values
C
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IF (VALS(1) .GT. MAXS .AND.
+ INT(VALS(1)-1DO)/2 .NE. INT(VALS(1)) .AND.
+ VALS(1) .NE. 2 .AND. VALS(1) .NE. 4) THEN

WRITE (OUTC,1000)' Illegal number of stations. Try again',
+ ', please.'

GO TO 10
ELSEIF (VALS(6) .NE. 512 .AND.

+ VALS(6) .NE. 256 .AND. VALS(6) .NE. 128 .AND.
+ VALS(6) .NE. 64 .AND. VALS(6) .NE. 32) THEN

WRITE (OUTC,1000)' Illegal number of pixels. Try again,',
+ 'please.'

GO TO 10
ELSE

C Attempt to open output file
IF (OUTDSN .EQ. ' ') GO TO 20
CLOSE (UNIT=1 0)
INSIZE = VALS(6)
OPEN(UNIT--OUTDAT, NAME=OUTDSN, STATUS= 'NEW',

1 FORM='UNFORMATTED' ,RECORDTYPE= 'FIXED' ,RECL=IMSIZE/2,ERR=20)
INQUIRE(UNIT=OUTDAT, NAME=OUTDSN)
GOTO 30

20 WRITE (OUTC,1000)' Unable to open output file. Please try',
+ ' again.'

GO TO 10
30 CONTINUE

ENDIF
NSTA = VALS(I)

C
C Write out input parameters with units

WRITE (OUTC,1002) NSTA,(VALS(I),I=2,5),IMSIZE,
OUTDSN(1: LEN1 (OUTDSN))

C
C Calculate array, one position angle and baseline at a time

IF (NSTA .EQ. 2) THEN
POSANG(1) = 90

ELSE
DO I=1 ,(NSTA-1)/2
POSANG(I) = I*(180./NSTA) - 90.

ENDDO
ENDIF
NBASE = NSTA'(NSTA-1)/2
NLENGTH = (NSTA-1)/2

C
C Begin array calculations here

DELAY = 1D10 * PI * ABS(1/VALS(4) - 1/VALS(5))
FOV = (VALS(3) * PI) / (180. * 3600. * 1000)
CALL RCLOCK (ELAPSE, CPU)
WRITE (6,1000) ' Ready to start long calculation.'
WRITE (6,1003) ELAPSE,CPU

C
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DO IL = 1,NLENGTH
BSLINE VALS(2)'COS((IL-0.5) *PI/NSTA)
DO IB = 1,(NSTA-1)/2

C Calculate 1st half of array:
CALL ARRAY(DELAY,BSLINE,FOV,POSANG(IB) ,IMSIZE,BUFFER)

ENDDO
ENDDO

C
CALL RCLOCK(ELAPSE, CPU)
WRITE (6,1000) ' Long calculation finished.'
WRITE (6,1003) ELAPSE,CPU

C
C Now, load up upper half of array

DO IX = 1,IMSIZE
DO IY = 2,(IMSIZE/2)+1
BUFFER(IMSIZE-IX, IMSIZE+2-IY) = BUFFER(IX,IY)

ENDDO
ENDDO

C
C Multiply this first half of array by 2 for normalization reasons

DO IY = 1,IMSIZE
DO IX = 1,IMSIZE

BUFFER(IX,IY) = BUFFER(IX,IY) + BUFFER(IXIY)
ENDDO

ENDDO
C
C Add in the pa=90 and pa=O contribution (if any)

DO IL = 1,NLENGTH
BSLINE = VALS(2)*COS((IL-0.5)*PI/NSTA)
CALL ARRAY(DELAYBSLINE,FOV,90., IMSIZE,BBUFFER)
IF (NSTA .EQ. (NSTA/2)*2) THEN

C Number of stations is even
CALL ARRAY(DELAY,BSLINE,FOV,O. ,IMSIZE,BUFFER)

ENDIF
ENDDO

C
C Now, flip array over and add into final result, then
C write out array into file after normalizing

PEAK = 2 * NBASE
DO IY = 1,IMSIZE

DO IX = 1,IMSIZE-1
IARRAY(IX) = 32767 *

+ (BUFFER(IX, IY)+BUFFER(IMSIZE-IX, IY)) / PEAK
ENDDO
IARRAY(IMSIZE) = 0 1 Since flip was not valid for that column
WRITE (10) (IARRAY(IX), IX=1,IMSIZE)

ENDDO
CLOSE (UNIT=10)
STOP

C
C
1000 FORMAT(A)
1001 FORMAT' BAND calculates the delay bean for simple arrays',

S/I' (Version ',A,')'/)
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1002 FORMAT (' Input parameters:'/
+ 1 ',I8,2X,'= number of stations.'/
+ I ',F8.2,2X,'= array diameter in meters.'/
+ I ',F8.2,2X,'= field of view, in mas.'/
+ I ',F8.1,2X,'= lower wavelength, angstroms.'/
" I ',F8.1,2X,'= upper wavelength, angstroms.'/
+ 1 1,18,2X,'= output image size.'//
+ I Output to file ',A)

1003 FORMAT (' Elapsed time: ',A,' CPU:',F15.3)
END

SUBROUTINE ARRAY(DELAY, BSLINE, FOV, POSANG, IMSIZE, BUFFER)C

C Calculate array: Delay=pi* d nu / c, in meters
C bsline=baseline in meters
C fov=field of view, in radians
C imsize=array size, in pixels

REAL*8 PI
PARAMETER (PI=3.141592653589793D0) I pi
REAL*4 ROW(512) ,COLUMN(512) ,BUFFER(51 2,512)
INTEGER*2 IX, IY, ICX, ICY

C
C Center for AIPS

ICX = IMSIZE/2
ICY = ICX + 1
RPOSANG a POSANG'PI/180.
XUNIT = DELAY 0 BSLINE * FOV / INSIZE

C
C
C Calculate array, with special cases for 0 and 90 degrees

IF (POSANG .EQ. 90.) THEN
DO IY=1,IMSIZE

C First, calculate a column in the array (x=l)
X = XUNIT * RADIUS * ABS(ICY - IY)
IF (X .EQ. 0.) THEN
SINCX = 1

ELSE
SINCX = SINMX) / X

ENDIF
COLUMN(IY) = SINCX

ENDDO
DO IY=1,IMSIZE

DO IX=,IMSIZE
BUFFER(IXIY) = BUFFER(IX,IY) + COLUMN(IY)

ENDDO
ENDDO

ELSEIF (POSANG .EQ. 0.) THEN
DO IX % 1,IMSIZE

C First, calculate first ROW in array (y-1)
X 2 XUNIT * RADIUS a ABS(ICX - IX)
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IF (X .EQ. 0.) THEN
SINCX = 1

ELSE
SINCX = SIMC) /X

ENDIF
ROWCIX) = SINCX

ENDDO
DO IY=1,IMSIZE

DO IX=1,IMSIZE
BUFFER(IX,IY) a BUFFERCIXIY) + ROWCIX)

ENDDO
ENDDO

ELSE
C
C Calculate lower half of array

DO IX = 1.IMSIZE
C First, calculate first row in array (y--1)

IDX = IX-ICX
IDY = ICY-1
RADIUS = SQRT(FLOAT(IDX2 + IDY**2))
ANGLE = RPOSANG - ATAN2CFLOAT(IDX),FLOATCIDY))
X = ABS(SIN(ANGLE) * XUNIT * RADIUS)
IF (X .EQ. 0.) THEN
SINCX = 1

ELSE
SINCX = SIM() / X

ENDIF
BUFFER(IX.1) = BUFFER(IX,l) +e SINCX0

C
DO IY = 2,ICY-1

IDY = IY-ICY
RADIUS = SQRTCFLOAT(IDXO"2 + IDYO"2))
ANGLE = RPOSANG - ATAN2CFLOAT(IDX),FLOATCIDY))
X = ABSCSINCANGLE) 0 XUNIT 0 RADIUS)
IF (X .EQ. 0.) THEN
SINCX = 1

ELSE
SINCX = SIN(X / X

ENDIF
BUFFER(IX,IY) = BUFFER(IX.IY) +SINCX

ENDDO
ENDDO

C
C

DO IXlI,ICX-1
RADIUS: ICX-IX
ANGLE = RPOSANG - P1/2.
X = ABSCSIN(ANGLE) * XUNIT *RADIUS)

IF (X .EQ. 0.) THEN
SINCX = 1

ELSE
SINCX = SINCX / X

END IF
BUFFER(IX,ICY) =BUFFER(IX,ICY) + SINCX
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BUFFER C IMSIZE-IX, ICY) =BUFFER( M 4IZE-IX, ICY) +SINCX

ENDDO

BIJFFER(ICX,ICY) zBUFFER(ICX, ICY) + 1.I ENDIF
C

RETURN
END

L
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III. Program to find radial point response function profiles.

C Program POWER
C

C This program finds the power for a 512 on a side
C AIPS map, with the output in a 1-d array with average power as
C a fn of radius from 256,257 in the output file. The output file
C is in LISTING format so that it may be printed, etc.

CHARACTER*64 OUTDSN,INDSN

PARAMETER IMSIZE=512
REAL*4 POWER(IMSIZE)
INTEGER*2 INDATA(IMSIZE, IMSIZE) ,MIN, MAX, IX, IY, IREC, IBIN,

+ IWEIGHT(IMSIZE)

C
C Attempt to open files

10 WRITE (6,1000) '$Filename of AIPS map:
READ (5,1000,END=99,ERR=10) INDSN
CLOSE (UNIT=1O)
OPEN(UNIT=1 0, NAME=INDSN, STATUS= 'OLD' ,READONLY,

1 FORM='UNFORMATTED' ,RECORDTYPE='FIXED' ,RECL=128)
INQUIRE(UNIT=1 0, NAME=INDSN)
GO TO 30

20 WRITE (OUTC,1000)' Unable to open input file.
GO TO 10

30 CONTINUE
C

C Get output file
40 WRITE (6,1000) '$Filename of output file:

READ (5,1000,END=99,ERR=40) OUTDSN
CLOSE (UNIT=1 1)
OPEN(UNIT=1 1,NAME=OUTDSN, STATUS= 'NEW',

1 FORM= 'FORMATTED' ,CARRIAGECONTROL= 'LIST' ,ERR=50)
INQUIRE(UNIT=1 1 , NAME=OUTDSN)
GO TO 60

50 WRITE (OUTC,1000)' Unable to open output file.
GO TO 40

60 CONTINUE
C

WRITE (6,1001)'OThe input file is ',INDSN(:LEN1(INDSN))
WRITE (6,1001) 'OThe output file is ' ,OUTDSN(I:L.ENI1(OUTDSN))

C
C READ IN DATA

DO IY = 1,IMSIZE
DO IREC=1,IMSIZE/256
READ (10) (INDATA(IX,IY), IX=(IREC-I)*256-,IIREC256)

ENDDO
E NDDO

C
C Find max and miin of array

MIN = 32767

MAX = INDATA(256,257)
DO IY 1,IMSIZE
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DO IX =1.IMSIZE

IF (INDATA(IX.IY) .LT. MIN) THEN
MIN =INDATA( IX, IY)

EL.SEIF CINDATACIX,IY) .GT. MAX) THEN
MAX = INDATA(IX,IY)

ENDIF
ENDDO

ENDDO
MAX1~4 = MAX
MINI4 = MIN

C Find radii and sun up, with peak norm~alized to 1
ICX = 4SIZE/2
ICY = ICX+1
SCALE = 1 ./FLOATCMAXI4 - MINII)
DO IY = 1,D4MSIZE

DO IX =1 , IISIZE
RADIUS = SQRTCFLOAT( CIX-ICX)0*2 + CIY-ICY)**2))
I13IN = RADIUS + 1
POWERCIBIN) = POWERCIBIN) + CINDATACIX,IY)-MINI4)*SCALE
IWEIGHT(IBIN) =IWEIGHT(IBIN) + 1

ENDDO
EN DDO

C
C
C Write into output file a single vector

WRITE (11,1002) (POWERCIX),IWEIGHTCIX), IX=iIMSIZE)
C

CLOSE CUNIT=11)
CLOSE CUNIT=1O)
CLOSE CUNIT=12)
STOP

C
99 STOP 'Error: end of input'

1000 FORMATCA)
1001 FORMATCA,A)
1002 FORMAT (512(F1O.6,I10/))

END
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IV. Mirror Pogran

This program finds the beam for an aperture of specified size at
a given wavlength.

PRO MIRROR, INMAP,OUTMAP,DIAM,FOV
This procedure corrects the beam pattern (INMAP) for the finite

; size in cm (DIAM) of the elemental mirrors.
; The input (and output) maps have a field of view = FOV

Find the array size using the input array
NS = SIZE(INMAP)
IF (NS(O) LT 2) THEN GOTO,DIMERR ;If not 2-D array
IF (NS(1) NE NS(2)) THEN GOTO,DIMERR ;flag a dimension error
MAX = NS(1)
CENT = MAX/2 - 1 ;This is the center

because IDL counts from zero
CX = CENT
CY = CENT + 1
OUTMAP = FLTARR(NS(1),NS(2)) ;Creat the output array

The wavelength is fixed at 500 nanometers = 0.5umeter
C = 1.25664E5 * DIAM ;DIAM is in cm

The constant SI is the FOV (mas) expressed in pixels
4.84814E-9 = .8E-6*E-3 for mas

SI = 4.84814E-9 * FOV / 2.
SI = SI / MAX
CSI = C ' SI

The output array is filled in one part and copied to reduce the
number of page faults on the VAX computer over what we would have
if the output array were filled directly.
FOR J = 1,CY DO BEGIN

FOR I = 0,J DO BEGIN
; First get the radial distance from the center = R
R = SQRT(FLOAT((I-CX)^2 + (J-CY)^2))
OUTMAP(I,J) = BESJ1(R * CSI) / (R*SI) ;Calculate the

first order Bessel function •
OUTMAP(MAX-(I+2),J) = OUTMAP(I,J) ;Use symmetry to store

END
END
FOR J = 1,CY DO BEGIN

FOR I = O,J DO BEGIN
OUTMAP(MAX-(I+2),MAXJ) = OUTMAP(I,J) •
OUTMAP(I,MAX-J) = OUTMAP(I,J)

END
END
FOR J = 1,CY DO BEGIN

FOR I = O,J DO BEGIN
OUTMAP(J-1,I+1) = OUTMAP(I,J) S

OUTMAP(MAX-(J+1) ,I+1 ) =OUTMAP (I,J)
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END
END
FOR J =1,CY DO BEGIN

FOR I =O,J DO BEGIN
OUITMP(MAX-(J.1) ,MAX-(I+1 ))=OUTMAP(I, J)
OUTMP(J-1,MAX-(I+1) )=OUTMAPI,J)

END
END
NOW WE MUST DO THE 4I SIDES FOR J=-O
FOR I z O.CX DO BEGIN

R = SQRT(FLOAT((I-CX)^2 + CY*CY))
OUThP(I,0) = BESJ1(R*CSI) / CR'SI)
OUT?APMAX-(I2),O) = OUTAP(IO)
OUThPMAX-1,I.1) = OU7hAP(I,0)
OUTl4AP(MAX-1 ,MAX-(I.1 ))=OUT?4AP(IO)

END
OUTMAP(CX,CY) = OUTMAPCX.1,CY)
OUTMAP = OUThAP *OUThAP
OUTMAP = OUTMAP /OUTMAP(CX,CY)
OUTMAP = OUTMAP *INMAP ;Multiply the input map

R ETUR N
DIMERR:

PRINT,'Input map is not square and at least 2-D'
RETURN

END
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