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PREFACE

This conference follows the very successful first event in the series
organised by the Institute of Sound and Vibration Research in July 1980,
The second conference has support from the Air Force Wright Aeronautical
Laboratories in the USA, the European Office of Aerospace Research and
Development and has the continuing objective of reviewing advances

which have been made in theoretical and experimental structural dynamics,

Dynamic structural analysis now benefits greatly from the availability

of large computational facilities, either for theoretical work or signal
processing, Most work is, however, based upon the assumption of linear
behaviour, an assumption which is often not valid in practice. Although
the balance of the conference is biased towards linear vibration, a section
on nonlinear vibration 1s included which has attracted contributions on

a variety of problems,

Generally, the conference papers cover a wide range of topics and it is
hoped that this will stimulate discussion and promote liaison between the
participants,

I hope that you enjoy the conference both technically and socially,
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Editors' Preface

We should like to thank all authors for their contributions.
Due to the high star” :-d of the papers we accepted more than for
the previous Confere :. Many were suitable for more than one
session. 1In selecting which one, we have tried to establish an

interesting and well balanced programme.

Our thanks also go to the members of the organizing committees

ely

for their help in many ways.
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,§ AD-P003 674

APPLICATION OF MODAL SYNTHESIS CONCEPTS
TO SPACECRAFT DESIGN VERIFICATION+

A. Bertram

DFVLR/AVA Gottingen
Institut fiur Aerocelastik

1. INTRODUCTION

- A spacecraft never will be subjected to the flight environment for
which it was designed until it is launched. To ensure safety and reliability
of the structure, one is left to demonstrate that it can withstand all loads
to be expected during launch and during its life in orbit prior one will risk
to put it onto a launcher.

The only argument the structural engineer is endowed with is a calcula-
tion of the dynamic response and of internal loads under certain specified
dynamic environments. This is done using a mathematical model representing
the dynamic characteristics of the structure - and certainly more or less
realistically.

The general way to model a complex structural system is the method to
discretize it by means of large finite-element (FE) program systems.: The dy-
namic behaviour of the structure is described in discrete physical degrees of
freedom (DOF), which correspond to the nodal point displacements of the FE
mesh. The physical distribution of mass and stiffness is represented in dis-
crete matrices. It is commonly known that the mass-matrix can be evaluated
very correctly by the FE method, whereas the stiffness matrix is infected
with certain inaccuracies depending on the effort which is spent on modelling
the structure. Concerning the description of the damping characteristics,
generally no information can be obtained by means of the finite-element meth-
od; one is left to perform experimental investigations.

FE-models are a very efficient tool to study the dynamic behaviour of a
structure already in a very early phase of its development. A mathematical
model, however, is a reliable tool only when it is verified by means of the
dynamic behaviour of a realistic structure. In doing so, a number of selected
experiments is performed. To minimize both experimental and analytical ef-
fort in the design verification procedure, a combined procedure is our aim.
To identify the basic conditions we must see this in the light of the space-
craft development in recent years. Namely,the trend to interchangeable
payload modules and the technology of the future large spacecraft which ren-
ders experimental investigation of the complete structure impossible.This is
the reason it becomes necessary to separate it into substructures (see also
{1] and [2]. Furthermore, small structural modifications may be the result

+The paper is based on work.conducted under several ESA/ESTEC Contracts

DFVLR-AVA Gottingen 385 Institut fir Aerocelastik
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of design changes with the consequence of extensive work and costs in order
to update the mathematical model if it should not be possible to find a way
on which we can pass a new test or a renewed FE analysis.

In the light of these problems, concepts for structural analysis and of
appropriate experimental techniques were elaborated in recent years. An
extensive literature search [3] highlights a large number of publications
dealing with methods for the solution of the structural analysis tasks de-
scribed above. Based on these sources, suitable procedures were selected and
described in this work, all fulfilling the following criteria:

o applicability to spacecraft structures,

o use of experimental data, and

o use of modal data.
As already said above, the general way to describe the elastic behaviour of
any structural system is by discretizing it. In doing so, the equations for a

dynamic system with n discrete DOFs read

+k2 = £ (1)

Ie.

u + c

[]=]

assuming linearity and viscous-type damping, where m, ¢ and k are quadratic
matrices (of order n) of mass, damping and stiffness, and 4 and f are the in-
dependent vectors of the nodal point displacements and of the external forc-
es, respectively. These equations may be transformed into energy equations by
writing the discrete coordinates u(x,t) in a series expansion of the or-
thogonal mode shape matrix

u(x,t) = ¢ q(t) (2)

where vector q contains the generalised or modal coordinates as weighting
factors of the series expansion. Equation (2) is strictly valid only for an
infinite number of modes; in practical cases, however, only a truncated set
of modes can be considered. The convergence of this series expansion depends
on the selection of mode shapes. The sufficient fulfillment of this equation
is of significance in using modal methods. Its accomplishment is the most im-
portant objective in all what is described in the following.

2. MODAL DESCRIPTION OF STRUCTURAL DYNAMICS

It can be derived that a condition called the orthogonality of the mode
shapes related to the mass matrix exists, such as

g

T
% (3)

The orthogonality condition is the second fundamental basis for the applica-
bility of modal methods. According to Equation (3) there is a diagonal matrix
M , called the matrix of generalised masses

(4)

DFVLR-AVA Gottingen 396 Institut fiir Aeroelastik
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Analogue to M the matrices of generalised stiffness X and generalised
damping C can be built, whereas the generalised forces F read

QT£=E. (5)

Matrices M and X both become diagonal too; the generalised damping matrix
L is assumed for the sake of simplicity to be also diagonal, although it is
not necessarily so. In modal description, the dynamic equations given in (1)
yield to

*kKaq = E (6)

ho .

Mg +¢
with the order m , the number of modes taken into account.

The decoupling of the equations due to the diagonality of the system's
matrices together with the reduction of the system's order from the discrete
to the generalised DOFs are two important advances in numerical treatment of
structural dynamics analyses. Moreover, the modal system is very suitable for
the structural engineer, to obtain an improved insight into the dynamics of
the structure, owing to the direct description of structural characteristics
by means of mode shapes.

2.1 Modal Synthesis Methods

The elasto-dynamic behaviour of any structural system is defined by a
combination of inertial, stiffness and damping forces and, additionally, ex-
ternal forces. For simplification reasons, damping and external forces are
neglected in the following. Based on these assumptions, the elastic behaviour
can be described completely when the following modal parameters are known:
eigenfrequencies w , mode shapes ¢ and generalised masses M . With this,
the dynamic equations read

Mqg+Kgq = 0 (7a)

or

Mg+

ne
=
ne

q = 0 (7b)

These modal data have to fulfill the additional conditions, as specified
above, namely:

o orthogonality of the modes and

o sufficient convergence in the modal approach
within the interesting frequency range.

A typical application of modal synthesis methods is presented in
Figure 1, where the mathematical model of an assembled structure is analyti-
cally determined from the dynamic data of its substructures. The mathematical
models of both substructures are obtained in an experimental way - by means
of modal survey tests e. g. The antenna module is tested with its interface
to the other substructure being fixed. When testing the lower substructure,
it is fixed at its base; the interface to the antenna is "loaded" by means of
a rigid dummy mass. The procedure in this particular case of modal coupling
will be described later on. First, the basical procedures of modal synthesis
are briefly outlined.

DFVLR-AVA Gottingen 397 Institut fiir Aeroelastik

b

Py

_.



).

[ &

2.2 Dynamic Equations of a Coupled System

According to (7a), the equations of motion of a structure assembled
from the substructures A and B read:

S 9_A P SLA 0
- el = (8a)
L_IB gB £® 38 o
or
S i é+ \§ ] &} - 1o (8b)
~ ~

The system is of order m = mA + mB , i. e. the number of modes taken
into account for both substructures. In Equation (8) both subsystems are
still uncoupled. The coupling is performed by additionally considering the
specific coupling conditions. These are expressed by the stiffness relations
in the interface between both substructures.

2.3 Coupling conditions

A destinction must be made between two special cases of interface con-
dition: rigid coupling and elastic coupling. In the case of elastic coupling
by means of an elastic coupling element with the discrete physical stiffness
matrix i;AB , the additional potential energy U in the springs yields (as
described in [4])

oT BB, 9)
—- = —e

DOl

Applying Lagrange's operation, the additional stiffness in generalised de-
scription is obtained by

AK = k B (10)

M|lgl +4 7k |+ |2k|p |al= 12| - (11)
~

The case of rigid coupling is defined by a compatibility condition between
corresponding DOFs in the common interface as shown in
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-1 -1 (12)

A
1] 8] -

or

s .q9=0 . (13b)

Compatibility implies a reduction in the number of DOFs by r , the number of
constraints. Vector q in Equation (13b) containing m independent DOFs de-
creases to q . The reduction to m-r DOFs is caused by a transformation ac-
cording to -

a=Tg . (14)
To generate I , a set of r independent vectors $; out of matrix ¢

of Equation (13b) must be found; a set of dependent vectors ¢3 is kept. The
elemination of the r DOFs is performed by means of the following relation

i
9
- ' ~l . (15)
gr q [gd ! 21] q. 9. ’
i
and consequently
= —Q_1
9 T 7Y %4 94 (16)
is obtained for the transformation given in Equation (1&)
i _ -
9=~ 3;m-|a=1Ig4g (17)
'Qi Qd

The requirement to select a number of r independent vectors out of 9y
may be difficult in an automatic process of a computer programme. To escape
this inconvenience, a computer suitable process for automatic generation of
the independent coordinates § is presented now, using the so called "zero-
eigenvalue theorem'", presented in [5].

Here a routine can be employed, whereby an eigenvalue analysis has to
be solved instead of a matrix inversion. J is generated by means of the
special eigenvalue problem
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bréy = 0, (18)

whereby T is produced from the eigenvectors belonging to zero eigenvalues.

Applying the transformation of Equation (14) on Equation (8b) yields

Turg+1

I
=
=

I3 =0 . (19)

2.4 Structural Modifications

An experimentally determined mathematical model, however, has the dis-
advantage of being inflexible, i.e. the elastomechanical parameters ob-
tained are only valid for the particular configuration tested. The modal for-
mulation of the equations of motion is the basis for the application of a
simple correction procedure. Structural modifications can be handled with the
following method when they result in dynamic properties that can be suffi-
ciently described by superimposing the normal modes of the basic structure
(see e.g. [4] and [6]). This is done by considering some structural changes
involving the distribution of physical masses Am or physical stiffness Ak
in the modal mathematical model.

Proceeding from (7) the equations of motion of the basic configuration
(a) yield

Mg +K ¢ = 0 . (20)

After some structural modifications Am and Ak , the changed configuration
(b) reads o i

b ..b b b

Mg+Kg =0, (21)
where
b a
o= MMM (22a)
and
b a
K = K +AK . (22b)

Modifications of the discrete mass distribution result in an alteration of
the kinetic energy of the system by

1T

Again applying Lagrange's operation, the mass modification yields in general-
ised description

AM==$$_A=m_gn- (24)

Accordingly, a discrete stiffness modification leads to an alteration in the
potential energy
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U= 7y fky (25)

’ o
and thereby to a change in the generalised stiffness

&K = gi Ak ¢ - (26) :
- - ) °

Assembling Equations (24), (26) and (22), the dynamic behaviour of the

modified structure is described by means of the modal data of the basic con-
figuration and the discrete structural changes. ' 1

3. ACCOMPLISHING THE ORTHOGONALITY CONDITION AND A SUFFICIENT CONVERGENCE

As examined above, modal transformation is a series expansion which -
leads to an exact description of the structural deformations if and only if ) ®
an infinite number of orthogonal mode shapes is taken into account. A great
variety of mode shapes are described in papers dealing with modal synthesis
methods. They are different in the kind of the boundary conditions taken as a
basis in determining the corresponding modes. The present paper is limited to
those modes that can be determined experimentally.

) ®
3.1 Selection of Suitable Modes
In References [1] and [7] detailed reviews of the different types of
mode shapes are given. In Figure 2 [7] a selected number of modes is summar-
ised together with the appropriate coupling methods. ) o

Rigid body modes and elastic normal modes are the most common ones, and
within this category free-interface and loaded-interface normal modes. It is
not only useful but mandatory to consider the effect of neighbouring struc-
tures as the mass and/or stiffness properties of adjacent structures act dy-
namically at the joint interface. In cases of statically determinate cou- ’ ®
pling, an interface loading of the main structure considering only the
inertial properties is sufficient in many cases.

Beyond these types of normal modes, there are several other kinds of
modes. Fixed-interface normal modes can, in general, only be determined ana-

lytically. Constraint modes may be used to complement fixed-interface normal ) L J ®
modes and attachment modes to complement a set of free-interface normal
modes .

Let us now consider to what extent the requisite orthogonality of the
different mode sets used in the example of Figure 1 is fulfilled. The mode

set of the upper substructure is composed of rigid-body modes and fixed-in- ) L ] ®
terface normal modes

® = [ o 3 [} ] . (27)
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Due to the various boundary conditions, these two mode sets are not mutually
orthogal, resulting in off-diagonal elements in the matrix of generalised
masses M

P=II'RR ﬁRE ’ Y

M= 9'mg - , (28)
¥ Meg
where
T B}
Mp = HREBK (29a) ®
- QT 9, b
Mg T 0% (29b)
M = T = T 29
MeE Sp B & YR - (29¢) L
Whereas M and M are diagonal matrices, M and y% are fully oc-

cupied. It can be shown (see {20] and [21]), however, that the corresponding
matrix of generalised stiffness

&r Lee *

K= ¢'ko - (30)
Ker %k
i generated by means of the semi-definite matrix k yields PY
Y 9
K = . (31)
2 Kee
i whereby K.. is diagonal according to e

_ T _ T
Kep = S kg - up Mg up - s2)

The result of this derivation is that, despite the -.onorthogonality of both ° °
mode sets ¢p and ¢y , modal synthesis can be performed when the off-diago-
nal elements in the matrix of generalised masses are taken into account.

The fulfillment of the second specified condition, the convergence of
the modal transformation requires among others an attentive selection of the
used modes. For both modal synthesis methods, it is evident that accurate re-
sults can only be obtained when the structures are described by a complete 1
set of modes. For structures with a limited number of modal DOFs, where only
a truncated set of modes can be taken into account, the result depends on the
suitability of the expe -imental data. In the modal correction analyses, the
modes obtained analytically are produced from the modes of the measured
structural configuration in the form of a series expansion, even including
significant changes in mode shapes. With this condition, the applicability of 1
correction methods is evidently defined.
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Successful application of the modal coupling approach is apparently
highly dependent on the authenticity of the description and simulation of the
actual coupling conditions. In a later section of this paper the importance
of a realistic description of the coupling conditions in the interface is
outlined. It is anticipated here, that this may be due to an interface loading ) ®
of the substructures as shown in the former example. The rigid dummy mass on
top of the lower substructure when determining its modes has a convergence
improving effect in the coupling approach. The realistic inertial properties
of the antenna module are introduced into the analysis in considering its
rigid body modes, whereas the dummy mass is removed by means of the modal

correction method being proved as a very efficient tool in modal synthesis ’ ®
procedures.
3.2 Test Data Requirements

Design verification procedures are dependent on the performance of re- » ®

liable and realistic tests with high accuracy. Due to the high modal density

of spacecraft structures and the presence of structual non-linearities, modal

survey tests using appropriate excitation is up to now the most reliable way

to determine a complite set of real normal modes. Poor orthogonality may oc-

cur as a result of insufficient exciter accessibility to internal parts of

the structure. Further development of modal survey test methods led to proce- ) ]
dures described in References [22] and [23], which improve test results even

in such cases.

In summary, the following guidelines for the preparation and perfor-
mance of modal survey tests can be laid down:

) ®
® The measuring points must be appropriate to describe all modes in the
frequency range of interest.
@ The mass matrix must accurately simulate the mass distribution of the
real structure.
) ®
o The number of measuring points must be adequate to describe the modes,
especially at the interfaces.
e The exdtation must be well appropriated.
® Good accessibility to inner parts of the structure should be considered ) ®
a spacecraft design requirement.
® Test methods and procedures should be continuously improved and adapted
to the latest state of the art.
) ® o,

3.3 Improving the Convergence

Convergence improving procedures have the aim to introduce into the mo-
dal approach certain flexibilities which are characterised by producing de-
formations at frequencies above the range taken into account. In the follow-
ing, two different ways are outlined; both consider additional information ) Y Y
which would have got lost due to the truncation of modes.
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3.3.1 Considering Residual Terms

In the literature a number of methods to improve convergence by means
of residual terms are known. They may be traced back to mainly two works,
presented by Mac Neal [15] and Rubin [16]. The common aim is to increase the
accuracy of the classical modal approach by means of globally approximating
the contributions of the neglected modes, without detailly knowing what's
what (see {24]). The common modal survey test delivers the modal matrices
M , K, and ¢ , completely describing the structural dynamics of the

structure in the investigated range of frequency, as generally known
Mg+kRg = 0 . (33)

Additionally, the complex response u of the structure due to harmonic exci-
tation p is recorded for a number of discrete exciter frequencies Qj

(34)

-
u =

[l
(k-1

The steps for the discrete frequencies §; should be spaced closely enough,
to describe a continuous relation between G and p . Considering the re-
sults of the modal survey test, it yields for the remaining admittance

X Qj) for the discrete frequencies Qj

_ _ T ) -1
@) = 1@) - ¢ {ngg+§} o . (35)

In Equation (35) the contribution of the measured modes is subtracted from
the complete admittance of the structure. The parts of the higher modes now
can be approximated by the following quadratic approach

Y = A+ B (36)
= =c =

delivering the constant auxiliary matrices éc and gt and finally the re-
sidual terms for generalised stiffness

_ -1
Eb = éc (37a)

and generalised masses

. Moot K BK (370)

E respectively. In a first order approach, only K is evaluated. The complete

l equations of motion yield -

i My, P B K12

o v+ L2 R A (38)

| B Y52 Ko K22

; with

' T

: My, = Mg M 9 (39a)

o

| T T

| = - = 39b
AP, 9 M =My (39b)

}

o
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Y0 = & (39¢)
and analogous

Ky, = E+8 K ¢ (40a)

K, = 2K = K, (40b)

K22 = K (40¢)

The vectors v and w read

a [

v = . w o= l . (41a,b)

Jo

The examples in {15], ([16] and [24] verify that global approximations of the
modes which are not considered improve the accuracy of dynamic analyses. Par-
ticularly in the modal coupling approach the engineer is interested in repre-
senting the local effects in some discrete coupling points also at very high
frequencies. In the "classical” approach, a large number of higher modes has

to be taken into account to get the same results as the method of residual
terms is producing with a relatively small number of experimentally well-deter-
minable modes.

3.3.2 Realistic Description of the Interface

The method of using residual terms is a more global one, whereas the
mathod of utilizing interface loading is aimed to generate deformations in
the interface of the substructures similar to those found in the common in-
terface of the assembled structure.

Evidently, in the case of mode truncation, this method will assure the
necessary convergence and thus improve modal coupling, bearing in mind that,
according to the modal approach, the mode set of the complete system is com-
posed of the mode sets of the single substructures. Whereas the mode shapes
of the substructures are intentionally modified by additional stiffness and
masses, changes in the frequencies and generalised masses are undesirable.
According to the procedure presented in Figure 1, the effect of interface
loading on frequencies and generalised masses has to be corrected. This is
done by means of the modal correction method derived above. The correction
terms are introduced into the equations of motion of the coupled system as
given in Equation (8b).

{E‘&}ﬁ*{i'é_&}ﬂ=9 - (42)

As given in Equation (24)

>
<
"

I

i5

& o 0, “3)

!
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for correction of inertia-loading, and in (26)

=

- g Lk o (&)

for correction of stiffness-loading.

Taking advantage of interface loading, especially in cases of redundant
interfaces it is necessary to realistically describe the coupling conditions
during the performance of the substructure tests and in the coupling ap-
proach. Figure 3 taken from [25] shows the example of two parallel beam-type
structures, coupled at five discrete points. In Figure 3a the bolted connec-
tion is described by means of rigidly coupled, translational DOFs vertical to
the interface. The frequency discrepancy related to an FE analysis of the as-
sembled structure amounts up to 21%, which is not satisfactory. A more exact
description is obtained by considering the coupling of DOFs in the plane of
the interface, producing an additional stiffness, which approximates better
to the real conditions. This leads to the application of mixed coupling, where-
by some DOFs are coupled rigidly and some elastically. The frequency dis-

crepancy decreases to about 12 7. The interface considering these lateral
constraints is given in Figure 3b.

In most practical cases, the interface between different spacecraft
structures is highly redundant, e. g. the connection between two modules of a
satellite (Figure 4). The results of a modal coupling analysis depend on the
extent to which compatibility in the common iterface is fulfilled. As experi-
ence has shown ([26]), the coupling analyses considering a great number of
constraints generally yield unsatisfactory results because, evidently, many
more than the available modes are necessary to obtain good convergence. It is
therefore worth optimizing the coupling conditions and keeping the number of
constraints a minimum.

In the course of a contract funded by ESTEC ([27]), analytical studies
were performed to obtain information for optimizing modal-coupling procedures
for satellite structures. For this purpose, a simple satellite type structure
SIMOD (Figure 5) consisting of two modules was built. To obtain information
for optimizing substructure modal survey test conditions, various modal cou-
pling analyses were performed using FE modal models. Among others the appro-
priation of free interface normal modes and fixed interface normal modes of
the upper substructure were investigated; 36 constraints were considered.
With both mode sets no satisfactory result could be obtained; but the under-
standing was established that the highly redundant coupling conditions could
not be realised realistically enough by means of a large number of const-
raints. As a first step towards improved results, inertia loading was ap-
plied on the interface of the lower module. To achieve further advancement,
the following assumptions concerning interface conditions were made. The low-
er substructure interface will not be deformed elastically within the fre-
quency range of interest, but will perform only rigid body motions, due to
the perpendicular connection of the side walls to the horizontal floor. The
upper substructure interface is forced to deform in the same way when con-
nected to the lower substructure. As rigid body deformations are described by
only six discrete displacements, it is sufficient -indeed mandatory- to in-
troduce two pairs of six constraints whereby the condition that the interfac-
es deform rigidly must be fulfilled in both substructure tests. To produce a
mode set for the upper substructure, where out-of-plane deformations in the
interface are suppressed while rigid body motions are made possible, stiff-
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ness loading on the interface was introduced. Following these assumptions,
modal survey tests were performed with the following boundary conditions (as
shown in Figure 6):

Lower substructure: clamped at its base and upper interface equipped
with rigid lumped masses.

Upper substructure: soft suspension; lower interface stiffened by means
of two aluminum tubes.

Complete structure: clamped at its base.

With these modal data the modal coupling analysis was performed with 15
elastic normal modes of the lower substructure, 15 elastic normal modes of
the upper one, and six additional rigid body modes. Figure 7 shows mode A-3
of the lower substructure, mode B-6 of the upper one and two corresponding
mode shapes of the complete structure at about 32 Hz, presenting a comparison
between the modal coupling analysis and the reference measurement. All re-
sulting frequencies and generalised masses are correlated with the reference
data in Figure 8. Evaluation of the correlated frequencies up to about 130 Hz
indicates satisfactory correspondence. Two further pairs of correlated mode
shapes are presented in Figure 9 and 10.

As a general result of this example, it can be stated that the inter-
face conditions specified for the individual substructures must simulate the
deformation conditions of the assembled configuration. Thus, the interface
loading need not necessarily be of the same magnitude as the actual condi-
tions, as long as it represents a reasonable approximation.

4. CORRELATION BETWEEN ANALYSIS AND TEST

Modal data obtained by tests are never identical to the results of fi-
nite element analyses. This is the argument for performing tests in design
verification procedure. Study of the reasons for the discrepancies is no sub-
ject of this paper. Certainly, a description of the various methods for cor-
relating the mode sets and updating the discrete mathematical models would
exceed the scope of this work. Currently a large number of investigations
and studies is dealing with the problem of updating and correcting FE stiff-
ness matrices. In this paper, only two very simple procedures are presented
having the common objective to support the engineering judgement in correlat-
ing measured to calculated data.

A correlation matrix Z presented in [26] is composed of two indepen-

dently determined mode sets and and the discrete mass matrix m
y E a

) Zz vA

=P { ][ ! ] =PP =Pq 45)
| o I :

gLl z z

- “qp =qq

Considering the orthogonality condition derived in Equation (3)

(46)

13

1.0 1if p =gq
0T m o {
IR 0.0 if p# q
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the submatrices Z and éq of the correlation matrix are occupied by
figures between 1 and 0, expressing qualitative and quantitative correlation
of both mode sets and . A value near to 1 is a criterion for good
conformity between two modes from the different mode sets.

The second procedure is a support for the comparison of the graphics of
corresponding mode shapes. As is well known the uncondensed FE model has a lar-
ger number of physical DOFs than a measured mode shape. To produce still ful-
ly comparable graphics, use of the following procedure is proposed in [28].

The measured deformations are introduced into a static computer run as 'pre-
scribed freedoms" and the deformations of the complete FE net are calculated
in this way mode by mode. Even, bearing in mind that the discrete FE stiff-
ness matrix is imperfect, the resultant graphics will be better than those
obtained by using pure geometric spline functions. All graphics of mode
shapes presented in this paper were produced by means of this procedure.

5. CONCLUSION

Modal synthesis methods can be very efficient and useful tools in the
design verification procedure of spacecraft. The general applicability of the
methods presented here make them suitable for even complex and large space-
craft structures. It turns out, however, that the quality of the results de-
pends greatly on the level of individual experience.

Thus, in preparing the tests, special attention must be given in order
to obtain the particular kind of modes the analysist needs in his approach.

Concerning the modal correcti n method, its applicability is limited to
cases where the mode shapes of the nodified structure can sufficiently be de-
scribed by the modes of the measured configuration. The modal correction
method enables modal coupling results to be improved by making use of special
test techniques.

The successful application of the modal coupling approach is apparently
dependent on how realistic the coupling conditions were simulated in the test
and in the coupling approach.
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Figure 1: Coupling of the Antenna Module onto the Main
Structure.
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Hz Kg¥m¥*#2 Hz Kg*m##2
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32.52 37.837 31.94 30.778
33.26 31.681 33.64 32.338
52.48 17.567 54,80 17.757
60.22 15.158
59.91 87.659 62.07 27.u424
65.90 82.102 65.98 39.112
71.44 27.213 75.64 11.34y4 ° °
73.77 23.107 79.29 6.826 4
83.02 25.710 81.97 25.924
85.76 23.460
88.06 21.523
96.73 22.521 94,18 12.781
99.01 9.893 99.45 6.351
101.32 42,852
107.78 4.097 110.02 3.3m
118.35 27.211 114,33 32.250 [ ] [
110.99 9.257 120.08 13.119 1
127.45 24,224 126.36 20.906
129.23 29.080 130.45 26.704
137.21 8.930
Figure 8: Frequec.acies and Generalised Masses of the Assembled Structure (] o,
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31.94 Hz Modal Couplin

32.52 Hz Measurement

Mode Shapes of SIMOD at 30 Hz.

Figure 9:

81.97 Hz Modal Coupling

83.02 Hz Measurement
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A FLEXIBLE MULTICHANNEL MEASUREMENT SYSTEM FOR DYNAMIC ANALYSIS
ir. H. Van der Auweraer, ing. P. Van Herck, prof.dr.ir. R. Snoeys

Katholieke Universiteit Leuven
Departement Werktuigkunde

1. INTRODUCTION

7 Modal analysis 1is a widely used tool for the analysis of the vibrational
and noise behaviour of mechanical structures.
In experimental modal analysis, the dynamic ©behaviour is studied by
means of a model, based on transfer function measurements. One of the
main limitations of the experimental technique in a lot of applications
is the highly specialised equipment and the corresponding investment.

Owr aim was to design a multichannel data-acquisition system
front-end for our H.P.1000 computer (Digital Data Harvester). This
system should be easily expandable and flexible enough to be used with
a wide range of mini and micro computers. Although the original design
purpose was to develop such a system for Modal Analysis, its
application area is likely to be much wider. ... —_—

The design of this system is related to the evolution of Fourier
Analysis equipment into two directions

*The small, but powerful systems, based on a microcomputer or even a
microprocessor, with a limited number of channels, will remain a
good solution for many problems.

¥The 'big' systems, which are expensive as they are inflexible to be
used for other purposes, will be more and more replaced by general
purpose computers with a data-acquisition front-end and eventually
upgraded by a preprocessing unit or an array processor.

As the expandability to a great number of channels was the most
important design requirement, some attention will be paid to the
reasons for this demand. After a summary of the other requirements,
our solution proposals will be discussed in some more detail.

2. MULTICHANNEL MODAL ANALYSIS.

The reasons for multichannel measurements fall into three major
classes, which are all, directly or indirectly, related to the systen 1
rirameter accuracy.

* The measurement time.
* The consistency ot the calculated parameters.
* The use of inherently multichannel analysis techniques.

* o
2.1. Measurement time
When a Modal Analysis is performed, the total time Tp, spent on
the project, is a summation of ® 'Y
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* The set-up time Ts (geometry definition, exciter 1location,
equipment set-up and testing).

* The measurement time Tm (acquisition and processing of the data).

* The analysis time Ta (curve-fitting, interpretation, further
analysis).

Tp = Ts + Tm + Ta
The significance of the measurement time can vary widely depending on
many factors. When th.s +{ime becomes important, it can be reduced
sharply by measuring a lot of channels simultaneously.

Tm = (N/C)*Av¥*Acquisition time + N¥Av*Recovery time

N = number of measurement points * number of exciter locations.

C = number of parallel measured channels.

Av = number of averages.

Acquisition time = time to take the measurement samples.

Recovery time = delay time before the next acquisition can be
made.

2.2. Consistency of the parameters.

In some applications, the structural characteristics being

measured may change during the test, depending on parameters such as
temperature... The influence of nonstationary noise signals may also
affect the consistency.
It should be 1investigated if multichannel acquisition gives a better,
more consistent set of parameters in such cases, or that, contrary, it
gives parameters which are more biased by the momentary, maybe system
dependent noise.

2.3. Inherently multichannel techniques.

A lot of new techniques are coming up, based on multiple input /
multiple output system modelling (1), where the acquisition of, at
least all the input channels, should be simultaneous.

Some concrete research topics are :

* Multiple point excitation of systems, where different columns of
the transfer function matrix are measured at the same time (2).

The advantages of this technique are : better energy distribution in
the system, excitation of 1local modes, 1increased accuracy of the
results because of the information redundancy.

* The wuse of coherence techniques in source 1localisation and
identification.

* The use of microphone array's in acoustic measurements.
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3. MULTICHANNEL MEASUREMENT SYSTEM.

The system is built up around a central controller module.
Around this module, a number of acquisition channels and a signal
generator will compose the concrete system.
The link with the computer is an interface module, which passes the
computer commands to the controller and the generator, and the measured
data from each channel to the computer (Fig.1).

3.1. Acquisjition modules.

Bach acquisition channel <contains a transducer interface, an
autoranging amplifier, an anti-aliasing filter, a sample-and-hold, an
analog-to-digital convertor and a buffer memory (Fig.2).

The choice of an ADC on each channel module is based on following
reasons

* Once the signal is digitised, it can't be affected by noise, and
the data-flow is much easier to control.

* The price of N ADC's with a maximum sample-rate i is about the
same as for one ADC with a sample-rate N*i (for i=25000).

* The expandability is better because of the greater autonomy
of each module.

3.1.1. Transducer inputs.

The first stage 1is an accelerometer compatible input, with an
adjustable current source and a pre-amplifier which can be set in
correspondence with the transducer sensitivity. If an open circuit or
short circuit is detected at the transducer input, an indication is
given. This allows for an impedance check before each measurement.
This stage can only be used with accelerometers with a built-in
FET~amplifier.

3.1.2. Amplifiers.

The amplifier is a programmable gain amplifier (*1 to *800), with

autoranging capabilities. The autoranging procedure takes place during
a test phase preceeding the actual acquisition, and is based on
overload information from the AD convertor.
During the actual measurement, this overload status is monitored and a
count is made. After the measurement, the gain settings and the number
of overload's during the measurement, are read-out to the computer.
Depending on the number of overloads, the measurement data are accepted
or rejected, taking into acount the type of excitation signal.

3.1+3. Anti-aliasing filters.

The anti-aliasing filters are single-chip switched-capacitor
filters which can be programmed by means of a control clock.
The choice of those switched capacitor filters, which are analog, but
time-discreet ('sampled-data') components, was one of the most crucial
points in the design process.

O0ld-fashioned analog filters become very expensive if they have to

be programmable, accurate, and steep (72 db/oct.) at the same time.
Therefore, recent developments in digital filters are used in most
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modern Fourier Analysers, mostly Dbased on the oversampling and
decimation principle (4). The arrival of low-priced digital filters
may expand their wuse to general data acquisition systems, but besides
of the cost of the filters themself, the oversampling principle implies
a much more expensive Sample / Hold and ADC circuitery.

As these developments will take some years, the only choice for
low-priced programmable filters were the switched capacitor filters.
Their roll-off is very high (100 db/oct.), (Fig.4), the phase accuracy
is better than 2%, but for those 7-pole, 6-zero elliptic filters, this
still means 0.02%630=12 degrees. A software correction is possible as
their monolithic design guarantees a high stability.

3.1.4. Sampling and AD-conversion.

The design specifications were
* 12 bit resolution

* Consequent accuracy of the SH and ADC components.
This means for Fmax = maximum signal frequency = 10 kHz, and Amax =
maximum signal amplitude = S V.

2

Aperture jitter LT 21 /(2AFmax) = 3 nanosec.

Droop rate LT N

.Amax/Tadc = 0.1 V./millisec.
Feedthrough LT 24' +Amax = 2 mV.

Slew rate GT 24Fmax.Amax

0.3 V./microsec.

Tade = AD conversion time + SH acquisition time LT 1/max.sample
rate 40 microsec.

3.1.5. Buffer memory.

To avoid sample-rate reduction by interface limitations, each
channel has its own buffer memory. At this moment, this is a 1 K ¥ 12
bit memory, but an extension to a 4 K or even a 64 K memory is very
easy.

3.2. Signal generator module.

So far, a programmable function generator has been developed, with

pre-programmed signal types.
This generator has following characteristics

Signal types : continuous sine, single shot sine, cosine, ramp.

Signal frequency ranging from 0.01000 to 9999. Hz

Amplitude : O to 5 V., step 1mV.

Offset : -5 to +5 V., step 2mV.

Sample-rate output f = F(sin) * 2! (i = 3% to 10)
The generator is built-up around a 1024 point, 12 bit wide ROM table

(Fig.3). An extension to a general DAC system, based on a RAM-buffer,
is under study.
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The number of points‘ and the wordlength were defined following the
design criteria in (5), pp 42-48 and pp 207-241.

A variable clock generator, based on a Phase-Locked-Loop (P.L.L.)
circuit is applied to the ROM-addres counter and defines as such the
resulting sine frequency. A divided output signal from this P.L.L.
can be used as a sample-rate generator in order to permit leakage free
measurements.

Due to this way of generating a sine-wave, the signal has a very high
spectral purity.

The settling time of the generator is defined by the response time of
the P.L.L. This time is limited by the response capabilities of the
phase comparator. A special design for this comparator was made, in
order to obtain a maximum response time of 5 ms, while maintaining a
frequency stability better than one digit.

%3.3. System control module.

The task of this module can be divided in following parts

* Derivation of the timing signals for filter, SH, ADC, data buffers
from an internal clock ,from the generator related clock or from an
external input.

* Supervision of the data-flow from the measurement modules to the
computer and from the computer to the generator and the control
modules.

* Triggering of +the signal acquisition (with possibility for
pre-triggering with a user definable amount of pre-trigger.)

As each measurement channel contains as much 1logic as possible, the
global system control task is greatly reduced and the system becomes
easily expandable to more measurement channels. A maximum of 64
channels 1is standard, but an extension to a higher number 1is
straightforward.

3.4. Interface.

The interface with the computer is a 16-bit parallel interface
with a 3-wire handshake (Computer Command, System Flag, 1/0-Status) The
Digital Data Harvester has already been connected to a HP.9845, HP.9816
and HP.9826 desk-top computer and to a HP.1000F minicomputer. In the
case of the H.P.12566 microcircuit interface card of the H.P.1000, the
I/0 line 1is not present. Due to this fact, 2 interface cards are
needed (one for input, the other for output). A solution to this
problem may be to use the 05451-60025 Interface Card from the H.P.5451
systems, which has two sets of two-wire handshake lines, and which is
backward compatible to the 125666 card (10). The problem is then to
adapt the DRV-72 driver to the use of those two sets of handshake
lines.

A more interesting approach from the computer sgystem point of
view, is a GPIB (IEEE 488) interface bus. From the hardware point of
view, this is a more complex task, but this problem will be studied as
new VLSI chips ease this task.

419

P

N

A,




3.5. Digital signal processing modules.

In section 2, the measurement time was studied. An important
factor was the recovery time before another measurement could be
started.

In random excitation measurements, this time is spent mostly on the
calculation of the FFT and the correlation functions of the data. When
performing & ZOOM transform, the frequency translation and the digital
filtering also take a lot of time. This time is of course proportional
to the number of channels and it might become a limiting factor for
multichannel measurements, unless a very fast {one for the whole
system) or a very cheap (one for each channel) processing unit is
designed. So far, all commercial products have one central FFT
processor.

There are different approaches to perform FFT's.

3.5.1. A software FFT.

In the classical systems (HP.5451C...), the FFT is microprogrammed
and takes 50...80 milliseconds for an 1024 point transform. When using
a HP.1000F computer, even an optimised program (Radix 8-4-2), written in
Fortran (6), takes 400 ms. Microprogramming the HP.1000 can reduce
this time to 80 ms, but this is a time consuming (or expensive) task.
When using a desk-top computer, a 1024 point FFT takes seconds or even
minutes.

The fastest way at this moment is to use an array procesor, which
takes only 4 millisec's (7), but this solution is rather expensive as
most modern array processors are in fact too powerful. Smaller, custom
designed array processors may be the solution.

3.5.2. A dedicated FFT processor.

3.5.2.1. Design criteria.

When considering to develop your own FFT processor, the execution
time remains the primary design goal. But, as such a processor would
most probably be a fixed point (or block floating point) calculator,
the calculation word 1length must be chosen corresponding to the
accuracy demands.

In (8), a theoretical upper bound for the roundoff-error,
expressed as RMS(error)/RMS(signal) is given. This error decreases by
a factor two for each additional bit, and is proportional to the square
of the block size (if the data are scaled after each FFT-step).

For a frequency domain S/N of 60dB, 12 bits are suited up to 128
points, 16 ©bits up to 2048 points. Experimental results gave better
results, as the error remains well below the theoretical upper bound,
by an amount depending on the signal type.

Another error arises from the coefficient word lenght. Contrary to the
round-off noise, this error is biased. A good choice is to take the
same resolution for data and coefficients.

3.5.2.2. FFT processors.

A design of a discrete hardware FFT processor is rather cumbersome
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but the arrival of new VLSI products (4) for digital signal processing
purposes may make such design feasible. A signal processing unit baased
upon such chips consists of a small number of powerfull components.
There already exists some complete all-in-one processors. Those
DSP-processors have a multiplier, data and coefficient memory and a ALU
on chip. They may be programmed for FFT purposes. Unfortunately, only
very few of those IC's are available as pre-programmed FFT-processors.
Their price is still high, but will decrease considerabely in +the
future.

Another alternative is the use of microprocessors. The price of
16-bit microprocessors is steadily going down and their performances
increase. Each channel should have his own microprocessor in order to
realise a sufficiently high calculation speed. A new evolution in this
area is the integration of a hardware multiplier on the microprocessor
chip, so that multiplication times of 2 microseconds can be obtained.
At this moment, this is still a software, but internally programmed,
operation. As this function is a single instruction operation, the
only difference for the user is the multiplication time, which is about
7 microsec. for a 16*16 MUL. This solution is very interesting as
such microprocessors could still Dbe ©programmed with the usual
development systems.

%3.5.3. Other DSP applications.

The same considerations are valid for the ZOOM transform as well.
As for stepped-sine measurements, the calculation time becomes 1less
important due to the long system stabilisation time, which can be used
in an efficient way for this purpose. Nevertheless, it will be studied
if it is feasible to perform this calculation in a hardware module.

4. APPLICATIONS.

At this moment, the acquisition, generator and control modules are
operational. The digital signal processing is still performed by a
computer, but an extension with a dedicated FFT processor is wunder
study.

4.1. Stepped sine measurements.

So far, the system has mainly been used in stepped-sine
measurements in order to analyse the feasibility and the
characteristics of this technique (3). In this study, the accuracy of
this method, the influence of measurement parameters (number of
points/period...) and the effect of the transient system response after
a frequency change were analysed. As the long measurement time is one
of the main drawbacks of this method, an attempt was made to optimize
this time by doing multichannel acquisition, with the )rresponding
signal processing being done during the system stabilisation time.

Because of the system's flexibility, completely automated
measurements were possible. This has been applied to analyse the
influence of test conditions on the mechanical characteristics of
rubber elements. The feasability to use this system for the study of
system non-linearities will also be investigated.
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4.2. Modal analysis system.

The final design goal however, was to develop a multichannel
measurement system for modal analysis purposes. Since such a systenm
would consist of an analog front end, connected to a general purpose
computer (mini or micro), which can easily be programmed, the
flexibility is high. At this moment, an 8 channel system is completed.
In order to use it for modal analysis, measurement software for the
system control, data acquisition and signal processing has to be
written. In commercial Fourier Analysers, these tasks are performed by
firmware.

The direct application of this system will be to analyse the
characteristics of multiple excitation measurements, which appear to be
promising (2), when applied to complex structures (cars, planes...)
(9).

Another topic, which is investigated, is the feasability of using modal
analysis for quality control purposes. As the minimisation of the
measurement time is essential for this goal, a multichannel system will
be a necessity.

Another application of +the Digital Data Harvester is to develop a

low-cost 1impulse excitation measurement system, based on a desk
computer.

4.3. Data acquisition applications.

Besides of these concrete research topics, this system can be used
in any modal analysis or in any signal processing application 1in the
same frequency range (to10 kHz.). Current applications in our lab are
the acquisition of geometry accuracy measurement data and the analysis
of the static characteristics of air Dbearings. In this 1last
application, the force-displacement relationship of the air bearing is
measured. A slowly varying force is applied and measured by means of a
strain gauge. The corresponding displacements at different points of
the bearing are measured with inductive pick-up's.

Fuiure applications will ©be the 1incorporation of this system in a
rubber fatigue analysis equipment and the analysis of the dynamic
properties of air-bearings.

5. SUMMARY.

To reduce the measurement time and to increase the consistency of
the calculated system parameters, a new multichannel data-acquisition
front-end (The Digital Data Harvester) is developed to be used with a
general purpose mini- or microcomputer.

The ©basic principle in the design of such a system is the
modularity of the different subsystems.
The basic subsystem modules are

* A measurement channel in which the signal is amplified, filtered,
sampled, digitised and buffered.

* A signal generator with a fully programmable sine-wave generator.
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* A controller.

* An interface to the computer.

Because of its modular design, it Soon became apparent that it was very g *

easy to configure other systems, based on the same modules. besides the

classical Modal Analysis applications, these systems are also used in

general dynamic analysis and digital signal processing problems.
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N LIMITATIONS ON THE IDENTIFICATION

N OF DISCRETE STRUCTURAL DYNAMIC MODELS
.’—ﬁ—%
o Alex Berman

Kaman Aerospace Corporation

Bloomfield, Connecticut USA AD_P003

~/Discrete linear analytical models of continuous structures play an impor-
tant role in dynamic analysis. A good model will not only predict responses
over the frequency range of interest, but will also be representative of the
physical characteristics of the structure. Thus, it will have the capability to
predict the effects of changes in physical parameters and it will correctly
represent the structure when it is treated as a component of a larger system,

1. INTRODUCTION

A model derived from the known physical parameters of the structure may
not adequately predict measured dynamic characteristics. A model derived from
dynamic testing may not be a good representation of the physical characteristics
of the structure.

In recent years, a number of procedures have been suggested and applied
which use measured dynamic data to identify an analytical model or to improve an
existing model. Typical of these methods are: Rodden, 1967 [1], measured modes
are used to identify static influence coefficients; Berman and Flannelly, 1971
[2], measured modes are used to improve a mass matrix and identify an "incom-
plete" stiffness matrix; Collins, et al, 1974 [3], a statistical iterative
method is used to modify physical parameters; Baruch, et al, 1978 [4], measured
modes and an analytical stiffness matrix are corrected; Chen and Garba, 1980
[5], and Grossman, 1982 [6], techniques for modifying physical parameters are
improved; Berman, Wei, Nagy, 1980 (7], 1983 [8], mass and stiffness matrices are
improved using modal data; Leuridan, et al, 1982 [9], mass damping, and
stiffness matrices are estimated using response data.

Few of the methods published have been successfully applied to realistic
structures. Rarely has there been any discussion of the physical relationships
between an analytical model and test data which tend to limit the application of
mathematically correct algebraic relationships. The purpose of this paper is to
identify some of these limitations with the objective of directing research in
this area in more productive directions. -

2. PROBLEM DESCRIPTION

In the problem under discussion, it is assumed that there exists a linear
undamped continuous structure which is available for dynamic testing. Measure-
ments are made at a finite number of points on the structure at a continuous
range of frequencies. Data is assumed to be available which can be in the form
of mobility matrices (displacement per unit force) or which can be transformed
into natural frequencies and modal displacements at the points of measurement,
All the measured data has some error associated with it.

It is desired to formulate a discrete linear analytical model of this
structure consisting of a mass and stiffness matrix where the degrees of freedom
of the analytical model correspond to the points of measurement or a subset of
them. The analytical model should be representative of the physical character-
istics of the structure and should predict the dynamic response (mobility) and
natural frequencies and modes of the structure.

There may exist an analytically derived approximation to the model. A

limitation on the frequency range of applicability of the model would be
acceptable.
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The question to be considered is this: is it possible to use the test
data to identify or improve an analytical model of the test structure, and ir
so, what limitations, if any, are there on this process?

3. PARAMETER TYPES

References [10j, [11] briefly discuss the characteristics of two classes
of parameters: those associated with a test ("measurable") and those associated
with the derivation of an analytical model ("intuitive"). The measurables
include mobility, normal modes, natural frequencies. The intuitive parameters
include mass, stiffness, impedance. The problem discussed here is related to
the use of measurable parameters to help to identify intuitive parameters.
Recognition of the distinct characteristics of these parameter types is a first
indication of possible difficulties.

The intuitive parameters are directly related to the geometry and the
physical characteristics (e.g., mass, moduli of elasticity) of the structure.
The value of each parameter of a discrete model is also completely dependent on
the specific formulation of the model, that is, on the specific set of degrees
of freedom selected by the modeler. These parameters are precise but not
completely accurate. As will be shown below, intuitive parameters cannot be
directly measured (for a realistic model of more than a trivial number of
degrees of freedom.)

The measurable parameters are completely independent of any model
formulation. That is, the response of a point on the structure depends only on
the location of that point and the location of the excitation regardless of
where the degrees of freedom of a model may have been placed. These parameters
may be accurate but are not precise due to unavoidable equipment limitations.

The conversion of either parameter tvpe to the other involves a matrix
inversion or the equivalent (e.g., solution of a set of differential equations).
Since derived intuitive parameters are numerically precise, the matrices may be
inverted but the results may not be accurate. Since measurable parameters are
not precise, meaningful inversions may not be possible. This is discussed
further in a following section.

4. DIRECT MEASUREMENT

As an illustration of the statement made above that intuitive parameters
cannot be directly measured, consider the stiffness matrix, K. K is a static
matrix which relates deflection, x, to applied steady forces, f:

Kx = f (10

where K is an n x n (n = number of degrees of freedom) matrix and x, f are n
element vectors. Given the physical characteristics of the structure and the
degrees of freedom of the analytical model, the elements of K may be calculated
theoretically.

Consider now the possibility cf directly measuring the elements of K by a
test procedure. From equation (1) it is seen that the i, jth element may be
written:

Kij = (afi/axj) (2)
or, Kij is the force at degree of freedom i required to produce a unit

displacement at degree of freedom j, while all other degrees of freedom of the
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model are constrained to be zero. For any realistically sized model this is
obviously an impossible condition to implement in a test.

Note that a completely opposite conclusien results when one considers the
inverse of K, the static influence matrix, C, which is a measurable quantity by
the previcus definition. C cannot be computed directly from the physical data,
except by inverting a calculated K matrix or by solving differential equations.
C is defined as:

Cf = x (3
and

C,. = (bxi/afj) (4)

13
or, Cij is the displacement at degree of freedom i due to a unit force at degree

of freedom j, while all other forces are zero. These constraints are trivial
and it is possible to measure this matrix.

Note also that the constraints on Ki‘ depend on the set of specific
degrees of freedom of the model, while Ci,Jdepends only on the location of
degrees of freedom i and j and will not vgry with the model formulation.

Since K = C-l and C is measurable, consider this as a possible means of
identifying the stiffness matrix. For an n degree of freedom model of a
structure, K and C may be expressed as follows (see Ref. [2]):

~ ;:‘ 2 T
K—i=1 Qi/miM¢i¢iM (5)
a 2 T
C = i2=31 1/(52i mi) ¢i ¢i (6)

where {21, mi, ¢ . are the natural frequency, generalized mass, and modal vector

of the ith mode and M is the mass matrix (which is assumed to be known for the
time being). Note that the dominant terms of K are the high frequency modes

(SZ2 is in the numerator) and the dominant terms of C are the low frequency
modes.

K may be obtained from a measured C only if this matrix contains the
necessary information regarding the high frequency modes. For a model of even
modest size (say, 20 degrees of freedom), the measurement of C accurately enough
to represent the effects of the high frequency modes (whose influence decreases

by Sliz) is virtually impossible. For larger models such accuracy is unachiev-
able,

I1f the matrix C (of order n) does not contain information about all n
modes it is singular. 1In practice, noise in the measurements will allow a
numerical inversion; however, information which is not contained in the matrix

cannot be extracted and no numerical procedure can meaningfully perform the

operation, K = C-I. The numerical inverse of a measured C matrix will have no

physical meaning.
Another possibility is to measure the first n modes of the structure and

form K as in equation (5). It will be shown below that this procedure will not
identify a K matrix which represents the structural characteristics since the
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higher modes used are those of the structure and not of the model, The modes in
ecuation (5) are those of the model. The high modes of the structure (ixn) are
not the same as those of a valid model.

5. RELATIONSHIPS BETWEEN THE STRUCTURE AND THE MODEL

The structure tested may be thought of as being represented by a large
order unknown discrete model of order s where s »o0. The analytical model is of
order n where n«s. The n degrees of freedom of the model may be considered to
be a subset of the s degrees of freedom of the structure.

The complete model of a linear, undamped structure may be written in the
frequency domain as:

2 -
(KS - u)MS) X, = fs ¢))

or
zs(u)) X = fS (8)

where Ks and MS are of order s, X and fs represent the response and applied

forces at the s degrees of freedom of the structure at a frequency of w and
Zs (w) is the corresponding impedance matrix.

Consider that the degrees of freedom are ordered so that the subset
corresponding to the model are at the top of the vectors and then the upper left
partitions of the matrices correspond to the model degrees of freedom.

z, (w)=| ' 2 (9
T
22 ZA
The mobility, YS (w) = Zs-l( W ) may also be written
Y Y
v (w) =1 7 (10)
T
Y2 Y4
and the mobility of the model degrees of freedom is
-1, T,~1
YM( w) = Y, = (Z1 - ZZZ4 22 ) (11)

Since Y is a measurable quantity and represents the actual response of the

structure, the inverse of YM is the impedance of the model at the specified

forcing frequency (see Ref. [12]) or

-1, T

ZM(w)=ZI_ZZZ4 z, (12)

Assuming a2 model of the form of equation (7) for the reduced degrees of
freedom, equation (12) becomes
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ZM(w)-KM—wZW

-1
wM ) - K (X, —(JZMA) KT (13)

= K - 1 2 2

where it has been assumed, for simplicity, that M, = 0 (as in the case of a

2
diagonal mass matrix), and the subscripts refer to partitions of the matrices as
in equations (9) and (10).

The stiffness matrix of the reduced model may be obtained from equation
(13) when w= 0
-1 _ T

Ky =K -K K K (14)

and then, from equation (13)

_ -1 2
MM = Ml + K?_K4 M4 (I-w

-1, -1 -1 _ T
K4 MA) K, K, (15)

Equation (14) is that of Turner [13] and equation (15) reduces to that of Guyan
[14] at w= 0.

Equations (14)-(15) represent an analytical model which would exactly
predict the steady state response of the structure at all degrees of freedom of
the analytical model at any frequency. Note that this model is nonlinear since
the mass matrix is a function of the forcing frequency.

In the problem under consideration K and M_ are unknown; and it is
desired to identify constant s . Fromsequatign (15) it is apparent
that a constant coefficient model can only be an approximation with limits on
the frequency range of applicability. In engineering practice, it is commonly
accepted that for such a model with n degrees of freedom, the validity of the
model will only cover a frequency range of up to approximately g)n/z. The

specific frequency range, of course, depends on the characteristics of the
actual structure and the formulation of the model.

Note that equations (14) and (15) do not represent a means of obtaining MM
and KM from test data since none of the matrices on the right hand sides of

these equations are known. They are shown to illustrate the relationships
between a desired model and the actual structure.

6. SYNTHESIS OF STIFFNESS MATRIX

Based on known physical characteristics of a linear structure it is
possible to define a unique constant stiffness matrix (equation (14)) with
physical meaning (equation (2)). Direct measurement of the stiffness matrix has
been shown in Section 2 to be not possible.

The modal expansion of equation (5) suggests the possibility of measuring
the first n modes and frequencies of the structure and synthesizing K (assuming
M is known) by summing the modal contributions.

Equation (5) is a valid representation only for a linear model where the
modes and frequencies are the eigensolutions of the model as distinguished from
those of the structure (unless they are identical), There are two related
inconsistencies in the above suggestion. First, from equation (15) it is seen
that for a valid model that includes all n modes, the model is not linear.
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Second, as also discussed in Section 5, the n modes of a linear model that
includes a valid K matrix cannot be the same as the corresponding n modes of the
structure.

It may be possible, given an appropriate constant mass matrix, to sum the
measured modes as in equation (5). This will yield a linear model which will
have the same modes and frequencies as the structure. There is no reason to
expect, however, that such a model will have any physical reality (or that K
matrix may be related to the physical characteristics of the structure) or that
the model will have the capability to predict any dynamic characteristics other
than those which were actually measured.

There is another difficulty associated with the use of n measured modes in
an n degree of freedom model of a continuous structure. It is apparent that n
points cannot describe the shape of the higher modes which may have approximate-
ly n nodes and n antinodes (e.g., for the simple case of a thin beam). In addi-
tion, it is unlikely that the mass matrix required to make these poorly
described modes orthogonal will have any relation to physical reality.

In reference [2] an "incomplete" stiffness matrix is formed by summing the
lower order terms of equation (5). It is recognized that this matrix does not
represent the physical characteristics of the structure. While this model may
have valid specialized capabilities, these must be demonstrated for any
particular application.

7. EVALUATION OF APPROACHES

Methods which use test data alone to identifyv a linear M and K model of a
continuous structure, where the identified parameters can be physically related
to the static structural characteristics, appear to be unachievable. Variations
in the mathematical formulations where, for example, K is expressed in terms of
the inverse of a measured modal matrix or where mobility measurements are used
directly are simply algebraic manipulations and the same conclusions must be
drawn.

Other methods use an approximate M and K model based on analysis and
attempt to adjust these to agree with test data over a limited frequency range.
Such methods have a potential for success since a linear model may adequately
represent the structure when the frequency range is limited. Since the model is
of order n and the number of modes is less than n, there are an infinite number
of models which will satisfy the eigensolution requirements and will approximate
the physical characteristics.

Methods of this type fall in two classes: a limited number of physical
parameters are varied to modify M and K or the actual elements of M and K are
varied. Since there are an infinite number of solutions to the problem, there
is no reason to assume that computed variations in a limited set of physical
parameters has any necessary relationship to the "true" values of these
quantities., Selection of different parameters may also result in a different
but "good" solution.

Methods which modify all or a subset of the actual elements of the
matrices result in models which may not represent physically realistic
structures. Since there are an infinity of such models, any such valid
procedure must select a solution which represents some minimum variation from
the original analytical solution. If the changes are large enough to destroy
the physical interpretability of the model, and since the changes are minimum,
one must conclude that either the analysis or the test data or both are in
error. The result of an analysis of this type can only be considered to be
successful if the changes fall within the original expected uncertainties in the
analytical model.
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8. NUMERICAL ILLUSTRATION

As an illustration of the phenomena described in Section 5 a simple
structure and z test are simulated. The structure consists of twenty lumped
masses connected in series by springs with mass number 1 connected to ground. A
test is simulated with modal measurements made at seven points. A seven degree
of freedom model is desired to represent the twenty degree of freedom structure.

Table 1 contains the description of the mass and stiffness elements and
the first seven exact modal displacements and natural frequencies. 1In the
simulated test the natural frequencies and the modal displacements are
available. A seven degree of freedom model, however, would only predict mode
shapes at the seven test points.

Table 1 Description of simulated test specimen and modes and frequencies

Mass Test  Mass Spring Mode= 1 2 3 4 5 6 7
No. Point kg n/m f(hz)= 9.5 31.0 48.0 70.0 81.2 104.2 119.2
-6
x10
1 0.8 0.6 .09 .39 .33 -.62 79 -.22 .54
2 1.8 1.8 .12 .51 42 -.78 .95 -=.25 .59
3 1.2 1.4 .17 .65 .50 ~-.78 .85 -.15 .22
4 1 1.6 1.0 .22 .81 .55  ~-.60 .43 .06 -.44
4 1.2 0.8 .29 .95 .51 -.13  -.33 .28 -.77
6 1.0 1.8 .33 .99 .46 .09 -.60 .30 -.63
7 1.0 2.0 .35 1.00 .40 .28  -.77 .25 -=.32
8 2 1.8 0.6 .43 .98 .12 .83 -.99 -.09 1.00
9 0.6 0.2 .67 .60 -.80 1.00 72 =76 -.10
10 1.8 0.8 .73 49 -.97 .89 1.00 -.68 -.33
11 3 1.0 0.4 .84 .18 =-.93 -.11 .37 .79 .04
12 1.0 1.2 .87 .07 -.85 -.43 .08 1.00 14
13 1.8 2.0 .89 0 -.76 -.57 -.10 .91 .16
14 4 1.8 0.6 .94 -.22 -.,25 -.73 -.64 -.56 ~.04
15 2.0 1.6 .95 -.29 -.03 -.62 -.65 -~.8 -.09
16 5 0.6 1.2 .97 -.37 .26 -.28 -.38 -.61 -.08
17 1.2 0.8 .99 -.48 .68 .28 .11 ~.08 -.02
18 6 2.0 1.4 .99 -.53 .87 .55 .36 .26 .02
19 1.0 1.2 1.00 -.55 .95 .68 .50 .46 .05
20 7 0.2 0.4 1.00 -.56 1.00 .76 .57 .59 .06

Equations (14), (15) represent a reduced model which represents the static
characteristics of the structure but is seen to be a function of frequency.
Seven degree of freedom models were formulated at several specific frequencies
and each was assumed to be constant and an eigenanalysis was performed. The
results of these computations are shown in Figure 1.

Note that only when the model frequency equais an eigenvalue is the
eigenvalue exactly representative of the actual structure. At any specific
value of the model frequency, no more than three eigenvalue are good
approximations in this case.

It has also been observed that the degrees of freedom of the model cannot
properly describe the shapes of the actual modes of the structure. This is
apparent from Table 1.

As an illustration of how the model modes vary with the model frequency,
Table 2 gives the displacements of mode 3 for various model frequencies (48 hz
represents the exact mode).
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Figure 1 Effect of model frequency on natural frequencies

Table 2 Effect of model frequency on shape of mode 3

Model frequency -~ hz.

Test

Point 0 40 48 60 70
1 .53 .54 .55 .58 .65
2 .15 .13 .12 .12 .17
3 -.95 -.95 -.93 -.89 -.78
4 -.38 -.28 ~.25 -.16 -.01
5 .20 .23 .26 .32 .42
6 .86 .86 .87 .88 .90
7 1.00 1.00 1.00 1.00 1.00

9. CONCLUDING REMARKS

The purpose of this paper has been to open the technical consideration of
what is and what is not possible in the field of the identification of
structural dynamics models. First indications suggest that rather severe
limitations exist on the use of test data alone and that the most promising
procedures include a combination of test and analysis.

In the last mentioned class of procedures, the number of unknowns (ele-
ments of matrices) should be very much greater than the conditions to be met
(modes and frequencies), thus small changes in the elements can be expected if
the analysis and the data are good. However, since the solution is only one of
an infinity of solutions, no physical interpretation should be made of the
numerical results. The best one can say is that the model is a reasonable
physical representation and it predicts the measured dynamic behavior of the
structure. One may presume that such a model may be used for other analyses of
the structure with greater confidence than the original analytical model.
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1. INTRODUCTION

The theoretical analyses of a structure is always approximate because of
the impossibility of accurately modelling every feature. Thus when a structure
has many important resonances or complicated damping mechanisms measurement
methods are- the only means of determining dynamic behaviour. In addition,
measurements can be used to determine the characteristics of non-linear struc-
tures which are frequently too complicated to be analysed theoretically. Con-
sequently measurement methods form an important part of vibration analysis.

High quality measurements are often difficult to achieve and it is the
objective of this paper to present three techniques which greatly enhance the
accuracy and precision of structural vibration measurements. The measurement
techniques considered below all relate to the frequency response function or
transfer function which expresses the steady state response of a structure to
a harmonic excitation. Thus the frequency response function can be defined as:-

© Huw = 3 1)

where 7’“) = Q e“ot

1)(*) _P E}ait

The real part of q and p are the response (displacement, velocity or
acceleration) and the force respectively. Q and P may be complex in order to
express a phase angle. Although defined using harmonic excitation the frequency
response function may also be defined using transient or random excitation [}].
For a linear structure the frequency response function completely defines the
relationship between any force and the response of the structure. For a non-
linear structure a single frequency response function is not sufficient to
completely describe the response and several special frequency response functions

+ must be used. This is described below.
€> Three problems which cause significant errors in the measurement of
frequency response functions are:s

1. Nonlinearities and Noise)
2. Errors due to electrodynamic shakers)
3. Interpretation and model fitting of frequency response functions.

Techniques for overcoming these problems are presented below.
2. NONLINEARITIES AND NOISE

Figure 1 shows the results of applying four conventional measurement
methods to the same nonlinear structure. The modulus of a frequency response
function is shown in each case. The structure consisted of a single degree of
freedom system with a cubic stiffness nonlinearity. The equation for the
structure was
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where for the cases shown in figure 1
Y = 003
w, = a'w s-!
E* = o
m = 1.0k

The continuous equation was represented by a finite difference equation
and the measurement methods simulated digitally. By using a small time step
for calculating the response the finite difference equation was found to
represent the continuous equation with an accuracy of better than 1%. The
actual number of points used to simulate the measurement methods was less than
that calculated so that realistic sampling rates could be used.

2.1 Figure 1(A)

This frequency response function was obtained using steady state harmonic
excitation. For each frequency a force was applied which consisted of a
constant amplitude sinewave, The response was allowed to reach steady state
conditions and was then found to consist of a number of frequencies. The
amplitude and phase of the harmonic in the response at the same frequency as
the excitation was determined. The ratio of the amplitude of this harmonic to
the amplitude of the force constitutes the frequency response function shown in
the figure. The same amplitude of force was chosen for each frequency and this
amplitude was selected so that the displacement of the system would be equal
to 1.0m at resonance if € = 0. This type of frequency response function is
sometimes known as a describing function.

2.2 Figure 1(B)

This frequency response function was determined by applying the force as
a very short pulse shane to the structure. Fulses of the type chosen are often
obtained by using a hammer to excite the structure. The frequency response
function was then obtained by dividing the Fourier transform of the response by
the Fourier transform of the force. The pulse was selected so that the maximum
value of the response in the time domain was 1.0m with € = 0. The modulus of
the frequency response function is shown in the figure.

2.3 Figure 1(C)

This frequency response function was obtained in a similar manner to the
previous case. However instead of a pulse the force consisted of a rapid
frequency sweep between O Hz and 2 Hz in 50 sec. (This sweep is rapid compared
with the reverheration time of the structure.) The frequency response function
was once again determined from the ratio of Fourier transforms. The pulse was
selected so that the maximum displacement in the time domain would be equal to
1.0m if € =20

2.4 Figure 1(D)

This frequency response function was obtained by using a Gaussian random
force and determining spectral density functions associated with the force and
response. The equation used was

(3

tw) = —§§21;
Huw = 2E
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where 524> is the cross spectral density function between the response .~
force and Opp is the autospectral density (power spectral density) of the force.
The force was chosen such that the r.m.s. value of the response would be 0.5m
ifée = 0.

It can be seen that the force has been chosen in each case to give a
comparable response displacement. Thus the nonlinear effects will act to
approximately the same degree to produce comparable deviations from linear
behaviour. It can be seen that figure 1(d) shows a remarkable similarity to
the response of a linear structure. This is no coincidence and will be examined
further in the following sections. The frequency response functions (a), (b)
and (c) show considerable distortion from the response expected for a linear
structure. This distortion makes these frequency response functions difficult
to interpret. For example no method has yet been devised for estimating
parameters such as natural frequency or damping from these response functions.
Consequently the use of sinusoidal, pulse or sweep excitation does not seem
appropriate for the measurement of frequency response functions which contain
nonlinearities. This is particularly disappointing when considering sinusoidal
steady state testing which is generally an easy to use and robust technique.

The effect of noise on the above measurement techniques can cause
additional errors. Noise can generally be removed by averaging the results of
repeated tests. In the case of random excitation this is automatic but special
care must be used with the other techniques especially if the noise is harmonic.
For examples of averaging see [2].

3. RANDOM EXCITATION

The use of random excitation in the above examples produced a frequency
response function that looked as if it could have been produced by a linear
structure. It is a property of random excitation that the frequency response
function constructed will always be that of a linear structure. This linear
frequency response function which respresents a nonlinear structure has very
favourable properties. For example the frequency response function is an
optimum model of the nonlinear structure. Also the energy dissipated within
the nonlinear structure is correctly modelled by the linear frequency response
function.

These properties can be appreciated from figure 2. In figure 2(a) a
nonlinear system is shown with force p and response q. A linear model of this
nonlinear system is shown in figure 2(b). Here the force is the same but the
response has the term q, added to it to make it up to the output q. Figure 2(b)
is similar to the problem of a linear system with noise added to the response.
It was for this latter problem that the application of equation 3 was devised
[JJ. However conceptually there is very little difference between noise and
nonlinearities in as much that both constitute an addition to the response that
has no linear relationship with the force. Thus the method of testing using
random excitation and using equation 3 provides a means of obtaining a best
model of a nonlinear structure.

Although the best linear model is obtained, this model is only appropriate
for the particular force spectral density used. For example if a force with a
larger or smaller r.m.s. value was used then different linear frequency response
functions would provide the best model of the nonlinear structure. One approach
for modelling a nonlinear system is thus to measure a number of different linear
frequency response functions corresponding to different levels of force.
Alternatively a more complete analysis may be performed by measuring multi-
dimensional frequency response functions [3). These are defined by
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These multidimensional frequency response functions relate the nonlinear part of
the response q_ to the force p. In principle measurement of all the multi-
dimensional frequency response functions for a structure would provide a
complete model for the structure so that the response to any force could be
predicted. This area is the subject of continuing research.

Thus a technique has been presented which permits the measurement of a
linear frequency response function of a nonlinear structure.

4. ELECTRODYNAMIC SHAKERS

Electrodynamic shakers used to apply a force to a structure generally
interact with the nonlinearities and noise to produce significant errors.
Figure 3 shows the general configuration when testing a structure. It can
be seen that there is a feedback path which results in the force containing
information about the noise and nonlinearities represented by Qe+ This feedback
path results from the properties of the shaker [4). The force output by the
shaker is dependent on the amplitude of the displacement of the shaker coil and
on the mass damping and stiffness of the coil and its suspension. Electro-
magnetic effects also cause a feedback between the response and the force [5].
The effect of the feedback path is to correlate the force and the nonlinear and
noise source via the feedback path. Thus if the technique of the previous
secticn is applied directly the linear frequency response function will be
corrupted by additional correlations between between the force and q,. However
an alternative for equation 3 may be used which overcomes this problem. The

equation is
Sy (87

where Sg,‘g and Sf"b’ are cross-spectral density functions between q and z and
p and z where z is the input to the shaker. The input z is derived from the
random generator used to drive the shaker and is thus independent of the noise
and nonlinearities in the shaker and structure. The theory for this technique
is given in [4] and is easily demonstrated.

Figure 4 shows the frequency response function measured for one resonance
of a nonlinear system. The use of both equation 3 and 5 are shown. It can be
seen that there are significant differences. These differences are due to
shaker interactions which are eliminated by the use of equation 5. The non-
linear system for this experiment consisted of a 2m steel tube with a loose
support at its centre. The tube had a first resonance frequency at 74 Hz and was
excited by a Ling 407 shaker.

S. INTERPRETATION OF RESPONSE FUNCTIONS

After a linear frequency response function has been measured it is
necessary to interpret it. This is often achieved by determining a parametric
model for the frequency response function in terms of resonance frequencies and
damping ratios. Below is presented a novel form for plotting frequency response
functions which considerably aids interpretation.

The frequency response function for a linear single degree of freedom
oscillator has the form
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where (.. is the resonance frequency and Y the damping ratio. Figure 5(a) and
(b) shows the real and imaginary parts of this function plotted against
frequency. Figure 5(c) shows the frequency response function plotted on the
Argand diagram. Figure 5(c) is often regarded as the most useful for showing
up detail in the frequency response function. This type of plot was first
proposed by Kennedy and Pancu [6] .

An alternative method for examining the frequency response function is
to plot the reciprocal of the frequency response function. It can be seen
from equation 6 that for an oscillator this gives

o omwre) +aimrew 7
H (iw)

Figure 6(a) and (b) shows the real and imaginary parts of this function and
figure 6(c) shows the function plotted on the Argand diagram. It can be seen
that Figure 6 is simpler than the more usual method of plotting given in

figure 5. There are several advantages associated with this method of plotting.
The method separates the damping and mass-stiffness part of the frequency
response function. This may be made even more simple if the reciprocal of the
velocity frequency response function is plotted. In this case the real part is
a constant proportional to damping.

The determination of the natural frequency and damping from the reciprocal
frequency response function is simple. This may be done graphically or by
simple linear curve fitting procedures. Curve fitting is particularly straight-
forward because the noise structure is often simpler on the reciprocal frequency
response function compared to the usual frequency response function.

The manner in which this form of plotting shows up details of the frequency
response function can be seen from figures 7 and 8. Figure 7 shows a plot on
the Argand diagram of the linear frequency response function obtained for the
nonlinear system described in section 2. This plot has been obtained using
random excitation and the modulus is shown in figure 1. For comparison the
reciprocal frequency response function is shown in figure 8. It can be seen
that figure 8 enhances details and that althougli the frequency response function
is a linear model of the nonlinear system it is more complicated than that of
a linear single degree of freedom oscillator,

The reciprocal frequency response function has also been found to be
useful when considering systems with several resonances.

6. CONCLUSIONS

Three techniques have been presented which enable high quality frequency
response functions to be measured. It has been shown that despite nonlinearities
and noise the use of a random force to excite a structure will produce a linear
frequency response function. Also by means of a special application of cross
spectral density functions the effects of interactions between the shaker and a
structure may be overcome. Finally by plotting the reciprocal of the frequency
response function it has been shown that interpretation of the measured frequency
response function is simplified.
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AN INVESTIGATION OF THE BEHAVIOR OF THE SIMULTANEOUS
THREE AXIS VIBRATION SYSTEM

G.K. Hobbs; Consultant

Robert Mercado; Santa Barbara Research Center

1. SUMMARY

8,9 €00d-AV

’ Several high-rate production programs at Santa Barbara Research Center
(SBRC) placed emphasis on finding economical and efficient screening systems. A
quasi-random triaxial vibration system, including temperature cycling capability,
was selected. Two Screening Systems, Inc., Multiaxial QRS~100s have been used at
SBRC since June of 1980.

The systems have also been successfully used for locating defects. Some
defects that have shown up during screening could not be found in the rework cy-
cle under quiescent conditions nor could they be located using a single-axis vi-
bration system in conjunction with thermal cycling.

To more thoroughly understand the behavior of the quasi-random multiaxis
shaker, investigations of the motions in the time and frequency domains were un-
dertaken, including the relationships between the three linear axes and between
the three rotational axes. These investigations showed that the six axes of mo-
tion can be considered to be independeat in terms of specimen response to the in-
put motions. - -

2. THE SYSTEM INVESTIGATED

The QRS-100 is excited by pneumatically driven hammers which generate
pulses. An ASD (or Fourier) analysis of these impacts shows a line spectrum with
equally spaced lines. The fundamental frequency in the line spectra can be al-
tered by changing the hammer velocity through varying the input air pressure.
This is called smearing of the input. Each of the several (four are used as of
this writing) hammers has a slightly different character and further smears the
overall response of the QRS-100. The design of the structure between the hammers
and the specimen to be screened further modifies the ASD as experienced by the
specimen. The intervening structure is adjustable in several ways to allow vari-
ation in acceleration in the three axes and to control high-frequency rolloff.
Substantial changes in the spectra can be attained by design changes in the
structure between the hammers and the specimen.

Vibration is controlled by a microprocessor which controls the overall ac-
celeration level. The air supply to the vibrators is modulated by a fast-acting
digital flow valve which modulates the pressure in a quasi-random manner, result-
ing in spectral smearing of the input ASD. The overall grms input level is con-
trolled using six multiplexed accelerometer feedback signals and maintaining an
average as commanded by the program.

Temperature is controlled by an event programmer and a Research, Inc., tem-
perature controller. The events programmer determines the rate of change of tem-
perature, the temperature extremes and dwell times, and can also turn on the vi-
bration controller and GN, purge (if desired) at specified times during the
screen profile.

The mechanical shake table structure is mounted on air bags to allow motion
of the entire system within the environmental chamber. The impacters are mounted
to the outer ring on springs to provide adjustable high-frequency rolloff. The
inner and outer rings are clamped together by an adjustable force elastomer in-
terface to allow adjustment in distribution of energy between axes and also to
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effect high-frequency rolloff. Finally, the tent-shaped fixture is bolted to the
inner ring and there is a provision for mounting 12 specimens at a time. Figure
1 details a typical setup; further details of system configuration and perform-—
ance are given [1, 2].

For the application at hand, the screen process was intended to expose part
and workmanship defects. Note that there is no need to simulate actual field use
conditions in a screen because once the flaws are removed under accelerated
screening conditions, they will not fail under actual use conditions.

Figure l. The QR$-100
3. EXPERIMENTS RUN, LINEAR MOTIONS

Reference 1 discussed screening results, fixture surveys, and the quasi-
random response spectrum (QRRS). All of the results in Reference 1 were in terms
of acceleration spectral density and were limited to linear motion only. Since
knowledge of phase relationships between the axes was necessary to evaluate
stresses due to multiaxial motion, including rotations, a more complete descrip-
tion of the motions was required.

The axes of motion are shown in Figure 2, which also shows the actuator ar-
rangement. Note that the fixture is removed. Note also that the rear actuator
is Screening Systems Model No. PV 1 5/8 - 1.6, whereas the other three are NAVCO
MP 1-1 1/4.

Figure 2. Axes and Actuator Arrangement
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Each axis of motion of the QRS was examined to determine the statistical
distribution of linear acceleration on the fixture. The probability and cumula-
tive probability distributions were found to approximate the Gaussian distribu-
tion in both narrow- and broadband samples as previously reported [3].

For a sample of several locations on the fixture, auto- and cross—correla-
tions were calculated. The autocorrelation functions implied a typical broadband
random signal for all sample times and axes. The cross—correlations, however,
were much more difficult to decipher as some samples appeared to be correlated
and some did not. All showed evidence of the line spectra input from the actua-
tors, and showed that the actuators had different repetition rates. The cross-
correlation of different time samples taken at the same point always had varying
character. Many cross—correlations were checked and none were the same, leading
to the conclusion that the signals were nonstationary. These facts required the
signals to be analyzed in the time domain.

In order to reduce the analysis problem as much as possible, only one actu-
ator, the rear one in Figure 2, was utilized with the system run in the constant
pressure (manual) mode. Only the motions of one location on the fixture were ex-
amined in detail and that was at one of the triaxial accelerometers used in the
control system (Figure 3).

The signals from two accelerometers were fed into two charge amplifiers and
tracking filters and were used to drive the vertical and horizontal axes of an
oscilloscope. The bandpasses used in the investigations were 2 Hz, 10%Z of the
center frequency, 100 Hz, and complete bandpass. Note that the two signals were
not amplitude-controlled to be equal, so true Lissajous patterns were not formed.
Since the only actuator used was mounted in the y direction, the y axis responses
tended to exceed the x axis responses, which is not normally the case.

Figure 3. Control Accelerometer Arrangement

The tracking filters were first set to 2 Hz for a very close look at the
behavior of the system. Note that the half-power bandwidth of a structure is
generally much wider than this, so the specimen being screened responds to a much
broader bandwidth (as discussed in [1])). For example, a structure with a natural
frequency of 400 Hz, and with 4% of critical damping, has a half-power bandwidth
of 32 Hz.

The actuator produces repeated impacts generating a line spectrum. The
first line was at 68 Hz (for a given pressure) and the harmonics were found at
exact integer multiples of 68 Hz. For the frequency range below 68 Hz and be-
tween the harmonics up to about 1000 Hz, there were essentially 11 signals when
the analysis bandwidth was 2 Hz. At frequencies above 1000 Hz, systim nonlinear-
ities and slight changes in the actual repetition rate generated nearly continu-~
ous signals as the tracking filter was swept along. The ellipse drawn by the two
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signals was found to be amplitude-modulated and to wobble at the lower frequen-—
cies (up to the fourth harmonic at 272 Hz). The amplitudes varied in time by
factors of from 30% to 95%, and the angles of the principal axis varied about 5°.
Above the fourth harmonic the ellipse was very unsteady and varied in amplitude
and angle, with an ellipse principal axis varying 360°. (See Figures 4 and 5 for
examples.)

Selection of a 10% bandwidth at center frequencies below the sixth harmonic
(408 Hz) produced little change from the 2 Hz bandwidth, but above that frequency
the difference was very great, as two or more lines of the spectra would pass
through the filters. At these higher frequencies, the oscilloscope showed an el-
liptical outline with lines traced throughout the ellipse. The ellipse outline
also changed with time to some extent. (See Figure 6.)

Examples of some of the phenomena are shown in Figures 4 through 9, all of
which are annotated separately. Figure 4 illustrates a very narrow-band analysis
at a harmonic of the repetition rate of the actuator, with the ellipse modulated
and rotating; a double exposure of this type of figure is shown in Figure 5.
Figures 6 and 7 illustrate the effect of a broader bandwidth than on Figure 4.
Note that the gains used were always equal on the vertical and horizontal axes,
but were changed as necessary to fill the frame. Figure 8 shows that using all
four actuators rounds out the pattern. Figure 9 illustrates a bandwidth corres-
ponding to 5% of critical damping.

The vector acceleration was studied mathematically in order to evaluate the
probability distribution of the acceleration. A Monte Carlo model using three
Gaussian distributions, each with 5.5 grms, was set up and run on an Apple II
computer, and the resulting probability distribution is shown in Figure 10. Note
that the distribution is similar to a lognormal distribution. The lg, 2¢, 3¢ and
49 points are shown on the figure. The "max acceleration” of 28.6g in the title
block was wused only for scaling the abscissa and was calculated as the 3¢

Figure 4. Experimental Results: Figure 5. Experimental Results:
Center Frequency, 409 Hz, Center Fr:q. ency, 346 Hz,
Bandwidth 2 Hz, Modulated Bandwidth 2 dz, Four
and Rotating, One Actuator Actuators, Double Exposure

Figure 6. Experimental Results: Figure 7. Experimental Results:
Center Frequency, 409 Hz, Broadband, One Actuator
Bandwidth 41 Hz, One
Actuator
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Figure 8. Experimental Results: Figure 9. Experimental Results:

Center Frequency, 433 Hz, Center Frequency, 433 Hz,
Bandwidth 43 Hz, Four Bandwidth 43 Hz, Four
Actuators Actuators
2+ = 7.4 X RMS = 5.5
l:"l Y RMS = 5.5
A

Z RMS = 5.5
# OF PASSES = 5000

MAX ACCELERATION
= 28.5788384

MAX PROBABILITY
= 0.07

4.8

N

S i
AP N RS R
L
2.8 5.7 9.6 11.4 14.3 17.1 20.0 22.9
Figure 10. Vector Acceleration Probability Distribution
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“vector” of the rms values for each axis as this was known to be an upper bound.
Note that in 5000 samples the highest acceleration found was 25.7g.

The angular distribution of the acceleration vector was found to be uniform
as the three distributions used had the same rms values. Other cases with non-
equal rms values were run for completeness, but are not reported here.

4. CONCLUSION, LINEAR MOTIONS

Narrowband analysis of x and y, y and z, and x and z as pairs of signals
shows that the signals are nonstationary and have no constant phase relationship
even when only one actuator at a steady pressure is used. Analysis with a band~-
width of 10% of center frequency (about 5% of critical damping) with four actua-
tors results in patterns where the vector acceleration occupies any part of an
oblate spheroid in three space (recall that only one actuator in the y direction
was used). This leads to the conclusion that the motions in the three axes are
independent random variables. The dynamic response of a system exposed to the
environment will accordingly be independently random in all three axes.

The oscilloscope patterns on a broadband basis show definitely preferred
directions. However, any mode of a structure will respond principally to inputs
within the half-power bandwidth of the mode and so broadband analysis is not
really relevant for our purposes.

The vector acceleration was found to have an approximately lognormal dis-

tribution with the maximum value found in 5000 Monte Carlo trials being less than
the 3g "vector” sum of the rms values for each axis.
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’. 5 EXPERIMENTS RUN, ROTATIONAL MOTIONS
4
Preliminary studies had shown that substantial rotational accelerations ex-
isted. A more detailed study was undertaken in order to find the spatial and
frequency relationships between the accelerations. The rotational accelerations
'I were calculated from the linear accelerations as detailed in Figure 11.
3
a
h & a;,a, in g's
8
L
E ' (a, = a,) 8 386 in. 386(a, -~ a,) ,
& in rad/sec? = ——-—— — x = rad/sec? (1)
L in. 2 L
s seccg
when a is in g's and L is in inches

Figure 1l1. Rotational Acceleration Calculations

The angular acceleration spectral density (AASD) was calculated by spectral
analysis of § rad/sec? and resulted in dimensional units of rad2/sec“-Hz. The
dimension Hz results from division by the filter bandwidth. Two methods were
used: digital real time analyzer (RTA), and narrowband analysis of each acceler-
ation followed by summation (including phase angles) and then division by the
filter bandwidth. Both techniques proved to be of value.

Prior to any data analysis all instrumentation was checked for proper level
and phase relationships. All data was taken at the mounting interface of the
unit being screened. All three rotational accelerations were stored on tape in
raw linear acceleration form so that analysis in any form could be done later.
All impacters were operational and both the constant pressure and automatic con-
trol modes were utilized.

When recording was complete, the next step was to make ASD plots using a
real time analyzer and to make phase plots using a time series analyzer. Plots
of ASD (linear) and phase angle between the two channels used for analysis were
performed for many channels, two of which are shown 1in Figures 12 through 15.
Note in Figures 12 and 13 that the ASD has a reasonably continuous distribution,
in terms of the QRRS, considering that the analyzer utilized had a 13 Hz band-
width. Note also that the two ASDs are somewhat different in terms of amplitude
distribution. Similarly, each phase angle plot looked different except at a few
frequencies as shown.

Further analysis of each acceleration was performed by use of a dual chan-
nel oscilloscope in two ways. A time domain photo of the filtered output from
two in-line paired accelerometers 3.86 inches apart is shown in Figure 16. The
center frequency 1is 735 Hz and the filter bandwidth is 15 Hz. Note that the
phase angle between the signals is not constant.

Driving the oscilloscope with the filtered output on the vertical channels
and with the sweep oscillator output on the horizontal channel resulted in Figure
17. The same type of pattern was evident at many other frequencies showing that
the amplitude and phase angles were nonstationary.
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Figure 16. 735 Hz; 15 Hz Filter Figure 17. 475 Hz; 15 Hz Filter

Another method of analysis was to set up the oscilloscope in the add mode
(Figure 18) to obtain equation (1) (after inverting one signal from the tracking
filter). Both narrowband signals could be observed on the oscilloscope and the
resultant angular acceleration fed to the real time analyzer where the AASD can
be observed and plotted if desired.

The AASD plot of the broadband output (i.e., without any filtering) is
shown in Figure 19. The real time AASD was noted to vary by as much as 20 dB per
second, again indicating nonstationary angular accelerations.

The final analysis of angular accelerations was done using the oscilloscope
and driving the vertical and horizontal channels with two in-line accelerometers
in order to see the relationships of linear and angular motion. A straight line
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at 45° would indicate no rotation and purely in-phase motion. Other figures
would indicate angular as well as linear motion. First, an electrodynamic shaker
was analyzed with the accelerometers at the specimen mounting points and with a
white noise input from 20 to 2000 Hz. The results are shown in Figures 20 «
through 22, which illustrate nearly perfect linear motion with very little rota-
tion, which is supposed to be the case. A similar analysis was done on the QRS-
100 run in the constant pressure mode and the results shown in Figures 23 through
25. The figures illustrate a large degree of out-of-phase motion at some times
and in-phase at others, implying true six-degree of freedom motion.
(|
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Figure 20. Two Broadband Waveforms on Figure 21. Narrowband (15 Hz) on
Electrodynamic Shaker Electrodynamic Shaker,
Center Frequency 1000 Hz

Figure 22. 100 Hz Bandwidth on Figure 23. Two Broadband Waveforms
Electrodynamic Shaker, on QRS-100 Systems
Center Frequency 1000 Hz

Figure 24. Narrowband (15 Hz) on Figure 25. 100 Hz Bandwidth on
QRS-100, Center Frequency QRS-100, Center Frequency
610 Hz 610 Hz

6. CONCLUSION, ANGULAR MOTION

The QRS-100 exhibits aagular accelerations at nearly all frequencies when
analyzed with a narrowband filter, and at all frequencies when analyzed with a
filter corresponding to a typical structural half-power bandwidth.

7. SUMMARY AND AN EXAMPLE

The QRS-100 has accelerations in all six degrees of freedom as measured by
a typical structural half-power bandwidth filter of 5% to 10% of the center fre-
quency (2.5% to 5% critical damping). The motions are all nonstationary in time,
have Gaussian distributions when measured independently, and are not correlated.
The system therefore behaves as a six-axis shaker with all axes being independ-
ent.
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This behavior explains the results of an investigation wherein a system
which had failed screening on the QRS-100 with cracked solder joints would not
exhibit anomalies when excited by a single—axis system. The specimen was excited
in all principal axes on the single axis system at g levels from 1/2 grms to 15
grms at ambient, high and low temperatures, without intermittents being observed.
Excitation by the QRS-100 at a 1 grms level at low temperature showed system in-
termittents about 92% of the time.

In this example, the six simultaneous axes of motion were just what was
needed to cause the cracked solder joint to show an open condition. Many other
examples of this type have occurred at SBRC. Further comparisons of single-axis
shaker and QRS-100 shaker screening results are given in [1] and [2].

l. G.K. HOBBS, J,L. HOLMES, R. MERCADO 1982 SEECO 82, the Society of Envi-
ronmental Engineers, London, England. Stress Screening Using Multiaxial Vi-
bration.

2. G.K. HOBBS, R. MERCADO 1982 Reliability and Maintainability Symposium,
Los Angeles, California. Quasi-Random Stress Screening Using the QRS-100.

3. A.J. CURTIS 1979 Hughes Aircraft Interdepartmental Correspondence. Anal-
ysis of Pneumatic Actuator (Baker Shaker) Vibration Signals.
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RECENT EXPERIMENTAL DEVICES TO OBTAIN THE DYNAMIC
PARAMETERS OF BRIDGES

William C. McCarthy and Kenneth R. White
New Mexico State University

Alberto G. Arroyo
University of Texas at San Antonio

1. INTRODUCTION

;>Fu11 scale testing of structures continues to be the best means of obtain-
ing the dynamic parameters necessary for design. For bridge structures, though,
barriers exist that restrict field testing with difficulties that include possi-
ble structural damage, inadequate test control, cost, and limitations in acces-
sibility. These difficulties contribute to a current lack of understanding of
the dynamic behavior of bridges. To alleviate this problem, New Mexico,szgte
University (NMSU) has devised two test instruments, the tricoil sensor'{1)] and a
portable vibration machine”[Z]l The tricoil sensor was designed to clearly
measure movement in three orthogonal directions and succeeds in being superior
to its counterpart, the accelerometer. The vibration machine complements the
tricoil sensor with its operator control and operational flexibility. A
thorough discussion of both instruments detail their composition, how they work,
and their functional capacities.

A small bridge was constructed at NMSU to test the two instruments. Of
particular concern was the vibration machines ability to produce a measurable
response in a non-destructive manner. Three tests were initiated to define the
fundamental frequencies and damping coefficients of the test bridge and to pro-
duce frequency response curves. An outline of the test procedures with corres-
ponding results confirm the effectiveness of the two instruments.

2. TRICOIL SENSOR

The tricoil sensor of Figure 1 operates under the principle that current
is generated when the coils move through a static magnetic field. The coils are
% in. (6.35 mm) in diameter by 7/8 in. (22.225 mm) long and are manufactured as
miniature magnetic pickups by Power Instruments, Inc. Three coils, in an ortho-
gonal orientation to monitor three dimensional vibrations, are rigidly attached
to the inside of a 1 in. x 1 in. x 2 in. (25.4 mm x 25.4 x 50.8 mm) aluminum box
which in turn is attached to a % in. x 2 in. x 3 in. (6.35 mm x 50.8 mm x
76.2 mm) aluminum plate with a 6 lead electrical plug. The plate is bonded to
the bridge commonly with the use of glue.

A signal is actuated by first placing a stationary electromagnet in close
proximity to the tricoil sensor. Current is produced by inducing movement of
the sensor in the magnetic field. The greater the movement the stronger the
signal. The NMSU tests used on electromagnet with a field density of approxi-
mately 2500 gauss at the center of its core. A smaller permanent magnet may be
used but an electromagnet tends to produce a clearer signal.

Two operational advantages plus its lower cost relative to an accelero-
meter makes the tricoil sensor a highly attractive vibration measuring device.
Although some signal amplification is necessary, the tricoil does not require
the amplification normally associated with an accelerometer. In addition, a
lesser amount of filtering is needed to remove the noise from the tricoil sig-
nal. Figure 2 presents two steady state first bending mode responses from a
similarly placed tricoil sensor and accelerometer. In this instance, the accel-
erometer used twice the amplification and one third again as much filtering to
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produce an acceptable but still inferior signal. Some degradation of the tri-
coil signal is noted at higher frequencies but it is still insignificant in
comparison to the accelerometers.

The main disadvantage of the tricoil sensor is that it produces amplitudes
which are proportional to the mass velocity and, hence, the vibrations remain
qualitative in nature. Thus, displacements and stresses may not be obtained
without first calibrating the sensor, a lengthy process that has not as yet been
accomplished.

3. VIBRATION MACHINE

The qualities desired of a field test vibration machine include frequency
and force control, test flexibility, and compactness and so the NMSU vibrator
was designed to have these features. The vibrator or shaker, illustrated in
Figure 3, consists of two counter-rotating 18 in. (0.457 m) diameter spur gears
operated by a 15 hp (11.186 kW) DC electric motor. A 36 in. (0.914 m) by 100
in. (2.54 m) channel frame supports the gear mechanism, motor, and counter-
balancing weights. The frame is sufficiently strong to serve as a trailer body
for transportation to the field.

Two masses are attached to the spur gears at an eccentricity of 6 in. so
as to maintain synchronization of the gear mechanism. Thus, when the two masses
are immediately adjacent, they generate a unidirectional force that is always
perpendicular to the gear mechanism. This unidirectionality eliminates the
interference effects that result when there are force created movements other
than those under study. The force magnitude is controlled in two ways, the
weight of the masses and the frequency at which they are rotated. Force levels,
then, range as low as a few hundred to several thousands of pounds. Testing has
indicated that a force magnitude as low as 400 1lbs. (1.779 kN) acting on a field
bridge produces an acceptable signal in the tricoil sensor. As a result, 1000
lbs. (4.448 kN) was used as a typical test force magnitude, thus, insuring the
nondestructive goal of the research.

A belt drive with a 1 to 1 driving ratio turns the spur gears. This is
sufficient to produce a 2 to 29 Hz frequency range which is thought to encompass
the fundamental bending and torsional mode frequencies of most bridges. The
force created by the rotating masses varies sinusoidally according to the equa-
tion

F = 2mpwzsin wt 1)
where 2m = total eccentric mass

p = mass eccentricity

w = angular velocity

with its maximum amplitude of 2mpw2. The dominate factor in the force magnitude
is the angular velocity which is directly controlled by controlling the motor
frequency. The motor and, through the belt drive transference, the vibration
machine has an incremental tolerance of no more than 0.2 Hz. This sensitivity
and force predictability insures that the testing remains under the contol of
the operator. This assurance of operator control serves to establish confidence
in the nondestructive capacity of the shaker.

Lubrication of the spur gear mechanism results in a very low friction
coefficient. When power to the motor is terminated, the gears coast smoothly
down through the various frequencies and corresponding decreasing force levels.
However, the study of free vibration requires no external excitation force. For
this reason, the shaker is equipped with a hydraulically operated braking system.
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The braking is sufficiently fast and yet smooth to result in little disturbance
of the signal from the tricoil sensor.

Perhaps the best feature of the vibration machine is its ability to quick-
ly convert from a vertical force generator to a horizontal force generator shown
in Figure 4. This is accomplished by a right angle rotation of the total gear
mechanism which is then bolted in place, a process that takes but a few minutes.
The shaker is designed so that no other changes are needed before testing com-

mences.

A horizontal force capacity permits the study of bridge supports under

conditions that more accurately simulate earthquake behavior but to a much less

degree.

It also expands upon its potential use as a dynamic test instrument for

structures other than bridges.
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4. DYNAMIC TESTS

Three tests were devised to check the function of the bridge vibrator and
tricoil sensor. The tests, summarized below as they apply to the simple sup-
ported NMSU test bridge, are representative of procedures required to obtain
the dynamic parameters of field bridges.

4.1 Run Down Test

The shaker is positioned at the center of the bridge with a tricoil sensor
attached beneath. The bridge is excited to a high frequency, approaching 29 Hz,
at which time the power is turned off and the vibrator is allowed to coast down
slowly through the frequency levels. When the frequency roughly corresponds to
a resonant frequency of the structure, the signal from the tricoil sensor is
greatly amplified as exhibited by the first bending mode response of Figure 5.
The run down test, therefore, approximately identifies the lower natural periods
of a bridge.

4.2 Frequency Response Curve Test

The tricoil sensors and shaker are selectively located on the bridge in
positions indicative of the mode under study. The shaker and tricoil sensor,
for example, remain at the center of the structure when studying the first bend-
ing mode response. The bridge is brought to steady state resonance with guid-
ance from the run down test. Then, the frequency is varied through a range of
* 2 Hz at roughly 20 point intervals within this range while the response of the
structure is recorded. The bridge is vibrated at each point for a sufficient
time to insure steady state. A plot of the response amplitude versus exciting
frequency for all points is the frequency response curve for that mode. In
addition to giving an exact natural frequency, the frequency response curve
may yield a damping ratio according to the formula

g = 4 (2)

s

P P

.

N AR,

faliava .

a. .

e

+

NI




Y Jan

FIGURE 5. RUNDOWN TESTS FOR FIRST BENDING MODE

where: ¢ = damping ratio
fl _ first frequency on the curve with a response amplitude
equal to 1/VZ times the maximum amplitude
fz _ second frequency on the curve with a response amplitude

equal to 1/VZ times the maximum amplitude
f = natural frequency of the bridge.
Equation 2 is called the bandwidth method by Paz [3] who outlined the procedure.

4.3 Transient Vibration Test

The shaker and sensors are positioned in exactly the same manner as for
the frequency response curve test. The bridge is again excited to one of its
natural frequencies and held for a brief period to assure steady state. Power
to the vibrator is then terminated while the brake is immediately applied. This
results in a transient or decay response of the structure now in free vibration.
The first bending mode transient response is presented in Figure 6.

The transient response may be used to obtain a second damping ratio by the log-
arithmic decrement method [3] according to the formula

Yot
in : 1 ~2nné (3)

1

where: £ = damping ratio
n = cycle number
y1 = response amplitude at the first cycle

y = response amplitude at the n+l cycle.
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FIGURE 6. TRANSIENT RESPONSE TEST FOR FIRST BENDING MODE

5. EXPERIMENTAL RESULTS

Beyond establishing the worthiness of the vibration machine and tricoil
sensor, the goal was to determine the first and second bending and the first
torsional mode dynamic parameters of the NMSU test bridge. The run down test,
however, quickly determined that the second bending mode frequency was higher
than the 29 Hz capacity of the shaker. Thus, the goal was modified to the
development of frequency responss curves and the calculation of damping ratios
for the first bending and torsional modes only.

The NMSU test bridge is a 7 ft. (2.134 m) wide, 44 ft. (13.411 m) long by
1.67 ft. (0.508 m) deep prestressed concrete double tee beam. The flange has an
average depth of 2 in. (50.8 mm) and the web an average thickness of 5 in.
(127 mm) placed 4 ft. (1.219 m) on-centers. The bridge has a simple span of
34 ft. (10.363 m) with 5 ft. (1.524 m) cantilevered ends.

Figure 7 is a plot of the first bending mode frequency respomnse curve
using a total spur gear eccentric weight of 4.84 1lbs. (21.529 N). A number of
dynamic factors may be deduced from the curve with the most obvious being a
first bending mode resonant frequency at 6.4 Hz. The bandwidth method of equa-
tion 2 produced a damping ratio of 2.1%. The curve is observed to be slightly
unsymmetrical which implies some slight non-linearity in the structure. To
test this, a second series of tests were run using a total eccentric weight of
6.17 1bs. (27.445 N). The respective maximum response amplitudes were 4.9 and
5.86. The force ratio of 1.27 versus an amplitude ratio of 1.2 for the two
weight categories is sufficiently close to indicate essentially linear behavior.

A frequency response curve was also developed for the first torsional
mode. The result was an average resonant frequency of 21 Hz. Average is used
since a definite non-linearity was revealed when the natural frequency varied
by * 10% depending upon the magnitude of the eccentric weight. The average
bandwidth damping ratio was found to be 1%. 1t is thought that cracks in the
beam contributed to the torsional non-linearity.

The first bending mode transient response of Figure 6 produced the ampli-
tude values of Table 1. The damping ratio, §, varies between 1.47% and 1.01%
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depending upon the cycle used in the logarithmic decrement method of Equation 4.
In any case, the bridge damping is very low. A difference in the ratios by the
methods of Equation 3 and 4 is due to the theoretical assumptions of their deri-
vation. The best that one can say then is that the damping falls between 1 and
2% of critical.

n 1 2 3 4 5 10 15 19 -
Yy 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
y 1.55 1.42 1.35 1.20 1.15 0.80 0.6 0.45

n+l

£ 0.0147 0.0143 0.0122 0.0138 0.0124 0.0119 0.0110 0.0101

TABLE 1. LOGARITHMIC DECREMENT DAMPING RATIOS - FIRST BENDING MODE

6. DYNAMIC ANALYSIS

An attempt to analytically reproduce the natural frequencies was only par-
tially successful. The ICES STRUDL II [4] plane grid modal analysis was used
because of the economy of the computer program and its torsional mode capabili-
ties. The bridge was subdivided into 157 longitudinal and transverse grid mem- ®
vers interconnecting 92 nodes. Moment of inertia and area were calculated using |
standard formulas except that the transverse diaphragms were given near zero
area to assure equivalent mass. Damping was not considered.

The STRUDL first bending, first torsional, and second bending mode fre-
quencies were 6.41 Hz, 20.69 Hz, and 25.26 Hz, respectively. Both fundamental ®
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modes were on target with only the second bending mode failing to compare. The
run-down test did not reveal any resonant responses between 22 Hz and the 29 Hz
upper limit. One explanation is that the structural model falls short of
defining the true nature of the test bridge particularly the prestress aspect
which was disregarded in the analysis.

7. CONCLUSIONS

Both field test instruments exceeded their expectations. In most aspects,
the tricoil sensor out-performed the accelerometer. The clear tricoil signal
eliminated the need for data refining techniques in the tests carried out on the
NMSU test bridge. It is expected that this would remain true for most test sit-
uations.

Vertical force testing of the vibration machine was extensive and the
operations proved effective and efficient. One unanticipated drawback was the
added dead weight or other form of restraint required to prevent lateral move-
ment of the shaker particularly during resonant vibrations. The weight would
have to be added in the field and removed to reposition the machine, thereby,
increasing the test time.

The shaker's horizontal force capacity has received only limited testing
due in part to a lack of set-bridge test procedures in the horizontal mode. The
vertical to horizontal changeover and vice versa proved convenient and quick.
Horizontal operations were actually smoother than the vertical with no unwanted
movements of the machine. As expected, however, a greater force was needed to
elicit an observed response from the bridge.

Donated materials were primarily used in the construction of the vibration
machine which prevented, for example, the use of high strength steel in the spur
gears. Thus, the upper experimental boundaries of a portable vibration machine
have yet to be realized in the existing shaker. An expanded capacity would be
highly desirable for horizontal testing. Even so, the shaker, at its present
level, is sufficient to carry out vertical force field testing for all but the
largest of bridges.

8. REFERENCES

1. R.M. ZIMMERMAN and K.R. WHITE 1980 National Science Foundation, Earth-
quake Hazards Mitigation. Measurements of on-site dynamic parameters for
seismic evaluations. Washington, D.C.

2. A.G. ARROYO 1982 Doctoral Dissertation, New Mexico State University.

The dynamic characteristics of bridge through the design of a unique bridge
vibration machine.

3. M. PAZ 1980 Structural Dynamics Theory and Computation. Van Nostrand
Reinhold Company.

4. ICES STRUDL II 1971 The Structural besign Language. Department of Civil
Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

465

B

..4

" N




~ THE EXPERIMENTAL MEASUREMENT OF FLEXURAL
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! Institute of Sound and Vibration Research
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1, INTRODUCT ION

D When attempting to control vibration in structures, it is often desirable
.I to be able to identify significant paths of vibration transmission from sources
through the structure to some point of interest. In pursuance of this objective,
consideration of vibration amplitudes at various points is of little help, since
stationary waves may be present giving rise to large amplitudes whilst little
power is being transmitted. The concept of wave intensity is therefore necessary,
and is defined as the power flow per unit width of cross section area (in a
l= uniform plate) and is measurable as a vector quantity at a given point. In beams,
where wave propagation is in one dimension only, the power flowing through the
total cross section is considered, If it is possible to obtain repeated
{ measurements of intensity at many points on a structure, then a pattern of power
flow may be identified.

Here, only power carried by flexural waves 1s considered; this is generally
@ the most important, and is theoretically more difficult to measure than power due
to other wave types., Many of the arguments to be developed here may be applied
directly to other wave types.

2, FLEXURAL WAVE POWER

Figure 1 shaws the moments and forces
- () acting on an element of a uniform beam
undergoing flexural wave motion, with
the lateral deformation heing denoted by
w in the z direction. Power is trans-
z ported by two components [1];
a (b}

(1) The Shear Force component Ps, which

Mx M‘*%%-“ is the product of the shear force and
> Sut 85x . dn the transverse velocity:
Fx
} 33w 3w
w PS—EI_I;'—B-? (1)
9x

FIGURE 1: Moments and Forces on a
Bending Beam

(11) The Bending Moment component Pm, which is the product of the bending
moment and the rotational velocity:

2 .2
pm = g1 &%, ¥ 2)
3x3t

8x2
where E 18 Young's modulus and I is the second moment of area of the beam. Far
from discontinuities in the beam and the influence of decaying near field waves,
the time averaged values of these two components are equal, providing the
possibility of obtaining an estimate of the total power flow from a measurement

of one component.
<P> = 2 <Pg> = 2<Pm> 3

Figure 2 shows the moments and forces acting on an element of a uniform
plate undergoing flexural wave motion, In this case, the intensity in a given
direction (eg. the x direction in an arbitrary cartesian co-ordinate system) has

three components:
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! (1) The Shear Force component J x?
which is the product of the shear . e
force in the x direction and the
transverse velocity:
Y
3 3 ® q
3w 3w ow
Jd _=D|—— + .= 4)
* sX ax3 axayz at z
: (b)
¢ (ii) The Bending Moment component zxg ; .
h Imx» Which is the product of the J . R IR 1 /2 - o 5
i bending moment in the x direction \/éggft;jiiiff‘jj‘_jg* [ 72
and the rotational velocity RSSO NN 5
parallel to that direction: £ £ ;
2 2 2
& S e e B~
ox ay Sy (c) ® e
(1i1) The Twisting Moment compo- $x w7,k;// S dsn . dn :
nent J _, which is the product e N 7+ 8510 EK&*”MJ;T“
of the ¥wisting moment in the 4 o zr dy
xy + xy o dx
x direction and the rotational Wyt S 0y T i ‘
velocity about that direction: ,/1;¢%&Jy &y ° P
2 2 v v l
-~ a w 3 w dx w
Jex~ DE1-V) 3xdy ' dydt (6)
where D is the flexural stiffness
of the plate, given by FIGURE 2: Moments and Forces o
on a Bending Plate ® q
Eh3
D= 2
12(1-v)
h is the thickness of the plate and v 1is Poisson's ratio, It is easy to
show that far from discontinuities and local sources and sinks, where the wave-
field is composed of plane propagating waves, that ® q
<J > = 2< J > = 2}|<J >+<J>] (&)
X 8X mx tx
Hence in such circumstances, it is possible to estimate the total intensity at a
point from a measurement of one component, specifically the shear force component.
[ q
3. REQUIREMENTS OF A POWER FLOW MEASUREMENT TECHNIQUE
Several measurement methods have been investigated [2] with the following
requirements in mind:
(1) Simple time domain signal processing, to allow possible implementation
as a portable real-time electronic instrument. - @ (
(11) Ease of use., This is clearly important if many measurements are to
be made on & structure to permit the identification of power flow patterns.
Any transducer arrangement to be attached to the structure should be as
simple as possible and easy to deploy and recover,
[ ] (

(111) Immunity to instrumentation tolerances. The effect of basic
experimental tolerances should not produce unacceptable errors in the
measurement of a travelling wave or waves,

(iv) Good dynamic range Performance. This is the ability of a measuring

system to be able to give reliable results from a measurement of a

travelling wave in the presence of a possibly much larger stationary (non- o (
decaying) wave, This characterigstic has been identified as probably the
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most important [?] in any practical measuring system.
4. A ONE~DIMENSIONAL MEASURING TECHNIQUE USING TWO ACCELEROMETERS

This method is based on the relationship stated in Equation (3), i.e. that
far from discontinuities and the influence of their decaying wavefields, the
shear force and bending moment components are equal. Consider a travelling
harmonic wave in a uniform beam with the displacement at a point described by:

w(x,t) = Asin (wt-kx) (8)

Substituting this into the expression for the shear force component of power
flow, Equation (1), gives:

P, = Elwk°A2 cos?(wt-kx) (9)

The output of a linear accelerometer ettached to the surface of the beam will be:

2
¥ _w2A sin(wt-kx) (10)

a2

and the output of a rotational accelerometer attached to the beam will be
proportional to:

33w

axat2

= kuw2A cos(wt-kx) (11)

If a phase shift of -n/2 radians is applied to the signal from the linear
accelerometer, it can be seen that the shear force component of power flow, and
hence the total value, may be cbtained using a two degree-of-freedom accelerometer

4,5]. In this context, a two degree-of-freedom accelerometer is an item which
provides signals proportional to the transverse and rotational accelerations at
the point of attachment. Hence,

2 3 2
EI
ps = HE 2 v, 2 > @) (12)
w ax3t at
where (q) indicates "in quadrature"., Since
k? = i
" El

where my is the mass per unit length of the beam, then the total time averaged
power flow may be written:

2/ E1 0% 2
w2 axat  ot2

<p> = (q)> (13)

Although this expression has been developed for a single frequency, it may also
be applied to a narrow band of frequencies,

There are disadvantages in the use of two degree-of-freedom accelerometers
2]; however, the required information may be obtained by the application of
simple finite difference approximations [6] to the signals from two linear
accelerometers attached to the beam some distance A apart, where A is small
compared with the flexural wavelength ):

82w Bzw 32w
2| = Y st T2 A (14
ot” | x=0 ot x=+-§ ot X== 2
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% . 12 - 32Wl
axatz x=0 A at2 x=+-% 3t2 x=--% (15)

Letting a, denote the acceleration at x=- 4 and a, the acceleration at
x=+ 2; then the total time averaged power flow mayzbe written:

/m EI1
<p> = 3 < (az-al)(az(q)+a1(q)) > (16)
Aw
This expression may be further simplified:
P> » ZIMEL <[a a <q)] > amn
2 271
Aw
5. MEASUREMENT ERRORS DUE TO BASIC ASSUMPTIONS

5.1 Near Field Errors

The measurement method described is strictly only valid far from
discontinuities where Equation (3) holds. Reference |5| analysed the error due
to measuring only one power component close to a discontinuity; however, this
analysis is not correct in the
case of practical measurements 6
implementing Equations (13)
or (16)., Analysis shows that
in practice, provided that an 2 - ,
error of ¥ 20% can be tolerated, o1 3.6 5.4
measurements may be made as close j ' §
as A/10 from discontinuities,
Figure 3 shows experimental
results obtained using Equation
(16) close to the force excitation -6 -
of an "infinite beam" apparatus i1
(2,7], with the predicted
theoretical error curve for
reference.

kx (Radyans)

-~
~

Erecor

-10 -
$E1
FIGURE 3: 2 accelerometer finite difference
method experimental results in the near
field of the force input to the infinite
beam apparatus,
+ Experimental results
———— Theoretical value of error

5.2 Finite Difference Errors

The power flow measure-
ment expression, Equation (16)
is not exact, but embodies an
error due to the finite
difference approximations.
This leads to an underestimation of the true value, and the magnitude of the
error increases with increasing accelerometer spacing A. As will be shown,
there are good reasons for using relatively large values of A; however, it is
possible to correct the results obtained exactly so that no penalty is incurred
(2,6], thus:

kA

P =P Slnad) a®

where P indicates that this is the measured value.

5.3 Bandwidth Limitations

The power flow measurement expression wvas derived in terms of single
frequencies, and it is obvious that some error will result from the use of a
finite measurement bandwidth [4] Further, there is an additional error (but otf
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opposite sign) due to the variation of the value of ki with frequency, and hence
the magnitude of the finite difference underestimation, The exact value of these
errors will depend heavily on the power spectral density (P.S.D.) of the wave
motion under consideration, but as an example, if the P.8.D. is constant, then

a bandwidth ratio (§f£/f) of 0.3 may be used with a measurement error of about

3%. In practice, it is advisable to use a much smaller measurement bandwidth
than this [2].

6. SOURCES OF EXPERIMENTAL ERROR

6.1 Travelling Wave Results

This heading refers to the effects of measuring system tolerances on the
results obtained from the measurement of a purely propagating wave motion,
Inspection of Equations (16) and (17) shows that instrumentation channel gain
tolerances only appear as a linear scaling of the result., Tolerances in the
value of A do not appear ms a linear scaling, but the sensitivity is not high.

There are two possible types of instrumentation phase tolerances, these
being: relative phase tolerance between channels, manifesting itself in much the
same way as accelerometer position tolerances; phase errors in the quadrature
function have a simple cosine
function., Note that if the 3q
simplified expression, Eqn (17),
is implemented, both types of ] 2.
phase error are equivalent and ! ///Tf\‘Q\ifﬂdla”S)
the effects are the same as those 44;E;§§\, . 485 &0
due to relative phase differences
between channels.

Error %

Figure 4 shows the effects
of selected values of instru- -3
mentation tolerances on travelling
wave measurements. No finite _J
difference correction has been -5
included. It can be seen that
the general sensitivity 1is small,

xE1

FIGURE 4: Two accelerometer finite difference
6.2 Spurious Results due to method measurement error in the nearfield

Stationary Waves of a force input to an infinite beam
A= 0,15},
1, No instrumentation errors
2. Accelerometer 2 displaced by 0,.015)
3. +5,0° phase error in Ch,2
4, +5,0° phase error in quadrature function

This factor represents
the main limitation of any
intensity measurement system,
It is simple to show that the
system phase tolerances alone
determine whether a measuring system
produces a spurious response in a stationary (non-decaying) wavefield. Considering
Equation (16), the system phase tolerances again divide into two types, If a
phase error © is present in Channel 1, then if the displacement of the beam is
described by:

w(x,t) = Bsin(wt) sin(kx) (19)
Then the spurious result will be given by:
- 2 o2
<P(x)>= El%zﬁg_ {sin (®) cos(kA)-coa(zkxakAi]} (20)

Note that this function is spatially periodic with period )/2, and the maximum
value increases with @ but decreases with increasing values of kA, Hence to
minimise this type of spurious response, as large a value of A as is practical
should be used.

Now consider a phase error @ in the quadrature operation., If the displace-
ment of the beam under congideration is again described by Equation (19) then
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the spurious result will be given by:

EIk2.B2

<f’(x) >= 28

) . . . ° ann o .I " _y PP

(%in(Q)ain(kA)sin(2kx+kA2]

Again, this function is spatially periodic, and its value increases with
increasing @. However, as A is made larger, the spurious result increases.

Numerical analysis shows that for most realistic values of phase tolerances the
It

relative phase between channels will have by far the most dominant effect.
the simplified expression, Equation (17), is implemented, both types of phase
tolerances will give rise to spurious responses equivalent to the relative
channel phase tolerance described earlier, Equation (20), and therefore the

effect of any error in the quadrature function will be much more significant,

For this reason, the simplified implementation is not recommended.

shows the variation in these
two types of spurious result
with A, where measurement

is made in a wavefield con-
sisting of a stationary wave
and a trave.ling wave with
relative amplitudes of 10
and 1 respectively.

Experimental results
bear these hypotheses out,
Measurements were made on a
beam excited at a heavily -3
damped resonance, it positions ]
corresponding to a node, anti-
node and midpoint af the xE2
stationary wave mode shape.
Results, corrected for
finite difference errors,
were obtained using
implementations of Equations
(17) and (18) with a 5°
phase error introduced into
the quadrature operatiom,
and the results compared.

MEASUREMENT POSITION
Standing Wave Ratio
Basic Measurement Error %
Eqn (17), G Quadrature Error %
Predicted Measurement Error %
Eqn (18), 5° Quadrature Error %

Predicted Measurement Error %

Within experimental limits, the

NODE ANTINODE MIDPOINT
2.10 1.86 2,07
-16.3 -6.6 -9.5
-16.7 -11.3 -22.4
-0.4 -0.4 -19.0
-20.1 -55.2 -42.9
-14.4 -85.4 -57.8

predicted trend has been followed.
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FIGURE 5: Two accelerometer finite difference
method measurement errors in the presence of
stationary waves. SWR=10:1, Maximum error shown
as a function of accelerometer spacing A.
1. +1,0° phase error in Channel 2
2. -1.0° phase error in quadrature function.
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7. TWO DIMENSIONAL MEASUREMENTS

Equation (7) may be invoked to allow this method to be extended to two
dimensional measurements on uniform plates, Two obtain simultaneous measurements
of the intensity components in two orthogonal directions, four sccelerometers -
may be used disposed symmetrically at a distance of A/2 from the nominal measure~
ment position. An improvement in the signal-to-noise ratio may be obtained by
the use of all four signals to provide the transverse acceleration information.
Using the same notation as before:

/o D

. 2 -
<J > = o Z <[(ax2 a ) (axz(q)+ax1(q)+ay2(q)+ay1(q)ﬂ> (22)

where mp is the mass per unit area of the plate. Similarly in the y direction.

Most of the preceding error
analyses are directly applicable. .
However, there is an additional error Error 7 r2
due to the apparent value of A varying
with the incident wave direction. This

error is shown in a negative sense for
clarity in Figure 6. /
¥e1 -2 /-1 ~_J/’

A simple finite difference \\:}]‘ . b4
correction is not therefore possible; b 2
nonetheless, as the angular variation ’

is small, an approximate expression
may be obtained |2].

Jx = Jx. 1 2
[1_ (kA) J

(23)

FIGURE 6: Four accelerometer
2-dimensional finite difference method
measurement error as a function of
incident wave direction

1. 4=0.05 2. A=0,1)

3, A=0.15 4, 4=0.2)
0.627

0.593 0.533

0.473 \ 0.480

\\'=°2ﬁ‘ Figure 7 shows graphically
AN experimental intensity results
0.616 . oW 0.588 obtained at points on a
-— x — circular contour around a force
0.041 0.9 excitation on an "infinite
plate" apparatus [ﬁ], norma-

Y 11sed with reference to 1lmW
input power. Comparison of the
"integrated" power crossing

this contour with the input
0.544 0.0% 0.462 power from the excitation
shows an error of only +6,7%.

0.566 0.564

FIGURE 7
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CONCLUSIONS AND RECOMMENDATIONS

Relisble power flow measurements can be made in many situations, provided

that adequate care is teken in the experimental technique. Certain guidelines
can be offered to assist those interested in results rather than methodology.

(1) Implement Equation (16) or (for two dimensional measurements)
Equation (22) directly without simplifications.

(11) Avoid making measurements close to discontinuities in the structure
(1.0. less than A/2 away).

(111) Use values of A in the region of A=0,15)\ to 0.2\, Mount the
accelerometers first and then measure A accurately.

(1v) Correct the results using Equation (18) or Equation (23) as
appropriate.
(v) Intensity patterns can change very rapidly with frequency; a narrow

measurement bandwidth ylelds more information, and by excluding possible
resonant responses at other frequencies, may improve dynamic range.

(vi) Take the utmost care in achieving the closest possible phase
tolerances in the instrumentation and signal processing, The method of
mounting the accelerometers on the structure can be quite significant in
this respect. The signal processing system should have a phase tolerance
of £0,3° or better,

(vii) DBear in mind that dynamic range problems are the main source of
error, If the standing wave ratio at a given frequency is greater than
about 20:1, then it is probable that the results will be meaningless.
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8. MODAL AND DATA ANALYSIS
OF NON LINEAR SYSTEMS
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N RECENT ADVANCES IN REDUCTION METHODS IN
NON LINEAR STRUCTURAL DYNAMICS

P it

Sergio R. Idelsohn* and Alberto Cardona*#*

Mechanics Laboratory of INTEC*#¥#*
P.0. Box 91 - 3000 Santa Fe - ARGENTINA

1. INTRODUCTION
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It is well recognized that the use of a large number of degrees of freeaom
in the discretization of complex structures is dictated by their topology rather
than by the complexity of their behaviour. For a dynamic analysis, however, a
limited number of suitably chosen generalized degrees of freedom (like for in-
stance eigenmodes) is not only sufficient from the point of view of accuracy but
also more cost effective. A certain number of techniques exist in the literature
to reduce the number of degrees of freedom of finite element models in the case
of dynamic analysis [1-4].

When dealing with non linear dynamic problems, some authors employ the so-
called local mode superposition principle for the determination of the basis
functions [2,4]. This principle states that small harmonic motions mey be super-
imposed upon large static motion and that small forced motion may be represented
in terms of the non linear (tangent stiffness) frequency spectrum. This proce-
dure requires a continuous updating of the basis vectors (specially when dealing
with geometrical non linearities) and so, it becomes expensive.

> The present paper pursues the development of a new technique of reduction
that applies specially in the case of non linear dynamics’[5-6]ﬁ It consists in
adding some derivatives of the displacements with respect to the modal amplitude
parameters to the basis obtained by local mode superposition. The derivatives
can be taken up to various orders. It is shown in the examples that this basis
is adequate in order to approximate the system's behaviour with a very limited
number of degrees of freedom and with a very limited number of updatings.

The resulting reduced system is integrated by using the Newmark's implicit
algorithm. A control strategy to determine the correct moment in which the basis
vectors should be updated is proposed. Only geometrical non linearities are
treated in this paper but no difficulty exist to extend the concept to material
non linearity.

2. STRUCTURAL EQUATIONS OF MOTION

The discretized structural dynamics equilibrium equations can be written
as:

G(a) +Ma= F (1)

(*) Scientific and Technological Research Staff Member of the National Council
for Scientific and Technological Research of Argentina.

(**) Research Fellow of CONICET.

(##%) Institute of Technological Development for the Chemical Industry, Universi
dad Nacional del Litoral (UNL) and CONICET.
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where:

G(a) : internal forces vector (non linear function of the nodal parameters a).

M : mass matrix.
F : applied forces vector.
a,a displacements and accelerations vectors.

A Rayleigh-Ritz technique is used to replace equation (1) by a reduced
system of equations. This can be made by approximating the displacements incre-
ment Aa by the linear combination of R 1linearly independent vectors:

pa = ¥y (2)

where ¥ is the matrix formed with R Dbasis vectors and y is the vector of
generalized displacements (dim R).

The system of differential equations to be solved now reads:
Glag +¥Yy) +My=F (3)
where:

Glag + ¥ y) = vT g(ag + ¥ y)

M yT My (4)

F= yTF
3.  BASIS VECTORS COMPUTATION

According to the local mode superposition principle the R lower frequen-
cies and their corresponding modes govern the response:

R

pa = ) ¢p Zp (5)
r=1

where ¢, are the instantaneous modes of free vibration obtained by solving:

(K (ag) - w2 M) ¢y = © (6)

K(ao) denotes the tangent stiffness matrix computed at the position a, .

If only these computed eigenmodes are used as a basis, the cost of the
analysis will be too high because of the updating of the basis.

Noting that the instantaneous free vibration modes are a functior of the
displacements vector a , we can rewrite equation (5) as:

R

pAa = ) ¢pla) zp (1)
r=1
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Assuming that the tangent eigenmodes can be developed into a Taylor
series, we will be able to express the nodal increments as

3¢r
ra = ¢plag) zp + (—) (8g) 2zg zp + ... (8)
dzg

where repeated indexes imply summation from 1 to R . The displacement incre-

ments are then written as a linear combination of the tangent eigenmodes and
their derivatives evaluated at t, .

oy
e = L{ op(ag) » (—) (8g) » oo} = ¥y (9)
dzg

In order to get the desired derivatives we differentiate the modal equa-
tions (6):

2 {(k (a) - w2 M) 65} = O (10)
dzg r

This procedure leads to the following system of linear equations:

2
3¢ 3K dw
(K-w2M) —L= == gp+ —= Mgy (11)
r dzg dzZg dzg

where all terms are evaluated at ag .

The coefficients matrix is singular (see eq. 6). In order to solve this
system, we express it in the basis given by:

Py i=k
¥ (12)
ej i#k , i=1l.n
where k 1is such selected that the k-th component of ¢, :

(dr)y # © (13)

and ej denotes the n-dimensional vector with a unit value in its i-th compo-
nent. Due to the singularity, the k-th component of (3¢r/8zs] in this basis is
not determined. We will assume for it a zero value.

The k-th equation of the system expressed in the basis (12) reads:

Bmi T 3K
—r_ _ (1%)
dzg *r dzg ¥r

By replacing this expression into the remaining equations, we obtain the
following linear system:

3% 3K
(K - wg M) x {gzi}* = {(Mor ¢$ - 1) 5;; orla (15)

where ( )s and | |}, notes for the matrix and vector obtained by deleting
its k-th row and column.
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This procedure, although it gives the exact modal derivatives, is costly
because we need to factorize an N-dimensional coefficients matrix to get the
derivatives of a new eigenmode.

In order to avoid the refactorization, the following approximation is pro-
posed. All the inertial terms are neglected in eq. (15), giving a sort of static
determination of the modal derivatives as:

K—= - — ¢r (16)

In this case, the modal derivatives are computed by performing a single
factorization of a coefficients matrix.

Although this approximation seems to be rather crude it will be shown in
the examples that it gives practically the same results as when the exact tan-
gent eigenmodes are employed.

b, EVALUATION OF THE STIFFNESS MATRIX DERIVATIVES

The computation of the modal derivatives requires to differentiate the
stiffness matrix with respect to the generalized displacement amplitudes 1z, .
This differentation can be carried out either exactly or numerically.

In the former process, the finite element routines should be modified in
order to compute the vector 3K/3z2g5 ¢y as follows:

K dK 2da K

2o = 2,2 2 (17)
dZg br da dzg ¢r oa bs or

This vector is computed at the element level and then assembled as an in-
ternal forces vector.

In order to avoid the need of modificate the finite element routines, the
stiffness derivative can be evaluated numerically by using:

3K K (ag + ¢g 62) - K (ap)
- (ao) =
dzg 5z

(18)

This process requires to reevaluate the stiffness matrix, giving an small
increment ¢g 8z . The increment parameter &z should be small enough so that
the differentation can be accurately accomplished, but also, it mst be large
enough to avoid any computer round-off error.

Se NUMERICAL TIME INTEGRATION OF THE REDUCED EQUATIONS OF MOTION

The reduced system of ordinary differential equations (3) is integrated by
using a specially oriented version of the Newmark's time integration scheme.
Complete details of it are given in ref. 6.

Due to the continuously changing characteristics of the non linear sys
tem, the basis needs to be periodically updated so that it can represent ade-

quately the system's response.

An error measure that indicates the need of performing a basis updating is
defined as:
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1B
(1 fl+]m]])

1 (19)
N

where.
R= F - G(a) - Ma
N : number of degrees of freedom of the complete system.

Whenever this measure exceeds a predefined tolerance, a basis updating is per-
formed. In order to avoid any progressive deterioration of the basis, the ini-
tially computed vectors are retained throughout the analysis as belonging to the
basis. Then, at each updating only a given set of vectors is computed and added
to the first basis, as indicated in fig. 1.

rGENERA‘I’E FIRST BASIS ]

A
ADVANCE | STEP

' COMPUTE ERROR MEASURE € l

YES

rREJECT LAST m STEP;I

COMPUTE SOME NEW VECTORS,
ADD THEM TO THE FIRST BASIS
AND ORTHONORMALIZE

!

Fig. 1 - Strategy for the basis updating process

6. GEOMETRICALLY NON LINEAR EXAMPLES

The cantilever beam displayed in fig. 2 was discretized by using 5 ele-
ments numbering 28 degrees of freedom (DOF). The resultant system of ordinary
differential equations was reduced to a 6 DOF's system by computing the three
first tangent eigemodes and the three derivatives of the first two modes.
Firstly, the modal derivatives were computed exactly (eq. 15). Secondly, they
were calculated approximately by using eq. 16.

F(t)

w
FiA/
t
/ lF(t)
77 J
2 3 ‘G
7 L
e
! A= 70. L «100.
” 1+585. p=0.0078
E«16000.  F= 2500
wees

Fig. 2 - Cantilever beam. Problem description
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The displacements in time of node 6 are shown in figs. 3 and 4 together
with the exact solution obtained by integrating the complete system. We can see
the complete agreement between both reduced system solutions and also, their
accuracy when comparing with the complete system response.

w COMPLETE SYSTEM |
—— — REDUCED SYSTEM
EXACT DERLY.
8 """ REDUCED SYSTEM
> *STATIC" DERIY.
”
g
o r
52,
=
=L
P
7]
aﬂ
"
"
(=]
X 4
8
8
;
g
N
.
j
g
: . ———— —
0.00 0.60 1.20 1.80 2.40 3.00 3.80 4.20 4.80

COMPLETE SYSTEM

37.50
— 4

—— —— REDUCED SYSTEM
EXACT DER1Y.

""" REDUCED SYSTEM
“STATIC® DERIY.

27.50

17,50
B RSO TS WU WY R

-2.%0 7.50
i e

VERT.DISP.NODE 6
"

Figs. 3 & 4 - Response at node 6 of the beam

It should be noted that both reduced system solutions were obtained
without any basis updating; that is to say, the same basis was employed during
the whole analysis. The error measure attained maximum wvalues of 0.0551 and
0.0565 for the exact and statically equivalent modal derivatives solution,
respectively.

The clamped arch represented in fig. 5, submitted to an excentrical sud-
denly applied load, was also solved. The T8 DOF's system that results from the
discretization was reduced to a 11 DOF's system. The three first tangent eigen-
modes and the three derivatives of the first two modes were added (fig. 1). The
error tolerance was set at 0.045 for both reduced system solutions: the first
with exact modal derivatives and the second with statically equivalent ones.
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Fig. 5 - Clamped arch. Problem description
Figs. 6 and T show the response obtained at node 8. Two basis updatings
were required in the exact derivatives solution, and only one updating was ) °
needed in the approximate derivates solution. We can see again the similar per-
formance of both methods for giving the response.
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Figs. 6 & 7 - Response at node 8 of the arch
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Ts CONCLUDING REMARKS

A computational algorithm for predicting the dynamic non linear response
of a structure by means of a reduction method is described. In it, the non
linear system of ordinary differential equaticns obtained from the finite
element discretization, is reduced by employing a Rayleigh-Ritz analysis.

The use of the tangent eigenmodes and their derivatives as basis vectors
is suggested. An approximate computation of the modal derivatives is proposed,
which is enough from the point of view of accuracy in the calculated response
and also, is faster computed than the exact modal derivatives.
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FEASIBILITY OF USING MODAL ANALYSIS TECHNIQUES
FOR NONLINEAR MULTIDEGREE OF FREEDOM SYSTEMS

Rajendra Singh, Chanyudh Nopporn and Henry Busby
Department of Mechanical Engineering
The Ohio State University

206 West 18th Avenue
Columbus, Ohio 43210 USA

1. INTRODUCTION

e Experimental modal analysis systems are now widely available and used

extensively for system identification, diagnostics and mathematical model
development. A typical user treats the system as a "black box" and generally
relies on the commercial software. Moreover, he may not be aware of the
underlying assumptions and the limitations associated with modal extraction and
synthesis. Thus there is a potential for misusing the technique which could
lead to incorrect results and conclusions. This is especially true when the
structure is inherently nonlinear or when vibratory amplitudes are no longer
small. The focus of this paper is to examine the feasibility of using
conventional modal analysis techniques for such cases. CG———u__

The general theory of modal analysis is strictly valid for linear systems
[1-3]. Typically, dynamic compliance transfer functions H(w) or impulse
responses h(t) are measured at a number of locations, and then using the modal
expansion theorem, as shown below, one can estimate natural frequencies w_,
mode shapes wr, damping ratios Z_, modal masses and modal stiffnesses over the
frequency range of interest [2,3]; see the List of Symbols for identification.

[o9]
* *
ij(w) = ril [Ajkr/(s - sr)] + [Ajkr/(s - sr)] (L)
*
© Srt % Srt
or, hjk(t) = rzl Ajkr e + Ajkr e (2)

, [ 2
where s. == gr W, + i W, 1 Cr (3

Modal analysis techniques have been applied to both symmetric and
nonsymmetric systems, structures with repeated roots, etc. However, in each
case the vibrating system is considered linear with small perturbations [1-3].
The only exception is the system with nonlinear damping, such as Coulomb or
hysteretic damping, but the conventional techniques generally treat it as the
linear equivalent - viscous damping case [4,5].

2. NONLINEAR SYSTEMS

Nonlinearities in a vibrating system could generally result due to the
following: (a) nonlinear stiffness, (b) nonlinear damping, (c) finite
amplitudes, and (d) physical gap (dead zone) between a mass and a spring; we
could however combine case (d) with (a) [6]. Case (b) will not be considered
here as the equivalent linear damping models are generally used; see References
[4 and 5]. Thus our focus will be on non-linear springs and on large excitation
levels which would drive the system to finite amplitudes.
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An extensive amount of literature is available on the analytical or
computational techniques applied to nonlinear systems; References [6-10] are
typical. But the same cannot be said for the application of modern experimental
techniques to nonlinear vibratory systems. In fact, only two studies have been
published recently, and both have been applied to only a single degree of
freedom system (11,12]. Ulm and Morse (11] have examined a vibratory system on
an analog computer which is described by the Duffing's equation for different
force levels and for varying degrees of stiffness nonlinearity; both swept sine
and random inputs yielded sharp jumps in the amplitude and phase plots, shape
distortion of the Nyquist plots, and poor coherence at the third harmonic of
the system resonances. Moreover, higher excitation levels generally lead to
more deviations in the transfer functions from the linear system response.
Okubo [12] has also analyzed this system numerically with an impulse excitation
somewhat similar to those applied in experimental testing. He has also reported
distortions in transfer functions such as split and sharp peaks in the
magnitude plots, real and imaginary parts in reverse, and additional small
circles in the Nyquist plane. Both Ulm and Morse [8] and Okubo [9], however,
claim that further research efforts are definitely required as their investiga-
tions have been preliminary and only the frequency response functions of a
single degree of freedom system have been examined. Thus, no information on the
mode shape distortion for the multidegree of freedom system is available.

3. SCOPE AND OBJECTIVES

An experimentor would obviously like to know if the system being tested
is nonlinear in nature and the extent of nonlinearities associated with the
modal analysis experiment. Moreover, the severity of assuming linear or
approximately linear system for a nonlinear structure is also of interest.
Through our study, we should be in a position to answer some of these questions.

Our example case is a three degree of freedom nonlinear mechanical system
with finite amplitudes. For this system we are examining the following:
(i) frequency response functions: magnitude M(w) and phase ¢(w) plots, real
Re(.) and igaginary Im(w) plots, and Nyquist plots (Im vs. Re); (ii) coherence
functions v (w); (iii) natural frequencies wps and (iv) mode shapes ._. Since
for the nonlinear system ._ and ._are dependent on force and motion, we will
be comparing normalized responses at a given resonant frequency. An attempt
will be also made here to compare experimental results with analytical
predictions wherever possible.

4. EXAMPLE CASE

Figure 1 shows the example case which allows a combination of transla-
tional (q,, q,) and rotational (q3) motions, with three degrees of freedom. The
dampers ar. assumed here to be linear given by the equivalent-viscous damping
coefficient ¢. Translational springs are considered to ge the hardening type
such that the restoring force f 1is equal to k Aq + ¥ Aq” (Duffing type) where k
and - are spring constants and "Aq is the relative displacement. The forcing
functions are assumed to be sinusoidal forces and applied at the masses.

Initial conditions are assumed to be zero. The equations of motion are as
follows:

. . . .3 _ . _ 3 iat+))

mdpreyayre, (a7 )tk qp 43, q7 4k, (4 =q, )4, (9 =q,) "=F e 1 (4)
. . g2 e e _ ) .3

(m2+m3)q2+m31q3LOb(q3) m3lq351n(q3)+c2(q2 q,)+k, (q, ql)+>2(q2 q;)

e ) o
=F2e1( t+ 2)+F3e1(wt+ 3) (5)
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i(mt+63)1cos(q3) (6)

m3152cos(q3)+m312§3+c3q3+m3glsin(q3) = F3e
Many cases of this nonlinear system can be examined by varying spring constants
(k and B) and force levels (F). This example case can also be reduced to the
single and two degree of freedom systems. Of course, in each case we can also
examine the linear system with small perturbations about the operating point
i.e. 8 =0, and 95 9, and q are small.

5. ANALYTICAL FREQUENCY RESPONSE FUNCTIONS

We consider only the steady state harmonic solution. Assuming response
only at w and ignoring higher harmonic terms, we obtain the frequency equations
which are solved numerically using Newton-Raphson method. Frequency response
functions of normalized response with dimensionless frequency are then generated
over the frequency range of interest which covers essentially the first three
modes of the linear system.

6. EXPERIMENTAL METHODOLOGY

Since it is difficult, if not impossible, to build a physical system with
known and controlled nonlinearities for testing purposes, we have conducted a
simulated experiment. The physical system is simulated by an ~nalog computer
circuit, as shown in Figure 2, and the computer outputs are ccusidered as
physical system outputs. The forcing function fk(t) is band-limited white noise
which would excite the system over all frequencies of interest. This input
along with an output qi are acquired and processed by a two channel FFT
analyzer, in a manner identical to that which we would employ for a real
structure. Only transfer functions in various forms, are analyzed and plotted;
standard modal extraction techniques [2,3] are not used here.

7. RESULTS AND DISCUSSION

7.1 Presentation of Results

In order to perform some parametric studies we now simplify the general
system and assign numerical values to the system parameters and variables, as
listed in Table 1. We also define several dimensionless quantities (given by an
overbar) as the results are presented in the dimensionless form; see Table 1.

Table 1. Example Case Values and Dimensionless Quantities

m, =m, = m, = m; kl = k2 =k; c, =c¢c, =c; c, = 0; c = 0.05; B, = 0, B, = B3

B =0, 0.3, 0.5, and 5.0; F, = F_ =0, F. = F; 6, = 0.

c/2Vmk s w = w mz/k2 E? = w, mz/kz,

ol
[

F/k2, B = Blz/k,

1|
1

q = q/%,

[N

©

~
£l

~

|

ﬁjk(G) = = Re(w) + i Im(w), where j,k = 1,2,3

ml | 0
~ ILJ |
/\
€|
N’

N
=
/\
€
SN”
o

Let us now define the following modal parameters which could be used to
indicate the extent of nonlinearity. 1) Modal response ratio, Rjr = HJkr/Hlkr:
Jsk =1,2,3. Now for the forcing function case we obtalnT l q r/qlr = 1.0,

= = }
R, q2r/q]r and Ry q3r/qlr For the linear case, y_ {1, R2 Ry, where
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er is the transpose of the rth mode, normalized by taking the modal response

of m; equal to unity. 2) 'Backbone' natural frequency (wp)o: we establish it
as a reference frequency for the rth mode as this would be equal to the natural
frequency w, if the system were linear. All R;, values are computed at
frequency (W,)y,. 3) Modal frequency of highest magnitude (Wpaxt at this
frequency the normalized transfer function magnitude M has the maximum value

for the rth mode. We also note for a nonlinear system (uwr), may not be equal

to \@r)max which one would extract from the measured or computed M(u) data. For
a linear system, (wy)y = (Wr)max-

7.2 Case I: Non-linear Spring (B2)

We treat the second spring as the nonlinear spring with values of QZ = 0,
0.3, 0.5 and 5.0. For this case the response amplitudes are considered small
especially for q3, i.e. sin q3 and cos q3 = 1. The dimensionless damping c is
taken to be equal to 0.05. For 55 = 0 case, the system is of course reduced to
the linear case.

Figures 3-7 present driving point compliance Hll(a) spectra in diiferent
forms for the linear (B = 0) and nonlinear (By = 5) cases; both experimental
and analytical results are shown here. We note that the third mode is highly
nonlinear and exhibits jump phenomenon strongly. Experimentally, we do not
duplicate it. The measured coherence function'Yllz(E) is also shown here in
Figure 8; Y112 shape is considerably distorted for the nonlinear case which is
in agreement with the results of Ulm and Morse [11] for the single degree of
freedom.

Taole 1 compares the analytical and experlmental results for natural
frequencies wy and modal response ratio R: We note that (wr)o differs from
the (Wrlpax only for the third mode and the dev1at10n is directly related to the
Sp value. The modal response results show significant discrepancies between
analysis and experiment. However, the relative phase information is still
maintained, i.e. the experiment distorts the relative amplitudes more and
relative phases less.

7.3 Case II: Finite Amplitudes (gq3)

Now we consider the second spring as linear, i.e. B, = 0 and examine the
finite amplitude motion of the pendulum (q,). Although for the analytical part
we retain sin 53 and cos q3 in the equations of motion, we approximate experi-
mentally these by taklng Ehe first two terms of the series, i.e. sin q, ~ g

/6 and cos q, = 1 - /2. This was necessitated by the fact that more
functlon generagors for gheanalog computer circuits were not available; this
approximation is however valid as long as q, is less than or equal to approxi-
mately /4. TFigures 9-11 examine the driving point compliance spectrum ﬁil(w)
in real, imaginary and Nyquist forms; we note that the finite amplitudes
introduce the spring softening effect and thus the curves are shifted to the
left and somewhat distorted. Thus in a real structural experiment, we can
expect softening or hardening effects if the excitation force levels are high
egough to produce large motions. We again note that the coherence function
11 as shown in Figure 12, is distorted for the finite amplitudes case.

8. CONCLUDING REMARKS

Space limitation prevents us from presenting further results and a more
detailed discussion. However, based on the examples presented here and others
worked out by us, including the single and two degree of freedom nonlinear sys-
tem problems, we can draw the following conclusions; 1. Measured transfer
function plot may not truly reflect the true behavior of a system as it does
not show any jump phenomena, instability regions or shape distortions though can
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alert us to the fact that the structure is nonlinear. 2. Modal response data
base can still give us a rough idea about the natural frequencies and mode
shape; this information could be sufficient for solving vibration and noise
problems but certainly not suitable for mathematical model building.

3. Coherence function estimates can be used as the 'warning signals' for the
nonlinearities or finite amplitude motions. Our results are of course more
comprehensive than Ulm and Morse [11] and Okubo [12] results but they are all
compatible with each other.

Overall, it seems that an experimenter has to be very careful and should
use the experimental modal analysis techniques with some discretion. Also,
excitation signals, especially those which contain spectral energy over a broad
frequency range, along with levels should be chosen judiciously; the single
frequency excitation or slow sinusoidal sweeps should be more suitable.

Further research work in this area is definitely required; it could focus
on the following aspects: (i) feasibility study for higher degree of freedom
and continuous nonlinear systems, (ii) time domain data processing and modal
extraction techniques, suitable for nonlinear systems [13,14] and (iii) an
examination of the role of nonlinear damping mechanisms.
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LIST OF SYMBOLS

A

modal residue (complex valued) ] mode shape
damping coefficient € error

force Subscripts

force amplitude i response location
acceleration due to gravity k excitation point
impulse response r modal index

dynamic compliance (complex valued) o backbone frequency

imaginary unit max modal frequency of highest
— magnitude
imaginary part of H(w)
Superscripts
linear spring constant

* complex conjugate
pendulum length

- dimensionless or normalized

mass

— . 4
magnitude of H(w) dt
generalized displacement d2
modal response ratio dt
real part of E((:) T transponse

Laplace variable

time

nonlinear spring constant
coherence function

phase of H(E)

phase of force f

circular frequency

damping ratio
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Fig. 9 Real part_of the experimentally measured driving point compliance
- . 9, _
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P \\ MODAL ANALYSIS AND INDENTIFICATION OF
STRUCTURAL NON-LINEARITY

f G.R. Tomlinson and N.E. Kirk

: Simon Engineering Laboratories

Univercity of Manchester AD—P003 683 ;

1. INTRODUCTION

Y When it io suspected that a structure ic non-linear, e.g. unfamiliar dis-
*ortionc of transfer functions, unaccertable deviations in curve fits or
~ignificant amplitude dependent behaviour ic observed, there are few, if any,
octabliched methods for reliably identifying the nature or quantifying the
importance of non-linearity. The reasons for wanting to pursue an analysis into
‘he non-linear domain whereby a reliable identification method would be of value
can be described in three general wayc.

Firstly, an accurate linear model of the cystem is desired if possible. This
nay be the case where a comparicon iz to be drawn with the results from a linear
finite element analysic. Jeconily, the existence of non-linearity is to be
eutubliched and the need iz for an ectimate of its effect on the structures
re.:ponce in cervice, i.e. tne behaviour of the non-=linear cystem is desired when
e input 1o typical of orperating conditiona. Finally, it is required that the

e non=linearity be identified fully enough to enable an implicit mathematical model
*o be conctructed, cuch ac a cet of non-=linear differentizl equations. These may
tien be colved to predict tie recponce of the structure to various input condi-
*lonc whereby the dependence of the modal parameters on these can be established.
I othir care tne non=linear coefricients of the structural systerm equations have
‘0 be cetermined.

Depending upon the air of the invectigation, consideration has to be given
to the method of tecting a ctructure since the method of testing can either be
aimed at eliminating non-linear behaviour or at highlighting it for indentifi-
cutlion purpoces. For example, multi-point sinusoidal testing is advantageous
for minimicing non-linear effects(l) since tre structure is forced into the shape
of a normal mode of the equivalent linear cystem and, at the same time, this also
21llows for the amplitude force dependence of the modal parameters to be
cotablisied.

If actual operating conditions are to be reproduced as closely as possible
iuring testing, the input signals may well be random in nature. Studies of non-
linecar elements to random inputs have been carried out (2,3) but general diffi-
culties in identifying the nature of the non-linearity have been encountered,

The testing method most commonly used in the identification of non-linear
atructurec is the single frequency sinusoidal input. Most non-linearities will
nave a recponse to this excitation which is dominated by the fundamental frequency
(particularly in the resonant regimes) and much work has been carried out using
this test method for simple systems (4,5).

The principal limitation to date, regardless of the testing procedure
employ-d, ic that in order to analyse non-linear structures important assumptions
have to be made. These refer to an assumed model, or models, of the non-linearity
and to the degree of non-linearity present. A method recently developed which
overcomes several of these shortcomings is presented. The method employs the
Hilbert transform which provides a relationship between the real and imaginary
parts of the measured complex frequency response functions.

This relationship is shown to be very useful in identifying and character-
ising non-linearities and examples of the application of the technique and the
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possible advantages of employing time domain procedures are diccussed.
2. APPLICATION OF THE HILBERT TRANSFORM IN MODAL TESTING

A detailed analytical description of the development of the Hilbert transform
for application in the domain of modal analysis is precented ir (6),(8). However,
for completeness tlie major formulae necessary will be presented.

For any complex analytical function from which the real part can be derived
from its imaginary part, or visa versa, this relationship is known as a Hilbert
transform pair. In modal analysis we assume such a function exists, namely the
relationship between the output response and the input excitation.

In terms of the commonly measured quantity Mobility, our complex analytic
function is

iw (xR + iXI)

2 )
1 W, (1 + mr) -w

output velocity response
input force

% m
G(Ll)) = F = = )r:‘= 2 (l)

The Hilbert transform of G{w) in the frequency domain will be defined as
HG@w)] = H@) =Re H () + iImk () (2)

Employing Cauchy's formula for the integral relation of a complex variable allows
us to write

-1 Glw )d

() - 2 Celd (5)
c w-w

Choice of a suitable integration contour in the complex plane (6) results in

equation (3) being expressed as

o(u) = - ﬁ PV Gly) dw (4)

where PV designates the Cauchy principal value of the integral.
Equation (4) can be expressed as real and imaginary functions,

2 " oImGle Jdw
-< fo 2 7 (5)

-

Re G(wc)
C

2w, ®  Re Gl )dy
Im G(wc) —< PVf > 5 (6)
0o w - w ¢

Equations (5) and (6) are the Hilbert transform pair which can be used to
derive the real part of G(w) from its imaginary part and visa versa.

z.1 The Hilbert transforms and non-linear systems

For a linear system which is governed by equation (1), the equality
Hw) = GW ) holds. That is, thc Hilbert transform can be used to derive the
real part of G{ ) from its imaginary part and visa versa using equations (5)
and (6). 1In practice this means that when the mobility fregquency response
function (or functions) is obtained, using swept sine excitation, the procedure
iz to compute the imaginary part of the frequency responce function by taking
the Hilbert transform of the real part and to compare this with the actual
(measured) imaginary response. This procedure ic also applied to the real part,
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If good correlation exists between the Hilbert transformed functions and the
measured functions then the system is classified as linear. However, when

the mobility data is polluted by non-linearity, then we have a criterion which

is stated as, if H(w) # G(w), the system is non-linear. Another way of examining
this criterion is to say that if the equality conditions exist such that

H(w) = G(w), then from equations (2) and (4),

6() = ReGlw) + 3 Pvf: Rwe—c'—(ﬂuﬂ (7)

This can be written as a convolution (7) by noting that

o f(x)] -;% ® r(x) (8)

. 6l) = ReG(w) + (;_—i) £ ReGlu) (9)

If G@)) is the Fourier transform of a real sigral g(t),
w0

i.e. Glw) = fg(t) oM tutyy (10)

- 00

then taking the inverse Fourier transform of equation (9) gives

F‘l[ G(w)] = glt) B(t) [ 1+ sgnt] (11)

-1 /i
(m) = +1fort>0

where sgnt = F

= ~1fort<2o

and E(t) is a real even function.

Hence equations (7) to (11) state that g(t) is real and causal only if
H@”) = G@ﬂ). The corollary of this is that if g(t) is real and non-causal then
H@D) # G@ﬂ) and the system is non-linear. This aspect re-emerges when the time
domain concept of carrying out the Hilbert transform is examined in a later
section.

It is worthwhile mentioning thet the same conclusions regarding the real
and causal properties have been derived using Parseval's theorem by Vinh(9).

3. IDENTIFYING NON-LINEARITIES IN MODAL TEST DATA
In order to apply the Hilbert transform method, discrete versions of
equations (5) and (6) are necessary. These will merely be quoted and reference

to (5) gives details of their derivation.

Discretising the mobility frequency response real and imaginary functions
into n points gives

n
InG(w, ) ew, Lo
Re H (o) = == ¢ —K K_ . g (12)
J T k=1 w2 _ w2 R
k J
n Re G{y )A
ImH (w.) = 2 w. T __E____K____ + E (13)
J T 2 I
kst w =~ - Wy

With a0 = w ) e K £

The terms E_ and E, represent the real and imaginary correction terms since the
mobility function 5oes no* extend to infinity.
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These terms (derived in (5) ) are:

X + +
M G TenEr ) (e T ey En-uc)
ER - “(wc2 _ wrZ) “r (w - rury(wr wp * wcl (‘*’c - wl)(wn *wcy (14)
i w X X %2 © -w )@) +w ) -wc)@n +wc) (15)
= — n
: n(wce_mrg) wr2 (wc_wl)(wc+w )(wn-mr>(wn+wr)

where s X\ wr are estimatec of the real and imaginary modal constants and
resonant fréquency recpectively.

An alternative to the above approach has been developed by Haoui (10) whereby
a series expansion for the correction terms is employed. This has the advantage
that no estimates of the modal parameters are required for the correction terms.
However, this approach requires that a mobility function begins at zero frequency
with zero magnitude.

In order to demonstrate how the method works, equations (12) to (13) have
been applied to the mobility response data from the digital simulation of a single
mode system with two types of structural non-linearity, Coulomb friction and a
cubic non-linear stiffness. The results shown in Figures 1 and 2 for both low
and high excitation levels clearly demonstrate the ability of the method to
identify non-linear effects. It can be seen from Figure 1 that when the force
excitation level is small, the Coulomb friction results in a large symmetrical
discrepancy between the data and the Hilbert transforms whereas at the higher
excitation level (where the friction is almost saturated) the data and the
trancforms almost overlay, indicating a linearised system.

Conversely, Figure 2 shows that for the non-linear stiffness the low excita-
tion level results in good correlation between the data and the transforms. At
the higher excitation level a divergence between the data and the transforms
indicates a non-linearity.

In this case it is observed that with a stiffening non-linearity the
symmetry between the data and the transforms is destroyed.

Figure 3 shows the results of the method applied *o tests on an aircraflt
aileron. 1In B(a) the real and imaginary parts of the mobility frequency response
function and their transforms are displayed, these results being obtained at one
intermediate force excitation level. The lack of correlation, together with the
asymmetry characteristics indicate a softening spring characteristic in all three
modec.

Figure B(b) shows the results of tests carried cut at the same excitation
and recponse points for several force excitation levels. Confirmation of the
exictence and character of the non-linearity, as identified by the Hilbert
trancform, ic readily seen. A further point of interest is that tests carried
out at a low excitation level indicated good reciprocity, whereas reciprocity
testc carried out at the intermediate force excitation level, where the Hilbert
trancform indicated non-linearity, gave poor correlation.

Application of the Hilbert tranzform to nceveral typec of non-linearity has
been studied (2) and it hac been shown that each non-linearity can be identified
uniquely by the differences between the transformed and original data. In an
attempt to quantify the level of non-linearity, tranasform deccribers have been
employed. These are frequency moment integrals which are baced on the principal
of ctatictical moment:.
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3.1 Transform Describers

Utilising the fact that non-linearity creates symmetry/asymmetry characteri-
stics between the original and transformed data, frequency moment integrals which
are centred around the resonant frequency can be derived. The difference between
the moments of the original and the transformed data is a measure of the level of '
the non-linearity.

In order to ensure generality, the moment integrals are based on the half-
power points mode by mode.

The moment integrals employ the equation: )
W

B
M(n) = f w? S(u)) dw (16)
“a
where w,, w_, are the half-power points of the mode of interest, S(w) is G(w) for

the actéal ata and H(w) for the transformed data. The Hilbert transfcrm

describer is defined as

(n)
HTD = MH _ moment integral of transformed data (17)
- M (n) = Tmoment integral of actual data
G

Tabulated values of these frequency moments for n = 1 to 3 have been presented in '
(8) and it was shown that these can be used to confirm the character of the non-

linearity. These describers can be evaluated for both the real and imaginary

sets of data.

Basically, the describers behave as indicated below: .

For a linear system:

(1)
H —
o
G (n

For a non-linear system, MH will be dependent upon the nature of the

M (n)
G

non-linearity and upon the value of n in equation (16). However, they will be
either greater or less than unity and their trends can uniquely identify the
character of a single non-linear element in systems with well spaced modes.

~— =t

In order to establish a relationship between the errors in the modal para-
meters derived using a frequency domain curve fitting algorithm employing a
linear model governed by equation (1) and the transform describers, the responses
from a series of digitally simulated single mode non-linear systems were analysed.
The analysis consisted of curve fitting the linear model and extracting the modal
parameters, natural frequency and modal damping. This was then repeated for the
non-linear system at various excitation levels. The differences between the modal
parameters was then expressed as a percentage error based upon the linear model.
Trancform describers were obtained in each case from the original and Hilbert
transformed data and again expressed as a percentage change for increasing
excitation force. Figures 4 and 5 show the trends obtained for systems with
Coulomb damping and a hardening spring. Although the clear trend is one of
increasing error in the modal parameter with transform describer, insufficient
information is available to uniquely relate the error in the describer to the
error in a modal parameter since the trends observed are dependent upon other
system parameters, e.g. the magnitude of the linear damping.
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Thus, the use of the transform describers is limited at the moment to identi-
fying non-linearities; the ability to quantify the importance, i.e. a sirong or
weak non-linearity, still remains unanswered.

4. FREQUENCY DOMAIN AND TIME DOMAIN TRANSFORMS

The Hilbert transform in the fequency domain is a continuous transform over
all frequencies. The use of a discrete transform, as defined by equations (12)
to (15) introduces errors, particularly if the modal damping is small, since there
is a losc of information in the resonant region.

The condition 4 w< brwr/2 (18)

for the rtn rode can result in the true peak amplitude being missed entirely and
then the trancform will not be identical to the original data even for a linear
cystem. This effect is clearly seen in Figure 6(a) and (b) where simulated data
for a lightly damped linear single-mode system has been transformed using a 40
voint function in 6(a) and a 120 point function in 6(b).

Figure 7 shows the actual mobility data and the transforms of the mobility
data obtained from tests carried out on a cantilever plate, using stepped sine
excitation. The two lower modes, where the condition defined in equation (18)
exists, display errors caused by lack of resolution. The transform of the higher
modes is in close agreement with the original data and in these modes

Auw > 5 wr/z

An additional disadvantage of the frequency domain approach is that of the
speed limitation. The number, of calculations required in a point by point
frequency transformation is n”, where n is the number of frequency points. How-
ever, if we consider the alternative, transforming in the time domain, then
ceveral advantages are obvious.

Considering the Hilbert transform of our mobility complex frequency response
furction expressed as a convolution in frequency, we have, from equation (9),
-1
Hw) = = =% 6v) (19)
Thir appears as a multiplication in the time domain

F {sgnt X F—l(G(w) )] (20)

If the Fourier transforms involved are evaluated by a FFT algorithm, a useful
increare in cpeed is seen over the frequency domain approach.

H(w)

Equation (20) has been applied to simulated data for a linear single mode
cyctem whereby the real and imaginary mobility data are inverse Fourier trans-—
formed, the time characteristic multiplied by sgnt and the result Fast Fourier
transformed back to the frequency domain. Figure 8 shows the results of these
operations and it can be ceen that there is a small difference between the original
and time uomain transformed data which chould not be present for a linear system.
Figure 9 shows the results of applying this approach to non-linear data and the
ditferences in the transformed and original data is much more significant due to
the presence of the non-linearity. The discrepancies which arise in the linear
cace arc due to the fact that the mobility functions do not extend to zero, thus
"~dge or leakage effects" are present which, in the frequency domain, required the
correction terms, equations (14) and (15) being applied to the transforms. The
"leaxage effects" are seen in the time domain as a non-causal signal. It has
already been shown that in order for the Hilbert transform, H@)) to be equal to
*ho mobility function G(w ) (equations (7) to (11) ), the time signal g(t) must be
real and caucal. Figure 10 shows the inverse Fourier transform of the mobility
tnta vrecented in Figure 8, the real valued signal for t < 0 indicates non-causa-—
lity. Thuc, when the Hilbert transform of this total time signal is taken, errors
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are introduced.

However, these effects are small and when one considers that the number of
calculations involved using this approach is 2nlog,(n), compared to 2n°, for the
frequency domain approach, it is apparent that thefe is a considerable time caving.

CONCLUSIONS

The application of the Hilbert transform in modal analysis has shown that
non-linearity can be detected and identified without any prior assumptions. The
ability to uniquely identify a particular non-linearity is dependent upon the
predominance of that characteristic in a particular mode. The uce of frequency
moments offers a numerical basis for identifying the nature of a non-linearity,
but the quantification of non-linearity in relation to the errors expected using
a linear model is yet to be achieved. However, it has been shown that there is a
definite trend between the changes in the frequency moments and the magnitude of
the errors in the modal parameters.

The Hilbert transform in the time domain offers a considerable saving in
computation time and allows the benefits of FFT procedures to be employed. The
creation of a non-causal signal in the inverse FFT, which results in non-ideal
transforms, is a prerent a penalty of using this approach.
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FIGURE 1
SODOF SIMULATION WITH COULOMB FRICTION NON-LINEARITY

a) low force excitation level
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The time domain Hitbert transform of a non-linear mobility

509

-, . .. .2




g -vn g '.*

R4 W

Real

Time
Non-causal :ﬂ

time signal

FIGURE 10

The time response of the data in Figure 8.
Note non-tausal nature (i e. negative time component )

510




TIME DOMAIN ANALYSIS OF NONLINEAR VIBRATION DATA
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1. INTRODUCTION

The identification and modeling of nonlinear multidegree-of-freedom (MDOF)
dynamic systems through the use of experimental data is a problem of consider-
able importance in the structural dynamics area. Since the model structure in
many practical dynamic problems is by no means clear, an increasing amount of
attention has recently been devoted to nonparametric identification methods.

However, the traditional nonparametric identification techniques have
their own problems, including restrictions on the nature of dynamic systems
to be identified (nonhysteretic, stationary) and on the input signal that can
be used (white noise). Furthermore, when dealing with systems incorporating
commonly encountered nonlinearities (e.g., polynomial ones), the computational
effort required to evaluate higher-order terms is prohibitive, coupled with
very demanding ‘and usually unrealistic) storage requirements.

"> This paper presents an approximate method for the time-domain analysis of
vibration data obtained from the response of MDOF dynamic systems that are
undergoing nonlinear deformations. In addition to providing a convenient pro-
cedure for the nonparametric identification of arbitrarily nonlinear structural
systems, the proposed data-processing method furnishes a rational approach for
a systematic procedure of model-order reduction in nonlinear systems. |,

~

2. FORMULATION
2.1 Introduction

Consider a discrete nonlinear dynamic system whose motion is governed by

Mx + f()f,;f) = p(v) , (1)

where M = diagonal mass matrix of order n, x(t) = displacement vector =
{xl,xz,...,xn}T, f = function that represents nonconservative nonlinear forces,
and p(t) = excitation vector.

Assume that "equivalent" stiffness matrix K corresponding to the range of
motion of interest can be determined. This step could be accomplished, for
example, by using modal identification techniques to process experimental
measurements from the response of the physical systems. Alternatively, in the
case of large nonlinear finite element models, where the time history response
is obtained by treating the system as a piece-wise linear model, matrix K is
directly available since it is repeatedly reconstructed to reflect changing
response levels.

511

A.

A _ L . .




2.2 Restoring Force Estimation

Now solving the eigenvalue problem associated with the linearized version
of Eq. (1) results in the transformation

X =¢u (2)

where ¢ is the eigenvector matrix and u is the vector of generalized coordinates.

Making use of Eq. (2), the system equation of motion Eq. (1) can be
converted to the form

MG+ h(u,0) = q(r) (3)

where .# is a diagonal mass matrix given by

M= O MG, (4)

h is a vector corresponding to the transformed nonlinear forces acting on the
svstem,

13(13,5.1_) = d>T f(}j,}:c) s (5)

and q(t) is a vector corresponding to the generalized excitation forces,

q(t) = o' p(o) . (6)

~

An alternative form of Eq. (3) is
h(u,0) = ¢"(p(t) - M %) . @)

Note from Eq. (7) that if the terms appearing on the right-hand-side (RHS) are
known, the time history of each component of vector h can be determined.

Note also that in the case of a linear system, due to the orthogonality
condition associated with ¢, the set of equations represented by Eq. (7) are
decoupled; i.e., each component h; of h depends only on the ith generalized
coordinate uj rather than on all components of u.

Guided by the preceding observation, the central idea of the present method
is that in the case of nonlinear dynamic systems commonly encountered in the
applied mechanics field, a judicious assumption is that each component of h can
be expressed in terms of a series of the form: -

h (u,B) = b (u,0) (8)
where
Jmax
b (o) = 5 L) () Gy (9)
i L= i 1, 2,
j=1 i i

The approximation indicated in Eq. (9) is that ecach component h; of the non-
linear generalized restoring force h can be adequately estimated by a collection
of terms hi(j) each one of which involves a pair of generalized coordinates
(displacements and/or velocities). The particular choice of combinations and
permutations of u, and u; and the number of terms Jp,.. needed for a given hy
depends on the nature and extent of the nonlincarity of the svstem and its
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effects on the specific "mode" i. Note that the formulation in Eq. (9) allows
for "modal" interaction between all modal displacements and velocities, taken
two at a time.

2.3 Series Expansion

The individual terms appearing in the series expansion of Eq. (9) may be
evaluated by using the least-squares, approach to determine the optimum fit for
the time history of each hj. Thus, hi(l) may be expressed as a double series
involving a suitable choice of basis functions,

(l)( (1) (l)

i

h (u u)~ h ), (10)

where

(1), 1) (1)

(1)
kzkl)T(

T
2 ) . (i1)
1

By extending this procedure to the residual error to account for all
"modes" that have significant interaction with "mode" i, Eq. (9) is obtained.

2.4 Least-Squares Fit

Using two-dimensional orthogonal polynomials to estimate each h; (u u) bv a
series of approximating functions hl(J)of the form indicated in Eq. (11), then
the numerical value of the Cp, coefficients can be determined by invoking the
applicable orthogonality conditions for the chosen polynomials. While there
is a wide choice of suitable basis functions for least-squares application, the
orthcgonal nature of the Chebyshev polynomials and their "equal ripple" char-
acteristics make them convenient to use in the present work.

2.5 Response Prediction

Once the coefficients (j)Ckgi) have been extracted from the nonlinear
system response in the manner outlined above, they constitute a reduced-order
nonparametric model of the system. When used with the same excitation employed
for identification they can reconstruct the (approximate) response of the
higher-order model. Even more important is the ability to use these same
coefficients to predict the estimated response time history of the nonlinear
system when subjected to an excitation signal that is different from that used
for identification purposes.

The procedure for the approximate model response predictions is based on
the (numerical) solution of the reduced-order system equations of motion
expressed in the form:

L‘{ (t) + h, (t) = qi(t) s i=1,2,...,r <n. (12)

Given p(t) and initial conditions x(t ), x(to), once h,(t) is determined
from Eq. (9), and making use of Eq. (6) to determine ql(t;, the governing
equations of motion (12) can be incrementally (numerically) solved to compute
the response uj; at the next time increment (t + ’t). The approximate response
time histories of all of the system's n degrees of freedom may then be found
from

x(£) = ¢ u(t) , (13)

and the nonlinear restoring forces acting on the svstem will be found from
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g(}f,%) = p(t) - M ¢ i) . (14)
3. APPLICATIONS

3.1 Example Limited-Slip/Hysteretic Model Characteristics

To illustrate the application of the method under discussion, consider
the hypothetical finite element model shown in Fig. 1. This three-dimensional
structure consists of three equal masses m; that are interconnected by means
of 12 truss elements anchored to an interface at three locations thus resulting

in a redundant system with 9 degrees of freedom.

The arbitrary nonlinear elements, denoted by g;, that are interposed
between the masses and between the support points are dependent on the relative
displacement z and velocity z across the terminals of each element.

To illustrate the range of validity of the present method, nonlinear
elements possessing limited-slip as well as hysteretic-type force-deformation
characteristics will be considered. Such nonlinearitics not only involve
cross-product terms of displacement and velocity, but are of course not even
expressible in polynomial form. Hysteretic systems, widely encountered in all
areas of applied mechanics, are among the more difficult types of nonlinear
properties to investigate and identify [1-6 ]. Also, many aerospace engineering
structures, particularly deployable structures containing collapsible or retract-
able elements, allow a limited amount of slip to take place between members.
Such a structural behavior simultaneously involves Coulomb friction forces,
deadspace-nonlinearities, as well as hysteretic characteristics [6 ].

In the example structure under discussion, 6 elements (81,82:84,86:89:810)
have limited-slip properties, and the remaining 6 elements (g3,85,87,88:811:812)
have bilinear-hysteretic characteristics of the type shown in Fig. 2.

The geometrical configuration as well as the material properties of the
elements of the nonlinear model are given in Fig. 1 together with the indices

that relate the structure 9 degrees of freedom to the global (X,Y,Z) axes.

3.2 Test Excitation and Response Measurement

Subjecting the nonlinear system to the wideband stationary random excita-
tion applied uniformly to each of the 3 masses in the global X direction for a
length of time much longer than the longest system period of interest, results
in the response time history depicted in Fig. 3. This can be thought of as an
equivalent test in which the structure is mounted on a vibration generator.
For ease in visualizing the qualitative behavior of the system, the same scale
is used for plotting the displacement time histories of all 9 DOF.

The variation of each member internal force gj(t) with the corresponding
member deformation z;(t) is shown in Fig. 4. For ease of comparison, the 12

plots in Fig. 4 use identical scales.

3.3 Identification

Following the procedure given in Section 2.1, an equivalent stiffness
matrix K of order 9 x 9 corresponding to the small oscillations (linearized)
range of motion is determined. The mass matrix M is diagonal and equal to
M = myl, where my is a constant equal to 1.0 and I is the identity matrix of
order (9 x 9). The linearized frequencies are fairly clustered and they span
a range wgi.y of » 5:1.
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Plots of the time histories of the dominant components of the generalized
restoring force h are shown in Fig. 5(a) and (b), and the variation of each
hj(t) with its corresponding state variable uj(t) are presented in Figs. 5(c)
and (d). It is clear from Fig. 5(d) that hg, the generalized restoring force
associated with the third mode, exhibits pronounced hysteretic characteristics.

Performing the identification procedure in the manner indicated in
Section 2, the approximate nature of each h;(t) is determined in accordance
with the steps given by Egs. (8)-(11). A summary of the pertinent information
for each of the identified hj is given in Fig. 6. Note that, for the present
example, sufficient accuracy in estimating the h;'s is achieved without involv-
ng terms that depend on modal interaction.

Each of the identified functions ﬁ(j)(vl,vz) when expressed in terms of
its corresponding state variables defines a surface covering the vi-vy plane.
The approximate surface, as defined by Eq. (9), for each of the identified h's
is plotted in a three-~dimensional form in Fig. 7, which also shows the 3-D
representation of the "exact" value of h plotted as a function of 8; and 6,
where €; = cos™l vj. The values of the equivalent linear stiffness and equi-
valent viscous damping associated with each of the generalized coordinates uy
can be readily ascertained from the 3-D plots of Figs.7(b) and (d).

A comparison of the time history of the exact and approximate modal h is
shown in Fig. 5(a) and (b).

3.4 Validation of Identified Model

In order to demonstrate the validity of the present identification approach,
the model representation expressed by the Ckﬂ coefficients shown in Fig. 6,
which were extracted from the original ("exact") model response under a probing
signal consisting of stationary broad-band excitation, will now be used to
predict the response of the original model when subjected to nonstationary
random excitation consisting of modulated white noise of the form

po(t) = e(t) n(t) (15)

where e(t) is a deterministic envelope function

e(t) = a; exp(azt) + a, exp(aat) (16)

with the a's being arbitrary constants, and n(t) is the output of a Gaussian
white noise process.

Using the identification results for prediction purposes, by following the
steps indicated in Eqs. (12)-(14), results in the response time history shown
in Figs. 8 and 9. It is seen that satisfactory agreement is obtained between
the measured and predicted response both in amplitude as well as frequency
content. As one would expect the results shown in Fig. 8 indicate that the
least deviation error is achieved in the primary degrees of freedom (x ,x4,x7)
which dominate the displacement response. Similar comments apply to t%e higher-
derivative response measures of velocity and acceleration.

Due to the nature of the identification method under discussion, in which
the generalized nonlinear system restoring forces are matched by an approxi-
mating analytical expression, good agreement is obtained between the measured
and predicted system acceleration, particularly for the primary degrees of
freedom. In fact, due to the excellent agreement between the two acceleration
curves shown in each of the Figs. 9(a), (d) and (g), one would need to examine
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carefully a much more expanded time scale before anv detectable variation
between the two curves is discernible. Further details regarding this study
are available in Ref. [7].

4. SUMMARY AND CONCLUSIONS

An approximate method is presented for identifying and reducing the order
of discrete multidegree-of-freedom dynamic systems that possess arbitrary
nonlinear characteristics. The utility of the proposed method is demonstrated
by considering a redundant three-dimensional finite element model consisting
of 12 nonlinear truss elements half of which incorporate hysteretic character-
istics, and the remaining half having limited-slip properties. This structure,
which has 9 DOF, is subjected to stationary wideband random excitation and
subsequently a nonlinear reduced-order model of 2 DOF is developed. The
original structure is then subjected to a new nonstationary random excitation
and its measured response is compared to the predictions obtained by subjecting
the reduced-order model to this new excitation. In spite of the reduction of
the nonlinear model-order by a factor of 4.5, satisfactory agreement is obtained
in regard to the deviation error between the predicted and measured response
time history of all degrees of freedom of the original model. This deviation
error is least in the case of the primary (dominant) DOF. Furthermore, the
accuracy of the predicted accelerations are as good, if not better, than the
lower-derivative response measures.
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Fig. 2. Nonlinear restoring force characteristics.
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1. TINTRODUCTION

Steady state vibratory response of structures to dynamic excita-
tions is possible because of the mechanisms present in those structures
which dissipate the energy that would otherwise cause the responses to grow
without bounds. The theories that are used to analyze the vibration of
structures, or interpret measured vibration data are only as good as the
model adopted for characterizing the damping in the structure. An instruc-
tive discussion of the role of damping in vibration theory has been given
by Crandall [1].

Nowadays, it has become accepted to use various techniques of Modal
Analysis to study the vibration characteristics of a wide variety of
structures, ranging from simple beams to complex Aerospace Structures
[2]. These techniques have proven sufficiently powerful to the extent of
identifying the resonant frequencies and "mode shapes” of most practical
structures. However, only limited success has been achieved in pre-
dicting unmeasured mobilities or vibration levels. 1In applications such
as Analytical Testing [3), Systems Identification [4] or Force
Determination [5], to name a few, where these mobilities are the starting
point for further analyses, there arises a need for more accurate damping
models.

In current modal testing and analysis practice, two types of
damping models are popular, based on viscous or hysteretic damping
assumptions. They both lead to systems of constant coefficient linear
differential equations of motion, from which the derivation of the mobi-
lity functions are straightforward [6]. In the quest for more comprehen-
sive damping models, this paper reexamines the way in which damping
considerations enter the equations of motion for steady vibrations. For
single degree of freedom systems, Jacobsen [7] approximated a general
velocity puwer damping law by a coefficient multiplying the first power
of velocity, with the appropriate sign to assure energy dissipation.
This coefficient turned out to depend on both frequency and response
level, and was determined by matching the work dissipated per cycle of
oscillation at any given frequency of excitation. The effectiveness of
this approximation has since been established by exact analysis and
experiment for zeroth and first power velocity damping laws [8].

An extension of this idea to a simple 3-degree of freedom system
results in a frequency domain system of equations, with a damping matrix
which depends on both frequency and response levels. These equations are
investigated numerically to study how the departures from linear damping
models affect the shape of the mobility functions, calculated as the
ratio of response to excitation over a selected frequency band.

In mobility testing practice, a structure is said to behave
“"linearly” when the measured mobilities are independent of the excitation
level. For such structures, it is possible to leave out the dependence
of the damping matrix on the response levels. 1In the resulting
equations, the damping matrix can have a general functional dependence on
frequency, usually consisting of linear combinations of various frequency
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powers. By suitably defining a set of complex valued vectors, termed
"damped modes™, it is shown that the mobility function can be expressed
in the usual modal series form, suitable for modal analysis. The differ-
ence now is that the modal functions now have a more general dependence
on frequency than the usual formulations. This permits the “tailoring”
of the assumed damping laws to the actual behavior of a particular struc-
ture or cla-; of structures. It then becomes possible to identify modal
parameters which are most consistent with the measured data.

2. SPRING~MASS SYSTEM WITH GENERAL DAMPING

The exteasion of Jacobsen's approximation to multiple degree of
freedom systems is developed by considering a simple arrangement of
masses, springs and dampers shown in figure 1. Three lumped masses M,

M, and M, are connected by linear springs Kj, Ky, K3 and nonlinear dam-

pérs (C1; n1), (C2, n2) and (C3, n3); where the damping force of the jth
damper is:

_ 1 dx ) ng dx
£y = -Cj | o | M3 SGN(d—t) (1)

dx
where |3;J is the magnitude of the relative velocity between the ports of
damper and SGN(%%) is its sign. The approximation consists of replacing

equation (1) by:

|
£y =-¢5 - — (2)
J J dt

for harmonic motions. In appendix I, it is shown that during such
motions; i.e.
x(t) = X Sin wt,

the damping force in equation (2) will dissipate the same amount of
energy per cycle of oscillation if:

nj+2
2C; T(—5) ng1 n4-1
C'___/_J 2 X h| o h| (3)
j o nj+3
PC‘E*")

where T( ) is the gamma function of the argument and w is the frequency.
Steady state forced response of the system in figure 1 is then determined
by the following system of equations in the frequency domain:

(-o® M] + (K] + 1 (DD T} = [N} (4)

where {N} = fﬁ}eiwt is the harmonic forcing vector, {y} = {?}eiwt is the_
vector of displacements of the lumped masses from equilibrium and {y}, {N}
are complex valued vectors of the amplitudes of response and excitation
respectively. The matrices in (4) are defined as follows:

M 0 0
M] = 0 M, 0
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where

and

Kl + Kz -K2
[K] = 'Kz K2 + K3
0 K,

Dl(w) + Dz(w)

()] =] =D, (w
0
n1—1
D = w3
1(w) = uC lyll
_ nop-1
D s W |7 -
2(w) = ly2 yll
— _ n3-1
D = W |y -
(@) = W] |y3 y2|

ni + 2
J
ZCj F(——i—-—-) nj'l
= w
nj+3
2

c"
hj %

T(

'Dz(w)

Dz(w) + D3(w)

-D3(w)

-D3(w

D, (w

The notation |( )| denotes the magnitude of the complex quantity ( ).

If the dampers obey a first power velocity law, equation (4) reduces
to the familiar set of equations governing a viscously damped system.

Relative to the [M] and [K] matrices,

the elements of the [D(w)] matrix are

small, at most frequencies. %owever, in the neighborhood of an undamped

natural frequency, when the w"{M] and
the role of [D(w]] becomes pronounced.

[K] matrices neutralize each other,
For lightly damped systems, this

region is narrow, and the damping matrix can be replaced by the constant

values assumed at that frequency.
hysteretic damping form.

The resulting equations now resemble the
Although the physical arguments may be slightly

different, the measured behavior of the structure agrees with these
equations. In the study of structures with moderate levels of damping,
both viscous and hysteretic damping models have been used with comparable

success [6, 2].

2.1 Numerical Study

The system considered for numerical investigation of equations (4)

consists of three uniform masses M, springs

2 _K
Wo M
n+2
1 "5
S r(“‘ZL3

w oz =1 m)
Yo
Mw
o
Cmn-2
o
. L
M
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K and dampers (C, n).

Let,




v‘-—

) ~ / n-1

D, (w) 17, |

~ ~n n-1

£ 0w v = 2ne [y, - Y

o~ _ _ n-1

Dy (w) lyy = ¥,

/
D (w) + ?2((») ~—52(w) N o
and [D(w)] = D, (w) Dy(w) + Da(w) “D4(w) 5
N 0 -Dy(w) Dy(w) |

then for this uniform system, equation (4) can be written as:
=

[ ~2 —1
2-w -1 0
~2 —~ -
-1 2-u -1 + 1[D(w)] vy} = (v} (5)
2
0 -1 1-w |
L i

Equation (5) is solved numerically by a method outlined in appendix II, for

selected ranges of ® between 0 and 2. This range of values can be shown to
cover all the three possible resonances of the system. In order to simulate
single point mobility testing, only one element of {1} is non zero. The value
assigned to this element is used to specify the excitation level. The responses
computed for each node are then ratioed to this number in order to obtain the
displacement mobilities. The parameters varied in this study are:

uy:  a measure of the excitation level at node 3
n : a measure of the damping ratio. (Note that when the damping
exponent is unity, this quantity is exactly the ratio of viscous
damping coefficient to the critical damping coefficient).
and n : the exponent in the assumed damping law.

3. MODAL ANALYSIS

Let a set of 'damr-d' modes of the system be defined by the following
characteristic equation

(K] + 1[D()] ) o} = ACw)(M] (o) (6)
[0} = {&R} + i{¢1} is the complex characteristic vector, which are here termed

'damped modes' in analogy to 'flutter modes' in aeroelasticity where similar
equations are encountered (see, for example [9]). For combinations of (2 y(w),

Mlj) and () (w), ‘“‘K) which satisfy equation (6), it follows that:
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T D)

T
5D+ i[n(w)])!¢1k xk(w)f¢}j[M]{¢}K

T
{¢}K([K] + 1[D(w)]){¢}j

and &l

where [¢}T denotes the transpose of {s}. By virtue of the symmetry of the [K],
[M] and [D(w)] matrices, equation (7) leads to the following orthogonality
relationships:

T
{d’}J[M] {‘b}‘( = mjajk

(8)
T
and {¢}j([x] +1 (D)) {6}, = (g + 1d (D)8
where LI {m}? [M]{¢}j
_ 4T
ky = {m}j[x]{¢}j
_ T
dj(uo = {¢}j[D(w)]{¢}j
0 j*k
and ij = { 1 j=k
From equations (6) and (8), it follows that
(o] (1x) = 1) + D@D 8] = (e - WPug + 1 wsy (o

_ _ 2
= (Xj(m) w )mjajk

It has been shown in [3] that the frequency dependent characteristic numbers are
of the form:

2
xj(uo = Qj(l + igj(w)) (10)

where Qz is a nonnegative real number associated with the jth mode, and by con-
sidering the form of the [D(uo] matrix, the function gj(w) can be expressed as:

gy(w = Z S (1)

Where, in general there may be N, different damping exponents in the system, and
oj’ “kj’ =1 2,...N are damp?ng coefficients associated with each damping

power law.

If {4] denotes a complex valued modal matrix, such that its jth column is
the jth damped mode, equation (4) can be rewritten as:
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7} = 183 o1TCR] - 2M] + LD 6])  [6)T{F) (12)

Equations (9) and (10) can then be substituted into (12) to yield

1 T
- 6] (N} (13)
Fl=te1| ™, 7 el

ijj(l—?—w“lgj(w))

h|
The matrix of displacement mobilities [Y(w)] is defined by the following
relationship:

7} = (Y(w)] ¥} (14)

Therefore, by comparison of equations (13) and (14)

Ne [{Mn {cp}nTJ L
[y = ) m 2 - w?, (15)

n=1

Equation (15) expresses the mobility functions in form of a series of modal
functions, summed over all the important modes in a given frequency band. The
difference between this equation and existing modal series formulations is that

the function gn(w) admits more general damping assumptions than just viscous or
hysteretic damping.

4. DISCUSSION OF NUMERICAL RESULTS

The numerical results presented here were obtained by using equation (5)
to simulate the process of single point mobility testing of the structure
depicted in figure 1. Steady state excitation at coordinate #3 was simuiated
over selected frequency bands, and although the responses at all other coor-
dinates were computed, in each case, only typical mobility plots for one coor-
dinate is presented for the purposes of the present discussion.

Figure 2a shows the plot of Y37 displacement mobility over the range of w
between 0. and 2.0, with 60 computation points, for different damping ratios n=
0.02, 0.1 and 0.5, with constant forcing level u, = 0.1, and damping exponent
n=1.2, Y31 displacement mobility means the displacement response of coordinate
#1 per unit forcing at coordinate #3. Due to the symmetry of the mass, stiff-
ness and damping matrices, both Y3; and Yy3 will yield the same results. As
expected, increasing the damping ratio reduces the peak responses at resonance
and broadens the band of influence of a given mode. A better definition of the
behavior of the response around a given mode is achieved by increasing the
number of computation points per frequency spacing. Thus, in figure 2b is a
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narrower range of w between 0.82 and 1.49 centered near the second resonant mode
with 100 computation points, for the same Y3; mobility. Here, it is seen that
the damping ratio, for the exponent of the damping law being considered, affects
not only the level of response at resonance, but also the shape of the modal
loop.

In fugres 3a and 3b, the effect of different forcing levels are shown:
by = 0.1, 0.5, 1.0, 2.0 and 10.0, while the damping ratio u = 0.1 and damping
exponent n = 1.2 were held fixed. On the broad band plot, slight decreases in
the peak mobility values with increasing force level are observed in regions
close to the resonant modes. 1In mobility testing practice, considerable judge-
ment about the linearity of the structure is based on comparisons of the
measured mobilities at different force levels. If this is done using broad band
data, many structures “pass” this linearity check. However, figure 3b shows
that a narrow band plot, around a selected mode (here, mode #2), reveals that
the forcing level affects not only the response level, but also the shapes of
the curves at resonance. It is interesting to note that the decreasing mobility
peaks with increasing force level has been reported during actual testing of
helicopter-like structures [10]. When these calculations were repeated with an
exponent of unity in the damping law, no difference in mobilities were observed
at different force levels.

In figures 4a, 4b and 4c, the effect of different damping exponents on the
displacement mobility Y are presented. The exponents considered were n = 1.2,
1.5, 2.0, and 3.0, whilé“the damping raio n = 0.1 and force level p3 = 0.5 were
kept the same. Again, it is seen that the broad band plot does not reveal much
about the differences in the mobilities. Figures 4b and 4c, however, show that
the different exponents result in different shapes of the mobility functions
around the resonant modes. (The dotted lines in all of these plots are used to
indicate areas where the convergence of the solution scheme was slow, and the
computation was programmed to exit, in order to avoid run-away iterations). The
modal loop departs from its circular form as the damping exponent is increased.
In fact, the "flattening” of the circle, resembles a behavior that has often
been blamed on signal processing errors. Although there is no doublt that
signal processing errors can be very significant, it is nevertheless important
to recognize that in some cases, the structure can be revealing more of its own
nature than the model being used to analyse its r