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PREFACE

This conference follows the very successful first event in the series
organised by the Institute of Sound and Vibration Research in July 1980.
The second conference has support from the Air Force Wright Aeronautical
Laboratories in the USA, the European Office of Aerospace Research and

Development and has the continuing objective of reviewing advances
which have been made in theoretical and experimental structural dynamics.

Dynamic structural analysis now benefits greatly from the availability
of large computational facilities, either for theoretical work or signal
processing. Most work is, however, based upon the assumption of linear
behaviour, an assumption which is often not valid in practice. Although 0
the balance of the conference is biased towards linear vibration, a section
on nonlinear vibration is included which has attracted contributions on

a variety of problems.

Generally, the conference papers cover a wide range of topics and it is

hoped that this will stimulate discussion and promote liaison between the •
participants.

I hope that you enjoy the conference both technically and socially.
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Editors' Preface

We should like to thank all authors for their contributions.

Due to the high sta-' :d of the papers we accepted more than for

the previous Confere !. Many were suitable for more than one 0

session. In selecting which one, we have tried to establish an

interesting and well balanced programme.

Our thanks also go to the members of the organizing committees S

for their help in many ways.
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AD-P003 674

APPLICATION OF MODAL SYNTHESIS CONCEPTS
TO SPACECRAFT DESIGN VERIFICATION+

A. Bertram

DFVLR/AVA G6ttingen
Institut fUr Aeroelastik

1. INTRODUCTION

A spacecraft never will be subjected to the flight environment for
which it was designed until it is launched. To ensure safety and reliability
of the structure, one is left to demonstrate that it can withstand all loads
to be expected during launch and during its life in orbit prior one will risk 4
to put it onto a launcher.

The only argument the structural engineer is endowed with is a calcula-
tion of the dynamic response and of internal loads under certain specified
dynamic environments. This is done using a mathematical model representing
the dynamic characteristics of the structure - and certainly more or less *
realistically.

The general way to model a complex structural system is the method to
discretize it by means of large finite-element (FE) program systems., The dy-
namic behaviour of the structure is described in discrete physical degrees of
freedom (DOF), which correspond to the nodal point displacements of the FE * 4
mesh. The physical distribution of mass and stiffness is represented in dis-
crete matrices. It is commonly known that the mass-matrix can be evaluated
very correctly by the FE method, whereas the stiffness matrix is infected
with certain inaccuracies depending on the effort which is spent on modelling
the structure. Concerning the description of the damping characteristics,
generally no information can be obtained by means of the finite-element meth- * 4
od; one is left to perform experimental investigations.

FE-models are a very efficient tool to study the dynamic behaviour of a
structure already in a very early phase of its development. A mathematical
model, however, is a reliable tool only when it is verified by means of the
dynamic behaviour of a realistic structure. In doing so, a number of selected 0
experiments is performed. To minimize both experimental and analytical ef-
fort in the design verification procedure, a combined procedure is our aim.
To identify the basic conditions we must see this in the light of the space-
craft development in recent years. Namely~the trend to interchangeable
payload modules and the technology of the future large spacecraft which ren-
ders experimental investigation of the complete structure impossible.This is
the reason it becomes necessary to separate it into substructures (see also
[1] and [2]. Furthermore, small structural modifications may be the result

+The paper is based on work, conducted under several ESA/ESTEC Contracts

DFVLR-AVA Gottingen 395 Institut fUr Aeroelastik



of design changes with the consequence of extensive work and costs in order
to update the mathematical model if it should not be possible to find a way
on which we can pass a new test or a renewed FE analysis.

In the light of these problems, concepts for structural analysis and of
appropriate experimental techniques were elaborated in recent years. An •
extensive literature search [3] highlights a large number of publications
dealing with methods for the solution of the structural analysis tasks de-
scribed above. Based on these sources, suitable procedures were selected and
described in this work, all fulfilling the following criteria:

o applicability to spacecraft structures, 0

o use of experimental data, and

o use of modal data.

As already said above, the general way to describe the elastic behaviour of 0
any structural system is by discretizing it. In doing so, the equations for a
dynamic system with n discrete DOFs read

m u + c u+ k u = f (i)

assuming linearity and viscous-type damping, where a, r, and k are quadratic S
matrices (of order n) of mass, damping and stiffness, and il and j are the in-
dependent vectors of the nodal point displacements and of the external forc-
es, respectively. These equations may be transformed into energy equations by
writing the discrete coordinates n(x,t) in a series expansion of the or-
thogonal mode shape matrix

u(x,t) = q(t) (2)

where vector q contains the generalised or modal coordinates as weighting
factors of the series expansion. Equation (2) is strictly valid only for an
infinite number of modes; in practical cases, however, only a truncated set
of modes can be considered. The convergence of this series expansion depends . 6
on the selection of mode shapes. The sufficient fulfillment of this equation
is of significance in using modal methods. Its accomplishment is the most im-
portant objective in all what is described in the following.

2. MODAL DESCRIPTION OF STRUCTURAL DYNAMICS

It can be derived that a condition called the orthogonality of the mode
shapes related to the mass matrix exists, such as

T 1 for pq
-p -- = 0 for p * q (3)

The orthogonality condition is the second fundamental basis for the applica-
bility of modal methods. According to Equation (3) there is a diagonal matrix S
IL, called the matrix of generalised masses

T M(4)

DFVLR-AVA G6ttingen 396 Institut fur Aeroelastik



Analogue to M the matrices of generalised stiffness K and generalised
damping C can be built, whereas the generalised forces F read

T f = F (5)

Matrices M andKL both become diagonal too; the generalised damping matrix
Q is assumed for the sake of simplicity to be also diagonal, although it is

not necessarily so. In modal description, the dynamic equations given in (1)
yield to

M q + C q + K q = F (6) 0

with the order m , the number of modes taken into account.

The decoupling of the equations due to the diagonality of the system's
matrices together with the reduction of the system's order from the discrete
to the generalised DOFs are two important advances in numerical treatment of 0 0
structural dynamics analyses. Moreover, the modal system is very suitable for
the structural engineer, to obtain an improved insight into the dynamics of
the structure, owing to the direct description of structural characteristics
by means of mode shapes.

2.1 Modal Synthesis Methods

The elasto-dynamic behaviour of any structural system is defined by a
combination of inertial, stiffness and damping forces and, additionally, ex-
ternal forces. For simplification reasons, damping and external forces are
neglected in the following. Based on these assumptions, the elastic behaviour S S
can be described completely when the following modal parameters are known:
eigenfrequencies w , mode shapes and generalised masses . With this,
the dynamic equations read

Mq+ K q = 0 (7a)

or

q + w M w q =0 (7b)

These modal data have to fulfill the additional conditions, as specified
above, namely: 0 0

o orthogonality of the modes and

o sufficient convergence in the modal approach
within the interesting frequency range.

A typical application of modal synthesis methods is presented in
Figure 1, where the mathematical model of an assembled structure is analyti-
cally determined from the dynamic data of its substructures. The mathematical
models of both substructures are obtained in an experimental way - by means
of modal survey tests e. g. The antenna module is tested with its interface
to the other substructure being fixed. When testing the lower substructure, 0 S
it is fixed at its base; the interface to the antenna is "loaded" by means of
a rigid dummy mass. The procedure in this particular case of modal coupling
will be described later on. First, the basical procedures of modal synthesis
are briefly outlined.

DFVLR-AVA G6ttingen 397 Institut fur Aeroelastik



2.2 Dynamic Equations of a Coupled System

According to (7a), the equations of motion of a structure assembled
from the substructures A and B read:

_q -1(8a)

* q ;

or

q ~ (8b)

A B
The system is of order m = m + m , i. e. the number of modes taken

into account for both substructures. In Equation (8) both subsystems are
still uncoupled. The coupling is performed by additionally considering the 4
specific coupling conditions. These are expressed by the stiffness relations
in the interface between both substructures.

2.3 Coupling conditions

A destinction must be made between two special cases of interface con-
dition: rigid coupling and elastic coupling. In the case of elastic coupling
by means of an elastic coupling element with the discrete physical stiffness
matrix kAB , the additional potential energy U in the springs yields (as
described in [41)

I u kABu (9)

Applying Lagrange's operation, the additional stiffness in generalised de-
scription is obtained by

AK = [ T AB] [ ] (10)

and may then be introduced into Equation (8)

LkIN [i K I{~ + [ }[] K0j.(1
The case of rigid coupling is defined by a compatibility condition between
corresponding DOFs in the common interface as shown in
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A Bu -B = 0
-r -r - (12)

Using modal description, it yields

I 0

or

r q 0  
. (13b)

Compatibility implies a reduction in the number of DOFs by r , the number of
constraints. Vector q in Equation (13b) containing m independent DOFs de- 0 0
creases to T-. The rduction to m-r DOFs is caused by a transformation ac-
cording to

q = T q (14)

To generate Z. a set of r independent vectors Ji out of matrix jr 0 0
of Equation (13b) must be found; a set of dependent vectors Id is kept. The
elemination of the r DOFs is performed by means of the following relation

Ar R = [d t q =- 0 (15) 0 0

and consequently

t i  d-5d (16)

is obtained for the transformation given in Equation (14)

q I =q q (17)

The requirement to select a number of r independent vectors out of qr S 0
may be difficult in an automatic process of a computer programme. To escape
this inconvenience, a computer suitable process for automatic generation of
the independent coordinates I is presented now, using the so called "zero-
eigenvalue theorem", presented in [5].

Here a routine can be employed, whereby an eigenvalue analysis has to * *
be solved instead of a matrix inversion. L is generated by means of the
special eigenvalue problem
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T (18)

whereby T is produced from the eigenvectors belonging to zero eigenvalues.

Applying the transformation of Equation (14) on Equation (8b) yields

T - T -
T M T + T K T q = 0 (19)

2.4 Structural Modifications

An experimentally determined mathematical model, however, has the dis-
advantage of being inflexible, i.e. the elastomechanical parameters ob-
tained are only valid for the particular configuration tested. The modal for-
mulation of the equations of motion is the basis for the application of a
simple correction procedure. Structural modifications can be handled with the
following method when they result in dynamic properties that can be suffi-
ciently described by superimposing the normal modes of the basic structure
(see e.g. [4] and [6]). This is done by considering some structural changes 0
involving the distribution of physical masses Am or physical stiffness Ak
in the modal mathematical model.

Proceeding from (7) the equations of motion of the basic configuration
(a) yield

M aa + K a qa 0 (20)

After some structural modifications Am and Ak , the changed configuration
(b) reads

M bb +b q b 0 (21) 0

where

Mb = M a + AM (22a)

and •

Kb = Ka +A K (22b)

Modifications of the discrete mass distribution result in an alteration of
the kinetic energy of the system by

T = IUT Am u (23)
2 --m- m

Again applying Lagrange's operation, the mass modification yields in general-
ised description

AM T (24) 0 0

Accordingly, a discrete stiffness modification leads to an alteration in the
potential energy

DFVLR-AVA Gbttingen 400 Institut fUr Aeroelastik



I T

U TA k(25)

and thereby to a change in the generalised stiffness

S= (26)

Assembling Equations (24), (26) and (22), the dynamic behaviour of the
modified structure is described by means of the modal data of the basic con-
figuration and the discrete structural changes. 0

3. ACCOMPLISHING THE ORTHOGONALITY CONDITION AND A SUFFICIENT CONVERGENCE

As examined above, modal transformation is a series expansion which
leads to an exact description of the structural deformations if and only if 0
an infinite number of orthogonal mode shapes is taken into account. A great
variety of mode shapes are described in papers dealing with modal synthesis
methods. They are different in the kind of the boundary conditions taken as a
basis in determining the corresponding modes. The present paper is limited to
those modes that can be determined experimentally.

0

3.1 Selection of Suitable Modes

In References [1] and [7] detailed reviews of the different types of
mode shapes are given. In Figure 2 [7] a selected number of modes is summar-
ised together with the appropriate coupling methods. 0

Rigid body modes and elastic normal modes are the most common ones, and
within this category free-interface and loaded-interface normal modes. It is
not only useful but mandatory to consider the effect of neighbouring struc-
tures as the mass and/or stiffness properties of adjacent structures act dy-
namically at the joint interface. In cases of statically determinate cou- S S
pling, an interface loading of the main structure considering only the
inertial properties is sufficient in many cases.

Beyond these types of normal modes, there are several other kinds of
modes. Fixed-interface normal modes can, in general, only be determined ana-
lytically. Constraint modes may be used to complement fixed-interface normal 0 0
modes and attachment modes to complement a set of free-interface normal
modes.

Let us now consider to what extent the requisite orthogonality of the
different mode sets used in the example of Figure 1 is fulfilled. The mode
set of the upper substructure is composed of rigid-body modes and fixed-in- 0
terface normal modes

= [(27)
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0

Due to the various boundary conditions, these two mode sets are not mutually
orthogal, resulting in off-diagonal elements in the matrix of generalised
masses M

MRR MR

= T ==RE(28)

_MER E

where

~!RR = T(29a)

T
gEE = 1iI E(29b)

M = T T (29c)

Whereas ARR and MEE are diagonal matrices, ME and E are fully oc-
cupied. It can be shown (see [20] and [21]), however, that e corresponding
matrix of generalised stiffness

K = j Tk _t = 1 (30)

K=:R :4E

generated by means of the semi-definite matrix k yields 0

0 0

K (31)

whereby =E is diagonal according to 0

K = T T (32)E =;,1 E = : k =EE !E

The result of this derivation is that, despite the 3onorthogonality of both 0
mode sets *R and AE, modal synthesis can be performed when the off-diago-
nal elements in the matrix of generalised masses are taken into account.

The fulfillment of the second specified condition, the convergence of
the modal transformation requires among others an attentive selection of the
used modes. For both modal synthesis methods, it is evident that accurate re-
sults can only be obtained when the structures are described by a complete
set of modes. For structures with a limited number of modal DOFs, where only
a truncated set of modes can be taken into account, the result depends on the
suitability of the expe-imental data. In the modal correction analyses, the
modes obtained analytically are produced from the modes of the measured
structural configuration in the form of a series expansion, even including 0
significant changes in mode shapes. With this condition, the applicability of
correction methods is evidently defined.

0 4
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Successful application of the modal coupling approach is apparently
highly dependent on the authenticity of the description and simulation of the
actual coupling conditions. In a later section of this paper the importance
of a realistic description of the coupling conditions in the interface is
outlined. It is anticipated here, that this may be due to an interface loading •
of the substructures as shown in the former example. The rigid dummy mass on
top of the lower substructure when determining its modes has a convergence
improving effect in the coupling approach. The realistic inertial properties
of the antenna module are introduced into the analysis in considering its
rigid body modes, whereas the dummy mass is removed by means of the modal
correction method being proved as a very efficient tool in modal synthesis •
procedures.

3.2 Test Data Requirements

Design verification procedures are dependent on the performance of re- •
liable and realistic tests with high accuracy. Due to the high modal density
of spacecraft structures and the presence of structual non-linearities, modal
survey tests using appropriate excitation is up to now the most reliable way
to determine a complite set of real normal modes. Poor orthogonality may oc-
cur as a result of insufficient exciter accessibility to internal parts of
the structure. Further development of modal survey test methods led to proce- 0

dures described in References [22] and [23], which improve test results even
in such cases.

In summary, the following guidelines for the preparation and perfor-
mance of modal survey tests can be laid down:

* The measuring points must be appropriate to describe all modes in the
frequency range of interest.

" The mass matrix must accurately simulate the mass distribution of the
real structure.

" The number of measuring points must be adequate to describe the modes,
especially at the interfaces.

" The exctation must be well appropriated.

" Good accessibility to inner parts of the structure should be considered 0
a spacecraft design requirement.

" Test methods and procedures should be continuously improved and adapted
to the latest state of the art.

3.3 Improving the Convergence

Convergence improving procedures have the aim to introduce into the mo-
dal approach certain flexibilities which are characterised by producing de-
formations at frequencies above the range taken into account. In the follow-
ing, two different ways are outlined; both consider additional information
which would have got lost due to the truncation of modes.
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3.3.1 Considering Residual Terms

In the literature a number of methods to improve convergence by means
of residual terms are known. They may be traced back to mainly two works,
presented by Mac Neal [151 and Rubin [16]. The common aim is to increase the 0
accuracy of the classical modal approach by means of globally approximating
the contributions of the neglected modes, without detailly knowing what's
what (see [241). The common modal survey test delivers the modal matrices
M , K , and I , completely describing the structural dynamics of the
structure in the investigated range of frequency, as generally known

Mq + K q = 0 (33)

Additionally, the complex response u of the structure due to harmonic exci-
tation p is recorded for a number of discrete exciter frequencies 2j

= Y P. (34) 0

The steps for the discrete frequencies QJ2 should be spaced closely enough,
to describe a continuous relation between a and P . Considering the re-
sults of the modal survey test, it yields for the remaining admittance
Y (Pj) for the discrete frequencies 2j
=-cJ

y (2.) = Y(j IT M + (35)

In Equation (35) the contribution of the measured modes is subtracted from
the complete admittance of the structure. The parts of the higher modes now 0
can be approximated by the following quadratic approach

Y = A + S2 B (36)==2 ==c ==c

delivering the constant auxiliary matrices A and B and finally the re-
sidual terms for generalised stiffness 0

K A- (37a)

and generalised masses

M K B K , (37b) 0
==c =c ==C

respectively. In a first order approach, only K is evaluated. The complete
equations of motion yield

M [i
v = , (38) g

!21 22 21 22

with

TM = + M I (39a)~~=11

2 = _ = MT (39b)
=12 =n 44 i 21
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M22 c (39c)

and analogous

= K 1 K (40a) 0

K =K2 (40b)=12 = 4'4 21

K = K (40c) 0

The vectors v and w read

v w = (41ab)-u -p'

The examples in [151, [16] and [24] verify that global approximations of the
modes which are not considered improve the accuracy of dynamic analyses. Par-
ticularly in the modal coupling approach the engineer is interested in repre-
senting the local effects in some discrete coupling points also at very high
frequencies. In the "classical" approach, a large number of higher modes has
to be taken into account to get the same results as the method of residual
terms is producing with a relatively small number of experimentally well-deter-
minable modes.

3.3.2 Realistic Description of the Interface 0

The method of using residual terms is a more global one, whereas the
method of utilizing interface loading is aimed to generate deformations in
the interface of the substructures similar to those found in the common in-
terface of the assembled structure.

Evidently, in the case of mode truncation, this method will assure the
necessary convergence and thus improve modal coupling, bearing in mind that,
according to the modal approach, the mode set of the complete system is com-
posed of the mode sets of the single substructures. Whereas the mode shapes
of the substructures are intentionally modified by additional stiffness and
masses, changes in the frequencies and generalised masses are undesirable. 0
According to the procedure presented in Figure 1, the effect of interface
loading on frequencies and generalised masses has to be corrected. This is
done by means of the modal correction method derived above. The correction
terms are introduced into the equations of motion of the coupled system as
given in Equation (8b).

1 } m JE-AK q 0 .(42)

As given in Equation (24)

A T Amt(43)
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0

for correction of inertia-loading, and in (26)

AK = 1= Ak k (44)

for correction of stiffness-loading.

Taking advantage of interface loading, especially in cases of redundant
interfaces it is necessary to realistically describe the coupling conditions
during the performance of the substructure tests and in the coupling ap- S

proach. Figure 3 taken from [25] shows the example of two parallel beam-type
structures, coupled at five discrete points. In Figure 3a the bolted connec-
tion is described by means of rigidly coupled, translational DOFs vertical to
the interface. The frequency discrepancy related to an FE analysis of the as-
sembled structure amounts up to 21%, which is not satisfactory. A more exact
description is obtained by considering the coupling of DOFs in the plane of 0 4
the interface, producing an additional stiffness, which approximates better
to the real conditions. This leads to the application of mixed coupling, where-
by some DOFs are coupled rigidly and some elastically. The frequency dis-
crepancy decreases to about 12 %. The interface considering these lateral
constraints is given in Figure 3b.

In most practical cases, the interface between different spacecraft
structures is highly redundant, e. g. the connection between two modules of a
satellite (Figure 4). The results of a modal coupling analysis depend on the
extent to which compatibility in the common iterface is fulfilled. As experi-
ence has shown ([26]), the coupling analyses considering a great number of
constraints generally yield unsatisfactory results because, evidently, many *
more than the available modes are necessary to obtain good convergence. It is
therefore worth optimizing the coupling conditions and keeping the number of
constraints a minimum.

In the course of a contract funded by ESTEC ([27]), analytical studies
were performed to obtain information for optimizing modal-coupling procedures 4

for satellite structures. For this purpose, a simple satellite type structure
SIMOD (Figure 5) consisting of two modules was built. To obtain information
for optimizing substructure modal survey test conditions, various modal cou-
pling analyses were performed using FE modal models. Among others the appro-
priation of free interface normal modes and fixed interface normal modes of
the upper substructure were investigated; 36 constraints were considered. 0
With both mode sets no satisfactory result could be obtained; but the under-
standing was established that the highly redundant coupling conditions could
not be realised realistically enough by means of a large number of const-
raints. As a first step towards improved results, inertia loading was ap-
plied on the interface of the lower module. To achieve further advancement,
the following assumptions concerning interface conditions were made. The low- 0
er substructure interface will not be deformed elastically within the fre-
quency range of interest, but will perform only rigid body motions, due to
the perpendicular connection of the side walls to the horizontal floor. The
upper substructure interface is forced to deform in the same way when con-
nected to the lower substructure. As rigid body deformations are described by
only six discrete displacements, it is sufficient -indeed mandatory- to in- 0
troduce two pairs of six constraints whereby the condition that the interfac-
es deform rigidly must be fulfilled in both substructure tests. To produce a
mode set for the upper substructure, where out-of-plane deformations in the
interface are suppressed while rigid body motions are made possible, stiff-

0
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ness loading on the interface was introduced. Following these assumptions,
modal survey tests were performed with the following boundary conditions (as
shown in Figure 6):

Lower substructure: clamped at its base and upper interface equipped
with rigid lumped masses.

Upper substructure: soft suspension; lower interface stiffened by means
of two aluminum tubes.

Complete structure: clamped at its base.

With these modal data the modal coupling analysis was performed with 15
elastic normal modes of the lower substructure, 15 elastic normal modes of
the upper one, and six additional rigid body modes. Figure 7 shows mode A-3
of the lower substructure, mode B-6 of the upper one and two corresponding
mode shapes of the complete structure at about 32 Hz, presenting a comparison
between the modal coupling analysis and the reference measurement. All re-
sulting frequencies and generalised masses are correlated with the reference
data in Figure 8. Evaluation of the correlated frequencies up to about 130 Hz
indicates satisfactory correspondence. Two further pairs of correlated mode
shapes are presented in Figure 9 and 10.

As a general result of this example, it can be stated that the inter-
face conditions specified for the individual substructures must simulate the
deformation conditions of the assembled configuration. Thus, the interface
loading need not necessarily be of the same magnitude as the actual condi-
tions, as long as it represents a reasonable approximation.

4. CORRELATION BETWEEN ANALYSIS AND TEST

Modal data obtained by tests are never identical to the results of fi-
nite element analyses. This is the argument for performing tests in design
verification procedure. Study of the reasons for the discrepancies is no sub-
ject of this paper. Certainly, a description of the various methods for cor-
relating the mode sets and updating the discrete mathematical models would
exceed the scope of this work. Currently a large number of investigations
and studies is dealing with the problem of updating and correcting FE stiff-
ness matrices. In this paper, only two very simple procedures are presented
having the common objective to support the engineering judgement in correlat-
ing measured to calculated data.

A correlation matrix Z presented in [26] is composed of two indepen-
dently determined mode sets and and the discrete mass matrix m

[ z z
T- m I[ -- 1P =P

_ Iz z- - - (45
=q p q

Considering the orthogonality condition derived in Equation (3)

T 1.0 if p (46)
F - Gt0.0 if ps q
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the submatrices Z and Z of the correlation matrix are occupied by
figures between 1 and 0, expressing qualitative and quantitative correlation
of both mode sets , and 1. . A value near to 1 is a criterion for good
conformity between two modes from the different mode sets.

The second procedure is a support for the comparison of the graphics of
corresponding mode shapes. As is well known the uncondensed FE model has a lar-
ger number of physical DOFs than a measured mode shape. To produce still ful-
ly comparable graphics, use of the following procedure is proposed in [281.
The measured deformations are introduced into a static computer run as "pre-
scribed freedoms" and the deformations of the complete FE net are calculated
in this way mode by mode. Even, bearing in mind that the discrete FE stiff-
ness matrix is imperfect, the resultant graphics will be better than those
obtained by using pure geometric spline functions. All graphics of mode
shapes presented in this paper were produced by means of this procedure.

5. CONCLUSION

Modal synthesis methods can be very efficient and useful tools in the
design verification procedure of spacecraft. The general applicability of the
methods presented here make them suitable for even complex and large space-
craft structures. It turns out, however, that the quality of the results de-
pends greatly on the level of individual experience.

Thus, in preparing the tests, special attention must be given in order
to obtain the particular kind of modes the analysist needs in his approach.

Concerning the modal correcta n method, its applicability is limited to 0
cases where the mode shapes of the r..dified structure can sufficiently be de-
scribed by the modes of the measured configuration. The modal correction
method enables modal coupling results to be improved by making use of special
test techniques.

The successful application of the modal coupling approach is apparently
dependent on how realistic the coupling conditions were simulated in the test
and in the coupling approach.
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Figure 5: SIMOD Structure.
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121.25 Hz Measurement

129.45 Hz Measurement

B 0

130.45 Hz Modal Coupling
129.23 Hz Measurement

Figure 7: Mode Shapes of SIMOD. 0

Measurement MODAC-Analysis
FREQ. GEN. MASS FREQ. GEN. MASS
Hz Kg*m**2 Hz Kg*m**2

5.34 53.832 5.58 74.377
9.02 52.351 8.33 65.989
13.40 107.457 13.24 59.984
16.76 74.124 15.97 85.641 0 0
18.06 44.048 16.99 55.720
32.52 37.837 31.94 30.778
33.26 31.681 33.64 32.338
52.48 17.567 54.80 17.757

60.22 15.158
59.91 87.659 62.07 27.424
65.90 82.102 65.98 39.112
71.44 27.213 75.64 11.344 •
73.77 23.107 79.29 6.826
83.02 25.710 81.97 25.924

85.76 23.460
88.06 21.523

96.73 22.521 94.18 12.781
99.01 9.893 99.45 6.351
101.32 42.852
107.78 4.097 110.02 3.341
118.35 27.211 114.33 32.250 0
110.99 9.257 120.08 13.119
127.45 24.224 126.36 20.906
129.23 29.080 130.45 26.704

137.21 8.930

Figure 8: Frequcacies and Generalised Masses of the Assembled Structure 0

413



0

3.2 Hz Measurement 3 1.9 Hz Modal Coupling

Figure 90: Mode Shapes of SIMOD at 30 Hz,.
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A FLEXIBLE MULTICHANNEL MEASUREMENT SYSTEM FOR DYNAMIC ANALYSIS

ir. H. Van der Auweraer, ing. P. Van Herck, prof.dr.ir. R. Snoeys

Katholieke Universiteit Leuven
Departement Werktuigkunde

1. INTRODUCTION

NS
/ Modal analysis is a widely used tool for the analysis of the vibrational

and noise behaviour of mechanical structures.
In experimental modal analysis, the dynamic behaviour is studied by
means of a model, based on transfer function measurements. One of the
main limitations of the experimental technique in a lot of applications
is the highly specialised equipment and the corresponding investment.

Ourr aim was to design a multichannel data-acquisition system
front-end for our H.P.1000 computer (Digital Data Harvester). This
system should be easily expandable and flexible enough to be used with
a wide range of mini and micro computers. Although the original design
purpose was to develop such a system for Modal Analysis, its 0
application area is likely to be much wider.
The design of this system is related to the evolution of Fourier
Analysis equipment into two directions :

*The small, but powerful systems, based on a microcomputer or even a

microprocessor, with a limited number of channels, will remain a 0
good solution for many problems.

*The 'big' systems, which are expensive as they are inflexible to be

used for other purposes, will be more and more replaced by general
purpose computers with a data-acquisition front-end and eventually
upgraded by a preprocessing unit or an array processor.

As the expandability to a great number of channels was the most
important design requirement, some attention will be paid to the
reasons for this demand. After a summary of the other requirements,
our solution proposals will be discussed in some more detail.

2. MULTICHANNEL MODAL ANALYSIS.

The reasons for multichannel measurements fall into three major
classes, which are all, directly or indirectly, related to the system
Firameter accuracy.

* The measurement time.
* The consistency of the calculated parameters.
* The use of inherently multichannel analysis techniques.

2.1. Measurement time

When a Modal Analysis is performed, the total time Tp, spent on

the project, is a summation of
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* The set-up time Ts (geometry definition, exciter location, S

equipment set-up and testing).

* The measurement time Tm (acquisition and processing of the data).

* The analysis time Ta (curve-fitting, interpretation, further

analysis). S

Tp = Ts + Tm + Ta

The significance of the measurement time can vary widely depending on
many factors. When th.s time becomes important, it can be reduced
sharply by measuring a lot of channels simultaneously. 0

Tm = (N/C)*Av*Acquisition time + N*Av*Recovery time

N = number of measurement points * number of exciter locations.
C number of parallel measured channels.
Av = number of averages. 0
Acquisition time = time to take the measurement samples.
Recovery time = delay time before the next acquisition can be
made.

2.2. Consistency of the parameters. S

In some applications, the structural characteristics being
measured may change during the test, depending on parameters such as
temperature... The influence of nonstationary noise signals may also
affect the consistency.
It should be investigated if multichannel acquisition gives a better, 0
more consistent set of parameters in such cases, or that, contrary, it
gives parameters which are more biased by the momentary, maybe system
dependent noise.

2.3. Inherently multichannel techniques. 0

A lot of new techniques are coming up, based on multiple input /
multiple output system modelling (1), where the acquisition of, at
least all the input channels, should be simultaneous.
Some concrete research topics are

* Multiple point excitation of systems, where different columns of

the transfer function matrix are measured at the same time (2).
The advantages of this technique are : better energy distribution in
the system, excitation of local modes, increased accuracy of the
results because of the information redundancy.

* The use of coherence techniques in source localisation and
identification.

* The use of microphone array's in acoustic measurements.
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3. MULTICHANNEL MEASUREMENT SYSTEM. 0 S

The system is built up around a central controller module.
Around this module, a number of acquisition channels and a signal
generator will compose the concrete system.
The link with the computer is an interface module, which passes the
computer commands to the controller and the generator, and the measured
data from each channel to the computer (Fig.1).

3.1. Acquisition modules.

Each acquisition channel contains a transducer interface, an
autoranging amplifier, an anti-aliasing filter, a sample-and-hold, an
analog-to-digital convertor and a buffer memory (Fig.2).
The choice of an ADC on each channel module is based on following
reasons :

* Once the signal is digitised, it can't be affected by noise, and D

the data-flow is much easier to control.

* The price of N ADC's with a maximum sample-rate i is about the

same as for one ADC with a sample-rate N*i (for i=25000).

* The expandability is better because of the greater autonomy

of each module.

3.1.1. Transducer inputs.

The first stage is an accelerometer compatible input, with an
adjustable current source and a pre-amplifier which can be set in
correspondence with the transducer sensitivity. If an open circuit or
short circuit is detected at the transducer input, an indication is
given. This allows for an impedance check before each measurement.
This stage can only be used with accelerometers with a built-in
FET-amplifier.

3.1.2. Amplifiers.

The amplifier is a programmable gain amplifier (*1 to *800), with
autoranging capabilities. The autoranging procedure takes place during
a test phase preceeding the actual acquisition, and is based on
overload information from the AD convertor.
During the actual measurement, this overload status is monitored and a
count is made. After the measurement, the gain settings and the number
of overload's during the measurement, are read-out to the computer.
Depending on the number of overloads, the measurement data are accepted
or rejected, taking into acount the type of excitation signal.

3.1.3. Anti-aliasing filters.

The anti-aliasing filters are single-chip switched-capacitor
filters which can be programmed by means of a control clock.
The choice of those switched capacitor filters, which are analog, but
time-discreet ('sampled-data') components, was one of the most crucial
points in the design process.

Old-fashioned analog filters become very expensive if they have to
be programmable, accurate, and steep (72 db/oct.) at the same time.
Therefore, recent developments in digital filters are used in most
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modern Fourier Analysers, mostly based on the oversampling and

decimation principle (4). The arrival of low-priced digital filters
may expand their use to general data acquisition systems, but besides
of the cost of the filters themself, the oversampling principle implies
a much more expensive Sample / Hold and ADC circuitery.
As these developments will take some years, the only choice for
low-priced programmable filters were the switched capacitor filters.
Their roll-off is very high (100 db/oct.), (Fig.4), the phase accuracy
is better than 2%, but for those 7-pole, 6-zero elliptic filters, this
still means 0.02*630=12 degrees. A software correction is possible as
their monolithic design guarantees a high stability.

3.1.4. Sampling and AD-conversion.

The design specifications were

* 12 bit resolution

* Consequent accuracy of the SH and ADC components.

This means for Fmax = maximum signal frequency = 10 kHz, and Amax =

maximum signal amplitude = 5 V. :

Aperture jitter LT 12 /(2WFmax) = 3 nanosec.

Droop rate LT 2 .Amax/Tadc = 0.1 V./millisec.

Feedthrough LT 2-1 .Amax = 2 mV.

Slew rate GT 24iFmax.Amax = 0.3 V./microsec.

Tadc = AD conversion time + SH acquisition time LT 1/max.sample

rate = 40 microsec.

3.1.5. Buffer memory.

To avoid sample-rate reduction by interface limitations, each 0
channel has its own buffer memory. At this moment, this is a I K * 12
bit memory, but an extension to a 4 K or even a 64 K memory is very
easy.

3.2. Signal generator module. 0 0

So far, a programmable function generator has been developed, with
pre-programmed signal types.
This generator has following characteristics

Signal types : continuous sine, single shot sine, cosine, ramp. 0

Signal frequency ranging from 0.01000 to 9999. Hz

Amplitude : 0 to 5 V., step lmV.

Offset : -5 to +5 V., step 2mV. •

Sample-rate output f = F(sin) * 2 i (i = 3 to 10)

The generator is built-up around a 1024 point, 12 bit wide ROM table
(Fig.3). An extension to a general DAC system, based on a RAM-buffer,
is under study. S
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The number of points and the wordlength were defined following the
design criteria in (5), pp 42-48 and pp 207-241.

A variable clock generator, based on a Phase-Locked-Loop (P.L.L.)
circuit is applied to the ROM-addres counter and defines as such the
resulting sine frequency. A divided output signal from this P.L.L.
can be used as a sample-rate generator in order to permit leakage free 6
measurements.

Due to this way of generating a sine-wave, the signal has a very high
spectral purity.
The settling time of the generator is defined by the response time of
the P.L.L. This time is limited by the response capabilities of the
phase comparator. A special design for this comparator was made, in

order to obtain a maximum response time of 5 ms, while maintaining a
frequency stability better than one digit.

3.3. System control module.

The task of this module can be divided in following parts

* Derivation of the timing signals for filter, SH, ADC, data buffers

from an internal clock ,from the generator related clock or from an
external input.

* Supervision of the data-flow from the measurement modules to the

computer and from the computer to the generator and the control
modules.

* Triggering of the signal acquisition (with possibility for
pre-triggering with a user definable amount of pre-trigger.)

As each measurement channel contains as much logic as possible, the
global system control task is greatly reduced and the system becomes
easily expandable to more measurement channels. A maximum of 64
channels is standard, but an extension to a higher number is
straightforward.

3.4. Interface.

The interface with the computer is a 16-bit parallel interface
with a 3-wire handshake (Computer Command, System Flag, I/O-Status) The
Digital Data Harvester has already been connected to a HP.9845, HP.9816
and HP.9826 desk-top computer and to a HP.1000F minicomputer. In the
case of the H.P.12566 microcircuit interface card of the H.P.1000, the
I/O line is not present. Due to this fact, 2 interface cards are *
needed (one for input, the other for output). A solution to this
problem may be to use the 05451-60025 Interface Card from the H.P.5451
systems, which has two sets of two-wire handshake lines, and which is
backward compatible to the 125666 card (10). The problem is then to
adapt the DRV-72 driver to the use of those two sets of handshake
lines. *

A more interesting approach from the computer system point of

view, is a GPIB (IEEE 488) interface bus. From the hardware point of
view, this is a more complex task, but this problem will be studied as
new VLSI chips ease this task.
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3.5. Digital signal processine modules.

In section 2, the measurement time was studied. An important
factor was the recovery time before another measurement could be
started.

In random excitation measurements, this time is spent mostly on the
calculation of the FFT and the correlation functions of the data. When
performing a ZOOM transform, the frequency translation and the digital
filtering also take a lot of time. This time is of course proportional
to the number of channels and it might become a limiting factor for
multichannel measurements, unless a very fast (one for the whole
system) or a very cheap (one for each channel) processing unit is
designed. So far, all commercial products have one central FFT
processor.

There are different approaches to perform FFT's.

3.5.1. A software FFT.

In the classical systems (HP.5451C...), the FFT is microprogrammed
and takes 50.. .80 milliseconds for an 1024 point transform. When using
a HP.100OF computer, evenan optimised program (Radix 8-4-2), written in
Fortran (6), takes 400 ms. Microprogramming the HP.1000 can reduce
this time to 80 ms, but this is a time consuming (or expensive) task.
When using a desk-top computer, a 1024 point FFT takes seconds or even
minutes.

The fastest way at this moment is to use an array procesor, which
takes only 4 millisec's (7), but this solution is rather expensive as
most modern array processors are in fact too powerful. Smaller, custom
designed array processors may be the solution.

3.5.2. A dedicated FFT processor.

3.5.2.1. Design criteria.

When considering to develop your own FFT processor, the execution
time remains the primary design goal. But, as such a processor would
most probably be a fixed point (or block floating point) calculator,
the calculation word length must be chosen corresponding to the
accuracy demands.

In (8), a theoretical upper bound for the roundoff-error,
expressed as RMS(error)/RMS(signal) is given. This error decreases by
a factor two for each additional bit, and is proportional to the square
of the block size (if the data are scaled after each FFT-step).
For a frequency domain S/N of 60dB, 12 bits are suited up to 128
points, 16 bits up to 2048 points. Experimental results gave better
results, as the error remains well below the theoretical upper bound,
by an amount depending on the signal type.
Another error arises from the coefficient word lenght. Contrary to the
round-off noise, this error is biased. A good choice is to take the S

same resolution for data and coefficients.

3.5.2.2. FFT processors.

A design of a discrete hardware FFT processor is rather cumbersome 5
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but the arrival of new VLSI products (4) for digital signal processing
purposes may make such design feasible. A signal processing unit based
upon such chips consists of a small number of powerfull components.
There already exists some complete all-in-one processors. Those
DSP-processors have a multiplier, data and coefficient memory and a ALU
on chip. They may be programmed for FFT purposes. Unfortunately, only
very few of those IC's are available as pre-programmed FFT-processors.
Their price is still high, but will decrease considerabely in the
future.

Another alternative is the use of microprocessors. The price of
16-bit microprocessors is steadily going down and their performances
increase. Each channel should have his own microprocessor in order to
realise a sufficiently high calculation speed. A new evolution in this
area is the integration of a hardware multiplier on the microprocessor
chip, so that multiplication times of 2 microseconds can be obtained.
At this moment, this is still a software, but internally programmed,
operation. As this function is a single instruction operation, the
only difference for the user is the multiplication time, which is about
7 microsec. for a 16*16 MUL. This solution is very interesting as
such microprocessors could still be programmed with the usual
development systems.

3.5.3. Other DSP applications.

The same considerations are valid for the ZOOM transform as well.
As for stepped-sine measurements, the calculation time becomes less
important due to the long system stabilisation time, which can be used
in an efficient way for this purpose. Nevertheless, it will be studied
if it is feasible to perform this calculation in a hardware module.

4. APPLICATIONS.

At this moment, the acquisition, generator and control modules are
operational. The digital signal processing is still performed by a
computer, but an extension with a dedicated FFT processor is under
study.

4.1. Stepped sine measurements.

So far, the system has mainly been used in stepped-sine
measurements in order to analyse the feasibility and the
characteristics of this technique (3). In this study, the accuracy of
this method, the influence of measurement parameters (number of
points/period...) and the effect of the transient system response after
a frequency change were analysed. As the long measurement time is one
of the main drawbacks of this method, an attempt was made to optimize
this time by doing multichannel acquisition, with the )rresponding
signal processing being done during the system stabilisation time.

Because of the system's flexibility, completely automated
measurements were possible. This has been applied to analyse the
influence of test conditions on the mechanical characteristics of
rubber elements. The feasability to use this system for the study of
system non-linearities will also be investigated.
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4.2. Modal analysis system.

The final design goal however, was to develop a multichannel
measurement system for modal analysis purposes. Since such a system
would consist of an analog front end, connected to a general purpose
computer (mini or micro), which can easily be programmed, the
flexibility is high. At this moment, an 8 channel system is completed.
In order to use it for modal analysis, measurement software for the
system control, data acquisition and signal processing has to be
written. In commercial Fourier Analysers, these tasks are performed by
firmware.

The direct application of this system will be to analyse the
characteristics of multiple excitation measurements, which appear to be
promising (2), when applied to complex structures (cars, planes...)
(9).

Another topic, which is investigated, is the feasability of using modal S
analysis for quality control purposes. As the minimisation of the
measurement time is essential for this goal, a multichannel system will
be a necessity.

Another application of the Digital Data Harvester is to develop a
low-cost impulse excitation measurement system, based on a desk S

computer.

4.3. Data acquisition applications.

Besides of these concrete research topics, this system can be used
in any modal analysis or in any signal processing application in the
same frequency range (tolO kHz.). Current applications in our lab are
the acquisition of geometry accuracy measurement data and the analysis
of the static characteristics of air bearings. In this last
application, the force-displacement relationship of the air bearing is
measured. A slowly varying force is applied and measured by means of a S

strain gauge. The corresponding displacements at different points of
the bearing are measured with inductive pick-up's.

Future applications will be the incorporation of this system in a
rubber fatigue analysis equipment and the analysis of the dynamic

* properties of air-bearings. 0

5. SUMMARY.

To reduce the measurement time and to increase the consistency of S
the calculated system parameters, a new multichannel data-acquisition
front-end (The Digital Data Harvester) is developvd to be used with a
general purpose mini- or microcomputer.

The basic principle in the design of such a system is the
modularity of the different subsystems. S

The basic subsystem modules are :

* A measurement channel in which the signal is amplified, filtered,

sampled, digitised and buffered.

* A signal generator with a fully programmable sine-wave generator.
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S 0

* A controller.

* An interface to the computer.

Because of its modular design, it Soon became apparent that it was very S 0
easy to configure other systems, based on the same modules. Besides the
classical Modal Analysis applications, these systems are also used in
general dynamic analysis and digital signal processing problems.

6. REFERENCES 0 0

1. J.S. BENDAT and A.G. PIERSOL 1980 Engineering Applications of
Correlation and Spectral Analysis. Wiley.

2. R.J. ALLEMANG 1980 Ph.D. Dissertation, Univ. of Cincinnati.
Investigation of Some Multiple Input/Output Frequency Response a
Function Experimental Modal Analysis Techniques.

3. F. LEMBRECHTS and J. SMETS 1983 Mech. Eng. Thesis 83E15, K.U.
Leuven, Dept. Werktuigkunde. Studie van Stepped-Sine Excitatie
en Implementatie van een Algoritme voor Automatische Metingen.

4. J.V. GINDERDEUREN 1982 Report ESAT, Dept. Elektrotechniek,
K.U. Leuven, presented at the KVIV-TI Studiedag: Recente IC's,
24-05-82. Geintegreerde Schakelingen voor Signaalverwerking.

5. B.V. UFFEL and L. VERPOOTEN 1982 El. Eng. Thesis, ESAT, Dept. -.

Elektrotechniek, K.U. Leuven. Digitale Synthesiser. &

6. G.D. BERGLAND 1969 IEEE Trans. on Audio and Electroacoustics,
AU-17, 2, 138-144. A Radix 8 FFT Subroutine for Real Valued Series.

7. V. THIEBAUD 1981 Proc. Seminar on Modal Analysis, K.U. Leuven.
128-channel Acquisition System, Based on an Array Processor and a
Large Disc, for Structural Vibration Analysis.

8. P.D. WELCH 1969 IEEE Trans. on Audio and Electroacoustics, AU-17,
2. A Fixed Point Fast Fourier Transform Error Analysis.

9. C. HUTIN and G. CATTEAU 1982 Proc. Seminar on Modal Analysis, S

K.U. Leuven. Presentation of a Modal Analysis System as Used in
the Aeronautic Field.

10. L.W. JAMES 1982 Interface 1000, Publication of the HP-100 User
Group. Unique Interfaces Available for the M-E-F Series Computer.

423

* •



control data

bus bus
signal Input channel 1

in

4System0
controller

signal IntcanlN

100Syste

innterface T

computer

signa

Fig.1 System modules

OMMY

bus

Fig.2 Data-acquisition channel

Sample- counte Am l.t AC + a

Rate~~~ ~ 0cut P' u

P.L.L. CotrolC n I
Generator Data-Bus

Fig.3 Signal generator

,e-



TRANS IA IN f 312 he

AamlItu ,
(4b) S I

i

L~b4A4

06

LI IANYVN.J •

S

Fig.4a Filter Transfer Function (Amplitude)

TRMS *At IN , - .72 Nz

ph".

PHASE

* 6

-I. , __ __ __ _ ,__ __ __ __ ,_

L| 8 Z WLM

Fig.4b Filter Transfer Function (Phase)

*

1 ~"--S



LIMITATIONS ON THE IDENTIFICATION 0 0
\\. OF DISCRETE STRUCTURAL DYNAMIC MODELS

Alex Berman
Kaman Aerospace Corporation
Bloomfield, Connecticut USA AD-P003 676 • 0

1. INTRODUCTION

>Discrete linear analytical models of continuous structures play an impor-
tant role in dynamic analysis. A good model will not only predict responses
over the frequency range of interest, but will also be representative of the
physical characteristics of the structure. Thus, it will have the capability to 0 0
predict the effects of changes in physical parameters and it will correctly
represent the structure when it is treated as a component of a larger system.

A model derived from the known physical parameters of the structure may
not adequately predict measured dynamic characteristics. A model derived from
dynamic testing may not be a good representation of the physical characteristics 0 S

of the structure.

In recent years, a number of procedures have been suggested and applied
which use measured dynamic data to identify an analytical model or to improve an
existing model. Typical of these methods are: Rodden, 1967 (1], measured modes
are used to identify static influence coefficients; Berman and Flannelly, 1971 S S
[2], measured modes are used to improve a mass matrix and identify an "incom-
plete" stiffness matrix; Collins, et al, 1974 [3], a statistical iterative
method is used to modify physical parameters; Baruch, et al, 1976 [4], measured
modes and an analytical stiffness matrix are corrected; Chen and Garba, 1980
[5], and Grossman, 1982 [6], techniques for modifying physical parameters are
improved; Berman, Wei, Nagy, 1980 [7], 1983 [8], mass and stiffness matrices are S S
improved using modal data; Leuridan, et al, 1982 [9], mass damping, and
stiffness matrices are estimated using response data.

Few of the methods published have been successfully applied to realistic

structures. Rarely has there been any discussion of the physical relationships
between an analytical model and test data which tend to limit the application of S S

mathematically correct algebraic relationships. The purpose of this paper is to
identify some of these limitations with the objective of directing research in
this area in more productive directions. .

2. PROBLEM DESCRIPTION

In the problem under discussion, it is assumed that there exists a linear
undamped continuous structure which is available for dynamic testing. Measure-
ments are made at a finite number of points on the structure at a continuous
range of frequencies. Data is assumed to be available which can be in the form
of mobility matrices (displacement per unit force) or which can be transformed
into natural frequencies and modal displacements at the points of measurement.
All the measured data has some error associated with it.

It is desired to formulate a discrete linear analytical model of this
structure consisting of a mass and stiffness matrix where the degrees of freedom
of the analytical model correspond to the points of measurement or a subset of
them. The analytical model should be representative of the physical character- •
istics of the structure and should predict the dynamic response (mobility) and
natural frequencies and modes of the structure.

There may exist an analytically derived approximation to the model. A
limitation on the frequency range of applicability of the model would be
acceptable. S S S
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The question to be considered is this: is it possible to use the test
data to identify or improve an analytical model of the test structure, and ii 6
so, what limitations, if any, are there on this process?

3. PARAMETER TYPES

References [10], [11] briefly discuss the characteristics of two classes
of parameters: those associated with a test ("measurable") and those associated
with the derivation of an analytical model ("intuitive"). The measurabies
include mobility, normal modes, natural frequencies. The intuitive parameters
include mass, stiffness, impedance. The problem discussed here is related to
the use of measurable parameters to help to identify intuitive parameters.
Recognition of the distinct characteristics of these parameter types is a first
indication of possible difficulties.

The intuitive parameters are directly related to the geometry and the
physical characteristics (e.g., mass, moduli of elasticity) of the structure.
The value of each parameter of a discrete model is also completely dependent on
the specific formulation of the model, that is, on the specific set of degrees 0
of freedom selected by the modeler. These parameters are precise but not
completely accurate. As will be shown below, intuitive parameters cannot be
directly measured (for a realistic model of more than a trivial number of
degrees of freedom.)

The measurable parameters are completely independent of any model

formulation. That is, the response of a point on the structure depends only on
the location of that point and the location of the excitation regardless of
where the degrees of freedom of a model may have been placed. These parameters
may be accurate but are not precise due to unavoidable equipment limitations.

The conversion of either parameter type to the other involves a matrix
inversion or the equivalent (e.g., solution of a set of differential equations).
Since derived intuitive parameters are numerically precise, the matrices may be
inverted but the results may not be accurate. Since measurable parameters are
not precise, meaningful inversions may not be possible. This is discussed
further in a following section.

4. DIRECT MEASUREMENT

As an illustration of the statement made above that intuitive parameters

cannot be directly measured, consider the stiffness matrix, K. K is a static
matrix which relates deflection, x, to applied steady forces, f:

Kx = f (1)

where K is an n x n (n = number of degrees of freedom) matrix and x, f are n
element vectors. Civen the physical characteristics of the structure and the
degrees of freedom of the analytical model, the elements of K may be calculated
theoretically.

Consider now the possibility of directly measuring the elements of K by a
test procedure. From equation (1) it is seen that the i, jth element may be
written:

K = (a fi/a xj) (2)

or, Ki. is the force at degree of freedom i required to produce a unit

displacement at degree of freedom J, while all other degrees of freedom of the
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model are constrained to be zero. For any realistically sized model this is
obviously an impossible condition to implement in a test.

Note that a completely opposite conclusion results when one considers the
inverse of K, the static influence matrix, C, which is a measurable quantity by
the prevlcus definition. C cannot be computed directly from the physical data,
except by inverting a calculated K matrix or by solving differential equations.
C is defined as:

Cf : x (3)

and

C = (axi/ a f.) (4)

or, C.. is the displacement at degree of freedom i due to a unit force at degree
1J

of freedom j, while all other forces are zero. These constraints are trivial
and it is possible to measure this matrix.

Note also that the constraints on K.. depend on the set of specific
degrees of freedom of the model, while C.1.depends only on the location of

-11degrees of freedom i and j and will not vry with the model formulation.

Since K = C- and C is measurable, consider this as a possible means of
identifying the stiffness matrix. For an n degree of freedom model of a S

structure, K and C may be expressed as follows (see Ref. [2]):

n T

K = i/mi M i (5)

n 2 T
C 11( 0 0 (6)

i=1

where E2 I mi' 0 are the natural frequency, generalized mass, and modal vector

of the ith mode and M is the mass matrix (which is assumed to be known for the
time being). Note that the dominant terms of K are the high frequency modes

2
(22 is in the numerator) and the dominant terms of C are the low frequency
modes.

K may be obtained from a measured C only if this matrix contains the 5 S
necessary information regarding the high frequency modes. For a model of even
modest size (say, 20 degrees of freedom), the measurement of C accurately enough
to represent the effects of the high frequency modes (whose influence decreases

by 2i 2) is virtually Impossible. For larger models such accuracy Is unachiev-
able. S

If the matrix C (of order n) does not contain information about all n
modes it is singular. In practice, noise in the measurements will allow a
numerical inversion; however, information which is not contained in the matrix
cannot be extracted and no numerical procedure can meaningfully perform the

operation, K = C . The numerical inverse of a measured C matrix will have no
physical meaning.

Another possibility is to measure the first n modes of the structure and
form K as In equation (5). It will be shown below that this procedure will not
identify a K matrix which represents the structural characteristics since the
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higher modes used are those of the structure and not of the model. The modes in
equation (5) are those of the model. The high modes of the structure (ifn) are
not the same as those of a valid model.

5. RELATIONSHIPS BETWEEN THE STRUCTURE AND THE MODEL

The structure tested may be thought of as being represented by a large
order unknown discrete model of order s where s ->ca. The analytical model is of
order n where n<<s. The n degrees of freedom of the model may be considered to
be a subset of the s degrees of freedom of the structure.

The complete model of a linear, undamped structure may be written in the
frequency domain as:

(K - 2M) xs = f (7)

or

Zs () xs fs  (8)

where K and M are of order s, x and f represent the response and applied

forces at the s degrees of freedom of the structure at a frequency of u. and
Z (w) is the corresponding impedance matrix.

s

Consider that the degrees of freedom are ordered so that the subset •
corresponding to the model are at the top of the vectors and then the upper left
partitions of the matrices correspond to the model degrees of freedom.

zs (w)= (9)
5 z2[ T ::]

-1(
The mobility, Ys (u) = Z s w ) may also be written

Y(s 1 T (10)

=Y2T Y4

and the mobility of the model degrees of freedom is

Y( )=Y = (Z 1 - ZZ 1 z T)-I (11)

M 1 2 4 2

Since Y is a measurable quantity and represents the actual response of the
structure, the inverse of YM is the impedance of the model at the specified

forcing frequency (see Ref. [12]) or 0

ZM( ) ZI - Z2Z4- 1z 2T (12)

Assuming a model of the form of equation (7) for the reduced degrees of
freedom, equation (12) becomes

4 3

430



(K1 - 2 M) - K2 (K4  2 -M4) 1 K2T (13)

where it has been assumed, for simplicity, that M2 = 0 (as in the case of a 0

diagonal mass matrix), and the subscripts refer to partitions of the matrices as
in equations (9) and (10).

The stiffness matrix of the reduced model may be obtained from equation
(13) when w = 0

KM = K 1 -K 2 K4  K2 (14)

and then, from equation (13)

-12K-1 -1 K7 K T(15)
MM =MI +K 2 K4 M4 (I- WK 4 M4 ) 41 2

Equation (14) is that of Turner [13] and equation (15) reduces to that of Guyan
[14] at wf= 0.

Equations (14)-(15) represent an analytical model which would exactly 0
predict the steady state response of the structure at all degrees of freedom of
the analytical model at any frequency. Note that this model is nonlinear since
the mass matrix is a function of the forcing frequency.

In the problem under consideration K and M are unknown; and it is
desired to identify constant K., M,. From equation 15 it is apparent
that a constant coefficient model 'can only be an approximation with limits on
the frequency range of applicability. In engineering practice, it is commonly
accepted that for such a model with n degrees of freedom, the validity of the
model will only cover a frequency range of up to approximately n/2" The

specific frequency range, of course, depends on the characteristics of the
actual structure and the formulation of the model.

Note that equations (14) and (15) do not represent a means of obtaining MM

and Km from test data since none of the matrices on the right hand sides of

these equations are known. They are shown to illustrate the relationships
between a desired model and the actual structure. 0

6. SYNTHESIS OF STIFFNESS MATRIX

Based on known physical characteristics of a linear structure it is
possible to define a unique constant stiffness matrix (equation (14)) with
physical meaning (equation (2)). Direct measurement of the stiffness matrix has 0 0
been shown in Section 2 to be not possible.

The modal expansion of equation (5) suggests the possibility of measuring
the first n modes and frequencies of the structure and synthesizing K (assuming
M is known) by summing the modal contributions.

• S
Equation (5) is a valid representation only for a linear model where the

modes and frequencies are the eigensolutions of the model as distinguished from
those of the structure (unless they are identical). There are two related
inconsistencies in the above suggestion. First, from equation (15) it is seen
that for a valid model that includes all n modes, the model is not linear.
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Second, as also discussed in Section 5, the n modes of a linear model that 0
includes a valid K matrix cannot be the same as the corresponding n modes of the
structure.

It may be possible, given an appropriate constant mass matrix, to sum the
measured modes as in equation (5). This will yield a linear model which will
have the same modes and frequencies as the structure. There is no reason to 0
expect, however, that such a model will have any physical reality (or that K
matrix may be related to the physical characteristics of the structure) or that
the model will have the capability to predict any dynamic characteristics other
than those which were actually measured.

There is another difficulty associated with the use of n measured modes in 0
an n degree of freedom model of a continuous structure. It is apparent that n
points cannot describe the shape of the higher modes which may have approximate-
ly n nodes and n antinodes (e.g., for the simple case of a thin beam). In addi-
tion, it is unlikely that the mass matrix required to make these poorly
described modes orthogonal will have any relation to physical reality.

In reference [2] an "incomplete" stiffness matrix is formed by summing the
lower order terms of equation (5). It is recognized that this matrix does not
represent the physical characteristics of the structure. While this model may
have valid specialized capabilities, these must be demonstrated for any
particular application.

7. EVALUATION OF APPROACHES

Methods which use test data alone to identify a linear M and K model of a
continuous structure, where the identified parameters can be physically related
to the static structural characteristics, appear to be unachievable. Variations
in the mathematical formulations where, for example, K is expressed in terms of S

the inverse of a measured modal matrix or where mobility measurements are used
directly are simply algebraic manipulations and the same conclusions must be
drawn.

Other methods use an approximate M and K model based on analysis and
attempt to adjust these to agree with test data over a limited frequency range. S

Such methods have a potential for success since a linear model may adequately
represent the structure when the frequency range is limited. Since the model is
of order n and the number of modes is less than n, there are an infinite number
of models which will satisfy the eigensolution requirements and will approximate
the physical characteristics.

Methods of this type fall in two classes: a limited number of physical
parameters are varied to modify M and K or the actual elements of M and K are
varied. Since there are an infinite number of solutions to the problem, there
is no reason to assume that computed variations in a limited set of physical
parameters has any necessary relationship to the "true" values of these
quantities. Selection of different parameters may also result in a different S S
but "good" solution.

Methods which modify all or a subset of the actual elements of the
matrices result in models which may not represent physically realistic
structures. Since there are an infinity of such models, any such valid

procedure must select a solution which represents some minimum variation from 0 S

the original analytical solution. If the changes are large enough to destroy
the physical interpretability of the model, and since the changes are minimum,
one must conclude that either the analysis or the test data or both are in
error. The result of an analysis of this type can only be considered to be
successful if the changes fall within the original expected uncertainties in the
analytical model.
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8. NUMERICAL ILLUSTRATION @

As an illustration of the phenomena described in Section 5 a simple
structure and a test are simulated. The structure consists of twenty lumped
masses connected in series by springs with mass number I connected to ground. A
test is simulated with modal measurements made at seven points. A seven degree •
of freedom model is desired to represent the twenty degree of freedom structure.

Table 1 contains the description of the mass and stiffness elements and
the first seven exact modal displacements and natural frequencies. in the
simulated test the natural frequencies and the modal displacements are
available. A seven degree of freedom model, however, would only predict mode
shapes at the seven test points.

Table 1 Description of simulated test specimen and modes and frequencies

Mass Test Mass Spring Mode= 1 2 3 4 5 6 7
No. Point kg n/m f(hz)= 9.5 31.0 48.0 70.0 81.2 104.2 119.2

x10
- 6

1 0.8 0.6 .09 .39 .33 -.62 .79 -.22 .54
2 1.8 1.8 .12 .51 .42 -.78 .95 -.25 .59
3 1.2 1.4 .17 .65 .50 -.78 .85 -. 15 .22
4 1 1.6 1.0 .22 .81 .55 -.60 .43 .06 -.44 S S
4 1.2 0.8 .29 .95 .51 -.13 -.33 .28 -.77
6 1.0 1.8 .33 .99 .46 .09 -.60 .30 -.63
7 1.0 2.0 .35 1.00 .40 .28 -.77 .25 -.32
8 2 1.8 0.6 .43 .98 .12 .83 -.99 -.09 1.00
9 0.6 0.2 .67 .60 -.80 1.00 .72 -.76 -.10

10 1.8 0.8 .73 .49 -.97 .89 1.00 -.68 -.33 9 0
11 3 1.0 0.4 .84 .18 -.93 -.11 .37 .79 .04
12 1.0 1.2 .87 .07 -.85 -.43 .08 1.00 .14
13 1.8 2.0 .89 0 -.76 -.57 -.10 .91 .16
14 4 1.8 0.6 .94 -.22 -.25 -.73 -.64 -.56 -.04
15 2.0 1.6 .95 -.29 -.03 -.62 -.65 -.84 -.09
16 5 0.6 1.2 .97 -.37 .26 -.28 -.38 -.61 -.08 0 6
17 1.2 0.8 .99 -.48 .68 .28 .11 -.08 -.02
18 6 2.0 1.4 .99 -.53 .87 .55 .36 .26 .02
19 1.0 1.2 1.00 -.55 .95 .68 .50 .46 .05
20 7 0.2 0.4 1.00 -.56 1.00 .76 .57 .59 .06

Equations (14), (15) represent a reduced model which represents the static
characteristics of the structure but is seen to be a function of frequency.
Seven degree of freedom models were formulated at several specific frequencies
and each was assumed to be constant and an eigenanalysis was performed. The
results of these computations are shown in Figure 1.

Note that only when the model frequency equals an eigenvalue is the
eigenvalue exactly representative of the actual structure. At any specific
value of the model frequency, no more than three eigenvalue are good
approximations in this case.

It has also been observed that the degrees of freedom of the model cannot *
properly describe the shapes of the actual modes of the structure. This is
apparent from Table 1.

As an illustration of how the model modes vary with the model frequency,
Table 2 gives the displacements of mode 3 for various model frequencies (48 hz
represents the exact mode). *
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Table 2 Effect of model frequency on shape of mode 3

Test Model frequency - hz. 0
Point 0 40 48 60 70

1 .53 .54 .55 .58 .65
2 .15 .13 .12 .12 .17
3 -.95 -95 -.93 -.89 -.78 0
4 -.38 -28 -.25 -.16 -.01
5 .20 .23 .26 .32 .42

6 .86 .86 .87 .88 .907 1.00 1.00 1.00 1.00 1.00

9. CONCLUDING REMARKS

The purpose of this paper has been to open the technical consideration of
what is and what is not possible in the field of the identification of
structural dynaics models. First indications suggest that rather severe

limitations exist on the use of test data alone and that the most promising *
procedures include a combination of test and analysis.

In the last mentioned class of procedures, the number of unknowns (ele-
ments of matrices) should be very much greater than the conditions to be met
(modes and frequencies), thus small changes in the elements can be expected if
the analysis and the data are good. However, since the solution is only one of
an infinity of solutions, no physical interpretation should be made of the
numerical results. The best one can say is that the model is a reasonable
physical representation and it predicts the measured dynamic behavior of the
structure. One may presume that such a model may be used for other analyses of
the structure with greater confidence than the original analytical model.
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FOOLPROOF METHODS FOR FREQUENCY RESPONSE MEASURIENTS

II.G.D. Goyder

U.K.A.E.A. Hlarwell Ai AD-P003 677
1. INTRODUCTION

The theoretical analyses of a structure is always approximate because of
the impossibility of accurately modelling every feature. Thus when a structure
has many important resonances or complicated damping mechanism% measurement
methods are-the only means of determining dynamic behaviour. In addition,
measurements can be used to determine the characteristics of non-linear struc-
tures which are frequently too complicated to be analysed theoretically. Con-
sequently measurement methods form an important part of vibration analysis.

High quality measurements are often difficult to achieve and-it is the
objective of this paper to present three techniques which greatly enhance the
accuracy and precision of structural vibration measurements. The measurement
techniques considered below all relate to the frequency response function or
transfer function which expresses the steady state response of a structure to
a harmonic excitation. Thus the frequency response function can be defined as:-

HcQ (1)

where V) Q .Lt

The real part of q and p are the response (displacement, velocity or
acceleration) and the force respectively. Q and P may be complex in order to
express a phase angle. Although defined using harmonic excitation the frequency
response function may also be defined using transient or random excitation [I].
For a linear structure the frequency response function completely defines the
relationship between any force and the response of the structure. For a non-
linear structure a single frequency response function is not sufficient to
completely describe the response and several special frequency response functions
must be used. This is described below.

-Three problems which cause significant errors in the measurement of
frequency response functions are:6

1. Nonlinearities and Noise )

2. Errors due to electrodynamic shakers S

3. Interpretation and model fitting of frequency response functions.

Techniques for overcoming these problems are presented below.

2. NONLINEARITIES AND NOISE S

Figure 1 shows the results of applying four conventional measurement
methods to the same nonlinear structure. The modulus of a frequency response
function is shown in each case. The structure consisted of a single degree of
freedom system with a cubic stiffness nonlinearity. The equation for the
structure was S
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where for the cases shown in figure 1

I = o-oS

0 -j0iO =s '

The continuous equation was represented by a finite difference equation
and the measurement methods simulated digitally. By using a small time step
for calculating the response the finite difference equation was found to
represent the continuous equation with an accuracy of better than 1%. The
actual number of points used to simulate the measurement methods was less than
that calculated so that realistic sampling rates could be used.

2.1 Figure I(A) 0

This frequency response function was obtained using steady state harmonic
excitation. For each frequency a force was applied which consisted of a
constant amplitude sinewave, The response was allowed to reach steady state
conditions and was then found to consist of a number of frequencies. The
amplitude and phase of the harmonic in the response at the same frequency as
the excitation was determined. The ratio of the amplitude of this harmonic to
the amplitude of the force constitutes the frequency response function shown in
the figure. The same amplitude of force was chosen for each frequency and this
amplitude was selected so that the displacement of the system would be equal
to 1.Om at resonance if 6 = 0. This type of frequency response function is
sometimes known as a describing function. S

2.2 Figure l(B)

This frequency response function was determined by applying the force an
a very short pulse shaoe to the structure. Pulses of the type chosen are often
obtained by using a hammer to excite the structure. The frequency response
function was then obtained by dividing the Fourier transform of the response by
the Fourier transform of the force. The pulse was selected so that the maximum
value of the response in the time domain was 1.Om with F = 0. The modulus of
the frequency response function is shown in the figure.

2.3 Figure 1(C) 0

This frequency response function was obtained in a similar manner to the
previous case. However instead of a pulse the force consisted of a rapid
frequency sweep between 0 Hz and 2 Hz in 50 sec. (This sweep is rapid compared
with the reverberation time of the structure.) The frequency response function
was once again determined from the ratio of Fourier transforms. The pulse was 5
selected so that the maximum displacement in the time domain would be equal to
1.0 m if C: 0.
2.4 Figure I(D)

This frequency response function was obtained by using a Gaussian random
force and determining spectral density functions associated with the force and
response. The equation used was

H (u))3)
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where !Jyp is the cross spectral density function between the response .
force and Spp is the autospectral density (power spectral density) of the force.
The force was chosen such that the r.m.s. value of the response would be O.5m
if6 = 0.

It can be seen that the force has been chosen in each case to give a 0
comparable response displacement. Thus the nonlinear effects will act to
approximately the same degree to produce comparable deviations from linear
behaviour. It can be seen that figure 1(d) shows a remarkable similarity to
the response of a linear structure. This is no coincidence and will be examined
further in the following sections. The frequency response functions (a), (b)
and (c) show considerable distortion from the response expected for a linear
structure. This distortion makes these frequency response functions difficult
to interpret. For example no method has yet been devised for estimating
parameters such as natural frequency or damping from these response functions.
Consequently the use of sinusoidal, pulse or sweep excitation does not seem
appropriate for the measurement of frequency response functions which contain
nonlinearities. This is particularly disappointing when considering sinusoidal
steady state testing which is generally an easy to use and robust technique.

The effect of noise on the above measurement techniques can cause
additional errors. Noise can generally be removed by averaging the results of
repeated tests. In the case of random excitation this is automatic but special
care must be used with the other techniques especially if the noise is harmonic. 9
For examples of averaging see [2].

3. RANDOM EXCITATION

The use of random excitation in the above examples produced a frequency
response function that looked as if it could have been produced by a linear D
structure. It is a property of random excitation that the frequency response
function constructed will always be that of a linear structure. This linear
frequency response function which respresents a nonlinear structure has very
favourable properties. For example the frequency response function is an
optimum model of the nonlinear structure. Also the energy dissipated within
the nonlinear structure is correctly modelled by the linear frequency response
function.

These properties can be appreciated from figure 2. In figure 2(a) a
nonlinear system is shown with force p and response q. A linear model of this
nonlinear system is shown in figure 2(b). Here the force is the same but the
response has the term qe added to it to make it up to the output q. Figure 2(b)
is similar to the problem of a linear system with noise added to the response.
It was for this latter problem that the application of equation 3 was devised
[J. However conceptually there is very little difference between noise and
nonlinearities in as much that both constitute an addition to the response that
has no linear relationship with the force. Thus the method of testing using
random excitation and using equation 3 provides a means of obtaining a best
model of a nonlinear structure.

Although the best linear model is obtained, this model is only appropriate
for the particular force spectral density used. For example if a force with a
larger or smaller r.m.s. value was used then different linear frequency response
functions would provide the best model of the nonlinear structure. One approach
for modelling a nonlinear system is thus to measure a number of different linear
frequency response functions corresponding to different levels of force.
Alternatively a more complete analysis may be performed by measuring multi-
dimensional frequency response functions [3). These are defined by

439



(0

These multidimensional frequency response functions relate the nonlinear part of
the response q0 to the force p. In principle measurement of all the multi-
dimensional frequency response functions for a structure would provide a
complete model for the structure so that the response to any force could be
predicted. This area is the subject of continuing research.

Thus a technique has been presented which permits the measurement of a
linear frequency response function of a nonlinear structure.

4. ELECTRODYNAMIC SHAKERS

Electrodynamic shakers used to apply a force to a structure generally
interact with the nonlinearities and noise to produce significant errors.
Figure 3 shows the general configuration when testing a structure. It can
be seen that there is a feedback path which results in the force containing
information about the noise and nonlinearities represented by qe. This feedback
path results from the properties of the shaker [4]. The force output by the
shaker is dependent on the amplitude of the displacement of the shaker coil and
on the mass damping and stiffness of the coil and its suspension. Electro-
magnetic effects also cause a feedback between the response and the foi. e [53. 6
The effect of the feedback path is to correlate the force and the nonlinear and
noise source via the feedback path. Thus if the technique of the previous
section is applied directly the linear frequency response function will be
corrupted by additional correlations between between the force and q,. However
an alternative for equation 3 may be used which overcomes this problem. The
equation is

SSpy
where S and 3PY% are cross-spectral density functions between q and z and
p and z where z is the input to the shaker. The input z is derived from the
random generator used to drive the shaker and is thus independent of the noise
and nonlinearities in the shaker and structure. The theory for this technique
is given in E4] and is easily demonstrated.

* 4

Figure 4 shows the frequency response function measured for one resonance
of a nonlinear system. The use of both equation 3 and 5 are shown. It can be
seen that there are significant differences. These differences are due to
shaker interactions which are eliminated by the use of equation 5. The non-
linear system for this experiment consisted of a 2m steel tube with a loose
support at its centre. The tube had a first resonance frequency at 74 Hz and was 0 4

excited by a Ling 407 shaker.

5. INTERPRETATION OF RESPONSE FUNCTIONS

After a linear frequency response function has been measured it is
necessary to interpret it. This is often achieved by determining a parametric 0
model for the frequency response function in terms of resonance frequencies and
damping ratios. Below is presented a novel form for plotting frequency response
functions which considerably aids interpretation.

The frequency response function for a linear single degree of freedom
oscillator has the form 0
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where L., is the resonance frequency and J the damping ratio. Figure 5(a) and 4

(b) shows the real and imaginary parts of this function plotted against
frequency. Figure 5(c) shows the frequency response function plotted on the
Argand diagram. Figure 5(c) is often regarded as the most useful for showing
up detail in the frequency response function. This type of plot was first
proposed by Kennedy and Pancu [61

An alternative method for examining the frequency response function is
to plot the reciprocal of the frequency response function. It can be seen
from equation 6 that for an oscillator this gives

Figure 6(a) and (b) shows the real and imaginary parts of this function and
figure 6(c) shows the function plotted on the Argand diagram. It can be seen
that Figure 6 is simpler than the more usual method of plotting given in
figure 5. There are several advantages associated with this method of plotting.
The method separates the damping and mass-stiffness part of the frequency
response function. This may be made even more simple if the reciprocal of the
velocity frequency response function is plotted. In this case the real part is
a constant proportional to damping. 0

The determination of the natural frequency and damping from the reciprocal
frequency response function is simple. This may be done graphically or by
simple linear curve fitting procedures. Curve fitting is particularly straight-
forward because the noise structure is often simpler on the reciprocal frequency
response function compared to the usual frequency response function.

The manner in which this form of plotting shows up details of the frequency
response function can be seen from figures 7 and 8. Figure 7 shows a plot on
the Argand diagram of the linear frequency response function obtained for the
nonlinear system described in section 2. This plot has been obtained using
random excitation and the modulus is shown in figure 1. For comparison the
reciprocal frequency response function is shown in figure 8. It can be seen
that figure 8 enhances details and that although the frequency response function
is a linear model of the nonlinear system it is more complicated than that of
a linear single degree of freedom oscillator.

The reciprocal frequency response function has also been found to be • 6
useful when considering systems with several resonances.

6. CONCLUSIONS

Three techniques have been presented which enable high quality frequency
response functions to be measured. It has been shown that despite nonlinearities
and noise the use of a random force to excite a structure will produce a linear
frequency response function. Also by means of a special application of cross
spectral density functions the effects of interactions between the shaker and a
structure may be overcome. Finally by plotting the reciprocal of the frequency
response function it has been shown that interpretation of the measured frequency
response function is simplified.
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THREE AXIS VIBRATION SYSTEM

G.K. Hobbs; Consultant

Robert Mercado; Santa Barbara Research Center

0D 0

1. SUMMARY %J
00

Several high-rate production programs at Santa Barbara Research Center

(SBRC) placed emphasis on finding economical and efficient screening systems. A

quasi-random triaxial vibration system, including temperature cycling capability, 0

was selected. Two Screening Systems, Inc., Multiaxial QRS-100s have been used at
SBRC since June of 1980.

The systems have also been successfully used for locating defects. Some

defects that have shown up during screening could not be found in the rework cy-
cle under quiescent conditions nor could they be located using a single-axis vi- 0

bration system in conjunction with thermal cycling.

To more thoroughly understand the behavior of the quasi-random multiaxis

shaker, investigations of the motions in the time and frequency domains were un-
dertaken, including the relationships between the three linear axes and between
the three rotational axes. These investigations showed that the six axes of mo- 0

tion can be considered to be independent in terms of specimen response to the in-
put motions.

2. THE SYSTEM INVESTIGATED

The QRS-100 is excited by pneumatically driven hammers which generate 0

pulses. An ASD (or Fourier) analysis of these impacts shows a line spectrum with
equally spaced lines. The fundamental frequency in the line spectra can be al-

tered by changing the hammer velocity through varying the input air pressure.
This is called smearing of the input. Each of the several (four are used as of

this writing) hammers has a slightly different character and further smears the
overall response of the QRS-100. The design of the structure between the hammers 0

and the specimen to be screened further modifies the ASD as experienced by the

specimen. The intervening structure is adjustable in several ways to allow vari-

ation in acceleration in the three axes and to control high-frequency rolloff.
Substantial changes in the spectra can be attained by design changes in the

structure between the hammers and the specimen. 0

Vibration is controlled by a microprocessor which controls the overall ac-

celeration level. The air supply to the vibrators is modulated by a fast-acting
digital flow valve which modulates the pressure in a quasi-random manner, result-
ing in spectral smearing of the input ASD. The overall grms input level is con-

trolled using six multiplexed accelerometer feedback signals and maintaining an

average as commanded by the program.

Temperature is controlled by an event programmer and a Research, Inc., tem-
perature controller. The events programmer determines the rate of change of tem-

perature, the temperature extremes and dwell times, and can also turn on the vi-

bration controller and GN2 purge (if desired) at specified times during the
screen profile.

The mechanical shake table structure is mounted on air bags to allow motion
of the entire system within the environmental chamber. The impacters are mounted
to the outer ring on springs to provide adjustable high-frequency rolloff. The
inner and outer rings are clamped together by an adjustable force elastomer in-

terface to allow adjustment in distribution of energy between axes and also to
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effect high-frequency rolloff. Finally, the tent-shaped fixture is bolted to the

inner ring and there is a provision for mounting 12 specimens at a time. Figure

1 details a typical setup; further details of system configuration and perform-

ance are given [1, 2].

For the application at hand, the screen process was intended to expose part

and workmanship defects. Note that there is no need to simulate actual field use •

conditions in a screen because once the flaws are removed under accelerated

screening conditions, they will not fail under actual use conditions.

* -t *

Figure 1. The QRS-100

3. EXPERIMENTS RUN, LINEAR MOTIONS

Reference I discussed screening results, fixture surveys, and the quasi-
random response spectrum (QRRS). All of the results in Reference 1 were in terms

of acceleration spectral density and were limited to linear motion only. Since

knowledge of phase relationships between the axes was necessary to evaluate •

stresses due to multiaxial motion, including rotations, a more complete descrip-

tion of the motions was required.

The axes of motion are shown in Figure 2, which also shows the actuator ar-
rangement. Note that the fixture is removed. Note also that the rear actuator

is Screening Systems Model No. PV 1 5/8 - 1.6, whereas the other three are NAVCO 0

MP 1-1 1/4.

Figure 2. Axes and Actuator Arrangement 5
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Each axis of motion of the QRS was examined to determine the statistical
distribution of linear acceleration on the fixture. The probability and cumula-
tive probability distributions were found to approximate the Gaussian distribu-
tion in both narrow- and broadband samples as previously reported 13].

For a sample of several locations on the fixture, auto- and cross-correla-
tions were calculated. The autocorrelation functions implied a typical broadband
random signal for all sample times and axes. The cross-correlations, however,
were much more difficult to decipher as some samples appeared to be correlated
and some did not. All showed evidence of the line spectra input from the actua-
tors, and showed that the actuators had different repetition rates. The cross-
correlation of different time samples taken at the same point always had varying
character. Many cross-correlations were checked and none were the same, leading
to the conclusion that the signals were nonstationary. These facts required the
signals to be analyzed in the time domain.

In order to reduce the analysis problem as much as possible, only one actu-
ator, the rear one in Figure 2, was utilized with the system run in the constant
pressure (manual) mode. Only the motions of one location on the fixture were ex-
amined in detail and that was at one of the triaxial accelerometers used in the
control system (Figure 3).

The signals from two accelerometers were fed into two charge amplifiers and
tracking filters and were used to drive the vertical and horizontal axes of an
oscilloscope. The bandpasses used in the investigations were 2 Hz, 10% of the
center frequency, 100 Hz, and complete bandpass. Note that the two signals were
not amplitude-controlled to be equal, so true Lissajous patterns were not formed.
Since the only actuator used was mounted in the y direction, the y axis responses
tended to exceed the x axis responses, which is not normally the case.

0 -

Figure 3. Control Accelerometer Arrangement

The tracking filters were first set to 2 Hz for a very close look at the
behavior of the system. Note that the half-power bandwidth of a structure is
generally much wider than this, so the specimen being screened responds to a much
broader bandwidth (as discussed in [1]). For example, a structure with a natural
frequency of 400 Hz, and with 4% of critical damping, has a half-power bandwidth
of 32 Hz.

The actuator produces repeated impacts generating a line spectrum. The
first line was at 68 Hz (for a given pressure) and the harmonics were found at
exact integer multiples of 68 Hz. For the frequency range below 68 Hz and be-
tween the harmonics up to about 1000 Hz, there were essentially I ) signals when
the analysis bandwidth was 2 Hz. At frequencies above 1000 Hz, syst:m nonlinear-
ities and slight changes in the actual repetition rate generated nearly conti.nu-
ous signals as the tracking filter was swept along. The ellipse drawn by the two
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signals was found to be amplitude-modulated and to wobble at the lower frequen-
cies (up to the fourth harmonic at 272 Hz). The amplitudes varied in time by
factors of from 30% to 95%, and the angles of the principal axis varied about 5'.

Above the fourth harmonic the ellipse was very unsteady and varied in amplitude
and angle, with an ellipse principal axis varying 3600. (See Figures 4 and 5 for
examples.)

Selection of a 10% bandwidth at center frequencies below the sixth harmonic
(408 Hz) produced little change from the 2 Hz bandwidth, but above that frequency
the difference was very great, as two or more lines of the spectra would pass
through the filters. At these higher frequencies, the oscilloscope showed an el-
liptical outline with lines traced throughout the ellipse. The ellipse outline
also changed with time to some extent. (See Figure 6.)

Examples of some of the phenomena are shown in Figures 4 through 9, all of
which are annotated separately. Figure 4 illustrates a very narrow-band analysis
at a harmonic of the repetition rate of the actuator, with the ellipse modulated
and rotating; a double exposure of this type of figure is shown in Figure 5.
Figures 6 and 7 illustrate the effect of a broader bandwidth than on Figure 4. S
Note that the gains used were always equal on the vertical and horizontal axes,
but were changed as necessary to fill the frame. Figure 8 shows that using all
four actuators rounds out the pattern. Figure 9 illustrates a bandwidth corres-
ponding to 5% of critical damping.

The vector acceleration was studied mathematically in order to evaluate the 6
probability distribution of the acceleration. A Monte Carlo model using three
Gaussian distributions, each with 5.5 grms, was set up and run on an Apple II
computer, and the resulting probability distribution is shown in Figure 10. Note
that the distribution is similar to a lognormal distribution. The 1, 2a, 30 and
4r points are shown on the figure. The "max acceleration" of 28.6g in the title
block was used only for scaling the abscissa and was calculated as the 3o

V0

x -

Figure 4. Experimental Results: Figure 5. Experimental Results: S
Center Frequency, 409 Hz, Center Fr,. ency, 346 Hz,
Bandwidth 2 Hz, Modulated Bandwidth 2 dz, Four
and Rotating, One Actuator Actuators, Double Exposure

Figure 6. Experimental Results: Figure 7. Experimental Results:
Center Frequency, 409 Hz, Broadband, One Actuator
Bandwidth 41 Hz, One
Actuator •
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Figure 8. Experimental Results: Figure 9. Experimental Results:

Center Frequency, 433 Hz, Center Frequency, 433 Hz,

Bandwidth 43 Hz, Four BandwLdth 43 Hz, Four

Actuators Actuators

2- 7.4 X RMS = 5.5

*Y RMS = 5.5

3 11.1 Z RMS = 5.5

1c 3 7 # OF PASSES = 5000
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-=28.5788384
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Figure I I Distrb.t.o
2.8 5.7 9.6 11.4 14.3 17.1 20.0 22.9 •

Figure 10. Vector Acceleration Probability Distribution

"vector" of the rms values for each axis as this was known to be an upper bound.

Note that in 5000 samples the highest acceleration found was 25.7g.

The angular distribution of the acceleration vector was found to be uniform

as the three distributions used had the same rms values. Other cases with non-

equal rms values were run for completeness, but are not reported here.

4. CONCLUSION, LINEAR MOTIONS

Narrowband analysis of x and y, y and z, and x and z as pairs of signals *
shows that the signals are nonstationary and have no constant phase relationship

even when only one actuator at a steady pressure is used. Analysis with a band-

width of 10% of center frequency (about 5% of critical damping) with four actua-

tors results in patterns where the vector acceleration occupies any part of an

oblate spheroid in three space (recall that only one actuator in the y direction

was used). This leads to the conclusion that the motions in the three axes are *

independent random variables. The dynamic response of a system exposed to the

environment will accordingly be independently random in all three axes.

The oscilloscope patterns on a broadband basis show definitely preferred

directions. However, any mode of a structure will respond principally to inputs

within the half-power bandwidth of the mode and so broadband analysis is not

really relevant for our purposes.

The vector acceleration was found to have an approximately lognormal dis-

tribution with the maximum value found in 5000 Monte Carlo trials being less than

the 30 "vector" sum of the rms values for each axis.
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5. EXPERIMENTS RUN, ROTATIONAL MOTIONS 0

Preliminary studies had shown that substantial rotational accelerations ex-
isted. A more detailed study was undertaken in order to find the spatial and
frequency relationships between the accelerations. The rotational accelerations
were calculated from the linear accelerations as detailed in Figure 11. 0

a2

aja 2 in g's 0

(a2 - a,) g 386 in. 386(a 2 - a,) a(0
in rad/sec2  L - =rd/sac 2  (1)

L in. sec
2 g L

when a is in g's and L is in inches

Figure 11. Rotational Acceleration Calculations 0

The angular acceleration spectral density (AASD) was calculated by spectral
analysis of a rad/sec 2 and resulted in dimensional units of rad 2 /sec 4-Hz. The
dimension Hz results from division by the filter bandwidth. Two methods were
used: digital real time analyzer (RTA), and narrowband analysis of each acceler- 0
ation followed by summation (including phase angles) and then division by the
filter bandwidth. Both techniques proved to be of value.

Prior to any data analysis all instrumentation was checked for proper level
and phase relationships. All data was taken at the mounting interface of the
unit being screened. All three rotational accelerations were stored on tape in
raw linear acceleration form so that analysis in any form could be done later.
All impacters were operational and both the constant pressure and automatic con-
trol modes were utilized.

When recording was complete, the next step was to make ASD plots using a
real time analyzer and to make phase plots using a time series analyzer. Plots
of ASD (linear) and phase angle between the two channels used for analysis were
performed for many channels, two of which are shown in Figures 12 through 15.
Note in Figures 12 and 13 that the ASD has a reasonably continuous distribution,
in terms of the QRRS, considering that the analyzer utilized had a 13 Hz band-
width. Note also that the two ASDs are somewhat different in terms of amplitude
distribution. Similarly, each phase angle plot looked different except at a few 0
frequencies as shown.

Further analysis of each acceleration was performed by use of a dual chan-
nel oscilloscope in two ways. A time domain photo of the filtered output from
two in-line paired accelerometers 3.86 inches apart is shown in Figure 16. The
center frequency is 735 Hz and the filter bandwidth is 15 Hz. Note that the 0
phase angle between the signals is not constant.

Driving the oscilloscope with the filtered output on the vertical channels
and with the sweep oscillator output on the horizontal channel resulted in Figure
17. The same type of pattern was evident at many other frequencies showing that
the amplitude and phase angles were nonstationary. 0
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Figure 16. 735 Hz; 15 Hz Filter Figure 17. 475 Hz; 15 Hz Filter

Another method of analysis was to set up the oscilloscope in the add mode
(Figure 18) to obtain equation (1) (after inverting one signal from the tracking
filter). Both narrowband signals could be observed on the oscilloscope and the
resultant angular acceleration fed to the real time analyzer where the AASD can
be observed and plotted if desired.

The AASD plot of the broadband output (i.e., without any filtering) is
shown in Figure 19. The real time AASD was noted to vary by as much as 20 dB per
second, again indicating nonstationary angular accelerations.

The final analysis of angular accelerations was done using the oscilloscope
and driving the vertical and horizontal channels with two in-line accelerometers
in order to see the relationships of linear and angular motion. A straight line
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Figure 19. AASD Plot of Broadband Output 4

at 450 would indicate no rotation and purely in-phase motion. Other figures
would indicate angular as well as linear motion. First, an electrodynamic shaker
was analyzed with the accelerometers at the specimen mounting points and with a
white noise input from 20 to 2000 Hz. The results are shown in Figures 20 *
through 22, which illustrate nearly perfect linear motion with very little rota-
tion, which is supposed to be the case. A similar analysis was done on the QRS-
100 run in the constant pressure mode and the results shown in Figures 23 through
25. The figures illustrate a large degree of out-of-phase motion at some times
and in-phase at others, implying true six-degree of freedom motion.
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Figure 20. Two Broadband Waveforms on Figure 21. Narrowband (15 Hz) on
Electrodynamic Shaker Electrodynamic Shaker,

Center Frequency 1000 Hz

Figure 22. 100 Hz Bandwidth on Figure 23. Two Broadband Waveforms
Electrodynamic Shaker, on QRS-100 Systems

Center Frequency 1000 Hz

* "

Figure 24. Narrowband (15 Hz) on Figure 25. 100 Hz Bandwidth on
QRS-100, Center Frequency QRS-100, Center Frequency •
610 Hz 610 Hz

6. CONCLUSION, ANGULAR MOTION

The QRS-100 exhibits angular accelerations at nearly all frequencies when

analyzed with a narrowband filter, and at all frequencies when analyzed with a I

filter corresponding to a typical structural half-power bandwidth.

7. SUMMARY AND AN EXAMPLE

The QRS-0O0 has accelerations in all six degrees of freedom as measured by
a typical structural half-power bandwidth filter of 5% to 10% of the center fre-
quency (2.5% to 5% critical damping). The motions are all nonstationary in time,
have Gaussian distributions when measured independently, and are not correlated.
The system therefore behaves as a six-axis shaker with all axes being independ-
ent.
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This behavior explains the results of an investigation wherein a system
which had failed screening on the QRS-100 with cracked solder joints would not
exhibit anomalies when excited by a single-axis system. The specimen was excited
in all principal axes on the single axis system at g levels from 1/2 grms to 15
grms at ambient, high and low temperatures, without intermittents being observed. 0
Excitation by the QRS-100 at a 1 grms level at low temperature showed system in-
termittents about 92% of the time.

In this example, the six simultaneous axes of motion were just what was
needed to cause the cracked solder joint to show an open condition. Many other
examples of this type have occurred at SBRC. Further comparisons of single-axis 0
shaker and QRS-100 shaker screening results are given in [1] and [2].

1. G.K. HOBBS, J.L. HOLMES, R. MERCADO 1982 SEECO 82, the Society of Envi-
ronmental Engineers, London, England. Stress Screening Using Multiaxial Vi-
bration.

2. G.K. HOBBS, R. MERCADO 1982 Reliability and Maintainability Symposium, 0

Los Angeles, California. Quasi-Random Stress Screening Using the QRS-100.

3. A.J. CURTIS 1979 Hughes Aircraft Interdepartmental Correspondence. Anal-
ysis of Pneumatic Actuator (Baker Shaker) Vibration Signals.
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RECENT EXPERIMENTAL DEVICES TO OBTAIN THE DYNAMIC 0
PARAMETERS OF BRIDGES

William C. McCarthy and Kenneth R. White
New Mexico State University

Alberto G. Arroyo S
University of Texas at San Antonio AD-PO03 679

1. INTRODUCTION

)Full scale testing of structures continues to be the best means of obtain- 0
ing the dynamic parameters necessary for design. For bridge structures, though,
barriers exist that restrict field testing with difficulties that include possi-
ble structural damage, inadequate test control, cost, and limitations in acces-
sibility. These difficulties contribute to a current lack of understanding of
the dynamic behavior of bridges. To alleviate this problem, New Mexico-tote
University (NMSU) has devised two test instruments, the tricoil sensor'l1] and a
portable vibration machine"[2]! The tricoil sensor was designed to clearly
measure movement in three orthogonal directions and succeeds in being superior
to its counterpart, the accelerometer. The vibration machine complements the
tricoil sensor with its operator control and operational flexibility. A
thorough discussion of both instruments detail their composition, how they work,
and their functional capacities.

A small bridge was constructed at NMSU to test the two instruments. Of
particular concern was the vibration machines ability to produce a measurable
response in a non-destructive manner. Three tests were initiated to define the
fundamental frequencies and damping coefficients of the test bridge and to pro-
duce frequency response curves. An outline of the test procedures with corres-
ponding results confirm the effectiveness of the two instruments.

2. TRICOIL SENSOR

The tricoil sensor of Figure I operates under the principle that current
is generated when the coils move through a static magnetic field. The coils are

in. (6.35 mm) in diameter by 7/8 in. (22.225 mm) long and are manufactured as
miniature magnetic pickups by Power Instruments, Inc. Three coils, in an ortho-
gonal orientation to monitor three dimensional vibrations, are rigidly attached
to the inside of a I in. x I in. x 2 in. (25.4 mm x 25.4 x 50.8 m) aluminum box
which in turn is attached to a k in. x 2 in. x 3 in. (6.35 mm x 50.8 mm x
76.2 m) aluminum plate with a 6 lead electrical plug. The plate is bonded to
the bridge commonly with the use of glue.

A signal is actuated by first placing a stationary electromagnet in close
proximity to the tricoil sensor. Current is produced by inducing movement of
the sensor in the magnetic field. The greater the movement the stronger the
signal. The NMSU tests used on electromagnet with a field density of approxi-
mately 2500 gauss at the center of its core. A smaller permanent magnet may be
used but an electromagnet tends to produce a clearer signal.

Two operational advantages plus its lower cost relative to an accelero-
meter makes the tricoil sensor a highly attractive vibration measuring device.
Although some signal amplification is necessary, the tricoil does not require
the amplification normally associated with an accelerometer. In addition, a
lesser amount of filtering is needed to remove the noise from the tricoil sig-
nal. Figure 2 presents two steady state first bending mode responses from a
similarly placed tricoil sensor and accelerometer. In this instance, the accel-
erometer used twice the amplification and one third again as much filtering to
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produce an acceptable but still inferior signal. Some degradation of the tri- 0

coil signal is noted at higher frequencies but it is still insignificant in
comparison to the accelerometers.

The main disadvantage of the tricoil sensor is that it produces amplitudes
which are proportional to the mass velocity and, hence, the vibrations remain
qualitative in nature. Thus, displacements and stresses may not be obtained
without first calibrating the sensor, a lengthy process that has not as yet been
accomplished.

3. VIBRATION MACHINE

The qualities desired of a field test vibration machine include frequency 0

and force control, test flexibility, and compactness and so the NMSU vibrator
was designed to have these features. The vibrator or shaker, illustrated in
Figure 3, consists of two counter-rotating 18 in. (0.457 m) diameter spur gears
operated by a 15 hp (11.186 kW) DC electric motor. A 36 in. (0.914 m) by 100
in. (2.54 m) channel frame supports the gear mechanism, motor, and counter-
balancing weights. The frame is sufficiently strong to serve as a trailer body 0
for transportation to the field.

Two masses are attached to the spur gears at an eccentricity of 6 in. so
as to maintain synchronization of the gear mechanism. Thus, when the two masses
are immediately adjacent, they generate a unidirectional force that is always
perpendicular to the gear mechanism. This unidirectionality eliminates the 0

interference effects that result when there are force created movements other
than those under study. The force magnitude is controlled in two ways, the
weight of the masses and the frequency at which they are rotated. Force levels,
then, range as low as a few hundred to several thousands of pounds. Testing has
indicated that a force magnitude as low as 400 lbs. (1.779 kN) acting on a field
bridge produces an acceptable signal in the tricoil sensor. As a result, 1000 0

lbs. (4.448 kN) was used as a typical test force magnitude, thus, insuring the
nondestructive goal of the research.

A belt drive with a 1 to 1 driving ratio turns the spur gears. This is
sufficient to produce a 2 to 29 Hz frequency range which is thought to encompass
the fundamental bending and torsional mode frequencies of most bridges. The

force created by the rotating masses varies sinusoidally according to the equa-
tion

F = 2mpw 2sin wt (1)

where 2m = total eccentric mass S

p = mass eccentricity

w = angular velocity

with its maximum amplitude of 2mpk2 . The dominate factor in the force magnitude 0
is the angular velocity which is directly controlled by controlling the motor
frequency. The motor and, through the belt drive transference, the vibration
machine has an incremental tolerance of no more than 0.2 Hz. This sensitivity
and force predictability insures that the testing remains under the contol of
the operator. This assurance of operator control serves to establish confidence
in the nondestructive capacity of the shaker.

Lubrication of the spur gear mechanism results in a very low friction
coefficient. When power to the motor is terminated, the gears coast smoothly
down through the various frequencies and corresponding decreasing force levels.

However, the study of free vibration requires no external excitation force. For
this reason, the shaker is equipped with a hydraulically operated braking system.
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FIGURE 3. BRIDGE DYNAMIC EXCITATION MACHINE

The braking is sufficiently fast and yet smooth to result in little disturbance
of the signal from the tricoil sensor.

Perhaps the best feature of the vibration machine is its ability to quick-
ly convert from a vertical force generator to a horizontal force generator shown
in Figure 4. This is accomplished by a right angle rotation of the total gear

mechanism which is then bolted in place, a process that takes but a few minutes.
The shaker is designed so that no other changes are needed before testing com-
mences. A horizontal force capacity permits the study of bridge supports under
conditions that more accurately simulate earthquake behavior but to a much less
degree. It also expands upon its potential use as a dynamic test instrument for
structures other than bridges.
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4. DYNAMIC TESTS

Three tests were devised to check the function of the bridge vibrator and
tricoil sensor. The tests, summarized below as they apply to the simple sup-
ported NMSU test bridge, are representative of procedures required to obtain
the dynamic parameters of field bridges.

4.1 Run Down Test

The shaker is positioned at the center of the bridge with a tricoil sensor
attached beneath. The bridge is excited to a high frequency, approaching 29 Hz,
at which time the power is turned off and the vibrator is allowed to coast down
slowly through the frequency levels. When the frequency roughly corresponds to
a resonant frequency of the structure, the signal from the tricoil sensor is
greatly amplified as exhibited by the first bending mode response of Figure 5.
The run down test, therefore, approximately identifies the lower natural periods
of a bridge.

4.2 Frequency Response Curve Test

The tricoil sensors and shaker are selectively located on the bridge in
positions indicative of the mode under study. The shaker and tricoil sensor,
for example, remain at the center of the structure when studying the first bend-
ing mode response. The bridge is brought to steady state resonance with guid- I

ance from the run down test. Then, the frequency is varied through a range of
± 2 Hz at roughly 20 point intervals within this range while the response of the
structure is recorded. The bridge is vibrated at each point for a sufficient
time to insure steady state. A plot of the response amplitude versus exciting
frequency for all points is the frequency response curve for that mode. In
addition to giving an exact natural frequency, the frequency response curve
may yield a damping ratio according to the formula

f 2 - f l1( 
2f f

2- 1

2f C2)
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FIGURE 5. RUNDOWN TESTS FOR FIRST BENDING MODE

where: = damping ratio

fl first frequency on the curve with a response amplitude
equal to 1/v12 times the maximum amplitude

f2 second frequency on the curve with a response amplitudeequal to I/V'- times the maximum amplitude

f = natural frequency of the bridge.

Equation 2 is called the bandwidth method by Paz [3] who outlined the procedure.

4.3 Transient Vibration Test

The shaker and sensors are positioned in exactly the same manner as for
the frequency response curve test. The bridge is again excited to one of its
natural frequencies and held for a brief period to assure steady state. Power
to the vibrator is then terminated while the brake is immediately applied. This
results in a transient or decay response of the structure now in free vibration.
The first bending mode transient response is presented in Figure 6.

The transient response may be used to obtain a second damping ratio by the log-
arithmic decrement method (3] according to the formula 0

In Y+= 2n (3)Y1

where: t = damping ratio •

n = cycle number

Yl = response amplitude at the first cycle

Yn+l = response amplitude at the n+I cycle. 0
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FIGURE 6. TRANSIENT RESPONSE TEST FOR FIRST BENDING MODE

5. EXPERIMENTAL RESULTS

Beyond establishing the worthiness of the vibration machine and tricoil

sensor, the goal was to determine the first and second bending and the 
first

torsional mode dynamic parameters of the NMSU test bridge. The run down test,

however, quickly determined that the second bending mode frequency 
was higher

than the 29 Hz capacity of-the shaker. Thus, the goal was modified to the

development of frequency response curves and the calculation of 
damping ratios

for the first bending and torsional modes only.

The NMSU test bridge is a 7 ft. (2.134 m) wide, 44 ft. (13.411 m) long by

1.67 ft. (0.508 m) deep prestressed concrete double tee beam. The flange has an

average depth of 2 in. (50.8 mm) and the web an average thickness 
of 5 in.

(127 mm) placed 4 ft. (1.219 m) on-centers. The bridge has a simple span of

34 ft. (10.363 m) with 5 ft. (1.524 m) cantilevered ends.

Figure 7 is a plot of the first bending mode frequency response curve

using a total spur gear eccentric weight of 4.84 lbs. (21.529 N). A number of

dynamic factors may be deduced from the curve with the 
most obvious being a

first bending mode resonant frequency at 6.4 Hz. The bandwidth method of equa-

tion 3 produced a damping ratio of 2.1%. The curve is observed to be slightly

unsymmetrical which implies some slight non-linearity in 
the structure. To

test this, a second series of tests were run using a total eccentric 
weight of

6.17 lbs. (27.445 N). The respective maximum response amplitudes were 4.9 and

5.86. The force ratio of 1.27 versus an amplitude ratio of 1.2 for the two

weight categories is sufficiently close to indicate essentially 
linear behavior.

A frequency response curve was also developed for the first 
torsional

mode. The result was an average resonant frequency of 21 Hz. Average is used

since a definite non-linearity was revealed when the natural frequency 
varied

by ± 10% depending upon the magnitude of the eccentric weight. 
The average

bandwidth damping ratio was found to be 1%. It is thought that cracks in the

beam contributed to the torsional non-linearity.

The first bending mode transient response of Figure 6 produced 
the ampli-

tude values of Table 1. The damping ratio, t, varies between 1.47% and 1.01%
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FIGURE 7. NORMALIZED FREQUENCY-RESPONSE CURVE
FOR FIRST BENDING MODE TEST A AND SENSOR Z

depending upon the cycle used in the logarithmic decrement method of Equation 4.
In any case, the bridge damping is very low. A difference in the ratios by the

methods of Equation 3 and 4 is due to the theoretical assumptions of their deri-
vation. The best that one can say then is that the damping falls between 1 and
2% of critical.

n 1 2 3 4 5 10 15 19

Y_ 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
Yn+l 1.55 1.42 1.35 1.20 1.15 0.80 0.6 0.45

0.0147 0.0143 0.0122 0.0138 0.0124 0.0119 0.0110 0.0101

TABLE 1. LOGARITHMIC DECREMENT DAMPING RATIOS - FIRST BENDING MODE

6. DYNAMIC ANALYSIS

An attempt to analytically reproduce the natural frequencies was only par-
tially successful. The ICES STRUDL II [4] plane grid modal analysis was used
because of the economy of the computer program and its torsional mode capabili-
ties. The bridge was subdivided irto 157 longitudinal and transverse grid mem-
oers interconnecting 92 nodes. Moment of inertia and area were calculated using
standard formulas except that the transverse diaphragms were given near zero
area to assure equivalent mass. Damping was not considered.

The STRUDL first bending, first torsional, and second bending mode fre-
quencies were 6.41 Hz, 20.69 Hz, and 25.26 Hz, respectively. Both fundamental
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modes were on target with only the second bending mode failing to compare. The
run-down test did not reveal any resonant responses between 22 Hz and the 29 Hz
upper limit. One explanation is that the structural model falls short of
defining the true nature of the test bridge particularly the prestress aspect
which was disregarded in the analysis.

7. CONCLUSIONS 0

Both field test instruments exceeded their expectations. In most aspects,
the tricoil sensor out-performed the accelerometer. The clear tricoil signal
eliminated the need for data refining techniques in the tests carried out on the
NMSU test bridge. It is expected that this would remain true for most test sit-
uations. •

Vertical force testing of the vibration machine was extensive and the
operations proved effective and efficient. One unanticipated drawback was the
added dead weight or other form of restraint required to prevent lateral move-
ment of the shaker particularly during resonant vibrations. The weight would
have to be added in the field and removed to reposition the machine, thereby,
increasing the test time.

The shaker's horizontal force capacity has received only limited testing
due in part to a lack of set-bridge test procedures in the horizontal mode. The
vertical to horizontal changeover and vice versa proved convenient and quick.
Horizontal operations were actually smoother than the vertical with no unwanted
movements of the machine. As expected, however, a greater force was needed to
elicit an observed response from the bridge.

Donated materials were primarily used in the construction of the vibration
machine which prevented, for example, the use of high strength steel in the spur
gears. Thus, the upper experimental boundaries of a portable vibration machine

have yet to be realized in the existing shaker. An expanded capacity would be
highly desirable for horizontal testing. Even so, the shaker, at its present
level, is sufficient to carry out vertical force field testing for all but the
largest of bridges.
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/0
THE EXPERIMENTAL MEASUREMENT OF FLEXURAL '0

WAVE POWER FLOW IN STRUCTURES

W. Redman-White 0
Institute of Sound and Vibration Research 0 4

University of Southampton

1. INTRODUCTION 00
0

When attempting to control vibration in structures, it is often desirable
to be able to identify significant paths of vibration transmission from sources
through the structure to some point of interest. In pursuance of this objective,
consideration of vibration amplitudes at various points is of little help, since
stationary waves may be present giving rise to large amplitudes whilst little
power is being transmitted. The concept of wave intensity is therefore necessary,
and is defined as the power flow per unit width of cross section area (in a
uniform plate) and is measurable as a vector quantity at a given point. In beams, 0 4
where wave propagation is in one dimension only, the power flowing through the
total cross section is considered. If it is possible to obtain repeated
measurements of intensity at many points on a structure, then a pattern of power
flow may be identified.

Here, only power carried by flexural waves is considered; this is generally

the most important, and is theoretically more difficult to measure than power due 0 4
to other wave types.,/ Many of the arguments to be developed here may be applied
directly to other wave types.

2. FLEXURAL WAVE POWER

Figure 1 shows the moments and forces
..o acting on an element of a uniform beam

9 undergoing flexural wave motion, with
the lateral deformation being denoted by
w in the z direction. Power is trans-
ported by two components [1];
(i) The Shear Force component Ps, which 0

M + 
W. 

d
. is the product of the shear force and

6s.+. d. the transverse velocity:

Ps = El - w (1)
ax 3 * at

FIGURE 1: Moments and Forces on a 0
Bending Beam

(ii) The Bending Moment component Pm, which is the product of the bending
moment and the rotational velocity:

Pm = -El aw aw (2) 0
ax 2-axat

where E is Young's modulus and I is the second moment of area of the beam. Far
from discontinuities in the beam and the influence of decaying near field waves,
the time averaged values of these two components are equal, providing the
possibility of obtaining an estimate of the total power flow from a measurement
of one component.

<P> = 2 <Ps> = 2<Pm> (3)

Figure 2 shows the moments and forces acting on an element of a uniform
plate undergoing flexural wave motion. In this case, the intensity in a given
direction (eg. the x direction in an arbitrary cartesian co-ordinate system) has
three components:
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(i) The Shear Force component J

which is the product of the shear
force in the x direction and the
transverse velocity:

SD.3w -3wI ww (4
sx ax 3 + axay 2  . at

(b)

(ii) The Bending Moment component N.01.

Jix, which is the product of the \
/2

bending moment in the x direction '/ 2. _ -_ ' -_ _ _

and the rotational velocity _

parallel to that direction: - --

a2w a2w  a2w
mx ax2 D2 axat

ax 3 y 4 x d

(iii) The Twisting Moment compo- s- _A

nent Jt . which is the product M. 'y Sy+ 6 /+ 6 M . d.x

of the Gwisting moment in the r-

x direction and the rotational My. 6M_.dy M

velocity about that direction: My+d6y •
a2w a2w ________

itx= D(I-v) ax~ 2 w a 2 (6) " . ~

where D is the flexural stiffness
of the plate, given by FIGURE 2: Moments and Forces

on a Bending Plate 0
I: Eh3

12(1-v 2 )

h is the thickness of the plate and v is Poisson's ratio. It is easy to
show that far from discontinuities and local sources and sinks, where the wave-

field is composed of plane propagating waves, that

<J > = 2< Jox> = 2<Jmx>+<Jtx> (7)

Hence in such circumstances, it is possible to estimate the total intensity at a

point from a measurement of one component, specifically the shear force component.

3. REQUIREMENTS OF A POWER FLOW MEASUREMENT TECHNIQUE

Several measurement methods have been investigated [2] with the following
requirements in mind:

(i) Simple time domain signal processing, to allow possible implementation

as a portable real-time electronic instrument.

(ii) Ease of use. This is clearly important if many measurements are to
be made on a structure to permit the identification of power flow patterns.

Any transducer arrangement to be attached to the structure should be as

simple as possible and easy to deploy and recover.

(iii) Immunity to instrumentation tolerances. The effect of basic
experimental tolerances should not produce unacceptable errors in the
measurement of a travelling wave or waves.

(iv) Good dynamic range performance. This is the ability of a measuring
system to be able to give reliable results from a measurement of a
travelling wave in the presence of a possibly much larger stationary (non- •
decaying) wave. This characteristic has been identified as probably the
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most important [3] in any practical measuring system.

4. A ONE-DIMENSIONAL MEASURING TECHNIQUE USING TWO ACCELEROMETERS

This method is based on the relationship stated in Equation (3), i.e. that
far from discontinuities and the influence of their decaying wavefields, the •
shear force and bending moment components are equal. Consider a travelling
harmonic wave in a uniform beam with the displacement at a point described by:

w(x,t) = Asin (wt-kx) (8)

Substituting this into the expression for the shear force component of power S
flow, Equation (1), gives-

P = EIwk3A2 cos2 (wt-kx) (9)5

The output of a linear accelerometer r ttached to the surface of the beam will be:
* 0

a 2 w 2
a2w=-_wA sin(wt-kx) (10)

and the output of a rotational accelerometer attached to the beam will be
proportional to:

a3 W 2
3w= kw2 A cos(wt-kx) (11)

If a phase shift of -w/2 radians is applied to the signal from the linear
accelerometer, it can be seen that the shear force component of power flow, and
hence the total value, may be obtained using a two degree-of-freedom accelerometer 0
[4,5]. In this context, a two degree-of-freedom accelerometer is an item which
provides signals proportional to the transverse and rotational accelerations at
the point of attachment. Hence,

Ek2 ad3 W 2w
Ps Elk2 3w 32w

2• (q) (12)
3 axt 2 at 2

where (q) indicates "in quadrature". Since
k4 wf t2._ b

where mb is the mass per unit length of the beam, then the total time averaged
power flow may be written: 0 0

2AibEI < 3 2w q(3
2____ a3w a

3 w(
<P> . (q)> 13)

W axat at

Although this expression has been developed for a single frequency, it may also 0
be applied to a narrow band of frequencies.

There are disadvantages in the use of two degree-of-freedom accelerometers
[21; however, the required information may be obtained by the application of
simple finite difference approximations [61 to the signals from two linear
accelerometers attached to the beam some distance A apart, where A is small
compared with the flexural wavelength X: 0 4

aw A + A (14)2 x=o t 21 2

0 0
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xt [at2  
1=+JA at x:O Ax2 ] (15)

2 2

Lettjng a 1 denote the acceleration at x=- A and a the acceleration at
x=+ ; then the total time averaged power Low may2be written:

< -> = (a2 -a1)(a2 (q)+a 1(q) > (16)

This expression may be further simplified:

(<> 2 mEI <[ 2aa)(q > (17)

5. MEASUREMENT ERRORS DUE TO BASIC ASSUMPTIONS 0

5.1 Near Field Errors

The measurement method described is strictly only valid far from
discontinuities where Equation (3) holds. Reference 151 analysed the error due
to measuring only one power component close to a discontinuity; however, this •

analysis is not correct in the
case of practical measurements 6

implementing Equations (13) kx (Rdias)
or (16). Analysis shows that
in practice, provided that an 2

error of * 20% can be tolerated, . 3.16 5. 7 20

measurements may be made as close + + ...

as X/1O from discontinuities. - -2 .
Figure 3 shows experimental

results obtained using Equation
(16) close to the force excitation -6

of an "infinite beam" apparatus +
[2,7], with the predicted
theoretical error curve for -30

reference.
FIGURE 3: 2 accelerometer finite difference

5.2 Finite Difference Errors method experimental results in the near
field of the force input to the infinite SThe power flow measure-

ment expression, Equation (16) beam apparatus.+ Experimental results
is not exact, but embodies an + Theretal val e

error due to the finite Theoretical value of error

difference approximations.
This leads to an underestimation of the true value, and the magnitude of the
error increases with increasing accelerometer spacing A. As will be shown,
there are good reasons for using relatively large values of A; however, it is
possible to correct the results obtained exactly so that no penalty is incurred
[2,6], thus:

kA
P P. sin(kA) (18) *

where P indicates that this is the measured value.

5.3 Bandwidth Limitations

The power flow measurement expression was derived in terms of single
frequencies, and it is obvious that some error will result from the use of a 0
finite measurement bandwidth [4]. Further, there is an additional error (but of
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opposite sign) due to the variation of the value of kA with frequency, and hence

the magnitude of the finite difference underestimation. The exact value of these
errors will depend heavily on the power spectral density (P.S.D.) of the wave
motion under consideration, but as an example, if the P.S.D. is constant, then
a bandwidth ratio (6f/f) of 0.3 may be used with a measurement error of about
3t. In practice, it is advisable to use a much smaller measurement bandwidth 0
than this [2].

6. SOURCES OF EXPERIMENTAL ERROR

6.1 Travelling Wave Results

This heading refers to the effects of measuring system tolerances on the 0
results obtained from the measurement of a purely propagating wave motion.
Inspection of Equations (16) and (17) shows that instrumentation channel gain
tolerances only appear as a linear scaling of the result. Tolerances in the
value of A do not appear as a linear scaling, but the sensitivity is not high.

There are two possible types of instrumentation phase tolerances, these 0
being: relative phase tolerance between channels, manifeW lW itself in much the
same way as accelerometer position tolerances; phase errors in the quadrature
function have a simple cosine
function. Note that if the 3
simplified expression, Eqn (17),

* is implemented, both types of 0
phase error are equivalent and (. Radians)
the effects are the same as those 3.,S 4. 5 S. a

due to relative phase differences "

between channels. -

Figure 4 shows the effects ...

of selected values of instru- -30
mentation tolerances on travelling
wave measurements. No finite
difference correction has been -s
included. It can be seen that
the general sensitivity is small. FIGURE 4: Two accelerometer finite difference S
6.2 Spurious Results due to method measurement error in the nearfield

Stationary Waves of a force input to an infinite beam

This factor represents A= 0.15A.

the main limitation of any 1. No instrumentation errors

intensity measurement system. 2. Accelerometer 2 displaced by 0.015A
It is simple to show that the 3. +5.00 phase error in Ch.2 0

system phase tolerances alone 4. +5.00 phase error in quadrature function

determine whether a measuring system
produces a spurious response in a stationary (non-decaying) wavefield. Considering
Equation (16), the system phase tolerances again divide into two types. If a
phase error 9 is present in Channel 1, then if the displacement of the beam is
described by: •

w(x,t) = Bsin(wt) sin(kx) (19)

Then the spurious result will be given by:

- Elk 2wB2EP(X)> 2 B in(O) [coc(W)-cos(2kx-kA) (20)2A

Note that this function is spatially periodic with period X/2, and the maximum
value increases with 0 but decreases with increasing values of kA. Hence to
minimise this type of spurious response, as large a value of A as is practical
should be used.

Now consider a phase error 9 in the quadrature operation. If the displace- •
ment of the beau uder consideration is again described by Equation (19) then
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the spurious result will be given by:

<(X)>EIk2 B2 sin(o)sin(kA)sin(2kx+kA)l (21)

Again, this function is spatially periodic, and its value increases with
increasing 0. However, as A is made larger, the spurious result increases. S
Numerical analysis shows that for most realistic values of phase tolerances the
relative phase between channels will have by far the most dominant effect. If
the simplified expression, Equation (17), is implemented, both types of phase
tolerances will give rise to spurious responses equivalent to the relative
channel phase tolerance described earlier, Equation (20), and therefore the
effect of any error in the quadrature function will be much more significant.
For this reason, the simplified implementation is not recommended. Figure 5
shows the variation in these
two types of spurious result Transducer Spa.cing wvltns.
with 6, where measurement s )a 1s 20 xE-2
is made in a wavefield con-
sisting of a stationary wave .
and a trave-ling wave with
relative amplitudes of 10
and 1 respectively. L

Experimental results L -2
0

bear these hypotheses out.
Measurements were made on a

beam excited at a heavily -3

damped resonance, Lt positions
corresponding to a node, anti-
node and midpoint of the xE
stationary wave mode shape. FIGURE 5: Two accelerometer finite difference •
Results, corrected for method measurement errors in the presence of
finite difference errors, stationary waves. SWR=IO:l, Maximum error shown
were obtained using as a function of accelerometer spacing A.
implementations of Equations 1. +1.00 phase error in Channel 2
(17) and (18) with a 50 2. -1.00 phase error in quadrature function.
phase error introduced into
the quadrature operation,
and the results compared.

MEASUREMENT POSITION NODE ANTINODE MIDPOINT

Standing Wave Ratio 2.10 1.86 2.07

Basic Measurement Error % -16.3 -6.6 -9.5

Eqn (17), E Quadrature Error % -16.7 -11.3 -22.4

Predicted Measurement Error % -0.4 -0.4 -19.0

Eqn (18), 50 Quadrature Error % -20.1 -55.2 -42.9

Predicted Measurement Error % -14.4 -85.4 -57.8

Within experimental limits, the predicted trend has been followed.
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7. TWO DIMENSIONAL MEASUREMENTS

Equation (7) may be invoked to allow this method to be extended to two
dimensional measurements on uniform plates. Two obtain simultaneous measurements
of the intensity components in two orthogonal directions, four accelerometers
may be used disposed symmetrically at a distance of A/2 from the nominal measure-
ment position. An improvement in the signal-to-noise ratio may be obtained by
the use of all four signals to provide the transverse acceleration information.
Using the same notation as before:

<J> - P <> ja pax) (ax2(q)+a (q) (q)+a (q > (22) 0x 2A 2 x2

where m is the mass per unit area of the plate. Similarly in the y direction.

Most of the preceding error
analyses are directly applicable.

I However, there is an additional error Frr0r %
due to the apparent value of A varying
with the incident wave direction. This
error is shown in a negative sense for
clarity in Figure 6.

A simple finite difference 0
correction is not therefore possible;
nonetheless, as the angular variation § )
is small, an approximate expression
may be obtained [2..

1Y
- . (23)

x x F1 (kA)|

FIGURE 6: Four accelerometer
2-dimensional finite difference method
measurement error as a function of
incident wave direction

1. =0.05 2. A=O.IX

0.627 3. A=0.15 4. A=0.2X

0.037

0.473 .: 0.480

Nr 0.25m Figure 7 shows graphically

experimental intensity results,,• Input

0.616 1W0.588 obtained at points on a
X circular contour around a force

0.041 0.039 excitation on an "infinite

plate" apparatus [2,], norma-
Y lised with reference to lmW

input power. Comparison of the
.5" integrated" power crossing

0.050 this contour with the input 0

04.00 0.462 power from the excitation

1 shows an error of only +6.7%.

FIGURE 7 0 0
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0
B. CONCLUIOS AND RECOMMENDATIONS

Reliable power flow measurements can be made in many situations, provided
that adequate care is taken in the experimental technique. Certain guidelines
can be offered to msist those interested in results rather than methodology.

(i) Implement Equation (16) or (for two dimensional measurements) 0

Equation (22) directly without simplifications.

(il) Avoid making measurements close to discontinuities in the structure
(i.e. less than A/2 away).

(III) Use values of A in the region of A=O.15X to 0.2X. Mount the
accelerometers first and then measure A accurately. S

(iv) Correct the results using Equation (18) or Equation (23) as
appropriate.

(v) Intensity patterns can change very rapidly with frequency; a narrow
measurement bandwidth yields more information, and by excluding possible
resonant responses at other frequencies, may improve dynamic range.

(vi) Take the utmost care in achieving the closest possible phase
tolerances in the instrumentation and signal processing. The method of
mounting the accelerometers on the structure can be quite significant in
this respect. The signal processing system should have a phase tolerance
of *0.30 or better,

(vii) Bear in mind that dynamic range problems are the main source of
error. If the standing wave ratio at a given frequency is greater than
about 20:1, then it is probable that the results will be meaningless.
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RECENT ADVANCES IN REDUCTION METHODS IN I
NON LINEAR STRUCTURAL DYNAMICS

Sergio R. Idelsohn* and Alberto Cardona** 0

Mechanics Laboratory of INTEC***
P.O. Box 91 - 3000 Santa Fe - ARGENTINA

1. INTRODUCTION

It is well recognized that the use of a large number of degrees of freeaom
in the discretization of complex structures is dictated by their topology rather
than by the complexity of their behaviour. For a dynamic analysis, however, a
limited number of suitably chosen generalized degrees of freedom (like for in-
stance eigenmodes) is not only sufficient from the point of view of accuracy but
also more cost effective. A certain number of techniques exist in the literature
to reduce the number of degrees of freedom of finite element models in the case
of dynamic analysis [1-41.

When dealing with non linear dynamic problems, some authors employ the so-
called local mode superposition principle for the determination of the basis
functions 12,4]. This principle states that small harmonic motions may be super-
imposed upon large static motion and that small forced motion may be represented
in terms of the non linear (tangent stiffness) frequency spectrum. This proce-
dure requires a continuous updating of the basis vectors (specially when dealing
with geometrical non linearities) and so, it becomes expensive.

- The present paper pursues the development of a new technique of reduction
that applies specially in the case of non linear dynamics [5-61. It consists in
adding some derivatives of the displacements with respect to the modal amplitude
parameters to the basis obtained by local mde superposition. The derivatives
can be taken up to various orders. It is shown in the examples that this basis
is adequate in order to approximate the system's behaviour with a very limited
number of degrees of freedom and with a very limited number of updatings.

The resulting reduced system is integrated by using the Newmark's implicit S
algorithm. A control strategy to determine the correct mment in which the basis
vectors should be updated is proposed. Only geometrical non linearities are
treated in this paper but no difficulty exist to extend the concept to material
non linearity.

2. STRUCTURAL EQUATIONS OF MOTION

The discretized structural dynamics equilibrium equations can be written
as:

G(a) + Ma= F (1)

(*) Scientific and Technological Research Staff Member of the National Council

for Scientific and Technological Research of Argentina.

(*m) Research Fellow of CONICET. S

(6*1) Institute of Technological Development for the Chemical Industry, Universi

dad Nacional del Litoral (UNL) and CONICET.
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where:

G(a) : internal forces vector (non linear function of the nodal parameters a).

M : mass matrix.

F : applied forces vector.

a,a : displacements and accelerations vectors.

A Rayleigh-Ritz technique is used to replace equation (1) by a reduced

system of equations. This can be made by approximating the displacements incre-
ment Aa by the linear combination of R linearly independent vectors:

Aa = T y (2)

where T is the matrix formed with R basis vectors and y is the vector of
generalized displacements (dim R). •

The system of differential equations to be solved now reads:

G(ao + T y) + y= F (3)

where: 0

e(ao + T y) = YTG(ao + Ty)

M M= TTM T (4)

F= TTF

3. BASIS VECTORS COMPUTATION

According to the local mode superposition principle the R lower frequen- 0
cies and their corresponding modes govern the response:

R
Aa= I r Zr (5)

r=l

where Or are the instantaneous modes of free vibration obtained by solving:

(K (ao) -w 2 M) Or =  0 (6)r

K(ao ) denotes the tangent stiffness matrix computed at the position ao . S

If only these computed eigenmodes are used as a basis, the cost of the
analysis will be too high because of the updating of the basis.

Noting that the instantaneous free vibration modes are a functior. of the
displacements vector a , we can rewrite equation (5) as; 0

B

Aa = O 4r(a) zr (7)
r=l
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Assuming that the tangent eigenmodes can be developed into a Taylor
series, we will be able to express the nodal increments as

Aa = 4r(ao) zr + (a) (ao) Zs Zr + ... (8)
azs

where repeated indexes imply summation from 1 to R . The displacement incre-
ments are then written as a linear combination of the tangent eigenmodes and
their derivatives evaluated at to

Aa= L{ r(ao) , (-) (ao) y .. }= 'y (9)
azs

In order to get the desired derivatives we differentiate the modal equa-

tions (6):

a {(K (a) - w2 M) 4r1 
= 0 (10)

azs  r

This procedure leads to the following system of linear equations:

(K - 2 M) M~ a a2 (11

r azs  azs  azs

where all terms are evaluated at ao

The coefficients matrix is singular (see eq. 6). In order to solve this *
system, we express it in the basis given by:

I r i k
Ti (12)

ei  i k i=. n

where k is such selected that the k-th component of 4 r

(0r)k A 0 (13)

and ei denotes the n-dimensional vector with a unit value in its i-th compo-
nent. Due to the singularity, the k-th component of (a4r/azs) in this basis is
not determined. We will assume for it a zero value.

The k-th equation of the system expressed in the basis (12) reads:

aw 2  aK
r _ T r (14) •

azs  r azs

By replacing this expression into the remaining equations, we obtain the
following linear system:

( w2 M)* aor K
rK - 12 - 1. = {(M r ) - )r}, (15)
r azs  r r zs

where ( ). and { }. notes for the matrix and vector obtained by deleting
its k-th row and column.
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This procedure, although it gives the exact modal derivatives, is costly
because we need to factorize an N-dimensional coefficients matrix to get the
derivatives of a new eigenmode.

In order to avoid the refactorization, the following approximation is pro-

posed. All the inertial terms are neglected in eq. (15), giving a sort of static 0
determination of the modal derivatives as:

-~ 3K (16)

aZs azs

In this case, the modal derivatives are computed by performing a single 0
factorization of a coefficients matrix.

Although this approximation seems to be rather crude it will be shown in
the examples that it gives practically the same results as when the exact tan-
gent eigenmodes are employed.

0
4. EVALUATION OF THE STIFFNESS MATRIX DERIVATIVES

The computation of the modal derivatives requires to differentiate the
stiffness matrix with respect to the generalized displacement amplitudes Zr .
This differentation can be carried out either exactly or numerically.

* 0
In the former process, the finite element routines should be modified in

order to compute the vector aK/az s Or as follows:

aK aK 3a aK
r - - r -P s Or (17)

azs 3a az5  a

This vector is computed at the element level and then assembled as an in-
ternal forces vector.

In order to avoid the need of modificate the finite element routines, the
stiffness derivative can be evaluated numerically by using: 0

9K K (ao + ,s 6z) - K (ao )- (ao) = (18)azs  6z

This process requires to reevaluate the stiffness matrix, giving an small 0
increment 0s 6z . The increment parameter 6z should be small enough so that
the differentation can be accurately accomplished, but also, it must be large
enough to avoid any computer round-off error.

5. NUMERICAL TIME INTEGRATION OF THE REDUCED EQUATIONS OF MOTION
0

The reduced system of ordinary differential equations (3) is integrated by
using a specially oriented version of the Newmark's time integration scheme.
Complete details of it are given in ref. 6.

Due to the continuously changing characteristics of the non linear sys
tem, the basis needs to be periodically updated so that it can represent ade- 0

quately the system's response.

An error measure that indicates the need of performing a basis updating is
defined as:

0
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C RI
-~ l (19)

N ( l+ lM9llJ
where.

R = F- G(a) -M6

N number of degrees of freedom of the complete system.

Whenever this measure exceeds a predefined tolerance, a basis updating is per-
formed. In order to avoid any progressive deterioration of the basis, the ini- a
tially computed vectors are retained throughout the analysis as belonging to the
basis. Then, at each updating only a given set of vectors is computed and added
to the first basis, as indicated in fig. 1.

GENERATE FIRST BASIS

ADVANCE I STEP

COMPUTE ERROR MEASURE . @ '"
+ TOL 

NO

YES

REJECT LAST m STEPS1

COMPUTE SOME NEW VECTORS.
ADO THEM TO THE FIRST BASIS

AND ORTHONORMALIZE

I I

Fig. 1 - Strategy for the basis updating process

6. GEOMETRICALLY NON LINEAR EXAMPLES

The cantilever beam displayed in fig. 2 was discretized by using 5 ele-
ments numbering 28 degrees of freedom (DOF). The resultant system of ordinary 0
differential equations was reduced to a 6 DOF's system by computing the three
first tangent eigemodes and the three derivatives of the first two modes.
Firstly, the modal derivatives were computed exactly (eq. 15). Secondly, they
were calculated approximately by using eq. 16.

F(t)

2 1A = 70. L - 100.

1585. PwO 0078

E F 16000. F- 2500

LW95

Fig. 2 - Cantilever beam. Problem description p
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The displacements in time of node 6 are shown in figs. 3 and 4 together
with the exact solution obtained by integrating the complete system. We can see
the complete agreement between both reduced system solutions and also, their
accuracy when comparing with the complete system response.

- COMPLETE SYSTEM 0

-- -- REDUCED $¥TTE
EXACT KFRI V.

-----. REDUCED SYSTEM
• *'STAT|I" DERIV.

00

0

0.00 o.4O ,.iO ,.i0 2.40 3.00 3.4o 4.20 4.00

- COMPLETE SYSTEM

- REDUCED SYSTEM
EXACT DERIV.
REDUCED SYSTEM

STATIC. DERIT.

.00 O.4O 1.20 I.0O 2.40 3.00 3.60 4.20 4.30

Figs. 3 & 4 - Response at node 6 of the beam

It should be noted that both reduced system solutions were obtained
without any basis updating; that is to say, the same basis was employed during
the whole analysis. The error measure attained maximum values of 0.0551 and
0.0565 for the exact and statically equivalent modal derivatives solution,
respectively.

The clamped arch represented in fig. 5, submitted to an excentrical sud-
denly applied load, was also solved. The 78 DOF's system that results from the
discretization was reduced to a 11 DOF's system. The three first tangent eigen- 0
modes and the three derivatives of the first two modes were added (fig. 1). The
error tolerance was set at 0.045 for both reduced system solutions: the first
with exact modal derivatives and the second with statically equivalent ones.
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P(t)
PQ

~ P(t) te I t

2 1E6.895 x 10 h - 5.08.10
- 2

I - L0925 x I0-
3  9-0.245 rod

R - 2.54 p -2.607z 10
3

P. IX 107

Fig. 5 - Clamped arch. Problem description

Figs. 6 and 7 show the response obtained at node 8. Two basis updatings
were required in the exact derivatives solution, and only one updating was
needed in the approximate derivates solution. We can see again the similar per-
forn ance of both methods for giving the response.

- COMPLETE SYSTEM

-R-- REDUCED SYSTEM
EXACT DER] .
REDUCED SYSTEM
STAT.C DIERV

2 '1r 'A

o ~T 1'", " 
1

S COI SYSTEM

EXACT DERIV.
...... !EDUCEO SYSTEM

"STATIC' DERIV,

~o

;°I

0. 0 0.32 0.40 0.64 0.80 0.40 1.2 .20
r .10-2

EXACTtO01

Figs. 6 & 7 - Response at node 8 of the arch
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7. CONCLUDING REMARKS

A computational algorithm for predicting the dynamic non linear response
of a structure by means of a reduction method is described. In it, the non

linear system of ordinary differential equations obtained from the finite
element discretization, is reduced by employing a Rayleigh-Ritz analysis. 0

The use of the tangent eigenmodes and their derivatives as basis vectors
is suggested. An approximate computation of the modal derivatives is proposed,
which is enough from the point of view of accuracy in the calculated response
and also, is faster computed than the exact modal derivatives.
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FOR NONLINEAR MULTIDEGREE OF FREEDOM SYSTEMS
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1. INTRODUCTION

IN Experimental modal analysis systems are now widely available and used
extensively for system identification, diagnostics and mathematical model
development. A typical user treats the system as a "black box" and generally
relies on the commercial software. Moreover, he may not be aware of the
underlying assumptions and the limitations associated with modal extraction and
synthesis. Thus there is a potential for misusing the technique which could
lead to incorrect results and conclusions. This is especially true when the
structure is inherently nonlinear or when vibratory amplitudes are no longer
small. The focus of this paper is to examine the feasibility of using
conventional modal analysis techniques for such cases.

The general theory of modal analysis is strictly valid for linear systems
[1-3]. Typically, dynamic compliance transfer functions H(w) or impulse
responses h(t) are measured at a number of locations, and then using the modal
expansion theorem, as shown below, one can estimate natural frequencies W r,
mode shapes ipr9 damping ratios r' modal masses and modal stiffnesses over the
frequency range of interest [2,3]; see the List of Symbols for identification.

co

H k(w) = Z [A. /(s - s ) ] + [A. /(S - s )j (1)
jk r1 jkr r jkr r

st st
or, h. W A e r + A* (2)

r I jkr jkr

where s =- r ur + i Wril r r2 (3)

*

Modal analysis techniques have been applied to both symmetric and
nonsymmetric systems, structures with repeated roots, etc. However, in each
case the vibrating system is considered linear with small perturbations [1-3].
The only exception is the system with nonlinear damping, such as Coulomb or
hysteretic damping, but the conventional techniques generally treat it as the
linear equivalent - viscous damping case [4,5].

2. NONLINEAR SYSTEMS

Nonlinearities in a vibrating system could generally result due to the
following: (a) nonlinear stiffness, (b) nonlinear damping, (c) finite
amplitudes, and (d) physical gap (dead zone) between a mass and a spring; we
could however combine case (d) with (a) [6]. Case (b) will not be considered
here as the equivalent linear damping models are generally used; see References

[4 and 5]. Thus our focus will be on non-linear springs and on large excitation
levels which would drive the system to finite amplitudes.

4 8
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0
An extensive amount of literature is available on the analytical or

computational techniques applied to nonlinear systems; References [6-10] are
typical. But the same cannot be said for the application of modern experimental
techniques to nonlinear vibratory systems. In fact, only two studies have been
published recently, and both have been applied to only a single degree of
freedom system [11,121. Ulm and Morse [Il1 have examined a vibratory system on 0
an analog computer which is described by the Duffing's equation for different
force levels and for varying degrees of stiffness nonlinearity; both swept sine
and random inputs yielded sharp jumps in the amplitude and phase plots, shape
distortion of the Nyquist plots, and poor coherence at the third harmonic of
the system resonances. Moreover, higher excitation levels generally lead to
more deviations in the transfer functions from the linear system response. 0
Okubo [12] has also analyzed this system numerically with an impulse excitation
somewhat similar to those applied in experimental testing. He has also reported
distortions in transfer functions such as split and sharp peaks in the
magnitude plots, real and imaginary parts in reverse, and additional small
circles in the Nyquist plane. Both Ulm and Morse [8] and Okubo [9], however,
claim that further research efforts are definitely required as their investiga- 0
tions have been preliminary and only the frequency response functions of a
single degree of freedom system have been examined. Thus, no information on the
mode shape distortion for the multidegree of freedom system is available.

3. SCOPE AND OBJECTIVES

An experimentor would obviously like to know if the system being tested
is nonlinear in nature and the extent of nonlinearities associated with the
modal analysis experiment. Moreover, the severity of assuming linear or
approximately linear system for a nonlinear structure is also of interest.
Through our study, we should be in a position to answer some of these questions.

Our example case is a three degree of freedom nonlinear mechanical system
with finite amplitudes. For this system we are examining the following:
(i) frequency response functions: magnitude M(w) and phase p(w) plots, real
Re(-) and iTaginary Im(,) plots, and Nyquist plots (Im vs. Re); (ii) coherence
functions mr (_); (iii) natural frequencies _r; and (iv) mode shapes . . Since
for the nonlinear system _ and .r are dependent on force and motion, we will 0
be comparing normalized responses at a given resonant frequency. An attempt
will be also made here to comparo experimental results with analytical
predictions wherever possible.

4. EXAMPLE CASE

Figure 1 shows the example case which allows a combination of transla-
tional (ql, q ) and rotational (q3 ) motions, with three degrees of freedom. The
dampers ar. assumed here to be linear given by the equivalent-viscous damping
coefficient c. Translational springs are considered to be the hardening type
such that the restoring force f is equal to k ' q + Aw %q" (Duffing type) where k
and .- are spring constants and Aq is the relative displacement. The forcing 0 S
functions are assumed to be sinusoidal forces and applied at the masses.
Initial conditions are assu-ed to be zero. The equations of motion are as
follows:

3 i( t+" )
m q+Cq 1 +c2 (ql-q 2)+kq 1 +31q1 +k2 (q1 -q2 )+2(q 1 -q2) F 1e 1 (4) 0 0

(m +m )q2+m31q cos(q3)-m31;2s n(q )+c ( )+k2(q2-ql)+r,2(q ql)3

Fe +F 3 (5)
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m 3lq2 cos(q 3)+m3 1 q3+c3 q 3+m 3 glsin(q3  F3 e i(wt+3)lcos(q3) (6)

Many cases of this nonlinear system can be examined by varying spring constants
(k and ) and force levels (F). This example case can also be reduced to the
single and two degree of freedom systems. Of course, in each case we can also
examine the linear system with small perturbations about the operating point
i.e. = 0, and ql, q2 and q3 are small.

5. ANALYTICAL FREQUENCY RESPONSE FUNCTIONS

We consider only the steady state harmonic solution. Assuming response
only at w and ignoring higher harmonic terms, we obtain the frequency equations
which are solved numerically using Newton-Raphson method. Frequency response
functions of normalized response with dimensionless frequency are then generated
over the frequency range of interest which covers essentially the first three
modes of the linear system.

6. EXPERIMENTAL METHODOLOGY 0

Since it is difficult, if not impossible, to build a physical system with
known and controlled nonlinearities for testing purposes, we have conducted a
simulated experiment. The physical system is simulated by an -nalog computer
circuit, as shown in Figure 2, and the computer outputs are ccLsidered as
physical system outputs. The forcing function fk(t) is band-limited white noise

which would excite the system over all frequencies of interest. This input
along with an output qi are acquired and processed by a two channel FFT
analyzer, in a manner identical to that which we would employ for a real
structure. Only transfer functions in various forms, are analyzed and plotted;
standard modal extraction techniques [2,3] are not used here. 0

7. RESULTS AND DISCUSSION

7.1 Presentation of Results

In order to perform some parametric studies we now simplify the general 0
system and assign numerical values to the system parameters and variables, as
listed in Table 1. We also define several dimensionless quantities (given by an
overbar) as the results are presented in the dimensionless form; see Table 1.

Table 1. Example Case Values and Dimensionless Quantities

m m2 = m3 = m; kI = k2 = k; cI = c2  c c 3 
= 0; c = 0.05; 6I = 01 =

= 0, 0.3, 0.5, and 5.0; F = F = 0, F = F; e = 0.

-- - -- 2 -- - -2 k2 - 2 k2 ,

q q/Z, F F/kk, = / /k, c = c/2vGk, W = w m2 /k , W = W r /kr r

q. = ( w )

H k~ M --I (w) M(ui) e = Re(w) + i Im(w), where j,k = 1,2,3

Fk

Let us now define the following modal parameters which could be used to
indicate the extent of nonlinearity. 1) Modal response ratio, Rjr = Hjkr/Hikr,
J,k = 1,2,3. Now for the forcing function case we obtain R = q Ir/l = 1.0,
R2r - q 2 r / q Ir and R3r = q 3r /q .

' For the linear case, r r -2 r
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T.
Vr is the transpose of the rth mode, normalized by taking the modal response
of ml equal to unity. 2) 'Backbone' natural frequency (wr)o: we establish it
as a reference frequency for the rth mode as this would be equal to the natural
frequency ,r if the system were linear. All Rjr values are computed at
frequency (,r)o . 3) Modal frequency of highest magnitude (M)max: at this
frequency the normalized transfer function magnitude M has the maximum value S
for the rth mode. We also note for a nonlinear system (wr)o may not be equal
to ( r)max which one would extract from the measured or computed M(w) data. For
a linear system, (wr)o = (wr)max"

7.2 Case I: Non-linear Spring (32)

We treat the second spring as the nonlinear spring with values of 2 = 0,
0.3, 0.5 and 5.0. For this case the response amplitudes are considered small
especially for q3 , i.e. sin q3 and cos q3  1. The dimensionless damping c is
taken to be equal to 0.05. For $2 = 0 case, the system is of course reduced to
the linear case.

Figures 3-7 present driving point compliance HII(w) spectra in different
forms for the linear (F2 = 0) and nonlinear ($2 = 5) cases; both experimental
and analytical results are shown here. We note that the third mode is highly
nonlinear and exhibits jump phenomenon strongly. Experimentally, we do not
duplicate it. The measured coherence function Yi12 (7) is also shown here in
Figure 8; 112 shape is considerably distorted for the nonlinear case which is S
in agreement with the results of Ulm and Morse [11] for the single degree of
freedom.

Table 1 compares the analytical and experimental results for natural
frequencies .r and modal response ratio Rjr. We note that (wr)o differs from
the (wr)max only for the third mode and the deviation is directly related to the S

$2 value. The modal response results show significant discrepancies between
analysis and experiment. However, the relative phase information is still
maintained, i.e. the experiment distorts the relative amplitudes more and
relative phases less.

7.3 Case II: Finite Amplitudes (q) 0

Now we consider the second spring as linear, i.e. 2 = 0 and examine the
finite amplitude motion of the pendulum (q3 ). Although for the analytical part
we retain sin q3 and cos q3 in the equations of motion, we approximate experi-

mentally thesend by taking he first two terms of the series, i.e. sin q3  q333/6 and cos q = 1 - q2/2. This was necessitated by the fact that more
function generators for heanalog computer circuits were not available; this
approximation is however valid as long as q3 is less than or equal to approxi-
mately -/4. Figures 9-11 examine the driving point compliance spectrum H1 I(G)
in real, imaginary and Nyquist forms; we note that the finite amplitudes
introduce the spring softening effect and thus the curves are shifted to the
left and somewhat distorted. Thus in a real structural experiment, we can S
expect softening or hardening effects if the excitation force levels are high
e~ough to produce large motions. We again note that the coherence function

Ill, as shown in Figure 12, is distorted for the finite amplitudes case.

8. CONCLUDING REMARKS

Space limitation prevents us from presenting further results and a more
detailed discussion. However, based on the examples presented here and others
worked out by us, including the single and two degree of freedom nonlinear sys-
tem problems, we can draw the following conclusions; 1. Measured transfer
function plot may not truly reflect the true behavior of a system as it does
not show any jump phenomena, instability regions or shape distortions though can •
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alert us to the fact that the structure is nonlinear. 2. Modal response data
base can still give us a rough idea about the natural frequencies and mode
shape; this information could be sufficient for solving vibration and noise
problems but certainly not suitable for mathematical model building.
3. Coherence function estimates can be used as the 'warning signals' for the
nonlinearities or finite amplitude motions. Our results are of course more 0 0
comprehensive than Ulm and Morse [11] and Okubo [12] results but they are all
compatible with each other.

Overall, it seems that an experimenter has to be very careful and should
use the experimental modal analysis techniques with some discretion. Also,
excitation signals, especially those which contain spectral energy over a broad 1 0
frequency range, along with levels should be chosen judiciously; the single
frequency excitation or slow sinusoidal sweeps should be more suitable.

Further research work in this area is definitely required; it could focus
on the following aspects: (i) feasibility study for higher degree of freedom
and continuous nonlinear systems, (ii) time domain data processing and modal • 0
extraction techniques, suitable for nonlinear systems [13,14] and (iii) an
examination of the role of nonlinear damping mechanisms.
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LIST OF SYMBOLS S

A modal residue (complex valued) y mode shape

c damping coefficient E error

f force Subscripts

F force amplitude j response location

g acceleration due to gravity k excitation point

h impulse response r modal index

H dynamic compliance (complex valued) o backbone frequency

i imaginary unit max modal frequency of highest
magnitude

Im imaginary part of H (i)a

Superscripts
k linear spring constant

* complex conjugate

, pendulum length

dimensionless or normalized
m mass 0

d
M magnitude of H(w) dt

q generalized displacement 2

d

R modal response ratio dt 2

Re real part of H(Z) T transponse

s Laplace variable

t time

3 nonlinear spring constant

coherence function

phase of H(7) 

1 phase of force f

w circular frequency

damping ratio
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6MODAL ANALYSIS AND INDENTIFICATION OF
STRUCTURAL NON-LINEARITY

G.R. Tomlinson and N.E. Kirk
Simon Engineering Laboratories

University of Manchester AD POO3 683

1. INTRODUCTION

When it is suspected that a structure is non-linear, e.g. unfamiliar dis-
,ortions of transfer functions, unaccertable deviations in curve fits or
.ignificant amplitude dependent behaviour is observed, there are few, if any,
e:tablished methods for reliably identifying the nature or quantifying the
imnortance of non-linearity. The reasons for wanting to pursue an analysis into
h-e non-linear domain whereby a reliable identification method would be of value
can be described in three general ways.

Firstly, an accurate linear model of the system is desired if possible. This 4
.ay be the case where a compari:son is to be drawn with the results from a linear
finite element analysis. 'econdly, the existence of non-linearity is to be
e.-tablished and the need is for an estimate of its effect on the structures
response in service, i.e. the behaviour of the non-linear system is desired when
-.e input is typical of operating conditions. Finally, it is required that the
non-linearity be identified fully enough to enable an implicit mathematical model 4
-o be constructed, such as a set of non-linear differential equations. These may
*:es: be solved o predict toe response of the structure to various input condi-

o ~wo' ereby tie dependence of the modal parameters on these can be established.
t;is- casze te non-linear coefficients of the structural system equations have

-o be determined.

Depending upon the aim of the investigation, consideration has to be given
to the metho' of te.sting a structure since the method of testing can either be
ained at eliminating non-linear behaviour or at highlighting it for indentifi-
ct ion purposes. For example, multi-point sinusoidal testing is advantageous
for minimising non-linear effects(l) since the structure is forced into the shape
of a normal mode of the equivalent linear system and, at the same time, this also 0
%llows for the amplitude force dependence of the modal parameters to be
es tablisi-ed.

If actual operating conditions are to be reproduced as closely as possible
iuring testing, the input signals may well be random in nature. Studies of non-
linear elements to random inputs have been carried out (2,3) but general diffi- 0

culties in identifying the nature of the non-linearity have been encountered.

The testing method most commonly used in the identification of non-linear
structures is the single frequency sinusoidal input. Most non-linearities will
have a response to this excitation which is dominated by the fundamental frequency
(particularly in the resonant regimes) and much work has been carried out using 0

this test method for simple systems (4,5).

The principal limitation to date, regardless of the testing procedure
employrd, is that in order to analyse non-linear structures important assumptions
have to be made. These refer to an assumed model, or models, of the non-linearity
and to the degree of non-linearity present. A method recently developed which •
overcomes several of these shortcomings is presented. The method employs the
Hilbert transform which provides a relationship between the real and imaginary
parts of the measured complex frequency response functions.

This relationship is shown to be very useful in identifying and character-
icing non-linearities and examples of the application of the technique and the S
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possible advantages of employing time domain procedures are discussed. 0 4

2. APPLICATION OF THE HILBERT TRANSFORM IN MODAL TESTING

A detailed analytical description of the development of the Hilbert transform
for application in the domain of modal analysis is presented in (6),(8). However,
for completeness tie major formulae necessary will be presented. 0

For any complex analytical function from which the real part can be derived
from its imaginary part, or visa versa, this relationship is known as a Hilbert
transform pair. In modal analysis we assume such a function exists, namely the
relationship between the output response and the input excitation.

In terms of the commonly measured quantity Mobility, our complex analytic
function is

G() x output velocity response m i (XR + iXI)
F input force r= r2

The Hilbert transform of G(u) in the frequency domain will be defined as

H[G(w)] H(w) = Re H (w) + iImmH (w) (2)

Employing Cauchy's formula for the integral relation of a complex variable allows S
us to write

_ -i (3)
Gu) -1 G~w)dw(32ilt W - W,

C

Choice of a suitable integration contour in the complex plane (6) results in
equation (3) being expressed as

0(w)o -( - ) du (4)
_!w PV()

C

where PV designates the Cauchy principal value of the integral.

Equation (4) can be expressed as real and imaginary functions,

Re P(W / ImG w )dw (5)Re f(% -U- 2 2

Jo u

Im G(wc 2w PV 0 Re G2 )d (6)
I= 2 2

Equations (5) and (6) are the Hilbert transform pair which can be used to
derive the real part of G(u) from its imaginary part and visa versa. •

2.1 The Hilbert transforms and non-linear systems

For a linear system which is governed by equation (1), the equality
Hu ) = G( ) holds. That is, the Hilbert transform can be used to derive the
real part of Gw ) from its imaginary part and visa versa using equations (5) @
and (6). In practice this means that when the mobility frequency response
function (or functions) is obtained, using swept sine excitation, the procedure
is to compute the imaginary part of the frequency response function by taking
the Hilbert transform of the real part and to compare this with the actual
(measured) imaginary response. This procedure is also applied to the real part.
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If good correlation exists between the Hilbert transformed functions and the
measured functions then the system is classified as linear. However, when

the mobility data is polluted by non-linearity, then we have a criterion which
is stated as, if Hkw) G(w), the system is non-linear. Another way of examining
this criterion is to say that if the equality conditions exist such that

H(w) = G(w), then from equations (2) and (4), 0

G(w) :ReG(w) + PVf Re G(w) dw (7)0 W

This can be written as a convoliution (7) by noting that

H f(x)] = f(x) (8)
lTx

G(w) = ReG(w) + (- E) ReG(w) (9)

If G(w) is the Fourier transform of a real signal g(t),

i.e. G(W) = (t) e -2  iwtdt (10)

then taking the inverse Fourier transform of equation (9) gives

F-1 [ G(w)] g(t) = E(t) [ 1 + sgntj (11)

where sgnt = F (- ) = + 1 for t > 0Irw

- 1 for t < 0

and E(t) is a real even function.

Hence equations (7) to (11) state that g(t) is real and causal only if
H(w) = G(w). The corollary of this is that if g(t) is real and non-causal then
H(w) G(w) and the system is non-linear. This aspect re-emerges when the time
domain concept of carrying out the Hilbert transform is examined in a later
section.

It is worthwhile mentioning that the same conclusions regarding the real
and causal properties have been derived using Parseval's theorem by Vinh(9).

3. IDENTIFYING NON-LINEARITIES IN MODAL TEST DATA

In order to apply the Hilbert transform method, discrete versions of
equations (5) and (6) are necessary. These will merely be quoted and reference

to (5) gives details of their dErivation.

Discretising the mobility frequency response real and imaginary functions
into n points gives

2 ImG(wk).wkA

Re H (w.) - 2 + ER (12)
k=l wk - W2

2 n Re G(wk)A
Im H (w 2 2 + H (13)

( J)k=1 wk - w I 0

with Aw = w -j; k j
j+l

The terms E and E represent the real and imaginary correction terms since the
mobility function hoes not extend to infinity.
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These terms (derived in (5) ) are:

ER ~ wX R2 - 2) r + Wr Q r - wl + In WC + S (14)
R I( c r +u 1)r )(w Ic-W ( wC

E = W 2 ( W )(W + c W ) e +
_I 2 2 ln 2 r r n -) C (15)

c r r c 1 c r n r)

where X 9, X W, Wr are estimates of the real and imaginary modal constants and

resonant frequency respectively. 0

An alternative to the above approach has been developed by Haoui (10) whereby
a series expansion for the correction terms is employed. This has the advantage
that no estimates of the modal parameters are required for the correction terms.
However, this approach requires that a mobility function begins at zero frequency
with zero magnitude. 0

In order to demonstrate how the method works, equations (12) to (13) have
been applied to the mobility response data from the digital simulation of a single
mode system with two types of structural non-linearity, Coulomb friction and a
cubic non-linear stiffness. The results shown in Figures 1 and 2 for both low
and high excitation levels clearly demonstrate the ability of the method to 0

identify non-linear effects. It can be seen from Figure 1 that when the force
excitation level is small, the Coulomb friction results in a large symmetrical
discrepancy between the data and the Hilbert transforms whereas at the higher
excitation level (where the friction is almost saturated) the data and the
transforms almost overlay, indicating a linearised system.

Conversely, Figure 2 shows that for the non-linear stiffness the low excita-
tion level results in good correlation between the data and the transforms. At
the higher excitation level a divergence between the data and the transforms
indicates a non-linearity.

In this case it is observed that with a stiffening non-linearity the S
symmetry between the data and the transforms is destroyed.

Figure 3 shows the results of the method applied to tests on an aircraft
aileron. In 3(a) the real and imaginary parts of the mobility frequency response
function and their transforms are displayed, these results being obtained at one
intermediate force excitation level. The lack of correlation, together with the 0 S
asymmetry characteristics indicate a softening spring characteristic in all three
modes.

Figure 3(b) shows the results of tests carried cut at the same excitation
and response points for several force excitation levels. Confirmation of the
existence and character of the non-linearity, as identified by the Hilbert S S
transform, is readily seen. A further point of interest is that tests carried
out at a low excitation level indicated good reciprocity, whereas reciprocity
tests carried out at the intermediate force excitation level, where the Hilbert
transform indicated non-linearity, gave poor correlation.

Application of the Hilbert transform to several types of non-linearity has S
been studied (i) and it has been s hown that each non-linearity can be identified
uniquely by the differences between the transformed and original data. In an
attempt to quantify the level of non-linearity, transform describers have been
employed. These are frequency moment integrals which are bas ed on the principal
of statistical moments .
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3.1 Transform Describers

Utilising the fact that non-linearity creates symmetry/asymmetry characteri-
stics between the original and transformed data, frequency moment integrals which
are centred around the resonant frequency can be derived. The difference between
the moments of the original and the transformed data is a measure of the level of 0
the non-linearity.

In order to ensure generality, the moment integrals are based on the half-
power points mode by mode.

The moment integrals employ the equation: 0
B

M(n) =f a S(w) dw (16)
A

where w A w , are the half-power points of the mode of interest, S() is G(W) for
the actual Nata and H(w) for the transformed data. The Hilbert transform
describer is defined as

MH ( moment integral of transformed data (17)
HTD (n)= moment integral of actual data

Ma

Tabulated values of these frequency moments for n = 1 to 3 have been presented in 0
(8) and it was shown that these can be used to confirm the character of the non-
linearity. These describers can be evaluated for both the real and imaginary
sets of data.

Basically, the describers behave as indicated below:

For a linear system:

(n)
MHTn

G M(n)

For a non-linear system, H will be dependent upon the nature of the

non-linearity and upon the value of n in equation (16). However, they will be
either greater or less than unity and their trends can uniquely identify the
character of a single non-linear clement in systems with well spaced modes.

In order to establish a relationship between the errors in the modal para-
meters derived using a frequency domain curve fitting algorithm employing a
linear model governed by equation (1) and the transform describers, the responses
from a series of digitally simulated single mode non-linear systems were analysed.
The analysis consisted of curve fitting the linear model and extracting the modal 0
parameters, natural frequency and modal damping. This was then repeated for the
non-linear system at various excitation levels. The differences between the modal
parameters was then expressed as a percentage error based upon the linear model.
Transform describers were obtained in each case from the original and Hilbert
transformed data and again expressed as a percentage change for increasing
excitation force. Figures 4 and 5 show the trends obtained for systems with
Coulomb damping and a hardening spring. Although the clear trend is one of
increasing error in the modal parameter with transform describer, insufficient
information is available to uniquely relate the error in the describer to the
error in a modal parameter since the trends observed are dependent upon other
system parameters, e.g. the magnitude of the linear damping.
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Thus, the use of the transform describers is limited at the moment to identi-
_inE non-linearities; the ability to quantify the importance, i.e. a strong or

weak non-linearity, still remains unanswered.

4. FREQUENCY DOMAIN AND TIME DOMAIN TRANSFORMS

The Hilbert transform in the fequency domain is a continuous transform over
all frequencies. The use of a discrete transform, as defined by equations (12)
to (15) introduces errors, particularly if the modal damping is small, since there
is a loss of information in the resonant region.

The condition A w< br1/2 (18)th

for the r mode can result in the true peak amplitude being missed entirely and
then the transform will not be identical to the original data even for a linear
system. This effect is clearly seen in Figure 6(a) and (b) where simulated data
for a lightly damped linear single-mode system has been transformed using a 40
point function in 6(a) and a 120 point function in 6(b).

Figure 7 shows the actual mobility data and the transforms of the mobility
data obtained from tests carried out on a cantilever plate, using stepped sine
excitation. The two lower modes, where the condition defined in equation (18)
exists, display errors caused by lack of resolution. The transform of the higher
modes is in close agreement with the original data and in these modes

Aw > r u/2
r r

An additional disadvantage of the frequency domain approach is that of the
speed limitation. The number 2of calculations required in a point by point
frequency transformation is n , where n is the number of frequency points. How-
ever, -f we consider the alternative, transforming in the time domain, then
several advantages are obvious.

Considering the Hilbert transform of our mobility complex frequency response
function expressed as a convolution in frequency, we have, from equation (9),

H(_ -l G() (19)

This appears as a multiplication in the time domain

H(,) = F [sgnt x F- 1 (G(u) )] (20)

If the Fourier transforms involved are evaluated by a FFT algorithm, a useful
increase in speed is seen over the frequency domain approach. 0

Equation (20) has been applied to simulated data for a linear single mode
system whereby the real and imaginary mobility data are inverse Fourier trans-
formed, the time characteristic multiplied by sgnt and the result Fast Fourier
transformed back to the frequency domain. Figure 8 shows the results of these
operations and it can be seen that there is a small difference between the original 0
and time uomain transformed data which should not be present for a linear system.
Figure 9 shows the results of applying this approach to non-linear data and the
dit:I(,rences in the transformed and original data is much more significant due to
the presence of the non-linearity. The discrepancies which arise in the linear
case arc due to the fact that the mobility functions do not extend to zero, thus
"rdge or leakage effects" are present which, in the frequency domain, required the 0 0
correction terms, equations (14) and (15) being applied to the transforms. The
"leankage effects" are seen in the time domain as a non-causal signal. It has
ulrcajiv been s7hown that in order for the Hilbert transform, H(u ) to be equal to

7 cobility function G(u ) (equations (7) to (11) ), the time signal g(t) must be
rccl -inc! causal. Figure 10 shows the inverse Fourier transform of the mobility
:,ta rres-ented in Figure 8, the real valued signal for t < 0 indicates non-causa- S -
1 ty. Thus, when the Hilbert transform of this total time signal is taken, errors
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are introduced.

However, these effects are small and when one considers that the2 number of

calculations involved using this approach is 2nlog2 (n), compared to 2n , for the

frequency domain approach, it is apparent that there is a considerable time saving.

CONCLUSIONS

The application of the Hilbert transform in modal analysis has shown that
non-linearity can be detected and identified without any prior assumptions. The

ability to uniquely identify a particular non-linearity is dependent upon the
predominance of that characteristic in a particular mode. The use of frequency
moments offers a numerical basis for identifying the nature of a non-linearity,
but the quantification of non-linearity in relation to the errors expected using
a linear model is yet to be achieved. However, it has been shown that there is a
definite trend between the changes in the frequency moments and the magnitude of
the errors in the modal parameters.

The Hilbert transform in the time domain offers a considerable saving in
computation time and allows the benefits of FFT procedures to be employed. The
creation of a non-causal signal in the inverse FFT, which results in non-ideal
transforms, is a present a penalty of using this approach.
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1. INTRODUCTION

The identification and modeling of nonlinear multidegree-of-freedom (MDOF)
dynamic systems through the use of experimental dala is a problem of consider-
able importance in the structural dynamics area. Since the model structure in
many practical dynamic problems is by no means clear, an increasing amount of
attention has recently been devoted to nonparametric identification methods.

However, the traditional nonparametric identification techniques have
their own problems, including restrictions on the nature of dynamic systems
to be identified (nonhysteretic, stationary) and on the input signal that can
be used (white noise). Furthermore, when dealing with systems incorporating
commonly encountered nonlinearities (e.g., polynomial ones), the computational
effort required to evaluate higher-order terms is prohibitive, coupled with
very demanding (and usually unrealistic) storage requirements.

*This paper presents an approximate method for the time-domain analysis of S
vibration data obtained from the response of EDOF-dynamic systems that are
undergoing nonlinear deformations. In addition to providing a convenient pro-
cedure for the nonparametric identification of arbitrarily nonlinear structural
systems, the proposed data-processing method furnishes a rational approach for
a systematic procedure of model-order reduction in nonlinear systems.

2. FORMULATION

2.1 Introduction

Consider a discrete nonlinear dynamic system whose motion is governed by

MR + f(x,x) = p(t) , (1)

where M = diagonal mass matrix of order n, x(t) = displacement vector =

fxl,x 2 ,-....xn}T, f = function that represents nonconservative nonlinear forces,
and p(t) = excitation vector.

Assume that "equivalent" stiffness matrix K corresponding to the range of
motion of interest can be determined. This step could be accomplished, for
example, by using modal identification techniques to process experimental
measurements from the response of the physical systems. Alternatively, in the
case of large nonlinear finite element models, where the time history response
is obtained by treating the system as a piece-wise linear model, matrix K is •
directly available since it is repeatedly reconstructed to reflect changing
response levels.
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2.2 Restoring Force Estimation

Now solving the eigenvalue problem associated with the linearized version
of Eq. (1) results in the transformation

x= c5u (2)

where is the eigenvector matrix and u is the vector of generalized coordinates.

Making use of Eq. (2), the system equation of motion Eq. (1) can be
converted to the form

.>t'H + h(u,u) = q(t) (3)

where ,A is a diagonal mass matrix given by

T M $ , (4)

h is a vector corresponding to the transformed nonlinear forces acting on the
system,

hl(u,u) = T  f(x,x) ,(5)

and q(t) is a vector corresponding to the generalized excitation forces, 0

q = p(t) . (6)

An alternative form of Eq. (3) is

h(u,u) = (p(t) - M E) . (7)

Note from Eq. (7) that if the terms appearing on the right-hand-side (RHS) are
known, the time history of each component of vector h can be determined.

Note also that in the case of a linear system, due to the orthogonality -
condition associated with , the set of equations represented by Eq. (7) are
decoupled; i.e., each component hi of h depends only on the ith generalized
coordinate ui rather than on all components of u.

Guided by the preceding observation, the central idea of the present method
is that in the case of nonlinear dynamic systems commonly encountered in the
applied mechanics field, a judicious assumption is that each component of h can
be expressed in terms of a series of the form:

h.(u,u) h.(u,u) , (8)

where

J
max

h. (UU) = i ((9()i j$1 i 1. 2v.i 9

The approximation indicated in Eq. (9) is that each component h i of the non-
linear generalized restoring force h can be adquatclv estimated by a collection
of terms [ i(J) each one of which involves a pair of generali;,ed coordinates
(displacements and/or velocities). The particular choice of combinations and
permutations of uk and u, and the number of terms Jmax needed for a given h i
depends on the nature and extent of the nonlinearitv o the system and its 0
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effects on the specific "mode" i. Note that the formulation in Eq. (9) allows
for "modal" interaction between all modal displacements and velocities, taken
two at a time.

2.3 Series Expansion

The individual terms appearing in the series expansion of Eq. (9) may be
evaluated by using the least-squaresapproach to determine the optimum fit for
the time history of each hi . Thus, hi(l) may be expressed as a double series
involving a suitable choice of basis functions,

h ( v 1  ,v ) , (10)
1 I

where

kM (1 CkM Tk(vl.) T (( 2 )
1 k k

By extending this procedure to the residual error to account for all
"modes" that have significant interaction with "mode" i, Eq. (9) is obtained.

2.4 Least-Squares Fit

Using two-dimensional orthogonal polynomials to estimate each hi(u,u) by a
series of approximating functions hi(J)of the form indicated in Eq. (11) , then
the numerical value of the Ckk coefficients can be determined by invoking the
applicable orthogonality conditions for the chosen polynomials. While there
is a wide choice of suitable basis functions for least-squares application, the
orthogonal nature of the Chebyshev polynomials and their "equal ripple" char-
acteristics make them convenient to use in the present work.

2.5 Response Prediction

Once the coefficients (J)Ck,(i) have been extracted from the nonlinear
system response in the manner outlined above, they constitute a reduced-order
nonparametric model of the system. When used with the same excitation employed
for identification they can reconstruct the (approximate) response of the
higher-order model. Even more important is the ability to use these same
coefficients to predict the estimated response time history of the nonlinear
system when subjected to an excitation signal that is different from that used
for identification purposes. •

The procedure for the approximate model response predictions is based on
the (numerical) solution of the reduced-order system equations of motion
expressed in the form:

I..u.(t) + hi(t) = qi(t) , i = 1,2,...,r < n . (12) •

Given p(t) and initial conditions x(t0 ), x(t 0 ), once h. (t) is determined
from Eq. (9), and making use of Eq. (6) to determine qi(t), the governing
equations of motion (12) can be incrementally (numerically) solved to compute
the response ui at the next time increment (t + 't). The approximate response 0 S
time histories of ali of the system's n degrees of freedom may then be found
from

x(t) = ¢ u(t) , (13)

and the nonlinear restoring forces acting on the system will be found from
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f(x,x) = p(t) - M U u(t) . (14)

3. APPLICATIONS

3.1 Example Limited-Slip/Hysteretic Model Characteristics

To illustrate the application of the method under discussion, consider
the hypothetical finite element model shown in Fig. 1. This three-dimensional
structure consists of three equal masses mi that are interconnected by means
of 12 truss elements anchored to an interface at three locations thus resulting
in a redundant system with 9 degrees of freedom.

The arbitrary nonlinear elements, denoted by gi, that are interposed
between the masses and between the support points are dependent on the relative
displacement z and velocity z across the terminals of each element.

To illustrate the range of validity of the present method, nonlinear
elements possessing limited-slip as well as hysteretic-type force-deformation 0
characteristics will be considered. Such nonlinearities not only involve
cross-product terms of displacement and velocity, but are of course not even
expressible in polynomial form. Hysteretic systems, widely encountered in all
areas of applied mechanics, are among the more difficult types of nonlinear
properties to investigate and identify [1-6 ]. Also, many aerospace engineering
structures, particularly deployable structures containing collapsible or retract-
able elements, allow a limited amount of slip to take place between members.
Such a structural behavior simultaneously involves Coulomb friction forces,
deadspace-nonlinearities, as well as hysteretic characteristics [6 ].

In the example structure under discussion, 6 elements (gl,g2,g4,g6 ,g9 ,g1 0 )
have limited-slip properties, and the remaining 6 elements (g3 ,g5 ,g7 ,g8 ,g1 1 ,g1 2 ) S
have bilinear-hysteretic characteristics of the type shown in Fig. 2.

The geometrical configuration as well as the material properties of the
elements of the nonlinear model are given in Fig. 1 together with the indices
that relate the structure 9 degrees of freedom to the global (X,Y,Z) axes.

3.2 Test Excitation and Response Measurement

Subjecting the nonlinear system to the wideband stationary random excita-
tion applied uniformly to each of the 3 masses in the global X direction for a
length of time much longer than the longest system period of interest, results
in the response time history depicted in Fig. 3. This can be thought of as an
equivalent test in which the structure is mounted on a vibration generator.
For ease in visualizing the qualitative behavior of the system, the same scale
is used for plotting the displacement time histories of all 9 DOF.

The variation of each member internal force gi(t) with the corresponding 0
member deformation zi(t) is shown in Fig. 4. For ease of comparison, the 12
plots in Fig. 4 use identical scales.

3.3 Identification

Following the procedure given in Section 2.1, an equivalent stiffness 0
matrix K of order 9 x 9 corresponding to the small oscillations (linearized)
range of motion is determined. The mass matrix M is diagonal and equal to
M = mI, where mo is a constant equal to 1.0 and I is the identity matrix of
order (9 x 9). The linearized frequencies are fairly clustered and they span
a range J9 :,i of 5:1.

9
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Plots of the time histories of the dominant components of the generalized
restoring force h are shown in Fig. 5(a) and (b), and the variation of each
hi(t) with its corresponding state variable ui(t) are presented in Figs. 5(c)
and (d). It is clear from Fig. 5(d) that h3 , the generalized restoring force
associated with the third mode, exhibits pronounced hysteretic characteristics.

Performing the identification procedure in the manner indicated in
Section 2, the approximate nature of each hi(t) is determined in accordance
with the steps given by Eqs. (8)-(11). A summary of the pertinent information
for each of the identified hi is given in Fig. 6. Note that, for the present
example, sufficient accuracy in estimating the hi's is achieved without involv-
ng terms that depend on modal interaction. 6

Each of the identified functions h(J)(vl,v2 ) when expressed in terms of
its corresponding state variables defines a surface covering the vl-v 2 plane.
The approximate surface, as defined by Eq. (9), for each of the identified h's
is plotted in a three-dimensional form in Fig. 7, which also shows the 3-D
representation of the "exact" value of h plotted as a function of el and 62 0
where ei = cos-1 vi. The values of the equivalent linear stiffness and equi-
valent viscous damping associated with each of the generalized coordinates ui
can be readily ascertained from the 3-D plots of Figs.7(b) and (d).

A comparison of the time history of the exact and approximate modal h is
shown in Fig. 5(a) and (b). •

3.4 Validation of Identified Model

In order to demonstrate the validity of the present identification approach,
the model representation expressed by the Ckk coefficients shown in Fig. 6,
which were extracted from the original ("exact") model response under a probing S
signal consisting of stationary broad-band excitation, will now be used to
predict the response of the original model when subjected to nonstationary
random excitation consisting of modulated white noise of the form

PO(t) = e(t) n(t) (15)

where e(t) is a deterministic envelope function

e(t) = a1 exp(a 2t) + a3 exp(a 4t) (16)

with the a's being arbitrary constants, and n(t) is the output of a Gaussian S S
white noise process.

Using the identification results for prediction purposes, by following the
steps indicated in Eqs. (12)-(14), results in the response time history shown
in Figs. 8 and 9. It is seen that satisfactory agreement is obtained between
the measured and predicted response both in amplitude as well as frequency S S
content. As one would expect the results shown in Fig. 8 indicate that the
least deviation error is achieved in the primary degrees of freedom (xlx 4 ,x7 )
which dominate the displacement response. Similar comments apply to the higher-
derivative response measures of velocity and acceleration.

Due to the nature of the identification method under discussion, in which S S

the generalized nonlinear system restoring forces are matched by an approxi-
mating analytical expression, good agreement is obtained between the measured
and predicted system acceleration, particularly for the primary degrees of
freedom. In fact, due to the excellent agreement between the two acceleration
curves shown in each of the Figs. 9(a), (d) and (g), one would need to examine
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carefully a much more expanded time scale before any detectable variation
between the two curves is discernible. Further details regarding this study
are available in Ref. [7].

4. SUMMARY AND CONCLUSIONS

An approximate method is presented for identifying and reducing the order
of discrete multidegree-of-freedom dynamic systems that possess arbitrary
nonlinear characteristics. The utility of the proposed method is demonstrated
by considering a redundant three-dimensional finite element model consisting
of 12 nonlinear truss elements half of which incorporate hysteretic character-
istics, and the remaining half having limited-slip properties. This structure, 0
which has 9 DOF, is subjected to stationary wideband random excitation and
subsequently a nonlinear reduced-order model of 2 DOF is developed. The
original structure is then subjected to a new nonstationary random excitation
and its measured response is compared to the predictions obtained by subjecting
the reduced-order model to this new excitation. In spite of the reduction of
the nonlinear model-order by a factor of 4.5, satisfactory agreement is obtained S
in regard to the deviation error between the predicted and measured response
time history of all degrees of freedom of the original model. This deviation
error is least in the case of the primary (dominant) DOF. Furthermore, the
accuracy of the predicted accelerations are as good, if not better, than the
lower-derivative response measures.
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1. INTRODUCTION

Steady state vibratory response of structures to dynamic excita-
tions is possible because of the mechanisms present in those structures
which dissipate the energy that would otherwise cause the responses to grow
without bounds. The theories that are used to analyze the vibration of
structures, or interpret measured vibration data are only as good as the
model adopted for characterizing the damping in the structure. An instruc-
tive discussion of the role of damping in vibration theory has been given
by Crandall [1].

Nowadays, it has become accepted to use various techniques of Modal

Analysis to study the vibration characteristics of a wide variety of
structures, ranging from simple beams to complex Aerospace Structures

0 [2]. These techniques have proven sufficiently powerful to the extent of
identifying the resonant frequencies and "mode shapes" of most practical
structures. However, only limited success has been achieved in pre-

dicting unmeasured mobilities or vibration levels. In applications such
as Analytical Testing [3], Systems Identification [4] or Force
Determination [5], to name a few, where these mobilities are the starting
point for further analyses, there arises a need for more accurate damping
models.

In current modal testing and analysis practice, two types of
damping models are popular, based on viscous or hysteretic damping
assumptions. They both lead to systems of constant coefficient linear
differential equations of motion, from which the derivation of the mobi-
lity functions are straightforward [6]. In the quest for more comprehen-
sive damping models, this paper reexamines the way in which damping
considerations enter the equations of motion for steady vibrations. For
single degree of freedom systems, Jacobsen [7] approximated a general
velocity puwer damping law by a coefficient multiplying the first power

0 of velocity, with the appropriate sign to assure energy dissipation. 0
This coefficient turned out to depend on both frequency and response
level, and was determined by matching the work dissipated per cycle of
oscillation at any given frequency of excitation. The effectiveness of
this approximation has since been established by exact analysis and
experiment for zeroth and first power velocity damping laws [8].

An extension of this idea to a simple 3-degree of freedom system

results in a frequency domain system of equations, with a damping matrix
which depends on both frequency and response levels. These equations are
investigated numerically to study how the departures from linear damping
models affect the shape of the mobility functions, calculated as the
ratio of response to excitation over a selected frequency band. •

In mobility testing practice, a structure is said to behave

"linearly" when the measured mobilities are independent of the excitation
level. For such structures, it is possible to leave out the dependence
of the damping matrix on the response levels. In the resulting
equations, the damping matrix can have a general functional dependence on
frequency, usually consisting of linear combinations of various frequency
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0 powers. By suitably defining a set of complex valued vectors, termed
"damped modes", it is shown that the mobility function can be expressed
in the usual modal series form, suitable for modal analysis. The differ-
ence now is that the modal functions now have a more general dependence
on frequency than the usual formulations. This permits the "tailoring"
of the assumed damping laws to the actual behavior of a particular struc-
ture or clP-3 of structures. It then becomes possible to identify modal 0
parameters which are most consistent with the measured data.

2. SPRING-MASS SYSTEM WITH GENERAL DAMPING

The exte-nsion of Jacobsen's approximation to multiple degree of
freedom systems is developed by considering a simple arrangement of 0
masses, springs and dampers shown in figure 1. Three lumped masses Ml,
M2 and M3 are connected by linear springs KI, K2, K3 and nonlinear dam-2 3
pers (CI, nl), (C2 , n2) and (CI, n3); where the damping force of the jth
damper is:

= -Cj I nj SGN(dx) (1)dt dt

dx

where is the magnitude of the relative velocity between the ports of

dx
damper and SGN(d-) is its sign. The approximation consists of replacing

dt

equation (1) by:

dx
fj = -Cj. dt x(2)

dt

for harmonic motions. In appendix I, it is shown that during such
motions; i.e.

x(t) = X Sin wt,

the damping force in equation (2) will dissipate the same amount of
energy per cycle of oscillation if:

nj+2

2Cj r(-"2) nj-i nj-1
C? 2 x W (3)
j A nj+3

(-- )

where r( ) is the gamma function of the argument and w is the frequency.
Steady state forced response of the system in figure 1 is then determined
by the following system of equations in the frequency domain:

(-W 2 [M] + [K] + i [D(w)])j = I-} (4)

where {NJ [Nje i t is the harmonic forcing vector, {yj = {ye i t is the
vector of displacements of the lumped masses from equilibrium and 1Y, IN}
are complex valued vectors of the amplitudes of response and excitation
respectively. The matrices in (4) are defined as follows: 0

[M] [0 M2 j
0 0 M3
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6 4
KF + K2  -K2 0

[K]- -K 2  K 2 + K3  -K3

0 
-K 3 

K3J

Dl (W ) + D2(w) -D 2 (W )  0

[D()] - -D 2( )  D2 (w) + D 3( -D3(

0 -D 3 (w) D3 (j

nl-

where Dl(t) - C1  1 1

n2-12j-y I I
2 2 1

n3-1

D (W) WC l b-Y I n-
3 3 3 2

and 2C_ 2 nj-ia dC" -- J

i "i (nj + 3
2 

The notation ( )I denotes the magnitude of the complex quantity ().

If the dampers obey a first power velocity law, equation (4) reduces

to the familiar set of equations governing a viscously damped system. 0

Relative to the [M] and [K] matrices, the elements of the [D(4))] matrix are

small, at most frequencies. 1Iowever, in the neighborhood of an undamped

natural frequency, when the w [M] and [K] matrices neutralize each other,

the role of [D(o) becomes pronounced. For lightly damped systems, this
region is narrow, and the damping matrix can be replaced by the constant

values assumed at that frequency. The resulting equations now resemble the 4

hysteretic damping form. Although the physical arguments may be slightly

different, the measured behavior of the structure agrees with these

equations. In the study of structures with moderate levels of damping,
both viscous and hysteretic damping models have been used with comparable

success [6, 2].

2.1 Numerical Study

The system considered for numerical investigation of equations (4)

consists of three uniform masses M, springs K and dampers (C, n). Let,

2 K -111 L-fNI
0 M 2

0
n + 2 n-2) CW

n+3 M

v Tr 20
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n-i

-n n-i

62 (w) 2 ( w I

~2 y

n-i

2-3 -i Y2

F D + D 2(w -D 2( W) 0

and [D((w)])D7(eo2 D 2(w) + D3 (0)) -133(w)

I0 -D3 (w) D 3(w) J

then for this uniform system, equation (4) can be-written as:

-2
2-w -1 0

-2
_ 0 -1 1- W 0

Equation (5) is solved numerically by a method outlined in appendix II, for
selected ranges of it between 0 and 2. This range of values can be shown to
cover all the three possible resonances of the system. In order to simulate
single point mobility testing, only one element of 1 is non zero. The value
assigned to this element is used to specify the excitation level. The responses
computed for each node are then ratioed to this number in order to obtain the
displacement mobilities. The parameters varied in this study are:

03 : a measure of the excitation level at node 3
a measure of the damping ratio. (Note that when the damping
exponent is unity, this quantity is exactly the ratio of viscous 0
damping coefficient to the critical damping coefficient).

and n the exponent in the assumed damping law.

3. MODAL ANALYSIS

Let a set of 'dampd' modes of the system be defined by the following 0
characteristic equation

(1K] + i[D(w)] )h I1 = A(w)[M]1i (6)

{6}4 = {AR} + i{4I} is the complex characteristic vector, which are here termed
'damped modes' in analogy to 'flutter modes' in aeroelasticity where similar
equations are encountered (see, for example [9]). For combinations of (Xj(w),
Ir1j) and (X,(w), fIK) which satisfy equation (6), it follows that:
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* 0TTit([K] + i[D(w)])$j = j() f61 T[M]I 1j

and fhl ([KI + i[D(W)])ft1k = k() [ M ] t 6b
Jk k J K

0
where j~b T denotes the transpose of fdl. By virtue of the symmetry of the [K],
[M] and [D(w)] matrices, equation (7) leads to the following orthogonality
relationships:

{T4j[M]{d}J = m 
(

C j jk (8)
T

and {}j([K] + i [D(w)]){bj (k. + id.(WM

where m. j Ib} M] {b}

kj j T ] {(K jf

dj() fq [6 D( )I16}1

0 j *k
and jk = t1  j= k

From equations (6) and (8), it follows that

{ ([K] - i'[M] + i[D(w)]){dik = (k -2 m + id((9)

= (A.(u) - )m jk

It has been shown in [3] that the frequency dependent characteristic numbers are
of the form:

X (= 1 + igi(w)) (10)

where j is a nonnegative real number associated with the jth mode, and by con-
sidering the form of the [D(u)] matrix, the function gj(W) can be expressed as:

nk

gj(W) = %j + Nd j (11)
k 1

Where, in general there may be N different damping exponents in the system, and
%oj' akj; k = 1,2,...Nd are damping coefficients associated with each damping 5 ,

power law.

If [,f] denotes a complex valued modal matrix, such that its Jth column is

the Jth damped mode, equation (4) can be rewritten as:
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ty} = [6]([6]T([K] -2[M] + i[D(w)])[t]) [-1 T{ } (12)

Equations (9) and (10) can then be substituted into (12) to yield

~1 r 2T [ {N (13) "

jM 2 i W + igj ( )

The matrix of displacement mobilities [Y(w)] is defined by the following
relationship:

{1} = [Y(W)] {f} (14)

Therefore, by comparison of equations (13) and (14)

[Y(w)] = 2 2 (15)
n + ig(w))

n1l

Equation (15) expresses the mobility functions in form of a series of modal
functions, summed over all the important modes in a given frequency band. The
difference between this equation and existing modal series formulations is that
the function g_(w) admits more general damping assumptions than just viscous or
hysteretic damping.

4. DISCUSSION OF NUMERICAL RESULTS

The numerical results presented here were obtained by using equation (5)
to simulate the process of single point mobility testing of the structure
depicted in figure 1. Steady state excitation at coordinate #3 was simulated
over selected frequency bands, and although the responses at all other coor-
dinates were computed, in each case, only typical mobility plots for one coor-
dinate is presented for the purposes of the present discussion.

Figure 2a shows the plot of Y 31 displacement mobility over the range of w
between 0. and 2.0, with 60 computation points, for different damping ratios n=
0.02, 0.1 and 0.5, with constant forcing level U, = 0.1, and damping exponent
n= 1.2. Y31 displacement mobility means the displacement response of coordinate
#1 per unit forcing at coordinate #3. Due to the symmetry of the mass, stiff-
ness and damping matrices, both Y3 1 and Y1 3 will yield the same results. As
expected, increasing the damping ratio reduces the peak responses at resonance

and broadens the band of influence of a given mode. A better definition of the
behavior of the response around a given mode is achieved by increasing the
number of computation points per frequency spacing. Thus, in figure 2b is a

5 2
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narrower range of w between 0.82 and 1.49 centered near the second resonant mode
with 100 computation points, for the same Y31 mobility. Here, it is seen that
the damping ratio, for the exponent of the damping law being considered, affects
not only the level of response at resonance, but also the shape of the modal
loop.

In fugres 3a and 3b, the effect of different forcing levels are shown:
V.3 = 0.1, 0.5, 1.0, 2.0 and 10.0, while the damping ratio D = 0.1 and damping
exponent n = 1.2 were held fixed. On the broad band plot, slight decreases in
the peak mobility values with increasing force level are observed in regions
close to the resonant modes. In mobility testing practice, considerable judge-
ment about the linearity of the structure is based on comparisons of the S
measured mobilities at different force levels. If this is done using broad band
data, many structures "pass" this linearity check. However, figure 3b shows
that a narrow band plot, around a selected mode (here, mode #2), reveals that
the forcing level affects not only the response level, but also the shapes of
the curves at resonance. It is interesting to note that the decreasing mobility
peaks with increasing force level has been reported during actual testing of S
helicopter-like structures [10]. When these calculations were repeated with an
exponent of unity in the damping law, no difference in mobilities were observed
at different force levels.

In figures 4a, 4b and 4c, the effect of different damping exponents on the
displacement mobility Y3 are presented. The exponents considered were n = 1.2,
1.5, 2.0, and 3.0, while the damping raio n = 0.1 and force level P3 = 0.5 were
kept the same. Again, it is seen that the broad band plot does not reveal much
about the differences in the mobilities. Figures 4b and 4c, however, show that
the different exponents result in different shapes of the mobility functions
around the resonant modes. (The dotted lines in all of these plots are used to
indicate areas where the convergence of the solution scheme was slow, and the 0 0
computation was programmed to exit, in order to avoid run-away iterations). The
modal loop departs from its circular form as the damping exponent is increased.
In fact, the "flattening" of the circle, resembles a behavior that has often
been blamed on signal processing errors. Although there is no doublt that
signal processing errors can be very significant, it is nevertheless important
to recognize that in some cases, the structure can be revealing more of its own S

nature than the model being used to analyse its responses.

It seems apparent from the foregoing discussions that departures of the
modal loops from pure circles, may be indicative of damping mechanisms that are
more general than viscous or hysteretic damping. Current efforts are being
exerted on the methods for fitting equation (15) to these mobility functions, 0 0
with the aim of establishing new techniques for identifying the modal parameters
that are more consistent with damping mechanisms exhibited by a given structure.
The results of these studies will be published at a later date.

5. CONCLUSIONS •0

- I A simple 3 degree of freedom spring-mass-damper system has been used to
investigate the response of structural systems when the damping mechanisms are
more general than viscous or hystereti. damping. A formulation of the modal
series expression for the mobilities for such generally damped structures was
also presented. This formulation allows the modelling of general damping beha- 0 5
vior by means of a frequency dependent function, the form of which is indicative
of the velocity power laws prevailing Ln the damping mechanism.
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A numerical simulation of mobility testing of this simple structural model 0
revealed trends in the mobility functions which are similar to those reported in

the testing practice of damped complicated structures such as helicopters and
the like., It was found that departures of the modal loops from pure circles may
be due to the existence of non-linear damping mechanisms within the system.

Linearity checks of broad band mobility data may not be sufficient to establish
the degree to which a structure is exhibiting non-linear damping behavior. When 0
the exponent of the velocity power law, prevailing in the damping behavior of a
structure is larger than unity, it was found that the peak mobilities at reso-
nance decrease with increasing excitation level.

Further research is needed to validate new modal analysis techniques for
handling structures with damping behavior which departs significantly from 0
viscous or hysteretic damping models.
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APPENDIX I

The energy dissipated per cycle of oscillation by the damping force given
in equation (1) is:

21T/w

W = C /dt
n. dt

0

For harmonic motions given by x = Xsin(ut);

1T/2 w
n+1 n+l [ n+l

W = 4c x d J [cos(wt)] dt (1-2)
n n0

It can be shown that:

7T/2
2m+l "Tr(m+l)

[cos(;)] d = d - T(m+32) (1-3)

0

Hence, for n = 2m,

(n2

n+1 n 2 0 n2

W n =4C nX W 2 r(n+ 3 "  (1-4)

22

When n = 1, Wi = ClX 2 w. Therefore, the required coefficient of a first power

velocity damping law that will make the dissipated energy equal that of a 0

general power velocity damping law is:

n +2

P(-2 ) n.-l n. -1
S n.+3 X j (1-5) 0

F( J )

2

APPENDIX II
R 1 0

Let the response of node j at a selected frequency ratio be yj = yR + iy1,

R I
and the jth element of the forcing vector be v = u. + iii. The solution to
equation (5) can be sought as roots of the foliowin non-linear system of

equations:

rE(w) ] -[D(,x)]

z(x -) - 0 0 o

[D( ,x) [E(w)1 J
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where, TX [yis Y2' y39 ylj, Y2, 3

T R I I I

2
2-w -1 0

2
[E(w)] -I 2 - -W -

2
• 0 -1 i -eW

and [D(w,x)] is the same as [D(Z)] defined earlier, with the elements of the { }
vector placed appropriately.

Let a perturbed function be defined as: 0

1z(J,xiJ)j {z(ox,)} + ({z(x,;) - {z(oxZ)J) (11-2)
N

where, [ [E()] -[D (Z)]
z(o,x,)j = 0 - (-') (11-3) •

[[Do()l E [E( )]

with

FDW 2i -1 21[D0 ( )] -2 2 L -i 2 -i

0 -1i

N is some selected integer, and J is also an integer which varies from 1 to N.

It is apparent that {z(N,,)}= {z(C , )}. The root of {z(J-l,,' )1 = O,=
is a suitable starting vector for seeking the root of fz(J,x,w)i = 0, using the

well known second order convergent Newton-Raphson scheme, whereby:

-1 k Fafzk 1 1 -k
J Jj

{X }j {-x ) I V{x) {z(J,x ,W)l (11-4)

The matrix I (I is the Jacobian of the IzI vector with respect to the fj
r - .- kk i

vector, evaluated with the {3K}3 values.

-0
With {x I - Ix} 1 equation (11-4) is iterated until suitable convergence

is achieved. The final-§olution for J = N, is the desired root of quation (II-i). S 4
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NUN-STATIONARY RESPONSES OF NON-LINEAR RECTANGULAR PLATES
DURING TRANSITION THROUGH PARAMETRIC RESONANCES,

PART 1: THEORY

G.L. Ostiguy R.M. Evan-lwanowski 0
Ecole Polytechnique and Syracuse University 0 0
Montreal, Canada Syracuse, N.Y.

1. INTRODUCTION

When a rectangular plate sustains an in-plane load of the form N (t) = N o
+ Ny t cos nt, where cos nt is a harmonic function of time, parametric resonances
may occur for some combinations of the natural frequencies of the plate, 2i, and
the excitation parameters N , N t, and n. In general, these parameters are
considered to be constant and the tesulting oscillatory motion is referred to as
stationary. 0

When the external excitation parameters, Nyt or n, vary with time, we en-
counter the case of non-stationary response. The non-stationary characteristics
of the excitation are commonly encountered in practice and the study of non-
stationary response is very important in properly evaluating the transition
through resonance and for predicting the response when, in a dynamic system, •
parameters are changing with time.

Parametric vibration of columns, plates and shells loaded by axial periodic
forces has received considerable attention in the literature. Most authors have
treated the instability or steady-state response aspects of the problem, whereas
little attention has been given to the transient or non-stationary response of 0
the stable problem. Stationary responses of non-linear rectangular plates were
studied by Ostiguy and Evan-Iwanowski [1,2].

Broadly speaking, non-stationary mechanical systems are those systems whose
parameters, such as mass, stiffness, material properties, frequency or amplitude
of external perturbation, are time dependent. Apparently, Lewis [3] was the S
first to present a solution for the response of a non-stationary, linear, single-
degree-of-freedom system whose frequency is a linear function of time. An
outstanding contribution in this field of mechanics was made by the Russian
school. An extensive treatment of non-stationary responses of mechanical systems
is presented in an excellent monograph by Mitropolskii [4]. More recently, Evan-
Iwanowski [5] has provided a comprehensive treatment of non-stationary and non- 0
linear vibrations in multiple-degree-of-freedom systems.

Previous investigations of non-stationary response of continuous mechanical
systems (structures)have been concentrated on several problems including trans-
verse-torsional vibrations of beams, rotating shafts and blades, behaviour of
gyroscopic systems, and parametrically-excited columns and cylindrical shells. 0
The only known work on the non-stationary parametric response of rectangular
plates is analytical in nature and is due to Panton [6].

The present work deals with the problem of the non-stationary parametric
response of non-linear rectangular plate- simply supported along its edges and
subjected to the action of periodic in-plane forces uniformly distributed along 0
two opposite edges. The non-stationary response of the plate during a loga-
rithmic sweep of the excitation frequency through a system resonance is evaluated
for a wide variety of cases. The validity of these results is ascertained ex-
perimentally [7].
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2. FORMULATION OF THE PROBLEM

2.1 Analytical Model

The mechanical system under investigation is a rectangular plate simply
supported along its edges and acted upon by periodic in-plane forces, as shown in
Figure 1. The xy plane is selected in the middle plane of the plate and the
origin at its center. In-plane loading, uniformly distributed along two opposite
edges, is of the following form:

N y(t) - N + Nyt cos 6(t) (1)

where 6(t) = de/dt = n(t) is the instantaneous frequency of excitation.

The plate is initially flat, of uniform
thickness, elastic, homogeneous and iso-
tropic. It is also assumed that the plate
thickness h and the resulting displacements Ny(t)=Nyo +Nyt csOYt)
are small compared with the wavelength of
lateral vibrations. This assumption allows
us the use of thin plate theory. Conse- SmfSS-Ff

quently, we can assume that the loading A,.-

frequencies over which parametric (lateral)
vibrations occur are considerably below the zU

natural frequencies of longitudinal (in- b h
plane) vibrations, and in-plane inertia | I.
forces can be neglected. z w

2.2 Basic Equations

The plate theory used in this analysis b(All edges

may be described as the dynamic analogue of supported

the von Karman large-deflection theory and is
derived in terms of the stress function F and
the lateral displacement w. When in-plane NY (t) per unit width
inertia is neglected, the basic equations
governing the non-linear vibrations of rec-
tangular plates are reduced to the following Figure 1. Plate and load
set of equations: configuration

V4F = E [W, 2  - W,xxWy] (2a)

hV4w = D [F,yyW, xx + F,xxW, yy - 2F,xywxy -pwtt] (2b) S

where the Airy stress function is defined by

F, - 0 x, F,xx W O, -F,xy = Txy. (3)

In these equations, ax, oY and t are membrane stresses, p is the density, D =

Eh3 /(l - v2 ) is the flexural rigildty of the plate, E and v are Young's modulus

and Poisson's ratio, respectively. Subscripts following a comma stand for par-
tial differentiation and the operator V4 _ 4/ax4 + 2a4/x 2ay2 + 94/ay4 .

The in-plane loading, N (t-), combined with the stretching of the middle
surface owing to large deflections of the plate give rise to in-plane or membrane 0
forces per unit length Nx, N and Nxy. These forces are related to the membrane
streses by

Nx = hax, NY - hay, Nxy - hTxy. (4)

The in-plane loading, acting on the boundary, is taken into account in the

boundary conditions.
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2.3 Boundary Conditions

Rectangular plates considered in this study are simply supported on all four
edges and, consequently, the lateral deflections and the moments at the four
edges of the plate are zero. This can be expressed in terms of w as follows:

w s Wxx + V W, yy 0 along x - ±a, (5a)

w - W, + V W'x x = 0 along y - ±b. (5b)

The external in-plane forces acting on the plate are uniformly distributed
along two opposite edges (y - ±b), as shown in Figure 1. The two vertical sup-
ported edges (x -f ±a) are stress-free. These stress conditions may be expressed
in terms of the stress function F as follows:

F,yy = 0, F,=xy f 0 along x = ±a, (6a)

F,xx = - N y(t)/h, Fxy = 0 along y = ±b. (6b)

The problem consists in determining functions F and w which satisfy the
governing equations, together with the boundary conditions.

2.4 DERIVATION OF TEMPORAL EQUATIONS OF MOTION

In general, a rectangular plate subjected to parametric excitation may ex-
hibit lateral vibrations in several spatial modes; each spatial mode is associ-
ated with an infinite number of temporal modes. In the present analysis we es-
tablish the boundaries of the principal instability region and determine the
amplitude of motion in a resonant regime for each spatial mode.

An approximate solution of the governing equations (2a) and (2b) is ob-
tained, in the case of standing flexural waves, by assuming:

F(x,y,t) = Zfmn(t) Xm(x) Yn(y) - x2Ny(t)/2h (7a)
m n

w(x,y,t) = wpq(t) D p(x) 'q(y) (7b) 0

where fmn(t) are the time-dependent load factors and w (t) are the time-de-
pendent generalized coordinates of the system. The indicesp and q correspond to
the number of half-waves in the direction of axes Ox and Oy, respectively. The
spatial functions Xm(x), -P(x), Yn(y) and Tq(y) are assumed to be orthogonal in
their respective intervals and to satisfy the relevant boundary conditions. 0

Because the theory of dynamic stability comprises both the static stability
and vibration theories, it is customary to use either the eigenfunctions of free
vibration or static stability as coordinate functions for approximate represen-
tation of solutions. When a flat rectangular plate is compressed in its middle
plane by forces uniformly distributed along two opposite edges, the elgen- 0
functions for free vibration and static stability are identical. Furthermore,
the plane buckles in such a way that there can be several half-waves in the
direction of compression but only one half-wave in the perpendicular direction.

Previous considerations, experimental evidence, and boundary conditions
requirements led to the selection of the following spatial forms for use in this 0
study:

XM = cosh amx/cosh ama - cos amx/cos atma, m = 1,2,...
(Ba)

Yn = cosh 8ny/cosh anb - cos 8ny/COS anb ,  n - 1,2,...
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{ cos q-y/2b, q = 1,3,...
and bp cos plTx/2a, p I; (q = (8b)

sin qny/2b, q = 2,4,...

where am and n are obtained from the transcendental equations

(i) tanh ma + tan ma = 0, (9)

(ii) tanh nb + tan nb = 0.

Substituting expressions (7) into governing equations (2) and using the
orthogonality properties of the assumed functions, equations (2a) and (2b) can be
reduced to:

(a) EEAmnXmYn = E BmnXmYn; (b) CpqD p' q = DpqDp'q, (10)

Equating coefficients of like spatial forms, one obtains

(a) Amn = Bmn; (b) Cpq = Dpq, (11)

where A include f-coefficients, Bmn and C include w-coefficient and Dpq in-pq pq p
clude f and w-coefficients and terms corresponding to the in-plane loading and
the lateral inertia of the plate.

Equations (11a) relate the f-coefficients to the w-coefficient. The solu- 0

tion of (Ila) can be represented in the form

fmn =Fmn Epq (12)

where coefficients Fin depend on the plate aspect ratio and on the spatial mode
of vibration being studied. The substitution of expressions (12) into equation
(lb) along with the introduction of a convenient set of parameters result in the
following second-order non-linear differential equation with periodic coeffi-
cients for the large amplitude parametric vibrations of rectangular plates in any
spatial mode (p,q)

Wpq + 2q [Il-22ipq cos I(t)] Wpq + Ypq W'pq =, (13)

where the dots denote differentiation with respect to time, and

(a) W pq = [7, 2 /4a 2 r][rp2 + q2 /r] / $bJ_

(b) Npq = [I2 D/4a
2 q2 ][r 2 p4 + 2p2 q

2 + q4/r
2 ] 1

(c) Q2pq = Wpq V1 - Nyo/Npq (d) Ppq = Nyt/ 2 [Npq - Nyo] (14)

and r - b/a is the plate aspect ratio.

In the foregoing, w is the free vibration frequency of the unloaded plate, N q
represents the statfc critical load according to linear theory and Qpq is tAe
natural frequency of lateral vibration of a plate loaded by a constant component
of axial force. The quantity i1pq is called the excitation (or load) parameter,
and yq is the coefficient of non-linear elas-icity. For further details, see
[1, 8 ]pq

Introducing viscous damping, the differential equation for the damped vi-
brations of the plate in any spatial mode (p,q) is written as

Wpq +2C pq + q [I - 2 ppq cos O(t)] wpq + ypqwpq = 0,P(15) 6
(p - 1, q = 1,2,3,...).
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Since equation (15) has the same general form for all spatial modes of vibration,
the subscripts p and q may be omitted for simplification and we obtain

V + 2C* + j2 [i - 2P cos 6(t)] w + y w3 = 0. (16)

Equation (16) constitutes the final form assumed by the equation of motion,
which may be considered as an extension of the standard Mathieu-Hill equation.

3. SOLUTION OF THE TEMPORAL EQUATION OF MOTION

3.1 First-Order Asymptotic Approximation

In non-stationary problems the coefficients in the equations of motion are
time-dependent. Mathematical techniques available for explicit solutions of such
problems are relatively limited, and approximate techniques are used. The meth-
ods of asymptotic expansions in powers of a small parameter e, developed by
Mitropolskii [4] and generalized by Agrawal and Evan- .wanowski [9], are a most
effective tool for studying non-linear vibrating systems with slowly varying
parameters.

Assuming that the damping, the excitation and the non-linearity are small
and that the instantaneous frequency of excitation and the excitation parameter
vary slowly with time, the temporal equation of motion (16) can be written in the
following asymptotic form:

U + 22w = E6[2(T) Cos e(t) w - yw3 - 2C ] (17)

where T = et represents the slowing time.

Confining our attention to the investigation of principal parametric reso- 0
nance n = 2S2, we seek a first-order asymptotic solution of equation (17) in the
following form:

w = W cos ( 6 + ) (18)

where W and * are functions of time defined by the system of differential 6
equations dW

- = c A1 (r,W, p)

(19)
t= - n() + rB1 (T,W,).

Functions Ai(T,W,) and Bi(T,W,p) are selected in such a way that equation (18)
would, after replacing W and , by the functions defined in equation (19), repre-
sent a solution of equation (17).

Following the general scheme of constructing asymptotic solutions for vibra-
ting systems, we arrive at the following coupled first-order differential
equations for the unknown quantities Aj and Bj:

[- n ] aA1 /ap - 2W2BI = W02pcos 2i - W 3y,
(20)

[s- n] W+Bi/a +22Aj =-l W2 sin 2* - 2WC.

By inspection, the solution of these two equations that characterize the
response of our system is observed to be

Al = - [WQ2 U(T)/n(T)] sin 2* - WC
(21)

Bi = - [S2tJ(T)/n(T)] Cos 2* + [3y18Q] w2.
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Using these values and transforming all system parameters back to their real time
values, the expressions for W and i become

f - [ 2 p(T)/n(T)] W sin 2* - WC
(22)

= - n(T) - [Q2p(T)/n(T)] cos 2* + [3y/8Q] w
2 . (

These relationships define the rate of change of amplitude and phase angle

as functions of the slowly varying frequency of external periodic excitation
n(T), slowly varying excitation parameter p(T), W(t) and *(t). By integrating
this system of equations, the amplitude W = W(t) and the phase angle * - *(t) can
be obtained as functions of time. The lateral displacement w - w(t), which com-
pletely describes the non-stationary vibrational process, can then be found from
equation (18) in the first approximation.

3.2 Stationary Response

The stationary response and the boundaries of the principal region of para-
metric instability associated with each spatial form of vibration may be calcu-
lated as a special case of the non-stationary motion in the resonant regime de-
scribed by equations (18) and (22).

For obtaining stationary values of the amplitude W and phase *, we equate to 0 4
zero the right-hand sides of equations (22). Eliminating 'p and solving for W as
a function of the excitation frequency n, we obtain

w = /[82/3y][- (p - in) ± /(U2 24/n 2) - c 2 ] , (23)

where we admit only positive real values for the amplitude. The ± sign upon the 0
inner radical indicates the possibility of two solutions. These solutions are

represented in Figure 2. A stability analysis [8] has shown that one solution
(upper branch) is stable and attainable by the system while the other solution
(lower branch) is unstable and not physically realizable.

The stationary phase angle ' may be determined from the first of equations 0
(22). This gives

' + sin- i (-Cn/pQ 2 ) (24)

where 0 > ' > - w/4 for positive damping (C > 0).

Equation (23) shows that the amplitude of the stationary response depends S
basically on two factors at any frequency n. First, it depends on the magnitude
of the non-linear term of the system, which in this case is the elasticity para-
meter y. Second, it depends on the magnitudes of the loading and damping para-
meters, P and C, respectively. The non-linear term controls the so-called back-
bone curve. The backbone of the stationary response is that curve lying halfway
between stable and unstable branches. For the system under consideration, y is
strictly positive and the backbone has a right-hand overhang, indicating a hard
spring system response.

In equation (23) the inner radical has to be real in order that the physical
amplitude of the response W be real. This results in the following condition :

C 4 (pQ/2)(20/n) (25)

which states that the loading parameter p must be sufficiently large to overcome
the effect of the damping forces acting on the plate. Otherwise, no physically
realizable solution exists.
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The base width of the stationary response is the only region in which vi-

brations may normally initiate. By setting W - 0, we obtain

n 4 - 40Q3 + 4 (Q2 + C2 ) n2 - 4V2Q = 0. (26)

Intoducing the frequency parameter s and decrement of damping A defined by

(a) s - n/20 , (b) A = 2nC/ , (27)

equation (26) can be written as

s4 - 2s3 + [I + A2 /4r 2 ] s2 + )12/4= 0. (28)

Equation (28) makes it possible to calculate the boundaries of the principal re-
gion of instability (Figure 3). If damping is negligible (A = 0), the roots of
this equation can be found explicitly. By performing elementary operations, we
obtain

s - + fT ±I] or nl, = Q + 0 r 1 ± 2i. (29)

Thus, the maximum base width b0 of the stationary reponse is

b 0 , Q[/ +21i - rl -22]. (30)

3.3 Non-stationary Motion During Transition Through Resonance
0 •I

The main objective in the studies of non-stationary systems is the determi-

nation of deviations of non-stationary responses from corresponding responses of

equivalent stationary systems, i.e. systems whose parameters are constant. It is
expected that the most pronounced differences in the responses of stationary and
non-stationary systems will occur near the resonances or near the resonance zones

of these systems.

The non-stationary response is obtained by numerically integrating equations

(22) governing W and *. It may be pointed out that numerical integration of
first-order equations governing amplitude and phase is a much simpler process
than integration of the original second-order equation of motion since we have to
evaluate the envelope of an oscillatory function and not the function itself.
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In the present non-stationary analysis, the sweep of the excitation fre- 0

quency is taken to be logarithmic as given by

n(t) = no[ 2mt]

where no is the initial frequency (at t =0), m is the rate of sweep (in octaves
per unit of time) and t is the time. The rate of sweep m may be positive or
negative; in the former case, the sweep is in the direction of increasing fre-
quencies.

The system of differential equations (22) is integrated numerically using a
fourth-order Runge-Kutta algorithm due to Gill (Subroutine DRKGS from IBM). The
initial values of the variables W, p and n are chosen as those corresponding to a
stationary case.

4. NUMERICAL RESULTS AND DISCUSSION

The non-stationary response of the plate during a logarithmic sweep of the
excitation frequency n(t) through a principal parametric resonance was studied
for a wide variety of cases and the results shown in Figures 4-7 are typical of
those obtained. To show the non-stationary deviations from stationary results,
the latter are plotted along with the non-stationary results. The specified
values of the plate parameters and material constants used for the numerical
calculations are given in Table 1, and correspond to those of a particular test
plate used during the experimental investigation [7].

TABLE 1. Specifications of Plate Parameters

Test E p Dimensions Aspect

Plate Material (GPa) v (kg/m 3 ) (mm) ratio r

E.1 Acrylic* 4.41 0.38 1188 292 x 406 x 1.60 1.39

*Polymethyl Methacrylate

The main parameters responsible for the modification of the parametric res- 0

ponses in non-stationary regimes are the conditions of in-plane loading, the
amount of damping, the initial stationary amplitude, and the rate as well as
direction of the sweep. It is obvious from the results shown in Figures 4-7 that
the rate of sweep of the excitation frequency n in the direction of the overhang
may play a significant role in the modification of the non-stationary response. 0
When the frequency sweep is relatively slow, the non-stationary response simply
follows the stable branch of the stationary response. As the sweep rate is
increased the lag in amplitude build-up at the start increases but the response
eventually catches up with the stationary curve. For rapid increasing transi-
tions, the non-stationary response increases somewhat inside the resonance zone
but returns rapidly to the zero-amplitude stable position afterwards. When the
sweep is in the opposite direction to the overhang, the influence of the sweep
rate is much less pronounced.

The results exhibited in Figures 4 and 5 show that, in the absence of
damping, the amplitude and the phase display significant "beating" effects.
These rapid changes overshoot the curves of the stationary case. When a small 0
amount of damping is present, damped "beats" of smaller amplitude about the
stationary curve are experienced after the first maxima, eventually becoming
asymptotic to the stationary curve as the transition continues. If damping is
sufficiently large, the "beat" phenomenon is almost completely eliminated.
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Figure 4. Non-stationary parametric response of a rectangular plate.

The results presented in Figures 6 and 7 indicate that an increase in the
initial amplitude of vibration or the in-plane loading has a significant
destabilizing influence on the system when the sweep is into the instability zone
(increasing frequency). It was observed, however, that the value of the initial
amplitude or the in-plane loading, has a negligible effect on the non-stationary
response when the sweep is away from the instability region [8].

5. CONCLUSIONS

Based on the results of this Investigation, the following conclusions can be
drawn :

1) The theory developed correctly predicts the stationary and the non-
stationary response of rectangular plates within a principal region of
instability. •

2) Stationary parametric responses exhibit the typical hard spring effect with
the upper curve being stable.

3) The non-stationary response to a logarithmic sweep of the excitation
frequency through a resonance displays a "beat" effect; however, if damping •
is sufficiently large, the "beat" phenomenon is almost completely
eliminated.

4) The main parameters responsible for the modification of the parametric
response in non-stationary regimes are the conditions of in-plane loading,
the amount of damping, the initial stationary amplitude, and the rate as S
well as the direction of the sweep.
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NON-STATIONARY RESPONSES OF NON-LINEAR RECTANGULAR PLATES 4
DURING TRANSITION THROUGH PARAMETRIC RESONANCES, I

PART 2: EXPERIMENT

G.L. Ostiguy R.M. Evan-Iwanowski
Ecole Polytechnique and Syracuse University
Montreal, Canada Syracuse, N.Y. C S

1. INTRODUCTION

A typical example in regard to parametric instability of structures is the 0
case of a simply-supported rectangular plate acted upon by a periodic in-plane
load. When a plate sustains an in-plane load of the form P(t) = P0 + P cos nt,
where cos nt is a harmonic function of period T, the plate becomes iaterally
unstable over certain regions of the (PoPt,T) parameter space. Principal para-
metric resonances occur when the excitation frequency n and the modal frequency
Qi satisfy approximately the relationship n = 2Qi . If the system parameters are 0
kept constant the resulting oscillatory motion is referred to as stationary.
Stationary responses of non-linear rectangular plates were studied analytically
and experimentally by Ostiguy and Evan-Iwanowski [1,2].

When the excitation parameters, Po, P, or n, vary with time, we encounter
the case of non-stationary response. The main objective in the study of non-
stationary systems is the determination of deviations of non-stationary responses
from corresponding responses of equivalent stationary systems, i.e. systems whose
components are constant. It is expected that the most pronounced differences in
the responses of stationary and non-stationary systems wll occur near the
resonances or near the resonance zones of these systems. In the case when the
frequency of external excitation is time-variant, the problem of modification of
stationary responses near a resonance is referred to as a passage (or transition)
through a resonance or resonance zone.

.Although several theoretical investigations have been carried out on the
non-stationary parametric response of structures, experimental evidence is far
from adequate in many cases and is even non-existent in some cases. In this 0
context, an experimental study of the non-stationary parametric response of
simply-supported non-linear rectangular plates was performed. Special attention
was paid to satisfy the boundary conditions assumed in the analytical model -{31
so as to draw conclusions with sufficient degree of confidence. Experimental
data have been compared with analytical predictions to form a qualitative and
quantitative verification of the solution. 0

2. SUMMARY OF ANALYSIS

The specific conceptual model under investigation is a rectangular plate
initially flat, of uniform thickness (thin), elastic, isotropic, simply supported 0

along its edges and subjected to the action of periodic in-plane forces uniformly
distributed along two opposite edges, as shown in Figure 1.

The plate theory used in the analysis [3,4] may be described as the dynamic
analogue of the von Karman large-deflection theory and is derived in terms of the
stress function F and lateral displacement w. The governing equations are :

V4F -E 1w'2 - WxWyy-m W xxW yy]
Vywy h F, + FxWy - 2 Fxywxy - pw,tt]

D yyWxx Fxx4yy7
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The boundary conditions are related NO
to both the lateral displacement w and the
stress function F. Since the plate is sim-
ply supported on all four edges, the sup- s FREE

porting conditions are : egAtsu

w - Wxx + V W, yy - 0 along x - ±a, a
W W W, yy + V W xx  0 along y - ±b. r, at" x,U

b h
The loading conditions assumed in the

analytical model (Figure 1) result in the
following stress conditions: IZ ,W

Fyy - 0, F'xy - 0 along x - ±a,
F ~xx  - Ny(t)/h, Fxy 0 along y - ±b, (All edges

b simply
where Ny t) - P(t)/2a. supported)

The problem consists in determining

functions F and w which satisfy the governing

equations, together with the boundary condi- i n COS co
tions. The solution for the Airy stress t

function is represented by a double series
consisting of the appropriate Beam Functions Figure 1. Plate and load
which satisfy the boundary conditions: configuration.

F(x,y,t) -E fmn(t) Xm(x) Yn(y) - x2Ny(t)/2h
m n

The continuous system is spatially discretized by means of a single-term modal
approximation for the lateral displacement S

w(x,y,t) = wpq(t) Op(x) Tq(y)

where 0 (x) and q(y) are the eigenfunctions of free vibration for the linearized
system.

Using the orthogonality properties of the assumed functions, introducing
viscous damping and omitting the subscripts p and q for simplification, the
governing equations are reduced to the following differential equation for the
damped vibrations in any spatial mode:

U + 2C* + gZ2 [I - 2v cos e(t)] w + y w3 - 0

where p is the excitation parameter, y is the coefficient of non-linear elas-
ticity and C is the coefficient of linear damping. This temporal equation may be
considered as an extension of the standard Mathieu-Hill equation.

A first-order asymptotic solution for principal parametric resonance is S

obtained in the following form:

w - W cos (6 + ) (1)

where W and * are defined by the system of differential equations

- [ 2
p(T)/n(T)] W sin 2* - WC

"- - In(T) - [Sj2 p(T)/n(T)] cos 2* + [3y/80] W2 . (2)

By integrating this system of equations, the amplitude W and the phase i of the
non-stationary response can be obtained as functions of time. 0
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For obtaining stationary values of the S
amplitude W and phase 4, we set in equation
(2) W - i - 0. Eliminating * from the
ensuing equations, we obtain the amplitude-
frequency relation: WITHOUT DAMPING

W - /[8/3yJ[- (0 - +n) + - C2 ] ° WITH DAMPING

where the ± sign indicates the possibility ,
of two solutions; one is table, the other Q
one is unstable. These solutions are re-
presented in Figure 2. The stationary it I
phase angle * is found to be

, ~ sin-1 (-Cn/n2) Excitation Frequency 17

where 0 > 4 > - w/4.
Figure 2. Stationary response 0

curves.

3. EXPERIMENTAL INVESTIGATION

3.1 Laboratory Apparatus

The experimental setup permits an experimental investigation of the dynamic
stability and non-stationary parametric response of simply-supported rectangular
plates subjected to an in-plane load of the form P(t) MA P0 + Pt cos nt which is
uniformly distributed along two opposite edges. The apparatus admits the load
parameters P , Pt and n as independent variables. The amplitude of the plate
vibrations, t~e load parameters, the frequency spectrum and mode shapes of the
lateral response, and the time-dependent excitation and response characteristics
are measured directly. The block diagram shown in Figure 3 indicates the general
functioning of various components used in measuring and recording the response.

OSCILLOSCOPE 0

.. ~~EA T-IM.....E

LOADSLAV

, [ h. x-tlC Sl

* S•

Figure 3. Block diagram of experimental apparatus. •
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3.2 Excitation System 0

An electrodynamic shaker is used to impart a dynamic force at the base of
the plate. The shaker is driven by a sinusoidal signal of variable frequency and
amplitude originating from a sine-random generator. The frequency of the exci-
tation signal can be held stationary or swept automatically at various loga- 4

rithmic sweep rates either up or down. The output signal level from the sine-
random generator is automatically regulated by means of a compressor to control
the amplitude Pt of the harmonic in-plane load applied on the plate by the
shaker. The necessary feedback for system control is produced by a load trans-
ducer. An accelerometer mounted onto the vibrating head of the shaker table
could be used to monitor the motion of the shaker table. 0

3.3 Loading Apparatus

The experimental apparatus depicted in Figure 4 was designed to accommodate
rectangular plates of various aspect ratios and to match the theoretical assump-
tions as closely as possible. 4

2

4
.9

FRONT VIEW SIDE VIEW

Figure 4. Schematic diagram of plate supports and loading system.

The loading apparatus consists of a linear spring (13), an adjustable head
(14) and a lock nut (15), a threaded stud (16), a quartz load iasher (4), and a

j loading beam (11) constrained by a wire suspension (12) to move in a vertical
plane. The initial static preload P0 is transmitted to the loading beam by the
spring and the adjustable head secured to the frame. The dynamic portion Pt of
the in-plane loading is provided by the shaker table which is attached to the
loading beam by means of the threaded stud. The beveled upper and lower edges of
the plate specimen (1) are placed in V-grooves to simulate simply-supported

p boundary conditions.

The support at the upper edge is provided by a load transducer consisting of
a loading bar (3), a rigid support (2) and two load shers (4). The edge res-
traints along the vertical edges of the plate are supplied by adjustable knife
edges (6) fastened to vertical side fixtures (5). In order to accommodate rec-

• tangular plates of various aspect ratios, these side fixtures are mounted on
• horizontal screws secured to the frame thus permitting continuous width adjust-

ment.
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In order to realize a uniform load SILICONE RUBBER 0 S
distribution, a special loading apparatus (molded in place)
was contrived. As shown in Figure 5, a deep
groove was machined in loading beams then
filled with silicone rubber molded in place.
Since the resulting in-plane rigidity of the
V-groove is very small compared to the in- 0 0
plane rigidity of the plate itself, the load
distribution achieved by this experimental
arrangement agrees very closely with the

theoretical conditions.

3.4 Measurement System 0 0

Parameters Po and Pt of the in-plane
load at the upper edge of the plate are meas- Figure 5. Cross-section of
ured by the load transducer described previ- the loading beam.
ously. Signals from the two load washers are
combined and suitably scaled for direct 0
measurement and display on calibrated readout equipment.

The lateral vibration and the shape of the deflected plate, w(x,y,t), is
measured by a capacitive sensor (7) placed in proximity to the plate surface.
The non-metallic plate is sprayed with a conductive paint, causing the surface of
the specimen to be electrically conducting. The signal from the associated vi- S S
bration meter serves as an input to a true RMS voltmeter which provides an analog
DC output for recording purposes. A ten-turn linear potentiometer, attached to
the front probe holder, provides a DC signal proportional to the position of the
probe along the vertical centerline of the plate.

The frequency spectrum of the lateral response is determined by a real-time 9 0
spectrum analyzer and is continuously monitored on the screen of an oscilloscope.
When the temporal response of the plate is not purely harmonic, the signal may be
processed by a tracking filter/analyzer to determine the amplitude of vibration
and the mode shape associated with each frequency component.

A frequency counter is used to measure the frequency of the various sinu- 0 0
soidal signals. An accurate linear potentiometer, driven by frequency scale
pointer shaft of the generator, supplies a DC voltage proportional to the Log of
frequency, thus providing a frequency drive for X-Y plotters. Time-dependent
excitation and response characteristics are recorded on an oscillograph. X-Y
plotters are used primarily to record mode shapes and response levels as a func-
tion of frequency. 0 S

3.5 Plate Specimens

In order to verify the theoretical results and to highlight the influences
of the damping and the aspect ratio on the non-stationary parametric response of
rectangular plates, three different specimens have been used. All test plates P S
were cut from commercially available plastic sheets. The dynamic mechanical
properties of the materials were determined experimentally [4]. A summary of the
test plate characteristics is given in Table 1.

3.6 Laboratory Techniques I S

Prior to any experiment, several precautions were necessary to insure that
each instrument was properly calibrated and the mechanical system properly
aligned. Standard operator procedures were used to calibrate the instruments to
manufacturer's specifications where applicable.
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TABLE 1. Specifications of Plate Parameters 0

Test E p Dimensions Aspect
Plate Material (GPa) v (kg/m3 ) (mm) ratio r

E.1 Acrylic* 4.41 0.38 1188 292 x 406 x 1.60 1.39

E.2 Acrylic 4.41 0.38 1188 209 x 406 x 0.99 1.94

E.4 Polyviatyl 3.30 0.388 1365 292 x 406 x 1.42 1.39

chloride

*Polymethyl Methacrylate q

3.6.1 Preliminary Procedure

The initial static preload P0 is applied at the base of the plate assembly

by tightening the adjustable head and locknut to compress the spring (13). The
preload is measured from the load transducer output. 0

The dynamic portion of the in-plane loading is provided by the shaker.
After the sine-random generator is set at some frequency located outside a
parametric instability zone, the shaker signal is gradually increased until the
desired amplitude Pt of the
dynamic load is obtained. The
compressor circuit then main-
tains that load level for all
subsequent frequency changes of
plate response levels. Ntr

The characteristic fre- N Dtro

quencies ni and fl2 corresponding 
Drpu

to the onset of parametric reso-
nance and the stationary ampli- E ExpeAiment
tude response curve could then 4 begi / ach
be determined experimentally Jump
following the procedure depicted
in Figure 6. Details of the I
procedure can be found in Refer- 1, '72
ence [4]. Excitation Frequency 7

3.6.2 Non-stationary Response Figure 6. Experimental determination of the
stationary parametric response. *

The non-stationary motion
during a passage through a reso-
nance zone depends strongly upon
the initial conditions at the start of the frequency sweep. Two types of transi-
tion were considered experimentally:

1. Transition through the resonance zone, where the initial frequency is
inside the resonance zone and the initial conditions correspond to some
non-zero stationary values;

2. Complete passage through the resonance zone, where the initial frequency is
outside the resonance zone and the initial conditions correspond to the *
trivial stable case (W = 0).

The experimental determination of the non-stationary parametric response of
the plate is straightforward. A typical experiment of type 1 proceeds as
follows. After completion of the preliminary procedure, the load frequency is
set at some value inside the resonance zone and the system is allowed to vibrate *
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laterally in a stationary regime before the sweep generator is actuated. The 9
trace and the amplitude of the non-stationary response are then recorded while
the excitation frequency n is swept logarithmically through the resonance zone at
a preselected rate. In type 2 experiments, the initial load frequency is set at
a value slightly lower than ni (for an increasing frequency sweep) or slightly
greater than n2 (for a decreasing sweep), and the automatic frequency scanning
device is actuated. 0

3.7 Experimental Results and Conclusions

The non-stationary motion during a transition through a resonance zone was
determined experimentally for a wide variety of cases. Figures 7 through 10
represent typical traces of non-stationary responses that were obtained by 0

starting with some initial stationary values ard logarithmically varying the load
frequency either up or down. The results are qualitatively the same as those
predicted by theory (see Figure 10) and agree reasonably well quantitatively with
the theoretical predictions [3]. A few observations are to be noted. At the
start of the non-stationary response, a plateau of varying width is present in
all cases. This is partly due to the inherent time lag involved in the voltmeter 0
analog response to rapidly varying amplitudes. A similar but smaller plateau is
present in analytic results. The observable larger shifts of the non-stationary
curves from the steady-state responses (see Figure 10) can also be attributed to
the time lag in instrumentation. It may also be seen that the amplitudes
measured experimentally are slightly larger than those predicted by theory, at
very high amplitudes of vibration. This is partly due to a small relaxation of 0
the constraints at the boundaries and partly due to the fact that the first-order
asymptotic approximation tends to exagerate the effect of non-linearity [5].

Typical records of the non-stationary motion and of the dynamic in-plane

loading are shown in Figure 7. It may be observed that the period of vibration
of the rectangular plate within a principal region of instability is twice that 0
of the periodic in-plane load.

The influence of the sweep rate on the stability and non-stationary response
of the system during a transition of the excitation frequency through resonance
regions is highlighted in Figure 8. One can observe that for rapid increasing
transitions, the non-stationary response increases somewhat inside the resonance
zone but returns to the zero-amplitude solution afterwards. The stabilizing
influence of damping is illustrated in Figure 9 by the fact that greater loading
conditions are required on specimen E.1 to produce similar responses. The re-
suits also indicate that the amplitude decay during dropout is much slower for
specimen E.4.

The non-stationary motion during a complete passage through a resonance zone
was also investigated experimentally. For increasing transition into the reso-
nance zone (Figure 11), the plate does not respond until the frequency has pene-
trated the instability zone for some finite distance, thus giving rise to a rapid
jump to the stable branch. The penetration effect increases with increasing

sweep rates; for sufficiently large sweep speeds, the jump phenomenon is not
manifest and no parametric vibrations are apparent at all. Similar behaviour is
also observed for decreasing transition (Figure 12). This means that the sweep
rate may have a pronounced effect on the lateral stability of the plate. The
results also indicate that the sweep rate necessary to preclude a parametric
oscillation increases as the parameter p is increased.
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DEFINITION OF SYMBOLS

D - Eh 3/12(1 - v2 ) : flexural rigidity of the plate

A4 - a4 /aX 4 + 2 a4/x 2 ay2 + 34 /ay 4  operator

NXNYNxy : membrane forces per unit width

PE - critical load corresponding to a given buckling mode

P* - lowest critical load

Pcr = Po/P* : ratio of critical loading

r - b/a plate aspect ratio

cosh ny cos nYn - , n = 1,2,...: Beam Functions for F
cosh nb cos 8nb

'q - cos qiry/2b, q = 1,3,...

eigenfunctions for w

'q a sin qy/2b, q = 2,4,...;

- Pt/ 2 (PE - Po) excitation parameter

* = normalized excitation parameter

- modal frequency of plate loaded by Po.
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I. INTRODUCTION 00

Geometrically nonlinear static and dynamic analysis of anisotropic plates
has received considerable attention in the literature in recent years [1,2].
This is mainly due to increasing use of composites in the design of structures
where lightness and economy are important considerations. Several linear analy-
ses have Leen carried out so far to determine the natural frequencies of aniso-

tropic plates of various shapes [3-7] and different boundary conditions including
those with elastically restrained edges [8]. However, nonlinear vibration

studies of anisotropic plates of various geometries are limited [9,10] and a few
approximate solutions that are available are based on mode shapes which are main-

ly in terms of trigonometric functions. In many cases the solutions are based on

a single-mode approximation and the accuracy of the results depends upon the
choice of the appropriate shape functions. Since closed-form solutions do not
exist for many of these nonlinear problems, it is very difficult to evaluate the
accuracy of these approximate solutions. The purpose of this paper, therefore,

is to examine a new method of analysis which has been successfully used in the

nonlinear dynamic analysis of beams [11].

-, This paper is concerned with the nonlinear static as well as dynamic analy- a
sis of anisotropic plates of rectangular and square geometries. A review of li-

terature indicates [1,2,3] that these geometries are the ones most commonly dealt
with in the past. The present approach, however, could be extended to the analy-

sis of plates of some other geometries as well. The nonlinearities investigated

here arise due to large deformation or large amplitude vibration and are included
in the nonlinear strain-displacement relations. The stress-strain relationship 0
is linear, however, and the material constants of the plate are with reference to
an orthogonal system of axes. New type of functions called Self-Generating Func-

tions are used to obtain the linear and nonlinear frequencies in dynamic problems

and load-deflection behavior in static problems. Self-Generating Functions of
zero-order are polynomials of eighth degree for any given boundary conditions of

the plate. First-order polynomials are of sixteenth degree and can be easily *
generated from the zero-order polynomials. Further higher order polynomials can

be readily obtained from polynomials of the previous order. These Self-Generat-
ing Functions have been successfully used by the author [11] in the investiga-

tions of the nonlinear dynamic behavior of beams with various boundary conditions.

The analysis here is carried out with the aid of nonlinear governing equa- 0 S

tions obtained by the use of the Berger-type approximation. Numerical results
for linear and nonlinear frequencies are presented for rectangular and square
anisotropic plates using the zero, first and second-order Self-Generating Func-

tions. For nonlinear static problems, the corresponding nonlinear algebraic

equations derived from the modal equations of the dynamic case are solved to ob-
tain the load-deflection relations. Effects of amplitude, geometry and material 0
constants on the static and dynamic behaviors are discussed along with compari-
sons wherever possible. Results corresponding to the three different Self-
Generating Functions are tabulated to show the convergence. The Self-Generating

nature of these polynomial functions enable one to improve the results by consi-
dering higher order functions and therefore obtain results which are more
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reliable. ?resent results for all special cases are in excellent agreement with
existing solutions for both nonlinear vibration and bending problems.

2. ANALYSIS

A plate of dimensions a and b and of constant thickness h composed of S
homogeneous anisotropic material is considered. The origin of the coordinate
system is located at the left corner of the midplane of the undeformed plate.
The principal elastic axes L and T are inclined at an angle to the x,y coordin-
ate system which are parallel to the plate edges. The elastic stiffnesses aij
are given by |0

"-4 4

11 m 2 p °  n 4 °

12 I 0 1  - 4 PA ET

44 0
*22 1 n 4 2 p 0 m 4 I 4 0V L ET

122o oLT

a16 nm 3 2 -mn 2p2

3 3
* 26 mn 3 3 -nm 2p3  IGLT 0

a6 6  I0  o2
0 IA0 P1IA (i)

where EL and ET are the major and minor Young's moduli, VLT and 
vTL are the

Poisson's ratios and GLT is the shear modulus and

m = cos n = sinp
22

I = I- LT VTL o = m n

i1 = m 4+n4 12 = mn(n 2-m )

3 = mn(m2-n
2 ) v TLEL = VLTET (2)

The governing nonlinear dynamic equations which are based on the extended Berger- 0
type theory can be written in terms of aij as below.

2h2

El +X E +( +X3)y = e = (3)
1 1 2 2 3 12

Cle{w, xx+X 1 W, yy+2(X 2+X3 )W, xy}

+ q(x,y)-ph w,t t = -- L(w) (4)

where, 0
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L(w) = a11 W, xxxx+4a1 6 W,xxxy+2(a 1 2+2a66 )

W, xxyy+4a 26 W,xyyy+a22 W, yyyy

Xi = (a 2 2 /a1 1 )1/2 ; A2  (-2a16/a I/2

3 =(-2a2 6 a1 1 ) 1/2 C = a11 h ; (5)

Fi, E2 and y are the median surface strains defined in terms of displacement com-
ponents u°, v° and w as

o' 2l = u 'X + 2 W x

0 1 2
Eu , vy + W, y

oxvy
' 0,y + v'x + W, x W, y (6)

q(x,y) is the applied load per unit area of the plate, p is the mass density and
h is the uniform plate thickness. In equations (4) and (5) a comma denotes par-
tial differentiation with respect to the given coordinate.

Equations (3) and (4) constitute a system of two nonlinear equations gov-
erning the large amplitude flexural vibrations of anisotropic plates. Solutions
to these equations are obtained with the help of the following Self-Generating
Functions of zero, first and second orders. The subscripts ss and cc stand for
the simply supported and clamped boundaries respectively.

zero-order:

WXYt= Wss(4_2x3a3 Wy4_ 3 b3 0w(x,y,t) (w (W)ss(X4-2ax3+a x)(y4-2by3+b y)

w(x,y,t) = (wo)cc(x 4-2ax 3+a 2x 2)(y 4-2by 3+b2 y 2 ) (7)

first-order:

8 7 35 53 70 0
w(x,y,t) = (wl )ss(x -4ax +14a x -28a x +17a x)

(y 8-4by 7+14b3 y 5-28b5 y 3+17b 7y)

w(x,y,t) = (wl ) cc(3x 8-12ax 7+14a2 x 6-14a5 x 3+9a6 x 
2 )

8 7 2 6 5 3 6 2
(3y -12by +14b y -14b y +9b y ) (8)

5 6

* 0
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second order:

w(x,y,t) (w2)ss(x 12-6ax +55a3 x 9-396a5 x7

+1683a7 x 5-3410a9 x 3+2073a lx)(y 12-6by11

+55b 3y 9-396b5 y 7+1683b7 y 5-3410b9 y 3+2073b 1y)

w(x,y,t) = (W(3X 12-l8ax 1+33a2 x -198a5 x 7+297a6 x 6-330a9 x3

2 121c20c+27 6

+213a x 2)(3y 12-l8by +33b2y-198b5y7+297b6y6 
0 •

-330b9 y 3+213b y 2) (9)

For an y given boundary condition, the zero-order function is first derived by sol-
ving a beam problem subjected to a uniformly distributed load. Since the deflec-
tion shape is now known, the corresponding inertia load is again applied on the beam 0 •
to generate the first order function. This procedure is repeated for successive
higher order functions. In the case of plates identical functions are used for
both the x as well as y coordinate directions as shown in equations (7) to (9).

Assuming that the in-plane movements at the boundaries of the plate are
fully prevented [12] equations (7), (8) and (9) are substituted in equation (3) 0 S
and an integration procedure is followed to obtain e. The value of e thus ob-
tained in each case is substituted again in equation (4) along with equations
(7), (8) and (9) and Galerkin's method is used by integrating the resulting equa-
tion over the area of the plate. Such a procedure results in the following sys-
tem of time-differential equations in the case of simply supported and clamped
plates. 0 0

- - -3
W, +A u+B (w) = Cc q* (10)

3w , +A i-lB 69) = C q* (11)
TT cc cc cc o

w and i in equations (10) and (11) are the nondimensional amplitudes. For each
of the Self-Generating Functions in equations (7), (8) and (9) these amplitudes
are obtained by nondimensionalizing the maximum values of wo, wI and w2 with
respect to the thickness of the plate. q*o is the nondimensional applied uni-
formly distributed load given by (qoa4 /EL h4 ) and T is the nondimensional. time
defined in terms of t as 12=t2Dl/a4ph. Dl is the flexural rigidity of the plate 0 0
in the L direction given by EL h 3/1211. In the absence of any externally applied
load q*o, equations (10) and (11) can be solved in closed-form and the solutions
will be in terms of variations of amplitude with frequency of vibration. In the
case of nonlinear static problems, i7 and i are independent of T and therefore
the time-dependent terms in equations (10) and (11) vanish resulting in a set of
nonlinear algebraic equations. These equations are further used in order to ob- 0 •
tain the nonlinear load-deflection relationships. The numerical results in both
static and dynamic nonlinear cases are dependent upon the coefficients A, B, and
C, which are obtained by pcrformin. a] the integra ions by hand.

3. NUMERICAL RESULTS

Numerical results are presented in Tables 1-6 for anisotropic rectangular
and square plates. The plate material is treated to be homogeneous and its prin-
cipal axes of elasticity are inclined arbitrarily with respect to the rectangular
x and y coordinates. The elastic constants referred to the principal directions
(L,T) are (EL/ET)=3,10; VLT=0. 2 5,0. 22 and (GIT/EL)=0.2 ,0.03 3 , for glass-epoxy and
boron-epoxy materials, respectively. The ratio of the nonlinear frequency W to
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the corresponding linear frequency 0Co of the classical thin plate was computed
for anisotropic plates of various aspect ratios and orientation angles at differ-
ent nondimensional amplitudes. Self-Generating Functions of zero-order, first-
order and second-order applicable for simply supported and clamped plates have
been used to obtain the numerical results. Since higher order functions become
more and more complex, the analytical effort required to solve the problem in- 9 g
creases considerably. The results presented here are based on an extended
Berger-type theory for which an assumption of an appropriate shape function for
w alone is sufficient. The corresponding von Karman-type theory will, however,
require not only a good choice of function for w but also for stress function F.
An appropriate choice of F compatible with the corresponding w is often very
difficult. Moreover, numerical results reported elsewhere [13] show very close a
agreements between these two nonlinear theories for orthotropic plates of vari-
ous aspect ratios. The values of nondimensional fundamental frequency

are given in Table I for clamped plates of various as-
pect ratios. Present results are extremely close to the exact solutions report-
ed in [3]. Similar results for simply supported boundary conditions show close
agreements with the results in the literature but the details are not presented 0
here. Numerical values for the modal equation coefficients A, B and C are tabu-
lated in Tables 2 to 4. For each of tile cases considered here, these coeffi-
cients show a remarkable convergence. These coefficients have been compared
with those from References [12,16] for )=o. In the case of simply supported
plates the agreement is exact whereas in the case of clamped plates the present
values are better than those found in the literature. It is clear from the nu- 0 0
merical values that each coefficient converges to a steady value fairly quickly.
Finally, numerical results are presented in Tables (5) and (6) to show the varia-
tion of load with the deflection in the case of nonlinear static problems and
the variation of frequency ratio with the amplitude in the large amplitude vibra-
tion cases. It is clear that the nonlinearity is of the hard-spring type for
both static as well as dynamic problems. 0 0
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TABLE 1. Comparison of fundamental frequency results for clamped plates.

Isotro ic Boron-epoxy *
Present References Present References

0.5 24.6475(0) 25.6988* 23.4243(0) 24.8244*
24.6456(1) 25.6495t 23.3855(l) 24.7932t
24.6486(2) 26.4388@ 23.3870(2) 25.5084@

24.5800@ 4
1.0 36.0000(O) 38.9292* 28.4394(0) 32.9923*

36.1018(1) 38.6986t  28.4776(1) 32 .753 5t
36.1102(2) 40.3416@ 28.4826(2) 34.2695@

35.9860@
1.5 60.8564(0) 64.7451* 40.7713(0) 47.8812*

60.9481(1) 6 4 .4 75 3t 40.8444(1) 47.4995t
60.9591(2) 66.8824@ 40.8522(2) 49.7996@

60.7500 @

(*,t,@) Calculated from References [14,15,3]

(0,1,2) Zero to Second-Order Self-Generating Functions.
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TABLE 2. Values of A,B,C in Equations (10) and (11) for Anisotropic
Rectangular Plates (r=0.5, c=O).

A,B,C Glass-epoxy Boron-epoxy

(0) (1) (2) (0) (1) (2) 0

A 122.72 122.57 122.57 102.43 102.29 102.29
ss
B 194.37 191.38 191.33 172.82 170.16 170.13
ss

C 18.96 19.05 19.05 19.27 19.36 19.36
ss

A 548.70 546.88 546.95 513.46 510.32 510.33
cc
B 186.82 186.96 187.00 166.11 166.24 166.27
cc
C 20.24 20.45 20.46 20.57 20.78 20.79
Cc

0

TABLE 3. Values of A,B,C in Equations (10) and (11) for Anisotropic
Square Plates (r=l, =30*).

A,B,C Glass-epox Boron-epoxy 0

(0) (1) (2) (0) (1) (2)

A 250.63 250.42 250.42 191.92 191.78 191.78
ss
B 346.06 340.73 340.66 201.46 198.36 198.32
ss
C 18.96 19.05 19.05 19.27 19.36 19.36 0 4ss
A 798.45 804.18 804.59 554.69 560.74 561.10
cc
B 332.62 332.88 332.94 193.64 193.79 193.83
cc
C 20.24 20.45 20.46 20.57 20.78 20.79
cc

0 4

TABLE 4. Values of A,B,C in Equations (10) and (11) for Anisotropic
Rectangular Plates (r=1.5, 4=60*).

ABC Glass-epoxy Boron-epoxy

(0) (1) (2) (0) (1) (2)

A 720.61 719.93 719.93 578.39 577.87 577.87ss

B 1017.07 1001.42 1001.23 676.31 665.91 665.78*ss S

C 18.96 19.05 19.05 19.27 19.36 19.36
ss

A 2606.16 2613.54 2614.47 2005.32 2013.79 2014.60
cc
B 977.58 978.33 978.53 650.05 650.55 650.68
cc
C 20.24 20.45 20.46 20.57 20.78 20.79
cc 0 4
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TABLE 5. Values of Nondimensional Load q*o for Anisotropic Clamped
Plates (r=l, =30).

w Glass-epoxy Boron-epoxy

0.0 0.0 0.0 0
0.5 21.697 14.660

1.0 55.598 36.312
1.5 113.908 71.949

TABLE 6. Values of Nondimensional Frequency Ratio (w/wo) for Anisotropic
Clamped Plates (r=l.5, =600).

_;7 Glass-epoxy Boron-epoxy

0.0 1.0000 1.0000
0.5 1.0346 1.0299
1.0 1.1327 1.1153
1.5 1.2790 1.2448

0

5/
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LARGE AMPLITUDE VIBRATIONS OF INITIALLY STRESSED
BIMODULUS THICK PLATES

Lien-Wen Chen and C. J. Lin

Department of Mechanical Engineering o0
National Cheng Kung University

Tainan, Taiwan, R.O.C.

0)
ABSTRACT (D

2 The nonlinear governing differential equations of an initially stressed
bimodulus thick plates are presented. The Galerkin approximate method is used
to solve the large amplitude vibration problems of a simply supported rectan-
gular bimodulus thick plate subjected to a combination of a pure bending stress
and extensional stress in the plane of the plate. The Runge-Kutta method is
employed to solve the nonlinear equations. The present results are compared
with the previous results in the literature for ordinary thick plates and with
the results of bimodulus plates in small amplitude region. Effects of various
parameters on the large amplitude vibrations of bimodulus thick plates are
studied.

1. INTRODUCTION

Recent investigations have shown that some composite materials behave dif-
ferently in simple tension and compression (1). The tensile response of some
polycrystalline graphites and high-polymers also behave differently in tension
and compression (2) . This characteristic behavior is actually curvilinear, it
is often approximated by two straight lines with a slope discontinuity at the
origin. Thus, they are called bimodulus material (see Fig. 1).

The analysis, and hence the design, of structures fabricated from bimodu-
lus materials is more difficult to accomplish than it is with conventional ma-
terials. The reason for the increased analytical difficulties is that it is
not usually known a priori which parts of the structure are in tension and
which are in compression. Kamiya studied large deflections of a circular plate
by finite difference method (3). He also applied the energy method to large
deflection problems of a rectangular plate (4). The effects of transverse
shear had been studied by Kamiya in (5). Jones studied the buckling of bimodu-
lus circular cylindrical shells (6) and the buckling of stiffened multi-layered
bimodulus circular cylindrical shells (7).

The vibration problems of thick rectangular bimodulus composite plates
are first studied by Bert and his associates (8). Bert and Kumar have also in-
vestigated the vibration of cylindrical shells (9). Recently, Chen and Doong •
studied the linear vibrations of initially stressed bimodulus thick plates (10).

The large amplitude vibration of initially stressed thick plates has not
been reported in the literatures. In the present study, the nonlinear equations
of a bimodulus thick plate in a general state of nonuniform initial stress are
derived by using the average stress method of Brunelle and Robertson (11). The
large amplitude vibrations of a simply supported rectangular plate in a state
of initial stress are studied.

2. FORMULATION

The different properties in tension and compression of bimodulus materials
can cause a shift in the neutral surface away from the geometric midplane, hence
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symmetry about the mid plane no longer holds. The result of this is that
bending-stretching coupling of orthotropic type are exhibited, i.e. analogous
to a two-layer cross-ply plate (one layer at 00 and the other at 900) of ordi-
nary orthotropic material. The governing equations of composite materials
could be used for bimodulus materials except that the stress-strain relations
must be of the bimodular form as in Ref. (8). 0

Chen and Doong derived the nonlinear governing equations for ordinary
plates by average stress method (12, 13). In the present study, we used the
same procedures combined with the convention expressions of the composite ma-
terials to derived the nonlinear governing equations of the initially stressed
bimodulus thick plates. 0

We consider a simply supported rectangular plate in a state of initial
stress. The state of initial stress is.

Ol = GN + 2x 3CM / h (1)

where GM and aN are taken to be constants. It is comprised of tensile and bend-
ing stresses (Fig. 2). The only non-zero stress and moment resultants are

h h

Nxi= h O 1 1 dx3 = haN Nxi 2 hdx h M 6
0 - --

h

M*f h 011 x2dx 3 = h3aN /12 (2)

Lateral loads and body forces are taken to be zero. For a cross-ply composite
plate, the laminate stiffnesses consist solely of A1 12 , A , A • B i B

B ,22 66 11 12
B 22 , B 66  Di ,12' D 2 2 , D6 6 , S 44 and S 55 . The governing equations (3-7) and
boundary conditions (8-9) are as follows:

(A (u + 1 w 2 ) +A (u + jw, 2 ) + B + B ,
11 1,1 2 , 1 12 2,2 2 ,2 11 V2 ,2  12 2,2,1i

+ (A (u + u +w 2 w +B (1, + ))
'66 1,2 2,1 2 , 2 66 1,2 2,1 ,2

+ (N u +M xl ) = phu (3)
xl i,i x i,i ,1 1

1 2) +A1i 2)

(A (u +-lw 2) +A Cu 1- 2)+ B 41 +B1 )12 1,1 2 , 1 22 2,2 2 ,2 12 1,1 22 2,2 ,2

+(A~~~ Cu + ww)B (1 +41~+ (A66 2,2 2,26 (22,2 2,1) ,

+ CM u2  Mx 42,1
) ', = ph 2  (4) 0

{(A +- 1 )+B + A (u +- )+B ])w11 (1,w2 ,1 111,1 12 2,2 2w, )2 12 2,2 1

+ {(A 6 6 (u2 ,2 +U ,2 (uw2 ++B 6 6 +1 ,2+2, 1 ))w,2},2 0

+{(A 66 Cu2 ,1 +U 1 ,2 +w1 ) +B 6 6 (p1,2+12, 1 )W ,2 2

+ 12 (1 +, +w Bl21,122 CU2 , 2 + )w 2)66 2 1 1, 6 1 2 21 2 '

+((A Cu + 2)+B +A 2,2.
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" B )w , + (K 2S (i +w + (K 2 S (92+w
22 2,2 2 2 44 1 ,1 , 55 2 ,2 2

+ (N w 1) =hw (5)
X1 ,,1 ,

(B (u +  
ww 2) WB 2 + D1 w ,2) +D +D2, )

+ (Mxu +M* ) - 2 (+W i) 3 (6)
xl 1 x 1,1 ,1 1 2

(B 6 (u 2 +u +w w )+D ( 1,2
+ ( 1 2  u 2,1 1 2 66 ,2 +1 , 1

(B2 u, +W, 1 2) + B 2 2 (U 2 2 +.w, 2 ) +2ll •

+ D K 2  S ( +w ph' (7)
22 2,Z),I - 55 2 , 2 12 2

where the parameters and coefficients are defined in the Nomenclature section
at the end of the paper.

The boundary conditions, for the simply supported plate, are on the
X, = constant edges

w =0

2 = 0

u 2 =0 (8)

F F =N u +M + +A Cu +-W )+ B
X1I IF I l X1,1 I, I 'l 2B1 1 I'i

+ A Cu + _W 2 ) +B * 0
12 2,2 2 ,2 12 2,2

M +M = M u +M +B (u +1 2 D11 1i' X1 i' 11 1,1 1W 11 D ll l

+ B1 (u 2 2 + Lw, 2 ) +D 1 2 2 2 =0

on the x 2 = constant edges

w =0

u = 0 (9)

1 2F + F =N u +M +A (u + )+B
22 22 X2 2,2 X2 2,2 22 2,2 2 22 2,2

+A Cu +-w 2)+B = 0
21 1,1 2 ,1 12 1,1

m + AM =M u +M*"P +B (u +-w 2+D'
22 22 X2 2,2 x2 2,2 22 2,2 2 ,2 22 2,2

+ 9iu + _LW 2 )+D p =021 ( , 2W + 1 D2151,

569



3. Results and Discussions

The one term Galerkin approximate method is used to solve the nonlinear

differential equations (3-7) for a simply supported rectangular plate. The
displacement fields are assumed to be

w = h w(t) sin Tx1 sin 7x2a b

=  P (t) cos - sin Tx2a b
= I1 TX2

(2 2 (t) sin 7xI cos - (10)a b

uI= hu1 (t) cos - sina b

u2= hu 2 (t) sin Xl cosx2a b

Substitute expression (10) into the governing equation (3-7) and use the Galer-
kin procedure. Then the following five nonlinear equations are obtained. 0

CU 1 +C221 +C 3u 2 +C4w 2 +C 5  2 = 1  (11)

C6 12 +C 7 u 1 +C 8u 2 +C 9w
2 +C 3 2 k = u2  (12)

C1 oulw+Clu 2 w + C1 2 W3 + C 3 W+C 1 4 lW+Cl 5 2 W+C 1 6 l +C 1 7 ) 2 = w (13) 0

C1 8 u 1 +C 1 9 U2 +C 2 0  +C 2 1 1 +C 2 2 2 +C 2 3w = C24 1  (14)

C2 5 U1 + C 2 6 u 2 + C2 7w
2 +C 2 8 1i+C 2 9 p 2 +C 3 0w = C 3 1i 2  (15)

Cl = -12A - 12r 2 A 12K3 - ---
- 266  K

C2 = -12B - 12r 2 B --K

C 3 = -12r 1A 1 2 - 12riA6 6

128 -2 - 2- •
C4 = -7- (3K) (21 rl2A2 + ri 2 A 66 )

C 5 = -12rl(B 66 +012)

C 2B 2- 2KI r12

C6 = -266 - 12r, B2 2  K

C 7 = 12r, (-A 1 2 - A 6 6 )

C = -12 (A + r 2 A2 + -8 66 21 22 +

128 - - 2C 9 = - =IT(3K) rl(A. + 2r, 2 2 -A2

128 - - 2 *
CI 0 = -- -(3K) (-2A11 + 2r 1

2 A66 - r2A 12 )

256 - 12 A2
CI= -- 5 rl (3K) (A 6 6 - A12 - r 22 )

C 9=- (- -- 9 -- 22 4

C 12K= - All + r 2 A 12 +2 r 4 A2 2 + 2r ) A66

C 13 = _72 (S +r 5 5 ) - 12 K- r2
256 - -

C14 = -- Tr2 (3K) (B11 + r 1 2B66 - r B2 )

256r - -

C 15
= - (3K) (-B 6 6 + B12 + r 2-g
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i S
r
2  -_

C = -7T (T- K) SL
16 2 44_

C17 = ir i (7T K) S 5 5

1 2 r 2  5 5K ~ l 2
C 1 =-(12B 11 + 12r B66 + 2KI~rj2

K

C 1 9 = -12rI (B12 + B6 6 )

128 - -2
C 2 0 = - C (3K) (2B 1 - r, B 2 +r I2B 66 )

21 -12 (D + r 2 6) K 2 --
11 166 - 12 44

C 22 = -12rI (D66 + D 12)

2 -
C2 3 = r (2 K) S44

C25 = -12r (B66 + B 1 2) C 2 6 = -12 2 + 2B) - 2K1 ~r1251 6 6 1 2  K I
128- - - -

C27 = - 2 r, (3K) (B6 6 + 2r B22 -

C 2 8 = - 12r 1 (D6 6 + D1 2 )

C = -12 (D + r + 22 r 1 D1 2 ) - K - S55= 12

C =-rrr1
2  K) S30- K) 55

1
C 2 4 = C 3 1  12

C 32 = 12r, (B66 + B1 2 )

The fourth order Runge-Kutta method is used to integrate the nonlinear
equation (11-15). The neutral surface positions although are functions of x1
and x2 for the large deflection of the plate, we neglect the influence of it and
take the neutral surface positions to be a constant. The neutral surface posi-
tions are obtained from the static solutions which are the same procedure as in
the references (8, 10). The time increment is AT= 0.0005. The initial condi-
tions are zero except W(0)= =Wmax . The value Of Wmax may vary from 0.2 to 1.0.

We first use the present method to obtain the period of small amplitude vibra-
tion. The present results are compared with reference (10) as in Table 1. Ic
can be seen that the solution method is satisfactorily accurate.

The maximum amplitude wmax, vs. frequency ratios Q/Q* are plotted in Fig. 3,
(* is the nondimensional natural frequency of a bimodulus plate in large ampli-

due and Q is the nondimensional frequency of small amplitude vNjration of a
bimodulus plate. It shows that the frequency ratio decreases when the maximum
amplitude wmax increases. It means that the nonlinear frequency will increase
as the amplitude becomes large. The effects of initial stress also are shown
in Fig. 3. The tensile stresses increase the frequency ratio and compressive
stresses decrease the frequency ratio. The compressive stresses have more sig-
nificant effect especially when it approach the buckling lcad. Fig. 4 shows
the effect of tensile to compressive modulus ratio Et/Ec. Et/Ec= 1.5 means
the tensile strength is stronger than compressive strength, so will have higher
frequency ratio than Et/Ec= 0.5. The most interesting effect is shown in Fig.
5.

When the ratio 8 of bending to normal stress increases, the frequency ratio
Q/Q* decreases with Et/Ec= 0.5. The reverse effect is seen for the Et/Ec= 1.5
curve. The reason is that the neutral surfaces have different positions for
different Et/Ec. •
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Plots are made of period coefficient T* vs. thickness parameter a/h in
Fig. 6. We can see that the period T* is small when the thickness of the plate
is large. It means that the nonlinear frequency will increase with the thick-
ness. The effects of S= G on the period T* are shown in Fig. 7. G* is the
transverse shear modulus. The shear resistance becomes large when G* is large. 0
We can see that the large S will have large period T*. Large S means that it
easily deforms in transverse direction, so that it will have lower frequency

4. CONCLUSIONS

The numerical studies of large amplitude vibrations of the simply sup-
ported rectangular bimodulus thick plates have been carried out. From the
numerical results, the following conclusions are reached

(1) The nonlinear frequency will increase with the amplitude of vibration.

(2) The compressive stresses will reduce the frequency ratio Q/Q* and the
tensile stresses have reverse effect.

(3) The frequency ratio decreases as the bending to normal stress ratio
increases when the tensile modulus Et is smaller than the compressive
modulus EC. The reverse phenomena will appear when the Et is larger 0
than Ec .

(4) The thicker the plate is, the larger the nonlinear frequency is.

(5) When the plate is transverse isotropy, the weak deformation resistance
in the transverse direction will reduce the nonlinear frequency Q*. 0

The large amplitude plate vibration of two or more layer of composite ma-
terials and the large amplitude of bimodulus circular plate will be studied.
These studies are believed to be helpful to understand the vibration phenomena
of thick bimodulus plates.
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NOMENCLATURE

a, b side length of plate in x, and x2 directions
Aij stretching stiffness
Bij bending-stretching coupling stiffness 0

Dij bending stiffnesses
D D=Ell th/ (-vi t

2

Aij dimensionless in-plane stiffness Aij = Aij / hD
Bij dimensionless bending-stretching coupling stiffness Bij = Bij / h2 D

Tij dimensionless bending stiffness Dij = Dij /h 3D

EtEc respective compressive and tensile Young's moduli
GtGc respective compressive and tensile shear moduli
Gt!Gc*respective cokpressive and tensile transverse shear moduli
h plate thickness
K1  initial stress coefficient Kl = 12bNx/ T 2h2D
Nx1 Mxj stress and moment resultants

Qijk plane-stress reduced stiffness coefficients 5
S transversely isotropic parameter, S = Ell t / G *

Sii thickness-shear stiffnesses
u lu 2 in-plane displacement
w transverse displacement
Zn neutral surface positions for ul,1 + ZnIii = 0

ratio of bending stress to normal stress, a = OM/ON
p density
t, 1, 2 angular changes of lines initially normal to the middle surface
vt,vc respective compressive and tensile Poisson's ratios

K42,K5 thickness-shear correction factors = 7
2 /12

( ),2 2( ) / 3x 1 3x 2
K K =a / h2K

2

rl aspect ratio, rl = a/b
T time parameter, T = t/ D/12J 2pha2

T* period coefficient of bimodulus plate in large amplitude, having dimen-
sion T

Q* frequency of bimodulus plate in large amplitude vibration, Q* = l/T*
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frequency of bimodulus plate in small amplitude vibration

K i  -2 -1 0 1 2 3

A 6.8199 4.65 3.7605 3.2335 2.882 2.6271 0

B 6.834 4.6582 3.7593 3.2371 2.8854 2.6281

Table 1 Comparison of the present results of period with
the results of linear theory.

A: Present results. B: results of linear theory

t C
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NON-LINEAR MULTIMODE RESPONSE OF CLAMPED RECTANGULAR

PLATES TO ACOUSTIC LOADING

Chuh Mei

Old Dominion University

and 0

Donald B. Paul
Air Force Wright Aeronautical Laboratories

1. INTRODUCTION

") Acoustically induced fatigue failures in aircraft structural components
have resulted in unacceptable maintenance and inspection burdens. In some
cases, sonic fatigue failures have resulted in major structural redesigns.
Therefore, accurate prediction methods are needed to determine the sonic
fatigue life of structures.

Many analytical and experimental programs to develop sonic fatigue design
criteria, however, have repeatedly shown a poor comparison between analytical
and measured maximum root-mean-squarer(RMS) strain at high sound pressure
levels. [1,2]. Deviations in excess of 100 percent are common. Neglecting
large-deflections in the analysis has been identified as a major reason for
the enormous discrepancy [2]. Recently, analytical efforts [3,4] with a 6
single-mode approach, and a test program [5] have demonstrated that the
prediction of panel random response is greatly improved by including the
large-amplitude effect in the formulation. Test results [5] also show that
there is more than one mode responding. Multiple modes were also observed
by White [6] in experimental studies on aluminum and carbon fiber-reinforced
plates under acoustic loading. White also showed that the fundamental mode 6
responded significantly and contributed more than one-half of the total
mean-square strain response. Therefore, in order to have an accurate
determination of the random response of a structure, multiple modes should be
used in the analysis. This paper presents an analytical solution technique
for the large-amplitude random response of clamped rectangular plates
considering multiple modes in the analysis. The von Kirman large-deflection 0
plate equations are solved by a technique which reduces the fourth order
nonlinear partial differential equations to a set of second order nonlinear
differential equations with time as the independent variable. A Fourier-type
series representation of the out-of-plane deflection and stress function is
assumed. The compatibility equation is solved by direct substitution, and
the equilibrium equation is solved through the use of Bubnov-Galerkin 0
approach. The acoustic excitation is assumed to be Gaussian. The
Krylov-Bogoliubov-Caughey equivalent linearization method [7,91 is then used
so that the derived set of second order nonlinear differential equations are
linearized to an equivalent set of second order linear differential equations.
Transformation of coordinates from the generalized displacements to the
normal-mode coordinates, and an iterative scheme are employed to obtain RMS 0
maximum panel deflection, RMS maximum strain, and equivalent linear (or
nonlinear) frequencies for rectangular plates at various excitation pressure
spectral densities. Convergence of the results is demonstrated by using 4,
6, 10, and 15 terms in the transverse deflection function.

2. MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE S

Assuming that the effects of both inplane and rotatory inertia forces

can be neglected, the dynamic von KarmAn equations of a rectangular isotropic
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plate are 4

L(w,F) = 0v4w + phw,tt + gw, t  P(t)

- Wx, + F, - 2F,xW,)=0 (1)

V4F = Ew -w W, W,) (2) 0

The transverse deflection which satisfies the clamped boundary
conditions

w = w, x =0 on x - 0 and a (3a) 4

w = w, = 0 on y - 0 and b (3b)

y

is assumed as

w(y,t) = h E E W Mn(t)fm(x)gn(y) m,n 1,2,3,... (4)
mn

where

fm(X) = Cos (m-l)Mx -Cos (m+OxX (5)
a a

S(Y) Cos(n-lny -Cos (n+l(6)

Upon examination of the foregoing expression for the transverse 0
deflection, it is found that the compatibility equation (2) can be
identically satisfied if the stress function F is taken in the following
form: 2 x2 2

F = -P "P + Eh E E F COsPIXCO pq = 0,1,2,... (7)
p q pq a p.

Direct substitution of Eqs. (4) and (7) into Eq. (2), performing the
required differentiations, multiplications, and a Fourier analysis of the
resulting terms yields a quadratic relationship between F and W

pq mn

1 W W(8p 1 E E Bpqmnki mnk (8)
Fp=(pZ/(x + q a)Z

in which B are integers (tabulated in Reference 10) and a=a/b. A •
pqmnkl

complete description of the solution technique used to solve equation (2) is
given in Reference [10].

The average edge loads P and P in Eq. (7) are determined from inplanex y
boundary conditions. The particular inplane boundary condition of most
interest in the study of sonic fatigue of structural panels is the one in
which the edges are restrained from movement, that is

5 7
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u=O on x=O and a (9a) 0

v=O on y=O and b (9b)

or

,L dx f0(F , vF,xx W,x]dX 0 (10a)

ObX 0 yy XX
b~v b[ 1

f . _6V = -0 f (F, vF,) - w,dy 0 (10b)

Performing the differentiation and integration as indicated in Eq. (10)
yields relationships for P and P in terms of the deflection coefficientsx y
Wmn. These relations are too lengthy to reproduce here, but may be found

in References [10] and [Ill.

With the assumed deflection w given by Eq. (4) and the stress function F
given by Eq. (7), Eq. (1) is then satisfied by applying Bubnov-Galerkin
method:

ff L(wF)frgsdxdy = 0 r,s = 1,2,3,... (11)

The integration of each of the terms in Eq. (11) can be found in Ref. [101.
A set of nonlinear time-differential equations is obtained after performing

the integration over the total area of the panel, and it can be written in
matrix notation as

[M]{W) + [C]{ } + [K]L{W} + {P(W)} = {p(t)} (12)

where [M], [C], and [K]L are the generalized mass, damping, and linear

stiffness matrices, respectively, and{3} is a vector function which is cubic
In the generalized displacements {WP.

If the acoustic pressure excitation p(t) is stationary Gaussian,
ergodic, and has a zero mean, then application of the Krylov-Bogoliubov-
Caughey equivalent linearization technique [3,4,7-9] yields an equivalent set

of linear equations as

[MJ{W} + [C](O + ([K]L + [K]EL) {W} = {p(t)} (13a)

or

[M]{W} + [C]{} + [K]{WI = {p(t)} (13b)

The elements of the generalized equivalent linear or nonlinear stiffness
matrix [K]EL can be derived from the expression [8]

(KE r s] (14)
EL rsi -aTij
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where C{O is an expected value operator. The elements (KEL)rsij are too S

lengthy to reproduce here, but may be found in Reference [11. The
approximate generalized displacements {W}, computed from the linearized Eq.
(13), are also Gaussian and approach stationary because the panel motion is
stable.

To determine the mean-square generalized displacements W2  •

mn

an iterative process is introduced. The undamped linear equation of Eq.
(13a) is solved first, which required simply the determination of the
eigenvalues and eigenvectors of the undamped linear equation

wj [M]{j = [K]L{$)j (15)

where w is the linear frequency of vibration, and {@}4 is the normal mode
shape. J

Apply a coordinate transformation, from the generalized displacements to
the normal coordinates (this analysis will use the first 4 modes), by

{W} = [€] {q} 44m (16)
mxl mx4 4xi

where each column of [f] is a normal mode {}. The damped linear equation of
Eq. (13a) becomes

IMJ{q) + CCJ{ } + NJ L{q ) {P(t)} (17) 0

where

[]T[M][,] (IBa) •

=C :] T~c][€] : 2 w]M
(18b)

0K L = [,]T[K] L] =r2jCM (18c)

p}= ¢T~p
M Eo]T{P} (18d)

The jth row of Eq. (17) is
"" 2 Pj

qj + 2Cjj j + Wj - M S S

.1 (19)
The mean-square normal coordinate is simply

Z 3(20)

4M Cj Wj

where S P(i) is the spectral density function of the excitation P (t). The

convariance matrix of the linear generalized displacements is
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LW W SP() {}T (21)
Lmn k1 L =  "F *j 2

3 Jj

This initial estimate of expected value on generalized displacements can now 0 0
be used to compute the generalized linear stiffness matrix [K]EL through Eq.

(14). The undamped linearized equation of Eq. (13) is solved again

Q,2[M]{,} = ([K]L + [K]EL){,}. (22)

where j is the equivalent linear or nonlinear frequency of vibration, and
{j } is the associated equivalent linear normal mode shape. Then Eq. (13)
is transformed again and has the form as

NM4f{q} + r.J{4} + CK{q) = {P(t)} (23)

in which

N = [l]T( (K] L + [K]EL)[0] =r'J[MJ (24)

the jth row of Eq. (23) is

pj+Ijjj+1 . 0+ i J (25)
i

and the displacement convariance matrix is

LWmkl( = T (26) *

The diagonal terms of (W W kl are the mean-square generalized displacements

W mn" As the iterative process converges on the iter-th cycle, the relations

iter (j)iter - (27a)

2 2(27)
J ) ite j iter-1 2b

(W n) iter (W mn)iter-i 2c1

become satisfied. Convergence is considered achieved when the difference of
the RMS displacements satisfies the requirement

(RMS W mn)iter- (RMS Wm) iter-1 o 3 (28) p

(RMS Wmn )tter

Once the RMS generalized displacements are determined, the RMS •
deflection and the maximum RMS strain can be determined from Eqs. (4), (7)
and the strain-displacement relations as follows.
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For a rectangular plate (a_-b) with clamped support along all four 0
edges, the maximum bending strain occurs at the extreme-fiber perpendicular
to its long edge at the midpoint.

h a2W (29a)

(Cy)b ± 7

or b

eb 2  2
( b = t 2 UfmW [(n-1) 2cos (nb 1 )ny  (n+1 C co n+ )  ]W (29b)

h mn

The membrane strain is given by

(Ey)m - (F,x- vF,yy (30a)

or

cb 2  2

( )m = EE WmnZy (mn) + UZZEC B .WmnWk1 (30b)
h mn mnklpq pq pqmnkl

in which

n2 (q2 2 P2/a2)CO X COS- (31)
Cpq + q( )

From

Cy= y)b + (Ey)M (32)

the maximum mean-square strain becomes S

2 2y 2
yZ 2 yb  2 b 2  c b 2  yb  2 (33)

For Gaussian random processes with zero-mean we have

(WijWkIWmn) (34)

* S

(WijWklWmnWrs) = (WijWkl) (WmnWrs) (35)

+ &(WijWmn) (WklWrs) + &(WijWrs) &(WklWmn) •

and the maximum RMS strain can be determined from Eq. (33).

5 8
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3. RESULTS AND DISCUSSION

Using the present formulation, the nonlinear response of square and
rectangular (0- 2) plates with all edges clamped and subjected to broadband
random excitation are studied. In the results presented, the white noise
excitation is band-limited with a frequency bandwidth of 25 Hz to 6000 Hz,
the damping ratio is assumed to be constant for all four normal modes and S S
Poisson's ratio is equal to 0.3. Mean-square center deflection and maximum
mean-square strain are presented in a nondimensional form. The
nondimensional forcing spectral density parameter is defined as

2 T S (W) (36)
f P 2h4 D 3/2

Also, since the loading is symmetric, only symmetric generalized
displacements W are retained in the transverse deflection function. S S

The convergence of the solution technique was examined in order to
determine the degree of accuracy possible with a highly truncated transverse
deflection function series. The mean-square center deflection versus the
non-dimensional spectral density parameter using 4, 6, 10, and 15 terms in S S

the deflection function for a square plate is shown in Figure 1. The
particular generalized displacements that make up the various orders of the
deflection function are shown in Table 1. Figure 1 clearly indicates that a
6-term solution gives accurate results for the nonlinear maximum defection
while a 4-term solution will provide accurate linear results. The maximum
strain occurs at the extreme fiber of the panel and at the midpoint of the S •
long edge. The direction is perpendicular to the edge. Figure 2 shows the
maximum mean-square strain versus Sf for the square plate using 4, 6, 10 and
15 terms in the deflection function. The convergence of the mean-square
strain is much slower as compared with that of the mean-square deflection.

TABLE I • S
Generalized Displacements Used in Convergence Studies

Number Generalized Displacements
of terms W11 W13 W3 1 W3 3 W1 5 W 51 W35 W5 3 W 17 W 7 1 W5 5 W37 W 73 W 19 W9 1

4 X X X X

6 X X X X X X

10 X X X X X X X X X X

15 X X X X X X X X X X X X X X X

Figures 3 and 4 show the maximum mean-square nondimensional deflection
versus the nondimensional spectral density of acoustic pressure excitation
for rectangular panels of aspect ratios of 1 and 2 with the damping ratio 0
equal to 0.009, 0.018 and 0.027. Figures 5 and 6 show the maximum
nondimensional mean-square strain versus the nondimensional spectral density
for rectangular panels of aspect ratios of 1 and 2 with the damping ratio

S 0 01
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equal to 0.009, 0.018 and 0.027. Ten terms were included in the deflection
function, to generate the results shown in Figures 3 through 6.

4. CONCLUDING REMARKS

An analytical solution technique is presented for determining the
large-amplitude random response of clamped rectangular panels while including •
multiple modes in the analysis. Accurate mean-square deflect-ins can be
obtained with the use of 6 terms in the deflection function, while it is
necessary to consider as many as 10 or more terms for the accurate deter-
mination of the strains. In the numerical examples presented , a constant
damping ratio for all four modes has been used. However, nonlinear damping
phenomena have been observed in experiments [5,6]. Therefore, further
effort, is needed to better understand the effects of nonlinear damping on
panel response.
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STEEL FIBROUS CONCRETE UNDER SEISMIC LOADINGa
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2
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Potsdam, New York 13676
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1. INTRODUCTION

Steel fibrous reinforced concrete is a structural material that has been
under development in the last two decades [1,2]. Investigations into the
effects on the strength, stiffness, and ductility properties of steel fiber
concrete have included static loading, static cyclic loading, impact loading and
low amplitude dynamic fatigue loading experiments [3,4,5,6]. Results from these
investigations have shown that the addition of fibers to concrete mixes can P •
significantly improve the performance of this material. The improvements on
ductility are especially significant under dynamic loads. One area where the
potential advantage of steel fiber reinforced concrete is foreseen is that of
earthquake resistant design. Conventional reinforced concrete is often unable
to maintain its stiffness under dynamic loads imposed by seismic conditions.
Steel fibers have been shown to improve ductility and toughness properties of •
concrete mixes, provide higher first crack tensile strength and help to retard
spalling under impulsive loading conditions. These characteristics can lead to
better earthquake resistant designs. Steel fiber concrete can be used to reduce
the required amounts of steel bar reinforcement at critical regions of the
structure. Congestion with conventional bar reinforcements is known to be one
of the major causes of bond deterioration at a critical region. In order that 0 •
steel fiber concrete be considered an appropriate alternative for seismic design
its nonlinear constitutive properties under seismic loading conditions must be
known. To determine these characteristics a study of the behavior of steel
fiber reinforced concrete when subjected to high intensity dynamic loadings at
typical seismic conditions has been undertaken. - This study addresses the
question of determining the contribution of steel fibers to the dynamic stiff- 0 •
ness and strength of reinforced concrete members; including the effects of
loading history and cracking. An experimental research program is currently
in progress with the objective of the identification of an appropriate mathema-
tical model that can be used in earthquake resistant design.

2. INELASTIC RESPONSE UNDER SEISMIC LOADING 0 0

All reinforced concrete structures will crack at some intensity of static
and/or dynamic loading. Serviceability of a structure should be maintained
under static design loads and moderate seismic loads. It is not economically
feasible to design a structure to remain serviceable under very intense seismic
forces. However, safety against collapse of a structure should still be main- 0 •
tained under most intense seismic loads. To predict the performance of
structures under seismic conditions we need, among other information, the stiff-
ness, damping, and strength properties of structural members. The determination
of dynamic resistance characteristics of cracked sections is essential for the
assessment of the effectiveness of steel fibrous concrete for aseismic design of

aThis material is based upon work supported by the National Science Foundation

under Grant No. CEE-81-17904

1Assistant Professor
2Professor
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structures.

The causes of cracking and the resulting inelastic effects on the
constitutive relations of reinforced concrete have been investigated both
experimentally and analytically [7]. It has been demonstrated that much of the
inelastic action of a structure subjected to seismic loading occurs in the joint 0
regions where large moment reversals take place and bond slip occurs [8].
Parallel to dynamic experimentation, pseudo-dynamic cyclic tests on beam-column
joints reveal that after the establishment of a plastic hinge, flexural strength
is mostly conserved by numerous hysteretic load cycles although the dynamic
stiffness rapidly deteriorates [9].

The nonlinear inelastic seismic analysis of a reinforced concrete
structure is usually based on a bilinear yield mechanism mode. This model

assumes that a bilinear hinge will develop at the end of a frame member when the
moment at that point exceeds the yield moment of the section. This bilinear
behavior mechanism usually allows for about 90% to 95% reduction in stiffness of
the section during yielding and provides a hysteretic energy loss mechanism in 0
the joint. When used with provisions for global stiffness degradation after
yielding at joints, the bilinear yield mechanism model has rendered a fairly
close description of the actual structural response for typical test cases [10].
However, general stiffness properties of a structure change in a very complex
fashion during the dynamic response and it is difficult to establish a truly
general stiffness degradation model which will be applicable to all dynamic 0
loading situations.

Further experimental and analytical research is needed to study the
behavior of reinforced concrete sections under high intensity dynamic loads to
assess the feasibility of alternative forms of reinforced concrete such as steel
fiber concrete in aseismic design. The flexural behavior of a cracked section 0
during the development of a plastic hinge is of primary interest.

In the past, the free vibration response of a cracked, reinforced concrete
beam has been investigated analytically assuming a reduced flexural rigidity for
the cracked part [11]. It is noted that this reduced flexural stiffness depends
upon the beam cross-section, number and size of cracks, percentage and placement 0
of reinforcement and other factors. Furthermore the dynamic flexural stiffness
of the cracked portion is a function of both time and position of the beam. The
theoretical results indicate the response of the system to be a nonlinear type
with a soft characteristic. However, the basic assumptions for the formulation
of the flexural stiffness are not explained. Neither is the stiffness reduction
given explicitly for individual cases nor is there an indication how it can be 0
determined for a specific cracked beam.

Theoretical and experimental investigations of dynamic properties of
uncracked reinforced concrete beams are discussed in reference [12]. The
authors of reference [12] acknowledge to have also conducted dynamic experiments
with cracked beams but that they could find "no definite correlation" between 0
the dynamic responses of cracked and uncracked beams.

Fatigue experiments with steel fibrous reinforced concrete beams have
assessed the relative effects of fiber concentration, fiber shape, load
intensity, forcing frequency and load reversal on the fatigue life of beams [6,
13]. However, these dynamic experiments have not included the hign intensity 0
loads that would represent seismic effects.

Dynamic characteristics of reinforced concrete beam-column specimens were
measured for various levels of cracking in reference [14]. This reference
concludes that natural frequencies will be lower after cracking. This obser-
vation is generally correct but incomplete. The natural frequency of a cracked 0
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structure will depend on the vibration amplitude as well as the amount of
cracking and crack patterns.

3. CRACKED BEAM - A CONSERVATIVE TREATMENT

Let us consider the free vibration response of the first mode of a simply
supported homogeneous conservative beam of density p, elastic modulus E, with a S
vertical crack of length dc at its midspan as shown in Fig. 1-a. For
dimensional simplicity the beam is assumed to have a rectangular cross-section
of unit width. The crack will be open or closed during different stages of a
vibration period depending upon the deflected position of the beam (Figures 1-b,
1-c).

If the free vibration amplitude a is smaller than the static deflection 6
of the cracked beam under its self weight, the crack will always stay open and
there will be a constant natural frequency lower than that of the uncracked beam
but still independent of the vibration amplitude. The energy or the integral
curve [15] in the displacement-velocity plane will be a complete ellipse as S1
in Fig. 2, with gravitational datum corresponding to the static deflection 6 of
the cracked beam. On the other hand, if a is greater than 6 the energy curve
will follow S2 for portion of the vibration period while the crack is open; how-
ever, a transition will occur at y = -6 when the crack will close and the energy
curve will follow the ellipse S2 beginning at point A until the crack opens
again at point B. The energy curve S* has a higher gravitational datum corre-
sponding to the static deflection of the uncracked beam, but it has an equally 0
lower elastic potential datum such that conservation of energy is satisfied.
The time contribution of the followed path A-B of S* is less than the time
subtracted by deleting corresponding part of S2 . The result is a decrease in
the free vibration period T or increase in the free fibration frequency w of the
cracked beam; indicating a hard characteristic for this conservative dynamic
system. Numerical results of amplitude versus natural frequency computed by the 0

methods described in reference [16] are plotted for three different crack depths
in Fig. 3. For actual cracked reinforced concrete beams, nonlinear material
behavior will soften the vibration characteristics such that a frequency-
amplitude relationship may look as shown in Fig. 4; still partially contradicting
the soft nonlinear characteristic assumptions of references [11] and [14].

The phenomenon described above is very common during actual seismic load-
ing of structures. In some publications it is referred to as "a greater elastic
response due to a lengthening period" [17]. This observation seems to agree
with our hypothetical amplitude frequency relationship depicted in Fig. 4. If
Fig. 4 were to be obtained from actual experiments it could be interpreted as a
close-to-linear behavior with possible scattering of data. However, linear 0
superposition methods are not valid in this case since apparent linear behavior
for a specific cracked inelastic beam will be due to the contribution of
opposing nonlinear effects. Consequently, the influence of opening and closing
of cracks and the effect of material nonlinearities due to high stresses at
cracked regions must be taken into account simultaneously to interpret the true
implications of experiments. The closing of cracks during a seismic acceler- 5
ation period of long duration will generate an impulsive load on the structure
and actually determine the failure direction of the entire frame. This behavior
has been observed in most earthquakes and described as "pumping" by Newmark [181.
Pumping is due to a partial ultraharmonic excitation of a structural system with
asymmetrical nonlinear vibration characteristics. Pumping will influence the
sense for the P-A effect which will eventually impose the collapse mechanism on
the structure [191.

4. CURRENT EXPERIMENTAL SCOPE

Within the experimental portion of the present investigation, beam
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specimens of two different Iengths with three types of reinforcement for each 0

length are fabricated and subjected to dynamic loads. To keep the material and
equipment cost down relatively small beam cross-sections are used for the
experiments. A typical beam cross-section measures six inches deep and four
inches wide (152 mm x 102 mn). It has been shown that flexural tensile strength
is not significantly altered by size effects when specimen depth is six inches
or greater [20J. However, shear strength may be altered by size of beam as
shown by prototype beam tests by ;. Williamson at CERL [21]. The difference in
failure mode of prototype used by Williamson and small size beams tested by
Batson et al. [6] is an important point under investigation in the current
project.

The steel fibers used are all of the same type with hooked or bent ends
and are supplied in water soluble glued bundles. The amount of steel fibers is

constant at 3/4 percent by volume for all steel fibrous concrete mixes. The

maximum aggregate size is limited to 3/8 in. (9.5 mm) peastone regardless of
beam size. This is to assure effective crack arrest by the close spacing of the
steel fibers.

To date thirty-three long span beams and thirty-three short span beams
have been tested. The long span beams measure 6 in. x 4 in. x 8 ft. (152 mm x
102 mm x 2.4 m) and include three reinforcement types shown in Fig. 5.

01' 0

"0 /(

2#4 T&B 2i' 4 T&B 2#4 T&B
standard shear without shear with shear
reinforc::went reinforcement reinforcement

without fiber with fiber and with fiber
( 3/4% by Vol.) (' 3/4% by Vol.) 0

Type Ll L2 L3

1

2#3 T&B 2#3 T&B 2#3 T&B 0

standard shear without shear with shear
reinforcement reinforcement reinforcement

without fiber with fiber and with fiber

( 3/4% by Vol.) (O 3/4% by Vol.)

Type Si S2 S3 0

Fig. 5. Types of Reinforcement 0
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These reinforcement types include longitudinal steel with standard shear
reinforcement, longitudinal steel with fibers but without standard shear rein-
forcement, and longitudinal steel with both fibers and standard shear reinforce-
ment. Building codes do not at this time recognize fiber reinforcement for
resisting shear. However, the steel fibrous types without standard shear
reinforcement are also included to assess the trade-off between stirrups and 0
fibers in effectiveness to resist shear. The short span beams have the same
cross-sections but are fabricated merely 4 ft. (1.22 m) long. Eleven specimens
of each reinforcement type have been tested. From each type three beams are
tested under full dynamic cyclic loading at 1.0 Hz loading frequency. Three
other specimens are tested under the same loading magnitude but at a reduced
rate of 0.2 H . The remaining beams are tested under partial moment reversal, S
similarly at f.0 Hz and 0.2 Hz frequencies. An electrohydraulic ram capable of
sustaining a sinusoidal varying force is used to excite the beam specimens which
are dynamically simply supported and loaded at midspan. Beam deflections are
measured by the use of Linear Variable Displacement Transducers (LVDT's), placed
along the beam. A microcomputer is used to control the testing and to
accumulate the experimental data in digital format [22]. 0

5. RESULTS

At present, the outcome of sixty-six dynamic experiments can be best
summarized in terms of the average relative performance of the different rein-
forcement types. In the case of long span beams the flexural tensile stresses 0
were more significant compared to shear effects. All long span beams failed
gradually as the dynamic stiffness was lost over many cycles of loading. The
relative performance of these beams is summarized in Table 1. The three

Table 1 Long Beams

Type of Average Relative Average Relative
Shear Reinforcement Initial Stiffness Dynamic Ductility

0.2H 1.0H
z z

Conventional 1.00 1.0 8.8
Stirrups

Fibers 1.00 1.1 81

Stirrups 1.04 3.2 36
and Fibers 0 S

different types of long beams are loaded under the same dynamic loadings. Load-
ing is sufficiently intense to start cracks in the specimens with the first
cycle of loading. Initial stiffness is defined as the ratio of force to dis-
placement at the first load peak. Relative initial stiffness is the initial
stiffness normalized with respect to that of a conventionally reinforced beam. S S

It is observed, from Table 1, that the average relative initial stiffness is
about the same for all three types of long beams. Dynamic ductility is defined
as the number of cycles before a "failed" deformation state is reached. At the
slow loading rate of 0.2 Hz the improvement in dynamic ductility with the
addition of fibers is very small. However, at the faster loading rate of 1.0 Hz
the fibers have a more significant influence. The most interesting result is
that fibers by themselves are more effective than having both the same amount of
fibers and stirrups when the loading is applied at 1.0 Hz . It is also noteworthy
to observe the very significant dependence of dynamic ductility on the loading
rate for all types of reinforcement.

Table 2 summarizes the relative performance of different reinforcement 0
i
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types for the short span beams. For these short beams the shear effects control

Table 2 Short Beams

Type of Average Relative Average Relative
Shear Reinforcement Initial Stiffness Dynamic Ductility

0.2H 1.0H
z Z

Conventional 1.00 1.0 5.0
Stirrups

Fibers 1.26 27 45

Stirruos 1.19 8.5 11
and Fibers

the deformations, cracking, and the failure mode of the beams. Unlike the long S
beams, the short beams usually fail in a sudden "catastrophic" manner without
much warning. Table 2 indicates that fibers are relatively more effective as
shear reinforcement for the shorter beams under significant shear loading. It
is also observed that the loading rate effects are not as dramatic when the
fibers are used as shear reinforcement in short beams. Another difference from
the long beams is that in the case of short beams, the shear reinforcement type
affects the initial stiffness. Also, experimental data indicates that the short
beams with only conventional stirrup type shear reinforcement deteriorate
significantly during the first three cycles of loading, whereas the steel
fibrous short beams retain the dynamic stiffness over a much larger number of
loading cycles.

6. CONCLUSIONS

In summary, from the current experimental results, it may be deduced that
replacing the conventional shear reinforcement with steel fibers at high shear
regions will improve the dynamic stiffness by 26 percent and the dvnamic
ductility is increased nine fold at 0.2 Hz frequency of dynamic loading. How- 0
ever, if the fibers are added to conventional stirrups, then the dynamic stiff-
ness increases only 19 percent and the dynamic ductility merely doubles. At
first glance these results would indicate that stirrups should be excluded from
steel fibrous concrete reinforcement. However, it should be noted that no axial
forces are considered in the present investigation. It is believed that stirrups
will still be necessary to provide the confining reinforcement when axial 0
compression forces are added to shear and bending effects. Another reason to
include stirrups with steel fibrous concrete members is to soften the final
failure behavior of these structural members. Experimental beams with only steel
fibers had the best stiffness characteristics and lasted through the largest
number of dynamic loading cycles. However, their failure was precipitated very
suddenly and without much advance warning during loading of short beams. 0 5
Including also the conventional stirrups in addition to steel fibers softens the
failure pattern at a reasonable cost of somewhat reduced dynamic stiffness and
ductility.

Finally, it is relevant to note that the present experimental investigation
is scheduled to continue with additional types of reinforcement and prototype
sizes of beams. In addition, a system identification program i; currently in
progress to identify a practical mathematical model for the behavior of steel
fibrous reinforced concrete beams to be used as a tool in earthquake resistant
design with this material.
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INELASTIC ANALYSIS OF SHORT HIGHWAY BRIDGES
SUBJECTED TO STRONG GROUND MOTIONS

Mehdi Saiidi, James D. Hart, and Bruce M. Douglas
Civil Engineering Department, University of Nevada, Reno M

1. ABSTRACT

. Static and dynamic nonlinear modeling of short highway bridges subjected
to lateral loads are discussed. The behavior of inelastic bridge components,
namely, foundation elements, elastomeric bearing pads, and pier elements is
reviewed in view of the available experimental data. Two hysteresis models
were used in the model: the Ramberg-Osgood and the Trilinear Q-hyst model. The
calculated and measured static and free-vibration response of a five-span
bridge (The Rose Creek Interchange) which was tested as gart of the project
are presented. It is pointed out that no universally accepted method to
determine the basic nonlinear properties of pile foundations and elastomeric
bearing pads are available. This leads to a drawback in any realistic
nonlinear analysis of bridges for which the response is usually greatly
affected by these components. For the Rose Creek Bridge, however, it was
possible to obtain a somewhat reasonable estimate of the response utilizing
the results from an ambient vibration testing of the bridge and a detailed
geotechnical analysis of the foundations. -

2. INTRODUCTION

One of the design philosophies common to many seismic codes is that a
structure must not collapse, though may be severely damaged, in the event of
the maximum credible earthquake. Allowance for considerable damage is neces-
sary to keep the design economical. In ductile structures, damage under strong
earthquakes is associated with significant nonlinear effects. Even moderate
earthquakes can cause pronounced nonlinear action in some parts of the struc-
ture. Any analysis of structures for moderate to severe ground motions,
therefore, should account for inelastic behavior of structural components and
the structural unit.

The 1971 San Fernando earthquake in California revealed that highway
bridges could be affected severely by strong earthquakes. Many bridges col-
lapsed as a result of the earthquake and several others suffered substantial
damage. To predict the response of bridges to strong ground motions, analyti-
cal models are needed to assist the engineer in the design of earthquake-proof
bridges. Chen and Penzien [11 developed a nonlinear analytical model assuming
an elasto-plastic hysteresis model for inelastic components. In a study by
Gillies and Shepherd [2] a highway bridge was analyzed assuming elastic
behavior at the elastomeric bearing pads and assuming that the foundations
were fixed, restricting the nonlinear effects to the sub- and super-structure.

This paper describes an analytical model which takes into account the 0 •
inelastic behavior of all nonlinear components to predict the lateral response
of short bridge systems. The model was developed in conjunction with experi-
mental tests of a five-span reinforced concrete bridge near Winnemucca, Nevada
[3].

3. INELASTIC MODELING 0 •

A computer program was developed for the analysis of short to inter-
mediate bridges with single-column piers. A schematic view of the bridge model
is shown in Fig. 1. At the abutments, three springs, one translational and the
other two rotational, were assumed. The springs in translation and rotation
with respect to the vertical axis were assumed to be nonlinear, while the 1
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other spring was treated as a linear system because of its relatively small
contribution to the response of the bridge. Other possible degrees of freedom
were restrained because they were not expected to be significant. Deck and
pier elements were idealized as line members with nonlinearity allowed only at
the base of pier elements. The pier foundation effect was represented by two
nonlinear springs at the base of each pier. Only translation in the transverse
direction and rotation with respect to an axis parallel to the longitudinal
axis of the bridge were accounted for. Other possible degrees of freedom were
fixed because, under lateral loads, their effect was believed to be neg-
ligible.

3.1 Structural Component

Idealization of different components of the bridge was based on the
available experimental data and judgement. In developing a particular hystere-
sis model, no attempt was made to "curve-fit" any specific test data. Rather
models were chosen to represent the general characteristics of the measured
response.

3.1.1 Piers

In bridges with single-column piers the maximum moment usually occurs at
the bottom of the pier. In many bridges the pier section near the base is
smaller than other parts to avoid the transfer of a large moment in the
longitudinal direction of the bridge. The pier section near the base in the
Rose Creek Bridge, for example, had a yield moment which was approximately
one-third of the yield moment for other sections. The nonlinear behavior,
therefore, was assumed to be concentrated at the base of the pier over the
height where the section is "weak". The shear resistance was assumed to be
sufficiently large to prevent shear failure. '

The moment-curvature relationship for reinforced concrete elements con-
sists of three distinct parts: precracked, cracked, and yielded parts, with
each part having a smaller slope than the previous part (primary curve in Fig.
2). To determine stiffness variations upon unloading and reloading after load
reversal, a hysteresis model was developed which is a modified version of the
Q-hyst model [41, in that the primary curve consists of three linear segments
as opposed to a bilinear primary curve used in the original model. The new
version was called "TQ-hyst".

The primary curve is assumed to be symmetric with respect to the origin.
The rules for unloading and load reversal are similar to those used in the
Q-hyst model. The unloading branch in the cracked stage is obtained by
connecting the unloading point to the cracking point on the other side. For
the post-yielding stage, the slope of unloading branch is determined by first
finding the slope of a line connecting the yield point on one side to the
cracking point on the other side of displacement/rotation axis, and then
multiplying this slope by the square root of the ratio of the maximum S
displacement/rotation to the yield value. This formula is an empirical re-
lationship developed based on experimental testing of reinforced concrete
joints [5].

The load reversal branch after yielding occurs in at least one direction
is determined by connecting the intersection of the last unloading branch and S
the horizontal axis to a point on the primary curve on the other side, with
abscissa being equal to the largest deformation ever reached. Should an
unloading take place before the primary curve is reached, the slope will be
the same as the slope of the latest unloading branch.
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3.1.2 Foundation

It is known that most soil types exhibit inelastic behavior even at very
small strains. in lateral loading of soil samples, typically a curved relation-
ship with gradual but significant decrease in stiffness is obtained. Due to
the large variability in soil properties, construction of this curve without
testing of the soil, at best, represents an approximation. Added to this is
the effect of foundation structure. The Rose Creek Bridge is supported on pile
foundations. In testing of the bridge, it was found that the foundation system
displaced and rotated when the bridge was subjected to lateral loads, indi-
cating that rotation of the pile cap had a significant contribution to the
lateral deformations. Studies on the cycli. behavior of foundations have
generally revealed that the hysteresis relationships include substantial dete-
rioration of strength and stiffness with a trend similar to what is assumed in
the TQ-hyst model. An exception to this is densification and therefore
stiffening of dense sand [6]. In the absence of extensive experimental data
for lateral and rotational behavior of foundation systems, the TQ-hyst model
was assumed to represent the behavior of the foundation at pier bases.

3.1.3 Bearing Pads

Cyclic testings of neoprene bearing pads in shear have shown that a
nonlinear effect is present even at small load amplitudes [7]. As loading
continues a reduction in stiffness is observed until slippage occurs. Upon
unloading and reversing the loads, stiffness changes. Cyclic loadings of pads
for vertical loads, on the other hand, have shown some stiffening effects as
loading progresses. This is, of course, due to compaction of neoprene layers
as compressive load is applied. In seismic modeling of bridges for lateral
loads, the vertical response of bearing pads enters the analysis in consid-
ering rotation at the abutments about the longitudinal axis of the bridge. Due
to the relatively large vertical gravity forces acting on the pads, variations
in the vertical force due to the rotation are not expected to lead to any
significant nonlinear effects. As a result, the vertical behavior of the pads
was assumed to be linear.

For the lateral behavior of the pads, however, the Ramberg-Osgood model
[8] was adopted to represent the cyclic response (Fig. 3). This was decided
after a qualitative study of the available experimental data. Two equations
are used to determine deformations as a function of force at different stages.
The shape and the degree of curvature are controlled by one parameter, G. For
loading on the primary curve, Eq. (1) is used.

D F (D /F y) (1+) F/F 1G- (1) •

in which D and F are deformation and force at any arbitrary point, and D and
F are deformation and force at point A (Fig. 3). The second equation isYused
t define the curve at unloading and load-reversal stages.

D = (F-F0  yy F-F)/2Fy G-)+D (2)

in which 0 and F are deformation and force at the largest excursion point.

To determine the force for a given deformation, the Newton-Raphson
iterative method is used in Eqs. (1) and (2).

The Ramberg-Osgood model was used in both translation, and rotation

about the longitudinal axis of the bridge at the abutments.
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3.1.4 Deck Element

The design of bridge decks is usually controlled by the vertical loads.
The relatively large width of bridge deck results in large stiffness and large
cracking moment and shear resistance unlikely to be exceeded as a consequence
of lateral loading. The deck element, therefore, was assumed to remain elastic.

3.2 Total Bridge Structure

Based on the idealizations described in Sec. 3.1 a computer model was
developed for static and free-vibration analysis of highway bridges subjected
to lateral loads. The "P-Delta" effects were accounted for in the modeling. 0
Structural nodes were assumed at the abutments, pier caps, and at the pier
bases. Masses were assumed to be lumped at the nodes. Full advantage was taken
of symmetry of element stiffness matrices in storing the stiffnesses. Nodes
and degrees-of-freedom were numbered in such a way to minimize the bandwidth
of structural stiffness matrices. Stiffness submatrices corresponding to later-
al and rotational degree-of-freedom were partitioned and static condensation
was used to minimize the size of matrices to be inverted.

In the static analysis part of the model, horizontal forces are applied
at pier-deck intersections, abutments, and pier bases. For each load increment
the status of the nonlinear elements is checked and their stiffnesses are
updated as necessary. To allow for close monitoring of force-deformation S
variations, the loads should be applied in small increments. For each load
increment, lateral displacements, rotation, and all the internal forces are
computed.

The dynamic analysis portion of the computer model determines the
free-vibration response of the bridge with initial displacements being those 5

caused by the static forces. The initial stiffness and the status of hyster-
esis curves for different components used at the start of the free-vibration
analysis are those determined at the end of last static load increment. The
differential equation of motion is formulated in an incremental form and
integrated using small time intervals, following Newmark'sa method [9]. AB
value of 0.25 was used in the analysis which corresponds to crnstant acceler- 0
ation over each time interval. This procedure results in an unconditionally
stable response for elastic structures. The acceleration and lateral displace-
ment are calculated for each time interval and stored for plotting the
response histories.

4. THE ROSE CREEK BRIDGE 0

The Rose Creek bridge is a five-span reinforced concrete multi-cell box
girder bridge with a total length of 120m, located on highway 1-80 near
Winnemucca, Nevada (Fig. 4). The substructure consists of four single piers
(Fig. 5) and the abutments, all of which are supported by pile foundations.
The deck is continuous with no intermediate expansion joints, and is supported S
by five elastomeric bearing pads at each abutment. The bridge was designed
based on the 1965 AASHTO document, Standard Specifications for Highway
Bridges, the Interim Specifications through 1967, and the 1966 BPR Ultimate
Strength Design Criteria.

The reinforcement distribution in the piers is shown in Fig. 6. The
connection to the footing is a hinged connection in the longitudinal direction
of the bridge, but is rigid in the transverse direction through the dowels.
The dowels are made from #11 bars in all the piers. Because no yielding of the
reinforcement in the deck was expected, the deck steel did not enter the
analysis and is not shown.
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5. EXPERIMENTAL STUDIES

The Rose Creek bridge was subjected to static and dynamic loads. The
static loads were applied in the transverse direction of the bridge at the
intersection0 of the piers and the deck by four hydraulic rams acting at an 4

angle of 45 . The rams were loaded manually at low rate. Temporary reaction
foundations were built to support the rams. The bridge was loaded to several
amplitudes and the ram loads were simultaneously released to allow for
free-vibration testing of the bridge.

The static data collected included the lateral deflection of the deck at
ends, pier caps, and the center of the middle span. The footings were
excavated to allow for close inspection of pier to pile cap connections.
Because the shear keys (Fig. 3) were the weakest part of the piers while they
carried the maximum moment, they were examined very carefully to monitor any
crack formation or propagation. For each free-vibration test, the acceleration
response histories were measured and recorded on FM tapes.

6. ANALYTICAL AND EXPERIMENTAL RESULTS

The Rose Creek Bridge was analyzed using the analytical model described
in Sec. 3. The basic properties of pier and deck elements were determined
based on geometry and reinforcement distribution using the average of measured
strength for 28-day concrete samples and the specified yield strength of
steel. The effect of gravity loads on moment-curvature relationship for piers
was taken into account, but the uplift component of ram loads was neglected.

To determine the basic backbone curve for the neoprene elastomeric
abutment springs the available guidelines prepared by the manufacturer were
initially used, but the results appeared to lead to unreasonably "soft" abut-
ments. Douglas and Richardson [10] have attributed the stiffening of the
elastomeric bearing pads to aging effect. Estimates of initial stiffness of
the pads for ambient level of vibration were available in a report by Gates
and Smith [11]. These values were used as the slope of tangent to the
back-bone curves. A brief parameter study showed that amplitudes were insensi-
tive to the value of "G" used in the Ramberg-Osgood equations, but the
effective period was affected by G. A good correlation was observed with G = 9.

Attempts were made to determine the primary curves for pier foundation
springs based on the soil profile and properties of the piles and the pile
caps. Information was needed on the lateral and the rotational behavior of
pile groups. No procedure for finding these properties could be found in the
available literature. The only information was the lateral stiffness of the
pile groups used in the Rose Creek Bridge, with cyclic effects included [12].
The values were modified by excluding the cyclic effects and used for the
translational springs. The rotational springs were assumed to be fixed due to
the fact that no procedure for calculating pile group rotations could be found.

The lateral displacement of the deck center of the bridge subjected to
lateral loads is shown in Fig. 7. It can be seen that the experimental data
exhibited a slight degree of nonlinearity. No visible nonlinear behavior could
be observed in the analytical result. This is, in part, due to the fact that
for small loads, the only source of nonlinearity in the model is the
elastomeric bearing system, which does not affect the response at the center
of the deck to any great extent. The response at the bearing pads, on the
other hand, showed a slight but visible nonlinear effect (Fig. 8). The plan
view of the deflected shape of the bridge is shown in Fig. 9. The kink in the
measured shape is perhaps due to an error in the measurements. It can be seen
in Figs. 7 through 9 that the analytical results were less than the measured
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values. This is attributed to the fact that the pier foundations were assumed
to be fixed against rotation for this paper. A parallel study is being
conducted to characterize the rotational stiffness of the pile group founda-
tions, and its preliminary results have confirmed this observation.

The measured and calculated free-vibration acceleration histories for S
three locations of the deck are shown in Fig. 10. The initial displacements
used in this analysis were those calculated in the static analysis, and, as it
was pointed out earlier, were smaller than the measured values. Reasonably
good correlation was observed during the first four seconds in the response
for piers 1 and 2. The correlation in the rest of the response and for the
north abutment was not close, with calculated peaks being generally larger
than the measured ones at pier 1 and 2 but smal ler than the measured peaks at
the north abutment. The modeling of the nonlinear behavior cannot be evaluated
in detail based on these response histories because of the fact that only a
limited degree of nonlinearity was present in both the calculated and measured
response and that the basic properties of the elastomeric bearing pads and
foundation springs were approximate. Nevertheless, the relatively good agree- S
ment observed in the large-amplitude part of the responses can be an indica-
tion that the assumptions and idealizations made in developing the analytical
model are somewhat realistic.

7. CONCLUSIONS

The study presented in this paper showed that the nonlinear effects
should be taken into account if a reasonable estimate of seismic response is
to be obtained. Unlike building structures, where the response is usually domi-
nated by the superstructure, bridge response is significantly affected by the
foundation and abutments. It was found that for the Rose Creek Bridge the
lateral displacement was underestimated at the 'eck center by more than 30
percent as a result of restraining the pier found tions against rotation. The
currently available literature dealing with the seismic aspects of geotechni-
cal engineering do not provide adequate guidelines to determine basic nonlin-
ear force-deformation properties of pile groups for translation and rotation.
Another parameter for which information is inadequate is the nonlinear
force-deformation characteristics of elasto-meric bearing pads, and their
cyclic behavior. This information is needed for a realistic modeling of the
nonlinear response of bridges. Nonetheless, based on the limited experimental
data on the behavior of foundation and bearing pads, and their qualitative
incorporation in the study presented in this paper, it can be concluded that
the proposed model is a reasonably good start for nonlinear modeling of

* dynamic response in bridges. 0
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1. INTRODUCTION

j The most commonly used structural elements in engineering, ie cantilevers,
beams, columns, rings or a combination of one or mure or these elonents, are •
sometimes designed to withstand sudden dynamic loads. However, there are
structures which are often subjected to dynamic overloads purely by accident.
Although the chances of dynamic overload occurring may be very small, it is
this situation which is of most concern to the design and safety engineer.

The behaviour of framed structures under impulsive load has been the 0
subject of interest to many researchers and relevant literature shows that,
prior to 1956, research on the subject was mainly concerned with the
elastic response of frames to transient forces[l,2I. Later, Di Maggio[3 1

studied the elasto-plastic response of frames when plasfi conditions
develop at a number of points in the structure. Tanakar4  studied the
response of a moving plastic portal frame, when the base of the frame was 0

suddenly stopped, thus causing a decelerating motion in the plane of the
frame.

Rawlings[7 has applied the dynamic rigid-plastic analysis, previously
used for studying beams, to the study of the dynamic plastic behaviour of

steel frames. He has also studied the influence of concentrated masses 0
attached at different positions on the frame. Stewart et al[8] carried out
an experimental investigation into the in-plane response of model frames
when a concentrated dynamic load was applied to the side. Similar
investigations, but withblast loads, were carried out by Takahashi et al[9,lO ].
In these tests the applied load was of the order of the ordinary static
collapse load. Although the deformation response in these tests appeared 0 •

to be of a modal type, the determination of the deflection response
required the inclusion of elastic effects because of low load density.

Johnson and Martin[lI ] studied the inelastic behaviour of a rectangular
portal frame, having a concentrated mass attached to the centre of the
beam, when an impulsive load was applied to the mass and delivered in a 0

direction perpendicular to the plane of the frame. Other tests on frames
have been reported by Bodner[12] who observed that the dominant deformations
were of a modal type. Burgman and Rawlings[13] studied the dynamic behaviour
of pin jointed frames subjected to large concentrated dynamic overloads.
They studied the various collapse modes of the frames and also considered
the buckling behaviour of the members in compression. •

Hashmi and Al-Hassani[14 1 studied the elastic-plastic response behaviour
of rectngular frames subjected to distributed impulsive load. Their
experimental results compared well with theoretical predictions obtained
using a numerical technique presented earlier in reference [151.

6 0
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Martin[1 6 ] developed a simple iterative procedure for determining mode
shapes of structures of rigid perfectly plastic material subjected to
dynamic loading. The technique was subsequently extended to include
geometrically linear homogeneous viscous beams[1 7] and non-linear beams
and frames [ I I by Griffin and Martin. Experimental results were reported
by Bodner and Symonds[ 19] of tests on mild steel frames theoretical 0
analysis of which was subsequently presented by Symonds and Raphanel[ 20].

Ina recent paper Hashmi[21] presented results of experiments on
unrestrained triangular frames made of aluminium which were subjected to
distributed and concentrated impulsive loads. In the present study

experimental results are presented of tests on aluminium and mild steel 0
frames subjected to distributed and concentrated impulsive loads. The
effect of extra mass attached to the frame on the response mode is studied
experimentally and theoretically. The effect of material strain rate
sensitivity is also studied theoretically using the numerical technique the
details of which has been previously described in reference [15].

2. EXPERIMENTAL WORK

Experiments were carried out on aluminium and mild steel rooftop
frames by applying distributed and concentrated impulsive loads respectively.

2.1 Distributed Loading 0

The distributed impulse was obtained using the magnetic loading
technique[1 4 ]. This is a technique of loading structures by means of high
transient magnetic field which is produced by the discharge of a bank of
capacitors through a robustly constructed conductor made to conform closely
to the structural member. The deforming forces arise from the interaction B
of the induced currents in the structural member and the high transient
magnetic field which exists in the gap between the member and the loading
conductor. The absence of mechanical contact forces and the ability to
control the leading pulse in shape, distribution and magnitude make this
loading method superior to other methods.

For this type of loading, 0.9 mm thick half hard aluminium sheets were
cut into 12.5 mm wide strips which were bent to form rooftop frames having
dimensions as shown in Fig 1. Each frame was rigidly held by adjustable
clamps and brought near to the loading conductor so thatonly the area to
be loaded was adjacent to the conductor. The loading situations considered
in this study are shown in Fig I for rooftop frames (a) without, and
(b) with the attached mass.

Measurement of the impulse delivered to each frame was obtained from
the swing of a ballistic pendulum onto which the frame was mounted.

2.2 Concentrated Loading

Concentrated impulsive load was obtained by use of explosive detonator
which was attached onto the frame by means of adhesive tapes. Layers of
polymer sheet were introduced in between the detonator and the surface of
the frame to prevent any localised damage. The impulse produced by the
detonator was calibrated by means of a pendulum. For this type of loading
the frames were made out of 1.9 mm thick and 10.5 mm wide mild steel strips.
The overall dimensions of the frames and the various loading configurations
are shown in Fig 2. Concentrated impulse was applied at the midspan of the
(a) slanting side, and (b) vertical side of the rooftop frames.
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Similar loading configurations were repeated having extra mass attached at
different locations on to the frame.

The stress-strain properties of the materials of the frames were
determined from quasi-static tensile tests on specimens prepared from
aluminium and mild steel strips and the results are shown in Fig 3. •

In order to study the transient deformation mode of the frames high
speed photographs were taken of a number of different loading cases using a
high speed camera. Synchronisation of the camera with the onset of the
deformation process was facilitated by a built-in micro-switch which sets off
the event at the desired maximum speed of the camera. S

3. RESULTS AND DISCUSSIONS

3.1 Distributed Impulsive Loading

The deformation responses of aluminium rooftop frames, with and without S

attached mass, subjected to impulsive load distributed over one of the
slanting sides were recorded operating the high speed camera at a rate of
6,000 frames/sec. The finite-difference numerical technique reported in
reference [15] was used to simulate the response mode of these frames. The
equivalent lumped mass models are shown in Fig 4(a) and (b). In Fig 4(a)
which corresponds to the loading configuration shown in Fig l(a), the frame S
is represented by 37 mass points and an initial velocity is assigned to the
masspoints 10 to 18. Similarly, the equivalent lumped mass model for the
rooftop frame with attached extra mass and loaded as shown in Fig l(b) is
represented by 37 mass points as shown in Fig 4(b). The concentrated
attached mass is represented by the larger mass at mass point 30. In both
cases the initial speeds of vx = 18.5 m/sec and vz = 24.1 m/s were deduced 0
from the measured impulse delivered to the frames by the loading unit.

In Fig 5(a) a series of profiles of a frame loaded in the manner
depicted in Fig l(a) are shown corresponding to various time instants after
the onset of the deformation process. This frame was subjected to a
distributed impulse of 0.098 N-s. The response of this frame was predicted 0
theoretically and a comparison of the theoretical and experimental
instantaneous profiles 3.2 milliseconds after the onset of the process is
made in Fig 5(b).

The deformation response of a rooftop frame carrying extra mass of
22 grams and subjected to impulsive load distributed over one of its
slanting sides in the manner shown in Fig l(b) was also recorded using
high speed camera. Fig 6(a) shows a number of profiles of a rooftop
frame with attached mass corresponding to different instants of time after
the onset of the process. Comparison of the experimentally observed and
theoretically predicted instantaneous profiles for this frame subjected to
a distributed impulse of 0.098 N-s can be seen in Fig 6(b). S S

The effect of the extra mass on the response mode is demonstrated in
Figs 5 and 6. Without any attached mass the frame tends to deform as a
whole, each element undergoing substantial deflection. The frame with the
attached mass, on the other hand, deforms in a manner such that gross
deformation is mainly confined to the loaded member of the frame. 0 5

It is also evident from these figures that the theoretically predicted
deformation mode closely matches those observed experimentally for the
frames with and without attached mass.

611



3.2 Concentrated Impulsive Loading

Mild steel rooftop frames were subjected to concentrated impulsive load
in the manner shown in Fig 2. Computer simulation of the response mode was
carried out based on the equivalent lumped mass model as shown in Fig 7. The
whole frame is represented by 43 mass points and where appropriate, the extra B
mass is represented by a larger mass on the lumped mass model. The
concentrated impulse is represented by initial velocity of 77 m/s over two
mass points. Three different magnitudes of impulse were obtained by
introducing different thicknessr- of the polymer sheet between the detonator
and the surface of the frame.

The final profiles of rooftop frames subjected to concentrated impulses
of 0.385, 0.352 and 0.282 Ns imparted at the midpan of one of the slanting
sides are shown in Fig 8(a). Fig 8(b), on the other hand, shows the final
profiles of similar frames subjected to the same magnitudes of concentrated
impulses as in the previous case but imparted at the midspan of one of the
vertical sides. In order to observe the effect of the added concentrated
mass and its location on the response mode mild steel frames were subjected
to concentrated load in the same manner as before but each frame having a
mass of 62 g attached at a different location. In Fig 9(a) the final profiles
of rooftop frames with a mass attached at different location are compared with
that of a rooftop frame without any attached mass but subjected to the same
concentrated impulse of 0.385 Ns at the midspan of one of the slanting sides. •
Final profiles of similar rooftop frames with and without added mass but
subjected to the same concentrated impulse at the midspan of one of the vertical
sides are shown in Fig 9(b). It is evident from Fig 9 that the deformation
mode is very much influenced by the presence as well as the location of the
attached extra mass. The effect is the least when the mass is attached at
the top of the vertical side opposite to the side of the frame onto which the
impulsive load is applied.

The deformation response of mild steel rooftop frames without and with
attached mass were recorded using high speed camera. Figs 10(a) and (b)
show series of instantaneous profiles depicting the deformation mode after
the onset of the loading process of a rooftop frame without and with
attached mass respectively. The frame in Fig 10(a) was subjected to a
concentrated impulse imparted at the midspan of one of the slanting sides
whilst the frame in Fig 10(b) was subjected to a concentrated impulse
imparted at the midspan of one of the slanting sides, the extra mass of 22 g
being attached at the top end of the near vertical side. Both frames were
subjected to the same impulse of 0.282 N-s.

The response modes of these frames were predicted theoretically using
the finite difference numerical technique with and without taking account
of the effect of material strain rate sensitivity. Fig 11(a) shows
comparison of the experimentally observed and theoretically predicted
deformation profiles of the frame shown in Fig 10(a) 1.5 millisecond after
the onset of the deformation process. Similar comparison for the frame with
attached mass is shown in Fig 11(b). The strain rate sensitivity effect
of the material of the frame was incorporated according to the equation,

d =  s [i + where the values of D and p were taken to be 50,000 s-
1 and 2.5 respectively as suggested in reference [22].

It is evident from Fig 11(a) and (b) that the theoretically predicted
results agree closely with those obtained experimentally for mild steel
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rooftop frames. The theoretical instantaneous profiles predicted with and
without incorporating the effect of material strain rate sensitivity were
found to be practically the same and indistinguishable as separate profiles

in Figs 11(a) and (b). Calculations were repeated with values for D and p
as 40.4 s-1 and 5 according to reference [23] and this time some appreciable
difference was observed in the predicted profiles at 1.5 milliseconds.
The predicted final profiles, however, were observed to be slightly

influenced by the strain rate sensitivity.

4. CONCLUSIONS

Aluminium and mild steel rooftop frames were subjected to distributed 0
and concentrated impulsive loads respectively. It has been observed that
the location of the point of application of the load and the presence of
attached extra mass has significant effect on the collapse mode of the
frames. C

It has also been shown that the theoretically predicted deformation mode 0

matches closely with those observed experimentally for aluminium frames and
also for mild steel frames. The effect of strain rate sensitivity on the
instantaneous deformation profiles was found to be significant for this
type of rooftop frames.

APPENDIX 
0

A finite difference numerical technique was employed to theoretically analyse
the gross deformation response of the frames before and after fracture takes
place. The method has been described in detail elsewhere [15l and only a short
account will be presented here giving the main governing equations. If the 0
two dimensional structure moves in the x-y plane only and s is the length
measured along the axis of the structure then a typical element may be as shown
in Fig. 12(a). This element is acted upon by the axial force, N, the
transverse shear force Q and the bending moment M. Additionally the inertia
forces due to accelerations u in x and v in y direction will also be present.

The resulting force and moment equations of equilibrium for an element are

-(N cos ) - L- (Q sin 0) - mu = 0 (1)

(N sin 0) + (Q cos 0) - mv = 0 (2)

and

am Q = 0 (3)

Equations (1)-(3) may be written in finite-difference form and the resulting
equations apply to the lumped-parameter model as shown in Fig.12(b). This
model simplifies the actual structure into a mass-lirk system. The mass of
each small element of the structure is represented by a concentrated point mass
connected to the other masses by light links which transmit axial forces, shear
forces and bending moments. The links are assumed to have the same strength
properties as that of the actual structure, the cross-section of which is
assumed to consist of n discrete, evenly spaced and equal cross-sectional area,
layers of material which can carry normal stresses.

Under the action of the forces, therefore, the position of each mass in the
model identifies the position of an element of the actual structure. The
finite difference equations for an element at the ith position are
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Ni+1 cosei+1 - Ni cosi - Qi+1 sinOi+l + Qi sine. - miui 0, (4) 0

Ni+1 sinei+1 - Ni sinei + Qi+ cosOi+1 - Qi cosei - mIv. = 0 (5)

and Mi - Mi I - QiAs i = 0. (6)

Equations (4)-(6) apply to all the masses around the structure and give the

instantaneous values of u. . and v. . for any time t., when coupled with the

following relationship bei*en accellration and dispiacement in finite

difference notation,

= U.i,(At) 2 + 2ui . -u.
uj+! 1,J 1,J

and v = v. .(At)
2 + 2v. . - v.

il+ ,] 1,j 1,j-l

The time increment is defined through

At = t, - t..
J+1  J

The link length As. and its angle e. may then be expressed in terms of the

co-ordinates u. . and v. . which in turn permits the calculation of strain in

each link. Itf1 en remaliAs to connect the strain thus obtained with the axial

force N. and bending moment M. using appropriate stress-strain properties given1 1

by

a =

Having determined the values of N and M at all the mass point locations and

for all the links the cycle of computation is repeated until plastic deformation

ceases.
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Fig. Al showing (a) an element of the structure in x-y plane, and

(b) the equivalent lumped-parameter model
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7KSLARCHES IN RANDON VIBRATION

J.D. Robson

University of Glasgow (Professor Emeritus)

1. INTRODUCTIONAD-P003 694
1.1 General

The aim of this lecture is to give an indication of the research
in Randor. Vibration carried out at Glasgow University in the Department
of Mechanical Engineering during the period 1965-1982. In the time now
available it is possible to give no more than an indication, but the
adoption of a somewhat superficial approach does make possible a sort of
completeness and may help to render the lecture digestible by those who
are not entirely familiar with the intricacies of random vibration
analysis. The references given in the text should make it possible for
those who wish for further details to find them.

During the period under review the team working on random vibration
at Glasgow has always been small, and the permanent members of staff have
had many other matters to occupy them. Other research workers have become
available only from time to time, and the way in which the work has
developed has depended very much on current individual interests and
availability. Nevertheless it is possible looking back to detect some sort
of pattern, the work being devoted as far as possible to unravelling the
more immediate complications arising in the application of random
vibration theory to practical problems. S

While this work has always been motivated by the needs of appli-
cation it cannot be claimed that it has always had a strong and immed-
iate effect on industrial practices; probably its greatest influence has
been as a contribution to the increasing awareness of random matters
which now prevails. Yet even where it has not been actually applied the
work remains always applicable, and it is possible that this very brief
exposure may suggest further possibilities to those currently involved
in application.

The work now to be described may for convenience be divided into
three parts, to which the next three sections of this presentation
correspond. Section 2 will deal with the application of basic theory to
the responses of road-vehicles to road roughness. Section 3 will treat
more general aspects of the multivariate responses of linear systems
subjected to random excitation. Section 4 is devoted to a number of
separate problems where the simplifying assumptions of process Gaussianity
and system linearity are not permissible. ' *

1.2 Basic Theory

In random vibration the designation of any theory as basic must
involve a highly arbitrary decision. The subject depends fundamentally on
the concepts of probability theory, and most of the basic concepts of *
orthodox vibration analysis remain relevant. While this must be accepted
it is nevertheless convenient to regard the starting point of the subject
as the description of a stationary random process by autocorrelation
function or spectral density, and the initial result which relates
response and excitation spectral densities by making use of the system's
known properties under harmonic excitation. Certain details of definition *
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differ between individual writers, and the following statement of basic
analytical results provides a good opportunity to establish the
definitions which are to be used here.

Figure 1 shows the basic situation P(t) [ ]X(t)
where a single random excitation P(t) is I H
applied to a linear vibratory system
giving rise to a response x(t). If P(t)
is a member function of a stationary
Gaussian random process {P(t)} it is
describablf by the autocorrelation P(t) e
fpnction R (T) and spectral density t

S (f), where

RP() E[P(t)P(t+C) , i) P(t) t

(The process {x(t)} has of course

similaf descriptions RX(T), SX(f).) P )
With S M(f) defined as in (2) the mean-
square value of P(t) is given by

E[P
2 (t = sPf) df. (

E S Figure 1. Basic System 0

For a linear system under single excitation the relationship

between response and excitation spectral densities is given by

sX(f) = lH(f)12 sP(f) (4)
where Hf) is the harmonic influence function of the system. 0

With multi-excitation systems one must have regard also to cross
correlation functions and cross spectral densities. If the excitations
are P tt) and P 2(t) these are defined by

j1(.r) =EtPl(t) P2 (t+v)] ~

The response relationships are then more complex: for the case of two
excitations (with arguments omitted for the sake of brevity)

Sx =H H1 P ,H' H P +HH1 S P +H H oP
= Hl 1 11 +1 12 S12 1211 21 12 12 "22

where H12 (for example) is the harmonic influence function connecting
the response x 1(t) with excitation P (t).
Where there are two responses x (t), x2 (t) the cross spectral density

sX2 (f) is given by "
x = P H P P S H P (8)
12 11 21 S11 11 22 12 12 21 21 12 22 $22" )

There is no difficulty in principle in setting out similar response
relationships for greater numbers of excitations and responses, and these
are often needed in practice. in such cases there is a strong incentive to
take advantage of the conciseness of matrix notation, which adapts itself
particularly well to spectral relationships. With •
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sP =sP P P  x "x Sx )
11 12 " 1m ' 11 12" in )
P P S P x S x Sx

S2 1 S2 2 "'"2m $2 1  22 ... 2n
• S . . • )
S P  S P  S x  S x  S x )

ml m2" mm n1 n2" nn)
and (9)

H =H H HI11 12 * im ')

H H HH21 H22" -- 2m)•

(* . . )

H H...--- H )

the response relationship is simply

xP T
S = H* S HT . (10)

The above equations may be said to constitute the basic theory of

random vibration, but there is one more quantity which must be mentioned

here becausq it appears frequently in the account that follows - the

coherency • This is defined, typically by 0

2 s 12 $21
S11 $22

it gives a sort of nondimensional measure - at each frequency f - of the

cross spectral density, and so a measure of the degree of interaction

between two random signals. It can be shown that the coherency is always 0

between 0 and 1; the coherency of a single input, acting alone, and any

resulting response is exactly 1 provided that the system is linear.

2. VEHICLE RESPONSE

2.1 The Basic Problem 0

The response of a vehicle to the undulations of the road surface

over which it travels appears to be a straightforward embodyment of the
results of the previous section, for it is a matter of simple kinematics

once the speed of the vehicle is known to convert road profiles expressed

as functions of horizontal distance to imposed displacements expressed 0

as functions of time. This is only so, of course, if the vehicle is

travelling at constant velocity, if the vehicle-system is nearly-enough

linear, and if the road profiles considered can be modelled as realis-

ations of stationary random processes. Moreover the response descriptions

obtained in terms of spectral densities are really only adequate if the

random processes concerned have Gaussian distributions. •

Whether these implicit assumptions are acceptable

can only be decided by the comparison of theoretically-

determined spectra with those obtained from experimental measurements,

and it was with such comparisons that the work commenced. [i3 The profiles

of typical stretches of road were carefully measured (with surveying 0

instruments); the vehicle response spectra were then predicted, using

manufacturer's figures for the vehicle's dynamic parameters (apart from

damping, which was too variable and needed to be established in

conditions close to those of the experiment). The resulting spectra were

then compared with spectra obtained from vertical responses measured

as the vehicle was driven at constant speed along the surveyed stretch of S 0
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road.

,he simple random vibration response relationships, (4) and (7),
were in fact found to provide a useful means of predicting response
spectral densities, though the accuracy of the results depended very much
on the sophistication of the vehicle-model adopted in analysis. Accuracy
could be improved by adopting a more complex vehicle-model, and also by
regarding the system as nossessing two (or four) excitations corresponding
to the motions imposed by the road at the respective wheel-pairs (or
wheels). As might be expected the need for a more sophisticated model
depended on circumstances: in certain situations a model based on a single
road-profile excitation was quite good enough, but sometimes it was
necessary to have regard to the separate inputs at front and rear, and
sometimes also to those at near-side and off-side.

There were practical difficulties however in employing this
technique when separate allowance had to be made for near-side and off-
side excitations. It was not unduly difficult to obtain reliable spectral
descriptions for single profiles of particular roads, or even to obtain
typical spectra for particular types of road, but it proved much more
difficult to obtain complete spectra for pairs of profiles. The determin-
ation of cross spectral densities for offside and nearside profiles calls
for much greater accuracy of measurement than does the determining of the
corresponding direct spectral densities. The individual surveying of
profile-pairs provided suitable data for a small number of roads and
trackwidths, but such a technique is not practicable if a large number of
profile-pairs have to be treated. Those interested in the details of
these comparisons are referred to reference [13.

It was from the work described above that two later interests 0
developed: the description and modelling of typical road surfaces, and
response prediction for a vehicle whose speed was not constant.

2.2 Surface Description and -iodelling

Response predictions can only be as good as the excitation inform- 0

ation on which they are based. For the purpose of laboratory comparisons
the obtaining of accurate excitation spectra presents little difficulty
because measurement of a particular road-surface can be carried out to any
desired accuracy. But the vehicle manufacturer is not much interested in
the performance of his vehicles on one particular road; it is the
vehicles' behaviour "on motor-ways" or "on country roads" that concerns •
him. It is therefore a prerequisite to the practical use of valid random
vibration response theory that typical excitation descriptions be
available. For this purpose it is not essential that the descriptions be
precise descriptions of typical roads: it is sufficient that the
descriptions themselves be typical - and preferably in a form which lends
itself easily to analysis. •

For this purpose the mathematical modelling of profiles and
surfaces is of considerable importance; not only can the fixing of model
parameters give any desired spectral properties, but it can be made very
simple to vary these parameters and so to investigate responses to a
large number of different road-surfaces. There are intrinsic difficulties 0
however and these only become apparent when the problem is investigated.

Simple models were first developed in reference [2], and the problems of
surface description were explored more fully in [314,5].

It is not difficult to provide a satisfactory profile model, and
this may be all that is required in certain applications. All that is • 0
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needed is to express the spectral density of the profile, J(n) in terms of
the wave-number n (n being measured in cycles per unit distance, instead
of the more familiar cycles per unit time). For many purposes a
description of the form

J(n) = c n- w  (12)

may be used, with w n 2.5, and c dependent on the type of road [5]. For
cases where a greater degree of sophistication is needed, a bilinear
relationship of the form

Y = c 1 n-w no
) (13) 0

c2 n-W2 In1. n 0
has been proposed [2].

In contrast the modelling of an entire surface might appear
impossibly demanding, but simplicity can be achieved here too by having
recourse to the concept of isotropy. Briefly the assumption that a road 0
surface is isotropic implies that all profiles, irrespective of plan
position or orientation, have identical spectral densities. Thus once
isotropy has been assumed - and the assumption justified - all that
remains is to describe the individual profiles. Then from the given
profile spectral density the cross spectal densities applicable to any
pair of points on the surface can easily be deduced. The profile 0
description can be based on the models of (12) or (13), but a spectral
density based on actual measurement can be used if it is thought that
there is any advantage in doing this.

Isotropic surfaces possess one important characteristic which has
to be taken into account. Arbitrarily chosen profile spectra are not 0
necessarily compatible with the definition of isotropy, and specific
compatibility criteria must be satisfied. Moreover the profile spectral
density has to be defined over the whole range of wave-number from zero
to infinity, because determination of the cross spectral densities
involves integration between these limits. The restrictions are fully
explained in [3]. Tf descriptions of the form of (12) or (13) are used 0

it is only necessary that the spectral density outside the range of
wave-numbers which are of practical interest be chosen to satisfy the
compatibility criteria - though simply to make these zero is not
acceptable.

A mathematical model is only useful if it provides a realistic 0

description, and it might be thought that real road-surfaces are most
unlikely to be isotropic: certainly many country roads are bumpier near
the verge, and most roads are linearly generated and worn. There surely
must be roads for which isotropy is not applicable. Nevertheless the
cross spectra for pairs of points predicted on the assumption of isotropy
have often agreed well with those based on measurement [4,51. Particularly 0

if account is taken of the possibility of errors in the determination of
cross spectra based on measurement, isotropy-based descriptions have much
to commend them.

2.3 Responses at Variable Speeds

While the response of a vehicle which travels at constant speed
must be of considerable interest to the manufacturer, vehicles do also
operate at non-constant speeds. And though the response of an accelerating
vehicle must be expected to be a more complicated study than that of a
vehicle travelling at constant velocity, this state of operation cannot
reasonably be ignored. S O
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However, though one might feel constrained while treating the

constant-velocity problem to simulate as closely as possible the dynamic
properties of a real vehicle, the adoption of a greatly simplified
vehicle model seemed justified while studying the additional effects of
acceleration - provided of course that the dominant parameters of the
simplified system (natural frequency and damping ratio in particulari
were as close as possible to those of a real vehicle.

The response of a single-freedom vehicle model trav(:rsing a
random profile in a state of uniform acceleration was therefore invest-
igated [63. With realistic vehicle accelerations it was found that the
mean-square vehicle responses at any given velocity depended very little
on the magnitude of the acceleration. The problem was later investigated
again using a rather different approach 171, and similar conclusions were
obtained.

Other forms of acceleration were also investigated [7,8) including
the case of a vehicle travelling at a randomly-varying speed. This last
problem arose through the need to assess errors in experiments in which a
vehicle was driven at a supposedly constant speed.

3. MULTIPLE RESPONSE SPECTRA

It was our involvement in multiple response instrumentation of 0
experimental vehicles, together with the interest of some of our
colleagues in the deployment of very large numbers of transducers on
offshore structures, which led to work on the interpretation of multiple
response records, or in effect on the properties of the spectra of
multiple responses. This work ranged from practical enquiries into the
recovery of small but important responses which were masked by other 0
signals to the establishment of the complex inter-relationships which
connect the elements of the response spectral density matrix.

3.1 Signal Conditioning

The responses of a structure to random excitation are measured for 0
many reasons, one of these being to identify - and if necessary to
eliminate - individual sources of excitation. Some particular responses
may be better indicators of a particular source than others, but their
significance is often obscured by the presence there of response to
another more powerful source. In such circumstances it is useful to be
able to "condition" a response signal, to remove from it all effects 0
which are coherent with one or more of the other response sirnals. The
theory of conditioning was examined in [9] and a new interpretation of the
relationships between conditioned signals and the original signals was
provided.

Suppose a multivariate random process to consist of components xi, 0
x2, x, .... Components x2 , x , ... can be conditioned with respect to
x1 by dividing each of them in;otwo parts, one fully coherent with x1 and
the other quite uncoherent with it. This is indicated in Figure 2, where

the signals X2 0 l, x3cl, ... are fully coherent with xi , and the signals

X2 ul, x3ull ... are quite uncoherent with it.

The spectral densities of the uncoherent parts can easily be
expressed in terms of the spectral densities of the original components.
Denoting the original spectral densities by Sx , $2 , etc., and the

x 1'1spectral density of x2u, etc., by S21' etc., it can be shown that
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Figure 2. Separation of parts 2

uncorrelated with x from x2  <1 X 2u 1

and x 3. x3  30

-- X3 u

x x
x xs2. = s 2x 1 (14) 0 4

S 1

This can be done also with cross spectral densities, so that for example
:X X

S x  Sx - 21 13
23.1 = $23 (15

1
Thus all response spectra can be stripped of all the effects of coherency
with a chosen signal x 1.

The formulation of the conditioning relations in terms of matrices
is rewarding [10,111, in particular as making explicit the importance of
the rank of the response spectral density matrix in respect of consec-
utive applications of the conditioning operation.(For example, use mightX
be made of the doubly-conditioned spectral density Sx ) It is found
that each conditioning reduces the rank of the spect i density matrix by
one. As very few normal modes contribute to the response at any frequency,
the response spectral density matrix is usually of low rank (see the
following section), so that the consecutive conditioning of responses is
of limited applicability.

3.2 Rank and Order of Spectral Density Matrices

The separate spectral densities - direct and cross - of multiple
responses, which form the elements of a response spectral density matrix,
are separately computable but are not necessarily independent. The off-
diagonal elements, being cross spectral densities, do of course make up
complex conjugate pairs, but other relationships can be inferred from the
form of the matrix response relationship

Sx = H" SP HT. (10 bis) •

No matrix product can be of rank greater than the rank of any of its
factors. The response spectral density matrix Sx cannot therefore be of
greater rank than that of the excitation spectral density matrix S , and
this may well be very small.

If the order of Sx is greater than the rank of P there must be

rank deficiencies in 9x, which imply linear reiationships between its
rows (or columns). If for example the rank of S is 2 and the order of S
is 4, then there must be two relationships connecting 

the (complex)

elements of the various rows together. Taking these relationships together
with the known complex conjugate relationships of the cross spectral
densities, it is found that the full 16 elements of the 4x4 matrix can all
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be deduced if only 7 are computed directly, as indicated in Figure 3. Such
relationships were explored in [12].

(a) Complex H (b) Real H

i 0 X . X X

xS

Figure 3. Response Spectral Density Matrices of Order 4 and Rank 2.
Direct computation of the marked elements gives rise to the rest.

In general the harmonic influence matrices H are complex. When H is
real, however, the consequences of any rank deficiency become much more
marked, and the interrelationships much more stringent. For example, with 0

a response matrix of order 4 and rank 2 as before, it is found that all
16 elements can be deduced if only four are known. It is not true however
that any set of elements of the quoted minimum numbers have this property;
the basic set of elements must be chosen with care, as were those of
Figure 3. 0

Familiarity with the vibration of physical systems may encourage the
belief that harmonic influence functions are usually complex, for dynamic
components usually influence phase as well as magnitude. This is the case
if physically occurring excitations P and responses x are considered. But
the situation is different if the response relationshlips are formulated
in a manner which makes explicit the separate modal contributions; then 0

real H's are both common and practically relevant.

The contribution of the several normal modes can be made explicit
by introducing normal coordinates I and corresponding generalised forces
Z ,related to x and P by

x=d , Z=e P (16)

where d , e are real. and . then have a diagonal harmonic influence
matrix cw assuming the'' coor'ainates to be uncoupled. (This last assumption
is common, though not always valid. Care must be taken to ensure that it
is applicable in any particular application.) This relationship is 0 0
illustratrated in the block diagram of Figure 4; it is characteristic of
vibratory systems that at any particular frequency only a small number of
modes contribute significantly to the response, so that only a very few
oc- blocks need to be included.

I 01

Figure 4. Block Diagram Showing Modal Response Contributions S •
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The first equation of (16) constitutes a relationship with a real
harmonic influence function, because the elements of d are necessarily
real; the columns of d comprise the real (undamped) normal modes of the
system. And because of the typically low order of 4 , and so of S, , the

xspectral response matrix S for any large number ot transducers is
likely to possess a considerable rank deficiency. In such a case only a
very small number of the elements of the spectral density matrix need
to be directly computed.

It is worth noting that the small number of modes which usually
contribute significantly to the response at any frequency imposes a low

x .i.
rank on S irrespective of the (possibly) high rank of S . It is still
true that the rank of S cannot be greater than that of S , but the
requirement concerning the rank of S1 then becomes more stringent.

3.3 System Identification

Response spectra taken from offshore structures, arising from their
exposure to ocean waves, can often be used to estimate approximately
simple dynamic properties of a structure. Almost any single response
sp.ectrum will give an indication of the system's fundamental natural
frequency, and the shape of the peak gives an indication of the damping in
the fundamental mode. It is natural to wonder whether more precise and
detailed information about the dynamic properties of the structure might 4

be obtained through more lavish and careful deployment of transducers.

Without quantitative information about the excitation it has to be
accepted that such inferred knowledge of the dynamic properties of the
structure will be limited, and our work on this subject was concentrated
on an attempt to define these limits. This proved surprisingly difficult 4

but it raised some interesting points.

The problem was seen as essentially divided into two parts. It was
first necessary to establish the extent to which the accurately-known
response spectra of a computer modelled structure could be used to
determine the structure's characteristics. After this it would be 4

necessary to explore whether the inaccuracies inseparable from the
determination of response spectral densities on actual offshore structures
would permit inferences of useful accuracy.

References [13,141 approach the first part of the problem, [14
demonstrating that - in the notation of Figure 4 - the a's and the columns
of the d-matrix can be inferred with precision from the precisely known
response spectral densities of a simulated two-freedom system subjected to
white-noise excitation. (The assumption of a white excitation is not as
artificial as it might appear if attention is confined to a small range of
frequency, as is to be preferred on other grounds.) This technique was
found to be effective even when individual response peaks could not be
distinguished on the spectrum by inspection alone. However the analysis
used involved the assumption that uncoupled normal coordinates were
applicable: this might well not be true in circumstances where such a
refined technique would be of most value, and more is still to be said
on this subject.

One limitation on the information obtainable from response spectra
is already apparent from Figure 4. Even if the generalised force spectral
densities SK could be found, it would not be possible tp proceed from them
to the spectral densities of the physical excitations S ; without
information on the elements of e these are not 

uniquel7 defined.
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3.4 Analytical Devices

Matrix notation is only a shorthand to facilitate the algebraic
treatment of equations, and it cannot be claimed that results obtained
through its use are otherwise unobtainable. Nevertheless, matrix notation
can make results more readily apparent - quite apart from its making
available the use of such concepts as rank. The two following examples
illustrate this well.

a) Spectral Inequalities All spectral density matrices are known to be
non-negative-definite, and this fact imposes a series of inequations on
the values of its element spectral densities. (See reference [15])

Because of its non-negative-definiteness the spectral density
matrix s = s1 s1 ... si (17)

S S S (7
%W 11 12 .. n

$21 $22 "'" 2n

Sn Sn 2  S nn

must satisfy the condition

det S > O. (18)

But this condition must also be satisfied by all the spectral
density matrices which can be formed by discarding corresponding pairs of
rows and columns from (17) and so providing the spectral density matrices
for smaller numbers of components. Each of these new matrices must be 0
non-negative definite, and they too must satisfy (18).

It follows therefore that, typically,

S 01) >

S11S22 - $12S21 > 0 )
) (19)

S S S + S S S + S -S S - S S S - s S S)
11 22 33 12 23 31 1332 21 31 22 13 21 33 12

etc. S 231132-

The first of (19) is simply a statement of the well-known fact that
all direct spectral densities are positive. The second of (19) confirms
that all coherencies are less than (or equal to) unity. The third of (19)
and the other higher-order inequalities are unfamiliar results which may
well prove important in certain circumstances. For example, a "typical"
spectral density matrix, introduced into a computation to demonstrate a
procedure, cannot have its cross elements allocated arbitrarily: they
must conform to (19).

It should be noted that the subscripts introduced in (19) are
typical and not complete. In a fourth order spectral density matrix, for
example, it is necessary to satisfy six second-order inequalities, and
four third-order inequalities, as well as the single fourth-order
inequality.

b) Further Spectral Response Relationships The relationship between the

response spectral matrix Sx and the excitation spectral matrix S is
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is easy enough to remember, and it contains a great deal of information.

But other relationships are sometimep needed: we may also be interested in
the cross spectral density matrix S x which includes such mixed cross
spectral denpity elements as that applicable to the two signals x and P
- that is S^. The adoption of intermediate coordinates increases the 2

variety of 12 unfamiliar response relationships that may be required. 6

Reference 116) presents a simple technique for setting up the
correct response relationship between any pair of connected spectral
density matrices. It makes use of the limited analogy which exists between
the random vibration response problem and that in which a harmonic
excitation is applied to the same system. S

The technique is baspd on the loose correspondence between the
spectral density m~trix S of the random vibration problem and the
matrix product x*P of the.discrete-frequency problem - it being assumed
in the usual way that Pc e3

Suppose that the relationship sought is that between the cross x x

spectral density matrix Sx and the response spectral density matrix S
The analogy gives

sxP_ p(20)

Sxx x~xT )
)

and the usual rules for discrete-frequency response give

x = H P. (21)

Successive use of (20) and (21) gives

5xx ~ T * T T T xP T
s- x*x = x*(H P) = x*PTH S H. (22)

This analogy must not be taken too far: there can be no complete analogy
between a random process and a harmonic function of time. For this
restricted use however the analogy is quite reliable.

4. NON-IDEAL SYSTEMS AND PROCESSES

This title is used here to embrace all those random vibration
situations where the assumptions of the basic theory are not tenable, 0
due to processes departing from the Gaussian or systems failing to be
linear. (A further non-ideal problem - a non-stationary one - has already
been considered in section 2.) Just as the assumption of linearity is
justified in a great number of practically occurring vibration problems of
all types, so a great number of practically occurring random processes can
be treated as Gaussian. But some systems must be treated as nonlinear and 5
some processes as non-Gaussian; the analyst must be prepared for them -
not necessarily in combination, though the application of a Gaussian
excitation to a nonlinear system almost inevitably gives rise to a non-
Gaussian response. It seemed important to initiate work in this field.

In this section a more general theory of the description and response
of random processes will be introduced, applicable to all random processes
whether Gaussian or non-Gaussian. Following this three separate studies of
non-ideal processes or systems will be described: work on the symmetry
properties of higher order correlation functions and spectral densities,
a new method of description for a lass of non-Gaussian random processes,
and a study of the (second order) response spectra of a Duffing-type
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nonlinear spring-mass system subjected to random excitation. 0

4.1 Ueneral Theory of Description and Response

Description of a random process by its spectral density conceals the
essential fact that all descriptions of random processes are - and must be
- probabilistic, and furthermore of some complexity. Averages simplify
description, but to describe a random process adequately these must cover
not only mean- and mean-square-values but also all the averages of all the
products made up from instantaneous values at all given instants of time.
Confining attention to stationary random processes greatly simplifies the
problem, but even here the full description of a random process {x(t)J by 0
means of averages requires the specification of a whole sequence of
autocorrelation functions in terms of the delay variables l, T2, 3 ....

Rx(.) = E[x(t) x(t+T)]

Rx(Ex,T 2 )  Ex(t) x(t+y1 ) x(t+ 2) ] ) (23)

RX(? 1 1 T 2 ,T 3 ) = E[x(t) x(t+-rT) x(t+' 2 ) x(t+)

etc.

for all combinations of T1, T2 , T3 0

This sequence did not arise when autocorrelation functions were
first discussed in section 1.2 because the higher order descriptions were
not needed. Though for a Gaussian random process the higher-order auto-
correlation functions do exist and are meaningful, it is a special 0
property of a Gaussian process that all higher-order descriptions can be
inferred from the second order description. This constitutes a very great
simplification, which is lost when non-Gaussian processes are considered.

Spectraldensities corresponding to (23) are obtained by Fourier
transformation, but the greater number of t-variables calls for higher- 0
order Fourier transforms. These give rise to a sequence of spectral
densities which are functions of several frequencies.

Thus we have

* 0x0 jRx(TL) e- i21fT d--X ) =

SX(f ff) - e- i2r(f1 1+f 2)dld - d

* )(4

etc.)

The second of (24) is called the bi-spectral density, followed by the
tri-spectral density, and so on.

The response relationships applicable to the higher-order spectral
densities are naturally more complicated than those for the second order,
though perhaps less so than might have been expected. We are not concerned
with them here, however. A catalogue of useful response relationships is
to be found in reference [171.
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0 S

4.2 Symmetry Properties of Higher-Order Descriptions

It is a consequence of the definitions of higher-order auto-

correlation functions and spectral densities that symmetries exist. These

are not simple reflections however and can be very complex. An under-

standing of them is essential to those concerned with the application 0 0

of higher-order descriptions because they can greatly reduce the task of
computation. Thus, for-example, computation of S X(f 1 ,f2), the bi-spectral

density of a process {x(t4, over only one-eighth of the f1 , f2 -plane

enables it to be inferred over the remaining seven-eighths.

Such possibilities are most easily appreciated by considering the S S

bi-autocorrelation function RX(r T2 ). It is plain from the definition

that the x-variables may be interchanged so that

Rx(T2 , T1) = Rx(YT1 ); (25)

the value for a given combination of T1T2 is equal to that for the same • S

combination of T2 ,y 1 . But more complex symmetries emerge from a little

manipulation of the definition. Because {x(t)) is stationary

Rx (Tr,T) = Ffx (t) x(t+r1 ) x(t+T2)

= E[x(t-v1 ) x(t) x(t+C 2-) T S

= RX(-T ' r ), (26)

and a value computed for a given combination -r1 , T is also applicable
to the combination -T ,r --1, and also to -T2 , T- 2 by a similar argument.

Similar symmetries exist for bi-spectral densities, and it can be
shown that

S(f 1 ,f2) s(f29f 1

= S(f 1,-fl-f 2 ) = S(-f 1 -f2 ,f ) *

= S(f 2 ,-f 1-f 2 ) = S(-f 1 -f 2,f 2). (27)

Figure 5 shows the implications of (27) on the flf 2-plane, the points A.

f 2

B" B

A*fl

A"l 0 A

A'

B'

Figure 5. Symmetries of Bi-Spectral Density. The triangle OAB

transforms into OA'B' and OA"B". *
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A',A" all having the same value of bi-spectral density, and the points B,
B',B" all having the same value. Thus the triang;le 0A. may be said to
transform into the triangle OA'B' and into the triangle OA"B". If the
values of the bi-spectral density are known over the triangle OAB they
are known also over the other two. This together with the simple symmetry
property of reflection in the line f 1=f ensures that if the values of u
the bi-spectral density are computed for the one-eighth-plane which
subtends the angle AOB at the origin, then the values for one-half of the
plane are known. The other half comes immediately from the fact that

S(-f 1,-f2) = S*(f 1,f. (28)

The symmetries for higher-order descriptions are necessarily much
more complicated, though the need for making use of them is still more
pronounced. These have been explored, for nonstationary as well as
stationary descriptions, up to the fourth order. The symmetry mappings
form well-defined groups, in terms of the mathematical theory of groups,
and the group-theoretical properties are emphasised in reference [18].

Examples of bi- and tri-spectra of a particular non-Gaussian random
process will be found in the next section.

4.3 A Quasi-Gaussian Random Process

Just as the study of nonlinear vibration is much concerned with
quasi-linear theory, it is to be expected that quasi-Gaussian theory will
prove relevant to the study of non-Gaussian random processes. It offers a
considerable simplification, where it can be justified, and it is likely
to be justified in many practical applications.

Reference [19) approaches quasi-Gaussian random processes by
considering the response of a simple quasi-linear spring element to
Gaussian excitation. The spring considered has a polynomial spring-law
which can be varied by changes to the coefficients, and the various
response spectral densities can be expressed in terms of tnese coeffici-
ents. This work serves two purposes. Firstly it provides typical examples •
of the higher-order descriptions of a physically-realisable quasi-Gaussian
random process, and secondly because the coefficients of the spring-law
can be used to define the random process, it provides a convenient model
of a quasi-Gaussian random process and can be given any desired overzll
properties - for example skewness and kurtosis.

It is shown that if a stationary Gaussian excitation {x(t)J having
spectral density Sx(f) is applied to an element with spring-law2 x3

y = x + Ox + x (29)

the first three spectral densities of the response Jy(t)) are

sY(f) = Sx(f) (0 + 60o) )

sY(fl,f 2) = 2 [Sx(f) sX(f2  +Sx(f 1 ) Sx(f 1+f2 ) +SX(f2 ) SX(f+f2T)

) Sx(f 2 ) +S(f 2 ) Sx(f) +S(f 1+f2 ) SX(fl )

SY ~ Sxf [1 12Ar]+6O[SX(f ) Sx(f ) Sx(f))
9ff31'f2'f3 x 2 3)

+S:(f 1 +f 2 +f 3 ){Sx(fl) Sx(f 2 ) +Sx(fl) Sx(f 3 ) +Sx(f 2 )Sx(f 3 )
)
)(30)
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The singularities of the second of (30) arise because {y(t)4 has a non-
zero mean-value; this can be eliminated by basing analysis on covariances
instead of correlations, as a result of which all the terms containing
ocr vanish.[ x

If in the above example the excitation is given a band-limited
white spectral density defined by

sx(f) = SI  I fl <_ fc
= 0Ifj > fc (31)

c

and the mean value of {y(t)} is suppressed as above the spectral density S

and bi-spectral density are as shown in Figure 6.

sY(f) 2

0 0

Figure 6. Second and Third Order Spectral Densities of

Non-Gaussian Response.

Second Order: SY(f) = S1 (1 +12AS 1f ).1 2 1
Third Order: Sy(f 1f2 = S1i 36$1, 0, respectively

on shaded plateau, adjacent triangles, and elsewhere.

Reference [19) gives the values of the coefficients necessary to
reproduce desired values of skewness and kurtosis.

4.4 Response Spectra of Duffing System

Even when the familiar (second order) spectral density does not
provide a complete description of a random process it must nevertheless
form an important part of the full description. And it is in any case
always of some interest to the engineer; it is always true, for example,
that over a given frequency range f 1  

f - f2

2 Jf2sx(f) df = E[x2 (t)]. (32) 0
-1

Practically ocurring spring-mass systems cannot always be relied on
to be effectively linear; yet there is little information in the
literature on the response spectral densities of nonlinear systems, except
for cases where the departure from linearity is small. Unfortunately for
a nonlinear system the form of the response curve obtained under discrete- S
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frequency excitation, characteristic though it is, offers little clue to
the form of the response spectrum under random excitation.

It seemed desirable to remedy this deficiency,and work has been in
progress recently with the object of establishing at least the (second-
order) response spectra arising from a Duffing-type spring-mass system
under white and band-limited-white random excitations. It was not deemed
practicable to obtain this information through analytical procedures,
and results were obtained instead by analysing the response of a computer-
simulated nonlinear system to random excitation.

The spectra obtained will be presented, for a repesentative range
of system parameters, in reference t20]. The spectra were found to possess
a characteristic near-triangular form, and an approximate straight-line
representation has been devised which can easily be set up when the system
parameters are known. It was interesting that having discarded the
established analytical techniques of the Focker-Planck and Equivalent
Linearisation methods as a means of obtaining spectral densities, these
two methods proved, in combination, a most valuable adjunct in the

interpretation and application of the computed results.

5. CONCLUSION

The work which has been described so very briefly in this paper has
been carried out over a period of time by a number of different research-
ers who have between them embodied a very wide range of interests, talents
and aspirations. It is not surprising that in these circumstances the
directions of the different researches are very various also. At least
this vatiety has made for a wide coverage of the subject of random
vibration.

But it should be apparent from this presentation in a single paper
that there has been an underlying unity provided by the basic framework of
the subject. The topics have all arisen from the need to extend applicat-
ion or understanding beyond the scope of the basic theory of random
vibration. It cannot be pretended that all possible extensions have been
covered, but there should be enough examples here to illustrate the
manner of and scope for extension. Extension of the basic theory in this
way is rarely a trivial matter, but the scope of the subject and the
resources available ensure that it is rarely impossible.

It iz in the nature of a paper like this that the author is princip-
ally a reporter of the work of others. And it must be apparent that it is
simply not possible to do justice to the expenditure of so many expert
man-years in so small a compass. But the names of the real contributors
are explicit in the references, and it is presumed that each topic is
adequately presented in the relevant publication. The present author is
glad to acknowledge the contribution of all the workers involved, and
particularly that of Dr D.B. Nacvean and Dr C.J. Dodds who as members of
the permanent staff of the Mechanical Engineering Department of the
University of Glasgow have played a crucial part in the implementation of
most of the work described here. Thanks are also due to those who provided
funds and facilities in one form or another, primarily the-University of
Glasgow, and the Science and Engineering Research Council.
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SOME CLOSED-FORM SOLUTIONS IN RANDOM VIBRATION OF TIMOSHENKO BEAMS

Isaac Elishakoff and David Livshits

Department of Aeronautical Engineering
Technion - Israel Institute of Technology

Haifa, Israel 00
Abstract

Random vibration of simply supported uniform Timoshenko beams is

considered under stationary space- and time-wise ideal white noise excitation. -

An approximate differential equation is used with both shear distortion and (.0
rotary inertla included, but with the term which takes the simultaneous action
of these effects, omitted. A closed-form solution is derived for the
displacement and velocity space-time correlation function of the Timoshenko
beam with transverse damping, generalizing the corresponding result by Eringen
for the classical Bernoulli-Euler beam. Closed-form solutions are also derived
for beams with structural or Voigt damping mechanisms. The mean-square value
of the stress diverges for both the classical and Timoshenko beams with
transverse damping, but converges for the beam possessing structural damping.

The main finding of this study is identitofthe space-time correlation
functions of displacement according to the refined Timoshenko theory and the
classical Bernoulli-Euler theory, when joint action of rotary inertia and shear
deformation is neglected. This remarkable coincidence takes place Jr beams
possessing"(a) transverse viscous damping' (b) Voigt damping, or (c)'combined
rotary and transverse viscous damping. -

1. INTRODUCTION

Random vibration of structures has been treated in a series of papers in
the last 25 years or so. Eringen [1] analyzed the behaviour of viscously
damped beams and plates through the normal mode method, and in certain cases
obtained closed-form solutions for the output quantities. In particular, he
considered the classical Bernoulli-Euler beam, governed by the differential
equation 0 0

a w a2wEl +- 2 + PA = q(x,t) (1)
ax at

q(x,t) being the space- and time-wise ideal white noise with the following 0 0
space-time correlation function (so-called "rain-on-the-roof" excitation)

R RRq(XlX 2,t1lt 2) = 6(x2-x1) 6(t2-tI ) = Z 6(C)6(t) (2)

where R is some positive constant, k - the span of the beam, C - the spacing of 0 •
the observation cross-sections, T - the time lag. The beam was taken simply
supported at its ends with mode shapes

(x) = sin - (3)

Utilizing the normal mode approach, Eringen derived the closed-form expression
for the mean-square displacement

d2(V) =R9 2  2x 4d 2 W 2(1- 2), : (a
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The derivation of this expression is also recapitulated in Ref. 2.

Eringen showed that the mean-square normal stress diverged attributing
this divergence to inadequacy of the classical beam theory.

In a subsequent paper Samuels and Eringen [3] demonstrated that transverse
and rotary viscous dampings acting in concert produce a finite mean-square
stress in a Timoshenko beam, mean-square displacements deTed via the
Timoshenko and Bernoulli-Euler theories differing by less than 5%. It was
concluded accordingly that the Bernoulli-Euler beam theory represents an
adequate model for studying random vibration of beams when only the mean-square
displacements were desired; if the mean-square stress also was looked after, it
was necessary to use the improved theory by Timoshenko (see also Ref. 4).

A further contribution in this context is due to Crandall and Yildiz [5],
who showed that the response of a uniform beam to stationary random excitation
depended largely on the dynamical model postulated, on the damping mechanism
employed by the material, and on the nature of the random excitation process. e
Mean square displacements, slopes, bending moments and shear forces were
compared for combinations of four beam models comprising three different
damping mechanisms and random loading with autocorrelation function as per
Eq. (2). The beam variants were the Bernoulli-Euler beam, the Timoshenko beam,
and two intermediates, namely the Rayleigh beam (rotary inertia included, shear
deformation neglected), and its reverse (shear deformation included, rotary 0
inertia neglected) referred to as the "pure shear beam". The damping mechanism
variants were transverse viscous damping, rotary viscous damping, and Voigt
damping. It was found that certain mean-square response quantities were finite
(for a time-wise ideal white noise excitation) even though the input possessed
an infinite mean-square. At the same time, some of the responses turned out to
be unbounded (see Table). S

Table [d]

Beam Response Transverse Rotary Transverse Voigt
model variable viscous viscous and rotary damping 0

damping damping viscous
damping

Bernoulli- Displacement converges converges converges converges
Euler beam Stress diverges converges converges diverges S

Rayleigh Displacement converges converges converges converges
beam Stress diverges converges converges converges

S S

"Pure Shear" Displacement converges diverges converges converges
beam Stress converges diverges converges converges

Timoshenko Displacement converges diverges converges converges
beam Stress diverges diverges converges converges •

Crandall and Yildiz considered also the variant of band-limited white
noise with upper cut-off frequency wc. For the cases of unbounded response
they studied its growth pattern as function of wc, and some of their results
are reproduced in the accompanying table which indicates whether the 0

640



mean-square displacement and the mean-square stress converge or diverge. 0
Because of the complexity of the integrals involved, these results were
oriainally formulated in order-of-maqnitude values with respect to the damping
parameters and the serial number of the term, which also represents the
appropriate mode.

In an earlier study [6] by the present writers, close-form solutions were 0 4
obtained for the classical Bernoulli-Euler beam under "rain-on-the-roof"
excitation. Here we present closed-form solutions for the Timoshenko beam,
apparently for the first time. An approximate differential equation is
employed with both shear deformation and rotary inertia included but with their
joint effect neglected. The analysis also sheds further light on results of
earlier studies. •

2. THEORY

2.1 Basic Equations

The differential equation qoverninq free vibration of the Timoshenko beam
reads

2 A 2 4
a 2w 2 a w El a w+ p~r 2  a

E w + pA w pAr2  - pA A p aw 0
2A _F2P -

ax at axat kAG axat k AG at

The first two terms represent the classical Bernoulli-Euler theory; the last
three are contributed respectively - and in that order - by rotary inertia,
shear deformation, and their interaction. Following Timoshenko [7] and Clough
Penzien [8], let us study the relative contribution of the fifth term in
determining the natural frequency. For a beam simply supported at its ends,
the mode shapes are given by Eq. (3), which on substitution in (5) yields the
following equation for the frequency parameter

a 2 jTr 2  Ea 2 2 (
(- ) - p -par2 (v (1+E)7j-r (pr ) 0 (6)

kG kG

Here, the first two terms yield the natural frequency of the classical
Bernoulli-Euler beam

.2 2 El 1/2

Wj,cl A

The third term in Eq. (6) is the principal contribution of rotary inertia and S

shear deformation, represented respectively by the quantities 1 and E/k'G in
the brackets. For a beam made of conventional materials and with rectangular
cross-section, the value of E/k'G is about 3, so that shear deformation is
about three times as important as rotary inertia. This rules out both the
Rayleigh model, which neglects shear deformation altogether, and the "shear"
beam for which the error is smaller but still of order of 25%. However, for an 0
I beam, with the same thicknesses of the web and flanae, and also the same depth
and width, Cowper's [9] formula yields

k = 490(=+v) 0.26 , = 10
1656+16T63 3- k G

for Poisson's ratio v = 0.3. In this case the effect of rotary inertia can be
neglected.

Timoshenko [7] and Clough and Penzien [8] showed that the last term Eq.
(6) is of secondary importance for practical cases in which jr/Z<l. *
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Accordingly, we shall omit it as well as the last term in the governina 0
differential Eq. (5).
This omission yields for the natural frequency the approximate expression

2 El 1 1/2T TA Ilr( 7i- 2 p

1+r (jir =-) (1+E/k E)

The expression in square brackets representinq part of the correction for the
rotary inertia and shear deformation. This correction is more important for
higher mode numbers j and for beams with higher slenderness ratio ,'/r.

We now proceed to treat the beam under the loadino (2) using the 0

approximate differential equation with a view to a closed-form solution*.

2.2 Transverse Viscous Damping

In this case the governing differential equation reads

A 2 aEl aw+ nA2w + 2ww 9
2x- + PA + c -- a = q(x,t) (9)

where

a= pAr 2 (1 + E) (10)
kG

Representing q(x,t) and w(x,t) as series

00 C0
q(x,t) = f QJ()J(x)e00 td

jz _D

OOQ(w) •w

w(x,t) l'= f Yj(x)e dw (11) 6

we readily find, substitutir-i Eqs. (11) in Eq. (9)

Lj(w) = pA[(jT 2  2 )aj + 2iCjwj,Tw]  (12)

where wj,T is as per Eq. 8, and

22 a 1+ .2
1+ (J ) r = k(1+ (13)

c = 2 j, (14)

The normal-mode method yields the followinq expression for the mean-square
displacement

*Should the question be asked "Is it reasonable to seek an exact solut..rvn

through an approximate differential equation?", the answer is yes. Indeed, who
would attempt approximate solution of simple linear differential equation of
bending of a beam, despite the fact that the equation itself is inexact? 0
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2 Ro 00 x
E[w2(x't)] I (siAn) f~ (jTm,

~(0A) j -~ 22) ~2 22 (15)
iT(A ,)2 =1 Tj,T W ,j J wj Jw

Now

7 2 j2 3 (16)

f(,-2)2 2+ __T73(6
-oo (wj,T- ,j T 2 yj j,T

or, bearing in mind Eq. (14),

dw 7r(A
(2 2)22 7 j2 22 T (17)

-0 (wj,T j + 4w CwjT

Comparison of Eqs. (7) and (8) reveals that 0 0

2 2
ajwj,T = wj,cl

whence

2 2 (sin J _ (19)
E[w (x,t)] - (19 (i 2

1r0pAJ j=1 cWic2

and therefore should coincide with Eringen's classical Eq. (A). This implies -S

that when the joint effect of shear deformation and rotary inertia is neglected,
but their proper contributions are taken into account, the mean-square dis-
placement of the Timoshenko beam is identical to that of the Bernoulli-Euler
beam. This remarkable "exact" result is in agreement with the numerical
calculations by Samuels and Eringen [3] who found that the difference between
these theories does not exceed five percent (see Fig. 2 in Ref. 3 and Figs. *
66.3 and 66.4 in Ref. A).

Since the mean-square displacements predicted by the classical and refined
theory coincide, the mean-square stresses do the same; they turn out to be
divergent for both, the Bernoulli-Euler and Timoshenko beams.

On the other hand, the mean-square velocities for these beams differ, as
is shown below. In fact,

2 R 002co w 2dw
E[w (x,t)] _ -a 2 J i -) 1 22 2 2 2 2 2 (20)

ir(A Z) 2j=1 00 (wjT W)2 aj 2+ wj,T2 w 2 a

The integral equals

-2d0 . 2 d w f P A ( 2 1 )

2 2 2a 2+ 2 2= 2c-(21,T)-0 (wj,T -m wj"C j,T w lj

and consequently

2 x2 1
E[w (x,t)] AR j;1 (sin ---- L (22) *
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Denoting

r2V (1 + E (23)
2G

we obtain

E[w (xt)] - - Jx . (22)

pA2. c j=1 2 1+6j

and resorting to the familiar sum [Ref. 8, Eq. 1.445.2]

cosjx cosh a(v-x) I for O<x< 2r (25)
7F7 7T sinh si 277

j=l2

we have

* 2 R k/r 2.2
E[w ( ,t)] = -p. /r sinh[- (1- )]sinh(- ) (26)

2pA2T c ysinh( /ry) ry ry

where = x/Z is the nondimensional axial coordinate and

= (1 + E) 1 / 2
= (27)

kG *

Taking [9]

k'= 10(1+v)

17FTV

we find /k'G = 3.12 and y = 2.03. For a beam of rectangular cross-section .
r = h/121/2 = 0.289h, where h is the depth of the cross-section. Then, at
the middle cross-section E = 1/2

2 1 R 3.46 (2./h) sinh2 (0.8525 21h) (28)
E Ew2(7' t)] = 2PAX2c 2.03 sinh (1.705 2/h) ( ,

For 2/h >> 1, we have

sinh2 (0.8525 9./h) - 1 sinh (1.705 2/h) (29)

and the mean-square velocity is obtained as *

~21 04d265 R 2.
E[w (7,t)] 0 (.) (30)

pA 92c

whereas for the classical beam it diverges. Indeed, as the slenderness ratio 5
increases, the natural frequencies of the Timoshenko beam tend to those of the
Bernoulli-Euler beam and for 9/h-o Eq. (30) yields an infinite mean-square
velocity.
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2.3 Timoshenko Beam with Structural Damping 0

The governing equation reads

a(T) - + A 2w a w

E x + PA a O a = q(x,t) (31)
ax at ax at

where a/at is a time-differentiation operator and

2o=pr( ED0 iWt 3 iWt
-Jr (1 e E (E+i)) (32).. ....

k G O  at

Poisson's ratio is assumed constant, v is the structural damping coefficient.
The frequency response function is

HAcd[W 1 (33) S
Hj( ) _ 2(I+ip) -3

pie [j,T

The displacement space-time correlation function at zero time lag becomes

R R jrXl jyrx2  1 c_ d_Rw(xlx 2,O) A 2 . sin sn -  f ,2-22+ 22
i,(pAf) j=1 CO ( wj, _) +W,T

(3d)

or

Rw(X1,X 2 ,0) = 6 a [1+(1+v2)1/2]1/2 x6Eo0I(pAEoI )I1/2 v[2(I+lj2 )] I1 / 2

* 0

(35)

JO 7Xl J~ x2 1 1
x sin T sin -6 1

j=1 Y ]1/222j_ [1+( )2j 211/2

For the mean-square displacement we have

2 Ri 11++ /2112o 2 1 1E[w ( ,t)]= R (sin jv)2 22 2
i6EI(pAEoI)1 / 2 v[2(1+p 2 )]1/2  j=1 [+( 2 -) 2jy ] 12

(36)

The corresponding expression Rw(xi,X2,O) for the Bernoulli-Euler beam is
obtained by putting formally y=O, in Eq. (36) which yields

Ri4  [1+(I+J2)1/2]1/2 in 2J2Xl s L"2 1
Rw(xIx 2 90) cl 6 E1(2AE 2 /2 sin Z sin Z .

oNA 1)1 v[2(1+u2 ] 1  
_=

(37) p 0
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The summation of this series is given in [6]. The maximum mean-square
displacement is (see Eq. 27 there)

21 R11 [(+(3+82/21 1 2

960 E0I(pAE0 I)I/ 2 v[2(i+,2)]1 /2 (38)

Closed summation of (36) for the Timoshenko beam is apparently unfeasible. The
appropriate terms in series (37) for the classical beam are multiplied by the
factor 1/[1+(ri/z)2j2y2 ]1/ 2 as the mode number increases. In these
circumstances it is reasonable to compare the contribution of the first mode
for the Timoshenko beam with the closed-form solution (38) for the classical 0
beam

E[w (-,t)] 6 [i(I+p 2 )I/ 2 ] I / 2  1 (39)2'T E 0 I(pAE 0 I)i
2  ]/2 [1+(rr/) 2y2 1/2

The ratio of the mean-square displacements is

2 1E[w (7 ,t)]T 960 (40)
n=E[w2(, t)]ClI 76 [1+ (r r/Q 2 Y2]I /2  (0

For a rectangular cross-section n equals 0.982 at h/Z=O.1 and 0.937 at h/Z=0.2,
i.e. the difference between the Bernoulli-Euler and Timoshenko models is about
6.7%.

2.4 Timoshenko Beam with Voigt Damping

The governing differential equation is

E I(1+e 2- + pA - aw q(x,t) 41) 0
0 tax at ax at

where ao is as per Eq. (32) and Poisson's ratio is again assumed constant.
The frequency response function is in this case

H() = 1 (42) 0

pai [Wj,T 2 (1+ciw) - W ]

Therefore

R(j R O jirX 1 _ lt __ dw (03
2 2 2

RwlT2O ( (pa Z) 2 j=l R -j2(, T -_2 2)+ j a E W

The inteqral equals r/c ,T.2 However,

2 2
ajwj,T = j,cl

and as a consequence, the displacements space-time correlation function for the
Timo hjnko beam coincides with its classical counterpart, aiven by Eq. (38) of
Ref.664
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For the velocity space-time correlation function the appropriate integral

equals

it i

aj j,T aj j,cl

Thus

R(xE7) R2 1 1 sin JTx1 sin 2 (ad)

PAEIei c j =1 j I-cz.

and for the mean-square velocity the following closed-form expression is
obtainable

* 2 2
E[w (xt)]T = E[w (x,t)]cl -

RZ 2 ava1/2
201 v- + 12 sinh (1-C) sinh I (45)

pAEIEc 2sinh( l/ I / 2 )  a

2.5 Timoshenko Beam with Rotary and Transverse Damping

Instead of Eq. (9) we have

aaw a2 w aw a w a3w
E- + PA + - a d - q(x,t) (46)

ax at ax at ax at

where d is the rotary damping coefficient. The formalism of the normal mode
method yields

2 R 2 co dw
E[w (x,t)] - (sin 121) f (47) *

(pA9) 2 j si ) 1 2 22 2 2 2"AY)j= 1c (0 Wj,T- _W 0 j wjT W

where

2 Ceq c+d(j/ z)2

2 jwjT = = pA

Therefore, in analogy with Eq. (16), we obtain

2 R 2
E~w(x')] (A ) J1 (sin J)3

=(pA9 j= 2a j jj,T

R.2
R(sin A (48)

7r(pA Z) j=1 9 tjceqwj,T

Here again the product a 2 equals wcl and the Timoshenko beam result

coincides with the classical beam result, reported in Ref.[6].

647



A remarkable conclusion is, that mean-square value of the stress also 0

coincides with that of the Bernoulli-Euler beam derived in Ref.[6q That is,
the mean-square stress is the Timoshenko beam diverges, when only transverse
damping is present. Addition of the rotary damping however small improves the
situation so that under this combined transverse and rotary damping the mean-
square stress converges. This conclusion was originally arrived at by Samuels
and Eringen [3] and also Crandall and Yildiz [5] and are reconfirmed by the
present writers.
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RANDOM VIBRATION OF DISCRETE, PERIODIC COUPLED • •
FRAME-WALL SYSTEMS

G. Oliveto and A. Santini

Istituto di Scienza delle CostruzioniUniversitA di Catania 0

1. INTRODUCTION

The structural strength of tall buildings is often provided by a coupled 0 O
frame-wall system with the frame supporting, most of the vertical loads and the
horizontal loads shared in some measure between the frame and the wall. For
design purposes, the knowledge of the shear forces and bending moments in the
frame and in the wall is of the utmost importance and also the knowledge of the
displacements due to horizontal actions. The main sources of horizontal forces
in buildings are wind and earthquake excitations. This paper will consider the
response of coupled frame-wall systems to earthquake motions although, with
minor alterations, the procedure may also be applied to wind excitations. (--

The problem of evaluating the response of coupled shear-wall systems to
earthquake excitations has been the object of several investigations in the past
but some contributions have also appeared recently [1] , [2] , [3], [4]. Early
investigations [1] have considered the response to static forces which are
provided by many seismic codes as alternative means for assessing the seismic
strength of some types of structures. More recently [2] , [3] , [41 , dynamic
analyses have been presented aiming at the evaluation of the frequencies of
vibration which may be used in conjunction with either the response spectra or
the mode superposition method. However both the static and the dynamic analyses
have been performed on continuum equivalent models which may give a picture of
the qualitative behaviour of the system but may not provide results of
sufficient accuracy for design and analysis. Surprisingly enough, analyses of
discrete models, to which the system is amenable quite naturally, have not been
presented, perhaps because those have been looked upon as trivial exercises!
However discrete models of the shear type frame have been presented extensively
in literature and analysed for static [5] and dynamic [6] loadings of both a •
deterministic and random nature.

The analyses of the response of periodic shear type frames to earthquake
excitations modelled as stationary random processes was presented by A.C.
Eringen [6] and extended to some nonstationary random processes by Y.K. Lin [7].
In this paper the method developed by Y.K. Lin will be applied to periodic 0 •
frame-wall systems.

2. THE PHYSICAL AND MATHEMATICAL MODELS

A coupled frame-wall system consists in its most elementary form, of a
frame and a wall connected at regular intervals by inextensible rods as shown in
fig.l. The connecting rods are provided in actual buildings by the floor slabs
which may be considered inextensible because of their large in-plane stiffness.
In continuum equivalent models the wall is treated as an Euler-Bernoulli beam
and the frame as a shear beam [1] . The connecting rods are split and spread to
form a curtain providing a continuous rigid constraint against mutual
displacements of the wall and the frame. The shear stiffness of the beam 0
equivalent to the frame is obtained by analysing the behaviour of a panel of
shear type frame and replacing the actual rotations by the average one along the
height of the panel. Both these operations, by violating compatibility alter
the identity of the physical problem and should be avoided as can be done by
analysing the discrete model of the structure.
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- ---

-777 r1,,mF.7 TT77 ,0 •

Fig.1 Coupled Frame-Wall System

In what follows the ground floor will be denoted by the suffix 0 and the

subsequent floors will be numbered from 1 to N. The geometrical and mechanical 0 -
properties will be considered constant at each storey but varying from storey

to storey. Later this variability will be removed but it will be clear how to

proceed in the general case at the price of some additional computational
effort. The shear stiffness of the frame at the i-th storey will be denoted by

n 3
Ki = 12 (E I/h

J= l

where h is the height of the storey, E! and If are Young's modulus and the

second moment of area of the j-th column Jand n i the number of columns in the
frame. Expressions for K are available also for frames which are not, or may

not be considered, of the shear type, [I]. At the same storey let EW and Iw be

the corresponding properties for the wall. 
i i

2.1 The field matrix

S w 0 f

it
M

• @

S S

a) b)

(P

VW " M f

M V
t  S 

Fig.2 Forces and displacements related by the field matrices
a) for the wall, b) for the frame'
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A field matrix relates forces and displacements at the top of a storey to
those at the bottom. In the present case the field matrices may be written as
follows for a wall and a frame segment corresponding to the same storey, fig.2.

w 1 0 0 0w s w

R/h 1 1 0 0 M/h

iR/h2  -1/2 -1 1 0 pR/h 2

vR/h3 _j --:1/6 -1/2 1 j , vR/h 3-- ,

L/hi L: i LRw!h?3f

p Rw R f = Elf (1+ia)

Rf Rw = EIw(1+io) f R

Here w and f stand for wall and frame respectively and the subscript i refers to
the storey number. Hysteretic damping in the wall and in the frame is taken
into account through the parameters a and p respectively.

For the subsequent developments it is convenient to replace the 4x4 and
the 2x2 field matrices by a single 4x4 matrix. This can be done because the
lateral displacements in the frame and in the wall are identical at floor levels
and both the shear forces may be expressed in terms of their sum and of the
remaining variables. Therefore, by enforcing the equalities

f w
v V =v V I 5
sf _.w SW

and after some algebraic manipulations the following relationships may be
written

1 0 0 0 S I 5

/h C E G 0 M/h

FR/h2  B D E 0 PR/h2

21 2vR/hji LA B C i yR/h2J i

where

d - 2(1-6p)

A - 2P/d D = (1+6p)/d

B - 3A E - -4(1+P)/d

C -- 6A G - 12/d
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and M, R, c, 0, still denote bending moments and rotations at the ends of a 0

wall segment . The shear forces in the wall and in the frame are given by the
following expressions

Sw = -6(2pS+M/h-29R/h2 )/d

Sf = 2(S+3M/h-6,R/h 2)/d

2.2 The point matrix

si

S.W

Fig.3 Horizontal forces on a system segment

A point matrix effects transfer across a floor providing the following 0
relationships between the field variables at the top of a segment of structure
to those at the bottom of the following one, fig.3.

S 1 0 0 F

M/h 0 1 0 0 R/h 0

,R/h2  0 0 1 0 ()R/h2

yR/h3 0 0 0 li_ YR/h3[i-1

(i-2,...,N-1) S S

In the above matrix the coefficient

F - -h3 (mW2 -icw)/R

accounts for inertia and viscous forces at floor levels.

2.3 The transfer matrix

The relationship (1) and (2) may be written in compact form as

-i Pi-i i-i

where F and P denote the field and point matrices respectively. Bycombining he aboveequations it may be written
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_Ei Pi -IFi l_ i -j or 0
(3)

-i T-1 -1

where the transfer matrix Ti_ 1 may be given as follows

I+FA FB FC F 0

C E C 0
Ti-I i-lFi-i B D E 0

LA B C 1 i

By applying equation (3) recurrently it may be found that

__ z T-Ti-2"'T z (4)

For a periodic structure, being Ti-=T i-2= . =To =T, equation (4) may be written •
as follows

E Ti z " (5)

2.4 The state vector at the base

In the state vector z the shear force S and the bending moment M are
unknown, the rotation t0 is zero and the displacement v may be prescribed as a
unit sinusoidal ground motion, i.e. v (t)=exp £iwt) . Equation (5) may be
partitioned as follows by separating forces and displacements in the state
vectors do (6)

[i= f T f d(6)

Td ddjL

This when written for the top floor becomes

ff fd1 ~
= (7)

d TN fL-:iN Ldf T~d j
By solving the first of equations (7) it may be found that

f _N TN A
-0 ff fd-o

or

'fN T N
Z ff fd d

- -"o 0

The vectors z., which may therefore be evaluated for a prescribed unit
sinusoidal motion, take the physical meaning of frequency response functions and
may be used to evaluate the structural response to random excitations such as
earthquake motions.

3. MODELLING THE EARTHQUAKE MOTION

At an early stage of seismic engineering, earthquake accelerations have
been modelled as stationary random processes. Nowadays more realistic models
which take into account the nonstationary nature of the phenomenon are used
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instead, [7], [8]. Amplitude modulated random processes, i.e. stationary random
noises multiplied by a deterministic modulation function, are widely accepted
models for seismic accelerations. For such models the time-dependent frequency
response function may be written as follows

Mk(t,'w) = c(t-u)hk (u)exp[-iwu]du (8)
0

where c(t-u) is the modulation function and hk(u) is the impulse response
function related to the stationary frequency response function Hk(w) through the
well-known relationship

hk(u) f Hk(w)exp[iwu]dw (9)

The cross-correlation function of any two output processes Ok(t) and 0 m(t) is
given by

E[ok(tl)0(t 2 IJ M(tl',)M (t 2 ,w)exp[i (t -t 2 A Svo(-)dd (10)

where a star denotes complex conjugation and S (w) is the spectral density of
the input stationary random process before modulation. In the present model
S (W) is the spectral density of the ground displacement random process, not
tlt of the ground acceleration which is being used in most seismic engineering
analyses. However S ( ) may be easily obtained for a stationary random process
from S.o (w) as !ollows, [9]. 0

S (W) = S.. ) (1)

In most seismic engineering analyses S.. () is associated either to a white
noise or to a band limited white noisev or to a filtered white noise random
process, [s] , and in all cases does not vanish at the zero frequency. This
results in a singularity in the spectral density of the displacement process
which will cause inconveniences in the evaluation of the cross-correlation
functions of the output processes through equation (10). To avoid these
inconveniences one might use as input process soe sort of filtered white noise
for which S.. (w) goes to zero more quickly than w or at least at the same rate.

vo
Another alternative which will be followed here requires a reformulation of the 6
problem in such a way that the acceleration process is accepted as input instead

of the displacement process. This may be done by splitting the absolute
displacement in two parts corresponding to the ground displacement v (t) and to
the displacement relative to the ground y(t) respectively, that is

v(t) = vo(t) + y(t) S

By also introducing amongst the state variables the inertia forces associated to
the ground acceleration and by observing that traditionally in earth uake
engineering viscous damping is associated to the relative velocities only L'0J,
the transfer matrix may be reformulated as follows

[5 1+FA FB FC F 1 S

M/k C E G 0 0 M/h

*R/h = B D E 0 0 VR/h 2  (12)

y/h 3 A B : 1 0 yR/h 3

iYVRO - i 0 0 0 0 i-1 - o i-i

where the state vectors have been reported for the sake of clarity.
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4. SPrCTRAL DECOMPOSITION OF THE TRANSFER MATRIX 0 0

The evaluation of the state vector z =Ti z requires the computation of the
powers of the transfer matrix T. If the-trans--er matrix is not constant, then
T =T_ T ij2...T must be evaluated by performing the product of i transfer
matrces I the order given above. In many engineering applications the matrix
T turns out to be either constant for the overall system or constant for each • 0
substructure in which the overall system can be decomposed. In such cases it
may be convenient to perform a spectral decomposition of the transfer matrix
which considerably simplifies the computation of its powers. Let A ,sqq s, be
respectively the eigenvalues, the right-hand eigenvectors and th lfthand
eigenvectors of matrix T, then nless T is defective the following expansion
holds, [il],

5
T = 5A(P4 (13)

i-i J= a

provided that the eigenvectors have been normalized so that

S= 1 (14)
-3

In the equations (13) and (14) a - denotes transposition. Furthermore it can be
proved that any power of T may be written as follows

50 0
Tn = 2" A"* (15)

J=1 
3 JJ

As it has been pointed out by Y.K. LIN, [7], [12], the determinant of a transfer

matrix is always equal to unity and its eigenvalues are reciprocal pairs. For
the problem at hand one eigenvalue is real and equal to unity while the
remaining four are reciprocal couples. Therefore by writing these latters as

A = expltie]

it turns out that

cosa e 1/4[(2+2E+FA)t[4+4E2+F2A2-8E+2OFA+4FEA]112]

providing the required eigenvalues. The right-band and left-hand eigenvectors
associated to these pairs may be written as follows

(l-A) (I-2Eh+A 2 )  
0

-C(I-A) 2

v(A) = w B(I-A 2) (16)

-A(1+4&+\ 
)

0

(1-A) (1-2EA+A 2)

-FB(1+A) 5 S

w (A) w FC (1-A) (17)

-F(I-2EA+A 
)

-(1-2EA+A 2) 2 )
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The eigenvectors associated with the eigenvalue A5=1 may be written in the form

;5 = [O 0 0-1/F i]

15- o 0 0 0 1-

4.1 The limit case of zero frequency

It should be noticed that at the zero frequency one pair of reciprocal
eigenvalues become real and equal to unity, the corresponding eigenvectors
become singular and the matrix T becomes defective. However expansions (13) and
(15) still hold in the limit. In fact let A3 and Af =A' be the eigenvalues which 5
become equal to 1 at the zero frequency. Their contrution to expansions (13)
and (15) may be written as follows

1 0 0 0 n

0 0 0 0 -a

a 0 0 0 b (18)

c a 0 1 e

0 0 0 00 6

where
a = B(I-E); b = a(2n-l)/2; c = an

e = -a/(1-E)/6 + an(n-l)/2 + 1/F

The contribution of the re ining pair of reciprocal eigenvalues
A =E-E"- and A =A E+JE--1, may be given as follows:
1 2 1

lO 0 0 0 0

cn en 0 c25

c31 dn  en 0 c35  (19)

c4 1 c4 2 c 0n c5

0 0 0 0 0

with

c - Csin(ne)/sine

en cos(ne)

gn = Gsin(ne)/sine

d n Dsin(ne)/sinen

c25  ' a[cos(n-1)e + cos(ne)] /(l+cose) •

c 31 ' -acos(ne)

c35  , -a[cos(n-1)e - cos(ne)] /(1-cose)

c4 1 - 2aBsin(ne)/sine S
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c42 = -aEcos(ne)/cose 0

c 5'a[cos(n-I)e + cos(ne)] / [6 (1-E) (1+cos )]cose -'E

Finally the contribution of the 5th eigenvalue to expansions (13) and (15) is !

given below:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 (20)

0 0 0 0 -1/F

0 0 0 0 1

The singularity introduced by the term -1/F, being F-0 at the zero frequency, is

cancelled by an apposite term in the coefficient e of matrix (18).

5. PREDICTION OF THE MAXIMUM RESPONSE

The prediction of the maximum response is of utmost importance in seismic
engineering. When the excitation is a random process this prediction can be

made only on a probabilistic base. It has been shown £8] that the peak response
may be expressed in terms of the standard deviation of the response a (s) and of
the peak response factor r S through the equation y

Ys;p rs;p a y (s)

where y is the level of the response parameter which has probability p of not
being exceeded during an earthquake of duration s. By defining the evolutionary
spectral density of the response as

S (t,W) M(t,-)M*(t,)So(c) 0
y Vo

and its moments as

Ai,y(t) fajwSy (tw)dw

it may be shown [8] that the peak response factor r can be calculated 0 5

approximately through the equation s;p

r5 ;p [2log[2n[1-exp(-.enlog2n)]]] 1/2

where

n , y (s) s (-logp)-1

= 6 y(S) 
1+b

y (s) - (A2,y /AOy)1

8y (s) - [I- A2 1y/(AO'yA2,y) ] 1/2
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m = a2(s)/a2(s/2)
y y

s0/s = exp[-2(m-1)]

b = 0.2 4

A full account on this subject together with references to the original
literature sources may be found in the already quoted paper by E. Vanmarcke [8].

6. NUMERICAL APPLICATIONS

Fig.4 Floor plan of the analysed structure (from ref. [1])

Some numerical applications have been carried out with reference to the
structure considered by A.C. Heidebrecht and B. Stafford Smith 1]. This is a 12
storey structure with the floor p1an reported in fig.4, a total height H=36m, an
interstory height h=3m and E=2xl0 KN/m for both wall and frame. Two different
analyses were presented in ref. li] each corresponding to a different evaluation
of the lateral stiffness of the frame. For sake of brevity only the analyses
corresponding to the first case of ref. [1] will be presented here. The
relevant parameters for tle following analyses are the bending rigidity of the
walls givgn by EI=3.75x10 KN'm and the shear stiffness of the frame given by
K-9.87x10 KN/m. Only viscous damping has been introduced in the analyses in the
Rayleigh fashion. The mass and stiffness proportional damping terms have been
evaluated to provide a 5% effective damping ratio in both the first and the
second mode.

6.1 Characteristics of the excitation process

A band limited white noise with a cut-off frequency of 25 Hz has been used
as the stationary exitation process in the numerical applications. The duration
ar' the spectral density introduced in the calculations are respectively

t - 25 s
max

S V() 54.44 cm2 /s3  for w.:25 Hz

S (w) = 0 for &>25 Hz •
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These values are considered as representative of the El-Centro 1940 and of other
earthquakes of similar duration and intensity, [13], [14].

Fourier spectra of actual earthquake records, [15] , show that the
frequency content and the associated power are negligible beyond the assumed
cut-off frequency. The modulation function which has been used in the analyses
of the transient response is as follows

c(t) - 1 for t t

max

c(t) = 0 for t > t

6.2 Stationary response

The analysis of the stationary response has been performed as reported in
paragraph 5 by assuming all formulae as time-independent and therefore setting
m-1. The peak response has been calculated for all the quantities of physical
interest and for no exceedance probabilities of 50% and 95% respectively. The
results referring to the overall shear are reported in fig.5. These show for
both probabilities an increase of the peak interstorey shear from the top to the
base pointing to a predominant contribution of the first mode as should be
expected. However contributions up to the sixth mode are included as may be
seen by comparing the natural frequencies of the system, reported in table I,
and the cut-off frequency of the excitation process. The peak displacement
reported in fig.6 shows an increase from the bottom to the top floor also
pointing to a predominant contribution of the first mode.

Table I. Natural frequencies of the system

number value (Hz) 4

1 0.53

2 2.01

3 4.81

4 9.03

5 14.68

6 21.75

7 30.15

8 39.67

9 49.90 0 0 4

10 60.02

Ii 68.77

12 74.71 0 •

The diagrams of fig.7 and fig.8 show how the peak shear is shared between
the frame and the wall. It may be seen that at high and intermediate storeys
the peak shear in the frame is higher than that in the wall while the opposite
occurs at the lower storeys. Moreover, the peak shear at the bottom storey is q
higher in the wall than in the combined system, suggesting that at lower storeys

659



the frame may be pushing on the wall. Finally the peak bending moments and 0

rotations in the wall are reported in fig.9 and fig.10 respectively. The peak
bending moment shows an increase from the top, remains almost constant at
intermediate levels and increases rapidly at the lower storeys. The peak
rotation increases from the bottom, up to a certain level and then decreases
almost unperceivably up to the top. •

6.3 Transient response

The results presented so far do not account for the transient nature of
the excitation process and may therefore overestimate the actual response. Some
additional computations are required to predict the transient response as
summarized in paragraph 5. The transient variance of the top displacement and
of the base shear have been evaluated at different times and represented in
fig.11 and fig.12, respectively, as fractions of their stationary values. They
show a steep initial growth and a subsequent knee with a gradual decline in the
rate of increase. After the excitation ceases to exist these show a quick
decrease attaining negligible values in very short times. The reduction of the
peak transient response, as compared to the stationary one, is due to the
reduction of both the variance a (t) and of the peak factor r . The values of
the peak factors calculated for the total shear and the storey; isplacement have
been reported in table II for the transient and stationary responses allowing
for the comparison.

Table II. Peak factors (s f 25 sec, p = 95%) 0

Storey total shear displacement

number stationary transient stationary transient

0 3.96 3.92 -

1 3.84 3.80 3.64 3.60

2 3.80 3.77 3.61 3.57

3 3.78 3.74 3.57 3.53 0

4 3.77 3.73 3.54 3.50

5 3.76 3.72 3.51 3.47

6 3.76 3.73 3.48 3.43

7 3.77 3.74 3.44 3.40

8 3.79 3.75 3.40 3.36

9 3.79 3.76 3.37 3.33 0

10 3.90 3.84 3.36 3.32

11 3.98 3.96 3.37 3.33

12 - - 3.40 3.35 0

Finally the peak response factors for the total shear and the storey
displacements have been reported in fig.13 and fig.14, respectively,
superimposing the stationary to the transient results for a direct comparison.

0
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SDYNAMIC ANALYSIS OF VEHICLES WITH
NONLINEAR SUSPENSION PROPERTIESa
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2
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Potsdam, New York 13676
U.S.A. 0

1. INTRODUCTION -

o-The analysis of complicated structural systems with both linear and non-
linear components by a conventional direct time-history integration of the
equations of motion presents a formidable computational problem. The nonlinear
force-displacement behavior, commonly known as material or constitutive-type
nonlinearity, of one or more of the structural components may necessitate the 0
reformulation as well as the solution of the system equations of motion at each
time step. For many practical structures, the computational effort required is
often too great to facilitate an economical solution. Clearly, a more efficient
procedure would be of value. In this work, one such method is presented, as
well as the results of an investigaiton of its use in solving a typical problem
in the analysis of a particular class of structural systems. .

The structural systems for which the present method, which will be referred
to hereafter as the HYBRID method, appears to be well suited are those with a
relatively small number of discrete but significant nonlinear components.
Typically, these nonlinear elements are connected to the remaining linear-elastic
substructures at a relatively small number of nodes. Further, the response of
the nonlinear components is primarily affected by the lowest (most fundamental)
frequencies and modes of vibration of the linear-elastic regions of the
structure. Also characteristic of such structural systems is that the response
of the linear-elastic substructures, which are generally quite complex, is
sensitive to the higher vibration frequencies and modes. Determination of the
internal forces, of particular interest in the design of such structures, is
especially sensitive to inaccuracies in the analysis. Thus smaller time steps
and a more accurately defined finite-element model are required to meaningfully
determine the response of the complex linear-elastic substructures. A loosely
categorized class of structural systems is thus identified. In what follows,
these structures will be referred to as Complex Linear-Elastic Substructures with
Discrete Nonlinear Components (CLS/DNC). Examples belonging to this class of
structures include linear-elastic vehicle systems with nonlinear suspensions.
Also included are such structures as taxiing aircraft or high speed rocket sleds.
These structures have relatively large and complex linear-elastic regions
coupled together by energy dissipating nonlinear couplers. Other examples may
include space stations with vibration damping systems, or earthquake resistant
buildings incorporating nonlinear fuse elements. •

An aircraft taxiing over an irregular runway profile is an immediate

aResearch sponsored by the Air Force Office of Scientific Research, Air Force

Systems Command, USAF, under Grant Number AFOSR-82-0216. The United States -

Covernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

iGraduate Student

2Assistant Professor 0

665



candidate for analysis by the present HYBRID method. It is readily seen that 0

this structure is a CLS/DNC type structure. The aircraft superstructure is
essentially a highly complex linear-elastic substructure, and the suspension
system (landing gear) is composed of a comparatively small collection of
discrete nonlinear components which behave in a significantly nonlinear manner.
It is known from past experience with such systems that the modelling of the
linear substructure (aircraft) must be quite detailed, and that the higher

vibration frequencies and modes are of importance in obtaining useful results
from the dynamic simulation. It has also been found that the response of the
nonlinear components is rather insensitive to the effects of the higher
frequency modes of vibration of the linear elastic substructures. In essence,
the response of the linear substructures and the nonlinear suspension components
is decoupled with respect to all but the lowest vibration frequencies and
modes [1].

The HYBRID method seeks to take advantage of this effective decoupling in
the higher modes. The method incorporates a time-history analysis for the non-
linear response with a frequency domain analysis of the linear modes. First the
time-history analysis including the nonlinear components and a small number of
linear modes is conducted. Partial decoupling of the nonlinearities from the
rest of the structure constitutes the second step. The remaining linear dynamic
subsystem is analyzed through the frequency domain under external forces and
interactions from the nonlinear components. Development of the HYBRID method
for the analysis of a typical CLS/DNC structure is the subject of this paper.

2. NUMERICAL IMPLEMENTATION OF THE HYBRID METHOD

The HYBRID method is first evaluated by its application to a simple two-
dimensional vehicle structure that is taxiing over an irregular runway profile.
The vibration problem for the unconstrained vehicle is solved by an eigensolution
algorithm based on the generalized Jacobi method with eigenvalue shifts and sub-
space iterations [2]. The solution of the eigenproblem supplies the vibration
mode shape, natural frequency and generalized mass data which is needed both in
time-history and frequency domain analyses. A validated computer program, TAXI,
developed at the Air Force Flight Dynamics Laboratory [3], is used to perform
the time-history analysis and to determine the nonlinear suspension strut forces. 0
Typical nonlinear load-deflection relationships are used to represent the
suspension gear properties (4]. A typical vehicle model that consists of twelve
simple beam elements supported by nonlinear suspension struts is dericted in
Fig. 1.

2.1 Computation of Time-History Nonlinear Forces 0

After the solution of the vibration eigenvalue problem for the unconstrained
linear elastic vehicle structure, the equations of dynamic equilibrium are
written in terms of the modal coordinates 71

(M] (} + [C] {n} + [K] {T} = [ T{F-F s

where

[M] = generalized mass matrix
[C = modal damping matrix
[K] = generalized stiffness matrix 0
[€] = mode shape matrix
{F) = applied external loading

The nonlinear load-displacement and load-velocity characteristics of suspension
struts are taken into account in terms of the additional F. nonlinear forces
that depend upon the displacement and the rate of displacement of the landing 0
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Fig. 1. Simple Beam Vehicle Model

gear. Accordingly, the nodal displacements corresponding to the landing gear q
attachment points must be calculated at each step during time-history integration
to determine the F. strut forces. Nevertheless, it is advantageous to formulate
the generalized vibration problem with the unconstrained aircraft structure to
make the rigid body modes orthogonal to the flexible modes and render the
generalized mass matrix diagonal. With proper scaling of the mode shape vectors,
the generalized masses corresponding to the rigid body modes become the aircraft
total mass and mass moment of inertia [1].

The nonlinear force time-histories are first computed using Eq. (1)
including a small number of flexible modes of the vehicle structure. For
practical vehicle simulations it has been demonstrated that typically 5 to 10
flexible modes are satisfactory for the estimation of nonlinear suspension
response [5]. Assuming that the response of the nonlinear components is
contained primarily in the lowest modes permits a relatively efficient (in terms
of computational effort) evaluation of these force-histories by direct
integration. However, the dynamic response of the linear-elastic substructures,
which in practical cases may be very large and complex, generally requires a
highly detailed mathematical model and the necessary inclusions of the contribu-
tions from many modes. Using direct integration for the calculation of the
dynamic response of displacements and internal forces or stresses to the accuracy
required for such structures may involve an extremely large computational effort.
This effort may be so large as to render a direct integration response solution
impractical. An alternative to direct integration for the response analysis of
complex linear-elastic structures is afforded by the use of frequency domain
analysis. A greater number of modes can be considered at this second stage
without concern for the time domain discretization refinement.

6 6 7
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2.2 Frequency Domain Analysis for the Linear Structural Response

The basic conditions that permit a frequency domain analysis are that the
nonlinear suspension strut forces are determined and the linear vehicle
structure is represented by orthogonal generalized coordinates. At the beginning
of the linear analysis, the previously determined nonlinear suspension forces 0
are converted to the frequency domain by Discrete Fourier Transformation (DFT).
The DFT coefficients are defined as [1,6]

N-1 -2inT/N
Cn(w n) = At Z F(T)e n ; n=0,...,N-l (2)

T=0

where

At = T/N
T = total time period considered (includes an attached period of 0

F(t)=O to take into account the periodic nature of DFT)

T = time step number
n = frequency step number
N = number of discrete time intervals in T

w n = forcing frequency

C n(W n ) = complex coefficients that define the discretized harmonicamplitude function in the frequency domain

The complex frequency response function, Hj(wn), for each jth generalized
structural mode under the forcing frequency wn is defined as [6]

in
Hj(wn) = 12 (3)

-W M. + i w C. + K.
j n j j

where

Mj,Cj,K. = jth generalized modal mass, damping, and stiffness, respectively

It can be shown that the total response of a system to any forcing input
can be written by means of an inverse Fourier transformation. The displacements
of the jth modal coordinate are given by [6]

-._ N-1 27inT/N } 1 N-1
T1(-r) = Re{w E H.(n)C.(n)e / - E 1 N-(

T n=O K.N = F(T) (4)J T=0

where

- WN
A= = frequency domain discretization step size

The structure nodal coordinate displacements can be obtained from the
modal superposition equations

{u([)} = [¢]{n(t)} (5)

Other response parameters such as stresses or loads developed in various
structural components can be evaluated directly from the displacements, u. Tha
elastic forces (f} which resist the deformation of the structure are given
directly by the displacements and the structure stiffness coefficitnts

{ff()} = [k]{u(G)} (6)
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where [k] is the structure nodal coordinate stiffness matrix. To obtain the 0
internal forces at particular locations in the vehicle structure, the elemental
stiffness matrices and the corresponding element vertex displacements are used.

f(T)} = [k']{u'(T)} (7)

where prime indicates the quantities that are defined with respect to elemental 0 0
vertex coordinates.

3. SIMULATED RESPONSE OF A SIMPLE VEHICLE MODEL

The intent in this work is to model a simple vehicle traversing an uneven
surface. Ne ertheless, the simple beam vehicle model physical properties are 0 S
chosen such hat the total mass and vibration characteristics are similar to a
typical fighter aircraft. This choice enables the realistic utilization of the
suspension system modelling routines included in the computer program TAXI [4].

The dynamic input for the vehicle model is provided by its traverse over
an irregular runway profile. The traverse takes place at a velocity of 44 feet/ 0 0
second and lasts for 5.2 seconds. This represents a total runway length of 229
feet. From the starting point (horizontal station 0 feet) until the taxiing
vehicle model arrives at station 106 feet, the surface is perfectly smooth. At
horizontal station 106, a 4 foot 'up-ramp' is encountered. This ramp slopes
from zero elevation to 1.5 inches elevation at station 110. Past station 110,
the ramp ends and the profile is again perfectly smooth and horizontal until • 0
station 180 is reached. Here, a 'down-ramp' begins, defined exactly as a mirror
image of the up-ramp just described. The ramp ends at station 184, and the
profile is smooth until the end of the traverse at station 229. This runway
profile is an idealization of the standard AM-2 runway repair mat.

As a first trial analysis for the vehicle model and dynamic input just 0 0
defined, an attempt is made to validate a basic assumption of the HYBRID method:
that the response of the nonlinear components is essentially decoupled from all
but the lowest flexible modes of the elastic substructure. For this purpose,
the simple beam vehicle is modelled with 12 beam elements as depicted in Fig. 1.
When the orthogonal transformation to modal coordinates is applied to this 26
degree of freedom system only the first 12 flexible modes are deemed sufficiently 0 0
accurate for further analysis.

To determine the validity of the assumption that the nonlinear component
response is affected primarily by the lowest modes , f vibration, three trial
response calculations are conducted. For the first calculation, the number of
flexible modes to be included in the time-history analysis for the determination 0 0
of the nonlinear strut forces is set to 12. In the second and third response
calculations, the flexible mode content is reduced to six, and then to four The
time step At used in the time-history analysis step is 0.00025 seconds.
Stability and convergence studies have determined this stepsize to be
sufficiently small for all numerical results presented in this paper [7].

S 0
The flexible mode content used in the frequency domain step is always set

to 12. This is in keeping with the intended function of this step in a
practical application. This function is the detailed response calculation of
the elastic substructure which typically requires the inclusion of many more
modes than does the time-history calculation of the nonlinear component
response. The frequency domain step receives the nonlinear force time-history S 0
data at time increments At of 0.002 seconds. The significant dynamic loading
takes place only when the vehicle model is encountering the 78 foot long AM-2
runway repair mat. At the 44 foot/second velocity of the traverse, this takes
1.77 seconds for each of the two landing gear struts. But, since this loading
is not periodic (as is required for frequency domain analysis) it must be made

S

669



IDR4 I ICEIO FTHE INTERNATIONRI CONFERENCE ON RECENT 4
IDYANCES IN STRUCTU.. (U) SOUTHNPTON UNIV (ENSLRND)
INST OF SOUN AND VISONTION RESINS.. N PITY? ET AL.

UNCLSSIFIED £904 
F/O 29/11 U



O'~ 12.8 1 2.5

Li

. 32 lit2.2
6 I 20

S lO 11112 .0

11111A

111111L25 11114 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS- 1963-A

' I



so by attaching a relatively long period of zero loading [6]. A total of N=4096 4

increments of AT=0.002 seconds each is specified to define an extended loading
period T of 8.19 seconds. Convergence studies have shown that not much improve-
ment is to be gained by using a larger value of T [7].

In the typical structures considered in this paper, the response of the
nonlinear components is assumed to be contained primarily in the lowest modes. 4

This assumption is based on the actual measured response of certain dynamically
tested structures with discrete nonlinearities (such as instrumented aircraft)
[8]. To determine the validity of this assumption that the nonlinear component
response is affected primarily by the lowest modes of vibration, three trial
response calculations were conducted. For the first calculation, the number of
flexible modes to be included in the time-history analysis for the determination 0

of the nonlinear strut forces was set to 12. In the second and third response
calculations, the flexible mode content was reduced to six, and then to four.
The results of these simulations verify that the response of the nonlinear
components is essentially affected only by the lowest 6 modes of the linear
vehicle [1,7]. There is also evidence that the number of flexible modes needed
at the first stage of the HYBRID method is independent of the complexity of the 0

vehicle structure or the refinement of its discretized model [7]. Thus, one
major conclusion drawn from these initial studies was that for the vehicle model
considered, the nonlinear force response is affected primarily by the lowest half
dozen or so flexible modes of the linear substructure.

In Figs. 2 and 3 simulations are presented which depict the present stage

of refinement of the HYBRID method as compared to conventional time-history
results. In these figures the HYBRID simulations are represented by the solid
lines and the TAXI simulations are given by the broken curves. Fig. 2 depicts
the comparison of the HYBRID and TAXI simulations for the internal shear force
at coordinate 5 and Fig. 3 compares the bending moment simulations at coordinate
6. The coordinate numbers represent the internal force response locations as
referenced in Fig. 1. The response predicted by the HYBRID method does not
differ significantly from the response computed by conventional time-history
analysis, as conducted by the TAXI program. Thus, the contention of this paper
in demonstrating the HYBRID method as a viable alternative to the more traditional
time-history analysis has been accomplished. However, the general procedural 0
aspects of the overall numerical solution presented here must be significantly
improved before the method can be used efficiently for realistic transient
response simulations. In particular, conducting a frequency domain analysis for
the entire response period is not practical. Breaking down the total time
history into smaller segments would be more effective in terms of the proper
utilization of available computer memory to achieve a better representation of
the frequency response. A subdivision of the total time period can be
accomplished by considering the fundamental nonlinear response period as one unit
of time in which a frequuncy domain analysis is conducted. This approach would
also allow the implementation of a HYBRID-Iterative procedure in which frequency
domain analysis is conducted interactively with conventional time history
analysis. 0

Finally, it is believed that the HYBRID procedure can be quite useful for
the transient response analysis of complex structures with nonlinear components.
Nonetheless, much work needs to be done to establish the optimal numerical
details of this procedure.
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Institute of Sound and Vibration Research
University of Southampton

1. INTRODUCTION AD-P003 698
The dynamic response of vehicles to uneveness in the underlying surtace on

which they are travelling is of obvious engineering interest both for reasons
of ensuring structural integrity and to ensure safe handling and a comfortable
ride. The problem has therefore received a great deal of attention in the
literature over a number of years.

Clearly 'uneveness' may take various forms, for instance one may describe
a badly potholed road as uneven. However, this class of problem is generally
best treated as a deterministic one. Another type of uneveness is that which
admits only a statistical description, i.e., it may be regarded as a realisa-
tion of a random process and it is this class of uneveness, termed roughness
throughout this paper, which is of interest here. In general, a rough surface
is 'perceived' by the vehicle as a non-stationary random process when regarded
as a temporal (time dependent) input due either to inhomogeneity (spatial non-
stationarity) in the surface roughness or to variations in the vehicle velocity,
or both. Analysis of the response of vehicles to such processes is further
complicated by inherent non-linearity in their dynamics, rendering exact stat- 0 0
istical analysis analytically intractable.

Previously, analysis of the non-stationary response of vehicles modelled
by linear dynamics has been successfully accomplished (for a single input and
the surface roughness considered homogeneous) by classical impulse response
techniques or by an evolutionary spectral method in the spatial domain, while, 0 0
to the best of the authors' knowledge the non-stationary, non-linear vehicle
problem has not been successfully tackled at all, unless perhaps by numerical
simulation. There exists, therefore, no unified approach to this very general
problem and furthermore the problems of multiple inputs (wheels) and spectral
representation for the non-stationary, linear case, have been largely ignored
and so it was felt that the whole problem should be re-addressed in an attempt 0 0
to provide a unified approach. This paper presents just such an approach,
drawing on selected parts of the thesis by Harrison Ill.

The methods presented have been developed using a 'systems' approach.
Basically this approach assumes that the physical systems to be analysed admit
a state-space representation (i.e., representation by ordinary differential 0 0
equations) following which a large body of powerful, analytical techniques are
available.

The vehicle dynamics are modelled by ordinary differential equations in
the time domain whilst the excitation process is modelled by a differential
equation, cast in the spatial domain and driven by a spatially"4white' process. S 0
The key novel feature is the linking of the two domains via the vehicle's
variable velocity enabling the dynamic equations to be augmented by the excita-
tion ones (having time variable coefficients). The link is made by drawing on
some results from the theory of generalised functions. For linear systems, the
analytical techniques referred to above become immediately applicable, in
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particular, differential equations governing the first two statistical moments
may be derived for both single and multiple inputs. Furthermore, this augment-
ed system, after some further analysis becomes amenable to evolutionary spectral
representation (i.e., decomposition of power in a signal over frequency at each
time instant). Hitherto, the particular class of non-stationarity associated
with the vehicle problem has not responded to this approach. 0 -

Non-linear systems may also be written in the state-space form, but
obviously the linear theory no longer has application. However, the lineariza-
tion technique known as statistical linearization is well suited to the linear
systems approach mentioned above, since the linearized elements depend on the
instantaneous mean and variance of the system response and, hence, fit directly S
into the formulation. Using this technique in conjunction with the space domain
excitation model enables the approximate analysis of non-linear systems subject

to non-stationary random excitation to be carried out.

It is not proposed to give a review of other approaches to this problem.
This has been discussed in an earlier paper by Hammond and Harrison [2].

2. THEORY

This section briefly describes the general theory applicable to the class of
process described above for both linear and non-linear systems. The following •
section will show how this relates to the vehicle problem.

2.1 Linear Systems

Consider a linear dynamical system described by the state equation S

A(t)x + B(t)w(t); x(t o ) (1)

where x is an n dimensional state vector
and w is an m dimensional zero mean white noise vector with

E[(t 1 )wT(t2 )]  = Q(t)6(t I - t2) (2)

A(t), B(t) and Q(t) are (possibly time varying) matrices of appropriate
dimension.

It is well known that the first and second moments of x may be expressed
as solutions of differential equations (see ref. [2]). For-example, the zero
lag covariance matrix P(t) = E[x(t)xT(t)] satisfies

P = A(t)P + PA T(t) + B(t)Q(t)B(t); P(t ). (3) 0

Both (1) and (3) require appropriate initial conditions, x(to) and P(to).
-0 0

If input w(t) is 'non white' then it is often possible to consider a
shaping filter representation for the input and model it as the output of another
dynamical system that is white noise driven. The original process is then aug- 0
mented by the second system to yield an overall white noise driven system for
which the above theory applies.

It is essentially this concept that requires further generalisation for our
purposes, namely that the input w(t) may have a very different form. More
specifically, in a number of physTcal problems it may occur that the input *
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0 S
process to a system is more naturally described in some domain other than time.
For instance, in the problem of vehicle motion on rough ground, it is convenient
to consider the excitation process as a spatial process. Another problem, namely
that of noise sources moving relative to an observer, is very conveniently
formulated by considering the noise to be a function of the time frame of the
source (see Hammond et al [3]). In both of these cases, a non-linear distortion
of the independent variable axis occurs as a result of considering the natural
domain of the excitation process as a function of time. For instance, in the
vehicle problem, the space variable may be considered as a function of time, the
two domains being related by the vehicle velocity. This distortion introduces
a non-stationarity into the excitation process as 'perceived' by the vehicle or
observer even if the underlying excitation is homogeneous. This class of non-
stationarity is usually referred to as 'frequency modulated'.

It is emphasised that the linking of the two domains is central to all the
work herein, enabling a large number of different situations to be treated in a
unified way. In this section, however, the physical interpretation of such
models is ignored whilst the theoretical ideas are presented.

The aim here is to augment a system, whose temporal response is required
and whose equations are therefore cast in the time domain, with an excitation
process which has a shaping filter representation in some domain other than time,
s, say (not necessarily space) but which may itself be regarded as a function of
time, i.e., s = s(t). S S

Consider the system given by:

k = A(t)x + B(t)i(t); X(t ) (4)

where i(t) denotes an input to the system.

Let us express i(t) in terms of another vector u which is primarily a
function of s, and where the notion of time only occurs when we allow s to
be written as a function of time. We shall denote u(s), when regarded as a
function of time, as (t) = u[s(t)] and write *

i (t) L t(t) U(t) .

It is now necessary to express u(s) in shaping filter form in the s
domain, i.e., we write * *

u(s) = F(s)v(s) + E(s)w(s) (5)

where
dv(s)

ds - C(s)v(s) + D(s)w(s); v(s ) (6) 0 S

w(s) is a 'white in s' vector and the other matrices and vectors
introduced are of appropriate dimension.

Now, in order to augment (4) with (5) and (6), it is first necessary to I S

make a formal change of variable and substitute s = s(t), so = s(t ) into (5)
and (6) and convert the differentiation operation accordingly, i.e.,
d I d( yielding

d7t)5
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d t (t)C= (t()t) + )(t)w(s(t)) (7)

t - = v (8)

where denotes a function of s regarded as a function of time.

Equation (4) may now be augmented to yield

This is a form similar to equation (1) but with one important difference, namely,
the driving term, because of the variable transformation, is now, in general, a
'non-stationary white-noise' having a non-linearly dilated time axis.

By redefining variables, equation (9) may be written as

A(t) + B(t)(s(t)); x(t o )  ( 9)

and it is this equation that forms the basis of the various analyses presented.
(N.B. A(t), B(t) in (10) are not the same as those in (1).)

2.1.1 Equations for the evolution of the first and second order moments

in this section two differential equations governing the evolution of the
mean vector and zero-lag auto covariance matrix, are presented (refer to[i, 2i for proofs). These equations constitute the time domain method for

the non-stationary analysis of linear systems.

If the mean value of the white process is given by E L(s)] = v(s) then the
equation governing the mean vector, obtained by taking the expectaton of (10),

is given by

= A(t) + B(t)\(t); x(t) (10)

The differential equation governing the propagation of the zero-lag covar-
iance matrix P(t) may be shown to be

[ oA(t)P + pAT(t) + B(t)i(t)Bute t i; P(t m o (12) 

Q 0

with i(t) > m. It may be argued that in many cases the singularity at s t) 0
is removable and simple zeros are permitted, i.e., A(t) . Equation (12) is
very similar to (3); however, it differs in one important respect, which is the
factor of -(t) in the third term.

2.2 Non-linear Systems

For a class of non-linear systemst i s possible to use statistical lineari-
sation and combine it with the state formulation above and so consider the approxi-
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mate evolution of the mean and covariance of the response of the non-linear
system. This is very briefly summarised below and reference is made to [I] for
full details.

The dynamic system is now written

f(x) + Bi(t); x(t ) (13) 0

i.e., (4) is generalised. i(t) has its previous meaning with equations (5)-(8)
holding as before.

The augmented system is non-linear and time variable (due to the variable
9(t)) and in order to use the results of the previous section the non-linearity
is approximated using statistical linearisation writing

f(x) = n + Nix. (14)

n and N are found by least squares techniques (e.g., ref. [4]) and may be 0
shown to depend on the means and variances to be found, thus yielding a set of
non-linear equations for the means and variances of the augmented system (see
Chap. 4of ref. [1]). This method of solution is referred to as the CADET
method (ref. [4]) abbreviating the phrase Covariance Analysis by DEscribing
function Technique.

2.2.1 Covariance equivalence and evolutionary spectra

An important aspect that has arisen out of the above discussions relates to
an interpretation of equation (10). (For convenience assume w(s(t)) is a
scalar process.) From the derivations above it is possible to argue that

E{w[s(tI)]W S(t2 )]} 6(t1 - t2) if 9 > 0 (15)
(t)

i.e., w[s(t)] has the covariance characteristics of a non-stationary white 0

noise wI (0/47t), say, where w (t) is white and stationary with
E[Wl(tI)w1(t 2 )] - 6(t1 - t2 ). In this sense, w[s(t)] is 'covariance equivalent'

to w (t)/(Yt), and accordingly we can also conceive of a vector xl(t) that
is covariance equivalent to x(t) (in (10)) satisfying

d w1 (t) 0
- l(t) = A(t)x (t) + B(t) -_ (16)

From this it follows that the evolutionary spectral density (matrix) for x1 (t)
may be expressed starting with the spectral form for wI(t). Full details
are given in reference 31. •

3. VEHICLE EXAMPLE

For simplicity a single degree of freedom dynamic system is chosen as a 0 9

representation for a vehicle (see Fig. 1) having a (non-linear) damper f ().
The spring f1 (z) is assumed linear. The damping is taken to consist oi a
(small) linear term and a nonlinearity of the form

f(1) . z.2f 2 z .2 0 (17)

-rz i< 0
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Fig. 1 Simplified undercarriage model.

where i (= 5 - i) is the relative or closure velocity. y(t) is the absolute
mass displacement and h(t) is the ground profile, a functio of space, regarded 0
as a function of time, as before.

A second order spatial shaping filter model for the height profile is taken
as

d2 d 0
- h + (a + 8) h + a h = k w(s) (18)ds2  d

where a is the cut-off wavenumber of the ground profile spectrum, 8 is the
cut-off wavenumber of the 'rolling contact filter' (see ;1]) and k (= V2 a)
ensures that the variance of the true ground profile = a , so that the variance 0
of h(s) = aa/( + 8).

The justification for this second order model is given in [I].

Only some results are presented here, the details of the combination of the
dynamics and road being found in [1]. Sample results for the case of a vehicle 0
undergoing constant acceleration from rest is shown in Figs. 2. a2 denotes the
ground roughness variance; y = C/m; w is the undamped natural frequency of
the (linear part) of the system; reates to the (light) linear damping;
a is the acceleration in m/s 2 ; Both the mean and variance are normalised
closure displacements relative to i.e.,

1 and P = E[ -cl)J

Figure 2 depicts the non-stationary behaviour of the mean and variance of
normalised, relative displacement for both symmetric and asymmetric configurations.

The 'smooth' line is the result of the solution of the CADET (plus shaping
filter) approach and the more ragged line the result of ensemble averaging 2000
simulations. 99% confidence limits are given for the simulation results. Notice
that in each case the variance of response (Figs. 2a and 2c) exhibit similar
characteristics, although in the symmetric case the amplitudes are lower and the
non-stationary behaviour slightly less vigorous, i.e., the 'peak' is broader and *
the decay less steep. Naturally, the mean value for the symmetric case is zero
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Fig. 2. Normalised mean and variance of response, quadratic damping-
constant acceleration.

I0.00
(Fig. 2b)and as would be expected from the asymmetric case (Fig. 2d) the mean
value becomes increasingly negative as time (hence velocity) increases.

It is clear that the CADET results lie close to the simulated values (2000
realisations) and that the approximate results are of comparable accuracy to the
simulation. It is also apparent that as time (velocity) increases, the accuracy * *
of the CADET results decreases.

4. CONCLUDING REMARKS

This paper has presented the basis of a unified approach to the treatment of
the response of vehicles travelling over rough ground and the discussion of the
basic theory has been the prime consideration. Several aspects have been
omitted in the interests of brevity, specifically three important aspects are

noted below.
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(i) It has been assumed that spatial shaping filters are satisfactory
descri tors for rough ground. This aspect has been treated in some depth in
ref. lJ where rough ground profiles have been analysed using maximum entropy
spectral analysis methods to yield auto regressive shaping filters, which in
turn have been converted to continuous domain state space forms so as to tie in
with the theoretical formulation. 0

(ii) The evolutionary spectral forms for covariance equivalent processes
have been alluded to. This, too, has been applied in ref. [1] to the vehicle
problem and evolutionary spectra for the response of accelerating vehicles have
been computed.

(iii) Multiwheel systems introduce particular difficulties. These have been

considered in Nl] where analytic and computational techniques are presented to
deal with the problem.
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DYNAMIC MODELLING OF RAILWAY TRACK AND WHEELSETS 0 0

S L Grassie

Department of Engineering
University of Cambridge AD-P003 699

1. INTRODUCTION

- Our understanding of the dynamics of railway track and of the wheels and
vehicles whico run over it has increased enormously in the last decade. This
development has been demanded by railway administrations themselves: faster trains 0 g

require better standards of track, but have also caused damage of unforeseen
severity. This damage has arisen largely from dynamic loading caused by wheelflats,
railjoints, dipped welds, corrugation, poorly ballasted sections of track and the
like. An understanding of track movement can suggest improved designs of track and
ways in which present maintenance costs can be reduced. The development of more
sophisticated mathematical models of track and wheelset has been made feasible by •

the computing resources which are now commonly available, but need not always be
exploited to their fullest extent.

The purpose of this paper is to discuss some of the developments which have
been made i'. modelling the system of vehicle and track, what results and conclu-
sions have been drawn from these investigations, and some areas in which is 0 0

inadequate. The emphasis here is on the vertical dynamic response, although con-
sideration is also given to lateral and longitudinal dynamics. It is important to
the practising engineer who has an inelastic timetable and meagre computing
resources to know when the sophistication of complex models is unnecessary: this
paper discusses what should be included in a model and what is superfluous. .

The frequency range of interest is 5 - 2000 Hz because it has been found (1]
that these frequencies are the most significant for dynamic loading of track. The
components of the system are considered in a downward sequence from the vehicle in
Section 2, through the wheel/rail contact in Section 3 to the track in Section 4.
The components are combined in Section 5 and a review of the subject is made in
Section 6. •

2. MODELLING THE VEHICLE

The unsprung mass of a vehicle (Fig. 1) includes the wheelset, brakes,
bearing boxes and the like, which are attached to the bogie by the primary suspen- 0 0
sion. Jenkins et al [21, in an investigation of vertical dynamic forces between
wheel and rail, quote values of the unsprung mass and primary suspension stiffness
per axle of a British Rail (BR) Class 87 locomotive to be 3160 kg and 3.3 MN/m
respectively. It is reasonable to assume that the unsprung mass is increasingly
well isolated from the rest of the vehicle at frequencies above its 5 Hz resonance
on the suspension, and that this is the case for lateral and longitudinal motion
as well as for vertical. The bogie therefore exerts just a dead load P0 on the
unsprung mass. The dynamic response of the unsprung mass at higher frequencies is
the concern of this section.

2.1 Radial Excitation

It has generally been accepted that the wheelset is adequately modelled as a
rigid body for radial excitation at the wheel tread. At frequencies below 50 Hz
the effective mass for excitation at a single wheel can be taken as half the total
unsprung mass (i.e. about 1600 kg). Using this assumption, Jenkins et al [2] have
obtained reasonable agreement between calculated and observed low frequency forces

under a passing locomotive.
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Fig. 1: Model of unsprung mass on track 0

Remington [3] shows experimental data of the radial response of a wheel
mounted in a standard US Pullman bogie. For frequencies in the range 50 - 1000 Hz
he finds that the wheel is adequately modelled as a mass equal to the wheel mass
plus /3 of the axle mass. At higher frequencies, the wheel rim moves increasingly
on the radial flexibility of the web: a better model of the wheel is then an
infinite beam of the same cross-sectional dimensions as the rail. munjal and
Heckl [4] represent the wheel as a thin ring bending in its own plane, but do not
support this with experimental data.

A typical BR wheelset has been represented by the idealised wheelset of Fig.
2 [5]. The model wheelset is assumed to be undamped, which is justified by the
fact that the damping factor in each mode of a freely-supported BR wheelset lies
in the range 2 x 10-4 to 110 X 10- 4 [6]. It was found that resonances of the free
wheelset affect its response only in narrow frequency ranges, and that it is other-
wise modelled adequately as the mass of a single wheel: this is typically 350 kg.
Deformation in the plane of the wheel was neither modelled nor examined experi-
mentally. Because a wheelset is not held freely in its bearings, it is reasonable
to include some of the axle mass in the effective mass of the wheel. Remington
[3] suggests that 1A of the axle mass be included, while a figure of 1/2 is
suggested elsewhere [7].

The author is aware of no published data to show at what frequency vibration
of the wheelset becomes decoupled from that of the rest of the unsprung mass. At
present, the best model of a typical locomotive wheel is a rigid body of 1600 kg
mass below 50 Hz and 500 kg mass above this frequency.

h.
d

b -L h hh

1a c

Fig. 2: Idealised wheelset
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2.2 Lateral Excitation

The majority of analyses of lateral excitation of a railway wheel have arisen
from a concern with wheel/rail noise. Because the wheel web is an efficient radi-
ator of acoustic energy, both Arai [8] and Remington [3] have represented the
wheel as a thin disc. However, Remington found no model for the lateral impedance 0
of a wheel excited at its tread.

Barlow [9] has developed a finite element model of a BR wheelset and has
obtained excellent agreement between observed and calculated natural frequencies.
However, general use of such a technique is limited by the large computing
resources which are required. 0

The idealised wheelset shown in Fig. 2 has been used to calculate the dynamic
response of a wheel to a lateral force applied at the tread [5]. It was found that
the wheel rim is isolated by the flexible web from the rest of the wheelset at
modest frequencies of excitation. Hence, for lateral excitation the wheelset can
be represented as a thin ring with the same dimensions as those of the wheel rim. 0

2.3 Longitudinal Excitation

An experiment is described in [7] in which a longitudinal force was applied
to the wheel tread of a vehicle standing on the track. It was found that the
wheel is adequately represented, for frequencies greater than 50 Hz, as a rigid 0
body with effective mass

I + M /M
M M a wM = M (1)

we w 1 + (1 + Ma/M w ) (r/k)2

where Mw is the actual wheel mass, Ma the effective unspring mass at the wheel
centre, k the radius of gyration of the wheel and r the wheel radius. Reasonable
agreement was obtained with experiment by taking Ma equal to half the axle mass
(% 115 kg); the effective mass Mwe so calculated is 150 kg for a typical 36" BR
wheel.

3. MODELLING THE CONTACT

Because both wheel and rail are elastic bodies, there is deformation at their
point of contact. The dimensions of the contact patch (typically 14 mm x 10 mm)
are small compared to dimensions of wheel and rail, and it is therefore reasonable
to assume in calculation that the contacting bodies are elastic half spaces and S
that the force is applied at a point.

3.1 Normal Deformation

The normal deformation of elastic bodies in contact has been studied exten-
sively. For contact on the railhead, the deformation is adequately described by S
Hertz. The approach of the bodies is (101, [11],

1 1/
6 = (9P'/16E*2 R A (2)e

where E* E/2(1 - v)

and R /I
e

The normal load is P; E/(1 - v2 ) is the plane strain elastic modulus; R' and R" are
the relative radii of curvature of the surfaces. The contact stiffness is

kH = dP/d6 = (6E*
2R P) A (3)

6e
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Non-linearity of the contact deformation should be included in any calculation 0
in which relative displacements of wheel and rail are large: in particular, at
railjoints and with wheelflats, total unloading of the contact often occurs. For
this reason British Rail include the non-linearity in all of their recent calcula-
tions [12, 13]. However, if relative displacements of wheel and rail are small,
the contact stiffness can be taken as constant. This assumption, which has been
used by Grassie et al (1, 14] and Sato (15], greatly simplifies analysis while 0
retaining the important features of the dynamic response. For typical BR para-
meters (transverse railhead radius R' = 300 mm; wheel radius R" = 450 mm; dead load
PO = 100 kN), kH 1.5 GN/m.

The contact stiffness is high compared to other stiffnesses in the system:
for example, the stiffness of the railpad separating rail and sleeper is 250 MN/m
(section 4). A rough estimate of the frequency above which the contact flexibility
should not be ignored is that of resonance of the unsprung mass on the contact
stiffness, i.e. f = (1/27)Vkjj/Mw  275 Hz. Neglect of the contact flexibility is
a shortcoming in some work on high frequency dynamics [16, 17] because contact
forces are overestimated, while its inclusion in considering low frequency dynamics
is an unnecessary sophistication [18]. 0

3.2 In-plane Deformation

The deformation under a tangential force of stationary elastic bodies in con-
tact has been studied by Mindlin [19], who found that the tangential stiffness is
approximately the same as the normal stiffness. This was also found in an experi- 6
ment with a vehicle standing on the rail [7).

Transmission of a rapidly-varying tangential force between a rolling wheel
and the rail is at present an area of research. However, if the rolling length
over which the tangential force changes is long compared to the contact dimensions,
rolling can be regarded as a series of steady states [20]. Steady-state rolling 0

contact is well understood and the theory has been reviewed by Kalker [211.

Because of local elastic deformation there exists a small difference in
relative velocity, called 'creep', between a rail and a steadily rolling wheel
transmitting traction. If the longitudinal displacement of wheel relative to rail
at their point of contact is ux, the longitudinal creep is 0

= x/V

where v is the forward velocity of the wheel. The dependence of longitudinal
* traction on creep is given approximately by the formula

&x 31jN(4 - 3v) 11 - 1 - (4)

16Ga2  L PNj

* where Tx is the longitudinal traction, tiN is the limiting traction, a is the radius
of the circular contact patch, and G = E/2(1 + v) [22]. The exact theory, which
involves elliptic integrals, is given by Kalker [23].

The creep curve for a typical railway case is shown in Fig. 3. For small
creep, the curve is linear and the traction is given by

T x xx= C x/V (5)

where Cx = 16Ga2/(4 - 3v) is the longitudinal creep coefficient. If the traction is
small, the steady creep behaviour may be represented by a dashpot of strength Cx/v
between wheel and rail. For slowly varying tractions, the contact is adequately

* represented by the spring-dashpot model of Fia. 3(b) in which the spring represents
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Fig. 3: (a) Typical creep curve
(b) Contact model for small, slowly-varying traction

the static contact stiffness kH.

The equation for transverse creep corresponding to eqn. (4) for longitudinal
creep is

3wN(4 - v) - (61
-C - ___ 6

Y 16Ga 2  L uiNj I

where T is the transverse traction (22].Y

4. MODELLING THE TRACK 0

Conventional railway track comprises a rail which is supported periodically
on sleepers which rest in ballast. Use of concrete rather than wooden sleepers
has become common, and a resilient railpad is then used for mechanical and
electrical isolation between rail and sleeper.

Our present concern is with track of this sort. The dynamics of other sorts
of track have received less attention. The low frequency dynamics of elevated
guideways which use discrete concrete slabs supported at their ends have been con-
sidered by Wormley et al [24 - 26]. Sato [15] has investigated the dynamics of
railway track laid on a continuous concrete slab.

4.1 Vertical Excitation

Research on track dynamics has concentrated on the vertical response. For
this purpose the track model which has traditionally been used is that of an
infinite Euler beam on a continuous, distributed, elastic support representing the
ballast; in some analyses damping is included in the support (Fig. 4(a)). The
mass of the sleepers has generally been lumped in with that of the rail; where
only high frequencies are of interest, the rail alone has been taken as the beam
and the support stiffness taken as that of the elastic rail fastenings [3, 16].

Both Hetenyi [27] and Fryba [28] have written at length about beams on
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Fig. 4: Track models

(a) Euler beam; damped, elastic support
(b) Euler beam; discrete support
(c) Timoshenko beam; continuous, two-layer, damped, elastic support
(d) Timoshenko beam; continuous layer of flexible sleepers

elastic foundations, and it has been shown [14] that this is a good model for track
laid on wooden sleepers. Weitsman [29] and Torby [301 have used the model to pro-
vide reassurance that the ballast may be considered as acting in both tension and
compression despite the fact that on poor track the sleepers may not be supported
when they are on the 'bow wave' ahead of the train. The model has been used to
calculate the so-called 'critical speed' of railway vehicles. This speed, which is
essentially the minimum speed at which bending waves propagate along the rail, is
commonly regarded as limiting the operating speed because the rail would not deflect
ahead of the train. Kerr [31] has reviewed work in this area, and Kenney [32] has
shown that movement both at and above the critical velocity may be possible pro-
vided that there is some damping in the support. On typical BR track, wave speeds
greater than ten times the speed of any present vehicle have been measured [14].
It follows that for most purposes deformation of the track under a moving load can
be calculated as if the load were stationary.

Although this simple model has been much used, it has several deficiencies
when used for the dynamics of modern railway track at the frequencies considered
here. In particular it neglects:

(a) periodic support of the rail;
(b) the resilient railpad between rail and sleeper
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(c) the flexibility of the sleeper; 0

(d) shear deformation and rotary inertia of rail and sleeper.

The seriousness of these deficiencies depends upon the purpose of the model
and the frequency range of interest: for example, it is impossible to calculate
sleeper strains with a model which ignores sleeper flexibility. Notwithstanding
such details of the response, the single most serious shortcoming of the conven-
tional model is neglect of the railpad flexibility [14]. Above a frequency of
300 Hz there is substantial relative movement of rail and sleeper on the pad, and
it must be included in any realistic model.

A model which includes both the railpad and the discrete, periodic support

is shown in Fig. 4(b). A similar model in which the railpad is neglected is con-

sidered by Munjal and Heckl [17]. The rail is considered to be an infinite Euler
beam; pad and ballast are regarded as springs and dashpots in parallel; the sleeper
is massive. The need to include the discrete nature of the rail support depends
primarily upon the wavelength of bending waves in the rail. When a transverse
harmonic force is applied to the rail, energy is carried away from the point of
application by travelling waves. As the waves travel further from the point of
application, their amplitude decreases because energy is absorbed both by the
support and by vibration of each element of the rail. At low frequencies, the
wavelength is long: any deflection of the track under an applied force thus
involves many bays of sleepers and the amplitude of deformation depends little on
position of the applied force in the sleeper span. This is illustrated in Fig. 5,
which shows the direct receptance to a point force which is applied to the railhead
at two positions in a sleeper span. The receptance is calculated from the model
of Fig. 4(b) using the method of transfer matrices [14].

The bending wavelength decreases with frequency. At the 'pinned-pinned'
resonant frequency 0

f = r1/EI (7)

r

where El is the bending stiffness and mr the mass per unit length of the rail, the
wavelength is twice the sleeper spacing k. At this frequency, which is about
950 Hz for the typical parameters of Fig. 5, motion of the rail is part standing
wave, with the rail effectively pinned at sleepers, and part travelling wave. At
the antinode of vibration midway between sleepers, the receptance is large, while
at a sleeper the receptance is small. The observed pinned-pinned resonance in
Fig. 5 is at a lower frequency than calculated from eqn. (7), which neglects shear
and rotatory inertia of the rail. There is excellent agreement between experiment
(770 Hz) and calculation (766 Hz) when these are included.

The discrete support significantly affects the track response only in a
rather narrow frequency range close to the pinned-pinned resonant frequency. Its
effect upon the response of the track under a moving wheel is also small (Section
5). Therefore, usually a track model can be used in which the railpad is included, *
but the support is continuous. With a continuous model it is easier to make good
the other deficiencies of the simple model of an Euler beam on an elastic
foundation.

In the model of Fig. 4(c), the railpad and ballast are continuous, uniform
layers of stiffness and viscous damping; the sleepers are represented by a layer -

of elemental masses and the rail is a Timoshenko beam: shear deformation and
rotary inertia of the rail are thus included. A similar model in which the rail
is modelled as an Euler beam has been used by Sato [151. The direct receptance
calculated from the Timoshenko beam model [14] is shown in Fig.5. The continuous
model is incapable of showing the pinned-pinned resonance, but the receptance
agrees well at other frequencies with that calculated from the model with discrete •
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Fig. 5: Vertical direct receptance of track

Parameters for theory:
m = 56 kg/m s = 280 M/m c = 63 kNs/mr p p •

Ms = 110 kg sb = 180 M/m cb = 82 kNs/m

El = 4.86 Mm 2  K = 0.34 £ = 0.7 m

supports and with experimental data. Shear and rotatory inertia become more signi-
ficant the greater is the ratio of depth of beam to effective length (the semi-

wavelength in this case), and thus become more significant as the frequency
increases. Their effect is to increase deformation of the rail.

Two areas of high response, at 150 Hz and 470 Hz, are shown by the model of
Fig. 4(c). The behaviour at these track resonances can be illustrated by con-
sidering both the rail and the sleepers to be massive. The first resonance of this
two mass system is of the masses moving almost in phase on the ballast, while at
the second resonance the two masses move almost in antiphase on the flexibility of
the pad. Because the sleepers are ever more nearly stationary at frequencies
above 470 Hz, a reasonable estimate of the rail response at such frequencies is
obtained by considering it to be a beam supported to earth on a continuous railpad.

If the detailed response of the support is of interest, this must be
represented in greater detail than in the model of Fig. 4(c). A track model is
shown in Fig. 4(d) in which the sleepers are not rigid but are a continuous layer
of Timoshenko beams, with bending stiffness across the track and zero bending
stiffness along the track, resting on a viscously-damped, elastic layer. This
model, which in other respects is identical to that of Fig. 4(c), is discussed in
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(1]. Although it appears to be three-dimensional, analysis of the model is
simplified by the fact that the response to general harmonic excitation of the two
rails can be regarded as a synthesis of motion involving symmetric and asymmetric
modes of the sleepers. Therefore, the motion of only one rail need be considered,
with symmetric and asymmetric sleeper modes treated separately.

In the models of Fig. 4 the track is infinite in extent and the response to
a harmonic point force is calculated by analytical methods. A track model which
uses modal analysis has been developed by British Rail for the majority of their
requirements and is described by Clark et al [12, 13]. It represents the rail as
an Euler beam supported through railpads on discrete sleepers which rest in
ballast; both railpad and baliast are viscously damped springs. To this extent the
BR model is identical to that of Fig. 4(b). It differs in that only twenty bays 0

of track are considered and the sleepers are modelled as Euler beams which vibrate
only in their symmetric modes. Natural frequencies and normal modes of this finite
length of track are found using the algorithms of Wittrick and Williams [33, 34],
and the response is calculated numerically by modal analysis. A measure of the
computing resources required is that 126 modes of the 20-span model are found
between 80 Hz and 3 kHz. 0

A common feature of both the BR model and those of Fig. 4 is that the
characteristics of both ballast and pads are constant for the length of the track.
On good track this assumption should be substantially correct, while on poorer
track the response is calculated adequately for most purposes. However, occasion-
ally there exists a 'hung' sleeper where the ballast has deteriorated to such an 0

extent that the sleeper is virtually unsupported. Such sites are often associated
with a more fundamental problem: for example, poor welds, bad formation and 'wet
beds'. Nonetheless, not only do they represent a severe test for the sleeper and
fastening system, but also such 'soft spots' can create undesirable vertical
motion of the unsprung mass [35] and thus exacerbate an existing problem. This
problem is being investigated by the author and Mr S J Cox of Pandrol Ltd. using 0

the model shown in Fig. 6. In this model the track is considered as comprising
two semi-infinite spans which are supported on pads, sleepers and ballast of normal
characteristics; joining these two spans is a length of track whose support is
different. The case of greatest interest is that in which the ballast is absent,
but in principle the support could be modified in any prescribed way. Work on this
model is in progress.

4.? Lateral Excitation

A beam on an elastic foundation (Fig. 4(a)) has been used to represent the
lateral as well as the vertical dynamics of railway track [3]. It has been shown
that this is a reasonable model for the lateral dynamics of track laid on wooden
sleepers in the frequency range 50 - 1200 Hz [36]. Timoshenko [37] has calculated

-V W

rail

pad

sleepers

ballast 9.

hung length

Fig. 6: Model for track with 'hung' sleepers
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the deflection and stresses in a rail under a lateral point forces by assuming 0

that the rail both twists and bends on its uniform, continuous, elastic support.
An extension of this model to examine the lateral dynamic response at low
frequencies is straightforward [38].

Clark and Foster [39] consider torsion to be the principal mode of deformation
of the rail under a lateral force. They represent a finite number of spans of 0

track by three modes of vibration. These modes are (a) twisting of the complete
length of track in phase on the torsional support stiffness; (b) the first torsional
'pinned-pinned' mode, in which the semi-wavelength of the torsional wave is equal
to the sleeper spacing; (c) the second torsional 'pinned-pinned' mode, in which
the wavelength of the torsional wave is equal to the sleeper spacing. Because of
the prominence of the pinned-pinned modes in this model, it predicts a track

response which is strongly dependent on position of the applied force in the
sleeper span.

In an experiment on BR track laid with railpads on concrete sleepers, it
was found that there is significant distortion of the rail cross section at
frequencies greater than 300 Hz [36]. The experimental data strongly suggested

that the railhead is undergoing lateral bending vibrations which are substantially
independent of the railfoot, while the web of the rail acts as a foundation spring.
As a consequence, the rail is significantly more flexible laterally than is pre-
dicted by a model in which the complete rail cross section bends about its neutral
axis. The dynamic response of this track in the frequency range 100 - 1000 Hz is
satisfactorily represented by the two-layer foundation model of Fig. 4(c). In
this case, the railhead is the Timoshenko beam, the railfoot is a continuous layer
of elemental masses, while both the pad and the rail web are continuous, viscously-
damped, elastic layers. It is assumed that the ballast is sufficiently flexible
in shear and the sleepers sufficiently massive for them to be stationary at these
frequencies. Calculation and experimental data for the direct receptance are shown
in Fig. 7. It is predicted that at the resonance of 150 Hz both head and foot
move almost in phase on the railpad, while at the resonance at 450 Hz they move
almost in antiphase on the web. The resonance at 370 Hz for excitation between
sleepers and a corresponding antiresonance for excitation at a sleeper occur
because of the discrete nature of the support. This behaviour is discussed in
Section 4.1 and is not shown by a model with a continuous support. 0

The author is not aware of any track model in the literature for both lower
(0 - 150 Hz) and higher (100 - 2000 Hz) frequencies. Because of the complex
distortion of the rail section at high frequencies, it is unlikely that a sir-le,
simple model would be adequate for both frequency ranges. For higher frequencies,
the model of Fig. 4(c) is adequate, while for lower frequencies the combined 0
bodily flexure and torsion can be represented by appropriate beams on elastic
foundations. The effect nf the discrete support can be analysed by the transfer
matrix method described in [14]: whereas the fourth order bending equation gives
rise to a 4 x 4 transfer matrix, the second order torsion equation gives simply a
2 x 2 transfer matrix; computation is straightforward.

4.3 Longitudinal Excitation

The longitudinal dynamic response of railway track has been considered by

Grassie et al [7). The track is adequately represented as an analogue of Fig. 4(c)
in which the rail is an infinite bar, resting on a uniform, continuous support
with two viscously-damped elastic layers and a layer of elemental masses. The
driving point receptance thus calculated is compared to experiment in Fig. 8.

At low frequencies the track behaves as a spring: the driving point

receptance to a static load is

= 1/(4 t AE) 2 (8)
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Fig. 7: Lateral direct receptance of track

Parameters for theory
mhd = 28 kg/rn web = 96.0 MN/rn2  Xweb =5.2 kNs/m 2

fot= 28 kg/rn pa = 48.7 MN/rn2  a d =15.7 kNs/m 2

EI = 0.3 MNmn2  
K = 0.833

where 13t 13 pb/(U + 3b

t pb p~ b

[pand i~b are the stiffnesses of the pad and ballast per unit length of track, A 0
is the cross-sectional area of the rail and E its Young's modulus. At high
frequencies the response is primarily that of the rail alone; the receptance is
inversely proportional to frequency, while its phase lag approaches 90 degrees.
The track behaves like a dashpot: its receptance at frequency w is

I = 0.-- 2 K -- 83

2m . 4(9)
r

where mr is the mass per unit length of the rail and p its density. The track is
represented well by these two elements, the spring of eqn. (8) and the dashpot of
eqn. (9), in parallel. The receptance thus calculated is shown in Fig. 8 for

comparison with that calculated from the more elaborate model.

A discrete track model is described in [7] . However, the effect of the
discrete support is small because the longitudinal wave speed is high (5180 is).
The first 'pinned-pinned' resonant frequency occurs at 3700 Hz for a sleeper

spacing of 0.7 m. •
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Fig. 8: Longitudinal direct receptance of track

Parameters for theory
m = 56 kg/m s = 34 MN/m c = 8.6 kNs/mr p p
Ms = 120 kg sb = 35 MN/m cb = 52 kNs/m

S= 0.7 m

5. DYNAMICS OF THE COMBINED SYSTEM

In the preceding sections of this paper, dynamic models have been described
for the components of the wheel/rail system: the wheel, the contact between wheel
and rail, and the railway track itself. The response of a stationary wheel on a
rail to dynamic forces in the plane of the contact is discussed in [5]: the author
is aware of no other published work on this subject. The vertical dynamics of the
system have by contrast received great attention and have been investigated in two
fundamentally different ways:

(a) a generalised, non-linear analysis, in which a single model is con-
structed which can be used for any prescribed forcing function and over
a broad frequency range;

(b) a linear analysis, in which different models are used to reveal different
aspects of the response.

The most sophisticated example of the former technique is in the work of
Clark et al [12, 13] of British Rail. Examples of linear analysis can be found in
the work by Sato [15] and by Grassie et al [1, 14] at Cambridge University (CU).
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Fig. 9: Vertical dynamic contact force through a sleeper span

Parameters for theory
m = 54.4 kg/m s = 200 MN/m c = 37 kNs/mr p p
Ms = 143 kg sb = 46.6 MN/m cb = 37 kNs/m

El = 4.84 MNm 2  k = 0.75 m
M = 1680 kg k = 1.5 GN/m P = 86.2 kN

w H 0

A = 0.01 mm X = 50 mm

A comparison is made here between results of the BR and CU techniques.

Models of the components of the system have been described, and in each case
the response to an applied force is found. When a wheel rolls over a rail, this
force is not known a priori, but arises from dynamic interaction of the components
of the system excited by roughness of the railhead and wheel. For the linear •
models, it is convenient to consider the roughness to be a sinusoidal corrugation
of wavelength X and amplitude A (Fig. 1). The response to non-sinusoidal
irregularities can then be found from the harmonic response by Fourier analysis.
The vertical dynamic contact force p(t) = PejOt arising from a wheel rolling at
velocity v over a sinusoidal irregularity is given by the formula

* Sl

P -i
kHHA 1 + kH (ar + ) (10)

H Hr w

where ar and aw are the receptances of track and wheel respectively, kH is the
linear contact stiffness and w = 27v/A. A similar result for the tangential con-
tact force using the simple contact model of Fig. 3(b) is
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Fig. 10: Sleeper end displacement

Parameters for CU theory
m = 56 kg/m s = 250 MN/m c = 26 kNs/mr p p

Ms = 293 kg sb = 50 MN/m cb = 51 kNs/m

EI = 4.86 Mm 2  K = 0.34 k = 0.63 m

EI = 3.75 MNM 2  K = 0.833 Z = 2.5 ms s s
h = 1.5 m X = 60 mm A = 0.115 mm

M = 380 kg k = 1.21 GN/m

P -1
kHA 1 + kH (U + a - jX/2TC) (11)H r ci

where C is the appropriate creep coefficient for the rolling wheel. This reduces
to the formula of eqn. (10) for a stationary wheel. A is the amplitude of the
relative displacement which is imposed between wheel and rail.

If the track model includes the discrete support at sleepers, the track
receptance ar varies periodically at sleeper spacing and the contact force does
likewise. A method is described in [14] for calculating the dynamic contact force
between a steadily rolling wheel and a sinusoidally-corrugated rail in these S
circumstances for the CU model of Fig. 4(b) . The contact force so calculated is
compared in Fig. 9 with calculations made using the BR model for several corrugation-
passing frequencies. These frequencies span the pinned-pinned resonance discussed
in Section 4.1. The effect of this resonance is to modulate the response at sleeper

pitch. Because the CU model has less damping in the pinned-pinned mode than the
BR model, greater modulation is predicted by the former. The agreement otherwise S
is good. Modulation is much reduced at frequencies far from that of the pinned-
pinned resonance.

The BR model and the CU model of Fig. 4(d) can be used to calculate sleeper
displacements. A comparison is made in Fig. 10 between calculated sleeper end
displacements and experimental data obtained by Dean of BR [401. Agreement between •
the calculated displacements, and between calculation and experiment, is good.
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6. CONCLUSIONS

Several dynamic models of the wheel/rail system have been described for
excitation in the frequency range 5 - 2000 Hz. Although no single model is com-
pletely satisfactory throughout the whole frequency range, different models can be
used satisfactorily for different aspects of the dynamic response.

The wheelset vibrates independently of the rest of the unsprung mass of the
bogie at frequencies above about 50 Hz. Above this frequency, the wheel is
represented adequately as a rigid body for vertical and longitudinal excitation
and as a thin, elastic ring for lateral excitation. There is inadequate experi-
mental data available on the dynamic response in the frequency range 5 - 100 Hz.

There is elastic deformation at the contact between wheel and rail. The
associated flexibility, although small compared to track flexibilities, should not
be ignored for frequencies of excitation above 250 Hz. There is a similar flexi-
bility for deformation in the plane of contact between a stationary wheel and the
rail. For small, slowly-varying tangential forces, the contact is adequately
modelled as a series combination of the contact spring and a dashpot which
represents the effects of creep. Study of rapidly varying tangential forces in
rolling contact is the subject of current research.

Track is usually represented for vertical motion as an Euler beam on a
uniform, distributed, elastic foundation. This model is deficient in several
respects; in particular it ignores:

(a) the discrete support of the rail at sleepers;
(b) the flexible railpad between rail and sleepers;
(c) flexibility of the sleeper;
(d) shear deformation and rotatory inertia of the rail and sleeper.

Models developed at British Rail and at Cambridge University satisfy some of
these deficiencies. The BR model includes flexible, discrete sleepers and railpads;
its dynamic response is found by modal analysis. It has the attraction of being
part of a general-purpose computer program for the dynamics of the wheel/rail
system. Its disadvantage for the general user is its complexity and cost in
computing resources.

Both BR and CU models have shown that discrete support of the sleepers
introduces a pinned-pinned resonance and some modulation of the contact force at
sleeper pitch. However, the modulation is not large, and is particularly subdued
in the BR calculations because the pinned-pinned resonance is well damped. Away *
from this frequency the track is represented well by a much simpler, continuous
model in which railpad, flexible sleepers and ballast are distributed uniformly
along the track. If only high or low frequencies are of interest, or if the
detailed response of the support is of no concern, even simpler models can be used.

For lateral excitation of the track, a model is proposed for the frequency •
range 100 - 2000 Hz in which the railhead rests on a uniform, continuous, two-
layer support. Because the rail both twists and bends, and at high frequencies the
cross-section distorts significantly, no simple model is available for the frequency
range 0 - 2 kHz.

For longitudinal excitation, the track is represented well as an infinite rod *
on a uniform, continuous, two-layer support. It is modelled adequately by the
parallel combination of a spring which represents the longitudinal track stiffness
and a dashpot which takes account of energy radiated in longitudinal wave motion.

* 6
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TWO THEORETICAL MODELS FOR WAVE PROPAGATION IN RAILS 0

W. Scholl

Institut fUr Technische Akustik
Technische Universitat Berlin AD-P003 700 a

1. INTRODUCTION

- 4As trains get faster and louder there is an increasing inter-
est in all mechanisms participating in noise generation by rail traf-
fic. One of the main acoustic sources seems to be the rail.

The intention of this paper is to give a basic survey on wave
propagation in rails under idealized conditions, which means partic-
ularly without sleepers and without any surrounding medium.

As the complete three-dimensional description was considered
to be too voluminous, two simpler models were developped, which are
two-dimensional and supplement each other. The 4three-layers-model -

describes the sound propagation along the rail, including the influ-
ence of the shape of the cross section. The cross-section-model'l--
covers modes with propagation and displacements within the cross-
sectional area.

Moreover the first nine types of waves were determined experi- 0
mentally on a 1.7m long piece of rail of type UIC 6o.

2. THREE-LAYERS-MODEL

2.1 Description

In order to get a simple two-dimensional model for wave propa-
gation along a rail, an infinitely long strip was used, divided into
three parallel tangent layers representing head, web, and foot of the
rail (Fig.1). Though the rail is

homogeneous as for •
E1,91 density and Young's

modulus, different
y r values were assigned

to the three bands,
proportional to the
width of the corre- 0
sponding rail part,thus regaining the
lost information about
the cross-sectional
profile.

Fig.1. Rail and three-layers-model This model captures 0

wave types with mo-
tions and forces re-
stricted to the plane
of the strips,i.e.

mainly vertical flexural and shear waves, longitudinal waves and re-
lated higher modes. 1

It must be kept in mind, however, that all points over the
width of the rail, which are represented by the same strip point,
have to be in phase. That means, no wave propagation transverse to
the plane in question is allowed. This condition is violated with in-
creasing frequency first at the rail foot, the exact limit depending 0
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on the present type of wave. S

2.2 Analysis

An easy representation of the structure-borne sound field can
be given by using two scalar potential functions and T, standing
for the dilatational and rotational part of the field. Together they
can form all existing wave types without limitation of the ratios of
cross-sectional dimensions to wave-length (1,2,31.

Assuming harmonic time dependence and homogeneous, isotropic
medium, D and T have to satisfy the wave equations

A 2 + k 0 (la)

AY + k 2 y 0. (1b)

kc is the dilatational wave number and kt is the rotational (shear)
wave number of the infinite elastic medium, given by

k2  w2 1-2 andc G 2-2 a
2

- G

with angular frequency w, density p, Poisson's ratio L, and shear
modulus G (including dissipation factor). Velocities and stresses
can be written in terms of ( and Y as

v = -D + 30 (2a)

v -y - 3 (2b)Vy

a =2G 924 + ___ (D -2 (2c)
-(7_--r + , -- x-r + y--) t-- y) (2c)

y 3w 1-2x

T G (2 + - _x-_2 . (2d)xy 3W 3xy _

We now suppose a given pressure wave along the upper edge of the head
strip of the rail: -jk x-JxX

u= a e0

In each strip a set of waves will appear with the same given x-wave
number and both positive and negative y-wave numbers due to reflec-
tion at the edges of the strips: 0

= + ( e e (3a)

-JiktyY -Jkx JY ktyY -JkxX(b
T= T+ e -kt e-j x + Y_ e jktye- .kx (3b)

Introducing Eqs. (3) into wave equations (1) yields the unknown y-wave
numbers as 2 2

k = k -k
cy c x

2 2 2kty k t k x

There are twelve unknown constants left,i.e. ,4 , T , T_ in three
strips. But there are also twelve boundary conditions as follows:
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Sy, head 0 evaluated at the

Txy,head 0J uppermost edge

yhead y,web

Txy,head = Txy,web evaluated at the edge

Vx,head = Vx,web between head and web

Vy,head = Vy,web

y,web y,foot

Txyweb T xy,foot evaluated at the edge 0

Vx,web = x,foot between web and foot

Vy,web = y,foot

0 yfoot = 0 evaluated at the

xy lowest edgeT xy,foot =0

These conditions can be expressed in terms of the unknown quantities
by Eqs.(2) and Eqs.(3), and the resulting set of linear equations may
be solved numerically, for example. It is now easy to compute the
velocities and stresses all over the three-layers-model by just sub-
stituting the found potentials - as given by Eqs.(3) - into Eqs.(2).

2.3 Results

The above-mentioned analysis was used to investigate a model of
an UIC 6o type rail (4). The stimulating wave was varied in a wide
range of frequencies and wave lengths, the pressure amplitude being
constant. Whenever a chosen combination of frequency and wave length
coincides with that of a natural wave of the rail there is a reso-
nance. Five different types of natural waves were detected within the
audible frequency range. Fig.2 shows typical examples of each mode,
which could be described - starting from the top - as vertical flex-
ural wave, quasilongitudinal wave, 2nd longitudinal and 2nd flexural
modes (with one longitudinal nodal line), and 3rd longitudinal mode
(with two longitudinal nodal lines). Note that at 2.6 kHz (and even
below) there is strong deformation of the cross section, so that sim- 0 S
ple homogeneous beam models would fail here.
For more details see (5).

3. CROSS-SECTION-MODEL

3.1 Description

This second model completes the investigations by introducing
modes of the rail with displacements and stresses also perpendicular
to those of the three-layers-model.

If one considers the cross-sectional view of a rail only, one S 6
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can think of it as a
composition of one-
dimensional bars be-
longing to the left
and right halves of the
rail foot, to the web,

2.6 kHz and to the head re-
spectively (Fig.3). It
is assumed that there

_are bending and longi-
tudinal waves propaga-

- ting along the bars,
7 with displacements re-
,9 kHz stricted to the cross-

sectional plane.
Since the mwdel is only
two-dimensional, it re-
presents the case of
zero wave number or in-

10.2 kHz finite wave length
along the actual rail,
that means, the model
yields the natural

_____waves of the rail at
their cutoff frequen-

10.9 kHz cies. Those types with
zero cutoff frequency
appear as static dis-

_ _ _ _ _ _ placements of the unde-
j -; formed cross section

and don't supply much
21kHz information therefore.

Such types are the ho-
rizontal and vertical

Fig.2. Natural waves of the three-layers- flexural waves along
model (side-view of rail) the rail as well as the

torsional wave. At low
frequencies these could
be investigated much
easier anyway, using
one single homogeneous
bar as a model.

07

Fig.3. Cross-section-model. From left: rail shape, corres-
ponding beam-system, calculated chain
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3.2 Analysis

The treatment of flexural and longitudinal waves in homogeneous
beams is well known 1I. For each bar there are six unknown ampli-
tudes: bending moment M and bending angle B, transverse force Q and
transverse displacement n, as for the bending wave, and longitudinal
force F and longitudinal displacement E, as for the longitudinal wave. 6
Altogether twenty-four unknowns in four beams. There are just as many
boundary conditions, demanding equality of corresponding displacements
and vanishing net forces at the "inner" boundaries, and vanishing
forces or displacements, depending on possible supports, at the ex-
ternal foot or head ends.

Though this settles the problem, a particular method is out-
lined here, which reduces the set of twenty-four equations to a pro-
duct of four 6x6-matrices and a set of three equations in three var-
ables.

Let x denote any fixed point of a beam within x = o at its
'input' and x = Z at its 'output'. Let Zx be the 'state at x', a vec- S
tor constituted by the six forces and displacements, evaluated at x.
Then any such state of the beam can be expressed in terms of its in-
put state (1),

Zx = Ax  ZO , (1)
x x 0

by evaluating the general bending and longitudinal wave solutions of
forces and displacements at 0 and x and eliminating the six unknown
constants. Ais a 6x6 matrix. In particular the output state of a
beam is

Z =A Z . (2)

To link two aligned beams, one simply equates the output of the first
with the input of the second, Z = Zo2, and obtains from Eq.(2)

Z£2 = AZ2-Zo 2 = A Z2*ZI = A 2.Ai Z01 ,

the combination of beams obviously being represented by the product
of their matrices.

The beam system, corresponding to the rail shape, was inter-
preted in such a way as a chain of elements (Fig.3) for which holds
(a bit condensed)

Zz = A 3A2. B.AI.Z o  = R'Z . (3)

B is the 'transfer' matrix of the right half of the foot, where in-
put and output both are at the same beam end, at right angles, and
depend on the given opposite end boundary conditions. The analysis
of B is similar to that of the A-type. R is the resultant product
matrix, depending on given material and geometric constants and
frequency.

In case of vanishing forces at all external beam ends Eq.(3)
becomes in detail

z. . . .. . no
r, 9  . . B4T10
8 .. .~(4)

0 r4 1 r4 2 r4 3  . . 0

0 r5 1 r5 2 r5 3 • • • 0

0 r 6 1 r 6 2 r 6 3  • L 0 J
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The blank entries in R are unimportant, either being multiplied by S
zero or belonging to the unemployed set of equations. The fully writ-
ten rest is a homogeneous set of linear equations in no, Bo, o
yielding natural frequencies and associate initial sets (no, B0 , Co)
whenever its determinant equals zero. In all these cases the complete
shapes of vibration can be calculated by analogous application of
Eqs.(I) and (3), the chain being formed only up to the just examined 0
point x.

To avoid redundancy in practice one should not set up the pro-
duct matrix R explicitly but only the interesting left half. For this,
one replaces Zo = (no, B0 , , Q, 0)T by

1 0 0
0 1 0
0 0 1

' = 0 0 0
0° 0 0 0

0 000 J
and performs Eq. (3) starting from the right-hand side, dealing with
6x3 matrices all the time (6).

Finally this method allows changing the boundary conditions
at the external foot and head ends quite simply by changing ZZ or Z°
(and B, if the right foot end is involved).

3.3 Results

The above-mentioned analysis served to investigate a cross-
section-model of an UIC 60 type rail. Fig.4 shows some computed ex-
amples of natural modes and frequencies for either free, clamped, 0
and pinned ends of the rail foot, the rail top being free in all
cases.

It should be kept in mind that the clamped and pinned condi-
tions of the model are valid c o n t i n u o u s 1 y along the
actual rail and thus can't be compared directly to the usual clamping
to sleepers. But their examination may basically show the effect of
different mountings of the rail.

4. EXPERIMENTS

An UIC 60 rail piece of 1.7 m length was suspended 'free' from
two flexible steel wires. By harmonic excitation at one end all de-
terminable natural frequencies were succesively tuned in and each
time the whole surface of the rail was scanned with an acceleration
pickup, recording amplitude, direction, and phase shift. Hence the
natural shapes of vibration were reconstructed. In the frequency
range up to 12 kHz nine different kinds of waves were found, which
are shown in Fig. 5. Table 1 gives a short summary of their main
features and their respective model representations. The difference
between frequencies of analogous modes are due to arbitrarily chosen
wave lengths along the rail.

As can be seen, the two models reproduce nearly all natural
waves within the investigated frequency range. The two exceptions,
torsional and horizontal flexural waves, could be treated, at low
frequencies, by equating the rail with a homogeneous bar, as said
before.

This work has been sponsored by the German 'Bundesminister fUr
Forschung und Technologie'. I like to thank Prof.heckl for his help.
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1.2 kHz 3.5 kHz 4.5 kHz 11.1 kHz 12.8 kHz 16.4 kHz

VI
0.4 kHz 2.1 kHz 4 kHz 11,A kHz 12.1 kHz 15.5 kHz

0.4 kHz 1.1 kHz 3.9 kHz 94 kHz 9.7 kHz 134 kHz

Fig.4. Natural modes of the cross-section-model
* 0

.S
experiment 3-layers cross- character

(Fig.5) (Fig.2) section (along the rail)
(Fig.4)

3.3 kHz 2.6 kHz - vertical flexural

4.5 kHz 7.9 kHz - longitudinal

6 kHz (upper row) 1o.2 kHz - longitudinal,2n d mode

out of meas.range? 1o.9 kHz 11.1 kHz 'head against foot'

out of meas.range 21 kHz - longitudinal,3nd mode

6 kHz (middle row) - 3.5 kHz 'foot only'

o.8 kHz - - horizontal flexural

o.5 kHz - - torsional

1.6 kHz - 1.2 kHz torsional, 2nd mode
4.4 kHz - 4.5 kHz more complicated

12.1 kHz - 12.8 kHz more complicated

Tab.1. Analogous modes of experiment and theoretical models
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33kz 14,5' 6 k z'

0 6 k~z 0 ,8 k~z os z•

16kz4,4 kHz 12.1 kHz

Fig.5. Experimentally determined natural waves of the rail (wave
lengths unified for better comparability)
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1. INTRODUCTION

.The development of tracked high-speed transportation systems, e.g. fast
wheel-rail-sytems with operational speeds up to 260 km/h or fast magnetically
levitated trains with speeds up to 400 km/h, is enforced in several countries.
With increasing travelling speed the dynamic interaction between vehicles
and guideway becomes more and more important. Thus, there is a strong need for
simple but reliable models for such systems in order to study the dynamical
effects.

The aim of this paper is to introduce several linear and nonlinear models
for train-track-sytems and to investigate their dynamical behaviour. The models
are useful to examine the vertical dynamics as well as the lateral dynamics. The
track-subsystem is modelled as an infinite Bernoulli-Euler-beam on an elastic
foundation, while the train-subsysteris consists of different continuous or lumped
models which are infinite or finite in length, respectively. Both subsystems are
in relative motion to each other wit .constant velocity. The suspension is
modelled by linear springs and in scme cases also by nonlinear springs.

The mathematical description of the different train-track-models depends
on the modelling of the subsystems. It consists either of two counled partial
differential equations or a set or ordinary differential equations coupled with
a partial differential equation. The solution is obtained applying the concept
of travelling waves. Special attention is paid to the stationary solution and its
stability. -

The stability analysis for linear system is performed by investigating the
roots of the resulting characteristic equation. Critical travelling speeds can be
calculated depending on the system parameters. Explicit results are obtained in
the case of vanishing damping. The influence of nonlinear suspension springs is
also analyzed and the stability of the resulting limit cycles is discussed.
The results obtained by comparatively simple models are believed to remain valid
also for more complex systems and provide an insight into the problem of the
dynamic stability of real train-track-systems.

2. SHORT LITERATURE REVIEW

Before we start the analysis, a short review of the available literature
shall be given. The classical problem of an infinite Bernoulli-Euler-beam
(flexural rigidity El , massper unit length 11 ) on a Winkler foundation
(foundation constant c ) under the action of a simple moving force F ,
travelling with constant speed U , was first addressed by Timoshenko [I, 1926].

The beam deflection w(x,t), xc', t>O, is governed by the wellknown
partial differential eq.

E1 4w(x't) w(xt) + cw(x,t) = F6(x-Ut), (1)
4 t
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where 5 denotes the Dirac 'function'. The steady-state solution was obtained 0

by Ludwig [2, 1938], Drr [3, 1943], [4, 1948], Kenney [5, 1954] and reviewed by
FrSba [6, 1972] and Panovko, Gubanova [7, 1967]. It turns out that in the subcri-
tical case U <U , U 4cEi/p2 , the steady-state solution w, is asymtrctravellhg U cr ~c
symmetric twave, where the amplitudes are decreasing exponentially
with the distance = x - Ut from the force location,

wU) - Fe- + (sino),

0(cosrcE (2)

22

O= /I - (U /U )2 C c/(4EI) B +(/ c /(4E1) .

Usual design parameters for railway tracks result in critical velocities U >>U.
Thus, the subcritical case is of technical importance. However, the criticair
speed can be reduced by the action of additional axial forces, as pointed out by
Kerr [8, 1972]. The supercritical case yields waves expanding from the force 0

location with smaller wave lengths and amplitudes in front of the load as behind
it. This case is discussed exhaustively in [3], and also in [4], [5], including
the effect of viscous damping. The transient solution of (1) was investigated
by Nowacki [9, 1963] and given in closed form by Stadler, Shreeves [IO, 1970],
where also the steady-state solution is discussed in detail.

There are various extensions of the classical problems towards more
realistic models for railway tracks. A tensionless Winkler foundation was investi-
gated in an analog-computer study by Criner, McCann [11, 1953], where only small
differences of the beam deflection were found compared to the classical model
with the same loading. Another paper devoted to this subject is due to Chorus,
Adams [12, 1979]. Different beam models on a Pasternak foundation have been -
compared by Saito, Terasawa (13, 1980]. Though the Bernoulli-Euler beam theory
compared to Timoshenko beam theory and the exact two-dimensional elastic theory
gives extremely inconsistent results in front of the load for U > U , it seems
to be reliable for all velocities excluding the foregoing region. A periodic mass
and stiffness distribution along the beam was iavestigated by Popp, Muller
[14, 1982] in order to approximate the effects of sleepers in a railway track. .
Again, for realistic system parameters the differences compared to the classical
model turned out to be very small. Thus, the classical model (1) seems to be
quite appropriate for the investigation of real railways tracks.

However, from the application point of view, more realistic load models
are required. The classical problem with a moving harmonic force F(t) = Focoswt
instead of a constant force was investigated by Mathews [15, 1958], [16, 1959],
also regarding the effect of viscous beam damping. Chonan [17, 1978] solved
the corresponding problem for Timoshenko beams and compared the results. The
effect of a moving mass has been discussed by Fr'ba L6, 1972]. He also solved
the problem of rail excitation through a flat spot on a wheel which carried a
secondary mass-spring-damper system cf. [18, 1960]. The problem of the stability
of a rolling wheel on a rail has been investigated in recent papers by Korb
[19, 1980] and Brommundt, Gao [20, 1983].

In contrast to the reviewed literature, the present paper is devoted to
load models with more than one contact point. As a limit case of a long train,
an infinite moving beam will be investigated in detail. On the other hand,
the case of a moving lumped system with two contact points will be analyzed.
Superposition of the solution for this system may provide insight in the dynamical
behaviour of trains of finite length.

0 0
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3. SYSTEM MODELS

In the development of tracked high-speed transportation systems it is
of great interest to study the stability behaviour of the train-track-models
listed in Table 1, where equivalent models for the lateral dynamics (left) and
vertical dynamics (right) as well as train models of infinite length (above) and
finite length (below) are shown. From the mathematical point of view, the ver-
tical dynamics can be deduced from the corresponding lateral dynamics by super-
position of an appropriate static load. In a first part, train models of infinite
length will be analyzed, cf. model I and 2. Beside the detailed investigation
of linear elastic foundations, also the effect of nonlinear elastic foundations
will be discussed. In a second part, train models of finite length will be ana-
lyzed , see model 3, 4, 5. Since model 2 and 4 are limit cases of model I and 3,
respectively, and model 5 follows from model 3 by appropriate superposition,
we confine our investigations to analyze the models I and 3. Throughout the
analysis Bernoulli-Euler beam theory will be applied and damping will be neglected,
although it is always physically present.

4. INTERACTION OF TWO FINITE BEAMS ON ELASTIC FOUNDATION DUE TO RELATIVE MOTION

4.1 System dynamics in case of linear elastic foundations

We consider model 1, cf. Table l, composed of two infinite continuous beams

j,j = 0,1 , where beam 0 moves with constant velocity Uo  relative to beam *
1. Each beam (flexural rigidity EjIi, mass per unit length i., longitudinal force
TjsTj>O means compression and T.<0 means tension) is supported by a linear
elastic foundation (foundation constant cj ). Two reference frames with coordi-
nates (x 1 x ) and ( * 19 2) are used, at ached to beam I and 0, respectively.
For undisturged motion the beam displacements wj (xj t) in x2 -direction are
assumed to be zero. The equationsofmotion with respect to the (x1,x2)-frame
read

I ?2I _2w

E I 4 + T1 2 + 2 -- + p2 pf(x|,t) =p(x0,t)
I I X14 13X1 2013

Pf(xlt) = cIwI(xlt) . (3)

E 0 + T w 0 + po (  t + 2U 0xt + U 2 x )-p (x|,t) = 0. (4)
00 I o 2 o o 2

Here, p., j = 0,1, denotes the pressure which acts on beam j due to the
disturbed motion of the beams. From the condition of conformity it follows

p|(x|,t) = -Po(X|,t) = c (w - w1 ) (5)
I S

In order to simplify the analysis we describe eq. (4) in the moving (xI,x 2 )-frame,
where

x x Uot = 0 , x 2 
= 0 (6)

Then eq, (4) takes the form S

4* 2* 2*
0 0 0 * - w 0 (7)Eolox*-- +To -

+ o 2 +co(Wo -W)
= 0(7

0 0 ~*4 o ~*2 o o
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To solve the set of eqs. (3), (5), (7) together with the condition (6), we S

are looking for a steady-state solution in the form of travelling waves,

* e i
*

w. = A. e i k j (xi-vt) = A. -v2t) (8)
J J .J

-pj= (-l) j e ikj (xl-vlt) j =0, I

Making use of relation (6) we find

A. = A. , k. = k. = k , Im(k) = 0 , j = Ol , (9)
.1 J ] J :

v -v 2 - U0 =0 (10)

Introducing (8) into (3), (5), (7) and regarding (9), (10) it follows

A, P 2 2 2 (ElIk 2 T] +-- , (11) 0A =2) R1 -

k 2 (R12 1
2

A 0 (Eo0lo k 2vk T 0 (12)0 0 2 2

P = c (A - A1 ) (13)

The condition of a unique solution of 11) - (13) with respect to A A
yields a relation between v 12 and v . With the abbreviations 0 1

1 2 Co_- and a = it follows

2 2 2 0____ _ v 2 -R R°  .2
212 2 2 2 o F(v 2 ) - F2 (v 2 2) = 0 (14)

(R1 2 _ 1 a2(R ° _ v2 2

Fig. I shows qualitatively a plot of the functions F (v 2), F2 (v 
2 ) and

F(V I ) = F 2(v2
2 ). Eq. (14) in combination with (10) constitutes te charac-

teristic equation cf the problem under consideration

c(v 1 ,v 2 ) E FI(v 2 - F 2 (v 2  = 0, vI - v 2 - Uo = 0 (15)

4.2 Stability analysis

In the present case without damping the solution (8) cannot become asympto-
tically stable, independent of the value of the velocity U0 . Stability of the
steady-state solution (8) requires Im(vv) = 0, v = 1,2 , and instability is
given if Im(vv) < 0 , v = I or v = 2. Now we will analyze the stability be-
haviour depending on the velocity U . First we observe that stability is given
if and only if there exist four different real roots v% )  V = 1,2, n = 1,2,3,4
of eq. (15). If there exist only two real roots v. (1) , vV(2), then in view of
relation (10) the remaining complex roots must have the form
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v( = r + is , v2 (3)= r2 + is ,
(4) (4) (16)

v1  = r -is, v 2  = r2 - is,

which leads to instability.

The regions SI  of U for which 0

SI = {Uo: 3vV, Im(vV ) * 0, (v, U = 0) (17)

we will call instability regions. The following subset SID of SI ,

SID = fU: v , Im(v ) # 0, Re(v ) = 0, P(v , U ) = 0} , (18)

determines the parameters of divergent instability. Since the analytical determi-
nation of critical parameters is complicated we use a geometridal approach, see S

e.g. Fig. 2. The critical values of U which result in boundaries of the

instability region SI  are determined in a vi, v2-plane by the straight lines
V2 = vt - Uo tangent to the curves obtained from (14). In the range
S = {Uo:UoE[U1cr, U2cr]}, cf. Fig. 2, the solution (8) describes waves with
amplitudes increasing in time. Beside this solution exists also a trivial solution,
thus, according to Liapunov'sinstability criterion the range S is the range of S S

instability, S = SI

Now we will determine the instability regions for particular cases. It can

be shown from the form of the characteristic curves in a Vl, v2 -plane that for
R2 R 2 a2 C [O, c) the region of instability S1  is bounded by
o' 1

2o 2R 2 2
]R + IRI V Uicr ]  ( (+l) R 2 + jU I R2 +/ +0 1 lIUl 12cr

[  0 -

(19)

The limit case a 2 0 - describes a stiff connection between beam 0 and 1. S 0
In this case Ulc r  p0k 2  reaches a finite limit value, while U2cr tends to
infinite. 2 2The case R = E Ik - To = 0 belongs to a moving beam 0 with rigidity equal

to zero. For To = 0, Eol o =0 the case of a moving chain of densily distributed
oscillators without mass interaction can be gained, cf. model 2 in Table 1. The

corresponding v1 ,v2 -plane is shown in Fig. 2. Estimates of critical velocities S S

fo5 this case can be found from (19) substituting Ro2'= O. It should be noted that

Ro  can even be negative but bounded

n2R2

R 2 > R 2 1  (20) S S
o ocr nRl2 2

2

The critical value R r  can be found from the exstence of a 2 stability region
in the neighborhood 0 Uo = 0 . i.e. from F1 (v1 =0) = F2 (v2 =0, R0 =R cr).
For corresponding v1,v2-plane is shown in Fig. 3. Thus, R2<0 yields

0
2 222 a2 R 022R2

U (R +2 a 2 2 0+0 R + J (21)
I a 2+Ro2 '
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It follows, that e.g. a breaking train can become unstable for U >U, , where
UIcr may be very small. The latter is awellknown fact from train acclents.

4.3 The effect of nonlinear elastic foundations

In case of nonlinear foundation characteristics the determination of
critical travc -ing speeds for given wave amplitudes is possible only in some
particular cases, cf. Bogacz, Kaliski [21, 19641 and Bogacz [22, 1968], where
the problem of self-excitation of nonlinear oscillators moving along a beam has
been investigated. We study this case using the analogy with a discrete system
of two degrees of freedom and apply the concept of modal or limit lines in a
w ,w -configuratiun plane, cf. Rosenberg [23, 1962]. We assume an approximation
oY te nonlinear foundation characteristics by two odd terms of a Taylor series
expansion, which yields in contrast to (3), (5)

Pf = cl(w I + 61w1 ) , (22)

p1 = -po = c [(w - wI) + 6o(w ° - w) 3] (23) 0

Here, 6. > 0 and 6. < 0, j = 0,1, characterize a hardening and softening
foundation characteristic, respectively. Assuming the solution of the equations
of motion in form of travelling waves and applying one of the approximation
methods, e.g. Galerkin's method, we obtain the ch racteristic equation. In
contrast to the linear case the relations for vl and v 22 depend on the wave
amplitudes A1  and Ao,

2 2 2 2 2 2v R {I + 6 A [--(A-I) [+ + 6 a (X-I) (24)1 2  11 o

2 2 o 2 1 2
v2 =R I R 12 .) [I + 6oA, (X-1)]} (25)

w A
where A 1 -o = . Utilizing (24) and (25) in connection with (15) we determine

w1  A1
the equatioA of limit lines in the form

On(X, A l, U0) 0 0 (26)

Now, the limit lines can be plotted in a wo,w-plane for given lysteT parameters.
The results are shown for two supercritical cases in Fig. 4 (U° =2R1 ) and
Fig. 5 (Uo2 _16R 1

2). If there exists a equipotential line,

H = H(X, A1) = const. , (27)

tangent to the limit line, then the point of tangency B , determines the trajec-
tory of the limit cycle. If the curvature of the limit line in B is greater
than the curvature of the equipotential line, then the limit cycle is unstable,
BEBI, in the opposite case the limit cycle is stable, B-Bs, as can be seen from

small changes of the potential energy density H

2  2
For U = 2R. , cf. Fig. 4, the trivial solution is unstable. The wave

amplitudes increase in time until the energy level H = H and a stable limit
cycle Bs is reached. This holds true for hardening as well as for softening
foundation characteristics. For o2= 16 RI , cf. Fig. 5, the trivial solution
is stable in a small neighborhood near the origin of the configuration plane in
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either case. However, for the hardening foundation characteristic there exist 0
two limit cycles. A stable one, BS, with energy level HS and anunstable one,
B,, with energy level HI . For HI:H< HS  the system becomes unstable, other-
wise it is stable.

5. INTERACTION OF A MOVING LUMPED SYSTEM WITH AN INFINITE BEAM ON A LINEAR

ELASTIC FOUNDATION 0

We consider model 3, cf. Table 1, which consists of a one degree-of-free-
dom vehicle (mass m, spring constants c) with two contact points (distance L),
moving on an infinite beam supported by a linear elastic foundation. The re-
maining parameters and the reference frames are specified analogously to

Section 4. First we analyze the case of a single periodic contact force F(t)
acting at pdint xI=O , cf. Mathews [15, 1958]. The corresponding equation of
motion reads,

4* 2*2 2* 2*a a ;w w, 2 a w1
E W *4 + 2T + I1 2 U- + U 

2 ) + Cl -Pl(Xl
t ) = 0,

I D 4 U t 2  o t xax ax tax 3t ax-

* * e-iwit
Pl(Xlt) = F(t) 6(x) = Pe 6(x) . (28)

The solution can be composed of two parts,

w l(Xlt) = W*(Xlpt ) H(-x I) + W2(Xlpt) H(x I )  , (29)

where H(x) iq the Heavyside unit function, i.e. H(x) = I if x>O and S

H(x) = 0 if x<O. The functions 1 and W2 fulfill the following compa-

tibility condition at Xi=O:

,nI n*
I w 2

2 n=0, 1,2,•*n *n '
x1  1

3* 3* (30)

EI 1 2 pe-iwt
II * 3 *3ax I  ax I

Utilizing the functions B V, = 1,2, the solution can be obtained in the
form

• * 1 r 1 ]e-it

WI(X 1 ,t) = [B1 (r Ix) + CI(rS2x I )

W 2 (x1,t) = [B2 (r3 x) + C2 (r4 xI ) I e'] (31)

Here, rn, n = 1,2,3,4, are the roots of the characteristic equation

E r4 + (T + W 2 2 i WA U u) r + c b 2 0 (32)EII 1 I o ) 1 0 I =0 (2

From the condition of radiation it follows Re(r ) '0 for n = 1,2 and
Re(r n ) O for n = 3,4. Introducing (31) in (30, (29), we obtain a relation
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** 0
between beam deflection w](x ,t), force F(t), velocity U and frequency w

In steady-state the time dependece cancels out and it follows

W 1 kxist) wIc 00x*
( t ) t ( XlCO - G ( w1  , U o) (33 )

For free elastic waves the relation between wave velocity v and wave number k

reads

*2 = (Elk4  + c) / ik2  (34) -
V II

which leads to the critical velocity Ucr

=>U 2 = EI2  1 (35)

'v=,U c r = 2V=Ucr I

Now we analyze model 3 of Table I. Since symmetry is assumed, the equation of

motion for the mass m takes the simple form •

2
m d y + F (t) = 0 (36)

dt c

L L t]
(tC c[2y(t) - * I ( -  2 't) -w ( ,  ,

where y characterizes the mass displacement and F /2 denotes the contact

force in x2-direction. The beam equation is given byc(28), where the load reads

I L I L

Pl(Xlot)= f Fc(t) 6(- L) + f Fc(t) (+ -P- (38)

For steady-state motion from (36), (37) is follows

L * L

2c-mw 2  w 1(- 7,t) + wl( -,t) (39) 4
c y(t) t +

Using (33), (37) and (39) we obtain the characteristic equation in the form

20
2c-m2 = 2G(O, w, U ) + G(L, w, U ) + G(-L, W, U ). (40)

cmW

For U 2 < U2  the function G(*x, w, U ) reads
0 cr 0

G , U0) = [GR(V~l1, w, Uo ) + i GI( *x1I , W, Uo)] H(* I) + (41)

[GR(I1I, w, Uo) - i GI(iX1L, w, U)] H( )
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Here,

2 2 2  + -I + C I
GR= (4k2- 1 + [ exp(-C 2 exp(-s; l)] cos k x*IN +

22 1+ 4k2  exp(-6l.*"l) + exp(- 21* 1 I)] sin klxlI/N,

4k+12 - g2)[ -I 21 21 /
GI= (4k2+ 2C1 exp(- xIcj) -2 exp(-c2xI)] sin klx 1IIN

- k 2  exp-lXl - exp(- 2 XlC COS k /N,

22
- 4k ep-11*11 Ix(- 2I*x.j co * IN

N = 2EIII[(4k 2 +C 12 - 22  +16 k2E2 2 1 (42)

raA2_C2C2 2 2 W 2 +T)EII$kc12 2 2 U0WEI1 02k2 -j 12 2 (j lUo + T )/EII k( 1  £ = JIo /III2)

(k2 + L l) (k - 2 2) = (c1 - WI2 )/EIII,

k = Im(r )1, n = 1,2,3,4, EI = IRe(r)I' 2 Re(r 2)j 0

Since GI(O w, U ) = 0 holds and due to symmetry the characteristic equation (40)
for U2 < U2  reduces to

O cr

2 22ci -w
022 -2 GR(O, w, U) - 2GR(L, w,U) = 0 (43)

m~tO

0

2
where a = c/m . Now we discuss briefly the stability behaviour of the steady-
state solution. To check stability we apply a small disturbance and put
W =Q- i£o , E small, into (43). This yields

0 0•

22 2 2
2 2 20 =0 , (44)

o l+2moo 2 [ R (o)+GR (L)]

2£ §2 =0. (45)

For a + 0 it follows, that in case of U 2< U r the only instabijity may
occur at 2= 0 . Other instability boundaries are not found. For U = U2

a similar situation is given as in the case of a lumped system interacting

with a string, cf. Bogacz [24, 1979], but much more complicated because of the
nonlinear relation between wave number and wave velocities. Thus, in the present
ca e without damping the steady-state solution may become unstable for velocities
Uo I U2  , similarly to the case of the interaction between two continuous0 cr
beams.
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6. CONCLUDING REMARKS 0

For the dynamic analysis of an infinite beam on an elastic foundation
under the action of a moving infinite beam or a moving lumped subsystem of
finite length, the wave approach is appropriate and yields results of practical
importance. The methods applied and the results obtained for comparatively
simple models can be extended to more complex systems and, thus, provide in-
sight into the problem of the dynamic stability of real train-track-systems.

7. REFERENCES

1. S. TIMOSHENKO 1926 Proc. 2nd. Int. Congr. Appl. Mech., Zarich, 0
407-418. Method of Analysis of Statical and Dynamical Stresses in Rail.

2. K. LUDWIG 1938 Proc. 5th. Int. Congr. Appl. Mech., 650-655. Defor-
mation of a Rail Elastically Supported and of Infinite Length by Loads
Moving at a Constant Horizontal Velocity.

3. J. DbRR 1948 Ing.-Archiv 14, 167-192. Der unendliche, federnd gebet- 0

tete Balken unter dem EinfluB einer gleichf6rmig bewegten Last.

4. J. DURR 1948 Ing.-Archiv 16, 287-298. Das Schwingungsverhalten eines
federnd gebetteten, unendlichlangen Balkens.

5. J.T. KENNEY 1954 J. Appl. Mech. 21, 359-364. Steady-State Vibra-

tions of Beams on Elastic Foundation for Moving Load.

6. L. FRIBA 1972 Vibrations of Solids and Structures Under Moving Loads.
Groningen: Noordhoff.

7. Y.G. PANOVKO and I.I. GUBANOVA 1967 Stability and Oscillation of
Elastic Systems: Modern Concept, Paradoxes and Errors. Moskau: Nauka,
Engl. Transl.: NASA TT F-751, 1973.

8. A.D. KERR 1972 Int. J. Mech. Sci. 14, 71-78. The Continuously Sup-
ported Rail Subjected to an Axial Force and a Moving Load.

9. W. NOWACKI 1963 Dynamics of Elastic Systems. New York: Wiley.

10. W. STADLER and R.W. SHREEVES 1970 Quart. Journ. Mech. and Appl. Math.
23, 197-208. The Transient and Steady-State Response of the Infinite
Bernoulli-Euler Beam with Damping and an Elastic Foundation.

11. H.E. CRINER and G.D. McCANN 1953 J. Appl. Mech. 20, 13-22. Rails
on Elastic Foundations Under the Influence of High-Speed Travelling Loads.

12. J. CHOROS and G.G. ADAMS 1979 J. Appl. Mech. 46. 175-180. A Steadily
Moving Load on an Elastic Beam Resting on a Tensionless Winkler Foundation.

13. H. SAITOand T. TERASAWA 1980 J. Appl. Mech. 47, 879-883. Steady-
State Vibrations of a Beam on a Pasternak Foundation for Moving Loads.

14. K. POPP and P.C. MULLER 1982 Z. angew. Math. u. Mech. 62, T65-T67.
Ein Beitrag zur Gleisdynamik. 0 0

15. P.M. MATHEWS 195' Z. angew. Math. u. Mech. 38, 105-115. Vibrations
of a Beam on Elastic Foundation.

16. P.M. MATHEWS 1959 Z. angew. Math. u. Mech. 39, 13-19. Vibrations
of a Beam on Elastic Foundation II. •

718



17. S. CHONAN 1978 Z. angew. Math. u. Mech. 58, 9-15. Moving Harmonic
Load on an Elastically Supported Timoshenko Beam.

18. L. FkBA 1960 Z. angew. Math. u. Mech. 40, 17o-184. Schwingungen
des unendlichen, federnd gebetteten Balkens unter der Wirkung eines
unrunden Rades.

19. J. KORB 1980 VDI-Berichte Nr. 381, 99-104. Parametererregung beim
Rad-Schiene-System.

20. E. BROMMUNDT and S. GAO 1983 to appear in Z. angew. Math. und Mech.
64. Zur Stabilit~t des auf einer Schiene rollenden Rades.

21. R. BOGACZ and S. KALISKCI 1964 Proc. Vibr. Probi. 5. Stability of
Motion of Nonlinear Oscillators Moving along a Beam on an Elastic
Foundation.

22. R. BOGACZ 1968 Proc. Vibr. Probl. 9, 55-77. Interaction between a
Moving Set of Nonlinear Oscillators an d a Travelling Wave.

23. R.M. ROSENBERG 1962 J. Appi. Mech. 29, 7-14. The Normal Modes of
Nonlinear n-Degree-of-Freedom Systems.

24. R. BOGACZ 1979 Nonlin. Vib. Probl. 19, 240-250. On Self-Excitation
of Moving Oscillator Interacting at Two Points with a Continuous System.

F2  F1  V2
2 1

"jj F ~2

R0
2  R-12cx R2~

R
2 2.a2_ 02

0 00

Fig. I

F2  V

R=0

0 aL2  _____Uc

1V-__~2 -R, Ulcr V1.UCr

Fig. 2

719



F2  - ,2 <R0 o0 V2

R2  a 2!
c1 2 -1R 0

2q a a-IR2 UDr
a2IROI c 2 I~

______2--___ v 2 2 Icr v,,Ucr

Fig. 3

61 =6o 0.2 O 61=-6 = 0.2

B 1HS5- =' = •

H=H s

-5- -I- S

H = H(XAI) = const.

Uo2 2R,1 Ro2=0, (2- 0.5R ,.2 -- 0.5

Fig. 4

61 =6o= 0.2 61 6o= 0.2
wo Wo 0

10-B

5- Hs

HI
0.

p-5- \ S

Uo2 :16R 1
2

] RO2=0, aL2 0.5R 2 , -0.5

Fig. 5 0

720



TABLE 1: SYSTEM MODELS __;

LATERAL MOTION VERTICAL MOTION

1.

I • • co/2T j 1w TO ,o T, TO U o -;)f T O

I

2. 
U0

U00

3. /20

c12 / TT 1 2m o~ _/_ _1141_

m/ xi Ti Ti
Cl 2 2 -Z ; I

L - L - ElI 1, l .

x2  Uot x2

4 _ ___ ___ ___ _-____ ___ UoS
U0 : 00

721



ASSESSMENT OF THE GENERATING MECIANISMS AND CHARACTERISTICS OF

WHEEL/RAIL NOISE VIA STUDY OF A ROLLING DISC

N.S. Ferguson and R.G. White

Institute of Sound and Vibration Research
University of Southampton 0

1.0 INTRODUCTION

Wheel/Rail noise has been the subject of much investigation over recent 0
years and as these investigations have developed, attention has been directed
towards the use of models based upon representation of practical wheels and rails.
This study models the wheel as a thin disc and is concerned with the excitation • S
and response of the disc in flexural vibration rather than in-plane vibration.
Other investigators who have examined the Free Vibration characteristics (see
Irretier [1], Sato L2] and Arai [3]) have included rotary and shear deformation
into the analyses but these can be neglected here.

Most of the previous work on the forced vibration has been experimental, •
and in this study an anlytical model is presented, for the forced vibration response
of a rotating disc with inclusion of the effect of rolling contact. For the
cause of the excitation to the disc various sources have been examined; rigid
body forces generated by a rolling disc and surface interaction forces due to the
roughness of the rolling surface are the main causes studied.

2.0 FREE VIBRATION CHARACTERISTICS

2.1 Clamped-Free Disc

The equation governing the free vibration of a thin disc in flexure is given,
in polar coordinates, by

D V2 w + Ph-~ = 0 (1)

The solution of Equation (1) for various boundary conditions is given by Leissa
[4]. The boundary conditions assumed in this study are that the disc is free
everywhere on it's outer periphery i.e. no forces or moments, and that internally 0 0
at some radius it is clamped, this models the attachment of the disc to a central
rigid axle. Solving Equation (1) gives the natural frequencies wmn of free
vibration, m,n corresponding to the natural modeshape with m nodal circles and n
nodal diameters as given by

9mn(r,Q) = (AnJn (k nr)+BmYn (k nr) + Cm In(k r) +rnJ(k nr))xcosng(2) n a

for the even modes in 9 and

91(r,G) = (A mnJ n(k mnr) + B mnY n(k mnr) +C mnI n(k mnr)+DmnJna r))xsinnO(3)
for the odd modes in 9, k the corresponding wavenumbers and AMBmnCmnD mn
are the modeshape coefficents.

2.2 Additional Constraint on the Outer Periphery

Initial consideration of a disc in contact with a surface has been to model
the contact as restraining the disc to having no displacement at the point on the

outer periphery where contact occurs. Two methods of analysis were used to model
the additional constraint; those being the Lagrange Multiplier method and the
extended Rayleigh-Ritz method, the latter being the one described here.

The extended Rayleigh-Ritz method, as described by Webster F5J, transforms
the strain and kinetic energy expressions for the disc whose displacement is
described by a series of functions. The expresssions are transformed by the
equation governing the constraint, namely •
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N
J, 9n(r=R, 9O=) 0 (4)

the constraint being at (R,O) in polar coordinates. The matrix equation is then

solved in the same way as for the Rayleigh-Ritz method.

2.3 Addition of the In-Plane Loading 0

In addition to the constraint as a disc rests on its outer edge is an
in-plane load due to its own mass. The stress distribution which this creates
is given by Carlin [7] and this is modelled as an additional strain energy term
in the extended Rayleigh-Ritz method.

The additional strain energy term due to the in-plane loading is expressed 0

as Ias~ ~ U= j Ek  t) q (t) K.

k 9Z k Z9.

N given by the expression for the strain energy in the modes k with Z. One
en has the standard determinantal equation for the natural frequencies as

det[IK'] - .2[M]l = 0 (5)

where JK' I is the matrix whose terms are given by

K'j = {Kij + Rij} I Kij being the standard stiffness matrix
elements and L1J the standard mass
matrix

To include the effect of the constraint one applies the extended Rayleigh-

Ritz method to the above expressions and transforms the matrices [K'] and [M]

subject to the constraint equation.

Figures 1 and 2 respectively show the wavenumber k plotted against the
loading parameter PR/D, P the load on the disc with modulus of rigidity D and
outer radius R, for the disc with the in-plane loading with and without constraint
on the periphery at the point of application of the load. With no loading, P=O,
one observes the difference between the set of wavenumbers k. for the uncon-
strained disc and the set for the constrained case; for higher loading one
observes the effect of the constraint in reducing the amount that the wavenumbers
decrease as the loading increases.

X10-I X10-I
5 5 _5 5 _

50 50
45 _45

kR Q kR 4 _

35 35
30 30 _ •

25 __25 _

20 20
15 15
10 101{ - - T- I I I I I I

0 10 20 30 0 0 10 20 30 40

X1 IPR/D XI0- PR o

FIG.1 FIG.2

724



3.0 FORCED VIBRATION CHARACTERISTICS

3.1 Brief Outline of Modal Analysis

In this approach the modeshapes of free vibration of the disc are used
to evaluate the forced vibration response of the rotating disc, as initially
investigated by Johnon [8]. The response of the disc is given in series form as S

w(r,G,t) = E q s(t)M (r,G)+p s(t)O9n (r,O) (6)
s

(r,Q), 9' (r,Q) being the orthonormal modeshapes as in (2) and (3) and q (t),
pmt) beingmie generalised coordinates which describe the response of the lisc
in these modes. One then has the corresponding Lagrange equations of motion for
these modes as

Moqs(t) + Ksqs(t) = Fs(t) (7)

and p(t) +Kp (t) F' (t) (8) 0

for the even and odd modes in 0 respectively, ignoring structural damping and
Fs(t) F,(t) being the corresponding generalised forces for the modes.

Due to orthogonality of the modes no cross-terms exist in the expressions
(7) and (8) and an approximation as used by Johnson [7], exists to include the
effect of rotation of the generalised stiffness terms K although this effect is5
neglected here as 0, the angular rotational speed, is relatively low. Internal
damping can be included by the inclusion of a complex stiffness term K (1+jn),
where r, is the loss factor for each mode of vibration unless more specific
information is known.

3.2 Response to Harmonic Excitation S

For a point appl 4°ed laternal harmonic force Fej t acting on the outer
periphery of a disc rotating at constant angular velocity Q one has the generalised
forces as

Fs(t) = }ph FejWt(r-R)6(-t) 9mn (r,) dA •

= ph FejWt om (R,Rt) (9)

similarly for the odd modes in 9, rotating with the disc,

F' (t) = ph Fe j ]t 9 (R,Pt) (10) •

Substituting into equations (7) and (8) for qs(t) and ps(t) and substituting into
equation (6) for the response of the disc as

w) (r)9 mn (R)FR { eJ(w+n)t-ng) + J((-nP)t+ng) (11)
et has 2M 0  2 . (wni)2 2 2((nl)2

Similarly one has the response of the disc for a harmonic moment MoejWt applied
about the 01 and 03 axis as

Mo mn (r) dP (R)
w(r,Q,t) =- 2Mo (9 (R)+R( d ) )X

5 
2 o n dr

{ j ((w+nQ) t-nQ) ej ((w-n) t+ng)

2+ :2 - (-) (12)W 2 (w+nQ) 2 2 (w-nsl) 2

mn en
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for the moment applied about the 01 axis, and which is tangential to the edge of
the disc and in the plane of the disc, and

M 0R 9 mn(r) 'M(R) e J((w+nO-)t-nA) jeJ((w-nP)t+nO) t
w(r,@,t)= E 0 Ms e e_(13)

s 2M SW2 _(ns 2 2 2 - JnO
mn wmen

for the moment applied about the 03 axis, which is along the radial line 9ffit
(0 =0), both with their origin at 9 =Ct.

3.3 Approximate Solutions

Using the Galileantransformation 0 =0-4t one can express the responses as 4

given in (11), (12) and (13) in terms of 0 0 fixed in s-ace. These solutions show
that in general the modes do not exhibit stationary modeshapes in space, however
when w>>nO, w the frequency of the harmonic excitation, one has the solutions in
the Sth mode, corresponding to the (m,n)th mode as

FR9 mn(r)0 mn(R) e jut cosn0o (14) 0 4
Ws(r,Qo,t) 2 s 2

s 0 M 2_W2
n

Mo (r) df) (R) e jWt
w s(r,90 t) M (nn (R)+R dr 2 2 ) (15)

s Ci) - 4

w (r,@ot) = j MOR PrM(r)Pmn(R) e jWtsin nOn (16)
a 0 Ms W2  2

corresponding to the three cases (11), (12) and (13). In all these cases

tationary modal patterns will be observed in cases with a lateral force and a
harmonic moment about the 01 axis an antinode occurs at Q=Qt whilst a nodal line
exists for the moment applied about the 03 axis.

3.4 Spatial Filtering 0

In contact of elastic bodies, as in the disc on a surface, one has contact
over an area not solely at one point so any forces must act over an arc of the
outer periphery. This spatial variation in the force is introduced by the use
of a Fourier series in 9} to replace the delta function. An example relevant to

the rolling disc is for the force to act over a small arc of the periphery , 1
-e<go<c, and follows a parabolic variation described by

Foe jut (1-g°/C2) (17)
0 
2

Using the Fourier series in o for (1- 0/,2) and applying in the previous

analysis gives the solution for the displacement of the disc as 0 0

2FejWtR F EM (r) mn(R) sin nc
w__r,_,t)E= m ____-cos nc) ×

e ( ( + n p ) t - n )+ eJ ((w-n)t+n) (18

m (w+nn) 2 Tim ( w- n s )

Comparing (18) to (11) one has the additional factor for the response in the
(e,n)th mode as
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4 (sin - e cos n) (19)

n 2 E2 n

which for large values of n tends to zero but for nE small this is approximately

constant and equal to 4 E/ 3 - 0

4.0 MODELLING THE INTERACTION BETWEEN THE DISC AND ROLLING SURFACE

4.1 Contact Theory

Initially, in the non-rotating case, the contact was modelled as pinning

the disc which corresponds to an infinitely stiff Hertzian spring for the contact.
In reality this is too strict a constraint for as the disc rolls lateral motion

is possible. To model the interaction Hertzian contact theory and Rolling

contact theory are applied. For no creepage occurring the lateral motion can be

modelled by the application of an elastic Hertzian spring (see Grassie L8] for

details). Where creepage occurs, creepage being relative motion of the materials

in the disc and the surface over which it rolls, rolling contact theory describes 0

the forces and displacements generated. Approximating the contact area for the

disc and the surface as being rectangular one has the corresponding creepage

coefficients relating the generated forces to the lateral, longitudinal or

spin creepage which occurs.

In the lateral direction which is of main interest, one has from Rolling 0

contact theory (see Kalker lJ)

Ty = Eab C22Y2  (20)

Ty the lateral force due to lateral creepage only, no spin average occurring, a,b

the semi-major and minor axes of the contact area, C2 2 the creep parameter as 0

calculated by Kalker and y2 the lateral creepage. The lateral creepage being the

ratio of the difference in the lateral velocity of the materials in the contact

area to the mean rolling velocity V approximated by the forward velocity of the

disc.

In the model applied the difference in lateral velocities is approximated

by that due to the lateral vibration of the disc given by w(r,@=Qt,t) for the

contact at time t. As the contact area is small to first approximation the

creepage can be modelled as an equivalent viscous damper c applied at the one

point (R,Qt) and whose value is given by
E ab C 22 E ab C 22

c= -22 (21)

Using this model as 0- 0 the condition is that of pinning the disc while as
l- o the damper decreases in effect on the disc.

4.2 Inclusion of Contact into the Forced Vibration Model

For a rotating disc with an attached damper and elastic spring, as given p

in Figure 3, undergoing forced vibration, the response of the disc is found using

the Receptance method (as described by Bishop [l0J) for a harmonic lateral force

Fe Jwt applied at point 1. The point receptance a 11 for the disc in this
configuration is Y

M I 111Y1 (22)1=  +11

Bll the point receptance of the disc with no attachments and y11 the point
receptane of the system composed of a spring and viscous damper in parallel
which is given as
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Yll - (23)
K+JWC

Ill is given expression (11) as w(RRt,t)/Fei~t . The response of the disc at any
other point 2(r,9) can also be found using the transfer receptance.

HERTZIAN SPRINGK

02 AXISE-

VISCOUS DAMPER C
O3AXS

FIG.3 0
A plot of the modulus of the point receptance 1a1I is g ven in Figure 4

for the frequency range IOOHz-lKHz for a thin disc, 1.5 x 10- m thick, outer
radius O.12m clamped centrally at a fifth of it's outer radius. K, the value of
the Hertzian spring is given as 1.0 x 107 N/m for the contact and the value of c
as a function of r as c=1.225 x 10-1/2, for Q= 10 to 100 rads/sec.

5.0 SOURCES OF EXCITATION

5.1 Rigid Body Forces

As described by Meirovitch 1111 if a rolling disc is perturbed from
rolling in a vertical plane and is rolling at a sufficiently high value of 2 to
retain stability the disc will oscillate at a frequency w given by

W2 = 4 {30 3 R - g} (24)

5R

The actual lateral force on the disc given by the reaction of the surface will

also be at the same frequency w . As seen from the expression above this value

is essentially a low frequency component of the possible excitation of the disc.

5.2 Friction and Roughness Forces

One possible cause of friction, which normally acts in a direction opposite
to the direction of motion of two bodies against one another, is considered to be
adhesion of the two bodies over some part of the contact area. Another cause is
material being deformed and displaced in the two bodies to produce resistance
to the motion (see Halling [123). In the latter case where friction is due to
the surface asperities one has a possible excitation of the rolling disc over a
rough surface. This has been investigated for a smooth disc rolling over a rough

surface composed of circular asperities. As the contact area moves across the
surface one can predict the forces on individual asperities and evaluate forces
and moments acting on the disc over the contact area. A lateral force can be
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calculated due to material deformation which occurs across the contact width 0
over each individual asperity. Further investigation is continuing in order to
find the power spectrum of these forces and moments so applying the solutions as
given in Section 3. One can predict the response of the disc as it rolls over
the surface.

6.0 CONCLUSIONS 0 0

Analyses of the free and forced vibration characteristics of a rolling disc
have been presented in this paper. Whilst one realises the simplified models are
not very representative of a wheel/rail system the studies have given an insight
into the vibration generation in rolling bodies. The influences such as loading, 0
contact effects, rotation etc. can be clearly seen in the results from the
analyses performed.
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ON THE ACOUSTICALLY OPTIMAL DESIGN 
OF RAILWAY t.EELS

H. Irretier und 0. Mahrenholtz

Institut fUr Mechanik, Universitdt Hannover AD P 0 03 703

The squealing noise of railway wheels during the passage through curves is
an important subject in the field of sound radiation in street-traffic. Measure-
ments and frequency analysis show that this squealing noise is caused by the
bending vibrations of the wheel disk excited by stick-slip between the wheel
rim and the rail. Consequently from the acoustical point of view in the design
of railway 4heels it is of importance to know the coherence between the con-
structional parameters of the wheel disk and its acoustical quantities.

In the present study the radiaued sound pressure and power of a wheel disk
due to axial harmonic excitation at one point at the rim is calculated. On the
basis of the subjective human feeling of sound pressure the radiated sound power,
integrated over the important frequency range, is determined and acoustical
quality factors for the various types of wheel disks are specified.

1. INTRODUCTION

One of the parts of a tracked transit system which radiates most sound are
the steel wheels of the rail vehicle. Especially when the wheel traverses a
sharp curve, it often emits an intense, high-pitched squeal. This noise is
extremely disturbing since it consists of pure tones emitted at frequencies
at which the human ear is most sensitive.

Frequency analysis of the noise show that the bending vibrations of the wheel
are the source of the radiated sound. This was pointed out by Stappenbeck [1],
Albert and Raquet [2], Rudd [3], HUbner [41 and Sato and Matsuhisa [51, [6].

The natural vibrations of the wheel disk had been first discussed by
Stappenbeck [1]. He perceived that the bending vibrations of the wheel are
responsible for the high-pitched squeal. Later Albert and Raquet [2] confirmed
this. Rudd [3] and HUbner [4] found that the wheel performes self-sustained
oscillations, based on the bending modes of the wheel. In two papers [5], [6]
Sato and Matsuhisa studied the bending vibration of the wheel and the sound
radiation coefficients for natural vibrations of the disc. They found good
agreement between their numerical results and laboratory tests. A recent paper
given by Heiss[7] shows a very detailed study of the eigenfrequencies and modes
of a railway wheel. Investigations of the sound radiation of circular plates
were performed by Alper and Magrab [8] who calculated the sound pressure and
sound power of an axisymmetric vibrating plate with one side sea-water loaded,
and by Hansen and Bies [9] who determined the radiation efficiency of a clamped
plate vibrating in its natural modes. Seybert and Bowles [10] studied the sound *
radiation efficiency of a beam vibrating in its natural modes.

The forced vibration of a wheel disk have so far been studied only on the
basis of simple models consisting of annular plat s with constant, linearly or

I) The study was supported by the Ministry of Research & Technology BMFT,
Federal Republic of Germany. The authors are thankful for this support which
enables them to carry out the present investigation.
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exponentially varying thickness and an axisymmetric exciting force. 
The most

important papers, which however are limited to axisymmetric vibrations were
given by Reismann [I1], Snowdon [12] and Irie, Yamada and Aomura [13i.

In the present study a more general model is employed, which includes the
sound radiation by forced vibrations of a railway wheel including the Pxtreme •
thickness variation of the wheel in the radial direction. First, numerical results
for the eigenfrequencies and mode shapes are compared with laboratory tests by a
holographic technique. Then, the mechanical impedance and the acceleration spec-
trum for hysteretic damping are calculated and again compared with test results.
Finally, the sound radiation quantities - the spatial directivity pattern, the
sound pressure weighted according to the evaluation curve A (DIN IEC 651), the
sound power and the radiation efficiency - are determined for the practical
important frequency range.

Calculations for different wheel disks sho. the dependence of the sound
power frequency response curve on different parameters of the system. By inte-
gratingthe weighted sound power over the frequency range an acoustical quality
factor is determined and compared for various types of wheel disks.

2. THE NATURAL VIBRATIONS OF THE WHEEL DISK

Figure I shows the axisymmetric wheel disk considered. Its mid-plane is
assumed to be planar and points on it are defined by the polar coordinates r
and .p. The outer radius of the disk is ra  , its inner radius hr , and h(r)
is its thickness at radial distance r from its centre.

The material of the disk is assumed to be homogeneous and linear-elastic,
described by Young's modulus E , Poisson's ratio v , and the density of the
material p . A linear theory for the displacements is applied.

For the description of the bending vibrations a finite element approximation
is used to calculate the natural frequencies and the mode shapes. Following
Mindlin's thick plate theory [14], which takes into account the effect of shear
deformation and rotary inertia, the deformation of the disk is described by

T
w = w(r,P,t) = [w yr Yw] (Q)

where t denotes time, w is the mid-plane deflection (Figure 1) and 'r and
y, are the angles of cross-section in radial and circumferential direction,
r spectively.

At first, the natural vibrations of the wheel disk with a completely free
outer edge are considered. For the undamped case, they are described by the
natural circular frequency w for the Z-th natural vibration with k nodal
diameters and the modes

kZ(r,) WkZ (r) cos k p

W -k Z (rp) (r, = Lrkz(r) cos kp (2).:;k kZ (r, pkrr (r) sin k •

i.e. the natural motion of the disk takes the form

w = w(r,p,t) = Wk(r, ) exp(jwk t) (3)
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For the calculation of the natural frequencies ^i and the mode shapes S
W a finite element approximation for the disk is applied according to the
rectangular thick plate finite element described by Pryor, Barker and Frederick
in [151 and the ring thick plate finite element given by Wilson and Kirkhope [163.
Within each ring element the deformations are approximated by the polynomials
(index kZ dropped out)

2 3

W(r) = a I + a 2 r + a 3 r + a4r

(r)= a 5 + a6r (4)

(r)= a 7 + asr

where - -k- + F are the total angles of shear defor-
dW r .and•P

mationoicross-secfion in rdial and cicumferential direction, respectively.
Following the well-known steps of finite element derivation the eigenvalue
problem

(_ 21 + K)q = 0 (5)

originates for the entire wheel disk which yields the natural circular frequen-
cies w and the corresponding eigenvectors -kz from which the modes W
can be calculated.

3. THE FORCED VIBRATIONS OF THE WHEEL DISK

The most convenient way to calculate the forced vibrationsof the disc due
to harmonic excitation is the technique of modal transformation. This method
starts either from the finite element model described above or directly from
the equation of motion of the non-discretized continuum. Here, the latter way is
chosen because of some advantages for the description.

The equation of motion for the displacement vector w given in equation (1)
can be set up in the form

2

M + (I + g t) D = 0 O] T  (6)
- t 2  t - _

where now damping is introduced by the coefficient g and consequently the dis-
placement vector ; and the vector of axial load f are interpreted as complex
quantities. The mass matrix M and the matrix Dr(-- of differential operators
follow from Mindlin's plate tTeory [14] and are jiven in [17].

The assumed, harmonic excitation - a concentrated axial force F acting
at the disk rim at the point rs, s (Figure 1) - is described by

F exp(jst) = [F 0 0 1T exp(jyt) (7)

0 0

This force causes a vibration of the wheel disk, for which the displacement
vector can, provided that the damping is small, be expressed by the modal
expansion

c k W-k ( r , o )  exp(j~t) , (8)

k=O Z=O

where c are unknown, complex coefficients and W.k the k/k-mode shape
of the unLamped system as calculated above. t k es
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Applying the well-known steps of modal transformation technique the
equations (6), (7), (8) yield

00- 00 "W(r'Q WkZ (rs, os )

= F 2 i _ 2 exp(j2t) , (9)
k=O Z=O akjt (k_ Q2)

where the complex frequency

Z kZ= Wkk(I+jg2) (I0)

is introduced and a is a factor corresponding to the normalisation of the
eigenvectors.

From equation (9) follows the miA-plane deflection W , its velocity
= jfw and its acceleration 5 =-2 77.

The impedance Z of the disk is then given by the ratio of the exciting
force to the mid-plane velocity. It is normalized with respect to the impedance
jaM of a rigid body which has the same mass M as the disk, which yields the 6
dimensionless impedance

2
r 0 co Vk

=(r ,(p r, )= - 2,10f a rhdr • I X Gkk (rs,s,rw) (1)

pra  k=09=O (1-V kk)+jn 0

where now hysteretic damping ri = g =const is introduced, the Green's function
is given by

G (r ,Qs~r,() WkZ(r,Q) WkZ(r s ) (12)
k(r r )= 2T ra p 2 h 22

f f [Wk + (f 2 k ) ] rds'dr
0 kZ T2 r (k

a

and Vkk is the frequency ratio Vkk = Q/k"

4. THE SOUND RADIATION OF THE WHEEL DISK

The problem of the wheel sound radiation is a special case of the general
problem of surface radiation. To find acceptable good results in the main in-
teresting frequency range from 800 Hz to 8000 Hz (normal railway wheel) a special
solution of the Huygens-Helmholtz-scalar wave equation can be applied to
determine the acoustic quantities of the wheel. This solution is known as the
Rayleigh-Integral [18, 19, 20] which, however, has a boundary condition that
prevents the equalization of pressure at the wheel rim, that is it provides
a baffled radiator. Sincearailway wheel is not baffled, an error is produced 6 •
in relation to a free radiator by using this solution. The magnitude of this
error depends on the frequency range for which the acoustical quantities are
determined. As shown by Meixner and Fritze [21] we can state for a usual rail-
way wheel that the error in the spatial pressure distribution in the angle
range 0 <750 (Figure 2) and in the radiated sound power is less than I dB
in the frequency range from 800 Hz to 8000 Hz. This seems to be a sufficient
accuracy for all practical purposes.
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4.1 The radiated sound pressure

The vibrating mid-plane A of the wheel (Figure 2) is assumed to be sur-
rounded by an infinite baffle. On the vibrating mid-plane the normal velocity
amplitude is - = (r,p) jQ2q where the deflection w follows from equation
(9), while on the baffle = 0. The procedure now is to represent the mid-plane
A by a distribution of infinitesimal small piston sources dA . Each source has
a normal velocity v and contributes an incremental pressure d (i) at a
distance r from the source (Figure 2). The integral of dp(i) over the plane
A yields the total pressure in the observer point (R,cx,O) in the farfield
( 7i , 7/R) :

j L  2,T r
(R f 2vR f (r,.) • exp(-j - r) rdrd, , (13)

0 Pra cL

where PL is the density of the air, cL the velocity of sound in the air,
the distance between the piston source and the observer point.

By introducing the approximation r<<R for the farfield, which yields
riR - r cosi sine (Figure 2), and the sound pressure

Po(R) =2R qo exp(- - R) (14)

of a single piston source with the reference sound flow q0 the radiated sound
pressure of the wheel disk takes the form 9

p(R,co,e) = () 0 (R) (15)

where

a
-~~e f --r ) x r cos sine) rdrdQ (16)
q o Or a  CLI

is the dimensionless spatial directivity pattern of the wheel disk. When the
expressions qo = T(l- I2) r 2 v and v = F /P ho B'B are introduced for
the reference sound flow of theopiston source (inner radius lr , outer Radius r ),
where h is a characteristic thickness and B =Eh 3 /12(1-v2)a the bending stiff-
ness of the wheel disk, the spatial directivity ° pattern given in equation (16)
is a characteristic quantity which only depends on the material and geometrical
data of the system.

For comparison of the radiated sound pressure of various types of wheel 0

disks the sound pressure level

= 20Zg (Ipj/po) [dB] (17)

is introduced where po = 2"10-4 ibar is the reference sound pressure. 0

4.2 The radiated sound power

The radiated sound power is now derived from the numerically integrated acousti-
cal intensity in a wheel disk surrounding hemisphere (Figure 2), far from the
centre of the wheel. The effective acoustical intensity is given by the 0
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0
expression

Ieff = eff (RO,0) - Re {5(R,,e)- vL (R,,O)1 (18)

where the factor 1/2 results frgm the time average for the case of harmonic 0
vibration jonsiered here and VL(R,cx,e) is conjugate complex to the sound
velocity vL = VL(R,U,0) at the observer point on the hemisphere (Figure 2).
Using the dynamical equation

±I
vL J-L- grad p (19)

_nd introlucing the pressure distribution from above, the radial component
R of vL  takes the form
LR Lf " (

- q 1)

- -( + j )• exp(-j -R) e (20)
LR 2TR R L cL R

The equations (14) and (20) show that in the farfield, which is only considered
here, p and vLR are in phase because of I/R<</c L  and it follows for the
radial component of the acoustical intensity

-eff 1L 2 2- 2

-R ( qld *eR (21)
R f c L ( T - -R)  o I  R "(

The radiated sound power follows from integration over the hemisphere to

27T Tr/2 eff
PH f f I f f " R 2 sine d8 dot (22)

0 0

which is the radiated sound power in one half sphere. The whole radiated power
i is given by P = 2PH *

Again a dimensionless sound power quantity is introduced using the reference
sound power Po = 1O-12 W. The sound power level is then given by

Lp = 10 kg(PH/P ) [dB] (23) 0

4.3 The radiation efficiency

Another important quantity for the description of the acoustical properties
of the disk is the radiation efficiency a . It describes the ratio of the •
radiated sound power of the disk to that one radiated from a nondeformable plane
A vibrating with the effective disk velocity veff i.e.

P H 
(24)

2 2
PLcLA Veff

where v2  is given by
2 2 27r2

V f f -JA ff  dA = 2 f ;a [f(r,T)2 rdrd, (25)
A 2r (-o2 )7 0 or

a a
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Thus, the radiation efficiency describes the radiated sound power of the real 0
vibrating disk in relation to that one of a rigid plane of equal size.

4.4 An acoustical quality factor

The acoustical quantities described above are objectively calculated values
and do not take into consideration the frequency dependent human sensibility 0
for sound intensity. Moreover, they are frequency dependent quantities and not
an integral measure for the whole frequency range of importance. To introduce
an acoustical quality factor [22) for a wheel disk, which radiates squealing noise,
first, the sound pressure p is weighted with the evaluation curve A (Figure 3)
according to DIN IEC 651 [251. Consequently, as a corresponding valuation factor
for the sound power the square of the evaluation curve is introduced. Secondly, 0
an integration is performed over the frequency range. Thus, the acoustical
quality factor is defined as

1max 2 di2 (26)

max mnn 10min

where the sound power follows from equation (22) and XA is the evaluation
curve shown in Figure 3.

As a dimensionless quantity the acoustical quality level
0

LG = 10 Zg (G/P ) [dB, (27)

is introduced to compare various types of wheel disks. Thus, the 'optimal' wheel
disk which radiates only the diminutive reference sound power P in the
whole frequency range is described by LG = 0.

5. NUMERICAL RESULTS

All numerical results are gathered from the report [22].

5.1 Natural vibrations

At first, the finite element model was tested with help of a wheel disk
model which was measured on a holographic test stand. The model, typical for a
realistic wheel disc, is shown in Figure 4 where the finite element approximation
consisting of 7 ring elements with constant or linear varying thickness is
plotted, too The Taterial of the model was4steel with the material properties 0
E = .206 • 10 N/mm , o = .785 •10 - 8 Ns2/mm and v = .3 .

Table I shows a comparison between test and numerical results for the
lowest eigenfrequencies fkZ = Wk,/27 for the test model. For the numerical
calculations the two extreme assumptions 'clamped' and 'free' were introduced
for the inner boundary. For the case 'free' the natural vibrations 0
W = 0/0 and I/O do not exist. The numerical results only show a distinct
difference for the zero and one nodal diameter modes because of the different
assumptions for the inner radius boundary conditions, whereas for higher nodal
diameter modes the results are nearly independent from the conditions intro-
duced at the disk's hub. This tendency is confirmed by the test results. The
only measured frequency of the zero and one nodal diameter modes is fl, and 0
differs from the calculated value more than 100% because it was not possible
in the tests to reach a fully rigid clamped disk hub. For the higher nodal
diameter modes with k 2 , however, the results show a good agreement between
the measured and calculated values.

737



The numerical results show that it is necessary to include the effects of 0
rotary inertia and shear deformation, here in the sense of Mindlin's plate
theory. Other mechanical models which neglect these effects are not sufficient
to describe the wheel disk's bending vibrations as pointed out by Irretier [24].

For the interpretation of the natural vibration behaviour and later of the
forced vibration response and the sound radiation properties of the wheel disk, it S
is necessary to consider its mode shapes. For this purpose, the modes kk(r, )

of the wheel disk model, calculated from the finite element procedure, were
compared with experimental results derived from holographic tests where the time
average holographic technique was used. Five representative results are shown
in the Figure 5. The holographic photos as well as the calculated forms of the
modes with Z = 0 nodal circles show that these modes are characterized by a
large displacement of the thick disk rim which is typical for all the mode
shapes with k = 0 . On the other hand, the modes for Z = I show a large
movement of the web while the rim motion is small and in opposite phase to the
web. This latterfact can be well observed from the holographic results as well
as from the calculated ones.

The mode shapes show that the wheel disk vibrations with Z = 0 are mainly
responsible of the squealing noise because for them the excitation at the
contact area between the wheel and the rail is applied in the region of large
deflection. Thus, high energy input occurs while for the modes with Z = I the
rim deflection remains small and the energy input is much less.

5.2 Forced vibrations

The forced vibrations are considered next where now a real wheel disk
(Figure 6) was investigated for which some test results for the dynamic response
were given by KRUPP [231 determined from laboratory tests. The wheel was harmo-
nically excited at the rim by a shaker, and the amplitude F of the exciting 0
force as well as the acceleration amplitude [d I at the point of excitation
(rs=450 mm, eos=O) were recorded by pick-ups. T e applied finite element appro-
ximation for the calculations consists again of 7 ring elements and is shown
in Figure 6, too, where one model is plotted for the new, unused state of the
wheel disk, for which the tests were carried out, and a second one describing 4
an used state with strongly worn disk rim.

The comparison of the test and the numerical results for the new state are
given in Table 2 and show an extremely good accuracy of the mechanical model.
The differences of the results are less than 1%. The calculations for the used
state, for which no test results exist, point out that those vibrations where
the disk rim has large amplitudes (cp. Figure 5) i.e. Z=O , the decrease of the
eigenfrequencies is between 15% and 20%. This might be an important fact conside-
ring the absorber technique to reduce the squealing noise of wheel disks. The
eigenfrequencies with Z=1 nodal circles change also considerably from the new
to the used state whereas the higher eigenfrequencies of those modes characterized
by large deflections of the thin disk web are altered slightly.

The amplitude 15 1 of the measured and calculated acceleration at the
point of excitation ispshown in Figure 7 as a function of the exciting frequency.
For the calculation 60 modes were used for the modal transformation i.e. all
eigenfrequencies up to 12000 Hz. Below 300 Hz the test and numerical results
differ considerably from each other because of different boundary conditions at
the hub in the tests and the calculations. However, for freqencies higher than
300 Hz, which is the important range for the sound emission, the agreement
between the test and the numerical results is rather satisfactory even for the
magnitude of the acceleration and not only for the peaks itself.

For a frequency range up to 3000 Hz Figure 8 shows the acceleration la I
p
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for various damping coefficients. The shar resonance neaks corresponding 0

eigenfrequencies of the wheel disk (cp. Table 2) are nearly completely smoothed
out even for low values of damping. Nevertheless, the acceleration level close
to resonance frequencies is much higher compared with the other frequency ranges.

Finally, the plot in Figure 9 describes the normalized input impedance 1 I
according to equation (11) when r=rs, (=Qs for the wheel disk [231 shown in p

Figure 6, again for the undamped case rp=O. The well-known fact of decrease
of the impedance in the resonance points and infinite values at the anti-reso-
nance frequencies is visible from the plot and declares the large energy input
at the resonance frequencies and consequently the corresponding frequency
spectrum of the emitted squealing noise.

5.3 Radiated sound pressure

The spatial distribution of the radiated sound pressure of the wheel disk
is governed by the spatial directivity pattern given by equation (16) which
describes, related to the reference sound pressure Po from equation (14), the
pressure at one observer point in the direction of R (Figure 2). S

For very small damping coefficients two spatial directivity patterns for the
considered wheel disk [23] of Figure 6 are plotted in the Figures lOa and lOb,
where the first one is calculated for resonance between the exciting frequency
and the 3/O-eigenfrequency and the second one for no resonance conditions.
We notice the enormous difference of the magnitudes of the radiated sound 6
pressure (cp. the scales in Figure lOa and 1Ob) and the existence of strongly
marked maxima in some directions and nearly vanishing pressure levels in other
directions, respectively. The more the exciting frequency removes from an eigen-
frequency all the more the pronounced directivity character of the radiated
sound pressure is smoothed out, which is indicated in Figure lOb in comparison to

Figure lOa. 0

Introducing damping into the system yields, because of the phase relations
between the exciting force and the velocity field (r,@) of the disk's mid-
plane, an asymmecry of the directivity pattern as shown in Figure lOc, where
a damping coefficient of T1 = 0,05 is taken for the calculation. The magnitude
of the radiated sound pressure for the considered resonance is reduced approxi-
mately by a factor 500 compared with the nearly undamped case (cp. the scales in
Figure lOa and lOc).

The spatial directivity pattern is a rather important characteristic of the
considered wheel disk, especially when tests are performed to identify its
resonance frequencies from radiated sound Dressure measurements. For example,
in Figure II the radiated P-,und pressure level L according to equation (17)
is plotted for the wheel disk considered before, ?or the two spatial directions
c=0 0/e=O °  and a=90 0/e=30 0  and a distance R=ra from the wheel disk's center.
We notice that from the first curve only two resonance frequencies can be
identified while from the second one more than two can be perceived. However, 0
the important main resonance frequency f30 =830.7 Hz, which is visible in the
acceleration-frequency-curve in Figure 8, does not occur neither in the first
nor in the second sound pressure level curve in Figure II. Thus, this resonance
frequency would not be identified by sound pressure measurements performed in
these two spatial directions because of the discussed directivity character of
the sound pressure distribution. 

•

5.4 Radiated sound power

Because of the strongly marked directional characteristic in wide frequency
ranges the radiated sound pres ure of the wheel disk is unfit for a qualification
of different constructions of wheel sets and a quantification of noise mole- 0
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station in the surroundings. Hence, the radiated sound power through a hemi- 0
sphere around the wheel disk is quoted to describe the acoustical qualities of
the wheel disk.

Figure 12 shows for the wheel disk [23] of Figure 6 the sound power level
according to equation (23) for an exciting force amplitude of F=IN. We recognize
from the curves for the undamped case]) that now each resonance peak occurs in
the spectrum in contrast to the considerations concerning the sound pressure.
This fact, of course, is caused by the integration over the sound pressure
according to equation (22) to determine the sound power. The difference between
the objective sound power and that one weighted by XA corresponding to
DIN IEC 651 [25] is relatively small in the considered frequency range.

The damping effect reduces strongly the resonance peaks of the sound power,
especially for higher frequencies, which is pointed out by the corresponding
curve in Figure 12.

5.5 Sound power and acoustical quality factor for various types of wheel disks

The last step of considerations is to compare the acoustical properties of
different types of wheel disks which carry out bending vibrations as described in
this paper. Four types of wheel disks are considered, shown in Figure 13. The
first one was discussed before in this paper; is was decribed by KRUPP [23]
and is indicated as 'type N'. The first alternative construction, the 'type A', 4

has the same hub and web as the first one, but a thicker rim. The third wheel S
disk, denoted as 'type B', is characterized by a much thicker hub and web com-
pared to the first two types. Finally, 'type C' consists only of the disks rim.
The last model may be considered as an approximation of a wheel disk where the
disk's rim is separated from the web by a ring consisting of rubber, and so
mainly the rim is excited to bending vibrations.

The sound power-level-spectra for the four types of wheel disks are plotted
in Figure 14 for damping values of n=.0001 and n=.05 (only type 'N'). The damping
effect is only significant near the resonance peaks while the average sound
power level is hardly influenced. From this fact follows that by damping only
the - of course dominant - resonance peaks can be reduced but not the basic
sound power level. 5

The comparison of the various types of wheel disks shows that 'type B'
(thick wheel hub and web) radiates a high sound power level. 'Type C' (only disk
tim) yields the best results, even lower sound power levels as the damped 'type N.
This result is caused by the distinctly smaller surface and conseq,itly smaller
sound radiating mid-plane of the wheel disk. 0

The acoustical qualty level L corresponding to equation (27) for the
four types of wheel disk is given in Table 3. The frequency range for the inte-
gration performed in equation (26) is bounded by Q . = 0 Hz and Q2 = 3000 Hz.
From Table 3 we notice that the wheel disk 'type B is unfavourable as to
the radiated sound power. The reason for this is a strong decrease of the input 0 4

impedance in the range 2000-3000 Hz caused by the small rim mass and the large
web stiffness.

For the case n=.0001, 'type A' is much better than 'type N' because the
high input impedance if the thick rim has a positive influence on the sound
radiation. The same effect, of course, occurs by damping as the corresponding 5
quality factor for the wheel disk 'type N' shows. However, damping coefficients
up to n = .05 seldom exist in practice provided special damping mechanisms

!) The finite values of the sound power even for the undamped case are due to
the finite frequency steps in the calculations. 4
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like absorber are brought into the system. 0

The best quality factor occurs for the ring wheel 'type C' as aspected
from the sound power curve in Figure 14. The quality factor level is even much
better than the strongly damped wheel disk 'type N'.

The examples show that the acoustically optimal design of wheel disks may 0
not only be based on damping raising measures but also on constructional
provisions during the design period.

6. CONCLUSIONS

The acoustical characteristics of various types on wheel disks have been 0
considered. The applied finite element approximation based on Mindlin's thick
plate theory yields good results for the natural and forced vibrations which
was proved by laboratory tests. The calculated sound pressure distribution
shows distinct directivity characteristic at resonance frequencies. Thus, it is
in general not possible to find all eigenfrequencies of the wheel disk from a
measurement of sound pressure at only one observer point. As opposed to that, 0

the sound power gives resonance peaks at all eigenfrequencies of the wheel disk.

The comparison of.different types of wheel disks show a significant influence
of the constructional parameters on the sound power level of the bending vibra-
tions and on the acoustical quality factor. A weak disk web and a stiff disk rim
with large mass seems to be the best comDromise for an acoustically optimal S

wheel disk with respect to squealing noise.

7. REFERENCES

1. H. STAPPENBECK 1954 Zeitschrift VDI 96, 171-175. Das Kurvengerdusch
der Strafenbahn - Mglichkeiten zu seiner Unterdrckung. 0

2. H. ALBERT and E. RAQUET 1979 Verkehr und Technik 1, 27-31. Gummige-
federte Rdder in Leichtbauweise zur Geruschminderung der U-Bahn-Fahrzeuge
der Hamburger Hochbahn AG.

3. M.J. RUDD 1976 J. Sound Vib. 46, 381-394. Wheel/Rail Noise - Part II: 0

Wheel Squeal.

4. H. HUBNER 1978 Glas. Ann. ZEV 102, 336-342. Schallgedgmpfte
Eisenbahnrader im st~dtischen Nahverkehr.

5. S. SATO and H. MATSUHISA 1978 Bull. JSME 21, 1475-1481. Study on 5
the Mechanism of Train Noise and its Counter Measure - Characteristics of
Wheel Vibration.

6. H. MATSUHISA and S. SATO 1979 Bull. JSME 22, 1626-1631. Study on the
Mechanism of Train Noise and its Countermeasures (Part II; The Effect of
Velocity and Load, and the Characteristics of Sound Radiation). 5

7. P. HEISS 1982 Report of the Institut fdr Verkehrsplanung und Verkehrs-
wegebau, Technische Universitat Berlin. Theoretisches Modell zum Schwin-
gungsverhalten eines Eisenbahnrades im akustischen Bereich.

8. S. ALPER and E.B. MAGRAB 1970 J. Acoust. Soc. Am. 48, 681-691.
Radiation from the Forced Harmonic Vibrations of a Clamped Circular Plate
in a Acoustic Fluid.

741



9. C.H. HANSEN and D.A. BIES 1976 J. Acoust. Soc. Am. 60, 543-555. 0
Optical Holography for the Study of Sound Radiation from Vibrating Sur-
faces.

10. A.F. SEYBERT and P.J. BOWLES 20.09.-23.09.1981 8th ASME Des. Eng. Techn.
Conf. Hartford (U.S.A.). The Radiation of Sound from Mass-Loaded and
Stiffened Beams. S

II. H. REISMANN 1968 J. Appl. Mech. 35, 510-515. Forced Motion of Elastic
Plates.

12. J.C. SNOWDON 1970 J. Acoust. Soc. Am 47, 882-891. Forced Vibration
of Internally Damped Circular Plates with Supported and Free Boundaries. •

13. T. IRIE, G. YAMADA and S. AOMURA 1980 Int. Mech. Sci. 22, 99-107.
The Steady State Response of a Mindlin Annular Plate of Varying Thickness.

14. R.D. MINDLIN 1951 J. Appl. Mech. 73, 31-38. Influence of Rotary
Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates.

15. W. PRYOR, R.M. BARKER and D. FREDERICK 1970 J. Eng. Mech. Div. EM6,
967-983. Finite Element Bending Analysis of Reissner Plates.

16. G.J. WILSON and J. KIRKHOPE 1976 Transactions of the ASME, 1008-1013.
Vibration Analysis of Axial Flow Turbine Disks Using Finite Elements. 6

17. H. IRRETIER and M. STEGIC 1981 Report 1/81 of the Institute of
Mechanics, University of Hannover, 1-15. Eigenschwingungen einer
Kreisringplatte mit einem elastisch gestitzten Punkt am Augenrand.

18. P.M. HORSE and K.U. INGARD 1968 McGraw-Hill, Inc. Theoretical S
Acoustics.

19. A. SOMMERFELD 1942/43 Annalen der Physik 42, 389-420. Die frei
schwingende Kolbenmembran.

20. L. CREMER 1975 Springer Verlag Berlin, Heidelberg, New York, 2. Aufl. 0
Vorlesungen iber technische Akustik.

21. J. MEIXNER and U. FRITZE 1949 Zeitschrift fUr angewandte Physik 1,
535-542. Das Schallfeld in der N~he der frei schwingenden Kolbenmembran.

22. H. IRRETIER, 0. MAHRENHOLTZ and E. SCHNEIDER 1983 Report for the BMFT. 0

Rechenmodell zur schalltechnischen Optimierung des Radsatzes.

23. Rep. KRUPP 1979 Untersuchungsbericht Q-V 13045. Ermittlung der Eigen-
schwingungsformen und -frequenzen eines Rades fUr Schienenfahrzeuge bei
Anregung mit einem elektrodynamischen Schwingungserreger. 0

24. H. IRRETIER 1983 J. Sound and Vibrations 87, 161-177. The Natural and
Forced Vibrations of a Wheel Disk. 3rd. Int. Workshop on Railway and
Tracked Transit System Noise, Colorado (U.S.A.) 1981.

25. DEUTSCHES INSTITUT FUR NORMUNG E.V. Internationale Elektronische Kommission,
DIN IEC 651, 7-8.

742



< z0

-P

C> - LQ

0l u~ *- co-
>N W Z -fS4.

4J

~LL' 1  
W 4-' .1-u 4

V -4 0 N , O

P4 , I ca -Yt

UC W -4~

C-C4 0 0

*4~Z -c4 C C-)r

4-4

2 o40 COWCI

C3 4-- -4t .

0'0

CcC

14 - C )Q

-: , -4

CO .
0

00

I' - 1(

c -i Cl V a

1 4 W 
CIS

0 L" z

AJ 4J 0

-4

r- .'

-4 0 0. -4C -

'CC o

-4I

743



't 00 0

N * N

-4 4

tro C', -

a UC3M- 0

M. a)0 0 -*: 4l
o~~ 0 '.0 -4 0 U

7: C) (1

tCW CJ-4

744~t *-



> C

0W

-4 W

0s 0

* 6 4

D r4

*1-7-

i9,

LL -Ci -

I-, cd ca

,- - 0

a) c
Q)CQ

- 0' QJ 4-i

3~Q Q) C*d~

20 -, -,-4 -

745



C3

> r4

an a)

(40

C: co -0 0
Q) C:

0 NN0

t-64

e -4 Q)

0 S

N, ..- 4 j

o -4-a -4

00$

E) Q) -4

In 0

746



00 r-

o0 > CL. 0~L'

0 - -0

T* ~4-4 *n 4-

* 0 to- p.. 0 C --

00 > 04-V toX
L)C E -4 >

z

>~,En En

> 00 -

Qi- 0-

-e 4I 44' CD
o~C a) k", 0 ce

0 , 0 c

'-O -4

I=. 0 Q u

-4 44
(1 , 4-4 o '~I U i

co ci

040

-4'

0 4.

7, m 0

0~ --

ca/ 4 In

1~ 0 Q"o
a) -- p-

41 T

15 [D
V) 0 0.i> - - -

M0
> 44

-40
r-

7474



3 0

I S

I

I
S

14. AEROSPACE STRUCTURES AND/OR
FATIGUE

* 0

S

I

* S

I
S

I

* S

I

* S



GALILEO SPACECRAFT MODAL TEST AND
EVALUATION OF TESTING TECHNIQUES

Jay-Chung Chen AD-P003 704
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

USA

1. INTRODUCTION

Designing a structure that will be able to survive a prescribed dynamic
environment is generally accomplished today by using an analytical model of the
structure. Since many structural systems will not be subjected to their design
dynamic environments prior to their commission, it is very important that the
analytical model be able to predict the behavior of the physical system quite
accurately. Although advancements in modern analytical techniques and the ever-
increasing capabilities in computer technology make it possible for engineers to
model a physical system to any desired degree of accuracy, cost and schedule con-
straints preclude such an approach in the design process. Thus, an engineering
model for the purpose of the design analysis process will always be an approxi-
mate representation of the physical system. S

For aerospace payload structural systems, where the responses and loads
dictate the design and thus the size and weight of the structure, the accuracy
of the analytical model is of major importance because of the stringent weight
constraints. A so-called test-verified analytical model is always required for
the final verification loads analysis. The modal test, from which the natural D
frequencies, mode shapes, modal damping and other dynamic characteristics are
determined experimentally, is used to verify the analytical model. The compari-
sons of various modal characteristics, such as the natural frequencies and mode
shapes obtained from the modal test and its corresponding analytical predictions,
define the accuracy of the analytical model.

I S
A successful modal test involves three integrated phases; namely, pre-test

analysis of the test article, the actual testing and data acquisition, and the
test/analysis correlation of the results. The pre-test analysis is required for
the design of the test including the proper instrumentation distribution, exter-
nal excitation selection and the frequency range to be covered. The post-test
correlation is necessary for defining the accuracy of the model as well as for I S
structural parameter identification procedure in which the analyst can improve
upon the analytical model systematically by using the test results. The actual
testing and data acquisition is of course the most important aspect in this inte-
grated effort.

In the-present paper, the Galileo spacecraft modal test requirements will I S

_ be-described. Also, the associated pre-test activities from which the test is -,<
designed will -be- presented.

2. TEST ARTICLE AND TEST OBJECTIVES

-- The Galileo is an interplanetary spacecraft whose mission is to conduct
scientific exploration of the planet Jupiter. It is to be launched by the space
shuttle and a modified Centaur Upper Stage in 1986. Figure 1 is a schematic of
the Galileo in the modal test configuration with its majo- components indicated.
The Galileo is a dual-spin spacecraft with substantial amount of weight distri-
buted on the appendages. Figure 2 shows the Galileo core structure wii 6pun and S
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despun parts identified. Also, Figure 2
shows those components which are hidden
inside the core structure. The total sXA
weight of the spacecraft is approximately
5300 lbs., and its distribution is shown '--

* in Table 1. A finite element model
using NASTRAN code was constructed to
perform the loads analysis for struc- RTC

tural system design [1]. The model RPM TANKS RPM THRUSER

consists of approximately 10,000 static SCIENCE SBA

degrees-of-freedom and 1600 mass degrees- DESPUN 40N.ENGIW

of-freedom. It is precisely this model BOX------- LTR

which will be verified by the modal test. RRN

MAG. PL-ATF-- . , ORM
The principal objective of the CAN

modal test is to verify the analytical _ SICADAPER

model by comparing the experimentally MID. RING

determined modal chAracteristic such as PROBE FWD. RING

the natural frequencies and mode shapes
to those obtained from the analytical Figure 1. Galileo Spacecraft
model. Usually, the model is a finite Modal Test Configuration
element representation of the structural
system. It should be noted that the
comparison or the verification is not
made on the model itself, which consists lus
of mass, stiffness and damping matrices, ISPUw

but rather on the eigenvalues and eigen-
vectors calculated from the model. These RPM

analytically predicted eigenvalues 
and

eigenvectors must be interpreted as the S
physical characteristics of the system.
And the modal test should be designed in s SUPPORT/

such a way that these dynamic character- IsPuM)
istics can be readily measured from the SPN-KSPUN INTERFAn

AM )N. ENGINW
test. In addition to predicting the

eigenvalues and eigenvectors, the analy- OUTER CONE

sis can yield other valuable information WESPuNi
which can be used as criteria for the
verification of the model. OSuR,

Specifically, the objectives of KSPUN SKIRT~t '
iKfSPUN)Galileo spacecraft modal test are: S

I

(1) Generally evaluate the dynamic PROBE I NOT: t N.NGINE
characteristics of the Galileo RESMUNED Fs ARITY

structure in the launch con-
figuration.

(2) Obtain from the measured data SUPERzip
the following reduced data IDSPUNI

a) natural frequencies ADAPTER

b) mode shapes WlSPWUN

c) orthogonality checks S
d) residual mass
e) modal damping
f) modal forces in selected members
g) cross-orthogonality check Figure 2. Galileo Spacecraft
h) generalized forces Core Structures
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I S

(3) Define the degree of non-linearity Table 1. Major Subsystems
of the dynamic characteristics
(frequency and damping) as a func-
tion of excitation level. Mass Weight

Subsystem (kg) (lbs)
(4) Provide data to verify the analy- High Gain Antenna 49.5 109.1 6

tical model used for loads analysis. Bus 272.5 600.7
Retro Propulsion 1216 2681

These measured and reduced quantities Module (RPM)
will be used in the test-analysis cor- due (RM 110.4 243.3
relation [2], and the analytical model Despun Box
accuracy requirement effort [31. RRH 6.0 13.2

Bay E 14.5 32.0

Science Boom 76.6 168.8
3. PRE-TEST ANALYSIS Scan Platform 96.4 212.5

+x RTG 80.2 176.9
Although the mathematical model

used in the loads analysis is large in170.2

terms of number of degrees-of-freedom, Probe 341.8 753.4 0

the number of modes that are significant Spin Bearing 43.1 95.1
in the loads calculation [4,5] is small. Inner Cone
In other words, only a finite number of LTR
modes within a certain frequency range Despun Cone 52.8 116.3
are needed to be test verified. These 50.1 110.6
modes and their frequency range are to S A
be determined on a basis such that the *Quantities are approximate, they may not
loads analysis model can be sufficiently reflect the numbers used in the model.
verified by the modal test results. For
this purpose, pre-test analyses are
performed. 0

Table 2 shows the first 70 natural frequencies predicted by the model. It
was these 70 modes that were included in the response/loads analysis in the
design process. Although the frequency range is up to almost 83 Hz, it is never-
theless a modal truncation. The very first question will be whether these 70
modes can adequately represent the actual physical system. And the second ques-
tion will be how many modes should be experimentally tested such that a suffi-
cient verification can be achieved.

The first question can be answered by examining the forcing functions used
in the loads analysis. The loads analysis model must consist of sufficient modes
such that all the components in the forcing function frequency spectrum will be
covered by the spacecraft modes. For instance, Fig. 3 shows the Galileo/launch
vehicle interface acceleration in the longitudinal direction which is one of the
forcing functions used in the loads analysis. The shock spectra of the interface
acceleration appears that major frequency contents are within 30 Hz.

Therefore, the loads analysis with 70 modes modal truncation which is up to 0
80 Hz should be more than adequate as far as computational accuracy is concerned.
As for how many modes should be tested, the concept of effective mass will be
used as a criterion. Briefly, if number of modes is equal to number of degrees-
of-freedom, the total effective mass will be equal to the rigid-body mass. How-
ever, if fewer modes are used, the total effective mass will be less than the
rigid-body mass. Therefore, effective mass can be used as a measure for the com- 0
pleteness for number of modes participating in the loads analysis. Effective
mass for each individual mode comparing to the total effective mass can be used
to gage the importance of that mode. Usually, modes involving global motion will
have larger effective mass than those local modes. Table 3 shows the effective
mass up to 21st mode whose frequency is 35.21 Hz. The effective mass is norma-
lized by the corresponding rigid-body mass; therefore it can be viewed as 0
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percentage completeness for number of Table 2. Frequency Prediction
modes. The summation of each effective

mass is the indication of how sufficient Mode Freq Mode Freq Mode Freq
is the modal truncation. For instance, No. (Hz) No. (Hz) No. (Hz)

the first mode contributes 32% and 67% 1 12.78 25 37.49 49 53.42
of effective mass in x and Gy direction, 2
respectively. It is obvious that the 2 13.04 26 38.48 50 i.90
first mode is indeed a major important
one as one would guess intuitively. On 3 16.59 27 40.22 51 54.58

the other hand, the tenth mode contri- 4 17.45 28 40.54 52 56.02
butes very little in the effe-tive mass.
One may conclude that the tenth mode 5 18.42 29 41.34 53 56.45
must be a local mode which is usually 6 19.36 30 41.60 54 56.76
difficult to measure in a modal test.
After considering 21 modes, more than 7 19.77 31 41.93 55 63.35

80% of the effective mass is accounted 8 20.86 32 42.09 56 63.89
for except in the z and Oz direction.
It is common that more modes are 9 21.94 33 42.16 57 65.07 0

required to accumulate sufficient effec- 10 22.69 34 42.25 58 67.94
tive mass in the directions of longitudi-
nal translation and rotation with respect 11 22.88 35 42.33 59 68.35
to longitudinal axis. Another interest- 12 28.01 36 42.78 60 69.04
ing phenomenon is the fact that many
local modes with negligible effective 13 29.11 37 43.38 61 69.94 0
mass appear as low frequency modes such 14 29.51 38 43.48 62 71.02
as the 10th, the 13th to the 18th modes
and modes with larger effective mass 15 31.17 39 44.08 63 71.63
appear as high frequency modes, such as
the 19th and 21st modes. This is con- 16 31.44 40 45.23 64 72.56
trary to a similar interplanetary space- 17 31.44 41 47.25 65 73.38 0
craft whose first twelve modes accounted
for over 90% of the total effective mass 18 31.90 42 48.43 66 75.04

[2]. Although it appears that to test 19 33.44 43 48.89 67 76.07
measure the first 21 modes is sufficient
for the model verification, many local 20 34.57 44 49.74 68 76.55
modes will be among them. From Table 2, 21 35.21 45 49.98 69 80.19
it is clear that the system has high
modal density together with the higher 22 35.99 46 50.23 70 82.88
proportion of local modes; the modal 23 36.07 47 50.89
test will not be an easy one. To under-
stand the behavior of the system becomes 24 36.47 48 51.38
even more important. 0

TIME HISTORY SHOCK SPECTRA

0 10~ - - -

i I I I - -

-2.6 200
0..2.3.4.5.6.7.8.9.10. 2 46101 2 46,02

TIME (Iu-) FRECUENCIES (Hz)

Figure 3. Launch Vehicle/Spacecraft Interface Longitudinal 0 0

(Z) Direction Acceleration

752

-2.a _ Ia F II I I I I



Table 3. Effective Mass of TAM 1 0

DOF
deZx y z x y ezMode'

1 .3239 .0046 .0001 .0067 .6701 .0007

2 .0028 .3519 .0002 .6678 .0067 0 •

3 .0569 .0018 .0001 .0005 .0189 .2719

4 .0038 .3392 .0004 .2434 .0024 .0009

5 .1135 .0018 0 .0015 .1118 .0130

6 .0343 .0844 .0016 .0143 .0204 .0008 1

7 .1520 .0026 .0003 0 .0813 .0171

8 .0031 .0003 .0021 .0005 .0002 .2785

9 0 .0006 .0723 .0024 .0001 .0098

10 .0001 .0005 .0117 .0003 0 0 0

11 .0001 .0012 .1225 .0013 0 .0021

12 .1453 .0002 .0020 0 .0395 .0141

13 .0006 .0008 0 .0001 .0004 .0037

14 .0007 .0067 0 .0011 .0001 .0009

15 0 0 0 0 0 0

16 0 0 0 0 0 0

17 0 0 0 0 0 0

18 .0001 .0004 .0002 0 .0001 .0009

19 .0059 .0030 .4144 .0002 .0015 0

20 .0009 .0051 .0642 .0001 .0002 .0007

21 .0048 .0010 .0738 .0001 .0011 .0001 •

SUM .8488 .8061 .7659 .9403 .9548 .615?

The frequency range of interest and number of modes to be verified have
been indicated by the examination of forcing functions and the effective mass.
Another factor, the maximum modal responses which are obtained from the modal 0
equations by applying the generalized forcing functions, can be used in establish-
ing the order of importance of each mode to be tested. Table 4 lists the summa-
tion of effective mass over six directions for each mode and the maximum model
acceleration obtained by using the interface accelerations as forcing functions.
In general the modes which possess larger effective mass summation have large
maximum modal responses. Indeed, the 13th to 18th modes, whose effective masses 0
are negligible, have very small modal responses. One exception is the 10th mode,
whose modal acceleration is substantial despite the very small effective mass.
However, by carefully examining the forcing function shock spectra it is found
that a large amplitude component exists at the resonance frequency, 22.69 Hz.
Therefore, it is reasonable that the modal response of this local mode will be
large because of the high level forcing functions at the modal frequency. The 0
implication is that the 10th mode, although of local nature, is important never-
ttiless. Therefore, the test verification for tnis local mode cannot be ignored.

is expected that large amplitude responses or loads will occur at the local
*.7 pnent for this mode. Design modification may become necessary for loads re-
!:In . ft is particularly desirable in this case because of the sharpness of

t, in the shock spectra. A small shift of natural frequency can drastically 0
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reduce the responses. In order to do Table 4. Modal Acceleration
this, this local mode must be accurately
predicted and test verified. The effec- Effective
tive mass as well as the modal accelera- Freq Mass Modal
tion as listed in Tables 3 and 4, re- Mode (Hz) Summation Acceleration

spectively, can be used to construct a 1 12.78 1.01 2.00 (g) 0
list of mode importance for the purpose
of modal test priorities. 2 13.04 1.03 8.52

3 16 59 .35 -1.36
The results of this understanding

of the modal characteristics of the loads 4 17.45 .59 -8.14

model helped in the design of the modal 5 18.42 .24 1.19
test such as the instrumentation 

distri-

bution and external excitation selection. 6 19.36 .16 3.15
After careful consideration, it was de-
termined that 162 channels of accelerom-
eter measurements as well as 118 channels 8 20.86 .29 -1.33
of strain gauge measurements will be 9
taken during the test. The instrumenta- 9 21.94 .09 4.25
tion distribution is such that all the 10 22.69 .01 -1.39
important modal displacements and modal
forces can be measured with sufficient 11 22.88 .13 4.42

resolution. 12 28.01 .20 -2.26
, 0

13 29.11 .01 .21

4. TEST-ANALYSIS MODEL 14 29.51 .01 .60

The purpose of the test analysis 15 31.17 0 0
model (TAM) is to relate the test mea- 16 31.44 0 -.07
sured results to the analytical predic- p

tions and to assist in the test data 17 31.44 0 -.06
reduction. In general, the number of
degree-of-freedom in the loads analysis
model is order to magnitude greater than 19 33.44 .43 6.35
the number of measurements to be made
during testing, such as the case of Gali- 20 34.57 .07 2.46

leo modal test in which 162 response 21 35.21 .08 2.75
measurements are made as compared to
10,000 degrees-of-freedom in the loads
analysis model. For test-analysis correlation, one may use the 162 measurements
to extrapolate and map the motions of entire 10,000 degrees-of-freedom.

0 S 0
On the other hand, a new condensed model can be constructed such that its

degrees-of-freedom will be compatible with the test measurements. This condensed
model is called the Test-Analysis Model, TAM. For Galileo modal test, the TAM is
obtained by Guyon reduction method to collapse the mass and stiffness matrices in
the loads analysis model onto 162 degrees-of-freedom matrices. The TAM must be
so adjusted that all the modal characteristics predicted by the loads model should p
be reproduced by TAM within the range of interest. Table 5 shows the comparison
of frequencies and generalized effective mass for the modes predicted by the TAM
and the corresponding loads analysis model. It should be noted that the mass
distribution in the loads analysis model has been altered to reflect the referee
fluids used in the propellant tasks. This is the reason that frequencies in
Table 2 and Table 5 are different. In general, thE TAM retained high degree of P 0 0
fidelity compared to the loads model predictions.

The TAM, a much smaller model compared with the loads analysis model, is

used to assist the modal test by predicting the target mode natural frequencies,
shown in Table 6, as well as the optimal shaker locations. Also, TAM will be
used in the data reduction such as the orthogonality check, effective mass by 0 S S
test modes, cross orthogonality and kinetic energy distribution.
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Table 5. Frequency and Effective Table 6. TAM Prediction 0 4
Mass Comparisons for TAM
and Loads Model

Frequencies
Mode (Hz) Description

TAM Loads Model 1 13.22 Global bending in X
Irq Ef.Ef 13.44 Global bending in YEff. Eff. S

Freq Mass Freq Mass 2 13.44 Global bending in Y
Mode (Hz) (kg) Mode (Hz) (kg) 3 16.93 Science boom in X

1 13.22 796.0 1 13.23 786.2 4 17.90 SXA in Y

2 13.44 840.0 2 13.50 841.0 18.89 SXA in X

3 16.93 142.5 3 16.94 143.4 6 19.92 -X RIG in Z
4 17.90 858.0 4 17.99 852.0 7 20.58 +X RGG in 2

5 18.89 291.0 5 18.98 281.0 8 21.46 Oxidizer 2 in X-Y

6 19.92 293.0 6 19.93 298.0 9 22.67 ±X RTGin Z

7 20.58 391.1 7 20.39 395.8 9 2
10 23.62 Probe in Y

8 21.46 6.0 8 21.47 10.1
11 28.69 Science *,i Y

9 22.67 120.2 9 22.60 176.2
12 29.76 Damper and Science Boom

10 23.62 394.0 10 23.54 391.1 in Y

11 28.69 344.6 11 28.84 360.3 13 30.26 SXA Local in X-Y

13 30.26 15.9 13 30.34 16.6 14 31.38 SXA Local in X

18 34.26 1091.5 18 34.40 1043.8 15 32.40 SXA Local in Y

23 37.69 55.1 19 35.56 17.1 16 32.69 Probe in X

19 36.06 345.2 20 36.18 176.2 17 33.15 Damper in X

22 37.33 5.9 21 36.76 25.1 18 34.26 Oxidizer in Z

19 36.06 Relay Antenna in Y

20 36.53 Thruster Boom in Y

5. TEST DESCRIPTION AND RESULTS 21 37.35 Thruster Boom in Y

The multi-shaker sine dwell tech-
nique was chosen as the primary method
for the Galileo spacecraft modal test.
An interactive computer program is developed to automate the tuning procedure.
On-side data reduction including frequency, mode shape, modal force, orthogonality,
cross-orthogonality, effective mass and damping are performed immediately after
the data are acquired.

Excitation of the test article is accomplished with an integrated system
of eight 25 lb. Ling electrodynamic shakers. Each system provides separate g
power supplies for the field and armature current, however, the control of the
multi-shaker system can be accomplished by a single console. Each shaker is
attached with an impedance package which consists of a load cell for measuring
the shaker force and an accelerometer for measuring the driving point response.
Figa.re 4 shows the test article with shakers attached.

In addition to the shaker forces and driving points motion, the response
measurements by the 162 accelerometers and strain measurements by 118 strain
giiges are made for the mode shape and modal forces survey. The output of each
accelerometer and each strain gauge is conditioned and fed into a data acquisi-
tion system with analog to digital conversion device and anti-aliasing filtering
circuits. During the test various quantities such as real v.s. imaginary part I S
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A0

of the response, shaker forces v.s. re- A
sponses, energy or power plots to assist / \
the tuning of the mode. Once a target
mode is satisfactorily tuned, the re- /

sponse data of all instruments are ac-
quired and written to a file. Next, the \ •
excitation is cutoff and subsequent de-
cay responses of accelerometers are re- -A
corded. The acquired data are processed 1/
immediately and the results are printed
out and copied onto tapes together with

the raw data for future data reduction.

Although the classical multi-
shaker sine dwell method was chosen by
the Galileo project for its modal test-
ing, various other advanced modal test-
ing methods were performed. These meth-
ods require extensive data processing
to compute the transfer functions from
which the modal parameters such as the
natural frequencies, dampings and mode
shapes are obtained by curve fittings. Figure 4. Test Article with
These methods include the single point Shaker Attached 0
random, multi-point random, slow sine
sweep (SWIFT), fast sine sweep (CHIRP) and tuned sine sweep. The transfer func-
tions obtained by different methods exhibits different characteristics such as
shown in Figures 5 and 6 which are from the single point random and multi-point
random, respectively. The transfer function from the multi-point random method
has a tendency of keeping the peaks at a constant level, thus maintaining the
mode shape measurement at same amplitude level. Accelerometer measurement at
low level tends to contain more errors. Figures 7 and 8 shows the transfer func-
tion obtained by SWIFT and CHIRP method which, again, demonstrate different
characteristics.

Fourteen independent modes were obtained by the sine dwell method. The 0 0

measured frequencies and dampings are listed in Table 7. Similar results from
the 4 shaker random method are listed in Table 8 for 26 modes. The very first
question will be how complete in terms of number of modes these methods provide.
The percentage of effective mass will be used as the criterion for comparison.
Table 9 and 10 list the effective mass by mode for the sine dwell method and
random method, respectively. The random method provides modes whose effective 0 •
mass is 10 to 20 percent more than those from the sine dwell method. Also in
Table 3 and 4, those modes with less than 10% of the total effective mass in any
one of the six directions are identified as local modes whose motions are pre-
dominantly local components.

Next, the goodness of the measured mode shapes will be examined by the 0

orthogonality check which is shown in Tables 11 and 12 for the sine dwell and
random method, respectively. From Table 11 it shows that mode shapes from sine
swell method are not very "clean" because of the presence of large off-diagonal
terms. Those off-diagonal terms with magnitude equal or more than 0.10 are
"boxed". Orthogonality check is a very effective gauge for checking the "clean-
ness" of the global modes because usually large amplitude motion is associated
with large mass points. On the other hand, for local modes, large amplitude
motion is associated with small masses and large masses have small amplitude
motion whose accuracy will be less than those large amplitude motion. Therefore,
the coupling between the local modes and global modes or between local modes
themselves are difficult to be completely orthogonal. This usually shows up as 40
large off-diagonal terms for the local modes. If disregard the local modes,
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Table 11 shows an even worse orthogonality check with large numbers populated in 
.

most of the off-diagonal terms. These global modes are not completely orthogonal.
From Table 12 a different picture can be seen for the modes obtained by the ran-

dom method. If only the global modes are considered, very few large numbers

appear in the off-diagonal terms. Furthermore, except for the couplings between

mode 1 and mode 3, and, mode 7 and mode 8, all the off-diagonal terms are less 0 0
than 0.05. This is, indeed, very good indication that the global modes are ortho-

gonal as they should be according to the theory. Of course, the validity of or-

thogonality is dependent on the correctness of the mass matrix used. Since same

mass matrix is used for the comparison, the resulting trend should be valid.

In order to made a mode by mode comparison, the cross-orthogonality will 0 0
be used to identify the modes from one method with respect to the ones from the

other method. Table 13 shows the cross-orthogonality between modes from sine

dwell and random methods. Modes with coupling term near 1.00 indicate they are

similar in shape. Identification is made by boxing the coupling terms. Fo cer-

tain modes with close similarity of shapes with more than one mode from the other

group, the identification is made by other caionthat s such as the closeness 

of the natural frequencies and characteristics of the modes. Table 14 is the

summary of the mode by mode comparison with natural frequency, damping and maxi-

mum effective mass within that mode listed. The best correlation is SD1503 and

MSR 8 with everything almost identical.
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Table 7. Multi-Shaker Sine Dwell Table 8. Four Shaker Random
Modal Test Results Modal Test Results

MODE FREQUENCY DAMPING DESCRIPTION MODE FREQUENCY DAMPING DESCRIPTION

101 13.109 .0176 mclk in X .1 11.460 .0298 HGA in y •

201 12.696 .0159 HGA in y 2 14.017 .0166 HGA in x

301 18.588 .0152 Sci. Boom in x 3 17.444 .0088 Core Bending in y

404 17.409 .0028 Core Bending in x, y 4 18.544 .0178 Core Bending in x

501 17.762 .0125 Core Bending in -x, y 5 19.326 .0092 Sci. Boom in x " S

601 21.670 .0054 RPM in x 6 22.057 .0049 ±RTG in z out of phase

702 23.656 .0188 RTG in z, in phase 7 22.524 .0095 ±RTG in z, in phase

803 25.161 .0102 Damper x-y 8 25.191 .0103 ±RTG, Sci. Boom in z

902 26.116 .0118 Sci. Boom in z 9 25.796 .0066 Core Bending x, y 0 S

1503 37.923 .0059 Bounce in z 10 26.363 .0197 Probe in y

1801 42.527 .0049 -x thruster in y 11 27.835 .0204 Sci. Boom (+)/
RRH (-) in y

2002 42.200 .0042 +x thruster in y

2050 23.103 .0121 -x RTG in z 12 28.288 .0107 RRH in y

13 30.497 .0353 Probe in y/Scan P in z

2902 29.711 .0145 -x RTG in y
14 31.840 .0287 Damper in x

6. CONCLUDING REMARKS 15 33.421 .0149 Probe in x

16 33.757 .0114 Probe in x/S.P. in z "
The Galileo spacecraft is a large

complex structural system and as a test 17 34.497 .0074 Sci. Boom x, z

article a large number of measurement 18 37.910 .0057 z mode core

are assigned to be acquired. Extensive Appendiges (-)

and detailed pre-test analysis is per-
formed for the preparation of its modal 19 39.138 .0458 ±x thruster in y, in

test. Also, very thorough post test phase S S

correlation effort will be conducted. 20 39.768 .0117 Sci. Boom in +y, -x

The primary objective is, of course,

the verification of the Galileo loads 21 41.727 .0183 Engine in y, x, +x
analysis model and its updating or mod- thruster in -y
ification by the test results if neces- 22 42.348 .0280 Engine in y, -x

sary. However, it also provides an 2 4

unique opportunity to evaluate some of
the modern modal test technique. 24 44.611 .0062 ix thrusters in y. in

phase

Based on the above comparisons, 25 44.977 .0048 ±x thrusters in y, out

a preliminary evaluation of the multi- of phase

shaker sine dwell method versus the

multi-shaker random method can be con- 26 46.002 .0038 ±x thrusters in y, in
phase

cluded as:

1. Random method provides more modes for completeness.

2. Global modes from random method are more orthogonal than those from the 0 0

sine dwell method.

3. Mode by mode comparison indicates a good agreement between the modes from

the two methods in terms of natural frequencies and dampings.

4. Cross orthogonality indicates that for some modes, disagreement in mode

shape may be substantial.
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Table 9. Effective Mass for Multi- Table 10. Effective Mass for Four 9
Shaker Sine Dwell Method Shaker Random Method

e e e e e
MODE FREQUENCY x y z x e z MODE FREQUENCY x L.- . x ..... ...- z

201 12.70 0.3 8.7 0.0 23.1 0.9 0.0 1 11.46 0.7 4.8 0.0 14.8 1.5 0.0

101 13.11 13.3 0.3 0.0 0.6 33.5 0.0 2 14.02 22.7 0.2 0.4 0.7 48.0 0.0 0

501 17.76 9.6 26.5 0.1 31.5 10.9 0.2 3 17.44 1.8 41.6 0.3 52.1 1.7 0.0

404 17.40 13.8 19.1 0.0 25.2 18.3 0.4 4 18.54 18.6 0.5 0.2 0.6 17.2 4.7

301 18.60 0.0 0.0 0.0 0.0 1.9 20.2 5 19.33 0.0 0.2 0.0 0.1 0.6 19.4

601 21.67 42.4 0.3 0.1 0.3 39.6 2.4 6 22.06 21.3 2.9 0.3 1.3 14.2 1.3 0

*2050 23.10 0.0 2.6 4.0 1.2 0.4 0.1 7 22.52 3.6 14.8 1.5 5.4 1.5 0.9

* 702 23.66 0.0 0.6 6.7 1.1 0.0 0.0 8 25.19 0.0 1.7 12.5 0.1 0.0 1.6

803 25.16 0.8 0.0 0.2 0.0 0.3 23.2 9 25.80 1.3 0.8 1.9 0.8 0.6 22.0

* 902 26.12 0.1 0.1 5.7 0.2 0.0 4.3 *10 26.36 0.0 3.3 0.0 0.4 0.0 0.3 *

*2902 29.71 1.0 0.8 0.0 0.1 0.1 6.5 *11 27.84 0.1 0.1 3.8 0.0 0.1 1.7

1503 37.92 0.2 0.2 45.8 0.0 0.2 0.1 *12 28.29 0.3 0.4 0.0 0.1 0.0 0.7

*2002 42.20 0.' 0.0 0.4 0.0 0.0 0.0 *13 30.50 0.7 0.0 5.7 0.9 0 P 0.0

*1801 42.53 0.0 0.0 1.2 0.0 0.0 0.1 "14 31.84 0.2 0.5 0.1 0.2 0.1 7.1

81.6 59.3 64.1 83.3 106.2 57.5 15 33.42 13.3 0.0 0.9 0.1 3.8 0.2

*Denote for local modes *16 33.76 3.8 0.7 0.1 0.1 1.2 4.6

*17 34.50 0.8 0.2 0.0 0.0 0.2 2.2

However, the biggest difference 18 37.91 0.1 0.2 45.6 0.1 0.1 0.0

between the two method is the time re-
quired for completing the test. The *19 39.14 0.2 0.0 9.8 0.2 0.2 1.0

sine dwell method required weeks and *20 39.77 0.2 6.3 0.2 4.9 0.1 2.7
random method took few hours for the
case of Galileo modal test. .21 41.73 0.0 0.0 1.1 0.0 0.0 0.6 *

*22 42.35 0.0 1.5 0.0 0.6 0.1 0.0

ACKNOWLEDGEMENT *23 42.36 0.1 0.7 0.1 0.8 0.0 0.0

*24 44.61 0.2 2.1 0.0 1.2 0.2 0.6
The paper presents the results

of one phase of research carried out *25 44.98 0.2 0.4 1.0 0.4 0.1 0.0 0
at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under ' 4 0 0 0 1
Contract NAS7-100 sponsored by NASA. 90.4 84.5 85.6 87.2 92.5 72.0

*Denote for local mode
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Table 11. Orthogonality Check for Multi-Shaker Sine Dwell Method

MODE 201 101 501 404 301 601 2050 702 803 902 2902 1503 2002 1801

201 1.00 F.32 r.20 -. 04 0 .03 ~4O ~ -.01 A -01 ~3

101 1.00 .0 .04 .05 EI P# 02 * .01

301 1.00 . 2 041~ .02 ,0

60404 .0 .08 020 ,.% .02

2001 1.00 2 .o1 .0 05 0
702 ~~QO .0] -~-O .0

803 1.00 8 3 .0 0 :.02J . "A
900. .() 1 .07 _'01 '

2902 .,Q8 01 G C 0.

1503 0

20020

1801

__~ ~~~~~ ~~~~~~~~~~~~ ..0 .03 .0 ..0 .0 .0-0 .0 ..40 .. 1 . 3 A 0 -0 .2 - 0 . . .0

N= _.0 0 02 .02.077 A 0 1 .04 IS7 .02 10 10 .0 9 . 2 0 21 2 3 .07 - 23.5

1 2.00 .07 -.04.03-0A a..04 .002-Al -M.04.070A 0 0 .02.0 -. 0 -. 01 2 - 0 0 .0 0 .03

2 2.00 .02 .0 .6 -416 .0a -.02 -. 2 7" . .j .3 0 ' .0 40 8 .03 0 0 - .020-4 .0

2.0 1.0 -. 0 .1 .1 .1 0 f M A X -. 03 .09 .*1 -. 01 -. 01 -. 01j 3jo -. 08 .49 .40 .03

1.0 03 _-A 01 .0 -02 t.2 G . -. . 04 -. 2 A.0 -. 01 AN03-.06 l 0 -. 0 -. 01 -. 2

210 .5 02 -0 .0 0 .43 -. 02 .02 0 -. 02 - -. .0 .02 -. 92 .0 _05 -. 024

22.0 -03 -0 03 -7 A .0 .07 .03 .09 .02 .0M .01 -. 03 -.. 09 .03 -. 8 l -. 0 -. 6

7 .0 0 -0L-t - 0 .00 .AI 04 '-0 .03 0 Mj .. 0 - . 04 .0 4 4 .03

1 .0 " D 9 -2 .0i0 -. 41Q . 22 -.1,.00 .0 - .0 3 a ' .4 0

9 1.00AS QjQB -. 6 2.00 49 -.01 aj -03Efl .0 -.01 0 I 0

C3.00.1 -0 -6 A -. 06 0 -0 02 .2 -. 0 -.3

0.00 00 .02 .07.0 -.*1 -4 -.0 -. 0 .0 ) -. 04

20A AS4-EN-6 .07 ERj .03 -00 0.03 P.0M

2.00 .02 MI0 -.01 -. 3 -.02i

19.. 2.010 -. 06 971M EmJ CA.0

*d0 .rs Mr Mna 006-07

21~~ 1.0ES-0
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Table 13. Cross Orthogonality Between Sine Dwell and 6 0
Multi-Shaker Random Methods

ft" 1 2 __3_ ' 5 6 7 S J 10 1_ 12 13 4 15 16 17 18 1 20 21 22 25

2001.00 -. 02 -. 06 .06 -. 04 .01 .02 -. 04 .02 0 .03 .01 -. 07 .AS .01 .A1 .03 0 -. 02 -. 06 -. 01 -. 03 .07

o.0 ."9 2.00 -. 06 -.26 .23 .01 -. 01 -. 03 -.02 0 0 -. 01 -. 03 .(CA -. 01 -. 02 -. 01 0 -.01 -. 04 .02 -. 02 .02

111 .33 -.04 .S -.'$5 .10 .0 -. 0 0 -. 02 .06 .07 -. 04 .0 -. 03 0 0 -. 020 .01 .22 -. 05 .07 -. 07

404 -. 12 -. 13 .61 P .2 .02 -.01 .10 .06 -. 01 -.0 -. 01 .03 -. 12 0 .02 .03 -. 02 -. 01 -. 13 0 -. 06 .13

0 -. 03 .09 .06 .00 .0, .01 -. 01 -.02 .02 .07 .06 .01 .07 0 -.01 .02 .03 -.01 -. 1 .01 .05 -.01

40. .09 .27 .10 .22 -. 22 P-.00' .31 .09 -. 10 -. 04 -. 07 .02 -. 04 -. 06 -. 09 -. 10 -. 03 -. 02 .02 .02 .03 -. 03 -. 06

200 -. 06 .25 .03 .10 -. 22 0 7 -.18 .57 .10 -.06 -. 20 -. 07 -. 10 -. 07 -. 01 -. 10 .06 -.12 -. 03 a .03

70.2 -. 03 0 .04 -. 04 .04 .24 .S3 - -. 10 .70 .27 -. 05 -. 31 .02 -. I1 -. 10 .03 0 .02 -. 06 -. 06 0 .02

803 -. 05 -. 04 -. 04 0 .0, .06 -. 03 .12 r1.00. .13 -. 12 -. 09 -. 06 .35 .05 .07 -. 29 .01 -. 08 -. 13 .01 -. 02 .05 3 •

R2 .01 -. 03 -. DS -. 06 -. 06 .01 .03 .43 .13 -. 62 - 1=0 .03 .92 -. 07 .11 .08 0 -. 02 .04 .03 .03 -. 01

2902 .07 .02 .04 .0 .11 .04 -. 05 -. 06 .02 0 .25 .34 -. 38 -. 30 -. 65 -. 23 -. 24 M - 11 -. 03 -. 72 .27

1_03 -.02 -. 03 -. 03 0 .02 .02 .01 -. 01 -. 02 -. 03 -. 04 .0 .09 .09 -.02 -. 02 -. 01 M -. 45 .05 .12 -.02 -.01

M2 .06 .01 .01 .03 .03 0 -.02 -. 05 .07 .03 -.03 -.21 .02 .06 .11 .12 -. 12 .03 33 . M .8 .18

Jo02 -.01 .04 .0) .09 .02 -. 02 -.02 0 .03 0 -. 05 0.04 .23 .25 -.04 0 .03 -.04 . 65 . -.47 .71, 0
5I0" Sh.01d sQ..sb*r 2U40te q0.O8timab. cpllas

l
.

3. J.C. CHEN 1982 Proc. AIAA/ASME/ Table 14. Sine Dwell and Multi-
ASCE/AHS 23rd Structures, Struc- Shaker Random Methods
tural Dynamics and Mrterials Comparison Summary 0 0
Conference, New Orleans, LA. FREQUENCY MAX. EFFECTIVE

Analytical Model Accuracy Require- MOR___S DAMPING MASSfo SrutualSD MSR
ments for Structural Dynamic SD MSR (Hz) (Hz) SD MSR SD, 2 ,SR. %
Systems.

201 1 12.70 11.46 .0159 .0298 0 - 70 ex - 68x x S* S
4. M. TRUBERT and M. SALAMA 1980 101 2 13.11 14.02 .0176 .0166 e - 70 e - 67

AIAA Journal, 15(8), 988-994. 501 3 17.76 17.44 .0125 .0088 6 - 40 e Y
Generalized Shock Spectra Method x x
for Spacecraft Loads Analysis. 404 4 17.41 18.54 .0028 .0178 x - 18 x - 44

301 5 18.59 19.33 .0152 .0092 e - 91 8 . 96
5. J.C. CHEN, M.R. TRUBERT and z z

J.A. GARBA 1983 Proc. AIAA/ASME/ 601 6 21.67 22.06 .0054 .0049 x- 50 x-52
ASCE/AHS 24th Structures, Struc- 2050 7 23.10 22.52 .0121 .0095 y - 31 y - 53
tural Dynamics and Materials 702 8 23.66 25.19 .0188 .0103 z - 80 z - 79
Conference, Lake Tahoe, Nevada,
Paper 83-0818. Time Domain Res- 803 9 25.16 25.80 .0102 .0066 z- 95 8Z- 80
ponse Envelope for Structural 902 11 26.12 27.84 .0118 .0204 z - 55 z - 66

Dynamic Systems. 2902 15 29.71 33.42 .0145 .0149 8 - 77 x - 73

1503 18 37.92 37.91 .0059 .0057 z - 99 z - 99

2002 19 42.20 39.14 .0042 .0458 z - 80 z - 86

1801 25 42.53 44.98 .0049 .0048 z - 92 z - 48
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ACOUSTIC FATIGUE LIFE OF ADHESIVE BONDED STRUCTURES SUBJECTED TO ACOUSTIC LOADS
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j. AFWAL/FIBE, Wright-Patterson Air Force Base, Ohio 45433

and'

I. Holehouse
Engineering Staff Specialist

Rohr Industries, P. 0. Box 878, Chula Vista, California 92012

1. SUMMARY

9 - Acoustic fatigue damage to riveted metallic structures in aircraft due to
high intensity noise has been recognized as a problem and design criteria have
been developed to prevent such damage. However, very little design criteria are 0
available for bonded and composite structures subjected to high intensity noise.
A summary of the work completed in acoustic fatigue prediction techniques for
weldbonded aluminum, adhesive bonded aluminum and adhesive bonded graphite-epoxy
structures is discussed. These structures are more complex than riveted struc-
tures, more difficult to analyze and exhibit many different modes of failure
which require a more detailed study to predict the sonic fatigue lifetime. •
Adequate performance under static loading did not guarantee adequate performance
under dynamic loading. Some prediction methods have been developed for certain
failure modes in adhesive bonded aluminum and graphite-epoxy bonded
skin-stiffened structures. Further investigations are needed to adequately
predict the acoustic fatigue life of adhesive bonded and graphite-epoxy aircraft
structures.

2. INTRODUCTION

Acoustically induced fatigue failures in aircraft operation have been a
design consideration for over 25 years. The problem was introduced with the
advent of the turbojet engine which produced high intensity acoustic pressure a
fluctuations on aircraft surfaces. As engine performance requirements in-
creased, the intensity of the acoustic pressures increased. Airfran3 minimum
weight requirements resulted in higher stresses in structural components. The
number of acoustic fatigue failures began to grow at a rapid rate until adequate
design criteria were developed and used in the design process.

Similar fatigue failures have occurred in other regions of high intensity
pressure fluctuations. These have occurred in regions of separated flow, behind
protuberances such as air brakes, and in surface areas near the plane of propel-
ler rotation. Failures have also occurred from the fluctuating pressure induced
when bomb bay doors are opened during high speed flight.

The oscillating pressures from various noise sources produced a resonant
response of the structural components such as external skin panels, frames, ribs
and spars which results in rapid stress reversals in the structure. If these
stresses have sufficient magnitude, fatigue failures occur.

Acoustic fatigue failures have resulted in unacceptable maintenance and S
inspection burdens associated with the operation of the aircraft. In some

structural components.
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Accurate prediction methods are needed to determine the acoustic fatigue o-
life of structures. The approach has been semiempirical using analysis, acous-
tic testing of panels and vibration shaker testing of cantilever beam coupons.
This combination of theoretical relationships, statistical relationships and
test data for a particular structural configuration and material is used to
predict the acoustic fatigue life of aircraft structures. A broad base of
general design information for riveted structures in the form of nomographs and •
equations based upon combined analytical and experimental approaches was devel-
oped and is summarized in AGARDograph No. 162, Reference [1]. Experience has
shown that these design data and prediction techniques are generally adequate
for riveted structures and form a basis for developing prediction techniques for
advanced structural concepts.

Three types of structural joints are discussed in this paper. These are
the conventional riveted joint, the weldbonded joint and the adhesive bonded
joint. The primary components of the joints are shown in Figure 1.

3. WELDBONDED STRUCTURAL CONCEPTS

Weldbonded structural joints in this paper are defined as thin plates or
skins attached to back-up structures or stiffeners using a combination struc-
tural adhesives and spot welds. In general, weldbonded structures offer reduced
manufacturing costs and improved fatigue life. This paper addresses the sonic
fatigue life which can be quite different than the fatigue life under mechanical
loading. 6

In 1972 three full scale A-7 wing outer panel trailing structures were
tested which in service are subjected to buffeting loads [2]. These loads were
acoustically simulated in a test chamber. Three identical structures were
fabricated using two weldbonding techniques and one structure using the conven-
tional rivet methods for comparison purposes. Fatigue failures in the riveted 6
structure initiated around the rivet heads. Fatigue failures in the weldbonded
structures were located in the skin along the edge of the stiffeners. The
comparisons of weldbonded structures with riveted structures are dependent on
the criteria selected and the type of weldbond system. One criterion is the
test time until first failure. First failure is defined as the visual observa-
tion of a crack without the aid of magnification. The test times to first S
failure for both weldbonded structures and the riveted structure were observed
to be approximately equal. Another criterion is the amount of cracking. Both
weldbonded structures exhibited less cracking at the end of five to ten life-
times than did the riveted structuve. Although the fatigue failures of the
weldbonded structures were quite different from the riveted structure, the
fatigue lifetimes were relatively close. 0

Several programs with test coupons and test panels were conducted to
develop prediction techniques for weldbonded structures similar to those devel-
oped for riveted structures. A combination of theoretical relationships,
statistical relationships and test data for a particular weldbond system is used
to predict the acoustic fatigue life. The fatigue life of the material and the 0 S

response of the structure are usually determined using cantilever beam coupons
and panels. The cantilever beam coupon test provides fatigue and damping data.
The test coupons are a section of the more complex panel, including the
stiffener. These coupons are vibrated at resonance on an electro-mechanical
shaker to generate alternating bending stresses in the beam representative of
the bending stresses produced by acoustic excitation. A typical shaker test 0 S

set-up is shown in Figure 2. Strain gages are installed on the skin at lo-
cations of maximum strain. A low level sine sweep is usually performed to
determine the natural frequencies and modes of the beam. Fatigue tests are
usually conducted using a narrowband random. excitation centered at the first or
second bending modal frequency. The root-mean-square (RMS) strain level is held
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constant. The test article is inspected frequently to determine the time of - 0
failure. The cycles-to-failure is determined by multiplying the time to failure
by the response frequency. Stress versus cycles-to-failure (S-N) curves are
developed for each weldbond system. The cantilever beam coupon tests are
simpler and less costly than panel tests. The coupon fatigue data are con-
sidered supplemental to the data from panel tests. These tests have been
extremely beneficial in screening candidate weldbonded systems before fabricat- 6 0
ing full-scale and much more costly test panels.

S-N curves were developed for the following weldbond system: Whittaker
X6800 adhesive with a spot weld etch surface preparation. The curves, developed
using cantilever beam coupons, are shown in Figure 3. The skin thickness for
each curve is noted, since the peel stress in the adhesive is dependent upon the 0 0
skin thickness. Fatigue failure initiated with a delamination of the adhesive
along the bondline followed by a crack in the spot weld. A change in the
surface preparation significantly affected the fatigue life of the beam coupons
tests as shown in Figure 4. The weldbonded coupon with metal bond etch surface
preparation produced longer lifetimes than those with the spot weld etch surface
preparation. Therefore, the steps in the fabrication process became very 0 0
important in the fatigue life. The fatigue life data is shown in terms of
bending moments to permit a direct comparison of different skin thicknesses.
Very little benefit was gained by using the spot weld with this type of loading,
since crack initiation depended on the adhesive system.

Three and four bay, flat and curved test panels were fabricated identical- 0 0
ly to the C-140 aircraft fuselage construction except that rivets were replaced
by weldbonding with a spot weld etch surface preparation. These panels were
tested in an acoustic test chamber with a wideband random excitation similar to
that produced by the engines. The S-N curve developed from test panels is shown
in Figure 5. Comparing the S-N curve obtained from the weldbonded panels with
the riveted data, a shorter fatigue life can be expected with this type of S 0

surface preparation. Most of the weldbond sonic fatigue work sponsored by the
U.S. Air Force is summarized in Reference [3].

4. ADHESIVE BONDED ALUMINUM STRUCTURAL CONCEPTS

To establish a data baseline for high strength structural adhesives,
American Cyanamid FM137 adhesive/BR127 primer with a metal bond etch surface
preparation was selected for evaluation. This was a common adhesive system used
in production including the L-1011 wide body aircraft.

Mode shapes are generally obtained experimentally to determine response
frequencies and locations of maximum strain. An example of a contour plot S S

obtained for one modal pattern of a three bay adhesive bonded aluminum panel is
shown in Figure 6. Comparisons were made with similar riveted construction. No
major differences were noted in the dynamic response of the bonded and riveted
panels tested. This was also the case in the modal analysis comparison with
similar weldbonded panels. The S-N curves developed from cantilever beam coupon
tests using FM137 adhesive are shown in Figure 7. Two types of failures were A 5
encountered: skin failures and cohesive bond failures. A cohesive bond failure
is defined as one in which part of the adhesive remains on both adherends after
failure. An adhesive bond failure is defined as a complete separation of the
adhesive from one adherend while remaining on the other adherend. Generally,
adhesive failures are considered undesirable, since they are unpredictable. A
much lower fatigue strength resulted from adhesive failure modes than cohesive 0 S
failure modes.

Adhesive bonded panels using the C-140 fuselage design were tested in an
acoustic test chamber. Fatigue cracks in the stiffeners, as shown in Figure 8
ended the test before the bond system could be evaluated. The fatigue life of
the stiffener was about equal to that obtained with riveted construction.
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As additional stress durable adhesive systems were developed, more pro- 0
grams were undertaken to determine the benefits of adhesive bonded structural
concepts. One program that advanced the state-of-the-art of adhesive technology
was called Primary Adhesively Bonded Structural Technology (PABST). The sonic
fatigue part of the program investigated the following adhesive/primer bond
systems: American Cyanamic FM73/BR127, Narmco M1133/BR127, 3M AF55/XA3950, and
Hysol EA9628/EA9202 with phosphoric acid anodized aluminum adherends. Two 0
failure curves were developed from cantilever beam coupon data. A fatigue curve
for skin failures in the aluminum adherend is shown in Figure 9. Compared with
riveted data, a higher fatigue life in the skin can be expected at the lower
stress levels. At the higher stress level, the fatigue life is about equal. A
fatigue curve for the cohesive bond failure is shown in Figure 10 in terms of
bending moment. Included in these data is a weldbonded coupon using Goodrich 0
PE-130 adhesive, which showed a comparable life with the other adhesive systems
tested. No general comparison with riveted design can be made until the skin
thickness is known, which also determines the mode of failure in the adhesive
bonded structure. Increasing the skin thickness in a bonded structure increases
the peel stress in the adhesive which can shorten the fatigue life of the
adhesive while increasing the fatigue life of the skins. 0

A sonic fatigue analysis of the PABST structure, using the acoustic loads
for the take-off condition from measured YC-15 flight test data, indicated that
the structure would not withstand the 50,000 hour service life. This was based
upon coupon data with a correction factor for panel data. The critical struc-

* ture was a large bay size with heavy gage thickness [2 ft (60.96 cm) by 2 ft, 6
0.070 in (0.178 cm) thick]. Accelerated sonic fatigue tests of the structure
were conducted in a plane progressive wave tube facility. Results from the
panel tests show that the prediction with the coupon data was fairly accurate.
A typical example of the panels tested is shown in Figure 11. Fatigue failures
were found in the adhesive bondline and i,. back-up structures. Fatigue curves
for the coupon data and the panel data are shown in Figure 12. 6

The bonded surfaces were examined after fatigue failure by separating the
joint under static load. The bonded surfaces produced under dynamic excitation
were noticeably different from those produced under static loading as shown in
Figure 13. Under static load, the failure was characterized by separation
midway through the thickness of the adhesive film; whereas, under dynamic load,
the adhesive separated closer to the surface of the adherend. While the reason
for the crack location is not known, consistent and predictable behavior was
found whenever the failure was cohesive within the adhesive and not in the
primer, oxide layer or adherend.

Some of the fractured adhesive surfaces were evaluated using a scanning
electron microscope (SEM). The adhesives, primer and oxide layers have distinct
morphological features easily distinguishable. An example of a cohesive bond
failure is shown in Figure 14. A full range of fracture mechanisms were found:
cracking, cavitation and shear banding, which indicated that the adhesive
performed satisfactorily.

Another area of concern was quality control since different results often
were obtained when test structures were fabricated by different manufacturers
using the same standard. Since bond failures within the primer were a common
problem, an investigation was conducted with cantilever beam coupons with
different primer thicknesses, adhesive thicknesses and surface preparation. The
fatigue results are shown in Figure 15. The fatigue data indicated that the
FM73/BR127 adhesive/primer system was essentially insensitive to variation in
primer thicknesses and the type of adherend surface treatment. The thicker
adhesive samples showed a somewhat shorter fatigue life and showed evidence of
interfacial failure, namely, adhesive to primer failure and primer to oxide
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failure. Most of the adhesive bonded stiffened skin sonic fatigue work is 0 0

summarized in Reference [3] and [4].

5. ADHESIVE BONDED ALUMINUM HONEYCOMB

Adhesive bonding is the conventional method of joining the face sheets and
the core for aluminum honeycomb sandwich structures. Extensive sonic fatigue •
tests have been performed on such structures in progressive-wave tubes (PWT)
[5]. These tests have involved various adhesives having widely varying peel
strengths and lap shear properties. The results of these tests and the subse-
quent service history in high intensity acoustic environments (above 170 dB for
50,000 hours) have consistently shown that the adhesive bond is not the mode of
failure. This is not to imply that adhesive bonds never fail nor that an - 0
adhesive's structural properties are unimportant. A properly designed honeycomb
panel utilizing one of the current widely used aircraft structural adhesives
will not usually experience adhesive bond failures unless there is a bond
quality problem. Variations in peel strength and lap shear strength, within the
range of typical adhesives, will not affect sonic fatigue life. However, if the
bond quality is degraded due to moisture or porosity for example, it has been 0 0

found that rapid fatigue failures occur in the adhesive bond even when static
tests such as lap shear, peel and flatwise tension indicate good bond quality.
This problem is discussed further in the next section.

6. ADHESIVE BONDED GRAPHITE-EPOXY (G/E) STRUCTURES

Recent extensive sonic fatigue and shaker testing on bonded G/E structures
[6] demonstrated the importance of adhesives in developing light-weight aircraft
structures. Comparisons between the sonic fatigue resistance of riveted alumi-
num and bonded graphite structures showed the bonded graphite offers a 2:1
weight savings. While this structural advantage is due largely to the graphite
material, rather than the joining process, it could not be achieved without S 0
effective fatigue resistant adhesives. Since composite structures exhibit much
larger deflections than metal structures, the adhesives used must display a
combination of high strength and good elastomeric properties.

The adhesive selected for the program described in Reference 6 was 3M's
AF147. The graphite pre-preg was Hercules AS-3501. AF17 is an elastomeric 0 0
adhesive with a high fracture toughness. It cures at 350 F and has a lap shear
strength of 4,500 lb/in 2 (3.10 x 10 Pascals) based on the m anufacturer's
literature. A corresponding value of 3,430 lb/in 2 (2.37 x 10 Pascals) was
measured from specimens cut from a sonic fatigue test panel.

Test specimens were skin-stringer configurations, typical of aircraft 0 0

fuselage structures, consisting of G/E zee stiffeners and skins secondarily
bonded together. These specimens comprised sub-element shaker test specimens [3
in by 9 in (7.62 cm by 22.9 cm) skin section with a 3 in long zee section bonded
along the center] and multi-bay panels [2 ft by 3 ft (61 cm by 91 cm) skins with
various stiffener spacings, skin thicknesses and curvatures]. The shaker
specimens were subjected to random mechanical loading and the sonic fatigue test 0 0
panels were subjected to random acoustic loading in a PWT. Early shaker and PWT
results were characterized by premature delamination of the stiffeners from the
skins, with no damage occurring to the graphite fibers. This type of failure
clearly indicated inadequate strength in the adhesive joint. Visual inspection
of the failed joints revealed some porosity. Since these specimens had met or
exceeded the usual industry adhesive acceptance criteria, it became apparent S 0
that these criteria were not adequate to determine the sonic fatigue capabil-
ities of an adhesive joint. Quality acceptance criteria applied to the failed
specimens included percent weight of resin, void percent by volume, flatwise
tension and lap shear. Also an ultrasonic inspection was made.
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The observation that the static strength properties of bonded joints do 0
not adequately reflect the dynamic high cycle fatigue characteristics is sub-
stantiated by Reference 4, in which identical specimens exhibited different
modes of failure under static and dynamic loads. Under static loads failures
occurred in the adherend, whereas under dynamic loads the failures occurred in
the adhesive itself. Also small variations in static strength properties often
resulted in large variations in sonic fatigue life, but only when the static
strength variations are due to process and/or quality variables. Corresponding
static strength variations due to the basic strength characteristics of the
adhesive system do not appear to affect sonic fatigue life. Similar obser-
vations have been made on other joining methods such as brazing and diffusion
bonding.

In Reference 6, the graphite specimens experienced premature dynamic
fatigue failures, with visual evidence of porosity, an investigation was carried
out to determine the cause of failure and the relationship between the porosity
and static strength. Modifications were made to the bonding process which
reduced the porosity by 75%. However, the corresponding increase in lap shear
strength was only 2%. Nevertheless, when sonic fatigue tests were performed on
panels before and after modifying the bonding process, there were dramatic
changes in fatigue lives and also in the mode of failure. Figure 16 shows a
failed sonic fatigue test panel prior to modifying the bonding process. The
failure is in the adhesive and the photograph shows the sub-structure separated
from the skin without any significant graphite fiber damage. Figure 17 shows

S the failed panel after modifying the bonding process. Here the mode of failure S
has shifted to the skin laminate, evidenced by the extensive graphite fiber
damage and broken skin fibers attached to the sub-structure. Neither lap shear,
peel strength or flatwise tension values predicted this result. The sonic
fatigue life of the two panels ranged from virtually instant failure to 10
cycles. The strain-versus-cycles-to-failure data from the panels and beam
coupons are shown in Figure 18. The acoustic life of stiffened skin G/E struc-
tures can be predicted using this curve and the technique developed to predict
the maximum RMS strain [6].

Although the static tests did not indicate the sonic fatigue life nor mode
of failure, the sub-element shaker tests did predict the mode of failure and
gave good fatigue life versus strain data. Based on the work performed in
Reference 6, shaker testing of sub-element specimens appears to be the simplest
and least expensive test to establish good bond quality relative to sonic
fatigue resistance.

7. RECOMMENDATIONS AND CONCLUSIONS 4

Very little benefit in sonic fatigue life was gained by the spot weld in
the weldbonded structures compared to the adhesive bonded structures. A change
in the surface preparation significantly affected the sonic fatigue life of the
weldbonded structure tested. The acoustic fatigue life of the weldbonded
aluminum structure with the Whittaker X6800 adhesive and spot weld etch surface
preparation was significantly shorter than the metal bond etch surface prepara-
tion. Apparently the aroustic loads produce a peel stress in the adhesive.
Most adhesives have a low peel strength.

The adhesive bonded aluminum panels tested until destruction generally
failed in the stiffener. The stiffener design used was identical to riveted
design. The design was inadequate to prevent sonic fatigue damage to the
stiffeners in adhesively bonded metallic structure. More acoustic fatigue data
are needed covering a wider range of stiffener designs.
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Double cantilever beam coupon data have been developed for two modes of
failure of an adhesive bond aluminum joint: cohesive bood failure of the
adhesive and metal fatigue failure of the adherend. The cohesive bond fatigue
curve is for a very ntrrow range of adhesives, generally high strength, brittle
and are curved at 250 F (121 C). More work is needed to include a wider range
of adhesives and to correlate cantilever beam coupon data with panel data.

0
Investigations have shown that the static strength properties of bonded

graphite-epoxy (G/E) joints do not adequately reflect the random bending fatigue
characteristics. Shaker tests of G/E beam coupons have shown virtually a zero
random bending fatigue life for an adhesive system while static strength tests
and quality control inspections are all acceptable, The non-destructive test
techniques available are not sufficient to ensure adequate performance under
dynamic loading. Shaker tests or other suitable dynamic tests must be performed
on any candidate adhesive bond system to ensure adequate performance under
acoustic loads.

A prediction method has been developed for laminated graphite-epoxy
stiffened skin design with the adhesive bonded stiffeners. The method is 0
limited to skin-stringer configurations. More work is needed to predict the
life of other design configurations and other materials. The shaker tests with
random mechanical loading augmented by selective progressive-wave tube tests
appear to be the best approach.

Riveted technology prediction methods in general are not valid for adhe- 0
sive bonded metallic structures and advanced composite structures. Modal
analysis techniques are applicable, however, the magnitude and location of the
maximum stress in the structure will be different. Many failure modes are
possible with the adhesive bonded structures which must be understood. Fatigue
curves are needed for each failure mode of interest. Adequate design methods
must be produced to prevent the undesirable failure modes. Some of the methods 0
used to solve sonic fatigue problems in riveted structures are not applicable to
adhesive bonded structures. For example, increasing the skin thickness to
reduce the stress in the skin can increase the peel stress in the adhesive and
other stresses in the joint, shortening fatigue life.

Sonic fatigue tests and service experience have shown adhesive bonding to 0
be a highly effective joining process. For some types of structures such as
aluminum or composite honeycomb sandwich, co-cured and integrally cured compos-
ites, it is the only viable attachment method. In stiffened metal structures,
the effectiveness of bonding compared to mechanical fasteners will depend upon
the skin thickness. As skin thicknesses decrease, 0.04 in (0.102 cm) and less,
adhesive bonds become more effective, whereas, riveted structures begin to 9
encounter "knife-edges" and the fatigue notch factor increases. With thicker
skins, 0.080 in (0.203 cm) and up, the fatigue resistance of riveted joints
increases, and adhesive joints begin to become less fatigue resistant. Conse-
quently, it seems that any comparison of the two design methods should account
for skin thickness.

The methodology associated with predicting the acoustic fatigue life is
more complex in adhesive bonded metallic structures and composite structures
since the failure modes and mechanisms are quite different and more sensitive to
design and manufacturing methods than are riveted configurations. The testing
requirements should be identified and defined in greater detail. Standardized
test methods should be established to permit comparisons among the different
investigators. Manufacturing methods, process control, quality control
techniques and nondestructive evaluation techniques should be standardized to
ensure consistent performance of the structures.
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DYNAMIC RESPONSE AND ACOUSTIC FATIGUE*
OF STIFFENED COMPOSITE STRUCTURE 0

1. Soovere

Bockhned-California USmpan

LurbckeedCalifornia, ComA AD -P003 706u
1. INTRODUCTION

Aircraft structure mL rom graphite/epoxy (Gr/E) composites offer a
significant weight savings - !r comparable aluminum alloy structures. The
initial application of these composites has been restricted to low load-carrying S 0
lightweight structures such as ailerons, flaps, elevators, slats, and fairings
to gain in service experience at low risk. The Gr/E composites may also be used
in lightlV loaded fuselage structures on some vertical/short takeoff and landing
(V/STOL) aircraft. For minimum weight, the fuselage structure will be required
to operate well into the post-buckling region, with initial buckling just
above ig.

These lightweig't structures are very often subjected to a high level jet
noise environment, especially during takeoff and landing, which can produce high
random vibration stresses in these structures. High cycle fatigue failures,
commonly referred to as acoustic fatigue failures, have occurred in these
structures [I] , [2] as a result of the random vibration stresses. The V/STOL 0
fuselage can also be subjecLed, simultaneously, to a thermal environment. Other
environmental factors such as moisture penetration, impact damage and lightning
strikes may degrade the performance of these structures in a high noise
environment.

The compression and shear buckling loads experienced by the fuselage 1 •
structure introduce peel loads at the skin-stiffener interface similar to those
produced by jet noise. Initial studies with r/E composites [3] indicated that
fasteners provided an improved acoustic fatigue life over structural bonding.
For this and other practical reasons, initial application of Gr/E composites to
transport aircraft, such as the L-1011 composite aileron [4] , [5] in Figure 1,
used mechanical fasteners. Bonding has also been used on some experimental Gr/E •

acoustic fatigue panels [3] , [6]. Integrally stiffened Gr/E panels [7] , [8] ,
[9] , [10] , where the skin and stiffeners are cocured, represent the next stage
in this development. The peel strength and, therefore, the acoustic fatigue life
of these integrally stiffenEd structures can be further improved by the use of
stitching [8] , [Ii]. " /

>- This paper summarizes the results obtained from acoustic fatigue and dynamic
response tests and the L-1011 composite aileron and integrally stiffened WIE
panels. The nature of the damping in intogrally stiffened composite panels, its
theoretical prediction and its implication on internal noise are briefly
discussed.

2. COMPOSITE AILERON TEST PROGRAM

The composite aileron was fabricated with a minisandwich skin [4] , [5] in
which the Gr/E face sheets were separated by a syntactic (SYNT) core containing
glass microballoons. Cocured doublers were located on the inner face sheet at
the rib locations. The covers were attached to the Gr/E cloth ribs, and the •
front and rear spars with fasteners.

*Performed in part under Contracts N62269-80-C-0239, NADC, and NAS 1-15069, NASA,
and in part with Lockheed-California Company funding.
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The composite aileron test program included the development of random 0
fatigue data by means of double and single cantilever coupons representing the
skin-spar and the skin-rib interfaces and the rib bend radius. Typical measured
strain distributions [4] are illustrated in Figure 2. The results of these
coupon random fatigue data [5] , including the effects from a built-in void
adjacent to a fastener head, a single impact damage (0.88 kilogram-meter)
adjacent to a fastener head, moisture conditioning and elevated temperature 0
(82'C), are summarized in Figure 3.

In the early design, core compression was experienced along the edges of
the doubler [4] , [5] which produced a premature separation of the doubler from
the skin along these edges at lower random strain levels (Figure 3). Improvements
in the fabrication procedure eliminated this problem [5]. Consequently, the 0
random fatigue data (Figure 3), which involved failures in the outer face sheets
adjacent to the countersunk fastener heads, were considered to be more represen-
tative of the improved design.

Modal studies conducted on a representative section of the composite aileron,
using impedance head hammer tap and loudspeaker excitations, indicated very low 0
damping ratios (Table 1) even after damage [5] from simulated lightning strikes
(Figure 4). The damage was mostly confined to the visible surface damage area
with very little interlaminar damage. All of the modes dropped in frequency by
a small amount, reflecting, in view of the amount of damage susLained, the
redundant nature of the composite structure.

The random fatigue data were used, in conjunction with the results of a
nonlinearity test, to select the accelerated proof test random spectrum level
(Figure 5). Nonlinear panel response (Figure 6) was obtained during the proof
test. The measured strains, when compared with the random fatigue data, indicated
that the composite aileron would be free of acoustic fatigue failures throughout
its design life.

3. COMBINED ACOUSTIC AND SHEAR LOADS

Acoustic fatigue tests were conducted on an integrally J-stiffened Gr/E
minisandwich (Figure 7) and a monolithic (Figure 8) panel near initial shear
buckling [7] , [I0]. Both integrally stiffened panels were designed to an _
initial shear buckling load of 1786 kilograms per meter (Table 2). The analysis
was performed with an anisotropic finite element program (STRAP 5) developed by
the Lockheed-California Company. In general, good agreement was obtained between
the predicted and measured buckling loads for the three bay monolithic panel and
similar four bay monolithic panels tested in another program [12]. The tooling
used affected the thickness of the minisandwich panel skin which resulted in a S 0
higher measured initial buckling load. Good agreement was obtained between the
predicted and measured mode shapes, the latter obtained from Moire fringe pat-
terns measured in the test facility illustrated in Figure 8. The monolithic panel
buckled mode shape contained five antinodes in each of the three bays whereas the
minisandwich panel exhibited two antinodes only in the large center bay.

The initial buckling was measured with a noncontacting displacement
transducer located at an antinode. The initial buckling load was determined
from the discontinuity in the load displacement curve [7] , [10] , and from
the frequency-load curve (Figure 9). The increase in the damping ratio
(Figure 10) in both the critical and noncritical modes, on approaching initial
buckling, made it difficult to trace the variation of the modal frequencies t S S
through buckling with the impedance head hammer tap method. The higher the
critical mode number, the greater the difficulty. This increase in damping on
approaching buckling, was previously [13] observed in axial compression tests
on stiffened aluminum panels. The damping was also found to be nonlinear in the
compression load region. The same result can also be expected for stiffened
composite panels under axial compression load. 0
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In spite of the high damping near initial buckling, the overall strain was
increased by approximately thirty percent (Figure 11) at the critical location
on both panels, when excited with broad band random acoustic loading. Nonlinear
response (Figure 12) was obtained in both panels at the higher sound pressure
levels.

4. COMBINED ACOUSTIC AND THERMAL ENVIRONMENTS 0

The effect of a 121 0 C thermal environment on the son-c fatigue life of
integrally stiffened Gr/E panels, representative of potential fuselage structure,
was investigated [7] , [9] using two advanced J-stiffened monolithic panels and
two advanced blade stiffened orthogrid panels, illustrated in Figures 13 and 14,
respectively. These panels were also designed to an initial shear buckling load 0
of 1786 kilograms per meter (Table 2). The panels were mounted, in turn, into
a steel test'frame in which the thermal expansion was matched biaxially to that
of the composite panel. In the modal studies, heat was applied to the outer
surface of the panels by six infrared lamps and the excitation was provided by
impedance head hammer taps at preselected grid points. The excitation and the
corresponding displacement were analyzed within the Hewlett-Packard HP 5451C 0
Fourier Analyzer to obtain the resonant frequencies, damping ratios and mode
shapes.

The measured fundamental mode shape for both panels is illustrated in
Figure 15. The fall-off in the resonant frequencies with temperature (Figure 16),
observed for both panel configurations, is due to thermally induced bi-axial
compression loads in the skin, introduced by differences in the thermal expansion
of the Gr/E frames and skin because of differences in their fiber orientations.
The temperature does not appear to have affected the damping in both the mono-
lithic and the orthogrid panels (Table 3). The fundamental mode damping ratio
in the orthogrid panel is, however, an order of magnitude greater than that in

the monolithic panel. The damping in the higher order panel modes is more 0
comparable and very low for both panels.

One panel of each design was acoustic fatigue tested at ambient temperature
and the other at a temperature of 123'C. Heat was supplied by a specially
designed quartz lamp heater panel, mounted inside the progressive wave tunnel.
An overall sound pressure level of 167 dB (Table 4) was used to fail the room 0
temperature orthogrid panel (Figure 14). In contrast, the room temperature and
elevated temperature monolithic panels were failed with an overall sound pressure
level between 160.8 to 164 dB. The difference in the sound pressure level
required to produce the same long side rms strain (Table 4) in the orthogrid
and monolithic ambient temperature panels can be attributed to the effect
expected from the differences in their fundamental mode damping, even in the •
presence of nonlinear panel response (Figure 17). The failure obtained with
the orthogrid panel does not reflect the true capability of the design since
these panels contained stress concentrations at the enus of the longitudinal
stiffeners (Figure 14) where the failure was initiated.

In spite of some indications that the temperature of 123 0C could affect the 0
sonic fatigue life, the results are considered inconclusive on account of the
small sample size. The current room temperature semi-empirical analysis method
[6] did not predict the rms strains in the room temperature panels with any
degree of accuracy (Table 4). The main reason is thought to be the omission
of damping in the above method although differences in the spectrum shape of
the random noise may also be a contributing factor. 0
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5. RANDOM FATIGUE DATA FOR INTEGRALLY STIFFENED Gr/E PANELS 0

Random fatigue data were developed with double cantilever coupons (Figure 18),

representing the skin-longitudinal stiffener interface, for the integrally
stiffened monolithic (Figure 19) and orthogrid (Figure 20) panels at room temp-
erature. The monolithic coupon data exhibited higher rms strain (Figure 19)
levels than the bonded panel data in reference [6]. The monolithic panels could
withstand even higher strains than the corresponding coupons. Stitching
(Figure 18), also illustrated in cross-section in (Figure 21), increased the
failure strain level by approxi:mately 70 percent, comparable to the improvement
measured in static peel tests [iI].

The ,rthogrid coupons (Figure 20) achieved an rms strain level comparable 0
to that measured in the composite aileron skin at a KT of 1, and that achieved
with stitch ng in the monolithic coupon. The composite aileron and the orthogrid
panel had the same fiber orientation in the face sheets. The orthogrid panel
failed well below the coupon strain level indicating the magnitude of the stress
concentration at the ends of the axial stiffeners.

6. THEORETICALLY PREDICTED DAMPING FOR THE ORTHOGRID PANELS

Fastener related damping has been eliminated in integrally stif' ed com-
posite panels while the material damping is very small, usually belol viscous
damping ratio of 0.001 for Gr/E composites. Consequently the only s ce of
significant damping is acoustic radiation, once the energy loss to t 1-rrounding 0
structure has been minimized. A characteristic of acoustic radiatio i Ehat the
damping is high in the fundamental mode and falls off with increase i'. mode
number due to the cancellation effect [14]. Furthermore, the acoustic radiation
is proportional to panel area and should be very large in the fundamental mode
of a large single panel. These conditions have been met by the damping ratios
in Table 3. The predominant contributic, of acoustic radiation to the damping
has also been confirmed with stiffened composite honeycomb panels [15]. The
orthogrid panel represents an ideal example for demonstrating the above conclu-

sion. The simplified expression in reference [14], for the viscous damping ratio
produced by acoustic radiation from a simply supported panel, was used. The
measured and predicted damping ratio in Figure 22 are in reasonable agreement,
particularly for the fundamental mode, when considering the simplicity of the S
analysis.

7. CONCLUSIONS
0 0

The importance of developing nonlinear analysis capability for design
purposes has been demonstrated since composite structures can sustain high
vibration levels, in the nonlinear response region, over a wide range of com-
bined loads and environmental conditions without failure. All of the random
fatigue data exhibited a fatigue limit just beyond 107 cycles, an important
consideration for the design of acoustic fatigue resistent composite structures.
The acoustic fatigue resistance in integrally stiffened composite structures can
be considerably improved by attention to detailed design at the critical loca-
tions. In this respect, the integrally stiffened panels are considered to be
superior to secondary bonded panels. Since the damping in integrally stiffened
composite panels is due to acoustic radiation, the transmission of turbulent
boundary layer noise, through the lighter weight integrally stiffened composite
fuselage structure, could be significantly increased, over current fuselage
structure, for the same density of acoustic sidewall treatment. A compensating
increase in the sidewall treatment density could eliminate much of the weight-
saving achieved with composite fuselage structure.
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TABLE 1. MODAL FREQUENCIES AND DAMPINGS 0

AFTER SIMULATED

UNDAMAGED AILERON LIGHTNING STRIKES

VISCOUS DAMPING VISCOUS DAMPING 0
FREQUENCy, Hz RATIO FREQUENCY, Hz RATIO

96.4 0.0042 91.18 0.0063

125.9 ... 109.2 0.0038

134.3 0.0040 119.2 0.0067 0

149.0 0.010 126.6 0.0065

129.7 0.0091

TABLE 2. INITIAL SHEAR BUCKLING LOAD

NXYCR Kg/M

TYPE OF LENGTH WIDTH THICKNESS STRAP TEST 0
PANEL mm mm mm SKIN LAYUP 5 AVERAGE

546 152 0.89 ( 45/0/90) 1821* 1759**
J-Stiffened

Monolithic 533 180 1.02 (45/0/-45/90) 1893* 1789 -

s 1841

J-Stiffened 2419 -
533 304 1.52 (45/0/-45/SYNT) 1839*

Minisandwich s 2682

Advanced 0
J-Stiffened 737 180 1.02 (45/0/-45/90)s  1839* --

Monolithic

AdvancedArthoced 660 254 1.40 (45/0/-45/SYNT) 1839*Orthogrid s

* Target Value 1786 Kg/M

** Reference [12] Subscript s means symmetrically laminated.
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AD-P003 707

S01IC FATIGUE UES16N METHOD FOR THE
RESPONSE OF CFR STIFFENED-SKIN PANELS

Ian Holehouse, Engineering Staff Specialist
Ronr Industries, California, U.S.A.

I ITkUDUCTIOi

This paper describes the development of a semi-empirical method to
estimate tne structural response of cfrp stiffened-skin panels when
subjected to random acoustic loading. The objective was to provide a
method suitable for practical use in tne.design of cfrp airplane
structures, utilizing the results from't4tworkIdescribed in
References 1 and 2.

A combined analytical and experimental programme was conducted in order
to investigate the dynamic response of carbon-fibre reinforced plastic
(cfrp) skin-stringer panels to random acoustic excitation. A range of S
multi-bay panels was subjected to high intensity noise environments in a
proqressive-wave tube, and finite-element analyses carried out on the
test panel designs, generating static strains and frequencies. Multiple
stepwise regression analyses were then used in combination with graphical
evaluations in order to develop empirical relationships between measured
response strains from the sonic fatigue tests and various combinations of
panel configuration parameters. From these regression analyses, design
equations were developed assuming both linear structural behaviour and
also taking into account non-linear behaviour with respect to the
acoustic loading. A design method was then formulated based on these
analyses wnich represented the test data with the greatest accuracy. It
was found that the natural frequencies of the cfrp panels were adequately
predicted by the frequency equation in Reference 3, substituting cfrp
elastic modulus and density values for the corresponding values for
metals. Figure 1 gives the test panel configurations and calculated and
imeasured frequencies.

Particular attention was given to the need to use physical criteria in 0

evaluating data points and regression results, in contrast to relying on
statistical criteria. In general it was easier to satisfy statistical
tests of significance, than to satisfy requirements for acceptable
structural behaviour. Accordingly, statistically accurate
representations of structural response data can be developed that have no
practical use due to illogical relationships between the design 0
varidbles, response levels and applied loads.

'train and acoustic spectrum levels were found to be unsuitable for
regression analysis due to large variations that did not significantly
correlate to panel configuration parameters nor to fatigue lives.
Overall rms levels, on the other hand, did correlate significantly to •
variations in panel configuration parameters, and fatigue lives. This
aspect of the data was partially attributed to the major strain spectrum
levels often contributing less than 25 percent of the corresponding
overall response levels, based on integrated spectral density plots.
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2 REGRESSION ANALYSIS
Regression analysis is a statistical method for investigating

functional relationships between variables, based on sample data. It is
particularly suitable for data that are imprecise and where there is a
need to statistically optimize relationships. The basic approach is to
use samples of data to calculate an estimate of a proposed relationship
and then to evaluate the fit using statistics such as "F" and "t" tests,
in addition to evaluating the accuracy with which the proposed
relationship estimates the required quantity based on differences between
measured and estimated values. The accuracy required in this work
exceeded the statistical requirements, necessitating careful attention to
the physical significance of the relationships between variables.

The regression analyses performed utilized a multiple-stepwise regression
computer programme, involving a forward selection procedure for the
independent variables, with the provision for eliminating variables, as
in backward elimination procedures. In order to obtain a linear response
equation, the dependent variable is Overall RMS Strain divided by the
Overall Sound Pressure Level. For a non-linear equation, the dependent
variable is just "Overall RMS Strain," with the "Overall Sound Pressure
Level" as an independent variable, i.e.:

Linear: erms = fn (b, t, R) (1)
SPL

Non-Linear: Erms = fn (SPL, b, t, R) (2)

where crms = overall rms strain
b = stringer spacing
t = skin laminate thickness
R = radius of curvature. •

The coefficients in the regression equations subsequently obtained, were
evaluated for their proximity to values having physical significance and,
where appropriate, modified to reflect such values. For example, a panel
confiauration parameter having an exponent of 0.499 was subsequently
represented by the square root of that parameter. The resulting •
equation, comprising several independent varibles having modified
coefficients, was then used as a single independent variable in
subsequent regression analyses. The estimating accuracy of the modified
equation was then evaluated in relation to the physical significance of
its format, particularly in regard to dimensional balance. Regression
analyses typically generate equations that do not have balanced *

dimensions, thereby requiring that the input parameters be expressed in
tne same units as those used in the regression analysis, or modifying the
equation's coefficients for a given set of units.

Although such a procedure is likely to reduce the apparent accuracy with
which the final estimating equation represents the data, it offsets the
effects of correlation between the original independent variables
(multicollinearity). Regression analysis of collinear data often
produces ambiguous results, making it impossible to accurately evaluate
the individual effects of a particular independent variable on the
regression equation. Problems of this type were encountered in this work.

2.i Elimination of Outliers
1he regression analysis initially used eighty-two data points given

in References 1 and 2. Some of these data points were subsequently
identified as being incompatible with the data as a whole and were
eliminated.

788



The usual procedure for eliminating outliers is to identify those data
points having the largest percent deviation between the "estimated" and
"actual" values and removing them from the analysis. This invariably
results in a more accurate equation. However, the improvement in
"accuracy" must be carefully weighed against the impact of the reduced
data base.

Rejecting data on this basis is a reasonable procedure wnen dealing with
data about which little or nothing is functionally known, such as "public
opinion" type surveys. However, when dealing with technical data, it is
often necessary to impose functional limitations in order to define
acceptable data points. In this programme, the impositions made on the
data were that the response strain levels must increase with increasing
sound pressure level, stringer spacing (b) and radius of curvature (R);
and must decrease with increasing skin laminate thickness. Such an
approach sometimes results in rejecting data points where the percent
deviation of the estimated value is not large. An illustration of the
importance of this is given in Figure 2. The four points w, x, y and z
represent response strain values for four different skin thicknesses.
The line drawn 1 ---- 1 represents a computed regression relationship
showing strain increasing with skin thickness. based on a table of
residuals, data point "z" appeared to be an outlier. Elimination of
point "z" resulted in a new regression line 2 2 , whicn had
greater statistical accuracy than the first line. Since it is known that
strain decreases with increasing thickness, it can be seen that the 0
regression analysis resulted in an illogical relationship. In addition,
by removing an outlier on the basis of statistical accuracy, the
incorrect trend of the regression was worsened. By plotting the data
prior to regression, and knowing that strains decrease with increasing
skin thickness, it is obvious that data point "w" is the main outlier and
not point "z." When point "w" was removed, the new regression line was •
3 3 , which shows a more reasonable relationship. This example
illustrates the importance of checking data for technical inconsistencies
prior to regression analysis, preferably by graphical means. It also
demonstrates the danger in allowing statistical decisions to replace
technical ones. It should be remembered that regression analyses have an
inherent tendency to reinforce existing trends. 0

2.2 Development of the Regression Model
In developing a single design method for both flat and curved

panels, using regression analysis, it was necessary to determine a
numerical value for the radius of curvature of a flat panel. Since
regression analysis deals entirely with numerical values, using a very 0
high value to represent an infinite radius of curvature must be avoided.
Originally, a value of R = 10,000 inches was used, resulting in a very
small regression coefficient for this variable. Since the response
differences between the flat and the R = 90-inch curved panels were
relatively small, it seemed likely that a much lower number than
10,UO0 inches would be appropriate. Various numbers were tried, and also 0
a graphical review of the data was performed. It was determined that R
150 inches was a satisfactory number to represent the flat panel radius.

The linear response equation obtained from the regression analysis was:

Erms bi1 04 5 R0 5 5 19  (SPL - 9.08)
ti.2069

The average estimating accuracy of this equation was 23 percent.
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Tne strain response data generatd bythe PWT tests displayea a general 
0

level of non-linear response. Although evidence of non-linearity is
apparent in various aspects of the response data, such as changes in
damping and response frequencies, it is the non-linear increase in
overall rms strains with increasing sound pressure levels that has the
greatest significance from a practical design standpoint. The 0
correspondong non-linear response equation obtained was:

Erms 1u_7.852 b. 0 458 0 4 9 94 )10 (
t1.1241

where SPL is in decibels and b, t and R are in inches. 0

This equation had an average estimating accuracy of 22 percent. The
proximity of the exponents of the variables to values of physical
significance is of interest. The exponents of b and R are very close to

unity and one-half respectively t1
1 25 was the only approximation to a

rational number that did not have a significant effect on the estimating p

accuracy.

By performing a regression analysis on a modified form of the right-hand
side of equation 4, the following equation was obtained:

brm bR I 2  i(SPL -179 )
t1. 12 5

However, a graphical review of the results from this equation snowed that
the exponents of the panel configuration parameters (b, t and R), were
significantly different from those indicated by the test data. It nad
also been noted that significant variations occurred in the values of tne
regression coefficients when minor changes were made to the input data.

This type of ambiguity is usually associated with performing regression
analysis using independent variables that exhibit significant correlation
with each other, and are therefore not truly independent. This condition
is usually referred to as multicollinearity. The regression coefficient
of an independent variable is intended to be a measure of the efffect of
that variable on the dependent variable (rms strain), with the remaining
independent variables held constant. When the degree of correlation
between the independent variables makes this conceptually impossible, it
follows that tne isolated effects of the independent variables in the
regression equation cannot be accurately estimated. Structural design
and analysis clearly requires a knowledge of the isolated effects of
varying configuration parameters.

Measured rms strains were plotted in turn against stringer spacing (0),
skin laminate thickness (t) and radius of curvature (R). The rates of
change of b, t and R, with respect to estimated rms strains from S •
equation 5 were then superimposed on the graphs for comparison purposes.
The results are shown in Figures 3, 4 and 5 respectively, where rms

strain appears to vary with b1 .3 to bI '5, tI' 3 to t1.8 and the variation
with R can be seen to require a different functional relationship to that
used in equation 5. During subsequent regression analyses, it became 0 •
apparent tnat thelow exponent of b in equation 5 was associated with the
curved panels. Accordingly, it was decided to perform separate
regression analyses on the curved and flat panels.
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2.2.1 Derivation of a Flat Panel Response Equation
When using regression analysis to derive a flat panel equation,

the results showed fundamental changes indicative of a significant level
of incompatioility between the curved and flat panel results. It
remained to oe determined whether this incompatibility was a fundamental
aspect of the test data or due to the representation of the radius of
curvature in the regression model, already identified as a problem. The P

resulting flat panel equation was:

1.318 (SPL - 169)
Erms b 10 24.35 (6)

t 1

Equation 6 was modified to a non-dimensional form in which the exponents
of b dnd t were identical, and the following result obtained:

4/3 ( SPL - 168
Erms 10 24 (7)

where Erms is in micro-strain and b and t can be
expressed in any coherent units. SPL is
in decibels.

Equation 7 estimates rins strains with an average deviation from the
nieasure values of 9 percent, having a corresponding standard deviation
of the residual errors of 22 micro-strain about a mean value of -4.
The value of the Durbin-Watson statistic obtained was 1.64. A value
greater than 1.40 demonstrates a lack of significant serial correlation
in tne residual errors.

2.2.2 Effects of Panel Curvature

Tnere remained a neea to determine a tunctional relationship between rms
strain and R that would approximate a straight line. It was also
apparent that the discontinuity in Figure 5 at the transition from curved
to flat panels, resulting frow the use of an empirical value of R 0
(150 inches) to represent the flat panel radius, was not accpetable with

a relationship of the form Erms - R0"5, as in equation 5.

When drawing the curves shown in Figure 5, it was observed that the best
fit was obtained using a hyperbola. It was also found that when the rate
of change of R was plotted against rms stran, Tnat t, same hyperbolic
curves resulted, indicating an exponential relationship. Various
exponential functions were graphically evaluated until it was determined
that the nyperbolic tangent of a linear function of R should provide an
effective representation of curvature. The hyperbolic tangent has
appropriate aysmpotic trends for both small and large values of R.

The following relationship was thus proposed:

Erms : Ef Tanh F(R) (8)

where Ef is the rms strain for an equivalent flat panel, obtained form

equation 7 and F(R) is a linear function of the radius of curvature. The
next step was to derive the coefficients of the function of R such that
its hyperbolic tangent approached unity for values of R in the region of
1, incnes, and approached zero for a value of R below 30 inches and
greater than zero. The derivation was based on the relationships between
measurea data for the curved panels and the corresponding calculated flat
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panel strains. Ihe resulting equation was:

4/3 SPL -168)
Erms (b)10 u Tanh(&R- 7 ) (9)

40

where R is in inches. 0

From equation 9, it can be seen that when R = 17 inches

Tanh (17 - 17 )= 0, and Erms = 0. When R = 150 inches,

Tanh (150 17 ) = 0.997, and Erms effectively equals the flat panel

response. 4Thus the effects of curvature are included without degrading
tne accuracy of the estimated flat panel response.

The value of R = 17 inches correspondiny to zero rms strain is compatible
with the curves shown in Figure 5, and is an intuitively acceptable
value. As the radius of curvature decreases, there is a finite value
wnere it becomes unreasonable to consider the structure as on array of
curved stiffened panels. The estimating accuracy of equation 9 is given
below:

RESIUUAL RMS STRAIN STANDARU
(Measured - Estimated) Mean % DEVI- DEVIATION

(PC) ATION (PE)

Flat Panels -4 9% 22

All Panels 7 11% 36 0

2.2.3 Effects of Paiel Aspect Ratio

Although the panel aspect ratio (a/b) in this programme varied 0 0
from 1.5 to 3, it was not a true independent variable since the longer
side of the skin bays was kept constant at a = 12 inches, while b ranged
from 4 inches to 8 inches. Thus it was not possible to use (a/b) as a
variable in the regression analyses because it is completely collinear
with b. Apart from being obviously pointless, if a regression solution
is "forced" in such a situation, a regression coefficient would be • 0
obtained for the first of the two correlated variables to be entered, and
a regression coefficient of zero would then be obtained for the second
variable.

In order to include panel aspect ratio as an independent structural
parameter in the design method, Reference 3 was used to quantitify 6
proportional changes in response levels due to variations in aspect
ratio, with the intention of formulating a functional relationship
suitable for inclusion in equation 9. A plot of aspect ratio versus the
proportional change in rms strain was observed to be hyperbolic, and
within the range of values of interest, was similar in form to the curve
of radius of curvature versus rms strain, obtained in the preceeding S •
section. Accordingly, the hyperbolic tangent of (a/b) was plotted
against the corresponding rms strain ratios, and a straight line
relationship obtained. The resulting estimating equation was:

rms314~ (10 0)

4rms = [4 Tanh (a/b) -1] 10 Tanh (0- 4iZ) (10)
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where R is in inches. When using S.1 units (R in metres), equation 10 becomes:

SPL - 178

rms =() 4/3 [4 Tanh (a/b) -1] 10 Tanh (R - 0.43) (10a)

These equations estimate the rms strains for flat and curved panels for

all aspect ratios above unity. •

2.3 Design Range and Estimating Accuracy

When evaluating the accuracy of an estimating procedure based on the
results of regression analyses, it is important to examine the
characteristics of the residual errors, including those associated witn
data points classified as outliers. Properties of the residual errors
that are of particular interest are strong associations with particular
variables (crms, b, t, R, a/b, SPL), or particular values of these
variables, and also their probability distribution about their mean
value. Associations with particular variables are usually indicated by
the Durbin-Watson statistic, however, this test of correlated errors is S

limited to observations of successive error values and does not always
detect trends that may be observed graphically. The distribution of the
residuals can be readily used to establish confidence intervals if they
are observed to be normally distributed about their mean value.

before performing such evaluations, those data points classified as
outliers, and therefore excluded from the development of the estimating
equation, need to be re-examined. This is particularly relevant in this
case where some of the outliers are the result of invalid data (in
contrast to data scatter), and some were found to have their measured
values accurately predicted by the estimating equation.

Since the magnitude of the residuals naturally increases with
themagnitude of the response, it is the characteristics of the
proportional difference between themeasured and estimated values that
requires scrutiny. These characteristics were therefore observed by
examining the ratios of measured to estimated rms strains.

The largest errors were found to be due to a high degree of non-linear
response of those panels having 4 ply (0.022 inch) skin laminates. It
was apparent that equation 10 did not have an acccurate range extending
to skin laminates of less than 6 plies. The size of the residual errors
associated with the non-linear behaviour of the 4 ply laminates also
distorted the general accuracy of equation 10. It therefore seemed more
informative to express the distribution of the residual errors, and the
confidence intervals relating to estimating accuracy, without including
the 4 ply laminate data, and to make it clear that the scope of the
estimating procedure did not include the non-linear response behaviour of
skin laminate thicknesses below 0.033 inch (6 plies).

Accordingly, the distribution of the residuals was based on the mean
value and standard deviation of the ratios of measured to estimated rms
strains for all data points, excluding most of the 4 ply laminate data.
Some data points were retained for the 4 ply laminates that
corresponded to low acoustic load levels, where the non-linear effects
are not excessive. This allows equation 10 to be used to estimate the
response of 4 ply skin panels, neglecting their increased degree of non-
linear response relative to the other panel configurations. No data
poins were excluded on the basis of "scatter" from this final
determination of the estimating accuracy of equation 10. Tne mean value
of the ratios of measured to estimated response levels is 0.99, with a
standard deviation of 0.14. The corresponding normal distribution curve *
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is shown in Figure 6, with the individual data points sus)erimDosea. 0

Figure 7 shows the estimated rms strains plotted against the

corresponding measured values. The dashed lines represent the 90 percent

confidence interval. The data point having the highest percent deviation

corresponds to that remaining panel having the lowest stiffness, and

occurs at the maximum load level. This panel has a b ply laminate and

displays the same trend towards increasing non-linear response as that S

shown by the 4 ply laminates, but to a lesser extent. Only three data

points have residuals due to "scatter" that exceed two standard

deviations, with one of the three exceeding three standard deviations,

with a value of 3.3. This corresponds to a 31 percent deviation. This

is a surprisingly low level ot scatter for sonic fatigue data.

The degree of non-linearity accounted for in equation 10 is equivalent to
a 7 dB increase in acoustic loading resulting in a doubling of rms
strain, compared to the 6 d8 increase that represents a doubling of the
load. However, it is clear that the degree of non-linear response is not
related only to the level of acoustic loading and rms strain. The 4 ply
panel displayed rapidly increasing non-linear response characteristics at
response levels that did not produce similar effects on panels having
greater stiffness. This is thought to be due to the panel deflections
naving a greater rate of iocrease witn decreasing panel stiffness, than
does the rms strain level. In conventional plate theory, the static
s ress in a fully-fixed plate under uniform pres ure loading varies with
b , whereas the maximum deflection varies with b . The increase in non-
2na esos t3
inear response effects of the 4 ply laminates was quite pronounced at

response levels below the random endurance level for the cfrp panels of

440 micro-strain (Figure 8). However, using equation 10 to size
airplane panels having 4 ply skin laminates will not result in -

conservative designs to the degree indicated by the non-linearity of that
response. The 4 ply panel showed evidence of carbon fibre damage during
PWT testing response levels lower than was required to produce damage to
those panels having thicker skin laminates. It is likely that these
premature failures were deflection related, possibly to the extent of
producing brittle fibre damage in the high strain and deflection gradient
areas adjacent to the stiffeners. If this is a valid observation, taking
advantage of the degree of non-linear response of the 4 ply laminates [nay
result in underestimated fatigue lives and premature failures on actual
airplane panels. This suggests that it may be appropriate to use
equation 10 to design 4 ply panels for practical airplane applications.

The estimating accuracy of equation 10 was compared to three semi-

empirical design methods for aluminium panels. These results are shown
below:

REF. 6 REFERENCE 7 REFERENCE 5 EQUATION
(ARCAS) (CLARKSON) (BALLENTINE) 10

MEAN 1.073 0.962 0.923 0.99

STANDARD 
0 4

DEVIATION 0.886 0.530 0.296 0.14

SAMPLE

SIZE 38 59 28 6b • 4
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The stated level of estimating accuracy applies to cfrp stiffened skin 0

panels over the following range of design parameters:

Stringer spacing: 4 inches to 8 inches

Skin laminate thickness: 0.033 inch (6 plies) to 0.066 inch (12 plies)

Radius of curvature: Flat down to 30 inches.

Aspect ratio: 1 to 3 (assumed to be valid for all values
above unity)

Stringer types: Z sections. For J and hat sections, multiply 0
estimated rms strain by U.75.

Skin laminate (0, ±45) (0 +45, 9U),
ply orientations: (02, ±45), ('0 ±45)2s. Assumed to valid for

quasi-isoiropic and most orthotropic
laminates.

Damping: Valid for typical values: 0.017 to 0.04.

3 CONCLUSIONS

An estimating equation has been derived that can be applied in the
sonic fatigue design of cfrp skin-stringer panels for airplane
applications. The equation estimates rms strain levels for both flat and
curved panels, with an average accuracy of 9 percent, having a
corresponding 90 percent confidence level of approximately 20 percent.
The equation is to used inconjunction with natural frequency estimates
using References 3 or 4, and the random fatigue curve shown in Figure 8.

* 0
Substantiating information and data for this work can be found in
Reference 2.
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1. INTRODUCTION 0

Some authors [1,2] have developed theories for predicting the flexural
behaviour of sandwich beams. Adams and Weinstein [3] made theoretical predic-
tions of the flexural stiffness of sandwich beams and confirmed these by
measurements. This approach not only indicated the relationship between the
properties of the skin and core of laminated materials, but also some physical
insight into the nature of the interface bond stress and the augmented skin
stress.

Bert, Wilkins and Gisman [4] presented a method of analysis for predicting
the logarithmic decrement for damping in sandwich beams in free vibration from 6
the beam geometry and constituent material properties. A finite element method
for computing the dynamic response and the mode shape of three-layer damped
plates has been developed by Ioannides and Grootenhuis [5].

Zhang and Zhan [6] worked on the measurement of the mechanical properties
for carbon-glass hybrid composites in the form of a sandwich consisting of CFRP 0
skins and a GFRP core. This kind of hybrid composite with a small amount of
CFRP for the skins has a much higher flexural modulus than one made solely of
GFRP. Also, the impact strength of the hybrid is much higher than that of pure
CFRP. Therefore, hybrid composites are a useful class of materials for struc-
tural components in which the stresses are mainly flexural.

>The purpose of this work is to predict the vibration damping and modulus of
sandwich hybrid composite beams, and the resonant frequency, vibration damping
and mode shape of sandwich hybrid composite plates in flexure.

2. THEORY

The prediction for the beams is based on the work of Ni and Adams [7].
The hybrid composites used here consist of a symmetrical arrangement of CFRP
skins and a GFRP core, which is shown in Fig. 1. The fibre orientation angle

CFRP ((MB)

GF RP (d* 8}

, ,.. .- 4

FIG. I SECTION OF THE CARBON GLASS-FIBRE/EPOXY
HYBRID COMPOSITES •
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with the principal direction of the beam in both CFRP and GFRP is denoted e.
The hybrid mentioned above is called a unidirectional carbon-glass composite
hybrid (CGC).

According to plate theory for laminated composites the flexural modulus

matrix components, Dij , can be expressed as

Dij = Qij z2dz (I)

2

where Qij is the stiffness matrix and h is the thickness of the beam.

In the case of the hybrid composites used here, equation (1) can be
written as

R/2 (h/2 (C

Dij = 2 Qij ( G) z2 dz + 2 Qij ( C ) z2 dz (2)

Jo JRh/2

where R is the volume proportion of GFRP in the hybrid.

By inverting the normalized flexural modulus matrix, the normalized
flexural compliance matrix components, Cij, can be obtained. The effective
flexural Young's modulus for free vibration, Eff, of the hybrid laminates can
then be shown as

Eff 1 (3)

On the basis of the work of Ni and Adams [7], the energy dissipation can be
separated into three parts associated with stresses ax , a and a in the fibre
co-ordinate system, as y xy

AZ = AZ + AZ + AZ (4)
x y xy

Then the specific damping capacity of the composites can be expressed as

x y xy (

where

AZ AZ AZ
Tx x y= __X , T XY

x Z y Z xy Z

and Z is the total strain energy.

Further mathematical manipulation leads to the result

m2 (m2 Cl1 +mnC 1 6 ) ,(G)F(G) 3+L (C) (C) 3)

xC1 [LIF R3+ML F (1-R3) (6)

where F (G ) and F(C) are functions of the stiffness and compliance
components for glass and carbon, m = cose, n - sine, and VL( G ) and TL(C) are the
longitudinal specific damping capacity of on-axis GFRP and CFRP respectively.
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Similarly,- •Si r n2 (n2C1 1-mnC1 6 ) F (G) (GR3+() (C) (C)1-R3 )  (7)

y C11  [IFTT]I

Smn[2mnCi-(m2-n 2)C16] F(G) (C)and xy,(G) L (GR •C)3

xy L LT FLT F (lR 3) (8)

where the subscripts T and LT denote transverse normal and longitudinal
shear values.

The work of Lin, Ni and Adams [8] is used for the prediction of the proper-
ties (damping, mode shape and frequency) of the hybrid composite plates used in 0 0
this work. The method is based on the finite element technique which includes
transverse shear deformation, and the damped element model suggested by Adams and
Bacon [9] which was extended to involve both transverse shear deformation and
rotary inertia effects.

3. EXPERIMENTAL PROGRAMME 0 0

The specimens used here were made from carbon HMS/DX-210 and glass/DX-210
prepreg by the hot compression mould method. Details of the specimens are given
in Table I. The method of measuring the modulus and damping of the beams is the

Table 1. Details of the hybrid composite specimens 0 0

Mean Volume
Specimen Lay-up density proportion Fibre volume

(g/cm 3) of GFRP, R fraction vf

A (C,G,G,G,G) 1.836 0.80 0.512s

B (C,C,G,G,G) 1.715 0.66 0.4515

C (C,C,C,G,G) 1.635 0.43 0.4385

D (C,C,C,C,G) 1.615 0.22 0.485 • S

same as that used in references [71 and [10]. The fundamental symmetric free-
free flexural mode of vibration is excited by a coil-magnet pair, the coil being
attached to the mid-point of the beam. The flexural Young's modulus is deter-
mined from the resonant frequency and the damping from the measured input energy •
and the stored energy: for the plates, see references [8] and [11]. Here, a
transient testing technique is used in which the plate was excited by an impulse
and the response measured. A fast Fourier transform method was used to change
the data from the time domain to the frequency domain, from which the resonant
frequencies and the modal damping could be calculated. The basic data used in
the computer programs in this work were corrected for fibre volume fraction by
the methods described in reference [12].

4. RESULTS AND DISCUSSION

4.1 Beams

The values of the flexural modulus, E, and specific damping capacity, T, of
beam specimens cut at an angle, 0, to the major fibre direction from two extremes
of hybrid plates (A and D in Table 1) are shown in Figs. 2 and 3. It is clear
that there is good agreement between the theoretical and the experimental values
both for E and T. The outer layer of carbon fibres of the 00 specimen of hybrid
D was not perfectly straight, so that the experimental value of flexural
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modulus is significantly lower than the theoretical one and the experimental 0
value of Y is higher than predicted.

The theoretical curves for the variation of the flexural modulus E and

specific damping capacity Y with the volume proportion of GFRP in the hybrid with
glass and carbon fibre volume fractions of 0.5 at three different fibre orienta-
tions are shown in Fig. 4. It can be seen that in the case of the 00 fibre 0

E
(GPa)(')

ISO-

1000100

6=21?

s 50 0 =o * "

0 00 0 6 068 1'o 0

Volume proportion of OFRP in hybrid (R)

FIG. 4 THEORETICAL PREDICTION OF THE FLEXURAL MODULUS E, AND DAMPING T,
WITH THE PROPORTION OF GFRP (R) IN THE HYBRID AT DIFFERENT FIBRE

ORIENTATIONS. THE FIBRE VOLUME FRACTION IN BOTH GLASS AND CARBON

F.R.P. IS 0.5. 0

theoretical prediction of E ---- theoretical prediction of Y

orientation, the flexural modulus of the hybrid, which only has 20 per cent

volume of CFRP skins, still has 60 per cent of the flexural modulus of pure on-

axis CFRP, but the variation of damping with volume proportion of GFRP is small.

In the case of the 100 fibre orientation, the flexural modulus of the hybrid is 0

much lower than that of the 00 fibre orientation (for R = 0.8) but it is still

much higher than that of pure GFRP for most of the region of volume proportion of

GFRP and the damping of the hybrid is much higher than that of 00 fibre orienta-

tion. In the case of the 200 fibre orientation, the flexural modulus of the
hybrid is nearly constant, but lower than that of unidirectional, 00 100% GFRP,

which is not to be generally expected. Thus, designers may select hybrids with 0

different volume proportions of GFRP and at different values of fibre orientation.

The differences between theoretical predictions of E and T of unidirectional

CGC and cross-plied CGC, where the glass fibre direction in the core is at 900 to

the carbon fibre in the skins, with 0.5 of fibre volume fraction at 00 carbon

fibre orientation angle are shown in Fig. 5. It can be seen that the difference S
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between E and TP of the unidirectional CGC and the cross CGC hybrid is small,
except when R approaches unity, that is for very fine CFRP skins. In other
words, the effect of the core material in this type of hybrid on the modulus and
damping of the hybrid in flexure is, in general, not large. This characteristic
of the hybrid is of great interest for structural design since it allows some 0
freedom in chosing the orientation of the GFRP core.

4.2 Plates

The results for the natural frequencies, damping values, and mode shapes of
the first six modes of the hybrid plates B and C are shown in Figs. 6 and 7. It 0
-s evident that there is good agreement between the theoretical and the experi-
mental values of the dynamic properties of both plates.

The damping measurements of the fifth mode were higher than predicted.
The reason is that the response of this mode during the transient vibration test
was weak and noise is included in the signal. The higher damping measurement of
the sixth mode than the predicted value is believed to be due to air damping and
extraneous sources of dissipation such as at the supports.

Comparing the sixth mode of the plate and the first mode of the 00 beam
from the same plate, and the second mode of the plate and the first mode of the
90 0 beam, it should be noted that there exists a similar stress situation between0
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them since these plate modes of vibration are essentially beam bending modes.

Thus, the corresponding values of damping should be close, which is verified by

the theoretical predictions listed in Table 2.

Table 2. Comparison between some theoretical

damping results of beams and plates

Specific damping capacity (%) •

Specimen 00 fibre 6th mode 900 fibre 2nd mode

direction shape of direction shape of
beam plate beam plate

B 0.49 0.49 4.73 4.66

C 0.46 0.49 4.55 4.53

4.3 Economic considerations

Hybrid composites of this type are normally used for economic reasons in

the same way that an I-section beam is used: the outer layers carry the bending

loads while the core (web) is essentially a shear load carrier. Since the

longitudinal and transverse shear properties of carbon and glass fibre composites

are similar, hybrids offer attractive possibilities for high-stiffness, low-cost

laminates, but there are several parameters which need to be optimised.
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In practice, material with a high modulus and low density is usually 0

required for structural components, so the specific modulus, the ratio of modulus
to density, is generally of interest to the designer.

On the other hand, if cost is a consideration, then the price of the hybrid
will increase with increasing CFRP content.

If specific modulus is less important than modulus, then we can define a
new term, the ratio of modulus to cost index, Me = E/P, which we call the
economic index of modulus. The variation of this economic index of modulus with
volume proportion of GFRP in hybrid composites is shown in Fig. 8.

80. P =

70,

60- so •

0

0 C

E0 30 PR-1
C

03I
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Volume proportion of GFRP in hybrid. R

FIG. 8 THE RELATION BETWEEN THE ECONOMIC INDEX OF MODULUS (E/P) AND THE 0
VOLUME PROPORTION OF GFRP IN THE HYBRID AT Vf = 0.5 and e = 00.
P IS THE COST INDEX AND P.R. IS THE PRICE RATIO OF CFRP TO GFRP.

CONCLUSIONS

The work of Ni and Adams [7] on beams and the work of Lin, Ni and Adams [8] 0 0
on plates has been successfully applieK to sandwich hybrid laminated composites,
which consist of CFRP skins and a GFRP core.

It has been shown that by adding a small amount of CFRP to the surface of
GFRP, hybrid composites can be produced which have a much higher flexural modulus
and lower density than the original GFRP. S S

The theoretical analysis indicated that the effect of core material on the
modulus and damping of this type of hybrid in flexure is generally not large. It
therefore allows some freedom in choosing the orientation of the, GFRP core and
even different core materials.
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A method has been given for assessing the economic value of hybrid compo- •
sites with respect to the stiffness of a beam in flexure. Choice of the optimum
proportions depends on the ratio of the cost of carbon to glass composite.
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The knowledge of the stress or strain history at the critical
point is essential for the estimation of life time of dynamically
loaded structures. Besides the definition of the correct loading
pattern, an identification of the mechanical structure is necessa-

ry. This identification may be carried out analytically or expe-
rimentally. If th6 structure is available for testing the experi-I

mental identification is quite attractive because fewer hypothesis
have to be accepted especially with respect to the damping charac-

teristics.

Nodal analysis enables to determine the dynamical behaviour expe-
rimentally. Hereby the structure is excited by a known dynamical

force, and the response is measured at different measurement
points, distributed over the structure. The modal parameters (na- S
tural frequencies, damping values and mode shapes) are determined
using curve-fitting algorithms.

In order to calculate the strain and stress distribution occuring
for a particular modal deformation pattern for a part of or the com-
plete structure, a finite element model is used. Then the stresses 0
and strains are found for each particular mode, and consequently

combined to derive the stress and strain histories for a particu-
lar dynamic loading of the structure.

Once the stress and strain histories are known in the critical
area, an appropriate damage rule and counting method is used to •
find the damage of one loading sequence. The life time is found
from the number of loading sequences that can be applied to satis-

fy the fatigue failure criterion.

This procedure enables one to evaluate the influence on life time of
various modifications in structural design, material properties ( *
Young modulus, density and fatigue properties), frequency content
and distribution of the dynamical load and damping properties of

the stucture. The technique developed here can readily be applied and
can be used to optimise life time of various types of mechanical

structures.

8 0
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1. INTRUCTION

Structures subjected to a persistant dynamical load can fail for stress

levels which are considerable lower than these permitted for statical

loading. This phenomenon has been studied for a long time and is
known under the name "fatigue". When dimensioning against fatigue, the
structure has to be designed to obtain an acceptable life time.

To estimate life time, "damage" has to be determinated based on the S

fatigue behaviour of the material and the strain history in the criti-

cal loaded area (this is the area with the highest loads). Damage

includes all micro or macroscopic structural changes which has a preju
dical influence on the strength and / or the stiffness of the macro

structure.

In life time calculations the determination of the dynamical stress
components are often based on statically determined stresses and
strains. Dynamical deformations caused by alternating loads can be
considerably larger than the deformations found by pure statical S
calculations. While statical deformations only depend on the stiffness
of the structure, the dynamical deformations are strongly influenced
by the damping. Therefore it is important to include the dynamical
behaviour in life time calculations. The method which is proposed
here uses the dynamical load and the dynamical behaviour of the

structure to construct stress and strain histories. 4

The experimental method was used to find the dynamical behaviour of the
structure. This method has the advantage that it determines the
dynamical behaviour of the structure which is closer to the real
dynamical behaviour than an analytical method. When the dynamical
loads and the dynamical behaviour of the structure are known, the •
dynamical response of the structure can be found, from which the occur-
ring stress and strain distributions in the structure are determined
as a function of time. Proceeding from the strain history in the
critical area the accumulated damage is found. A life time prediction
theory based on the fatigue behaviour of the material, an adequate
cycle counting method and damage accumulation hypothesis enables an 6
estimation of the life time of the structure to be made.
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2. DYNAMICAL HOW1L

The dynamical behaviour of structures is determined by the equilibrium
equation: B0

{f} - [M] {11 + [C] {:k + [K] {x} (1)

where: (M] : mass matrix

(K] : stiffness matrix
[C] : damping matrix S

if : force vector in time domain
{x}, {54, {1} displacement, velocity and acceleration

respectively expressed in the time domain.
This differential equation can be solved. The displacement of point I

due to a dynamical force F in point J can be written in the frequency
domain as:

N UIjk + j Vjjk  Uijk - j Vjjk
XI [------------ -+ - . Fj (2) 0

k=1 -pk+ j (W-Vk) - + i (W+Vk)

where: I : response point
J : excitation point
k : mode number 0
N : number of modes
j : complex variable j =

X, : Fourier transform of response at point I
Fj : Furier transform of force at point J
UIjk , Vj k : real and imaginary part resp. of the modal 0

displacement of point I for excitation in point 3

for mode k.
vk : damped natural frequency of mode k

Pk : decay of mode k
w : frequency

Equation (2) discribes the dynamical behaviour of the mechanical struc-
ture. The modal displacements ((UIjk + j Vijk) for k = 1,2...N,I = all
measurement points of the structure and 3 the excitation point), the 0
natural frequencies vk and the damping values -e experimentally
obtained by a modal analysis test.
The inverse Fourier transformation of formula (2) gives the response
at point I of the structure due to a force input at point J.

t N (pk+jvk)r (JPk-jvk)r
xI(t)=J ( ijk+Vijk) e +(UIjk-jVijk) e } Fj(t-r)dt

k1 (3)
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Expression (3) shows that the response can be written as a linear

combination of the mode shapes. Hereby the weighting factors are

functionsof the complex eigenvalues and the force input function.
Simplifying the notations expression (3) can be written as:

N
x(t) = 2 Re ( -tIk . qk(t) ) (4)

k=l

Where I : a measurement point of the structure with coordinates

t time
xi(t) : displacement response in the x direction at point I

and time t.

YIk : modal displacement of point I in the x direction of the
kth mode.

(t(k+jVk)T

qk(t) = Ote (kj) . Fj (t-t) d T

= the kth generalised modal coordinate.

When the force input point M is different from the excitation point J,
the modal displacements have to be rescaled. 0

F I : response point
SEX  (M) J : excitation point

r W) M : force input point •
structure

Fig. 1 Force input in a point different from the excitation point

7he modal displacements become:
(UMjk + j V.jk) • (UIjk + j VIJk)

UIMk + j VIMk = --- (5)

(Ujjk + j Vjjk) S

3. CALOLATICN OF THE STRMANS

For small displacements the normal strain in the x direction is:

x1 (t)
CIX (t) = (6)

Substituting equation (4) into (6), the normal strain distribution in
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the x direction can be represented in terms of the sum of modal strains
as:

N
E1.1t) = 2 Re (E Ik . qk(t)) (7) 

k=1

Where the strain Ik' is the "modal strain", describes the strain
distribution throughout the structure. The x-strain for each mode is:

WVIk
YIk = ---- (8)

bx

Because of the complexity of most structures of interest, it is usually
necessary and acceptable to consider the response at only a discrete
number of points based on a finite difference model, a finite element
model, or test data. Thus, the response functions for displacement
xi(t) and strain become vector functions of time, (x(t)} and {6 x(t) ). •

4. STRESS AND STRAIN CALCUIATION FOR BEAMeLIKE STRMTUR

Ebrmula (8) may look straightforward but can only be applied in cases
where the displacements in the longitudinal direction (x direction) can
be measured. Ebr beam-like structures the transversal deformations (z*
direction) are more adequate. The calculation of the modal strain
distribution from the modal deformations is illustrated for a two-
dimensional deformation pattern (in the xwz plane). Hereby the bending
deformations are dominating. Looking to the displacements of two suc-
cessive measurements zI and zj, the displacements of points I and 3 can
be characterized by the vectors (Fig. 2):

S

analytical approximation f(x) = •

Zmeasured deformation beam

Fig. 2. Analytical approximation of the dynamical beam deformations



6

{ d1 } = I and { djl = I

Whereby: zI and zj are the displacements in points I and J in the z- 0

direction.

G and G3 are the rotation angles in points I and J around
the y-axis.

If the displacements Zi,zj... can be approximated by the function f(x), 6

than the roation angles can be calculated by:

df(x) df(x)
0I = arc tan

dx x=xi dx x=x

7ne strain in the x-direction of a beam is given by the expression:

d2 f(x)
6 x = z .... (9)

dx
2

hereby is Z the distance between the neutral axis and the considered
axis. Expression (9) is computed for all points of the structure, and
the strain distribution is found for each particular mode. The total
strain as function of time is found by lineair combination of the modal
strains (formula 7).

4.1 Analytical Approximation of Mode Shapes of Beams 0

To reduce the influence of the measurement noise the mode shapes are
approximated by orthogonal polynom.als. The generation of orthogonal
polynomials has been extensively discused by G. E. Forsythe [5). Ortho-

gonal polynomials which satisfy the orthogonality relation in the

interval [-1,1]:

N *
* £w(xk) Pi(Xk) Pj(xk) = bij (10)

k=l 6 i j = 1 for i=j
6ij = 0 for i3j

Where Pj(xk) orthogonal polynomial of degree j evaluated in point xk 0 0
w(xk) : weighting function evaluated in point xk.
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The discrete function Y(xk) is approximated by the polynomial:

M
f(x) - bj Pj(x) (3.)

k=0

Where M : highest degree of polynomial
j : degree of polynomial

bj :coefficient of orthogonal polynomial of degree j.

The coefficients bj are found by the formula:

N
I 2 w(xk) Pj(xk) Y(xk)

k=l

b= (12)
N
Fw(xk) (Pj(xk)) 2

k=l •

The use of orthogonal polynomials has a number of advantages. When

approximating several modes, the polynomials has to be generated only

once, because orthogonal polynomials only depend on the evaluation
points, which are the same for all modes. The optimal degree of the
approximation polynomial can be determined fast, due to the fact that n
coefficients of the polynomial of degree n are identical to the n
lowest degree coefficients of the polynomial of order n+l.

The second derivate is found by generating the coefficients of the 2nd

derivate polynomial. Ihe strain is easely calculated by expression (9).

4.2 Verification of the Modal Strains of a Cantilever Beam

The mode shapes of a cantilever beam made of steel, with a cross
section of 15 x 15 mm2 and a length of 0.85 m has been determinated
using modal analysis and finite elements. Table 1. gives a survey of
the moual parameters which where found.

* S

mode eigen frequency (Hz) damping ratio (%)
F.E. M.A. M.A.

1 17.4 16.0 1.15
2 109.1 100.4 0.85
3 305.5 280.9 0.97

Table 1. Modal parameters found by F.E. and M.A. *
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The resonance frequencies found by modal analysis are a little lower
than the resonance frequencies found by F.E. This is due to the com-
pliance in the fixation point. The modal analysis test yields besides
values for the resonance frequencies also values for the damping ra-
tio's. 1hree methods were used to determine the modal strains:

1) Strains where measured and modal strains where found by modal
analysis.

2) A finite element modal was made and used to compute the mode
shapes and the corresponding modal strains. 6

3) The strains were calculated from the mode shapes found by modal
analysis of the measured accelerations.

Table 2. gives an overview of the strains at the fixated end of the
beam. The strains are scaled to a modal displacement of 1 cm at the

free end of the beam.

max. strain obtained by

strain
mode F.E. measurements M.A.

1 3.82 10 - 4  3.53 10 - 4  4.45 10 - 4

2 2.50 10 - 3  2.47 10 - 3  2.69 10 - 3

3 7.03 10- 3  7.69 10- 3  6.90 10- 3

Table 2. Modal strains at the fixated end of a cantilever beam

strain 104

4 -F. E.
SM----.A.

S. -- measured

2

location on beam S

MODE 1 16 Hz

Fig. 3. Modal strain distribution of mode 1, determined
by different methods

Fig. 3 shows the strain distributions for mode 1 of a cantilever beam.
As it can be seen of Table 2. and Fig. 3 the strains obtained from
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F.E. calculations are very close to the measured modal strains. There
is an maximum discrepancy of 30% between the strains obtained from
differentiation of the modal displacements and the strain measurements.

5. STRESS AND STRAIN CL0J1ATIN BASED ON FINITE RFUMTS

The method based on double differentiation of the mode shapes can not
be used for complex structures. However a finite element model can be
of a great help. The finite element method is based on a structural
model (finite element model) to compute:

- deformations of a static loaded structure
dynamical behaviour (eigen frequencies and mode shapes)

- stresses and strains in deformated structures
S 0

The finite element method will be used here to compute the mode shapes
of the structure. Stress calculations are carried out to find the modal
stresses and strains of the structure. The mode shapes found by finite
elements are compared with the mode shapes obtained by modal analysis
to find the scale factor. The modal stresses calculated from the finite 0 0
element model are rescaled accordingly. The modal stresses and strains
which are found are used to calculate the stress and strain histories.

6. LIFE TIM PREDICICDN OF A TENIS RACKET

A finite element model of a tennis racket was developed by I Sol [6].
The model was composed of 92 beam elements and 56 plate elements (Fig.

4). All beam elements have a rectangular hollow cross section. A nume- -
rical dynamic analysis has been carried out for the tennis racket in
free conditions. hree modal vectors where computed. At the same time a
modal analysis test has been carried out. Table 3. summarises the modal
parameters which where found.

FINITE ELEMENTS MODAL ANALYSIS

mode eigenfrequency eigenfrequency damping ratio *
number Hz Hz %

1 105.9 102.7 1.19
2 290.4 294.3 0.67

3 30o.5 3!n.2 0.47 . *

Table 3. Modal parameters determined by finite elements and modal

analysis of a tennis racket.
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Mode 1 and 3 are bending modes, mode 2 is a torsion mode (Fig. 5).

Fig. 4 . Finite element model of a tennis racket

b) mode 2 290.4 HZ

c) mode 3 300.5 Hz

Fig. 5. Mode shape of an tennisracket found by finite elements.

a) single bending 0 *
b) double bending

c) torsion

A good correspondence was found between the mode shapes determined by * I
modal analysis and finite elements.
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* 0

6.1 Calculation of the Strains

The finite element program supports the stress calculation in plate and

beam elements. For plate elements the F.E. program enables plotting and 0 0

listing of the principal stresses.

* S

Fig. 6. Principal stresses in the plate elements for mode 1.

As it can be seen from Fig. 6 the stress in the plate elements are 0 •

maximum for these plate elements which are located near the frame. rthe

modal stresses for the 2
n d mode are about one magnitude smaller. Fig.

7 shows the cross section stress distribution of point no 52. It's
easily seen that normal stresses are due to the bending. The shear

stresses are mainly caused by bending and torsion. 6

NORMAL STRESS SHEAR STRESS
MAX z 4. 172E+01 MAX z 1.585E+61

0%0

-0% - 7

Fig. 7 Stress distribution at point no. 51.

Fig. 8 shows the tensile stress (of the upper axis) all over the
tennis racket. The tensile stress is maximum in the centre of the
tennis racket. Non zero tensile stress values are found in points

located at the top of the tennis racket. Fig. 9 and 10 show the* *
shear stress distribution of points located on the upper axis and the
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neutral axis respectively. The shear stress for the first mode is
maximum for the cross section located near the connection point of
frame and shaft of the tennis racket. The modal stresses where calcu-
lated for all mode shapes which where taken into account.

\s \

Fig. 8 Tensile stress distribution on the tennis racket, mode 1.

11 S S

Fig. 9 and 10. Shear stress distribution on the tennis racket,

mode 1, in two different locations in the cross section.

6.2 Calculation of the Strain History at the Critical Point

Based on expression (7) the strain distribution was calculated as a
function of time. Hereby the tennis racket was subjected to an impact
load (ball impact) in the center of the frame of 500 N with a duration
of 5 ms. A computer program calculates the strain histories for all
points of the tennis racket. The program looks for the location with
the highest strain peaks. That point will be considered as the critical
point. S S
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E -6

* .

- . 1.5 Z..DB

Fig. 11. Strain history at the critical point

Fig. 11 shows the strain history of point 59, which was found as S S

critical point. As it can be seen from Fig. 11, the first mode has a

dominant influence in the strain history for that point. However other

impact locations can cause other critical points, and other modes can

be found dominant.

6.3 Calculation of Life Time

"he popular "Rain - Flow" cycle counting algorithm [7) was used to find

the cycle types in respect to there amplitude and mean value. Fig. 12

shows the histogram of the cycle types which where found.

frequency

10

6

4

2

0
0 1 2 3 10

strain amplitude

Fig. 12. Histogram of cycles *

Damage for each cycle was found using the W1'hler curve corresponding to

the aluminium alloy which was used to make the tennis racket. Table 4.

gives the damage for each cycle and the accumulated damage.
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I AMPLITUDE I AVERAGE I DAM.ICYCLE I TOTAL DAM.

.310E-02 .605E-03 I .379E-03 I .379E-03 I

.228E-02 .661E-04 .794E-04 .458E-03

.202E-,02 .643E-04 .525E-04 .511E-03

.178E-02 .581E-04 .330E-04 .544E-03

.157E,02 .492E-04 .199E-04 .564E-03

.138E-02 .415E,.04 .113E-04 .575E-03 •

.122E-02 .381E-04 .614E-05 .581E-03

.107E-02 .354Ew04 .313E-05 .584E-03

.949E-03 .300E-04 .149E-05 .586E-03

.836E-03 .254E-04 .655E-06 .586E-03

.737E-03 .227E-04 .272E-06 .587E-03 I S

.650E-03 .214E-04 .107E-06 .587F-03

.574E-03 .183E-04 .410E-07 .587Et-03

S.506E-03 .155E-04 .150E-07 .587E-03
.446E-03 .135E-04 .538E-08 .587E-03 i

.393E-03 .127E-04 .193E-08 .587E-03

.347E-03 .112E-04 .686E-09 .587E-03

.306E-03 .949E-05 .242E-09 .587E-03

.270E-03 .803E-05 .839E-10 .587E-03

.238E-03 .758E-05 .296E-10 .587E-03

.210E-03 .684E-05 .104E-10 .587E-03

.185E-03 .580E-05 .366E-1I .587E-03

.163E-03 .490E-'05 .127E-1I .587E-03

.144E-03 .451E-05 .446E-12 .587E-03

.127E-03 .417E-05 .156E-12 .587E-03 I •

.112E-03 .354E-05 .552E-13 .587E-03
S.899E-05 .928E-04 .555E-22 .587E-03

Table 4. Demage of each cycle and accumulated damage

A total damage of 0.578 10i 3 was found. According to the Miner rule a
life time of 1730 impacts should be reached.

7. CONLUcSICNS

Modal parameters (resonant frequencies and damping values) and mode
shapes gives a complete d escription of the dynamical behaviour of the
structure. For simple structures (beam like structures) the stresses
and strains can be calculated from modal analysis data based on accele-
ration measurements, without the necessity of measuring modal strains.
However the process of calculating strains is based on a double numeri-
cal differentiation. People who are familiar with numerical techniques
know that differentiation is an unstable process and results should be
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interpreted with care. The advantage of this method to obtain the modal
strains lies in the fact that no F.E. model of the structure is re-
quired, and the method is easy to apply.

Better strain distributions can be retrieved when a finite element
modal is available. A dynamical analysis should be made and the modal
strains calculated.

It is not always necessary to have a F.E. - model of the complete *
structure. When the critical component is known, only a F.E. * model of
that component is required. The modal deformations of the particular
component are found by subjecting that component to its respective
modal deformations and calculating the corresponding strain.

F.E. enable the computation of stress - concentration factors which
can then be taken into account. Stress concentration factors are very
important for life time calculations and should never be neglected.
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NOISE ENERGY RADIATED FROM ROD-LIKE STRUCTURES 
0

L.C. Chow and J.M. Cuschieri*

Institute of So-Lid and Vibration Research
University of Southampton w

1. INTRODUCTION 1. /

Drill rods are highly stressed components transmitting a great deal of

energy. Some of the energy input to the rod excites the rod in flexural vibra- 0 0

tion. However, the fraction of energy that goes into vibration is very small,
in the Ordr Of 1O-2, but this still makes rock drilling a noise hazardous
operation'"[1]. Typically the SPL from a drill rod is about 110 dB 1 m away
from the drill. Thus the understanding of the noise generation mechanism in
rock drills is important to control the noise other than the exhaust noise if a
new generation of quiet rock drills are 'to be designed. Using an energy S S

accountancy concept, the noise radiated from a solid hexagonal rod and a tubular
rod is investigated to obtain the parameters that influence the radiated noise.
The operation of the drill is a consecutive series of impacts on the drill rod,
thus the tailoring of this impact is investigated for noise control and drilling
efficiency.

2. THE NOISE ENERGY CONCEPT AND RESULTS

The noise radiated by a machinery structure due to an impact is estimated
using an energy balance between the input, radiated and dissipated energy [2]. 0 0

The sound radiated from a structure expressed in L per event at any frequency
is given by: eq

L (f Af) = 10 log E (fo ) + 10 log a rad 0
eq o escape o d (pm/P c )27rfod s

(1)

where E is the total vibrational energy that escapes into the structure;
C is scape the radiation efficiency at frequency f ; n is the structural
rad . 0 s

loss factor; pm Po are the density of steel and air, respectively, C
is the speed of sound in air, and d is a measure of the average componen? thickness.

For most machine structures the loss factor is relatively high, of the
order of 0.01; the above relation is written in A-weighted form as:

,Arad.

Leq (A, fo9 Af) = 10 log Eescape + 10 log(spectral content) + 10 Aog(- )

- 10 log ns - 10 log d + constant (2)

where A is the A-weighting function. 5

*Now at Department of Ocean Engineering, Florida Atlantic University, Boca Raton,

USA.
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The first two terms in this equation are related to the force spectrum and

the structure response, that is,

E fAf liFaf)1'R (f-- -  per impact (3)Eescape(f°0 Af) - f p ia

H(f ) is the point response defined by V(f ) = F(f )H(f ), where V(f ) is
theFourier transform of the normal velocity of the structure at the point of
impact and F(f ) is the Fourier transform of the input force derivative.

I 0

2.1 The Relevant Parameters in Predicting the Radiated Noise Eiiergy

The force pulse in the time domain can be more readily measured but the use
of a frequency analyser is necessary if an energy spectrum of such an impulse is
needed. The force derivative spectrum is used because for relatively short
impacts it is effectively flat at the dominant frequencies. In this investiga-
tion an approximate spectrum shape and magnitude is used [3] to estimate the
noise energy radiated from the drill rods.

In estimating the radiated noise in broad bands, an average value for the
structure response can be used; the average level being the geometric mean
between the resonances and antiresonances. This approach is more justifiable
at high frequencies where the modal density is high. For a beam structure the
mean point response in flexure is given by [41:

So m I

Re (f 1 (_i) 4  (4)

8TSp /2lTf E

whereas for a thin cylindrical shell structure the response is

~~H (f )

R ef _!H (5)
16 Bp C f

Ed 4 PM
where Bp 2' c / _ and S is cross-sectional area.

1 2(l-v

The radiation efficiency of a long circular pipe vibrating in flexure is a

function of both the number of acoustic wavelengths in one circumference 'ka',
and the radial wavenumber 'k a'. An approximate curve for the radiation
efficiency of a circular rod is given by [21

rad = 1.55 x (kda)2(ka) for < kda < 0.9)
-ka(6

adka - for kda > 0.9
ra d 2

f c
where kOa =ka(l - C )1; = 0 ; K is the radius of gyration

d f c 27rc K

associated with the second moment of area of the cross-section, f is the
coincidence frequency of the structure and a is the radius of rod. c
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The structural loss factor is measured rather than estimated 0
for the two rods. When the rods are fixed to other structures the
loss factor measured represents both the energy lost within the rod and also
the energy that escapes into other structures.

Af poC°

The constant term 10 log( f°2 2 ) is given by -32 dB for a steel
f02 mT m

structure in air for 1/3 octave band frequency analysis.

2.2 Measurement of Noise with Freely Suspended Drill Rods • 0

The noise measurements were done on a hexagonal rod (22.5 mm A/F) and a
hollow cylindrical rod (57.2 mm diameter and 3.2 mm wall thickness) of length
1.33 m. Most of the radiated noise is due to flexural vibrations, thus in the
first test a transverse impact force was applied with the rod suspended
horizontally. The impact was from a calibrated hammer. 0 0

All the terms in equation (2) were either measured or estimated and thus
the noise energy radiated per impact could be estimated. The structural loss
factor of the rods in this position is low, hence equation (1) is used in pre-
dicting the radiated noise energy. Noise measurements were carried out using
an array of microphones positioned on an imaginary cylindrical surface I m away 0 0

from the rod. The A-weighted measured sound energy is compared with the
estimated results (figures 1.1 and 1.2) and the agreement between the two
curves is good. The overall estimated and measured noise levels are very close.
The differences between the estimated and measured level in each one-third
octave frequency "- rd is because the modal density is low and the resonances
in the structure response varies from the mean response, but there is good S 0

agreement in the overall noise level.

The loss factor of the rods was increased by applying the damping tape.
In this case the loss factor approached more what is obtained in practice when
the rods are fixed in the chuck. Comparing the measured and estimated radiated
noise levels, the agreement in this case is much better (figures 1.1 and 1.2). 0 •
The structural loss factor was of the order of 0.001 and thus equation (2) was
used to obtain the estimated noise levels.

2.3 Noise Radiation with Drill Rods in Vertical Position •

Similar experiments were carried out with the drill rods positioned verti-
cally on a concrete block and excited by a longitudinal impact from a drop mass
on the shank end of the rod. Noise measurements were carried out at a distance
of 0.5 m from the drill rod.

In this case another estimate for the radiated noise energy was obtained
by measuring the spatial average surface velocity over 2the rod surface, i.e.,
estimating the radiated noise from E = p0 c So r<v >. Comparing ther.a .00o rad <-z

measured noise energy with the estimates using <v >, the measured
levels are higher at low and high frequencies. This is because of other
background noise from the supporting rig and from the rock rod impact. The •
acceleration noise level is very low and has no effect on the measured noise
levels [5]. Adding the background noise to the estimated radiated noise using
<v >, better agreement is obtained between the measured and estimated levels [lj.

The noise radiated in this case is still due to flexural vibration, even
though the drill rod is impacted longitudinally. The vibrations of the rod due S S
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to Poisson's effect are negligible. This is verified by placing two accelero-
meters on opposite faces of the rod. The two signals were completely out of
phase, indicating that the two surfaces were moving in the same direction,
i.e., the rod vibrated only in bending motion.

The flexural motion of the rod is possible because the impact on the rod
is not exactly square. This also happens during the drilling operation.
Assuming that the impactor mass hits the rod at some angle, then part of the
input force is in the transverse direction which excites the flexural modes of
the rod. The magnitude of this fraction of the impact force cannot be measured;
however an estimate for this angle can be obtained by comparing the radiated
noise to an estimate using equation (2). The estimated angle is well within
the accuracy of the test rig [1].

The fraction of the energy that is radiated as noise using the <v >

estimates is very small, only 0.045% of the input energy for the hexagonal rod
and 0.15% for the cylindrical rod. The reason for the higher fraction of energy
for the cylindrical rod is that the latter has a better radiation efficiency. 4

Also the coincidence frequency for the cylindrical rod is lower and the level
of the structure response is higher, because of the hollow nature of this rod.

From tittse results it can be concluded that the energy concept predicts
the noise energy radiated to reasonable agreement and thus this concept can be
used to investigate ways of tailoring the rod parameters to control the
radiated noise energy. One of the methods which will give large reductions in
noise is the tailoring of the impact and the structure response. However, the
relation between energy transfer through the rods and the impact and rod cross-
section must be studied before tailoring of these parameters for noise control
is investigated.

3. ENERGY TRANSFER MEASUREMENTS AND RESULTS

The rate of energy transfer through the rod is obtained from the input
force pulse and the rod end mobility. In the case of multiple impacts, only the
first impact is considered and the subsequent impacts are much smaller in magni-
tude. Tests on energy transfer were done with the drill rod interfacing
different structures: mainly a concrete block and a steel cone on both the
large and small ends.

With analogy to the propagation of sound in ducts of varying cross-section, *
the transmission efficiency is given by [6J:

T 4 (7)

z 2

where z and z2 are the impedances of each cross-section, or in the case of
structures z and z are the point impedances of the structures at the
interface. This relation assumes that there are no losses at the interface of
the structures.

The energy transferred through the interface is measured by having a force
load cell at the tip of the rod. Then comparing the measured to the theoretical
results (table 1) there is a large difference of about 40%. This is because
the theoretical values are based on the assumption that there are no losses at
the discontinuity. In the case of the rod freely touching the concrete block *
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the rod rebounds and therefore some of the energy goes back into the rod.
Hence the theoretical prediction can only be regarded as an upper bound. When
the rod is fixed, better agreement is obtained. There is no rebound of the
rod and therefore less losses at the interface.

From the table it can be seen that the percentage of the energy trans- 0
ferred using a cylindrical drill rod is about 2.5 times that using a hexagonal
drill rod of smaller cross-sectional area. Thus from these results, the trans-
fer of energy is more efficient using a larger size rod.

The effect of the impact force shape on the energy transferred is investi-
gated by using inserts of aluminium, hardboard, soft PVC, wood and soft rubber 0
to alter the impact contact time. It was observed that the change in the
impact shape did not alter the energy transmission efficiency for the case of
the cylindrical drill rod, although it did for the hexagonal drill rod. The
reason for these results is as follows: by increasing the impact time, the
corner frequencies of the force derivative spectrum are shifted to lower fre-
quencies. For the cylindrical rod the mean value of the real part of the
mobility is constant with frequencies and thus constant energy is transferred
between the top and bottom of the rod. The different impact times do not alter
the transmission efficiency at the rod-rock discontinuity. However, for the
hexagonal drill rod, the mean value of the real part of the mobility varies
with frequency. IL is lower at mid to low frequencies, thus more energy is
transferred by the rod the shorter the impact time.

3.1 Transmission Efficiency

The transmission efficiency at the rod-rock contact depends on the change
of impedance or mobility at the contact point. Matching of the mobility
between the rod and the interface will result Ln a high transmission efficiency.
In the tests the optimum efficiency obtained was from the cylindrical drill rod
onto the small end of the steel cone, followed by the large end of the cone,
the concrete block with fixed end, and the concrete block just touching the rod.
The real part of the mobility of the cylindrical drill rod is of the same order
of magnitude as the real mobility of the small steel surface area resulting in
a high energy transmission efficiency [I].

3.2 Energy Dissipation in the Flexural Vibration

An experiment was carried out to estimate the percentage of input energy
that is dissipated in flexural vibration by the rod. With the hexagonal rod
impacting the steel cone on the large surface, the dissipated energy is
calculated from the definition of the loss factor. The spatial average surface
velocity is measured and the dissipated energy is computed using the measured
average loss factor of 0.01. The dissipated energy was about 3% of the input
energy, thus most of the energy goes into longitudinal vibration. 0 4

3.3 Ground Penetration

Tests were carried out to investigate the effect on penetration due to
different impact times and force magnitudes. These tests were done in sand but
no attempt was made to obtain the parameters of the sand. However, for each
impact test the sand is compressed with the same force. The average penetration
over five blows was taken in each case. For a constant input force magnitude
(fig. 2.1), the results show thit increasing the impact time increases the
penetration. More energy is available to do work. The increase in penetration
is linear with contact time for short impacts, and then the curve levels off as 0 0
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the contact time continues to increase. For the same drop height (fig. 2.2),
i.e., the same energy of blow, the penetration decreased with increasing con-
tact time. The relationship between the penetration and the contact time is
not linear.

The penetration of the hexagonal rod is larger than that of the cylindri- 0
cal rod for the same input force, and this can be attributed to the larger
friction because of the larger contact area between the rod and the ground as
drill penetration starts.

I0

4. CONCLUSION

From knowledge of the impact [orce, the rod structural point response, the
structural loss factor, radiation efficiency and bulkiness factors, the noise
radiated by the rod can be estimated. This equation can also estimate the
change in the noise energy level if any of these parameters is altered. Also 0 0
a bigger size rod radiates more noise, 8 dB(A) higher in this test (fig. 1.3)
for the same input force. The radiated noise energy is only a small fraction
(less than 1%of the input energy and has no effect on the operation efficiency
of the rod.

The damping of the drill rod is usually high because of friction losses 1 0
between the rod and rock and the rod and holding chuck; thus a further increase
in loss factor is not practical. Hence, other noise control methods, such as
changes in the structural response or the impact force, must be used.

Using inserts to tailor the impact, the effect of changes in the duration
indicate that from the operation of the drill viewpoint, increasing the contact P 0
time increases the amount of energy provided that the force magnitude remains
the same. The result of this is that the operation of the drill is not
affected even though a larger drill is used and if the impact is long enough,
such that there is a mismatch between the modified radiation efficiency peak
and the force derivative spectrum peak, then a significant reduction in noise
will be obtained. D

Consider the energy transfer through the drill rod, the larger the size
the better since the transfer of energy depends on the mobility matching at the
discontinuity. Also, increasing the size of rod increases the radiated noise
for the same input force, but for a constant energy transfer, larger size drill
only needs a smaller impact which results in a reduction in the radiated noise 0
energy. However, the resistance in ground penetration also increases and this
has to be taken into account in a new design using a larger size rod since this
may also affect the drilling efficiency. For the same rod size, the shape of
the rod does not have any significant effect on both the transfer of energy and
the radiated noise.

* S

For applying these results in practice, consideration of not only the per-
formance of the drill but also the modification cost must be included. Commer-
cial percussive drilling units have an impact rate of over 40 blows per second.
The softening of the impact to control the radiated noise is limited. The
interval between impacts for 40 impacts/second is of 25 ms, thus by softening
the impact, the contact time cannot exceed this interval or it will result in a 0 S
drop in the drilling performance. This kind of treatment is therefore not
always considered to be very popular. However, it must be kept in mind that
increasing the contact time also increases the amount of energy transfer, thus
the same performance of the drill can be maintained by the proper choice of
impact duration and impact rate.

0 S
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The use of larger size rods also has other disadvantages. Most drill rods
used in percussive drilling are standardized in size and various end bits can
be fitted appropriate to the particular job. Thus, by using different size
rods the operator of the new drill must acquire another set of end bits until
all the old drills (standard size drills) are phased out either through age or
by legislation, controlling the maximum noise levels in mines. Until this 0 0
legislation arrives, the operator will be reluctant to carry more tools, and
also because of the extra costs involved. However, if it is stressed that the
new rods may be more efficient, in the long run the new design drills will be
acceptable by operators both for efficiency and noise control.
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USING A SCALE MODEL TO INVESTIGATE THE POST FRACTURE STRUCTURAL VIBRATIONS AND
NOISE OF A 200 TONNE POWER PRESS

G. Stimpson

..... Institute of Sound and Vibration R'qp~rrh
University of Southampton 0

AD-P003 711
1.0 INTRODUCTION

Power presses are used extensively in the metal working industries for the
production of many types of components ranging from small electrical tags to
large car body panels. This type of machine often poses a substantial noise
problem, the noise emanating basically from the surface vibrations of the press
structure. Because of their generally massive construction and the need for
continuous access for material or component feeding, they are difficult to quiet-
en by conventional acoustic techniques such as enclosure. Noise control at 0
source offers a much better solution if this can be achieved without compromis-
ing working efficiency.

Machinery noise control at source implies control of structural vibration
(unless other non-structural sources are present, e.g., air jet or combustion
noise, etc.). A detailed knowledge of how the machine operates, how forces are
applied to the structure, how the structure responds, vibrates and ultimately
radiates noise is required. Mechanical power presses are relatively complex
noise producers having many individual sources which combine to give the overall
radiated noise. The dominant source, however, during conventional blanking or
piercing of metal are the high levels of transient structural vibration induced
by the fracture of the workpiece material.

The press structure, having finite stiffness, acts like an enormous spring;
it is loaded relatively slowly as the punch contacts the workpiece which deforms
first elastically then plastically and begins to shear (see fig. 1). As
material shearing continues, the material cross-sectional area is progressively
reduced until a point is reached where the remaining material can no longer
support the applied load. The material then suddenly fractures and the structure
snaps back "unrestrained" and oscillates transiently around its equilibrium
position until all the energy has been dissipated. The transient vibration
radiates noise and can also lead to high rates of press wear due to the backlash
impacts which occur in the drive linkage.

As part of a joint ISVR/CETIM project into power press noise and its
control, the noise and vibrational characteristics of a 200 tonne straight-sided
mechanical power press are being investigated. Detailed measurements on the
actual press posed many practical problems and thus a simplified scale model of
the structure was constructed.

The great advantage of a model was not only that it allowed detailed
measurements to be made in the laboratory but it provided the capability to
study the effects of structural modifications which would be totally unpractical
on the full-sized press.

2.0 MODELLING THE PRESS

The model was based on a BRET 200 tonne straight-sided, crankshaft driven,
mechanical press of relatively conventional construction. The main frame
structure was fabricated from a number of steel plates welded together which
made modelling relatively simple. 0 0
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The aim of the model was not to be an exact replica of the existing press
but as an investigative tool representing and isolating the important details
of the structural characteristics. As it was only the noise related to the work-
piece material fracture which was of prime concern in the current study and as
this is related primarily to the material properties and tooling used, it was
not necessary to copy the complex drive and operating system of the press.
Instead, the model was powered by a simple hydraulic cylinder and hand pump.
Also not modelled were complex fabrications at the top of the press, as these
served mainly to support and house the drive mechanism. A photograph of the
completed model press is shown in figure 2.

2.1 Scaling •

A scale of 1/3 on overall dimensions was used. This was chosen so that
the model would be small enough for practical measurements in the laboratory and
yet still large enough so that the vibration and noise radiation characteristics
were truly representative of the actual press. This gave a model height of
approximately 1.3 m.

A direct scaling of 1/3 was not used, however, as to maintain equivalent
working stresses in the side frames of the structure this would have meant a
model with a capacity of over 20 tonnes. In order to reduce model loading to a
more practical level (1- 6 tonnes) a scale of 1/10 was used on material thick-
nesses.

Although the 1/3 on length and breadth and 1/10 on thicknesses scaling is
not a direct dimensional scaling, it does represent approximately a direct
vibrational scaling. This is because the natural frequencies of panel vibrations
will be approximately the same on the model and full scale for this scaling,
thus modal densities and other vibrational characteristics are directly compar-
able. The actual noise radiation by the model will be quite different, however,
as the 1/10 thickness panels will have a correspondingly lOX higher coincidence
frequency and thus be far less efficient at radiating sound from low frequency
vibrations.

It was therefore more relevant to compare the model vibrations (rather than
radiated sound) to those of the full-scale press. Sound radiation from the
full-scale press can be predicted from the model by applying measurements of
panel vibrations on the model to the actual panel dimensions (hence radiation
efficiencies) on the full-size press.

2.2 Loss Factor

The amount of inherent structural damping is a major factor in the vibra-
tional and noise radiation characteristics of machinery structures. It has been
shown that for impact excitation of practical structures, noise radiation is 4
directly proportional to the structural loss factor (1).

The loss factors of the various panels of the model were measured and
matched (if necessary, by the application of strips of damping tape) to measure-
ments made on comparable panels of the full-scale press. In general the loss
factors of the press structure are relatively low (fig. 3), typically 4

"in 8x 10- 3 because of the welded construction. Thus there was reasonable
scope for improvement.

The loss factors were measured by the decay rate method, on the built-up
structure. The results, therefore, represent a measure of the rate of energy
loss from the particular regions of the structure and are not absolute measures 4 4
of the damping associated with each individual panel.
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3. ESTIMATION OF SOUND ENERGY FROM THE VARIOUS PARTS OF THE MODEL 0

3.1 From Surface Vibration Measurements

The sound energy radiated (E) from the various parts of the model structure
was estimated using the well-known relationship: 0

- 2
E pc rad S<V>

where p = air density; c = speed of sound in air; arad = panel radiation

efficiency; S = panel surface area; <v> = space-time averaged surface 0
velocity.

The model is well suited to this type of analysis, being constructed from
steel plates giving clearly defined panel type radiating areas.

The space and time-averaged surface velocity was calculated from a number is
of randomly positioned accelerometer measurements on each of the press panels.
Excitation of the structure was by piercing 20 mm diameter holes in 2 mm thick
hot rolled steel.

As a number of the panels on the model are relatively thin, they will have
a correspondingly high coincidence frequency, Iv 8 kHz for the columns and side 0
panels. The majority of the sound energy radiated by these parts C the structure
will be radiated, therefore, at frequencies well below the coincidence frequency.
Thus, the accuracy of the radiated energy estimations will be very dependent
upon the values of radiation efficiency weighting used.

Accurate values of radiation efficiency for panels with complex edge con- 0
ditions are not available. The best approximations which could be made was to
assume panel vibrations with simply supported edge conditions and use the
theoretical radiation efficiency formulae quoted by Beranek (2).

3.2 Sound Intensity Measurements 0

At the same time as the surface vibration measurements were being made on
the model, measurements were also made of the near field sound intensity
radiated by the structure. Details of the technique are contained in ref. 3
and 4.

Direct measurement of sound intensity, especially from transient noise
sources is a relatively newly developed technique and as such its potential and
usefulness in machinery noise studies is only just being explored. The con-
current measurements provided an opportunity to compare the intensity technique
with the more established method of estimating the radiated sound energy from
surface velocity measurements. S S

3.3 Results

The noise radiated from the various parts of the model estimated by the two
techniques is shown in figs. 4 and 5. Some detailed individual differences were -

apparent but in general agreement was reasonably good in mk,5t cases within 3 dB.
The total radiated sound energy obtained from both methods gave surprisingly
similar results (4.5 x 10- 3 J by both methods) and compared well with measure-
ments of the total far field sound energy (6.7 ( 10-3 j), see fig. 6.
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Comparing the two techniques it was apparent that both methods had inherent
advantages and disadvantages for use in noise source location on structures.
The obvious major advantage of the intensity technique is that it is the actual
acoustic radiation which is being measured and thus eliminating the need for the
often approximate radiation efficiency weighting. However, the technique does
possess inherent errors at low and high frequencies and also measurements can be
contaminated by radiation and reflections from other dominant radiating areas.
The surface vibration technique can thus be more effective in isolating closely
spaced sources radiating vastly different amounts of sound energy.

3.4 Measurements of Radiation Efficiency 0

As both the sound radiation from the individual structural panels and their
surface vibration was measured, an actual value of radiation efficiency could be
obtained, i.e.,

E from intensity measurements
ard rad yrad S<2 from surface vibration

measurements

Measured values are shown plotted along with theoretical curves for simply
supported plates in fig. 7.

In general the results indicated that the thin side panels and columns of
the structure were radiating more strongly below coincidence, than was predicted
for simply supported plates. It must be concluded that this is due to the com-
plex edge conditions of the panels and the stiffening effect of the welds.

4.0 INCREASING THE STRUCTURAL DAMPING

The structural damping of the model was increased by adding sand into the
various hollow sections of the structure. Experiments have shown that sand is
a very effective damping medium and very applicable to machinery structures,
such as the press, which have numerous internal cavities.

Structural loss factors were increased to n" 1 X 10 1 by filling with
sand as is shown for the columns of the model in fig. 3. This led to a reduction
of ')i10 dB(A) in the noise radiation when the treatment % .s applied throughout
the structure.

4.1 Prediction of Damping Loss Factors using S.E.A.

Statistical Energy Analysis (S.E.A.) gives a method by which loss factors
and vibrational energy distribution within a complex structure can be calculated
(5). Such information is very useful in machinery noise control work so that
damping treatments for a particular machine can be optimised.

Experiments applying these techniques to industrial type structures and
machines are at present under way and are proving very effective in calculating
loss factors. The calculated loss factors for the side panel of the model are
shown in fig. 8 and show good agreement with the measured values.
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5.0 OTHER METHODS OF REDUCING STRUCTURAL RESPONSE

It is the amount of strain energy stored in the structure prior to work-
piece material fracture which governs the vibrational energy level which follows
(for constant material fracture characteristics). Thus, for a given tooling
force the vibration and noise energy level is directly related to the structural 4 •
stiffness.

Experiments with the model have shown that the bed plate is an important
component in the structural response. Placed in bending in the loaded structure
it can store a high proportion of strain energy and then act to feed vibrational
energy to the rest of the structure. Tests have been carried out with various 0 4
bed/structure couplings but as yet with little effect on overall response. How-
ever, experiments with a stiffened bed plate led to a further 2.2 dB reduction
in noise when used with the damped model.

It is the sharp changes of input force on a structure which are the import-
ant factors in noise production. In this case the unrestrained structural spring- 4 •
back following workpiece material fracture. Smoothing the input force pulse as
shown in fig. 9 will lead to substantially reduced structural response and noise.

Modifications to the tooling, sheared punches or reduced punch/die clearances
are possibly the simplest method of obtaining a smoothed force history. These
methods often prove unacceptable in practice because of reduced component 4 •
quality or greatly increased tooling costs. An alternative method is to use some
form of hydraulic damping or cancellation device to oppose the structural spring-
back.

Tests with these types of system (6) have shown that they can be effective
but their efficiency is limited by the effective stiffness of the hydraulic
cylinders. Experiments are at present being performed with such a system fitted
to the model and results will be presented as available.
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. ACTIVE FORCE CONTROL IN MACHINERY NOISE 0 0

J.M. Cuschieri

Department of Ocean Engineering
Florida Atlantic University 0
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1. INTRODUCTION

The noise radiated from a machine structure is related to the excitation
force and the structure response, that is physically the operation of the S
machine and the machine structure dimensions and shape. Hence to control the
noise energy radiated, apart from applying damping, one will have to either
modify the excitation force or structure response, by passive or active methods.
The use of active vibration control is investigated in this paper.

The damping of a machine structure is usually very high and it is seldom 0 0
possible to increase the structural loss factor by reasonable amounts to
reduce the radiated noise. Also if increasing the damping of the structure is
possible, methods of doing so which can withstand the adverse environment of the
machine shop must be found. Standard methods such as using viscoelastic material
are not very satisfactory and surely their performance will be reduced after
only a very short time. 0 0

Most machine operations are impulsive in nature and thus one method to
control the noise radiated from the machine is to tailor the force pulse, that
is to increase the duration of the pulse. However, there may be reasons why
this cannot be done and two which are very important are that first if the
operation of the machine is cyclic, the duration of the excitation force cannot 0 0
increase more than the interval between cycles or a portion of the interval due
to other operations of the machine. Second, by increasing the duration of the
force the machine may be slowed down resulting in lost production.

Thus large reduction in thenoise radiated from machine structures can be
obtained by either structural changes at the point of impact (I] which can be 0 0
termed as passive control or by active cancellation of the excitation force.
Which of these two methods is most suitable in a particular noise problem will
depend on the shape of the excitation force pulse.

If the impact contact time is very short, approximately lms, then, in the

frequency range where the ear is most sensitive,that is 10OHz to 10kHz, the 0 0 S
shape of the force spectrum and consequently the noise radiated will depend
on the total shape of the force pulse. Thus in this case the active control
system must cancel the whole shape of the pulse to achieve a reduction in noise
across the whole frequency range. This will be easy to implement, much more
than other forms of control but it is rather impractical, because what it
effectively implies is that the control system must generate a force which is 0 0
equal in magnitude to the excitation force. The whole system must be of the
same relative size as the machine under investigation. This would also make
such a system very inefficient, thus in this case passive control systems
would be more practical. However, if the response of the structure is low in
some frequency range, then with a control system, only that part of the force
pulse which will influence the spectrum at frequencies where the structural 0 S
response is high need to be controlled. This will make the control system much
more practical since the forces needed may be much lower than those developed by
the machine. However, this type of system is more difficult to impliment.

For relatively long force pulses, apporximately 15ms, with very sharp

changes in the force (loading of the machine structure) such as in the case of 0 S
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the operation of a power press [2], then what controls the shape of the force 0

spectrum and thus the radiated noise in the range 100 Hz - 10 kHz is the very
large rate of change of force. Hence, a control system only needs to control
this large force change. This is similar to the case where only the force in
certain frequency ranges needs to be controlled because of the shape of the
structural response. This is more of an advantage in this case because the 0
duration of the force is much longer, usually much larger forces are involved,
typically for a small power process around 50 Tonnes, and to cancel the force
completely the active control system must be capable of generating such forces,
which is not practical and very inefficient.

Thus active force control systems can have two forms, to either cancel the
whole of the force pulse or to cancel the sharp changes in the force. The first
method is much easier to implement, because in the second case more precise
control is needed to generate the shape of the control force, and this will
depend on the force generating system. In previous research, [3, 4] active
force control in impulsive systems has not been studied. Active control has
only been applied to continuous or quasi-continuous systems with low levels of

structural damping. Such systems are not representative of many machinery
structures.

In this work a control system to cancel a complete single excitation pulse
on a simple structure has been investigated. The system was constructed so that
the effects on performance of parameters such as pulse shape, synchronisation
and separation could be studied easily.

2. SYSTEM SET UP AND RESULTS

The best position to place a force control system would be as close as
possible to the excitation force, in this case all the vibrations in the
structure would be eliminated. However, this is not physically possible, and
the closest that the control force can be placed to the excitation force would
be on the opposite face of the structure. Although this is usually possible
it may create problems in retrieving the finished workpiece. An experimental
system with the two forces acting on opposite faces of a structure is investi-
gated and the effect on the performance when the two forces are separated by a
set distance is also studied.

When the two forces act on opposite sides, potentially the reduction in
noise is very high [1] since the modes of excitation that are allowed are of low

amplitude and at high frequencies, outside the frequency range of interest.
The only modes of vibration that will be allowed are those corresponding to
dilation waves, and since the thickness of the structure is usually not more
than a few centimetres at the most, the first mode would occur at high frequen-
cies. For a I cm thick steel plate, the expected frequency of the first mode is
370 kHz.

The experimental system set up, is to control the noise radiated from a
flat plate when impact excited. The duration of the impact is 0.4 ms and thus
the control system is set to completely cancel this force, making implementation
much easier. The requirements for the control system are that a similar and
equal in magnitude control force is applied to the plate in syncrhonisation with
the excitation force pulse. The synchronisation between the two forces is
essential and this is one problem area, especially because of the very short
duration of the impact. The control system must have a very quick response or
the operation of the machine must be repetitive within a fraction of a milli-
second. This may necessitate the use of better bearings and release mechanisms
than the ones that are now in use.
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The system set up that eliminated the problem of synchronisation is shown 0
in figure 1. The position of the hammer that is delivering the impact is moni-
tored by an electronic detector, and when it is at a set position it triggers a
pulse generating device so that some delay time later when the hammer hits the
structure, this pulse triggers the active force system to give a force pulse in
synchronization with the excitation pulse. This set up can be used on any
machine, by monitoring its operation and triggering at some optimum time before 0
the impact occurs. The control force was generated by an electro-dynamic
shaker which was excited by a pulse of duration matching that of the impact. The
shaker was not attached to the plate, just to give single pulse. This is one
area where further development is necessary, mainly to investigate the response
of the shaker to a prerecorded pulse.

The results for the surface velocity and radiated noise energy for a
1cm thick flat plate with the above set up are shown in figure 2 (a) and (b).
The reduction with noise level is very high, about 14dB and the reduction is
constant throughout the whole frequency range. However, this reduction in
noise is lower than expected. If the results are studied carefully it can be
observed that the noise energy spectrum is the same in both cases, only with 0
a difference in level. This suggests that the reduction is only partial, that
is while the two forces have the same shape, their magnitude is not completely
matched. Thus one critical parameter in a force control system is the perfect
matching of the excitation and control force both in the time and frequency
domain. In the case of cancellation of only the sharp changes, the reduction
in the radiated noise will depend on the matching of the force spectra of the 0
excitation force and control force in the frequency range of interest. The
theoretical maximum reduction in noise energy that can be achieved should be
very high and thus in the further development of an active system, the perfor-
mance could be further improved.

3. SEPARATION BETWEEN EXCITATION FORCE AND CONTROL FORCE 0

Since it is not always physically possible to position the excitation
force and control force at either the same position or on opposite sides, the
effect that a separation distance will have on the performance of the above
control system is investigated. The control force is moved along the surface
of the plate and the reduction in noise, both total and in one-third octave 0
frequency bands measured, to determine what maximum separation distance is
allowed depending on the structure parameters.

The mean, frequency averaged response of a plate structure some distance
away from the point of excitation is approximately given by the empirical
formula [5] S

M = MC kr < 0.63

= M, -j(kr-r/4) kr>0.63
A/ r

Where M, is the characteristic mobility of the plate given by S

B is the bending stiffness
is the surface density of the structure
is the bending wave number 0 5

r is the distance from the point of ixcitation.

If the plate is acted upon by two forces, acting in opposite directions,
such as in the case of an active force control system the two forces will con-
stitute a torque of magnitude FX , where F is the magn 4 ie of the forces and
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X the separation, provided that X < 0.63/k. For X > 0.63/k, the coupling bet-
ween the two forces decreases as X increases. This follows from the fact that
the response of the plate is flat up to a distance given by kX < 0.63 and then
decreases exponentially as X increases. For large values of separation the two
forces will act independently on the plate and it would be expected that the
noise radiated from the plate will be 3 dB higher as compared to a single force S
excitation.

For a plate under torque excitation, the torque structural response H(f)
(H(f) = V(f)/F(f), V(f) normal velocity, F(f) time derivative of excitation
force) is independent of frequency while the point force response decreases at
10 dB per decade of frequency [1]. Therefore, at high frequencies the torque •
response may be higher than the point force response. For a reduction in noise,
the frequency at which the torque response and the point response are equal must
be outside the frequency range of interest. This frequency depends on the
parameters of the structure and the magnitudes of the torque and the force. If
it is assumed that the torque has a magnitude FX and the point force a magni-
tude F, then the frequency at which the input energy per unit force for torque S S
and point excitation are equal, varies in the separation. For each separation
this frequency is given in figure 3; here the separation distance is given in
terms of the number of wavelengths of the structure, a4 = Eh2 /(12p(l -v2 )) for
a flat plate. a IN wavelength , E = Young's modulus, h = plate thickness,
p = density, v = Poisson's ratio.

However, because of the condition kx< 0.63 for the two forces to consti-
tute a full couple, and this condition is ftequency dependent, there is another
important frequency which also varies with the separation distance. If the
excitation force has components at all frequencies, for a set separation the
forces are completely coupled up to a specific frequency, given by kx = 0.63.
The variation of this frequency with normalized separation (X/) is also shown S

in figure 3.

Therefore if two forces act on a plate structure in opposite directions,
the two forces being equal, and separated by some distance, the noise radiated
from the plate at each frequency increases at 6dB per doubling of the separa-
tion distance, provided that the condition kX < 0.63 is satisfied. If the two S S
forces are not exactly identical, as in the experimental system investigated
in this case, then the radiated noise will be the total of that due to torque
excitation and that due to point excitation because the two forces are not
exactly identical. However, as the separation increases the condition kX< 0.63
is no longer satisfied and hence the coupling between the two forces decreases,
that is the strength of the excitation torque decreases with increase in separa- 9 0
tion distance. Thus the radiated noise will increase at a slower rate than 6dB
per doubling of distance as the separation increases. With this condition, the
radiated noise may reach a maximum and then decrease to a level which is 3dB
higher than the noise radiated by the structure under the influence of one
force, as the separation distance increases.

Some of the noise measurement results for the plate in one-third octave
frequency bands for band with various centre frequencies is shown in figure 4.
The change of radiated noise with separation distance follows the expected
curve as described above. At zero separation, the noise is solely due to the
difference between the excitation and control forces. The contribution due to
torque excitation should follow the solid line which intersects the level of S 6
noise from the plate when excited by a single force at the separation given by
curve (i) in figure 3. However, above Kr = 0.63, the measured curve does not
follow the solid line since coupling diminishes and the strength of the torque
is thus reduced. With further increase of separation, the radiated noise
reaches a maximum and then decreases to a level 3dB higher than the level of
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noise with one excitation force, when the separation is greater than 25 cm, and
the coupling between the two forces is negligible.

Generalising these results for any structure, the performance of an active
force control system with some separation between the two forces diminishes as S
compared to that of no separation. However, up to a certain separation, which
is both structural and frequency dependent, the application of a control sys-
tem, will result in a reduction of the radiated noise over the set up without
the active system. For most structures the separation at which kX is equal
to 0.63 is usually less than the separation which corresponds to equal energy
per unit force for both torque and point force excitation, for a particular 0
frequency band. Thus any separation distance which is less than this latter
critical distance will give a reduction in the radiated noise energy, and since
the coupling between the two forces decreases at this critical distance, then
the performance of an active force control system will be an improvement in
noise control of the machine even for separation distances slightly less than
the critical distance. For structures where the separation distance corres- I S
ponding to kX = 0.63 is greater than the critical distance of equal energy per
unit force, the performance of the control system very near to critical dis-
tance will be very poor.

4. CONCLUSIONS

The results in this investigation show that active force control is
possible, and that large reductions in noise energy radiated can be achieved,
although the system investigated here would not be ideal in a practical situa-
tion. The performance of the system is very critical on the timing of the
control and excitation forces. For effective cancellation the shape of the
force pulse or its spectrum must be matched exactly and the two opposite forces S
must act as closely together as possible on the structure. In this investiga-
tion the set up was more of a laboratory system and before any new improvements
to the system can be made, better methods of implementation have to be found., -

One area of work which needs improving and on which there is currently
some work going on, is to improve the generation of the control force. At the •

moment, nothing in the system is included to compensate for the response or
transfer function of the shaker. Also better improvement is needed in the
synchronisation of the control and excitation force. This will also be one of
the main problems in implementing such a system in practical machines and the
redesign of certain moving parts and bearing surfaces may be needed to imple-
ment this type of noise control. However, because of the very high potential •
of noise control the research may well be worthwhile in the long run.
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Figure 1. Experimental set-up. C, power amp; D, Ammeter;
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K, pulse generator; N, spring switch; P, Infrared
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MODELING THE RELATION BETWEEN STRUCTURAL VIBRATIONS AND RADIATED SOUND

Dr.ir P.SAS, ir. P.Vandeponseele, Prof. R.Snoeys

Katholieke Universiteit Leuven
Afdeling Mechanische Konstruktie en Produktie

1. SUMMARY

--Two computational methods for estimating the sound power radiated by
mechanical structures are presented. The reported technique fills in
the gap between structural vibrations and radiated sound, and enables
already in the design stage, accurate assessment of noise reduction
measures.
Both methods which are based upon a Helmholtz integral formulation,
require the knowledge of the geometry and the modal characteristics of a
structure's vibrating surfaces , so that the pressure on the surfaces
can be computed.
The first method is limited to flat surfaces and replaces the original
source by a distribution of point sources which are easy to integrate
over the radiating surface. The second method is more general and
accurate but requires considerably more computing time since it includes
a closed form integration of the the associated surface integrals.
This paper reviews some principles on acoustic radiation, the concerned
algorithms are briefly commented and verification experiments, where
close correlation was found between predicted and experimentally
determined sound power levels, are presented.

2. INTRODUCTION

The techniques for the reduction of the sound power radiated by
mechanical structures such as combustion engines, machine tools, etc...
are mainly based upon experimental or empirical approaches. Sound
reducing treatments are nearly always derived from more or less 0
elaborate diagnosis measurements. The efficiency of the related
treatment can only be experimentally verified after the physical
realisation of the sound reducing operation. Seldomly are analytical or
numerical algorithms applied to simulate and/or optimize the impact
of the noise control treatment on the radiated sound power'levels.

Several theoretical studies have been devoted to this subject in
the past and have resulted in analytical formulas which are only valid
for a limited number of relative simple source geometries such as
axisymmetric structures (spheres, cylinders) or flat plates. An
analytical solution for the general radiation problem does not exist, •
numerical solutions on the contrary are conceivable, but apparently have
been neglected, due to numerical instability problems and because of the
considerable computer power required for real life problems. The number
of publications on numerical solutions is only a small fraction of what
has been published on analytical solutions.

Yet a radiation model based on an operational numerical solution
of the general radiation problem could become a useful design and



diagnosis tool. Indeed, with the aid of such a model, people involved 0 0
in noise control would be able to predict the impact of structural
modifications to the sound power radiated by the modified structure.
The objective of our research effort was the development of an acoustic
radiation model based on a numerical solution of the Helmholtz integral
equation, and the integration of this model into a global sound
optimisation philosophy by combining finite element modeling, modal 9 0 4
analysis and the mentioned radiation model. The general lay-out of This
sound optimisation philosophy is outlined in the following scheme.

The acoustic radiation model is the
center of this approach, it has been
conceived such that as well as
experimental data (modal analysis) 1 4
theoretical data, resulting from
finite element models, can be

modal finite treated. The first option yields an
analysis element optimal tool for judging a new design

program with regard to its sound production,
I on condition that a dynamic finite 9 6

mdoatn dfrmas element model of the concerned designdeformations I deformations is available, which is often the case
as more and more design services are
equipped with CAD facilities.

*ARM The second option is similar but
acoustic starts from experimentally obtained
radiation mode shapes and resonance

structural model define
modification modified frequencies. Structural modification
program model programs based upon substructuring

and modal synthesis techniques enable
the prediction of the impact of

radiated Fintensity structural modifications on those S
Spower r I I pa tte rn mode shapes and resonance

frequencies. The combination of
those techniques with the acoustic

modifications radiation model yields a useful
optimisation tool for solving
existing noise problems. For example S S
on a real life structure such as a
combustion ei.gine the influence of
changing locally the stiffness, mass
or damping can be extended to the
radiated sound power.

The second approach is the most accurate since it is based upon
experimental data where the influence of damping is automatically taken
into account. It is however limited to those situations where the
concerned structure physically exists.

3. THEORY

The general acoustic radiation problem can be formulated as the
following boundary value problem : find the solution for the pressure
in an infinite medium, with known density and speed of sound, where an S
arbitrarily shaped object is immersed. As boundary condition the
normal component of the velocity at any surface point of the immersed
object is given. It can be shown that a solution of this boundary
value problem must satisfy the three dimensional wave equation as well
as the Sommerfeld boundary condition Eref. 1,2,31.
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Exact solutions of this boundary value problem are possible when
the surface represents a level value of a coordinate in one of the few
coordinate systems in which the wave equation can be separated
Cref.1,2,3,4]. The most r'aeral of these exact solutions are probably
those for axisymmetric surfaces, where the radial factor of the
pressure is a combination of spherical Bessel and Neumann functions
while the tangential factor of the pressure is expanded in a series of B 4
Legendre functions whose coefficients are determined by the boundary
conditions. One of the problems inherent to such exact solution is
that the boundary conditions must also be expressed in terms of a
series of Legendre functions.

An interesting mathematical property is the fact that, for the S 0
given boundary condition, the 3d wave equation can be expressed as an
integral equation.

This implies the introduction of the
free-space Green function and the
combination of the 3d wave equation with
the Gauss-integral theorem which relates 0 •
a surface and a volume integral. Doing
so, one is able to formulate the pressure
field at an arbitrary field point as the
surface integral of a linear combination
of the surface pressure and velocity over
the radiating boundary. This integral
equation is known as the Helmholtz
integral equation (cf fig.1)

Fig.1 Field lay-out

ag(I T-Tol) I
p(f) - [p(To )  an 0  + jWPV(oW)g(IR- 0l)] dS0  (1)

so

e Jk( IR-Rol)

where g = (free space Green function)

v(R) structural velocity

Since the only prescribed quantity is the surface velocity, the
surface pressure being unknown, the pressure in the field can only be
determined by allowing the field point (R) to approach the radiating
surface and by consequently solving the resulting integral equation 0

(Fredhom integral equation of the second kind) for the unknown surface
pressure P(Fo)"

For arbitrary source configurations, with the solution not
restricted to a particular frequency range, the surface pressure
distribution can only be obtained by solving the Fredholm integral 0 S

equation numerically. Once the surface pressure obtained, the Helmoltz
integral equation becomes a simple integral representation of the
pressure at field points not located on the radiating surface, which on
his turn can be solved numerically.

The integral equation can be circumvented if we can construct a
Green function which satisfies the Neumann boundary conditions. In
this case the unknown pressure vanishes under the surface integral,
thus reducing the integral equation to a simple integral
representation. However a Green function satisfying the Neumann
boundary conditions can only be constructed if : 0
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1)The boundery is completely defined by the value of a single 4
coordinate.
2)The wave equation is separable in this coordinate system.

Similar to the exact solution those conditions are only met for
simple boundaries such as an infinite plane, cylinder or sphere, if the
pressure can be represented by linear conbinations of wave harmonics. •
The solution for infinite plane sources deserves special attention
since it yields the well-known Rayleigh's formula from which it can be
concluded that a planar source located in an infinite baffle is
equivalent to a distribution of point sources. This principle forms
the theoretical basis of the point source model.

-~~ e ikr

P(T)= J2P f r v(R ) dS (2)
2- so o

4. POINT SOURCE RADIATION MODEL

Since the vibration patterns, originating from finite element models or
modal analysis are discrete, they are only determined in a finite
number of points distributed over the surface of interest. As a result D 0
it will be necessary to approximate the applied surface integral (eq.2)
by a summation over those discrete points. This is the equivalent of
substituting the vibrating surface by a finite number of point sources.
Each of those elementary sources represents a fraction (S ) of the
original surface. The acoustic strength of those sources is given by
the product of the partial surface and the structural velocity of the S 4

point where the surface was attributed to.
If for example the vibration of a plane surface is given by a pattern
of n points, the pressure level for an arbitrary point above the
radiation surface is equal to

n i x 0Ki •

Pi Z (jkc v. 2 e Si) (3)i=l

where r. = IR - I
1 1 0

Similar expressions can be derived for the air particle velocity.
Consequently the acoustic intensity is easy to derive, since its value
is by defenition given by the product of particle velocity and
pressure. The acoustic power radiated by a surface is on its turn
given by the average of the intensity normal to the surface, multipled
by the size of the surface. Equation (3) is only valid if the acoustic *
environment is reflection free. The influence of eventual reflecting
surfaces in the neighbourhood of the radiating surface can therefore be
simulated by simply adding image sources at the opposite side of the
reflecting surface. The reflection influence is taken into account by
adding a supplementary pattern of noise sources to the source lay-out,
this supplementary pattern is the image of the original source pattern.

4.1 Accuracy of the Point Source Radiation Model

The accuracy of the radiation model has been verified by comparing the
predictions of the radiation model with experimental results. The
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results of one of those verification experiments are given in fig 2.
This diagram shows the average near field sound intensity levels for
the first five resonance frequencies of a constrained plate. A flat
plate (50x5Ox.2cm) was clamped in a concrete block and excited with
white noise (0-2000Hz). The near field intensity patterns have been
experimentally recorded together with the modal deformation patterns,
which served as input for the acoustic radiation model. The intensity
measurements have been conducted using a two microphone intensity
probe.

As can be noticed from those results, the agreement between
experiment and prediction is fairly good. Up to the fourth resonance
frequency the accuracy is better than 1dB. The larger error of the 0
fifth resonant frequency is probably due to an insufficient number of
source points.

80.6

dB
Mf lluP~d IOufli Intlfl.Wty

- -CIeultod s.,nd t17 on:.ty

85.0-

c

0 ias 2aO 300 400 500 600 740 600 0 1000

Frequency H

Fig.2 Predicted and measured sound intensity for
a clamped plate (50cmxSOcm)

4.2 Applications of the Point Source Model

The acoustic radiation model is well suited for purely acoustic

purposes. Especially visualising the repercussion on the sound field
of parameters such as reflecting surfaces, stiffening ribs or damping
layers, among others... can be clarifying.
As an illustration of such an application the transition of near field
into far field is determined for some modes of the clamped plate. For
that purpose the intensity pattern has been determined by the radiation
mode in a plane normal to the clamped plate. The resulting intensity
patterns are shown in fig.3. They clearly illustrate that the near
field is more extended for the lower frequencies than it is for the
higher frequencies. The transition 'near field into far field' is
characterised by the disappearance of the hydrodynamical short-circuit
phenomenon, all intensity vectors start pointing outwards. A further
illustration is given by fig.4 where the predicted intensity patterns
for some of the resonant frequencies of a free plate, randomly excited,
are represented together with the experimentally measured deformation
patterns, which served as input for the radiation model.
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Fig3 Intensity patterns normal to Fig.4 Deformation and intensity
to a clamped plate patterns for a free plate.

5. GENERAL NUMERICAL SOLUTION OF THE 3-D HELMOLTZ INTEGRAL EQUATION

Searching through literature one will find several papers treating the
numerical solution of Rayleighs integral formula (eq.2), but
publications treating the numerical solution of the 3-D Helmholtz
integral equation (eq.1) are rather scarce.

Concerning the numerical solution of the 3D Helmholtz integral
equation, a review of possible solutions for axisymmetric sources has
been given by Chertock [ref.61. Solutions valid for arbitrarely shaped
sources are given by Chen and Schweikut [ref. , Copley [ref.8],
Schenck Fref.9], Meyer et al. Uref.10], Burton [ref.111 , Terai
[ref.121 and recently by Koopman [ref.13].

Schenck [ref.9] was the first to mention the problems caused by
the non-uniqueness of the solution at frequencies corresponding to the
eigenfrequencies of the associated interior problem. To overcome this
problem he introduced the Combined Helmholtz Integral Equation
Formulation (CHIEF) where an overdetermined system of algebraic
equations is obtained by combining the surface Helmholtz integral
formulation with additional equations generated from the interior
Helmholtz integral formulation. The difficulty of this approach is the
determination of the optimal number and position of the interior points
which are used to generate the additional equations. Except for a
recent paper of Koopman [ref.i3] no application of the combined
Helmholtz integral equation formulation has been reported so far.

858



Another method for overcoming the uniqueness problem was S 0
introduced by Burton [ref.1o and has been refined by Meyer et al
[ref.i1], and later by Terai [ref.12]. This method is based upon the
fact that a unique solution for the acoustic pressure can be obtained
by solving a modified integral equation consisting of the original
integral equation and its differentiated form. This combination yields
a unique solution for all frequency values. Unfortunately, the S S
differentiated form of the integral equation contains a strongly
singular integral, which cannot be directly integrated. Burton and
Mayer approach this problem by using a transformation to interpret the
singular integral. This method is efficient but results in a more
complicated integral equation which requires more computer power.

For our radiation model the principle of the CHIEF method was
preferred, which to our judgment is a reasonable compromise between
accuracy, computational effort and versatility. What makes our
implementation different from previous investigations is the
requi ement that the computational scheme must be compatible with those
used in the existing modal analysis and finite element methods. 0 0
Compared to the method outlined by Koopman [ref.13] a refined near
field approximation is used and a more sensitive near-far field
transition criterium is introduced.

5.1 Principle

As shown earlier (Sec.2) the pressure at a point R on a closed surface
(fig.1) is given by the Helmholtz integral equation (eq.1). By taking
the derivative of the free space Green function (9) the integral
equation can be rewritten as

p(Ro k f= p( eJkr 1
0 2 so 0 r kr - j)cos dSO

(4)
jpck £ )( e j k r dSo 0 0

so

where r = IR - R 0
0

k = 2r/x 5 0

Equation (4) could be solved by direct numerical integration, but even
for simple sources the computations are unrealistic lengthy. An
approximate solution is possible by dividing the source surface 3 into
N planar surface elements. Planar surfaces are far more interesting
since integrations over two dimensional surfaces are more tractable and
often closed form expressions can be found, thereby avoiding numerical
integration. The number of surface elements is chosen such that one
can assume that the velocity or pressure distribution over the elements
is uniform. Equation (4) can then be written as

n
p(Ri) =rI [p(R.) D. - v(Rj) M.j] (5) S S

where p(R) pressure at the center of element i
jkrij

D k e (r J j) cosy.i dSi 5 •
ij 2 r.. k i- j ajSi j  rj 5
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M. - k e ijkr .
Sij rij dSi

If equation (5) is repeatea for each centerpoint of all N elements, one
obtains a NxN system of linear inhemogeneous equations.

[[6ij] - [D ij]] [P j1 = [Mij][Vij T (6)

where 6 is the Kronecker delta

This NxN matrix system can be solved for the element pressures by one
the appropriate methods. We applied the Householder method since it
handles also overdetermined systems, as will be explained later.
Once the pressure on the source surface known it is easy to derive the
acoustic power radiated, since on the radiating surface the particle
velocity is equal to the surface velocity, the radiated power can be
calculated once the surface pressure is known.

5.2 Transition Near Field - Far Field

Further approximations are necessary for the calculation of D and 0
Mij. In order to enable closed form expressions for the integrands of
D, and j a series expansion for r is used for large values of kr
(far field , while for small values (near field) a truncated Mc Laurin
series is used. The transition between the two approximations may not
be confused with the, in acoustics currently used, notions of far and
near field. The far field represents only the region where the series
expansion for rijis more accurate than the truncated Mc laurin series,
and vice versa for the near field. Five terms of the Mc Laurin series
have been used for the near field approximation, which is to our
judgment an optimum. Closed form solutions for all integrands of the
near and far field approximations have been derived. Some of those
derivations required the use of additional coordinate transformations 0
but are too lenthy to treat in this context.

Since the approximations of far and near field can be written as
closed form integral expressions, the elements of the NxN matrix system
(eq.5) are obtained much faster than by direct numerical integration.
This is one of the important advantages of this method. S 0

The criterium deciding when to use the near field approximation
and when the far field approximation has been empirically derived. A
number of test calculations have been carried out to monitor the
evolution of the break even point between the far- and nearfield
approximation, in function of various field and structure parameters. S 0 0
From this parameter analysis following criterium resulted

a) for Mij : (kr) 0.87 fkL
krit

b) for Dij : (kr)krit= 2.10 FL
The farfield - nearfield criterium is in consequence different for the
Mi j and Di j approximations.

I
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5.3 Overdetermination of the N x N Matrix System

It is well known tref.8,9,10] that the Helmholtz integral equation
system (eq. 5) will fail to yield the unique solution of the acoustic
radiation. problem at certain characteristic frequencies. Copley and •
Schenck ref.8,9 have shown that these characteristic frequencies are
identical to the eigenfrequencies of the corresponding homogeneous
interior (Dirichlet) problem. Since the uniqueness problem occurs only
at certain frequencies it might be suggested that the problem can be
avoided by considering only frequencies which are not close to internal
eigenvalues. This is not feasible since the internal eigenvalues are
not known a priori and since at higher frequencies the eigenvalue
density is so dense that it is almost impossible to stay sufficiently
removed from the internal eigenvalues. Moreover since the integral
equation is discretized into a system of algebraic equations, there is
no longer a specific eigenvalue but a range of values at which the
matrix is ill-condidtioned.

Schenck suggested to overcome this non-uniqueness problem by
solving an overdetermined sytem of algebraic equations, obtained by
combining the system of algebraic equations generated from the standard
integral equation (eq.4) with additional equations originating from the
internal Helmhotz integral equation

n
Z Ip(R.)D.. + v(R.)Mijf = 0 (7)

j=l 3 13 'i

Those additional equations are necessarily associated with points
laying inside the source surface. It can be shown that the
overdetermined system of equations yields always a unique solution.
But in practice the position of those internal points is important.
Indeed if those internal points are chosen near the nodal points of the
interior eigenfunctions the additional equations fail to provide the
necessary constraints to ensure uniqueness. In general both the
eigenvalues and nodal lines of the internal problem are unknown so that
one has no guidance in selecting the additional internal points. It is
therefore suggested to use a sufficient number of internal points.

The Householder method, we retained for solving the matrix system
is well suited for handling overdetermined systems, and has therefore
been preferred over other methods. The condition number of the matrix
is used as an indicator, warning the user at which frequencies
singularities occur.

5.4 Accuracy of the General Radiation Model * 0

The accuracy of the general solution of the 3-d Helmholtz integral
equation has been verified by comparing the numerical results with
analytical formulas or experimental results.

5.4.1 Radiation Efficiency of a Pulsating Sphere

To verify the accuracy of the radiation model, the acoustic power
radiated by a pulsating sphere has been predicted by the model and
compared to the levels resulting from analytical formulas which can be
found in most textbooks on theoretical acoustics. Actually radiation • 0
efficiencies have been compared, since they are independant of size and
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amplitude of the source (sphere).

The pulsating sphere has been modeled using 72 triangular
elements. To illustrate the influence of the overdetermination, the
radiation efficiencies have been calculated twice, once without
overdetermination, and once with one additional internal point situated
at r=O.3R (where R is the radius of the sphere). The results are 0 0

represented in fig.5 and show close agreement between the predicted and
analytical efficiencies.

Rad. deg. %

125. 0
0 0

.500

theoretical curve 0

100.0 .

750 0 075.0-

50.0 with overdetermination

without overdetermination

25.0

0.0 ,kR
0.00 2.00 4.00 6.00 8.00 10.00

Fig 5. Radiation efficiencies of a pulsating sphere

The pronounced discrepancies between predicted and analytical results
at kr=3.4 and kr=6.8 are due to the non-uniqueness problem. Indeed
those wavenumbers co-respond with the first and the second internal
resonance frequency of the sphere. This confirms the fact that the
method, we selected for solving the Helmhotz integral equation, yields
erroneous results for frequencies around the internal resonances.
Overdetermination of the system using additional internal points
improves the accuracy (fig.5), but to our judgment further research is
required to optimise the position and number of overdeterminations.

5.4.2 Acoustic Radiation of the Oil Sump of a Combustion Engine

A first real life verification test of the radiation model has been
carried out on the oil sump of a combustion engine. The oil sump is,
because of its size and location one of the noisiest components of
combustion engines. The verification test being not yet fully
completed, we will report only on some intermediate results.

The experimentally measured vibration amplitudes of the oil sump
have been used as input for the radiation model, while the predicted
sound power levels have been compared with the measured power levels.
Test object was a bare engine block with only the oil sump connected to
it. An electromagnetic shaker was used to excite the engine with white
noise in the frequency range (0-2000Hz). During excitation the
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vibration levels as well as the radiated sound were measured. The S S
vibration levels were derived from acceleration measurents at 82 points
all over the structure. Some of those vibration patterns are shown in
fig.6.

4685 H,

50 1

7044HI

.5

Fig.6 Vibration patterns of an oil sump at resonance frequencies

The experimental sound power levels are based on surface scanned near
field acoustic intensity measurements. All surfaces of the oil sump
have been scanned with a two microphone acoustic intensity probe, *
yielding the average intensity for each surface. The sound power
radiated by each surface is given by the product of the averaged
intensity levels with the size of the considered surface. Summing up
the sound power for all the surfaces of the oil sump yields the power
radiated by the oil sump. The predicted and measured power levels are
summarised in the following table. Only the most pronounced resonance •
frequencies have been listed.

Freq. 507.1 605 648 670 704 755.2 795 865 1005 1102

Exper. 65.1 62.4 65.8 59.5 66.0 66.5 62.7 68.8 60.4 65.0

Model 64.3 63.1 66.7 60.2 64.8 67.2 62.1 70.2 61.3 63.5
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The average difference between experiments and model is +/- .93dB which
is an encouraging result. However as we have noticed, by monitoring
the condition number of the matrix system, the non-uniqueness problem
did not occur for the listed frequencies. Much larger discrepancies
between measurement and model predictions might occur for those
frequencies where the matrix system is ill-conditioned. 0

Undoubtly further research and experiments are necessary to
verify and improve the accuracy of the radiation model. In the near
future we hope to report in detail on the oil sump verification test
and on the effect, predicted by the model, of structural modifications 0
on the radiated sound power.
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AD-P003 714 •
DEVELOPMENT OF THE AEROSPACE STRUCTURES

TECHNOLOGY DAMPING DESIGN GUIDE

J. Soovere*, M.L. Drake**, V.R. Miller*** and L.C. Rogers***

1. INTRODUCTION

. Aerospace structures and equipment mounted in these structures are
required to operate under a wide range of dynamic loads. When structural
resonances are excited, the dynamic loads can produce excessive vibration
levels in the structures and equipment. These vibration levels can be signif- 0
icantly reduced by increasing the damping in the dominant modes through the
application of viscoelastic damping technology

The above vibration problems are often encountered following some
initial in-service exposure. The high cost of subsequent structural changes
has made the application of viscoelastic damping technology both attractive
and cost-effective in solving these problems. In many instances the reduction
in resonant vibration response has been quite dramatic (Figure 1), exceeding
that possible with stiffening for the same weight increment [1]. The need for
greater accuracy and reliability has extended the application of this tech-
nology to guidance systems, optical systems, and circuit boards to name a few.
It has been used to reduce the vibration in stiffened aircraft structures and 0

jet engine parts, the cabin noise in the aircraft, the noise emitted by diesel
engines, and the noise transmission in buildings. The use of viscoelastic
(passive) damping is also expected to increase in space applications, in
conjunction with active damping, since the inherent damping is very low in
aerospace metals and high modulus graphite/epoxy composites. These latter
materials are being used in increasing quantities in space structures. 5

Vibration testing and data analysis capability has increased dramatical-
ly in recent years. The resonant frequencies and damping in structures can
now be determined much quicker and with a greater accuracy. The dynamic loads
and vibration environments encountered by aerospace structures and equipment 1
are reasonably well known. Damping materials covering a temperature range
from -650F to 1500'F have been developed. The theory [2,3] for simultaneously
curve fitting the measured modulus and loss factor for improved accuracy and
consistency has been developed for these materials. The basic Ross-Kerwin-
Ungar [4] analysis methods for application of viscoelastic damping to beams
and plates and the subsequent work by many authors [5,6] have been
complimented by the development of finite element methods [7,8] which enable 1 0
the damping technology to be applied to more complex structural designs. Many
successful applications of the viscoelastic damping technology have been
reported in the literature. Consequently, it should be possible to anticipate
resonant vibration problems and apply the damping technology at the design
stage. This approach would not only reduce the cost relative to a subsequent
design change, but could also result in a lighter design (Figure 1). This
need is becoming more evident as limits of current technology are being
approached.

To fully capitalize on this viscoelastic damping technology, it is first
necessary to bring all of the pertinent information together in a damping
design guide. For a wide appeal, the design guide must be suitable for use by
designers. This paper provides a brief outline of such a program, performed

• Lockheed-California Company
•* University of Dayton Research Institute
• Air Force-Wright Aeronautical Laboratory
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in three phases, over a period of 34 months. The program will be completed in

July 1984.

2. TECHNOLOGY SURVEY

A technological survey was conducted, primarily in the United States, to •
identify the aerospace companies, government agencies, research institutes,
and individuals active in the field of viscoelastic damping technology. A
questionnaire was developed to identify the scope of this activity. An
eighteen percent response was obtained to the mailed questionnaires. The
results indicate a wide field of application (Figure 2) for the damping
technology, primarily for vibration control, followed closely by noise control 0
and fatigue suppression (Figure 3). The data in these figures have not been
normalized since many of the respondents were involved in more than one field
of activity. The classifications of the individuals involved in this activity
is indicated in Figure 4. The research and development (R&D) and the manage-
ment columns combined represent 93 percent of the individuals active in the
field. Consequently, most of the design and production activity is also being 0 S
supported by the R&D engineers. This result indicates a need for greater
dissemination of the damping technology, a primary objective of the damping
design guide.

3. DAMPING DESIGN GUIDE FORMAT

The damping design guide has been organized into three volumes.

Volume 1 is intended to be a reference volume summarizing the work
performed to date on the application of damping technology and the allied
fields. It also contains a bibliography of the published articles in these
fields and an assessment of future needs. I •

Volume 2 is intended to be the user oriented design guide. This volume
contains a brief introduction to vibration and damping, and a general dis-
cussion on how to identify potential vibration problems and how to select the
appropriate damping treatment. One chapter will feature design
equations/nomograms for predicting the dynamic response of common structural S
members, both with and without damping treatment. This will be followed by a
chapter on worked examples based on successful applications of damping
technology. The worked examples are divided into the major fields of
application, each introduced by a summary of the problems encountered in that
field and followed by a single example for each type of problem.

All of the worked examples and analysis methods have been obtained from
literature. The worked examples include a comparison of predicted and
measured results such as illustrated in Figures 5 to 7 for circuit boards [9],
bolts [10] and exhaust ducts [11], respectively, to name a few. Finite
element methods, and results of finite element analysis, involving application
of dam ini, are also included. A typical finite element model of a turbine I S
blade [12] damped with a surface glass treatment is illustrated in Figure 8.
A total of 234 elements were used to define the damped blade. The
cross-section of the blade (Figure 8b) consisted of fifteen elements for the
blade and twelve elements each for the nickel and glass layers. The analysis
was performed at temperatures of 800, 925 and 10000 Fahrenheit (427, 296 and
5380 Centigrade). The peak damping was obtained at the temperature of 925'F •
(see Figure 9) in the first mode.

This volume also contains a brief summary of other case histories
available in literature for which complete information is not available. The
purpose is to broaden the scope of application beyond the worked examples.
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Measured damping levels in typical aerospace structures and materials are
included for use in the analysis when measured damping data on the actual
structures are not available.

Volume 3 contains the damping material data required by the designer.
The damping material modules and loss factor are presented in the form of the 4

reduced temperature nomogram [3] (See Figure 10) which is accompanied by a
data sheet, Table 1, containing other pertinent information. The use of this
standardized data format is explained in the introduction of this volume. The
organizations from which these damping materials can be obtained are also
listed in this volume.

The damping application can be designed using Volumes 2 and 3. These
volumes are intended for use in loose-leaf binders to permit updating of the
design methods, in light of experience gained, and of the damping materials
which are subjected to change from the normal market pressures.

4. CONCLUSIONS 0

A design guide is being developed to encourage and permit the applica-
tion of viscoelastic damping technology at the design stage. It is recognized
that the designers will require assistance from dynamicists in the initial use
of Volumes 2 and 3 of the design guide until they become familiar with dynam-
ics and viscoelastic damping. They will also require help with finite element S

analysis, dynamic loads/vibration levels/test specifications, and test meth-
ods/data analyses required to verify the performance of the damping treat-
ments, which are usually the responsibility of the dynamics engineer. The
widespread use of this relatively specialized, but essential technology is,
therefore, dependent upon the assimulation of this technology by dynamics
engineers outside the R&D classification. The damping design guide, it is
hoped, will speed up this process.
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FIG. 8 FINITE ELEMENT MODEL OF TURBINE BLADE
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CONTINUUM MODELLING OF DAia'ING IN LARGE SPACE STRUCTURES

S. Abrate and C.T. Sun

School of Aeronautics and Astronautics

Purdue University (U.S.A.) 03 715 " "
1. INTRODUCTION

"Large Space Structures (LSS) are periodic lattices made up of a large
number of elements. Their overall appearance may be that of a beam or a plate,
and the complexity of their finite element models results from their topological
complexity rather than that of their expected behavior. Therefore several
investigators have developed equivalent continuum models to simplify linear [1]
and nonlinear [21 analyses. These simple models accurately represent the
behavior of the original structure for long wavelengths:[31!

LSS are subjected to stringent requirements for position, shape and
vibration control so that an active control system needs to be implemented.
Passive damping in LSS insures the stability of the active control system,
allows for higher gains, reduces the bandwidth and therefore the number of
sensors and actuators to be used',PH. Sources of damping can be many, among
which joint friction and internal damping seem of interest. In this study
internal damping will be considered. The formulation of mathematical models
including damping effects for discrete and continuous structures are discussed,
the damping properties of the equivalent continuum models are determined and
results are presented for several examples.

2. MATHEMATICAL DAMPING MODELS 0

The basic phenomena at the origin of damping are not fully understood and
several mathematical models have been proposed each being adequate for certain
applications [5]. With differential models, stress, strain and their time
derivatives are related through the relation

n m 0 S
Pk-1 a q i C(i-l) (i)

k=1 i=l

where a superscript k designates the kth time derivative. In Eq. (1), with
p 0 1, the case n = I and m = 2 corresponds to Kelvin's solid, and n = 2 and
m =2 to a Standard Linear Solid (SLS). 0 4

Hysteretic models are used to describe materials for which damping is
frequency-independent. For steady state harmonic motion we have

a = (E + iE')c (2)

where i and c refer to the amplitude of stress and strain, E and E' are two
material constants.

This model should not be used for transient response calculations since
then the principle of causality is violated [5]. The viscous damping model is
in disagreement with experimental evidence for high frequencies, and the SLS 40

model is expected to be more realistic.

Experimental data is lacking since tests for aircraft structures
applications are generally performed at higher stress levels and frequencies
than those of interest for LSS. Then, only the simplest mathematical models
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(Kelvin's solid, SLS, hysteretic model) can reasonably be used until more data
become available.

3. STRUCTURAL DYNAMIC MODELS

The analysis of trusses and frames is performed using the Finite Element
Method (FEM). For viscous damping the equations of motion are

[M] u)} + [C] {C'} + [K] {u} = {F} (3)

where [M) = mass matrix, [C] = damping matrix, [K] = stiffness matrix,
{u} = nodal displacement vector and {F} = external force vector.

For the steady state response of a structure with hysteretic damping,
the equations of motion are

([K] - 2 [M] + i[H]) U} = {F} (4)

where o is the excitation frequency, [H] is the hysteretic damping matrix and

{0} and {F} are the amplitude vectors of the nodal displacements and external
force respectively.

In the case of SLS type of damping, the equations of motion are

[DI {V} + [M] (U} + [C] {,!} + [K] {u} = F} (5) 6

To obtain a model for an entire structure damping can be prescribed at
the element level according to Eqs. (1-3) and then global matrices are assembled
as usual. Another possibility is to prescribe damping at the structure level.
When proportional damping is assumed the damping matrix in Eq. (4) takes the
form [C] = a[M] + i[K]. While this assumption allows the modal equations to be
uncoupled, there is no justification for it and the coefficients a and f are
choosen arbitrarily. Damping matrices can also be formulated so that each mode
of the structure has a prescribed damping ratio. Again, tests results or
previous experience with similar structures is necessary to select these ratios.
Since ground testing of LSS is difficult due mainly to their size [6], and the
reliability of test results is questionable, it is difficult to prescribe
damping at the structure level. Damping is more conveniently prescribed at the
element level.

The formulation of the Timoshenko beam element is extended to the case
of viscous damping in [7]. For steady state response analysis, the hysteretic
damping model was adjusted so that for the first natural frequency of the system

( the response matches that obtained when viscous damping is used. That is
[HI "1 [C] in equation (4). A plane truss finite element with SLS type damping
is formulated using Calerkin's method.

4. EQUIVALENT MODELS 0

The equations of motion of a Timoshenko beam with SLS type of damping are

GA(w" + a') + G'A( i" + $') + q + pli = pA(w + plw) (6)

GA(w' + ++ G'A(' + )-E - E'lI" + pl( + pl) = 0 (7)

where w is the transverse displacement, 4 the rotation, E1 and GA the bending
and shear rigidities, pA the mass per unit length, o1 the rotatory inertia.
For viscous damping, set pI = 0. For hysteretic damping let E and G be
complex quantities in the undamped equations of motion. •
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For a simply-supported beam an analytical solution for the steady state
harmonic loading is obtained using modal expansion while for transient analysis
the finite element method is used.

The properties of the equivalent Timoshenko beam have to be evaluated from
the properties of the original structure. Extending the method proposed in [1]
for undamped structures, we isolate a single cell and apply harmonic loading to
produce global extension, bending or shear (Fig. ). In simple cases formulas
are obtained for the various coefficients, and for more complex situations a
numerical procedure is used.

4.1 Plane Truss with Damping 0

The equations of motion of the plane truss in Fig. 1, subjected to
harmonic loading are

(IK] + iw[C]) fU} = (F} (8)

for viscous damping. For bending motion for example

{U} = {UI' U2, V2 9 U 3, V 3} { (F} = fF, -F, 0, F, 0

Solving Eq. (8) we get UI F/(EA I/L) where E = E + iwE', E and E' being
equal to qo and q1 in Eq. (1). Since tie bending moment is M = F.H, and the 0
curvature /Ax 2(U1 /HL), the equivalent complex rigidity M/(A4/Ax) = (F/U1)
2 21

H L becomes - EAIH . So the equivalent beam coefficients are

- 2 2(9EI EA1 H and T= E'AIH (9)

Following the same procedure for axial and shear deformation we obtain

EA = 2[EA 1 + (EAd/li)(L/D)3  2[E'A + (E'Ad/ i)(L/D 3 ]

2 32 3(10) 0

GA = 2EAd(H 2L/D) , G'A = 2E'Ad (H 2L/D )

where i 1 + 2 (EAd/EAt) (H/D)
3

For hysteretic damping the same procedure applies and results (9,10) still
hold.

4.2 Numerical Determination of Equivalent Damping Properties

Considering a complex cell (Fig. 2), harmonic loadings are applied to
produce global extension, bending, torsion or shear deformation (Fig. 3). 0
Using the FEM, this cell can be analyzed directly as described in Sec. 3. In
axial motion for example, the axial displacement is 6 = 6 + i6. which corresponds
to a strain E = 6/L = 6/L + i6./L, L being the cell length. For a viscously
damped homogeneous bar (a = Ec + E' ) subjected to a stress c = a exp(iwt), the
strain c = E exp(iwt) with co = [G () + iG2 ()] a0 where G = E9 [E2 + (A')21,

G2 = -E'w/[E 
9 + (AE') 2 1 so that E/E' = -(I/2)(G2/G1 ) = 1I e 0

Since the structure and its equivalent continuum should experience the
same strain under the same load, E'A/EA = -(l/)6i/6 and since the equivalent
rigidigy EA is already known from static tests [1], the equivalent damping
coefficient E'A is readily obtained.
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5. EXAMPLES

For the truss in Fig. 4, the equivalent properties are determined using

Eqs. (8-10). The steady state response predicted by direct analysis and the

equivalent models are compared in Fig. 5 for viscous, hysteretic and SLS type 2

damping respectively. The damping coefficient is assumed to be E' = 4xl0 8N/m 0 0

-sec which leads to the equivalent damping properties of the truss beam given

by
52

E'I = 4.OxlO
5 N - m - sec

G'A = 8.24xi03 N- sec . •

The transient response to an impulse of duration 1.5xT 0To 
= period of first

bending mode), is determined by direct time integration for both the original

structure and its equivalent model which was in turn discretized in 10 elements.

Results in Fig. 6 show good agreement.

A cantilever latticed beam with triangular cross 
section (Fig. 2) was

studied next. Given that E'/E = 0.001 for the longitudinal members and

E'/E = 0.005 otherwise, the numerical procedure of Sec. 4 gives E'I/EI = 0.00159

and G'A/GA = 0.005.

The steady state response given by the continuum model agrees well with

* the direct solution as shown in Fig. 7. 0 0
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Figure 1: Testing or a typical cell: a) axial force applied, -
b) bending moment applied, c)transverse shear force applied
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Figure 3: Testing of a complex cell:

a) extension, b) bending, c) transverse shear
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Figure 6: Steady state response of the simply supported
truss: a) viscous damping, b) hysteretic damping,
c) standard linear solid damping
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DETERMINATION OF RECEPTANCES OF LOCALLY

DAMPED STRUCTURES

- H. Nevzat OzgUven 0
0

Department of Mechanical Engineering C)

Middle East Technical University. Ankara, Turkey

1. INTRODUCTION

The mode superposition method is a useful tool In vibration analysis of
structures. Receptances of a discretized model can most easily be determined by
modal analysis If the structure Is undamped or classically (proportionally) damped.
When the damping is non-classical, the method necessitates the use of complex
modal vectors [1-3]. which Increases the computational time required for both the 0
elgensolution and the modal summation, For structures with frequency dependent
Internal damping properties (e. g.. coated with viscoelastic materials), a different
complex eigenvalue problem must be solved at each exciting frequency. Various
approximate modal analysis methods, on the other hand. are available for the
dynamic analysis of non-classically damped structures. Most of them require the
solution of a real elgenvalue problem and then use the undamped modal data to 0
predict the dynamic behaviour of the damped structure. Application of these
approximate methods Is usually limited by several factors such as level of damping or
separation of modes. As the survey of these methods can be found elsewhere [for
example. see 4 and 5]. It need not be repeated here. Several authors have also
discussed and compared the validity of various approximate methods [6-10).

- 9 In this work a method Is proposed for the computation of the receptances of a

non-classically damped structure from their undamped counterparts. which can easily
be obtained from the undamped modal data. A numerical example Is given.

2. THEORETICAL APPROACH

2. 1 Modal Analysis

Consider a discrete model of a damped structure. The equation of motion can
be written as

[MI (x + [[K] + I(HII (x) (F) (1)

where (MI. [K], (Hi are mass, stiffness and structural damping matrices of the
system respectively; (x) Is the vector of generalized coordinates. (F) is the
generalized forcing vector and 1=-T. The dot denotes differentiation with respect to
time. The undamped modal data for the system under consideration can be obtained S
by solving the following elgenvalue problem

[K] (*) = wZ [MI (*1 (2)

Solution of equation (2) yields n undamped natural frequencies. wrzand n real
modal vectors. Wr), where n is the order of the system. The orthogonality of the 0
real modes with respect to the mass and stiffness matrices renders the dynamic
analysis of the undamped system straightforward. The modal vectors of the undamped
system can be normalized with respect to the mass matrix

IT [M] (] 1= (I, (3) 0
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j#IT [K) [.) = [wrra (4)

where [Ci and i] are the modal and unit matrices, respectively, and (Wrz ] Is a
diagonal matrix containing the squares of the undamped natural frequencies. The
transformation 0

(X) toi] (n)(5

uncouples the equation of motion of the undamped system in which case the
equation of motion takes the form

(N) + (wrZ) (n) = (41T (F) (6)

The principal coordinates (n) can be solved from equation (6) and substituted into
equation (5) to yield the response to the excitation (F). For a harmonic excitation of
frequency w, the response can be written as 4

n (#r) (er)T (F)(x) = r: (7)__ _

r=1 ar 2 - W1j

from which the receptances of the undamped system can be Identified as

n (*r) (,r)T
[ = _ (8)

r.1 ir 2 - (az

The classical damping case (I. e., In which the undamped modal matrix is orthogonal
with respect to the damping matrix) does not Introduce further complications: For a
classically damped system the receptance matrix can be calculated from:

n (er) (,r)T
r1 dr2 - wiZ + ihr (

where hr is the modal damping and defined as

hr = (,r)T (HI (#r) (10)

In the conventional approximate method for the dynamic analysis of
non-classically damped systems, equation (9) is used by Ignoring all non-diagonal
elements of the transformed damping matrix. However, the method has Its drawbacks
and Its limitations as discussed In [7,8, 101.

2.2 The matrix Inversion Method

Consider again the system described by equation (1). For a harmonic
excitation of frequency wi It can be re-written as

[K] - .M] + I(H] ] (x) = (F) (11)

where the Inverse of the coefficient matrix can be identified as the receptance matrix S
of the damped system; that Is

[a] = ( [K] - wZ(MI +I[H] ]-1 (12)

Similarly. the receptance matrix of the corresponding undamped system. 11S). can be
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written as

(1 = 1 [K] - waZ[M] ]- 1  (13)

Incorporation of equations (12) and (13) yields

t(]-I = 1/)]-1 +i[H1 (14)

Premultiplying both sides of equation (14) by (31 and postmultiplying by [a] yields the
required relationship between [a] and [0]

[) = [a] + 11 [H] [a) (15)

or

[)1 = [)I] + 110] (HI I [a] (16)

The receptance matrix of the damped system can then be written in terms of the
undamped receptance matrix [a1 and the damping matrix CHI as

[a] = t [I] + i[/)] [H] ]-1 [(31 (17)

Alternatively, equation (16) can be solved for (a]. which does not require a matrix
inversion but the simultaneous solution of a set of complex equations. For local
damping treatments, equation (17) can be partitioned to reduce the order of the
matrix to be inverted. Furthermore, as the real part of the matrix to be Inverted is
the unit matrix, the computational effort required for Inversion Is reduced
considerably.

It is also possible to derive equation (17) by using a substructuring approach.
that is to say by Insertion of a secondary system into the primary one via receptance
coupling, basic principles of which has been given by Bishop and Johnson (111.
Such a technique was used by Hammill and Andrew [121 to calculate the effect of a
small number of discrete damping sources upon particular receptances; the method
was then extended by OzgUven [51 to determine the complete damped receptance
matrix. In both works the effect of external damping sources are Investigated. Using
a similar technique and treating the Internal damping as external forces acting on the
undamped system, would again yield equation (17). However. the procedure would
be more complex and It would Involve physically somewhat meaningless mathematical
operations, such as considering a negative element of the internal damping matrix as
a negative external damper.

2.3 Locally Damped Systems

For a locally damped system, the damping matrix [HI can be partitioned as

[HI = 1 (18)
t[01 (01]

where [Hll] is the nonzero part of the damping matrix of order m. It can then be
shown (51 that the damped receptance matrix can be put into the form

([x11] = [ [I] + 1(011] (Hl] ]-1 [(011] (19)

1a121 = [I] + 1113111 (H 1 1 3 1-1 [0121 (20)

1a211 0211 - 1[(3211 1 ] 11xll (21)

8 8
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[U22] = 113221 - 1[0211 [HIll [a12] (22)

where subscripts 1 and 2 refer to damped and undamped regions, respectively. Thus
the receptance matrix of the damped system can be obtained by inverting a single
complex matrix whose real part is the unit matrix and therefore the effort necessary to
Invert It Is comparable to that of Inverting a real matrix of the same order.
Furthermore, the order of the matrix to be Inverted Is just mthe value of which
depends on the number of damped points in the discretized model.

For structures with both uniform and additional local damping, the damping
matrix can be written as the summation of a proportional damping matrix and a
non-proportional one In the form of equation (18). Then the matrix Inversion method
can again be used economically by considering only the non-proportional part of the
damping in equation (17), and by taking the effect of the proportional damping into
consideration In evaluating [0] (i.e. , by using equation (9) instead of equation (8)
for the computation of 01).

3. RESULTS AND DISCUSSION

The method Is applied to a simple two degree of freedom system with

M) 1 kg
0 10

2.05 106 -2.50 105

[K] = I N/in
[K -2.50 105  2.50 105 I

H 1.15 105 -2.50 104 1[H] = ]N/in

-2.50 104 2.50 104

which may be considered as the combination of two classically damped systems
having the loss factors iv1 = 0. 05 and t12 = 0. 10, producing a non-classically
damped system when combined. The undamped natural frequencies of the system
are

w1 = 147.58 rad/s and w2 = 642.82 rad/s

The receptance matrix of the system Is calculated at a number of frequencies
Including resonances by the method suggested, and then the results are compared
with the exact values which can easily be obtained for a simple two degree of
freedom system. The comparison of the results shows that the method suggested
yields the exact values for both real and Imaginary parts of the receptances at every
frequency. Table 1 shows the calculated values of the receptances at several
frequencies. The selected frequencies are the frequencies at which either the real
part or the Imaginary part or the modulus of the receptance shows a maximum.

Increasing the damping 10 times did not deteriorate the accuracy of the
results. Indicating that the method works for heavily damped systems as well.
However, It should be noted that In the numerical example given the exact values of
the undamped receptances are used rather than the truncated values, and this will
not be the case when the method Is applied for large structures. A continuing study
Investigates the effect of using truncated receptance values on the accuracy of the
method. Also a numerical technique Is currently under development to avoid the
Inversion process of the complex matrix In equation (17). trying to make the method
economical even for systems with large damping matrices.

8 9
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Table 1 - The computational values of the receptances

Exc. Freq. al Real Part Imag. Part
w (rad/s) Re{c) (m/N) Im(a) (m/N)

all 0.9474 10-6 -0.4255 10-6
141 a12 0.3267 10- 5  -0.3211 10- 5

a22 0.2437 10- 4  -0.2598 10- 4

a11 0.8362 10-6 -0.7188 10-6
145 =12 0.2292 10- 5  -0.5416 10- 5

a22 0.1605 10- 4  -0.4284 10- 4

a11 0.5815 10-6 -0.8434 10-6

Wl a12 0.2720 10-6 -0.6308 10- 5

a22 0. 1273 10-6 -0.4886 10-4

all 0.5320 10-6 -0.8452 10-6
148 a12 -0.1127 10-6 -0.6304 10- 5

a22 -0.2844 10-
5  -0.4870 10-

4

5. CONCLUSION

In this paper a method of determining the receptances of a locally damped
structure from their undamped counterparts Is proposed. The method, in general.
can be used to predict the receptances of any damped system. However, the
Inversion process restricts the economical application of the method to structures with
small damping matrices. Yet. it Is always possible to separate the damping matrix of
a non-classically and fully damped structure Into proportional and non-proportional S
parts. It the non-proportional damping matrix can be arranged and partitioned such
that the non-zero part is of a small order, then the method can still be used
economically to determine the receptances of the actual system from the receptances
computed considering only the proportional part of the damping. A typical example of
such a system Is a locally coated structure with a proportionally damped base
structure.

The method has several advantages: The frequency dependence of damping
properties does not affect the computational time considerably, as the same
elgensolution Is used for all cases. Furthermore, the accuracy of the method
depends only on the accuracy of the undamped receptances. In other words. the
exact values can be obtained If the exact undamped receptances are known, S _
regardless of the level of damping or the spacing of the natural modes of the
structure. Indeed, the numerical example given shows that when the undamped
receptances are calculated from the analytically computed exact modal vectors without
any truncation, the damped receptance values found by the matrix Inversion method
are the exact values. Moreover, the method has the same accuracy at every exciting
frequency unlike most of the approximate methods which provide acceptable accuracy S S
only In a certain range of frequencies. However the accuracy of the method when
using truncated receptance series has not been tested yet.
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