
1'Df4 49 DYNAMICS OF ANGULAR MOVEMENTS OF A SOLID SUPPORTING A 1/1.
ROTATING ROTOR WI1TH. (U) FOREIGN.TECHNOLOGY DIV

1 HWRIGHT-PATTERSON AFb*OH V A GR OO ET AL. 06 JUL 84

UNCLASSIFIED FTD-ID(RS)T-S296-44 F/'G 26/11 ML



iOEM

I 4

1.0 96o ANK L0
• 11 -

1.25 1 111 .
* & .4.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

I



FTD-ID(RS)T-0296-84

- FOREIGN TECHNOLOGY DIVISION

a - -

DYNAMICS OF ANGULAR MOVEMENTS OF A SOLID SUPPORTING A
ROTATING ROTOR WITH CONSIDERATION OF ENERGY DISSIPATION

by

V. A. Grobov, I. I. Kantemir

DT1C

JUL 24 1984

o A .

Approved for public release;
distribution unlimited.

"'07" 9 20 OP1



DYNAMICS OF ANGULAR MOVEMENTS OF A

SOLID SUPPORTING A ROTATING ROTOR

WITH CONSIDERATION OF ENERGY

DISSIPATION

V. A. Grobov, I. I. Kantemir

This article analyzes the motion of a system consisting of an axi-

symmetric solid B with mass M, rotor-B' with mass M', and two passive

dampers b and b', each of which consists of a spring and mass placed

into a tube filled with a viscous fluid. The schematic of the system

is shown in the figure. Body B is used as the principal body, i.e.,

a body relative to which the movement of all the components of the sys-

tem is being analyzed. X1, X2, X3 is the coordinate system coupled with

body B, the origin of which is at the center of masses of body B and

one of its axes - X3 - is oriented along the symmetry axis of the body.

Consequently, axes X1 , X2 , and X3 are the principal central axes of

inertia of body B. The origin of the Xjx~x3 system coupled with rotor

B'I is at the center of masses B'; axis X coincides with axis X3 . The

distance between B ' and B* equals 1, while * is the angle between axis

X1 and the line, which is parallel to axis X1 and passes through point
B*'

B.
The damping mechanism consists of mass m, which moves in the tube

filled with viscous fluid. We designate the coefficients of the spring's

rigidity and viscous damping of the fluid by k and c. The tube is at-

tached to body B in parallel to axis X3 in such a way that the spring

is not stretched when particle m is-at axis X1 at distance a from point

B*. The displacement of the particle relative to axis X1 is determined

1. . . .. i



by value z. Three additional particles, the mass of each of which is

equal to the total mass of damper mb, are coupled rigidly with body B

in such a way that as to have the system (body, damper, and three par-

ticles) symmetrical relative to axis X3 when the spring is not stretch-

ed. A similar damper is attached also to rotor B' [4].

Fig. 1.

11r

- - -

Let the o,, w,. o be the angular velocities of rotation of body B

around axes XI, X2 , and X3 in an inertial frame of reference. We as-

sume that the angular rotation speed of the rotor around axis X3 equals

w3 +o, where v~const.

To .formulate the equations of motion, first we will work out the

expressions for the kinetic and potential energy of the system.

The kinetic energy of the system equals

T- I(A - MV- 2M.14 + mO + m;z" + 2z',m;) (, + )+
+ Cog + 240% + J~oe + m,, (0 - 2aaw,%r- 2ao.,) +(1)

+ m;1z? - 2a'e' (0, + ) (% cos i+ w, sin ) 2 a'z'o), sin -

- 2a'z' %, cos i -whe re
A -1 + I; + 2mba' + 2Mr ,'2 + (M' + 4m;)( - V)

C =I + I + 4mra4 + 4' 2 ,

JI; + 4.a ,
v - (M' + 4m;)/(M + M' + 4m, + 4m;),

A - M + 4mh+M'± 4m;, (2)
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II , 13 and i,, i' are the principal enertia moments of body B and rotor33
B', respectively.

The potential energy of the system has the form

n- 2(0 + kz ) (3)

Taking into account expressions (1) and (3), we write the equations
of motion in the Lagrange form:

I A - (A - C)op, + f a(, + 2Md% + MTV, 6a, - w ) +

+ m* It- 2Q + 1.) [z (o - w2%) + -"%I + zI- 2to + 22z01 +
+: 22 k- -a (,+ }+ m; [- 2 % -, (o.-- ,) +

+ '0. + z' - 2tw, + 2i',% +2' (,h -,,) -

-a'cs ( 3 + 1 s)] + a'sin +z z'(o + o)2 -- J } =0, (4a)
Ah- (C- A)- %, - 4ah + 2M, t, + MV + %%.) +

+mb 1- (t + Q,)z (6, + %) + i(j + zI- t+., +2i.(, +
+z(- +..)Ja i + 2 .02) -+-m; 1- 2 1z' ( 2 j+ wjcis 3 +

+ z'o.J + z' 1- 2: % + 2z'., + z' (% + .,)l -

-a cosI {'+z'((e,+u'-- a'z'in(-- ico,)] =0, (46)
ca -,m.4 i% + z((#, - 00j) -,.;a, sin 12?+ ,,, + z'(( (%(% ,.)I - .

-,,h'cos * 12'% + ',. --cal ) =0. (4) S
n4.( - ) M--,i -,.V (ih,- "%C.)- % (, + ,!) (z (I m

-,--p'z'j +a+k2-o. (5)

- mbp'i + m; (I- p')? + ma' (sin * I. + %m (cog + 2)1 -

-c l,--.( + 2o) -. ((T+ )lz° (i -p')+ 1-pz)+ •

+ e'' + kv'z - o. (56)

Here we use the designations

AT 2 " M a . " (6)

We introduce the following quantity:

A- fC-A)u%+ fe (7)

which represents an angular velocity of free precession of a system of

bodies. Then equations (4a)-(4c) can be written as

A. - p(, ,, ea %. t, . , ?. i

1 11 (8)

where p is a small parameter:
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and FI, F2, F3 - nonlinear functions in the form

.- , , !21 + ,. n% - +.

2-a m' a+ z" (,- a -a'z'cos(e. 1.a -a 'sin*(?f +z'((..+ur--fl},

+ -2 - z'-G +2 2ip + ',j + + (10)

+ z' (oa + a,) -a'cos fq[' + z'((o) + a)'- o)l- a'zsin h(..- .. )1.

A am
e - M -(2i% + (2+ 1 + (2i', + ",'sin* + (2z', + e. n' -

(Here m. ii mb M-'.)
After introducing the designations

-- ..- , = 8%. 2,- .1. -e ,2.
MT

we write equations (5a) and (5b) in the form

+ + Vz +I? + 2V + -Iz'- -i. ( ,' i',z ') + a' (cos *,.% + 2a)]- (12)

-sin, # 1 +,. + 2a)l).
where

F,-* + s + W,(a-J, (13)
F5 - 'S(i + i') + Wr(o' + L.

Thus, as a result of transformations, system (4a)-(5b) is reduced

to the system of equations (8) and (12). Resonance cases are possible

in this system, when one of the intrinsic frequencies of the system

coincides with the frequency of precession. Let us consider some of

them, relying on the results of an analysis conducted on the frequency

spectrum, which are given in work [4], where it is shown that the fol-

lowing resonance relations are possible in the system:

Thus, for example, if the following relation is fulfilled between

the parameters:
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r-

then there is resonance of the type A-'.
Let us stop to consider one of these cases. Let us assume that

A-o+pa. Then system (8) can be written as

owl- F- , + Aa). (14)

Considering the case of fast rotation of a body around the symmetry

axis X3 , i.e., assuming that eh,4<,, it is possible to consider at4
and ac% to be the value of the order of smallness ju.

In order to solve the system of equations (14) and (12), which de-

scribe the motion of this system, we will use the method of perturba-

tions [1-3). For this, we will first examine an unperturbed system

(when p=O)

-- =0,

=0,o (15)

The solution of (15) is found in the form

S-cosO,
t = si nOe, (16)

where O6ot+6.

Using the solutions of (16) as the generating ones, we transform

(14) in accordance with the ideas of N. N. Bogolyubov's method of per-

turbations [1, 2] to the new variables 0 and 8:

- (F, cose + F, sin 0),

P :- (F, cos 0- F1, sin 0) + ph, ( 17 )

I- ~LumpF,,

When u:O, taking into account (16), system (12) is written as

+ 2% +,vlz -Oa a - ) ca 9,(18)

We introduce the following new variables into (18):

L5L.. .** " _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _



+ bi , -. O a ( a -
-

,( 9
Zm," - 't , 8" -a -

(19)

where- ( -g + u&.) - - a' (a + O)co 6.

The solution for (19) we seek in the form

t: A, ca , + He' am -pj, (20)

-_StQq+Hae?'co8.
where

Q,= 1+%,. Q,=bst+W A;=A,,eft. A;=,sM,
H, j_(T-4 06 ~ .g 0

H S - = e er(0 -+ -

Let us examine the perturbed system

f.ktAv." ~z (21)

In this case we note that ,®,8.wo, and H, and H2 will be variable in

perturbed motion. It is also easy to see that

where -ILQ, dt PQ, di-= KR2.

ao-o) (F, cos 0 + F, sin 0),
atf '(o+n.)(Fcs+sm)

Q2 '(v+ Q(F, cos 0 + F. sin 0),
V2

R = F, cas 0- Fsin QFif 8+ A.

-The solution for (21) we seek in form (20), where A-,A;.qyand y, satisfy

the following system:

A I (01 cos Q + - sinQ)e',

dr, . P Cos12- gsin (i) (22)

Here we use the designations

-1 - HR sin (O - P) - Q, cos (0-)
6 - F, + 1h cos (0 -- O - a sin (0 - P)l Q, - H, 1h, sin (O- fj +

+ a cCs (0- 1J1 R.
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- HR sin 8- os , (c23 )
X-Fs+ Q,cos- m,R sin 8.

Let us now deal with the variables z and z', taking into account

that A 5+A,)ebt.

Then the solution for system (12) is written as

z -A, cos + H, cos(9-p, (24)
'-A, cosQ, + H, cos 8,

where

S (i,. (25)

Equations (17) and (25) are reduced to the standard form. We will

make use of the averaging principle for their solution (2, 3). After

averaging the right sides of equations (17) and (25), remaining will be

the terms containing only the variables from the slow arguments. The

equations of the first approximation relative to the variables 0),6,,,

A. 4,. A, and % have the following form:

, u(e.+o* uu(s-)', np,+ ((%+a s
AV 0,,2q" 2u-1+ m]A -6 ' + 0) Ion [ ma ) 2 ,

2a, (. o ," +A;+ - ) , q,," (,. + Pa.

as- Q const, (26)dA _AI _ - ) (_ -'4 ,m
__j_ Ah tm  sinP,

dt = aq2J,21

dAt AI ( + o) a C

-- --A&- e' +) I cos o - (e, + o) sin 6],
[h(.,+,)sin6-bAcos8I+ 1+'

dt ,fh%.2

whe re. 2

Taking into account that A- (C A--%+ ' and A-o-=pA, we find

-c-4 + _
em- 7-o - 7,,_, a-, _
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Substituting (27) in the first equation of (26), with an accuracy

to within the value of the order of p2 , we have

[ m'aq sink sin 26. (28)

After integrating (28), we obtain

2=(A.e p-- - [ €,e, 41 sin p (1-) (29)

+ .-sin28]

We make an estimate in (19):

3S
-(C..4)4 [ 4- A-C-..P. si5,n (C 'JP (30)

We note that

A- 3 >O. C-4>O, A.ii- >0°V( 0')' + 4o01 > o

It is obvious that in order for *D(t)--.o, it is sufficient that the fol-

lowing condition is satisfied:

,2,, > ( 31 )

Since (2A-C-J -(-J,)'=4(A-C)(A-J), the following relation is

satisfied when A > C:

Moreover, if

2m"u > ,'a" 144- > + 4h;'1.

then condition (31) will be satisfied.

Thus, condition (31) is a sufficient condition for the amplitude of

the transverse angular motions to attenuate, i.e., to have "true" rota-

tional motion around the X3 axis. Weaker sufficient conditions are ob-

tained in the form

A>C. -32)

For the case A-a, the angular speed of rotation around the X3 axis is

constant and equals 0. As can be seen from equations (26), in the case

where &>*, the oscillatory motions of the mass at the first damper

will be attenuating ones. If

8
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then the oscillatory motions will not be attenuating ones. The vibra-

tional motions of the mass at the second damper will be attenuating

ones.

When A- v,, the value of . is not constant but is a certain func-

tion of time. In this case the solution of the problem gets more com-

plicated. Due to the cumbersomeness of the expressions for this case,

the equations of the first approximation are not presented.

The averaging method makes it possible to reduce the analysis of

angular motions of the body supporting the rotor and damping devices

to relatively simple equations (26) for the slowly changing amplitudes .

and phases, the solution of which can be easily obtained with the aid

of electronic modeling devices or digital computers and, in certain

cases, by direct integration. The analysis of motion makes it possible

to point out its following special features.

The movement of the supporting body relative to the center of masses

will be close to the Euler-Poinsot motion, at which the angle of nuta-

tion, speed of proper rotation, and the amplitude values of the trans-

verse components of angular velocities of the supporting body change

slowly with time. The energy of oscillations of elastically suspended

masses, excited by the revolution of the supporting body and rotor with

a proper selection of the magnitude of masses and parameters of the sus-

pension devices, can be used for damping nutation oscillations of the

system.
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