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PREFACE

This conference follows the very successful first event in the series 0
organised by the Institute of Sound and Vibration Research in July 1980.
The second conference has support from the Air Force Wright Aeronautical
Laboratories in the USA, the European Office of Aerospace Research and
Development and has the continuing objective of reviewing advances
which have been made in theoretical and experimental structural dynamics.

* 0

Dynamic structural analysis now benefits greatly from the availability
of large computational facilities, either for theoretical work or signal

processing. Most work is, however, based upon the assumption of linear
behaviour, an assumption which is often not valid in practice. Although
the balance of the conference is biased towards linear vibration, a section
on nonlinear vibration is included which has attracted contributions on 0
a variety of problems.

Generally, the conference papers cover a wide range of topics and it is

hoped that this will stimulate discussion and promote liaison between the
participants.

D S

I hope that you enjoy the conference both technically and socially.
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Editors' Preface

We should like to thank all authors for their contributions.

Due to the high standard of the papers we accepted more than for

the previous Conference. Many were suitable for more than one

session. In selecting which one, we have tried to establish an

interesting and well balanced programe.

Our thanks also go to the members of the organizing conmittees

for their help in many ways.

0

• •

• ,. _ i II •



CONTENTS

Page No.

1. ANALYTICAL METHODS

1. Wave propagation in circularly curved beams 1
and rings
C.A. FettahlogZu and G.M. Yehodian

2. Calculation of natural frequencies of specially 15
orthotropic multilayered thin circular cylinders
C.B. Sharma and M. Varvizeh 0

3. Dynamic response of layered orthotropic cylin- 25
drical shells subjected to pressure and axial
loadings
O.A. Fetahioplu and A.M. Sayed

4. Amplitude growth in vibrations of arms with 37
increasing length
S. Bergamaschi, A. Sinopoti and A. Repaci

5. Seismic stress fields for nuclear elbows using 47
toroidal elasticity theory 6
H.A. Lang

6. Vibrational power transmission from a short 55
source beam to a long finite receiver beam via
a vibration isolator
R.J. Pinnington 0

7. Prediction of smoothed frequency responses using 65
general orthogonal polynomials
M.E. GaylAd

8. Dynamic analysis of systems of bars encased in 73 0
elastic medium
S.M. Atjaweivni and J.J. Tuma

9. Invited paper - Transmission of waves through F3
localized discontinuities; evaluation of two
approaches 0
G. Maidanik

2. VIBRATION CONTROL

10. Auxiliary mass damper for Cardan suspended gyro 87
J. Rozenberg and A. Kahana ,

11. Alleviation of observation spillover in contin- 97
uous structures
A.V. Metcatfe and J.S. Bwtdas

vii



S
3. FINITE ELEMENT AND BOUNDARY ELEMENT

METHODS

12. A new beam finite element with seven degrees of 109
freedom at each node for the study of coupled
bending-torsion vibrations 0
A. Potiton, D. Gay and C. Czekajs,6k

13. A boundary element program for the calculation of 119
coupled flexure torsion constants for beams of
any cross section shape
C. Czekajsh- , D. Gay and A. PoW on 0

14. A comparative study of soil spring and finite 127
element models application to nuclear power station
K. M. Ahmcd

15. Dynamic response of crane structure 139 0
Chen WeA-Zhang

16. State space approach to mechanical vibration 151
Hu Zongeu and Van Junqi

17. Non-stationary division by the space time finite 161 S

element method in vibration analysis
C.l. Sajet

18. Application of the method of integral equations 171
to the vibration of plates
J. Scheuten 0

19. Use of strain energy density as a basis for finite 179
element model development
A. H. Pat e and R. AU

20. Analysis of dynamic stress characteristics of 189 0

hollow shell type blades
J. Thonas and S.H. AbduP'ahman

21. Some recent advances in dynamic response of shells 199
R.K. Kapania and T.Y. Yang

4. COMPONENT MODE SYNTHESIS TECHNIQUES

22. Calculation of eigenvalues using substructures 211
and dynamic condensation
N. Petesmann 0 0

23. The improvement of free-mode methods in component 221
mode synthesis techniques and its accuracies
Z.W. Wang and M. Petyt

24. Locality principle in structural dynamics 229 0

A.K. Be.eyaev and V.A. Pabnov

viii



5. NON LINEAR ANALYSIS TECHNIQUES 0

25. Invited paper - Nonlinear analysis of plate and 241
shell vibrations
A. Leizsa

26. Nonstationary random response of nonlinear struc- 261 0
tures to nonstationary random excitation
C.W.S. To

27. Extension of transfer-matrix methodology to non- 271
linear problems
J.W. David and L.D. Xtche1 0

28. Modal synthesis of large structures with nonlinear 281
joints from vibration tests
L. Jezequet

29. An averaging technique for the analysis of oscilla- 297 0
tions in abruptly non-linear systems
R.K. Mi-er and M.A. HeidwLi

30. The numerical solution of discontinuous structural 307
0 systems

W.K.D. Bwthwick

6. NON LINEAR DYNAMICS OF BEAMS

31. A finite element method for nonlinear forced 319

vibrations of beams 0
C. Mei and K. Decha-Unphai

32. Snap-through of initially buckled beams under 329

uniform random pressure
P. Seide

33. Accurate nonlinear equations and a perturbation 341
solution for the free nonplanar vibrations of
inextensional beams
A. Luongo, G. Rega and F. Vestwoni

34. Parametric vibration in large blades rotating in 351

a gravitational field
A.D.S. Baxt and T. Webstet

35. Damped vibrations of a jointed cantilever beam 361

H. Wbssbrok

36. The effects of small clearances on friction 373
loaded constrained points on bending wave energy
transmission in a long beam
M.J.H. Fox

37. Review of air-blast response of beams and plates 383 *
J. Ati-Gut, V.L. Ande,-ison and M.D. Oesoo

ix



7. TESTING TECHNIQUES

38. Invited paper - Application of modal synthesis 395
concepts to spacecraft design verification
A. Bextarn

39. A flexible multichannel measurement system for 415
dynamic analysis
H. Van deA Aweraer, P. Van Herck, R. Snoeys

40. Limitations on the identification of discrete 427
structural dynamic models 0
A. BeAman

41. Foolproof methods for frequency response measure- 437
ments
H.G.D. GoydeL

42. An investigation of the behaviour of the simul- 447
taneous three axis vibration system
G.K. Hobbs

43. Recent experimental devices to obtain the dynamic 457
parameters of bridges S
W.C. McCatthy, K.R. White and A.G. Attoyo

44. The experimental measurement of flexural wave 467
power flow in structures
W. Redman-WhiUte

8. MODAL AND DATA ANALYSIS
OF NON LINEAR SYSTEMS

45. Recent advances in reduction methods in nonlinear 475
structural dynamics
S.R. Idetsohn and A. Cctdona

46. Feasibility of using modal analysis techniques 483
for nonlinear multi-degree of freedom systems
C. Noppon, R. Singh and H. Bu6wby

47. Modal analysis and identification of structural 495
non-linearity
G.R. TomtLnon and N.E. Kitk

48. Time domain analysis of nonlinear vibration data 511
S.F. Masti, R.K. MlLet, H. SassL and T. Caughey S •

49. Extended damping models for vibration data 521
analysis
J.A. FabunmL

9. NON LINEAR DYNAMICS OF PLATES

50. Non-stationary responses of non-linear rectangular 535
plates during transition through parametric
resonance, Part I: Theory
G. Oi6tguy



51. Non-stationary responses of non-linear rectan- 547 0

gular plates during transition through parametric

resonance, Part II: Experiment
G. 06tiguy

52. Nonlinear dynamic analysis of anisotropic rectan- 559

gular plates by a new method 0

M. Sathyamoorthy

53. Large amplitude vibration of an initially 567

stressed bimodulus thick plate

L.W. Chen and C.J. Lin
4

54. Nonlinear multimode response of clamped rectan- 577

gular plates to acoustic loading

C. Mei and D.B. Paut

10. RESPONSE TO SEISMIC EXCITATION S

55. Steel fibrous concrete under seismic loading 589

L. Minnetyan and G.B. Batson

56. Inelastic analysis of short highway bridges 599

subjected to strong ground motions 
0

M. Saiidi, J.D. Hart and B.M. Douglas

57. Elastic-plastic response of rooftop frames to 609
distributed and concentrated shock load:
experimental results and predictions using a

numerical technique 9

M.S.J. Hashmi

id 11. RANDOM VIBRATION

58. Invited paper - Researches in random vibration 621 0

J.D. Robon

59. Some closed-form solutions in random vibration 639
of Timoshenko beams
I. Etishakof6 and D. Livs"hits

60. Random vibration of discrete, periodic coupled 649
frame-wall systems

G. Otiveto and A. Santini

12. ROAD VEHICLES 0

61. Dynamic analysis of vehicles with nonlinear 665

suspension properties
J.A. Lyon6 and L. Xtinnetyan

xi



62. A state space approach to the analysis of non- 
673

stationary, nonlinear random vibration with
particular application to the problem of vehicles
on rough ground
R.F. Harmizon and J.K. Hammond

0

13. RAILWAY VEHICLES

63. Invited paper - Dynamic modelling of railway 681
track and wheelsets
S.L. Gta"sie 0

64. Two theoretical models for wave propagation in 701
rails
W. SchoZZ

65. Dynamics and stability of train-track systems 711 0
R. Bogacz and K. Popp

66. Assessment of the generating mechanisms and 725
characteristics of wheel/rail noise via study
of a rolling disc
N.S. Ferguson and R.G. White 0

67. On the acoustically optimal design of railway 733
wheels
H. Ittetiet and 0. MahrLenhoetz

14. AEROSPACE STRUCTURES AND/OR FATIGUE

68. Galileo spacecraft modal test and evaluation of 751
testing techniques
Jay-Chung Chen

69. Acoustic fatigue life of adhesive bonded 765
structures subjected to acoustic loads
H.F. Wo6e and I. Holehouse

70. Dynamic response and acoustic fatigue of 777
stiffened composite structures 0
J. Soovere

71. Sonic fatigue design method for the response of 789
CFRP stiffened-skin panels
I. Hotehow.e

72. Prediction of the dynamic properties of carbon- 801
glass fibre sandwich hybrid laminated
composites
R.V. Adams6, R.G. Ni and D.X. L ,

xii



73. Life time prediction based on the combined use 811 0
of finite element and modal analysis data
E. Verdonck and R. Snoeys

15. MACFINERY

74. Noise energy radiated from rod-like structures 827

L.C. Chow and J.M. Cmchieti

75. Using a scale model to investigate the post 837
fracture structural vibrations and noise of
a 200 tonne power press
G. Stimp6on

76. Active force control in machinery noise 847
J.M. Cu6vhieAi

77. Modelling the relation between structural vi- 855
brations and radiated sound
P. Sas, P. Vandeponeee, R. Snoeys

16. DAMPING

78. Development of the aerospace structures 869
technology damping design guide
J. Soove~e, M.L. Drake, V.R. Mi~Ler and L.C. Rogeu

79. Continuum modelling of damping in large 879
space structures
S. Abkate and C.T. Sun

80. Determination of receptances of locally damped 889
structures
H.N. Ozguven

i0

ptl



*

*

1ANALYTICAL METHODS

0 0

0

0

0



WAVE PROPAGATION IN CIRCULARLY CURVED BEAMS AND RINGS

Omer A. Fettahlioglu* and Giora M. Yehodian**

*New York Institute of Technology
**Polytechnic Institute of New York

1. INTRODUCTION

The first comprehensive treatment of inextensional vibrations of cir-
cularly curved beams was presented by Lamb [1] using Hamilton's principle.
For other early investigations concerning the incomplete circular ring under-
going inextensional deformations reference may be made to Den Hartog (2,3]
and Archer [4]. A myriad of authors have treated various aspects of the
problem that no attempt will be made here to provide extensive survey.
Seidel and Erdelyi [5] derived the frequency equation of a thick free ring by
considering the bending, shear and extensional strain energies together with
the translational and rotational kinetic energies. They calculated the fre-
quencies by specializing their frequency equation to inextensional deformation 0
for a free complete ring. Rao and Sundararajan (6] adopting the same pro-
cedure as was done for the Timoshenko beam [71 examined the inextensional
vibrations of a free ring including the effects of shear deformation and rota-
tory inertia, and determined the natural frequencies of a stiffened ring.
Veletsos and Austin [8] presented an analysis of the free vibrational charac- "'
teristics of circular arches vibrating in their own planes. Their study which 0
is based on Flagge's equations for cylindrical shells accounts for the extensi- 0
bility of the arch axis but neglects the effects of rotatory inertia and shear- (
ing deformation. In a later paper; Austin and Veletsos [9] presented a
method of analysis based on Federhofer's system of differential equations
which includes the effects of rotatory inertia and shearing deformation.
Their governing equations were solved numerically by a combination of a
Holzer type iterative procedure and an initial value integration. 00

The present theory which deals with the problem in its general form
has-boee' developed praviously by the first author [10J. from variational con-
siderations using Hamilton's principle to derive the exact equations of motion
for thin circularly curved beams and rings, together with consistent bound-
ary, discontinuity and initial conditions in terms of the radial and tangential
midsurface displacements, and the rotation of the normal. The theory ac-
counts for the effects of extensional, flexural and shearing deformations, and
rotatory inertia. The effects of distributed elastic foundtions in the direc-
tions of the radial and tangential displacements and the rotation are also
incorporated into the equations of motion.

The vibration and wave propagation analyses on which the present in-
vestigation is based properly begin with the resolution of the foregoing equa-
tions of motion into three-uncoupled sixth order homogeneous differential
equations in terms of the radial and tangential midsurface displacements, and
the rotation. Using the classical form for the traveling wave solution, the
frequency equation is derived in closed-form, in terms of the flexural, trans-
verse shearing and extensional stiffnesses as well as the three spring con-
stants of the elastic foundations as precisely identifiable parameters.- The
frequency equation reduces to that found by Rao [6] neglecting the/Affects
of extensibility and elastic foundations; and it coincides with Lamb's equation
[11 deleting the effects of extensibility and transverse shear.

Exact solutions for the three deformations are derived from the three
uncoupled homogeneous differential equations in terms of six independent

3



constants of integration. The response of curved beams with various end

conditions (fixed-fixed and hinged-hinged) are then formulated by means of

the exact deformations and stress resultants.

Exact solutions are also derived for the phase velocities of the propa-
gating elastic waves in rings and curved beams. The governing dispersion
relations are derived and illustrated in terms of short and long wave lengths,
cutoff frequencies and standing waves.

With the exception of Graff [111, little attention has been given to wave
propagation in rings with or without the effects of extensibility and/or
shearing deformation. Dispersion curves and frequency spectra wherein the
effects of curvature, extensibility and shearing deformation on the wave u
propagation characteristics of curved beams may be assessed, are generally
not available in the literature.

2. DERIVATION OF GOVERNING EQUATIONS

A thin circular ring element (Fig. 1) that is symmetrical about the plan
of its centroidal axis is considered to be deformed in the plane of its initial
curvature with normals preserved in the process (Bernoulli-Euler hypothesis).

The strain of a fiber at a distance z from the centroidal axis resulting
from bending of the ring accompanied by stretching of its centre line is
expressed in the form

&0 = &o-Z(¢'/R)

where prime denotes differentiation with respect to 0 and 0 is the relative
rotation of the deformed element. In accordance with the linearized strain-
displacement relations of the Sanders' [121 thin-shell theory reduced to one
dimension, the extensional strain of the centre line and the total rotation of
the deformed element are, respectively,

&o = (v'-w)/R and x = (w'+v)/R (2)

The total rotation depends not only on the relative rotation of cross sections
of the ring element, but also on the shear as follows:

X = (w'+v)/R = O+q (3)

where 0 is the relative rotation when the shearing deformation is neglected
and 4, is the angular deformation due to shear at the neutral axis in the same
cross section.

With the use of Hooke's law and the strain distribution defined by Eq.
(1), the thrust and the bending moment become, respectively,

T = ffEdA = (EA/R)(v'-w) (4)

M = ffE&0 zdA = -(EI/R)0' (5)

where, A and I are the cross sectional area and the moment of inertia of the
cross section, respectively.

The shear stress resultant is given by Timoshenko in the form

N = kAGO = (kAG/R) (w'+v-R0) (6)

4



where k is the form factor for shear, depending on the shape of cross section.

For thin-ring kinematics given by (1) and the load system illustrated in
Fig. 1, the tangential and radial motions are coupled, as described by the
following system of differential equations which were derived in [10] using
Hamilton's principle:

a(v'-w)+c(w"+v'-RO')-kjRw=pARW

a(v"-w')-c(w'+v-R¢)-k 2Rv=pARV (7)

bR2 0"+cR(w'+v-R¢)-k3RO=pIR

The constants a, b, and c are defined as 0

a=EA/R; b=EI/R 3 ; c=kAG/R (8)

The dots denote differentiation with respect to time, and p is the mass den-
sity of the ring.

The consistent boundary conditions at each end of the curved beam are

c(w'+v-Ro)=g or 6w=O

a(v'-w)=T or 6v=0 (9)

-bR 2 I'= M or 60=0

where R, T, and-M are the values of the stress resultants at the boundaries.

The vibration and wave propagation analyses on which the present trea-
tise is based, properly begin with the resolution of the foregoing equations
of motion (7) into three-uncoupled sixth order homogeneous differential equa-
tions. Since each of the normal modes of free vibration of a thin curved
beam executes a simple harmonic motion with an associated natural frequency,
the period and phase of motion are the same for all points in the curved
beam. Therefore, the time dependence of the beam variables can be removed
by assuming that their spatial and temporal variations are separable in the
following form:

v(O,t) = V(e)-eiwt w(O,t) W()-ei -Wt; (e,t) = *(e)-e iWt (10)

The substitution of (10) into (7) and the elimination of W,V and P, succes-
sively (considering the operational coefficients of the variables W,V, and €)
with the notation of D=d/dO, yields

tD 6 +o1 D 4 +oc2 D 2 +z 3 }V(O)=0

{D6+o1 D4+Oc2 D2 +x 3 }W()=0 (11)

{D 6+cc1D4 +42D 2 +0 3 }4(O )=0

where, in the absence of elastic foundations [13], kl=k 2=k3=0 in (7),

x1=[2+20Z+XQZ]; a2=[0 2Z2 (1+2X)+Q(Z-XZ-1)+I] (12)

OI3=[X2 3Z3 - 2Z2 (1-X)-_Q2 Z+t(Z+I)]
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in which the measures of transverse shearing and extensional deformations

respectively, are

X=E/kG and Z=b/a=I/AR 2  (13a,b)

The dimensionless circular frequency, Q is given in terms of dimensional
circular frequency, w in the form

2 =j=w2 R 4 (pA/El) (14)

In the absence of the effects of shearing and extensional deformations, X=0
and Z=0, respectively, the operator in (11) reduces to the form:
{D6+2D 4 +(1-0)D2+!Q} which, then, coincides with the statics solution given in
[101 for fl=0.

3. SOLUTION FOR FREE RING

The normal modes of a complete ring in the form

W(e) = A1exp(-ine); V(0)=A2exp(-inO); 4(0)=A 3exp(-ino) (15)

give the frequency equation from (11) as follows:

PlQ'+02 g2+p3Q+04 = 0 (16)

where, 1 = XZ 3 ; P2 = -[n 2Z2 (1+2X) + Z2 (1+X) + Z]

03 = [n 4 Z(2+X) + n 2 (1+XZ-Z) + Z+1]; 04 = -n2(n21) 2

which reduces to the form given by Lamb [1] for the case of inextensibility
(Z=0), neglecting the transverse shear effect. (16) rewritten in terms of
mode number is: n 6 -cyn 4 +o 2 n 2 -U 3 

= 0.

The roots of the frequency equation (16) give the solutions of the
propagating elastic waves of the following form for the vector of the defor-
mations, v, w and •

= A expli(yT-)X] (17)

where, the dimensionless wave number, A and phase velocity, y are

A=Rm; y=Q*/N (18)

in which m is the dimensional wave number; and Q* is related to the dimen-
sional circular frequency, w as follows:

Q* = (t/T)w = wR(p/E)l = (QZ) (19)

The term (E/p)l is the bar velocity. The dimensionlesq time, T in terms of 0 6
the dimensional time, t is chosen to be: - = (t/R)(E/p)l. Accordingly, (16)
reduces to a cubic in y2 or a quadratic in A2 , respectively,

A4 (XZ)yl6 - A2 [ 2 Z(l+2X) + Z(1+X) + 111 4 + [K4 Z(2+X)

+ X2 (1+XZ-Z) + Z + 1] _y2 - Z(X 2 -1) 2 = 0 (20) 0 E

Z[Xy 6 - (1+2X)y 4 + y2 (2+X) -liA4 - {[1+Z(1+X)]y 4

- (1+XZ-Z)y 2 -2ZI}A2 + [(I+Z)-y2 -Z] = 0 (21)
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An horizontal asymptote, y = 1 .0 (bar velocity) is obtained from (21) for
X-,neglecting the shearing deformation (X0O); a second horizontal asymptote,

YX (shear velocity) is also obtained from a study of the behavior of the
phase velocity with respect to the wave number for various physically realistic
values of X (measure of shear deformation), X>1.

4. CURVED BEAM OF GENERAL BOUNDARY CONDITIONS

The general solution of (11) in the form

* 1  [V,W,O)T eA er8  (22)

gives the auxiliary equation

r6 + [2+£Z(2+X)]r 4 + [£ 2Z2(1+2X) + £(Z-XZ-1) + 11r 2 + [X(£2Z) 3 - (£2Z) 2(1-X)

-2 + £(Z+1)] = 0 (24)

The roots of this polynomial (23) are functions of 02; and the elimination of
the arbitrary constants from the six boundary conditions (three for each end)
gives the frequency values [131. The behavior of the roots of (23) is deter-
mined by substituting the value of £2 calculated from Lamb's "classical', inex-
tensional solution as an upper bound [1]; the result is 3 pairs of complex-
conjugate roots as follows: p1-'qli, pl-qli, -p1 +qli, -pl-qli, p5+qsi, p5 -qsi.
Therefore, the general soluton of (11) for steep arches (a> 1800) is of the
f orm

V = I exp (p 16) [ F Icosq I +F 2 sinq IO+F a cosq 16+F 4 sinq 1O1

+ exp(p 5 6) [F5cosq5 6+F6 sinq 6 I

W = I exp (p 10) [ C Icosq IO+C 5sinq I (+C 0 cosq 1 6+C 4 sinq 1O (24)

+ exp(p 5 0) [C5cosq 5 ()+C6sinq 5O] }

*t = (exp(pl0) [Hlcosq1 O+H2 sinqEO+H 3Ocosq1 O+H4 esinqlo]

+ exp(p 5 6) [H5 cosq 5 0+H 6sinq 5 J }

The eighteen constants of integration are not all independent. The conditions
that insure that the equations of motion (7) are identically satisfied by the
substitution of the foregoing deformations (24) by means of (10) yield after
substantial algebra the admissible deformations in terms of six independent
constants of integration: Fi, i = 1,..., 6. The relations which connect the
twelve dependent constants to the six independent constants are

H1 =[H 11cosq 1o+-1sinq1 6)F1 ; H,,F{H 1 2cosq1 O+H2 2sinq 1 6}F 2

H3 { H1 3 cosq 10+H2 3Sinq 10+H330cosq1 O+H4 3 esinq1 e }F3

H4={H1 4cosq 18+H2 4 sinq1 O+H3 40cosq 1 0+H4 4 6sinq 10 }F4

N ={H 55cosq5 +- 5 sin% E0}F5 ; Hr6={F 6 cosq 5 6+l- rsincbe}F,(5

C1 {C 11cosq 10+ 2 1 sinq1 OW1 ; C2={C12 cosq 1o+C 22 sinq 10]F2

C3= {C1 3cosql()+C 2,3sinq 10+C3.3 0cosq 1+C43 Osinq 10 F3

7



C4
= { C1 4cosq 18+C 24 sinq ()+C34 cosq I+C44 0sinq 10 } F4  0

C ={C sscosqs5 +C sinq5seF ; C6={C cosq 5 +C6 6 sinq5seF 6

where, the coefficients of the trigonometric functions, Hij and Cij for i,j =
1... ,6 are given in the Appendix.

For shallow arches (angular span, =<180°), the behavior of the aux-
iliary equation (23) is characterized by three distinct pairs of complex-
conjugate roots which require some adjustments in the deformation expressions
(24) pertaining to the steep region. The solution for the shallow region
given in [131 is not the scope of this paper.

5. NUMERICAL ANALYSIS

Numerical results presented herein are obtained by the computer pro-
gram RADA[141 which is capable of performing dynamic response analyses of
rings and curved beams with general boundary conditions.

5.1 Case of a Free Ring

The variation of the normalized frequency, /iCI i.e., the ratio of the
frequency determined herein to that given by Lamb [1], = n 2(n 2 -1) 2/
(n 2 +1), with respect to Z = I/AR2 , is presented in Fig. 2 and 3 for a free
ring.

The frequency spectrum exhibits clearly the effects of shearing and
extensional deformations over that of rotatory inertia in causing a deviation
from the frequencies given by the classical formula of Lamb. This behavior
is more pronounced with higher modes. An increase in the value of X = E/kG
which implies that the ring is more flexible in shear, causes the natural
frequencies of free rings to deviate more and more from the "classical" for-
mula. The present results are compared with those of Rao [6] and with the
experimental values of Kuhl given in [5]. The curve of variation of Q* =

= wR(p/E) versus R/t (radius to thickness ratio) for a thin ring reveals
that the present results are closer to the experimental values than those of -
Rao, since Rao neglected the effect of extensibility. An additional advantage
of the present investigation is that the two higher-branch frequencies are
also obtained and presented in Table 1, which is not possible with the
Rayleigh's method employed by Den Hartog [2,3] and the inextensional "clas-
sical" solution given by Lamb [1).

The variation of the phase velocity with respect to the wave number is
described in Fig. 4 corresponding to two values of the measure of extensi-
bility, Z, for a fixed value of transverse shear deformation. Both branches
approach the bar velocity (y=l) as the wave number becomes very large;
however, the upper branch representing the longitudinal mode is nearly equal
to the bar velocity for any wave number except in the immediate vicinity of 0
A=O, which corresponds to very long wave length limit. The longitudinal
mode is not influenced by the change in the measure of extensibility, Z.
The lower branch representing the flexural mode is extremely sensitive to a
change in the measure of extensibility: decreasing Z lowers the phase velo-
city considerably such that for the limiting case of inextensibility (Z=O) the
velocity tends to zero; thus, the flexural mode becomes insignificant and the S
longitudinal mode governs. When the effect of transverse shear deformation,
X, is taken into account, the flexural wave (lower branch) approaches the
shear velocity (y=X ) faster as Z becomes larger. Furthermore, the longi-

0i
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tudirial mode does still approach the bar velocity (y=l) as before; but, the
propagating wave is also influenced by the shear mode which appears as the
higher branch. This branch approaches the bar velocity as X increases;
however, it tends to infinity as X tends to zero, at a much faster rate with
increasing Z. Table 2 presents exact numerical results for the phase velocity
corresponding to various levels of X and Z effects for numerous wave numbers.

5.2 Arches with General Boundary Conditions 0

The deformations (V,W, and t) which are the solutions of the differen-
tial equations (11) are given by (24). The stress resultants are then ob-
tained in exact form by the substitution of (24) into (4), (5), and (6) and
are presented in [131. Arches of any boundary conditions can then be
analyzed in a consistent manner accounting the combined effects of extensional
and/or shearing deformations.

The boundary conditions at both edges of the fixed and two-hinged
arches are: V=W=4=O and V=W=M=0, respectively. These conditions yield six
simultaneous homogeneous algebraic equations in terms of the frequency, the
roots of the auxiliary equation (23) and the six independent constants of
integration, Fi(i=1...6). The determinant of the coefficient matrix must

vanish for a nontrivial solution of the boundary equations. In this analysis
an upper-bound frequency is calculated from Lamb's inextensional formula,
thus permitting the explicit solution of the auxiliary equation. With the
assumed value of 9 and the calculated values of the roots of (23), the con- 0 S
dition of the vanishing of the determinant is checked. By systematically
varying 0 and calculating the value of the determinant, the convergence to
the correct values of the natural frequencies is accomplished.

The variation of the fundamental frequency with respect to the angular
span, is exhibited in Fig. 6 for both fixed and two-hinged arches. The
effects of extensibility and transverse shear are illustrated in Table 3 for the
fixed arch, wherein, an increase in each of the measures of extensional and
shearing deformations causes a decrease in frequencies.
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Table 1 0

Effect of shearing and extensional deformations on frequencies of a free ring.

(103)

X 0.0 3.0 0.0 3.0

n 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001

2 7.2 7.17 7.19 7.1 50 5 50 5

3 58.6 57.5 57.4 55.6 100 10 100 10

4 213 208 210 199 170 17 170 17

5 554 540 548 504 260 26 260 26

6 1192 1150 1175 1044 370 37 370 37

Table 2

Effects of shearing and extensional deformations on phase S
velocities of a free ring.

X 0.00 1.0 2.0 3.0

10 3 10 2 10 3 10 2 102 3 10 2

40 0.371 0.784 0.292 0.68 0.333 0.582 0.317 0.51

80 0.625 0.93 0.554 0.82 0.494 0.662 0.45 0.56

160 0.848 0.981 0.735 0.9 0.617 0.694 0.53 0.572

184 0.887 0.985 0.773 0.92 0.638 0.698 0.54 0.574

Table 3

Effects of shearing and extensional deformations on frequencies of fixed-arch.

a 2200 2600 0 0

3.0 0.0 3.0 0.0

0.000 2.451 2.452 1.43 1.44

0.0005 2.448 2.449 1.425 1.43 0 0

0.0007 2.446 2.447 1.424 1.43

0.001 2.444 2.445 1.42 1.425
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6. APPENDIX
2 2 2 2

Hj1 1 -(hlh3+h2h4)/(h3+h4); R12 =(hlh 4+h3h2)/(h3+h4)
2 2

H,3=-{1/(h3+h4)}{(h3/ql+h 4/Pl)(h 2+h4H3 3)+h 4(h3/Pl-h4/q1 )H43 1

H1 4=-11/(h +h 2) {(h3/Pl-h4/ql)(h 2+h4H4 4)+h4 (h3/ql+h 4 /Pl)H 3 4 )
43 2 2 2 2

1 2,-(hih 4-h2h3)/(h3+h4); H22=-(hlh3-h2h4)/(h3+h4)
2 2

H2 3 =-{1/(h 3+h4)}{(h4/ql-h3/Pl)(h 2+h4H3 3)+h4(h4/Pl+h3/q1 )H4 31
2 2

H2 4=-{1/(h 3+h4)}{(h4/Pl+h3 /ql)(h 2+h4H44)+h4(h4/q-h 3/P)1 2 4 )
2 2 2 2

H3 3=-(hlh3+h2h4)/(h3+h4); H34=(hlh4-h2ha)(h3+h4)
2 2 2 2

H4 3 =-(hlh4-h2h3)/(h4+h3); H44=-(h 2h4+hlh3)/(ha+h4)

H55=-hl2{(1+X+hll)(h9+h9X+R)+2h10 (1+X)XPsq5} 0

2
H~r=h 2 {-2(h9 +h9 X+R)XPsqs+hlo(1+X) (1+X+XPs) I

H6 5 =-hl 2{(1+X+hl1 )(1+X)h10 -2XPsq9[h9 (1+X)+R]}
2 2

0H 66 -hl12 2(1+X)hOXP5qs+(1+X+XPS-Xqs+XQZ-1)[hg(l+X)+RlI

Cj1=-hj3{Pj(l+h7Hlj)-qjh6H2 1}; C12=-h1 3 [Plh 7H1 2-ql(+h 6 122))

C13=-h1 3{P1 (C3 3+h71113)-q1 (C43+h6H2 3)+h8H33}

C1 4 -h, 13 P(C 3 4 +h7 H1 4 )-q(C 4 4 +h 6 H2 4 )+hgHS 4I

C21=-h 3 [q1 (l+h6H1 1 )+Plh7H21}; C2 2=-hl3 [Pl(1+h 7 12 2)+qjh6 11 2}

C23 =-hl3 fP,(C4 3+h7H2 3)+q(C 3 3+h6H 3)+h81 43 )

C24=-hl3 {P1 (C4 4+h7H24)+q1 (C34+h6Hl4)+h114 41
2 2

C3 3=hl 4{(Plh5 +qlh2)(h3+h4>-P1 R(hlh3+h2h4)+Rqi(hlh 4 -h2h3)I

2 2
C34 =hl4{ (h2P1-hsq1)(h3+h4)+PIR(hlh4-h2h3)+Rql(h2h4+hlh3))

C43=h 4 f(qlhs-Plh2)(h +h )-qR(hih3+h2h4)-PRhh-hh) 0

2 2
C4 4=h1 4{(Plh 5+qlh 2) (h3+h4)+qR(hlh4-h2h3)-PR(h2h4+hlh3) }

C6 5=-hl5{q5 (l+h9 HS5 +hOH65)+P5 (h9H6 s-h1 0 H55 ) I

C66 =-hls{P 5(1-hOH 6+hH 66)+q5(hHS6+hj0 H66) } 0

C5 5=-h,5tP5(1+h9H5 5+hjOH6 5)-q5 (hoH55+h9H6 5) I

C56=hl5{qs(l+hOH56+h9H66)-P5(h9 H56+h1 0 H66)}
2 2

h1=X(OZ+1-P 1 -q1 ); h2=2XP~q1  0

2 22 2
h3=R{qZ

2X(1+X)+XZ(PI-q1 +P1 X-qX)-X}; h4=2(1+X)Plq1 XZR;
2 2 2 2 2 2

h5=X(P-q+Q2Z)-l; h6=R{XZ(QZ-Pj-qj)-1}; h7=RfXZ(P-q+f Z)-1}
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2 2 2 2
h8=2XZR(q1 +P1 ); h9=R{XZ(P5-q5+QZ)-1}; hlo=2Psq 5XZR

2 2

h1 1=X(P5 -qs+0Z)-1; h12=(1/{(h 9+h9X+R)
2+(1+X) 2h,0

2)}
2 2 2 2 2 2

hl3={I/(Pl+ql)}; h14=I/{(X+I)(P1 +ql)(c
2+d2 )}; hls=l/(Ps+q5 )
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CALCULATION OF NATURAL FREQUEN4CIES OF SPECIALLY ORTHOTHOPIC S
MULTILAYERED THIN CIRCULAR CYLINDERS

C. B. Sharma and M. Darvizeh

University of Manchester Institute of Science and Technology
Manchester M60 lQD Q

1. INTRODUCTION

It is of great technical importance to investigate the dynamic C
characteristics of thin walled circular cylindrical shells with some
complicatir.g parameters because of their use as basic elements in modern light- • •
weight structures. It is immensely useful to obtain the natural analytical
frequencies for specially orthotropic multilayered cylindrical shells serving
as complete structures or structural components. In the recent past many new
areas in this field have been explored [I] and as such the dynamic response of
such composite materials and structures will continue to be of considerable
interest in the industrial applications. 0

Previous analyses of this problem were mainly confined to the simply
supported boundary conditions e.g. Dong [21, Bert et al [3], Stavsky and Lowey
[4J, Greenberg and Stavsky [5] etc., owing, perhaps, to the computational
complexity The procedures employed were also not so easy to handle as regards
calculatiokof vibration characteristics in general and natural frequencies in S S
particulai .It is the main ain. of this paper to present a simple theoretical
analysis for deter:ining the natural analytical frequencies of thin walled
circular cylindrical shells with layers of homogeneous isotropic or specially
orthotropic material symmetrically situated about the shell mid-surface with a
variety of end conditions viz: clamped-free, clamped-supported, clamped-clamped
etc. The theory governing the response is based on the Love-Timoshenko hypothesis S
regarding deformation and is capable of handling a shell structure comprised of
an arbitrary number of thin bonded layers which can have different thicknesses
and elastic material properties.[61.

The procedure adopted for the solution of governing equations is a simple
one. It is an application of the Rayleigh-Ritz approximate variational procedure. •
Various boundary conditions are incorporated via the approximation of the
longitudinal modal forms by the characteristic functions of a vibrating beam.
These functions were successfully used by one of the authors in dealing with
the vibration characteristics of isotropic thin circular cylinders [7]. Procedure
yields a cubic frequency equation. Out of the three roots of this cubic (which
is solved exactly) two are several orders higher that the third one and are not •
of any immediate practical interest.'For various reasons the lowest or fundamental
natural frequency of the structure d the mode (or modes) associated with it,
are usually of most interest to the anialyst and the designer.

An extensive computer exploration is carried out for natural frequencies
for various shell geometrical and material parameters. To ensure a check on the •
validity of the present analysis and its computational implementation the case
of free vibration characteristics of homogeneous isotropic cylinders is
deduced as a particular case of the anlaysis given in this paper. The results
obtained thus are compare_: with the results of previous analytical [6] and

9 experimental [)] investigations and it was found that the two sets of analytical
results were identical and agreed very well with tn e observed results for the S
boundary conditions considered. Calculations are also carried out for three-
layered orthotropic plywood shells and sandwich shells with the inner and outer
layer made of steel and the middle layer of a solid plywood board. Graphical
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illustrations of these and various other results are given for various boundary
conditions.

2. THEORETICAL CONSIDERATIONS

The formulation is on the basis of a thin shell theory with axial and 0
circumferential co-ordinates represented by x and 0 respectively. The deformation
of shell reference surface is expressed in terms of displacements u, v, w in the
axial, circumferential and radial directions respectively, with positive normal
direction outwards. Using Timoshenko-Love theory, the strain components Ex'
Ee, ¥xe and the changes of curvature K x 0 and Kxe are given as

6
x  + ZKx' Ce = E

; + ZK 0 ' xO =
X  + 2 ZKxO

where

E = au/Dx, E; = (1/a) (Wv/aO + w), 'x = v/ax + (/a)au/ae
(1) 6

S= 2 w/ax 2 , K0 = (1/a 2 ) (a2w/O2 - av/De),

Kxe = (1/a) (a2w/aXae - av/ax)

and a is the shell radius. 0 0

2.1 Expressions for strain and kinetic energies

The general forms of the strain energy U and the kinetic energy T for
laminated orthotropic cylindrical shells are given as in reference [2].

2 L 0 0

, ( 2 2 2
U = j 3 i E' + 2A1 e E + A+A+ A + 2B E' K

[Af x 12x 220 66Y 1 x x
o 0

+2B (E' K +SE K +2B 1; Ke + 4' Kx

12 X0 0x 220 66yx0 x
2 2 2

+ DIK x  + 2D K K + D K 2 + 4D66K 2 ] ad~dx (2)
11x 12 x 0 22 0 66x&

and 2 T L

5 1 -2 .2 + 2 0T [TU + v w adedx (3) 0 0

0 0

where the shell stiffnesses Aij, Bij, and Dij are define d as

n 2k2 2 2

(Aij, Bij, D.j) = k .ii (k)(hk - hk l), (h k - h kl
k=l

1(h3k - h 3kl)) (4)
3

and L being the shell length and PT the mass density per unit of surface area,

i.e.
n

PT = Jp(z)dz = P T (Tk - h kl)- (5)
k=l

* 0
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In equations (4) and (5) hk and h I are the distances measured from the 0
reference sir~ace to the outer an-inner surface of the kth laminate respective-
ly and Qij are the elastic moduli of the k'th laminate.

2.2 Modal forms and variational formulation

It is reasonable to suppose that the modal forms of cylindrical shells
are periodic in the circumferential direction and have a harmonic time depend-
ence of frequency w. Hence one can postulate that a general relation for the
displacements u, v, w can be written in the form

(u, v, w) = (A0'm (x) cos p0, BO r(x) sin p0, C m(X) cos p0) (6)

where ra(x) represents unknown axial mode function, dash denotes different-
iation with respect to the argument and A, B, C are amplitude coefficients.

Upon substitution of modal forms (6) into the energy expressions (2) and
(3) and applying Rayleigh-Ritz variational procedure, one obtains as a consequence
a homogeneous system of linear simultaneous equations for the generalised
amplitude coefficients A, B and C. Condition for the existence of a non-trivial
solution set for this system (i.e. letting the determinant of the coefficienq
matrix vanish) one obtains a cubic equation in the frequency parameter A(=)
as

det [a. ]- 0 , i, j = 1. 2. 3 (7)

where a. . = c.. + ctA6ij , 6i. oeing the Kronecker delta and the parameter

a =-pTa Nm 12 (an expression involving integral of the characteristic orthogonal2

functions er(x)) for the first row and pTa for the second and third rows of the
symmetric matrix [a. .]. The expression for the matrix elements c.. are given as
follows:

2 2 2 2
c11 =Nm (a Nm A11 + 01 2 A6 6 )

2

c12  pN {l(aA -B -I( 6 - 2B66 )112 M 1 12 12 2 ( 2BA6

c N2  i1 (aAl2  B + a2N2 B +213 m 2 1 B 2  B + 2p I2B 66}2 2 N2 2

c2 /a 2 ){aA 2 2 - 2a B22 + +} + 1 {a2 A6 4aB66 + 4D66 }222 2 2' m 2 66 66 6

c2 3 = (p/a)(aA - B2) - a(p 3/a 3aB2 - D2 2 ) (8)
2322 22 2

+ p {aI (aBI2 - DI 2 ) - 212 (aB6 6 - 2D66)}
2 1 12 2 26 6

c33 =A + N {21 (aB - p2D + a2D + 4p2  D22 m 112 12 11 662 2* -(p Ia2)(2aB2 2 - p D2 2 )•

Here N 's represent the eigenvalue properties of the characteristic functions
RII

P()and integrals I Iand I involving these functions and their derivatives
(wmith respect to the argument) are given by

I, = (i/L) ¢"m(X) n(x) dx . 12 = (l/L) '2(x)dx. (9)0 5

The cubic equation (7), for each pair of axial and circumferential wave numbers
m and p respectively, gives three roots for the frequency parameter, A, that
correspond to motion that is predominantly radial, axial or circumferential.
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Since the radial frequency is much lower that the other two, and as most shell

vibrations include radial excitation, it is the lowest of the frequency triplet
that is of most structural interest both to the analyst and the designer.

2.2 Special case of an isotropic cylinder

Free vibration analysis of istotropic cylindrical shells is deduced as a
particular case of the foregoing analysis for a laminated orthotropic shell.
Following the usual notations and defining=rh/2 2

(AiP , Bij , Dij) h/2(1, z, z ) Qij dz (10)

with

Q = Q22 = E/(l-v ) Q1 2 = Ev/(l-v2 ), Q6 6 = E/2(l+v) (11)

and
h /2

PT h/2pdz = ph, 
(12)

-h /2

the foregoing analysis is reduced to one for the special case of an isotropic
cylinder. •

2.3 Boundary conditions

The choice of axial modal forms € (x) is made to satisfy a prescribed set
of end conditions. To approximately achieve this the characteristic functions of
a vibrating beam are introduced in a general form

F m(Nm x) = cosh N x - cos N x - cm (sinh N x - sin N x) (13)mmm m m m

where the properties and the numerical values of these functions and the associated
parameters N and c are found tabulated in reference [10] for various end
conditions. Tor themthree sets of boundary conditions considered here, viz,

clamped-free, clamped-supported and clamped-clamped, m - F and p' -: -N F' M,m m in mn i

are to be taken in equation (6). It may, however, be remarked that these
general form choices for the axial mode function m in equation (6) are
satisfactory within certain limitations inherent in the variational procedure.

The values of the integrals 11 and 12 given in equation (9) are of icme ,z, 0 0
interest when ¢ 's are represented by the characteristic bean functions giwve by
equation (13). hese have been calculated [11] and the expressions for i a11.,
I corresponding to various end conditions can be found in reference TJ,.

3. RESULTS AND DISCUSSION

The discussion of numerical results of multi-layer specially orthotropic
thin cylinders with clamped-free, clamped-supported and clamped-clamped edges is
presented in what follows. The results are given in graphical forms.

3.1 Clamped-free cylinders

To start with cantilever cylindrical shells are to be analysed. As indicated

Om (N x) is taken in here and appropriate values of characteristic parameters

given in [lO]are used.
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3.1.1 Homogeneous isotropic case

This problem has received ample attention and it is also not the main aim
of the present paper. But to ensure a check on the validity of the present
analysis and its computational implementation the case of free vibration
characteristics of homogeneous isotropic cylinders is deduced following the 0
procedure given in the section 2.2. The results of frequency variation with
the circumferential wave number, p are illustrated in the Figure 1 for a given
shell whose geometrical and material parameters are listed on the Figure 1
itself. Three different curves correspond to first three axial modes (m=1,2,3)
and follow the well known pattern of a frequency increase with an increase in
the axial wave number, m. For a fixed axial wave number, the natural frequency 0
vs circumferential wave number curve normally contains a dip which is due to
the decrease in membrane part and the increase in bending part of the strain
energy as p is increased. The lowest values of the frequency for m:=l,2 and 3
correspond to p=5, 8 and 10 respectively. The agreement with the experimental
results of reference [9], which are shown as broken lines (m=1,2), is
apparently very good. It can thus be inferred that the homogeneous isotropic •
cases can be directly deduced from the general case.

3.1.2 Three-layered orthotropic case

Figure 2 analyses a three layered orthotropic ply-wood shell (geometrical
and material parameters given on the Figure 4). Frequency vs circumferential *
wave number curves are again drawn for m=1,2,3. The pattern is similar to that
displayed in the previous Figure. As would be expected, lowest frequencies and
the corresponding p-values are different from the previous case. By taking zero
the inner and outer layer thicknesses a shell made of solid wood board can be
analysed. These particular kindof shells were considered because the material
property data was easily available. 0 4

Natural frequencies of a sandwich type of three-layered cylindrical shell,
consisting of inner and outer steel layers and the middle layer made of ply-
wood, are plotted with the circumferential wave number, p in Figure 3 where all
the relevant geometrical and material properties are also listed. The minimum
frequencies for the axial modes m=1,2,3 correspond to p=2,3, 4 respectively. •
Since the parameters are arbitrary so these can be chosen by the user to the
necessary advantage.

Figure 4 shows a logarithmnic plot of frequency aginst the dimension-less
geometrical parameter X(= Lh2Af ) for several values of p - I and m1,2,3.
Clearly the minimum frequency always occurs for m=l. Modal behaviour of a 0 4
cylindrical shell consists of looking at the minimum natural frequency (which
is the envelope of frequency curves drawn for constant values of p). Each value
of p provides one member of a festoon like family of curves. Each curve takes
its turn to provide the lowest member of the family over a particular range of
values of X, and indeed it adopts this special role precisely in its transition
region, where the bending and stretching effects are of the same order. Also it •
is clear from looking at the frequency envelope that the fundamental natural
frequency decreases with increasing X, with all other parameters remaining
the same. These frequency envelopes are similar to those drawn by Forsberg [12].
But it should be noted in particular that non-dimensional geometrical parameter,
X, used here is more useful measure of the length (see for example [13]) than
the dimension-less ratios £/a and a/h used in [12] separately. Another
important point brought out clearly by the Figure 4 (as in [14]) is that the
circumferential mode number p corresponding to the fundamental mode depends
strongly on the shell geometry, i.e. on the value of the dimension-less group
X.

I.
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Clamped-supported cyiinders

in Figures 5-7 variation of freq'uncy against the circumferential wave
-umrber is blotted for clamped-supported shells and pattern of these graphs is
sirilar to those in Figures 1-3 for the clariped-free case. Figure5 deals with
a three-layered isotropic cylinder (geometrical and material parameters are
listed in the Figure). As can be seen that lowest frequency for the first three
axial modes m=l,2,3 correspond to p=9,11,13 respectively. Figure 6,7 correspond
to the same shell parameters as Figures 2,3 respectively. Overall natural
frequencies are a little exaggerated because of the end x=L being supported
(amounting to the introduction of a const-aint) rather than free as in the
previos case. This point is also brought out clearly by comparing the Figure
o for a clam.ped-suported shell with its counterpart Figure 4 for a clamped-
free shell (all the parameter being identical). Overall pattern of the Figure

is the same as that of Figure 4.

Clamoed-clamped cylinaers

Figures )-11 depict the behaviour pattern of natural frequrncies against
the circumferential wave number, p for a shell clamped at both the ends and
these can now be compared with their couterparts given by the Figures 5-7
respectively. It is fcund that all other parameters being the same, the
frequencies in a clamped- clamped case are a little higher than the correspond- 0

0 ing frequencies in a clamped-supported or indeed for a clamped-free case. Figure
12 has the identical parameters to the Figures 4 and 6. Frequency envelopes
made by festoon type of curves also emphasize the point that the frequencies
for' a clamped-cla:,-wed (a:,e are :io'er either than that for a clamped-supported
or a clamied-free case, all shell parameters being identical.

Comaring the groups of Fiures 5 and 9; 2, 6 and 10; and 3, 7 and 11
who nave identical she'Li p-ira.xeters, it cam be seen that for sufficiently high
circumferential wave numbers tn., influence of change in the boundary conditions
at the end x=L is not felt and the frequency paraseters are more or less equal
to each other in that re,-ion: for the various groups.

.. CONCLUDTIhO REI.MIAK:

Thne d'na:mic responsc 9f lar-inated specially orthotropic thin circular
eviindrica-l shells is analysed based o Timoshenko-Love theory by the use of
Rayleigh-Ritz variational procedure. T-,e approach is simple and straightforward
and provides a powerful tool to calculate the natural frequencies for a variety
of boundary conditions viz clan.pec-free, clamped-supported, clamped-clamped
etc. Paper also studies the influence of boundary conditions on the modal
behaviour of cylindrical sells. An example of isotropic cylinder is studied
as a particular case of the present anialysis which yielded results which agreed
well with some existing experimental results. Similar comparision was not
possible for orthotropic cylincers because of non-availability of previous
results for the boundary cetdAti:Qn considered. Although available shell para-
meters were used but the anaigois is capable of harndling all sorts of shell
goeme trical and material -aramieters. Th, rain aim of the paper has been to
go e tne desig. r a simple useful pr pi. itive tool for the natural frequency
of sucr. shells with a variety of n o':dar, conditions. Computer time required
i. nizal because it onuly nees sol utio:n of 11 cubic to calculate matural S
freiuencies. It is hope i that tnis paper will provide a small step in the
zireotion of proble solution in this area because of the easy adaptaility
of try- metnc -.,;.cussed.
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\ DYNAMIC RESPONSE OF LAYERED ORTHOTROPIC CYLINDRICAL

SHELLS SUBJECTED TO PRESSURE AND AXIAL LOADINGS

O.A. Fettahlioglu* and A.M. Sayed**
New York Institute of Technology* and Polytechnic Institute of New York- >

1. INTRODUCTION-1--

'This paper presents a study of the dynamic response of layered orthotropic I
cylindrical shells subjected to uniform pressure and/or axial loading,
accounting for the influence of the change in the meridional slope (the so-called o
pressurization effect), the transverse shear deformation and the rotatory inertia. 0

Earlier analytical efforts were restricted to cylindrical shells either W *
considering a single-layer orthotropic construction or excluding some of the
above-mentioned effects. Mirsky obtained solutions in terms of infinite series W
for the axisymmetric vibrations of single-layer, orthotropic cylinders 4jA
neglecting the effect of pressurization [1, 2). Dong formulated the problem of 0
the free vibration of laminated orthotropic cylindrical shells in terms of
three, second-order, partial differential equations involving the three
orthogonal displacements as dependent variables; however, he did not consider
the effects of pressurization, rotatory inertia or the transverse shear
deformation. He obtained closed-form solutions for frequencies of the free
vibration of simply-supported cylindrical shells and presented an iterative
procedure for the case of general boundary conditions [3]. In a later paper
[41, Dong showed the determination of the frequencies of axisymmetric
and asymmetric vibrations of laminated, orthotropic shells of revolution by the
finite-element method. Dym studied the effects of pressurization and of dele-
tion of the in-plane inertia on the vibrations of a single-layer orthotropic
cylindrical shell, but he neglected the effect of transverse shear deformation,
[5]. Penzer and Kraus presented an exact solution for the free vibration of
single-layer orthotropic shells having arbitrary boundary conditions, con- 0
sidering the effects of normal pressure, axial load, rotation including the
centrifugal and coriolis forces and torque [6]. Their solution does not account
for the layered orthotropic construction and the transverse shear deformation.
Bert and Chen [7] presented an analysis for the propagation of free harmonic
waves in fluid conveying, single-layer cylindrical shells of orthotropic
material by placing emphasis upon the difference between the behavior of pipe 0
constructed of fiber glass-epoxy composite material and that of steel pipe,
neglecting the transverse shear deformation. In a later paper [7), Bert and
Chen extended the shear deformable analog of Sanders' theory to cylindrical
shell vibration accounting for bending-stretching coupling. Thus, in this
investigation, this coupling is also included as the arbitrarily prescribed
orthotropic shell element is considered. The analysis is presented in much more 6
detail in [8, 9, 10 and 11], in which asymptotic solutions for the static stress
and deformation in orthotropic shells of revolution including thermal loading,
stability and the extension to wave propagation are also treated.

In this treatise, the governing equations of motion for the axisymmetric
vibrations of thin, orthotropic layered cylindrical shells are obtained from 0
those for general nonhomogeneous shells of revolution given in [8, II
by specializing them to the cylindrical shell geometry. The equations of motion
of the orthotropic cylinder herein are obtained in terms of a new system of six
coupled first-order partial differential equations, accounting the influence of
the change in the meridianal slope (the pressurization effect), the transverse
shear deformation and the rotatory inertia. The fundamental dependent
variables, in terms of which the equations of motion are presented, are taken as
those quantities that appear in the appropriate boundary conditions of the
classical theory on an axisymmetric circular edge. The governing equations of
motion are in such form that no derivatives of the shell or orthotropic material
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properties appear in the coefficients of these equations.

The system of equations is cast into a vector equation involving only one
derivative with respect to the space variable, the dimensionless arclength,
providing a substantial mathematical reduction. The form of the vector equation
is such that the asymptotic and stepwise integration techniques are directly
applicable to their solution.

The frequency equation of the simply supported orthotropic layered cylin-
drical shell with properties varying through the wall thickness but remaining
constant along the meridian is derived in exact closed-form accounting for the
effects of pressurization and shearing deformation. This frequency equation is
a sixth degree polynomial in 0 including all the effects, and reduces to a fourth
degree polynomial in Q neglecting the effect of transverse shear deformation.
In the limiting case of a single-layer isotropic cylinder without the pressuri-
zation effect, the frequency equation reduces to that given by Steele [123.

The variation of the natural frequencies is also treated by considering the
order of magnitude of the terms in the frequency equation, associated with a
large parameter introduced into the coefficients of the equations of motion.
The approximate solutions are then obtained in closed-form by grouping the
frequencies into regions of membrane wave, bending wave and a transition region
from membrane to bending wave. These solutions which are quite accurate for
thin cylinders, are relatively simple and in compact form, enabling the fre-
quency analysis using a pocket computer. The numerical results confirm that the
present approximate solutions are in excellent agreement with the exact solu-
tions presented herein.

The frequency spectrum exhibited in the figures clearly indicates the fact
that the pressure and/or axial loading have significant effects on the natural
frequencies for both isotropic and orthotropic layered cylindrical shells. The
transverse shear deformation is also seen to have a considerable effect, only,
on a higher branch curve which represents the shear mode; a decrease in its
value increases the frequency. The behavior of the composite shell is also
significantly affected by the relative values of the various elastic constants.

2. DERIVATION OF EQUATIONS 0

The equations of axial, radial and moment equilibrium are [13]:

d/ds (rV) -rpv; d/ds (rH) = N0 - rpH (1)

d/ds (rM,) = M0 coso + rH sino - rV coso

where PV and PH are the axial and radial components of the surface loading. The

compatibility equations are [13]:

d/ds = Ko; d/ds h = 0 coso - X sino + p/Eot° Q sir'O (2)

dv/ds = &0 sinO + X coso - (P/Et o) Q coso

where x is the rotation of the meridian, h and v are the radial and axial dis-
placements, and E /p is the equivalent transverse shear modulus.

The well known constitutive relations for a layered orthotropic shell are:

N C 11 + C12 F0 + K1 K0 + K 12 K0
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N0 =C 12  + C22 6 + KI2 K + K22 K(* 2 2) 20(3) •

M 0  D 11 K + D 12 K0 + K 11 C + K12 0

M0 D 12 K0 + D22 K0 + K12 C) + K22 0

The typical notation is employed (See Fig. 1). For a layered shell, Fig.
2, the elastic parameters are computed from the formulas

n k 1 2 2

k-i 1 23 ( k (4)D.. I (Zk3+ 1

where, F.. are the elastic properties. With the kinematic relations
13]

F_ 
= h/r ; Ke = Xcoso/r (5) 0 0

and the relation: N = H coso + V sino all the equations may be reduced to the
following matrix equation for the axisymmetric deformation of the shell of
revolution, in which the axial and radial motions are coupled:

1 2  0

y + A - y + L F N = 0 (6)
X . . X2 2 (

where, A is a large parameter and c0 is a reference parameter

X = [R/c]1  and c = to (12(1-u 02)]- (7)

of the cylindrical shell of radius R and the dimensionless arclength and time
are chosen to be

x s/R ; i= (t*/AR) (Eo/mo) (8)
D 0

in which, mo, E, t and ui are the reference values of the mass density,0 0

Young's modulus, the shell thickness and Poisson's ratio, respectively; t*
is the time and s is the arclength.

The vector stress and deformation quantities are

YT M _ HA VA h v (9)

E t 0 E ' Et A R

The matrix A.. is given in [8, II]. The non-zero elements of the F matrix are

F14 = (1/12A 2) (to/Co)2 ; F2 5 = I and F36 = 1 (10) 0 0
The propagation of traveling waves is considered in the form

y (x,T) = y (x) eIA
~ ~ (11)

where the dimensionless frequency, Q is related to the circular frequency, w as

follows: =(t*/T) w = wRA (m0/E0 ) in which (E0/m0 ) is the bar velocity.

Then, the frequency in cycles per second is f = (0/2nRX)(E0/m)1

2 7
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The substitution of (11) into (6) yields

3 2 -X 5x y + (A - Q2F) • y = 0 (12)

where y must satisfy the end conditions. For cylindrical shells with simply

supported ends yT(o) = T (k) = 0, 0 Q X - I , 0, v/R] which implies M
0 0

V = h = 0 at both ends.

Exact solutions in closed -form are obtainable for orthotropic layered
cylindrical shells of constant thickness and material properties along the axial
direction since the coefficients of the equation (12) are constant. For simply
supported ends without axial constraint, the spatial dependence in the axial
direction is taken to be proportional to exp(-i mxX), where m is the dimension-
less wave number. The explicit form of the soluton is

= fe imxA (13)

where, a is the eigenvector whose components are the amplitudes of the stress

resultants and deformatons. The substitution of (13) into (12) yields

(iml + A - Q2 ) . Z = 0 (14) 0

which is an homogeneous system of equations whose nontrivial solutions are given
by the characteristic equation as follows:

IiMI + A -Q 2  = 0 (15)

y is the corresponding eigenvector of the matrix (A - Q2F). The imaginary part 0

of y will satisfy the simple-support conditions at x = 0 and x=k if muQ = n for

n = 1,2,3... Hence, m = ni/Ak.

The characteristic equation (12) takes the following form: 0 0

im 1 0 pR/EotoC° - (Q t/XCo) 2/12 0 0

(co/to B14  im B13/X 0 B 11 _ 2  0

0 0 im 0 0 _02 0
= 0

(c°/t°)2 B  0 (c/to)B 4 /X im -(c /t )B 0
0 B4 4  o o 34 o o 14

0 2 0 (pp/E0 t0 )-1 im 0

0 (16) 0 0

(c o/to)B 34 /X 0 B33/A
2  0 -B13 /A im

in which to is the wall thickness, E /p is the equivalent transverse shear
modulus and p is the pressurization effect defined by the relation

P = V o + POR/2 
(17)

The elements of Bij are given in terms of the elastic parameters (4) in [8, 11].

0 0 a
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A typical element of B.. is

B1 1 = (-(2C 12 K1  2 2 +
11 12 ~11 12 12 11 1 2 2

where, 
K 2

11 11

For the special case of a single-layer isotropic shell, Bij, reduce to the
following form:

B11 =1 ; 12 =0 ; 13 u ; 14 =0

B21 0 B 22  1/12 B 2 3  0 2 B24 
=  (18)

B u ; B32 =0 B = 1 -u B34 =0 2

B41 =0 ; B42 u ; B43 =0 44 12( - U

The expansion of the determinant (16) yields a sixth degree polynomial in Q
including the effects of pressurization and transverse-shear deformation as
follows:

A 06 + B Q4 + C Q 2 + D = o (19)

where A = p (B33B4 4 - B34 )/12X
6

B =_ 22 6 2

(B33B44  B3 4) [(C/t) 2X
2 ((pp/Et)-l) - PA 6 (R 2p/Eot) - (m 2/12A 4

+(p/12X 6 ) (B B34 + 2B B B - B42 B + PX-4 [m2B (B4
11 34 13 14 34 14B33) mB 33  ( 44/12)

2 + B B + m2 X2 )X2 )B13 B11B33

pA6 2  2 2 2 + BBB

(R0p/Et) [-B13 14 B3 4 + 14B33 B11B34 + BI3B44  1133B44

+ B44m
2X21 + m2 -4 (R2p/Eot3 ) [B3B - B3] 2 + (Co/to)2A-2 [(pp/Eoto)-1] x

1434 0B 1 33 221344 341 4 0 0[BBB +BB2 -BB B2 B B2 B

[B3B434 11 34 -B3B34 -B 4B 33 -B 3B 44 -BB33B44 44-6 2 + 2

- pA_ B B B + pm2 X_4 [B B + B2 B B +AX + B 2
13 14B34 1 1 33  14/12 + 11l44/12 13S-24h-2 m2 -"2

(C0/t0) m 2X2(BI4B33 - BI3B34) + m (B33 + B44/1 2 ) + M (c/t0) X

[(pp/Eoto) -1] (B13B3 4 - B14B3 3)
D = {-m2 [-m2- B4 (co/to) ] [-m2 + B (co/to) ((pp/E t )-I)] + [-m4 B 2

[i B14  0ct) 0 - B14  0cit 0 0 B11 PA/

+ m2 BIB4 (Co/to)2 ((pP/Eoto)-I)] + (m2/A
4) (R 2p/Eot3) [-'B 14 p

2 B44 - p BI1B44 1

For the limiting case of a single-layer isotropic cylindrical shell, (19) takes
the following form: 5

06 [p(-u2 ) 2/X6 + )4 (_m- 2 (1-u 2)/ 4 (-p-l) - [(i-u2) p/A 4 [m + (l-u)/A I
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2 6 22 2/32 2(P/- [(1-u 2) p/A I [u + 12(1-u ) (R p/E t3)] + (1-u2)/A [(p/E t ) -1]]

+ Q {(m4/X2) [p+2(1-u 2) + m2 p(+u 2)/X4 + [(Pp/E t ) -1] [-(u2/X 2 )

- (1"u2)/X2 _ m2] + 12(1-u 2 ) (R2 p/Eo3 [(m2 (1-u2 )M4) + (PU2/A6)

12p(1-u 2 ) (R 2 p/E t 3 ) [m2 + (1-u2)/2]/X4 } + 1-m6 + m2 [(pp/E t ) -1]

- [12m 2 (1-u2 ) (R 2p/Eot3) (A2 + p)/ 4 ) - m 4p/A2 = 0 (20)

When pc0 (19) reduces to that given by Steele [12]. 0

3. APPROXIMATE SOLUTIONS

The curves of variation of the natural frequencies Q as a function of the
wave number m can be developed by a series of order-of-magnitude approximations
with respect to the large parameter A. This is done in what follows 0
by neglecting the pressurization effect. For m and 0 both 0(1), and using the
fact that A is a large number, (19) yields the bending waves analogous to those
in an Euler-Bernoulli beam on an elastic foundation

0 2 = (to/co)2  2+ B4 c/t) 2 * (co/t )2 B11B4 4 1 (21)

which reduces for the case of isotropy to 02 = m4 + I as given by Steele [12].

For m << 1, the frequency equation (19) yields

m2 = (Q/A)2 [B12 B + (B _ 02 ) (B3 3B4 4  B3 )] 2 B4 4CB11 _ 2) (22)

For the case of isotropy, (22) becomes

2m /= (AI) 2 [1-Cl-u2)02 I/ (1-(2) (23)

Tracing back, one can obtain this result by assuming all the transverse shear
and bending stresses to be negligible. Consequently, this gives the "membrane 0
waves." The ordinate to orgin (m=o) obtained from (22) is

Q2 = B + (B2 B4) / (BB44 B) (24)

which reduces to the ring mode, -(1-u 2) for the isotropic cylinder.

Furthermore, for 0 > O(A), the frequency Equation (19) takes the following form:

06(p/12A6) [B B - + 4(1/A4) [(-A2(Cd/t) 2 m2 /12) (B33B4 4  B24)

- pm2 (B3 3 + B ]44/12) + 02 (1/A2) [B33 (m2 + (Co/t ° ) B 14
) 2 + m4 B4 4 /12

+ M2((Co/to)2 B44 2+ pm2)] - m2 [m2 + (Co/t) B14 ]2 = o (25)

The ordinate to orgin (m=o) is

2 {11A4(c) + [.L144 X8 + 48 (4 ) 14 33

B34 B 33B44

(26)
which reduces to the form

30



0 2 = N4 / (1U2 )p (27)

representing the shear mode of isotropic cylindrical shells [121.

Moreover, for Q > 0( 2), (19) resolves into two equations:

M 2 _i(/X)2 = 0 (28)
* 0

4 2 (B33 + B4 ) (Q/)2 + (B33B44 - B4) (Q A) 4/12 = 0 (29)

For the case of isotropy, (29) reduces to the following form:

M2  (Q/X)2 (1-02) (30)

The positive real values of Q resulting from all the approximations studied
can be evaluated using a pocket computer. The values are exhibited in Fig. 3
and 4 in correlation with those corresponding to the exact solution (19). The
numerical results support the fact that the approximate solution may be used in
lieu of the exact solution.

The quantity 7x/A. is small, except for very short cylinders whose length is

in the magnitude of (Rt). For A very large (that is, very thin shell), the
curve of variation of 0 versus m in the transition region from membrane to
bending wave becomes very flat and a large number of natural frequencies are

found near P = (B1 1)k (f = 1 for the case of isotropy). In fact, if just the

membrane solution is used, an infinite number of natural frequencies approaching

the limit Q = (B11 ) can be determined; however, in the range (B11) <Q< the

value of 0 given by (20), referred to as a "zone of silence" none can be found.
Since the cylindrical shell has an ample number of natural frequencies in the 0 0
range Q = O(B1 1), for most problems the higher branch and the deviation of the

bending solution curve for large 0 are not important. Therefore, the transverse
shear deformation and rotatory inertia effects may be neglected.

Furthermore, for Q<(B )k, the analysis for general boundary conditions can *
be performed as in the static case. The membrane solution is determined from
the conditions on the axial force, V or axial displacement, v. The "dynamic
edge-effect" solution provides the constants to satisfy the conditions on H or h
and M or X. The mode s-.ape is essentially "membrane" with the edge-effect cor-

rection. Moreover, for Q>(B 11 ) , the membrane solution is still valid but the

solutions which give the "dynamic edge-effect" for Q<(BI )1 become short wave-
length bending solutions [8].

4. AXISY1METRIC STABILITY LIMIT

A "classical" stability limit for orthotropic layered cylindrical shells is S 0
derived by the first author in [8] from the frequency equation (19) by setting 0
equal to zero and minimizing p in the resulting equation with respect to the
wave number, m.

0 dp/dm = 0 yields m2=±(Co/to)(B24 +Bl B4 4)

which gives the minimum value of the pressurization parameter, p defined by
(17), as follows:

p -(2Eot2/R) [B14 + (B 4+BB 4 4) I/B44  (31)

S 1
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Indeed, (31) reduces to the well-known classical stability limit for homogeneous
and isotropic cylinders. In fact, (31) is only a special case of the more
general stability limits for orthotropic layered shells of revolution given in

[9] by the first author.

5. NUMERICAL ANALYSIS

Numerical results presented herein are obtained by the computer program DAS
[14] which is capable of performing dynamic analyses of orthotropic layered
shells of revolution.

The properties of the isotropic and orthotropic cylindrical shells for the
base curves (solid liries) are listed in Tables 1 and 2, respectively.

TABLE 1 - Isotropic Cylinder

Length Radius Thickness E Poisson's ratio p
L(cm) R(cm) t(cm) (Pa) u 0

254 152.4 0.635 6895x07 0.30 3.0

TABLE 2 - Orthotropic Cylinder
(L = 254 cm; R = 152.4 cm) 0

Layer Thickness E Ee uqe
(cm) (A) (Pa)

7 7
1 (Inner) 0.254 6895x10i7  3448x107  0.30 0
2 (Middle) 0.254 4137xl07 2069x107 0.30 3.0
3 (Outer) 0.254 2758x107  1379x10 /  0.30

The variation of the frequency with respect to the wave number is presented
in Fig. 3, 5 and 6 for the isotropic, and Fig. 4 and 7 through 9
for the orthotropic cases. The figures demonstrate clearly that the pressuri-
zation has a significant effect on the natural frequencies especially for the
m>0.1 range of the membrane and bending (lower branch) waves. The higher branch
of the bending wave (shear mode) is not affected by the pressurization. The
effect of internal pressurizaton (p>O and/or V>O for m>0.1) is to stiffen the
cylinder with respect to the frequency, thus causing frequencies to increase;

* however, the external pressurization (p<O and/or V<0) has an adverse effect on
the frequency.

TABLE 3. Natural frequencies TABLE 4. Natural frequencies
for isotropic cylinder for orthotropic cylinder

R/t m f I (Hz) R/t m 01 fI(Hz)

120 1.04 1.337 71.7 100 1.04 1.056 75.9

240 1.04 1.345 25.5 200 1.04 1.043 26.5 0

480 1.04 1.342 18.0 300 1.04 4.872 10.7

E0 = 6895x10 7 Pa ; mo = 2641 kg/m3  E = 6895x10 7 Pa ; m = 1761 kg/m3
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,60

Tables 3 and 4 describe the effect in the change of the ratio of radius to
thickness (R/t) on the frequencies given by the lower branch; increasing R/t
ratio lowers the frequency values. The inclusion of transverse shear deforma-
tion does not influence the lower branches of the membrane and bending waves.
The reversal of the sequence of lamination in Table 2 increases frequencies
considerably for m>0.1, Fig. 9. The replacement of the values of E 0with E 0in

Table (E >E ) produces a large increase in 0?. An increase in the shear defor-

mation (the shell is more flexible in shear) decreases frequencies of the higher

branch of bending wave (shear mode).
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ABSTRACT. 0

\ The Timoshenko theory of flexural vibrations of beams and the WKB method

are adopted to evaluate the amplitude changes of the free vibrations of beams,
the length of which varies linearly with time. It is found that the change is
dependent only on the length increase (or decrease). Results are also given for
the frequency modifications. 0

1. INTRODUCTION

Some mechanical systems are required to change their length while in ope 0
ration. This is the case of manipulator arms or deployable antennas,the length
of which can be varied by amounts equal to many times the initial (or final)
span. In such cases it can be expected that the amplitudes of the flexural vi-
brations originated by the manoeuvres are not constant; in particular, it has
been observed that when the length of a mechanical arm is increased to reach
sume target, undesired vibrations are originated, so that the successive phase 0
of the operation has to be delayed until the oscillatory motion is damped by
dissipative forces El). Thus, the study of the dynamics of beams with variable
length seems to be interesting in technical problems in order to decide if the
addition of dampers is required.

The problem seems to have some interest also from the point of view of 0
the techniques of solution, because the use of the methods usually adopted for
beams of constant length cannot be extended to this case. Further, to the know
ledge of the authors, only a few works have been devoted to the analytical in-
vestigation of strings and beams with variable length.

In the present case, the problem can be simplified, because it is plausi 0 0
ble to assume that the velocity at which the length is changed is small,if mea
sured in units of the fundamental periods of the free vibrations; therefore,the
use of a perturbation method (the WKB method) is allowed.

Two other hypotheses are inherent in the mathematical model which will be
presented in the following paragraph: 0 0

a) it is assumed that the initial or final configuration of the arm is such
that it cannot be considered as slender, so that shear and rotatory iner
tia can have non negligible effects. Accordingly, the Timoshenko theory
will be adopted;

0
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b) the effect of weight is not taken into account. This is partly because some
preliminary computations carried out with the Euler-Bernoulli model have
shown that, for masses up to about 100 Kg and length increases equal to 4
times the initial one, the weight effect is negligible. The other reason is
that some very interesting systems with variable length have been designed S
to be used during space missions. Among others, this is the case of the de-
ployable boom which will be mounted on the Space Shuttle to provide the ini
tial gravity gradient at the beginning of the deployment in future missions
of tethered satellites [2].

2. MATHEMATICAL MODEL AND METHOD OF SOLUTION.

According to [3], the equations of motion are:

?rv V
Ii + - = 0

x

DM 2s .

- -- + I --- + V = 0
'x 0

x M (0 < x < Z(t)) (1)
3 x EI

V = - KAGa

C( +

The meaning of the symbols are given in the table at the end.

Eqs.(1) constitute a system with constant coefficients,but defined in a
time dependent domain. To reduce the problem to one with time independent boun
dary conditions, the following substitution is made:

x = s - 9(t) (0 < s < 1) (2)

so that it can be written:

Z 2y* + DV 0

at
2  s

*2*

- 9, + 9V 0
as 0-- * -- 0 00s O t2

___ - M (0 < S < 1) (3)
s E1 - -

E l

V = - KAG( 2s -

where the field of definition is constant, but the coefficient Z depends on ti-
me.

It is now assumed that the length is changed linearly with time (which
seems quite plausible in most applications), so that:
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it) = 2Z + it (4)
0

with Z = constant. As noted in the introduction, the hypothesis is also made
that:

TZ00- 1 (5)
2.(t) 1

is valid at any instant; in other words, the time interval during which the
length is changed must be much longer that the period T of the fundamental0
mode in the configuration with maximum length. In this case the system is a •
diabatic, so that eq.(4) can be rewritten as:

k(t) = k + Cit (6)
0

and perturbation methods can be adopted for its solution. In the present in
vestigation, system (3) is solved by means of the WKB method 14], looking for 4
solutions having the form:

i )(T) i gL __
y (s,t) = y(s,T)t) = (s,) e

,i(T (st) s(7)

t * i (T)
M (s,t) = M(s,T) e V (s,t) = V(s,T) e (

JC

where C is a small parameter, T = Ct is the slow time and:

COn 00n
y(s,T) = En Yn (S,T) F .(s,T) = En 6n(S,T) C

(8)

Co no 0 n E T C

M(s, ) = En Mn (s,T) Cn V(s,T) = En V (s,T) C ;4)(T) n nn Cn

Substituting eqs.(7) in (3), it is easily found:

i 2. -2 2i •*• i - 1 "2 '
-y+ + +- v 0 -;y + =+ C C

-M, + E 21 £3+ 2i g + - )+Z
C m 0 (9)

EI

Y' -I G(KAG - V)
KAG

where the dots and the apices mean, respectively, differentiation with respect
to T and to s.

IntrOducing eqs.(6) and (8) in (9) and separating the contributions per-
taining to different orders of C and, for each order, real quantities from i-
maginary ones, it is found that the 0-th order contribution is exclusively
real and is given by:
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0
-P 20 Y0 i0+ V ' = 0

-M -I ko 2 + ko V = 0

0 0 0 0 0 0 0

z (10)
- M

o El o

, = (KAG 8 V)
KAG 0 o

When dealing with perturbation methods, it is frequent that the complete n-th
order solution can be found only if some information about the n+1-th order is
available. In this case, further information about eqs.(10) is provided by the
imaginary part of the first order expansion, which gives:I2yo~ + y 0 = 0

0 0 0.. ( 1 1 )

2o 0 P + o3° = 0

Eqs.(11) can be satisfied by: y = 0 = 0; therefore, it appears that
eqs.(10) constitute the usual system governing the vibrations of a beam with
length o. In particular: $ 0() = const = w. The real part of the first order
is:

l 0 (2$o~lY + yl 2 
+ T yo 2 ) _ V; = 0

Io2.o(2 iP o + i 2+-t Y 2o +' - V -o Qo =0 000 0 00 10 0l
0

L T(12)
=ip- (2. T M° + 9.oM )

1 0 o1

Y' 0KA [KAG(61 +  -- T 6o  V1  - T Vo
0A 0 1 0o

o 0

and from the imaginary part of the second order:

Yl 2 Yzo 61 0 (13) 01 24°  0
0 0

if the initial phase is 0o(0). After some algebraic manipulation on eqs.(12),
it is also found:

M (2- +- T) M 0
0 0 (14)

V1 =- KAG °  2- ( +- T) V

0 0 0

Eqs.(13) and (14) give the first order corrections as functions of the 0-th or g
der quantities and the unknown frequency variation. To determine it must be

remembered that system (10) admits exponential solutions:

Xs \s Xs
y (S) = ye X (s) =0 e , M (s) = M e , V (s) V e

(15) 0 0
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and,that,for each vibration mode and for each value of X in any mode:

KAGX2 + jo °  EI(KGoX2+1 V)X 2
Xo KAGYo 00 , V J

00 KAGoZ oo M 00 KAG Z2 Yoo 0 x YooJ
0 0 (16)

Introducing eqs.(13), (14) and (16) in (12), one can write:

'in KAG X
2

1n (1 ) - (17)
0on it2'2 2Z0

Finally:

Yin KAG X
2

1 -(i n ) (18)

0 0

and similar formulas for In , M and V can easily be found from eqs.(13) and
(14). Thus, it is seen thatnthe lirst oraer corrections of any mode are the sum
of two different contributions pertaining, for the same value of n, to the two
different values of A2 which can be found equating to zero the determinant of
the coefficients of system (10).

3. COMPUTATIONS AND RESULTS

It is now convenient to introduce non dimensional parameters.Let it be:

b2 E1 4  2 KG 0 (19)
= - E I I

0

so that the biquadratic equation relating X to 4o can be written as:

b2 422
x2 - n (p+l) + [(p-l) 2 + 4pq (20)
n 2pq - b 2

n2 2

If: (p-i) 2 + 4 P~q& >(p+l) 2 let us write: (case a)
b 
2

n . j -(p+1) + [(p-i) 2 + p ] (21) 0
b
2

n

and in the opposite case : at'2 = 2  (case b)
n n

Further :
Fr2= 2 1 Jp+ + [ 1

2 + 4p2 (22) 0 0
n 2pq b 2

n

So that the amplitude corrections are:

K n = (I - p q a2 ) L9- (case a) (23)
an y n n 4Z 0

or: ,1 ~2 AZ
K.r =(Y) ,= (1 + pq' ) AZ (case b) (24)

n y on O

and:
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yin

Kn (Yon),, + p q 2)4 (25)
n on n Z0

The values of the adimensionalized frequency b, needed to compute a, X'
and are found solving the frequency equation. If the arm is assumed to have
a clamped end, while the other is free, the boundary conditions of the 0-th or 0

der problem are:

Y (0) = 2o(0) = M (1) = V (1) = 0 (26)

and the frequency equations corresponding to a cantilever, both in case a) and
b), are aiven in.[53. For sake of brevity, in the following, formulas are gi-
ven only for case a) because the changes in case b) are obvious. Therefore:

Yo(s) = Y0 1 + Y0 2  (27)

with: p
Y01 = CI sinh bas + C2 cosh bas

(28)

Y0 2 = C3 sin b~s + C4 cos b~s

Now, from eqs.(17) and (18) it can be seen that, for each n, at the first
order of £ there are both two values of the frequency and the amplitude correc S
tions, depending if a or 6 values are substituted for X. Thus, K is the correc
tion to the exponential part of the solution, while the trigonometric part is
changed by K,. Accordingly, the following quantity has been taken to measure
the change oi amplitude vibration during the length variation in any mode:

K ty 01 + K Y02 0

a(T) = (29)

A simple computer program has been implemented to find the five lowest roots
of the frequency equation corresponding to conditions (26) and to evaluate Y'at the
free end of the cantilever. In the computations, it has been assumed that the arm
is made of steel, so that: E = 2.1-10' N/i2 and v = 0.3; further,the cross sec- 0
tion has been considered to be a thin walled hollow circle and the pertinent shear
coefficient has been computed with the formulas of Cowper [6]. The value of p has
been held constant in any computation, while the slenderness ratio q has been
considered as a variable parameter. Some preliminary runs showed complete agree-
ment with the results at the end of [5].

The main result of this investigation is shown in fig.1, from which it is

apparent that'alchanges linearly with the length increase.

This result is valid for any vibration mode and for any value of p and q,

so that it can be concluded that the amplitude change with length is a purely

geometrical feature, being completely independent from characteristics of the 0 •

0-th order solution different from vibration amplitude.

In fig.2 the ratio K /K is shown for four values of q as a function of the

mode number.It is interestna to note that for slender arms the two amplifica-

tion factors are almost equal and of opposite signs, while as rotary inertia and

shear forces increase, K can change sign, so that the exponential and the trigo S •

nometric part of the vibration can be changed by very different amounts.
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Figs.3 and 4 show,respectively, the adi-
kR/ka mensionalized frequency modifications of S

and y0 2 up to mode five. As LC1aw isY0c1

__ _positive, corresponding to frequency in
1 fcrease, it is seen from fig.3, that the

frequency of the upper modes can decrea
se if the arm is sufficiently thick. On
the contrary, Aw 1 is negative, and from

12 Fi. tcnb
1\ Fig.4 it can be seen that the frequency

modifications corresponding to are ne
x q=500 gative in any case. In both cases, the

o q=1000 asymptotic values tend to those given by
8 the Euler-Bernoulli theGry and the ef- 0
Bq 0fects of rotary inertia and shear forces

Sq =10000 are apparent for q < 2000.

In conclusion, beats are present
4 in the vibration, due to the proximity

of (W + Aw )n to (W + AW )n, and their •

amplitude variation is slower and slower
as long as q tends to infinity.

0

2 FIG.2 - Ratio of the amplification fac-
tors for the first five modes.
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LIST OF SYMBOLS

a(T) amplitude change
A area of the cross section
b adimensionalized frequency 0
E Young modulus
G shear modulus
I moment of inertia of the cross section
I moment of inertia of a beam with unit length0
K 0 shear coefficient
K , K amplification factors corresponding to ct and 8 values of

the wave number
k(t) length of the beam
£ 0 initial length of the beam0

M*(s,t) bending moment
p : ratio to measure the relative effect of rotary inertia

for given shear and flexural rigidity S
q : slenderness ratio
s : adimensionalized space variable
V* (s,t) shear force
y*(s,t) beam deflection
a*(s,t) slope due to shear
6*(s,t) slope due to bending

AW , AW frequency modifications of mode n
adimensionalized wave number

: mass per unit length
T : slow time
P(T) phase angle *
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/ABSTRACT

Toroidal elasticity, first introduced at London, England (1980) is a new 0 S
tool of stress analysis. It merges a toroidal geometry with the fully three
dimensional theory of elasticity. For isotropic materials, it includes both
stress and strain compatibility relations in order to ensure that the deforma-
tions are prooerly determined and topologically correct. Since the theory is
complete, all three components of displacement, all six components of strain,
and all six components of stress may be determined. 0 0

The compatibility equations, though rigorously correct, are lengthy. To
apply the theory to a large number of boundary value problems, the method of
successive approximation has been adopted. All equations are expanded in powers
of I/R (where R is the toroidal radius). This leads to a set of working
equations appropriate for the solution of problems. 0 0

In the present paper the methods of toroidal elasticity are extended to
the problem of determining the stress fields in a hollow circular elbow or pipe
bend under the action of seismic accelerations.

The seismic accelerations are represented by equivalent body forces X,Y,Z 0
acting in arbitrary directions. The seismic forces may also be viewed as upper

bounds obtained from seismic response curves. 1

Calculations are made for parameters s = 0.35 and s = 0.30, corresponding
to major elbows of nuclear plants. a

4 7* 0
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1. NOTATION 0

r, c, 0 = toroidal coordinates

ar, o , GO = normal stress components

T T r, T 0 = shear stress components *

R = toroidal radius

a = inner radius

b = outer radius 0

r
S - R

q = 1 + s cos

X, Y, Z = Seismic forces (per unit volume) 0

2 a2 1 3 1 a2

o S + s +
*=0 +0 +0

r + a

a Cos= _ sin
_q cos s s I

2. INTRODUCTION

Toroidal elasticity (as used in this paper) refers to the application of
the classical theory of elasticity to a toroidal geometry as typified by solid
circular ring sectors, pipe elbows, and curved pipe bends. The term "toroidal
elasticity" was first introduced in [1] where it was emphasized that the theory
was complete because of the inclusion of both stress and strain compatibility
equ tions. This means that the theory is topologically correct and can be used
to u.termine stresses, strains, and displacements everywhere in an elbow.

Because the rigorously correct compatibility equations are lengthy, it is
desirable to apply the method of successive approximations. All equations are
expended in powers of 1/R (where R is the toroidal radius). The result is a set
of working equations appropriate for the solution of many boundary value problems.

The method of successive approximation has been applied to the determination

of stress fields for

(1) twist of elbows, pipe bends and ring sectors.

(2) in-plane bending of elbows under the action of pressure and
end-bending moments.

(3) in-plane bending of elbows under the action of end normal force 0
and end shear force.

(4) out-of-plane bending under the action of end bending moments and
end twisting moments.

(5) out-of-plane bending under the action of end shear force.

There exists a total of 16 solved problems for ring sectors and for pipe

elbows under end loads and pressure.

In addition to these statically loaded problems, two problems involving
seismic accelerations in a solid circular ring sector were solved [2], [3].
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The specific objective of the present paper is to determine the stress 0
fields for an elbow arising from two of the three constant components X, Y, Z
induced by seismic accelerations. The three components X, Y, Z may be viewed as:

1 - Equivalent body forces -X, -Y, -Z

2 - Extreme or upper bounds obtained from seismic response curves

3 - Derived from displacements u0 sin wt, v0 sin wt and w0 sin wt

so that X = - u0 w
2 Y = - v 0 w

2 and Z = - w0 w2

(where the time term sin wt is omitted everywhere)

As shown in Figure 1, the components in the toroidal elastic frame of
reference are related to the components X, Y, Z by the direction cosine scheme.

X Y z

F cos ( cos 0 cos ( sin 0 sin

F - sin ( cos 0 - sin ( cos 8 cos ( 6

Fe - sin 6 cos 0 0

In the present paper, only the field. of stress due to components X and Y
will be considered. The Z component, which requires separate discussion, is
deferred to another paper.

The stress field of the X component can be derived from the stress field
for the Y component by a simple substitution. Therefore, it is only necessary
to consider the Y component in detail.

The stresses are given by a converging series such that
S(total) = S(0) + S() + S(2) + ... (where S is any stress)

The working equations consist of terms on the RHS which may be called
equilibrium functions or compatibility functions. These functions are developed
in the body of the paper. 0

3. STRESS FIELD FOR INITIAL STATE (0)

The equations of motion are

3(a S) 1 aT r a a
1 -. _ 2) (YR sin 0) cos

sas s a s
aoy + 1 (T r s2)

s S2 as = - (YR sin e) sin ()

3(TreS) + @T 0  = (YR cos 0) 0

sas s a(

These equations are satisfied by the initial field of stress given by:

a (0) = (YR sin 0) s cos a G (0) = (YR sin e) s cos

a8(0) = (YR sin e) 2vs cos Trp (0) = 0 (2)

Tr(O) = (YR cos 0) .s T (0) =0
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The expression for a is based on the initial condition, Z= 0. It can 0
be shown that the initial stress field satisfies all six conditions of strain
compatibility and, therefore, represents an allowable field of deformation.

To continue the analysis, it is convenient to omit the multiplier
(YR sin 0) from the first four stresses. We also omit the multiplier (YR cos 0)
from the last two stresses. Thus 0

0 = ( r + a + a) 0 = 2(1 + v) s cos c (3)

The equilibrium functions for the next state of stress are

N (1) cos cos = vs - s cos 2N01a ( 0  O) cs + Tr 02

N 2 = [(s r (i~j 2 2/

N (2) = y a) sin 1 2 2v) s sin 2p
o 2

0 [o =- (1 + 2V) s cos q

The compatibility functions for the next state of stress are

V 0 () = r =1 V (2) o = 1V0 q 0

V (3) = + 1 =8 2(1 +) V (4) = 0
0 3q 1 + v q 0

S r8T 5
V 0 (5) = q + 2 cos 2 cos

V0(6)=- Tr sin - s5 sin S
= 6) r 2 sin 5 sin

0 5

4. STRESS FIELD FOR STATE (1)

The equations of motion are:

( ( r s )s  9T i Tr Cy
__ + t = N (1)
( DS s s 0

(1 NO (2) (4

/7(Tr s) 1  T -

+ = N (3)
S s S1

All terms on the LHS refer to the stress state (1). •

A solution is readily found to be

S L22 Bb 2 - - 2
Gr(l) = -2 s b a2 + 2) - 2v) 4 7 s 1 cos 2¢

S 2s2 2 2  + B
a (i) = - -4 s2 + + (S2 + Sb 2 ) - (1 - 2v) + 2A s2 + + cos 2

4a2 50 2]
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rB D2
Tr(1) = - (1 - 2v) A s2 - -- + C - -2sin 2¢ 0 0

(1 + V)s2  s2(1 - 2v) d22 (5)a0 0(1) =do 2 +i-2cs(5)

h_+ [- S 2 s 2 1
T (1) = (9 +68v s 2  a b + (s b

2 + sa2 CosrO \ 1 6 'L b ~aJ ]O

T(1) = 11i - 8v s 2
1  9 + 8v Sa 2 Sb2 ) _ 9 + 8V (S a2)]sin

R 1616 16 b a

In the above, the boundary conditions determine A 2, B2, C2 and D 2 0

The boundary conditions are ar = 0 at s = s a s b and T 0 at s = S a Sb

We find
(S4 + 4Sa2Sb 2 + S4) 2 + s 2)(S 4 + s4 + S 2b 2)

1 b a b Sa 1 sb a b a a b
C2  4 (Sb a 2  (6)

3 S4s b4(Sa 2 + Sb 2) Sa2Sb2(s b 4 + s a4 + s a2s b2)B -- zD = - 22

2 4 (Sb2 - Sa2 ) 2 2 (Sb 2 _ Sa 2 ) 2

"0 0

The compatibility equations for stress state (1) are:

-2 a - Tr 2 ( +1 i 2.) - V0 (1)
o2 Or -- s 0¢-S- O O) ii

(2 +4 ' + 2 1 +V + 1a' 39" 0V0 a  +-7 ¢ V-7 (a a) C(+ s + s -- - - V0(2)

00 S + - /  r + v'5ss3 0

(v a r) 2=_ V (3)

0 0r- -s

( . . .3
V - = - V 0 (6) 0
V Tr ~ 2 To Vp (5)

These are satisfied by the solution of Equations (5) provided that

2dI = 4A2 v- and d =- 2D2v (7) 0 0

To complete the solution for a0 (1), we take

do = V (sa2 + S 2 )

The equation for d follows from the boundary condition Tre(2) = 0
for s =Sa sb. ! 0
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5. STRESS FOR STATE (2) 0

The algebraic details for the determination of the six stresses for
state (2) are reasonably lengthy. Space limitations require the omission of
this stress state. However, the complete mathematical development for stress
state (2) can be found in [4].

6. STRESS RATIOS

Since expressions for all unknown coefficients have been determined in the
body of the paper, the field of six stresses may be summarized (by Equation
number). Thus

a = YR sin 6 [Eq. (2) + Eq. (5) + ... ] 6

r = YR sin 6 [Eq. (2) + Eq. (5) +

C = YR sin 0 [Eq. (2) + Eq. (5) + ...](8)

T = YR sin 0 [Eq. (5) + ... ]

Tr6 = YR cos 6 [Eq. (2) + Eq. (5) + ... ] 0

T 0 = YR cos 0 [Eq. (5) + ...]

The stress field resulting from the X-seismic component can be determined
by replacing the multiplier YR sin 6 by XR cos 6 and by replacing the multiplier
XR cos 6 by - XR sin 0. The equations in square brackets represent stress ratios.

Calculations for the stress ratios on the inner and outer surfaces of an
elbow or pipe bend are determined using s = 0.30 and sb = 0.35. These two
values correspond closely to major nuclear elbows. They were determined for
elbows of heat exchangers and steam generators based on a specific design for a
breeder reactor plant.

Because of the boundary conditions, T vanishes. Moreover, T = 0.175

YR cos 6 on the outer surface and Tr6 = 0.1VYR cos e on the inner surface.

The remaining stresses are given in Table 1 and have been computed for
seven values of the circumferential angle, q. Maximum values are underlined.

7. Table 1. Stress Ratios 0 0

Radial Stress (ar/YR sin 6 or r /XR cos 6)
po 0 30 60 90 120 150 180

Outer Surface 0.35 0.3031 0.175 0 -0.175 -0.3031 -0.35

Inner Surface 0.30 0.2598 0.150 0 -0.150 -0.2598 -0.30

Circumferential Stress (a/YR sin 6 or a,/XR cos 6)
po 0 1 30 60 90 120 150 180

Outer Surface 0.6892 0.6423 -0.0424 -0.4030 -0.3924 -0.1494 -0.0108

Inner Surface -0.1880 -0.0001 0.3462 0.4242 0.0462 1-0.51971 -0.7880

Meridional Stress (a6/YR sin 6 or G6 /XR cos 6) 0 0
__ _ _ 0R 30in _ _ _ _ _

0 0 30 6b 90 120 150 180

Outer Surface 0.2627 0.3439 -0.0571 -0.2337 1-0.2671 -0.2008 -0.4427

Inner Surface -0.0078 0.0248 0.0723 0.0390 -0.1077 -0.2870 -0.3678

Shear Stress (T,6/YR cos 6 or - T O/XR sin 6)
0 0 30 60 90 120 150 180

Outer Surface 0 -0.0748 -0.1297 -0.1497 -0.1297 -0.0748 0

Inner Surface 0 -0.0952 -0.1649 -0.1903 1-0.1649 1-0.0952 0
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8. MAXIMUM STRESSES

From Table 1, it is possible to determine the maximum stresses and their
location. For the Y seismic component only

Maximum circumferential stress = -0.788 YR (at = 1800, 3 = 90, s = s )a
Maximum meridional stress = -0.4427 YR (at = 1800, 6 = 90 0, s = s b )

For the X seismic component only

Maximum circumferential stress = -0.7881 XR (at = 180', 0 = 00, s = s )a
Maximum meridional stress = -0.4427 XR (at = 1800, 0 = 0% s = s )

For both X and Y seismic components

Maximum circumferential stress = -0.788R ,/X2 +y2

(at = 180 0 , s = sa, tan 0 =

For equal X and Y seismic components

Maximum circumferential stress = -1.114 YR (at p = 1800, s = s 0 = 450)

Maximum stresses a and T are located (very nearly) at the geometric mean
r rr

radius s = saSb

9. CONCLUSION

The six stress components for stress states (0) and (1) have been
determined in the paper. The method of successive approximations, as mentioned
previously, can be continued but the algebraic details become lengthy. The steps
for the determination of stress state (2) are detailed in [4].

The maximum value of 6 for an elbow is 900. However, this value can be S
decreased or increased to correspond to a curved pipe bend or a partial elbow.

The stresses a and a at the outside and inside surfaces of an elbow are
readily determined b; compuier routines for both X and Y seismic components.
Two computer routines (in Fortran), incorporating stress state (2) as well as
stress states (0) and (1), have been established. 0
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AD-P003 643
VIBRATIONAL POWER TRANSMISSION FROM A SHORT SOURCE BEAM
TO A LONG FINITE RECEIVER BEAM VIA A VIBRATION ISOLATOR

R.J. Pinnington

Institute of Sound and Vibration Research 0 0
University of Southampton

1.0 INTRODUCTION

In many engineering situations machines have to be mounted upon a
flexible foundation, and as a vibration control measure compliant isolators are 0

used to mechanically decouple the two systems from each other. The effectiveness
of this vibration isolation is most completely described in terms of the
vibrational power transmission to the flexible foundation.

For large complex foundations it is difficult and often unnecessary to
predict detailed narrow band power transmission. A rather more practical 0 0
approach is to predict the frequency averaged power transmission in terms of a
few controlling parameters namely; the frequency averaged point mobilities of the
machine and foundation structures, and the stiffness and damping of the isolator.
In Ill this method was used to analyse the low frequency problem, where the
machine was represented by a rigid mass and the foundation represented by a long
finite beam. 0 0

In this paper the higher frequency vibration is considered, where the
machine can vibrate in the natural modes of vibration.For simplicity the machine
is represented by a simple free-free beam excited at one end. This is connected
at the undriven end via a rubber spring to long finite beam, (the finite but
large flexible foundation). This configuration was chosen as the analysis
renders a simple algebraic solution for the frequency average power transmission. 0 0

However, the results are more generally applicable, as the solution requires
only the frequency average mobility of the two systems at the coupling point.

The theoretical formulae are compared with some experimental measurements
of a short finite beam coupled via an isolator to an "infinite beam" and a long
finite beam. F • 0

2.0 THEORY

The system under consideration is shown in Figure 1.

Force F Source 0 0Foc 1  beam rubber

Power 
isolator

Input

finite or 0 0
power infinite

transmitted Point mobilityat

position 3 is MR

FIGURE 1

The short source beam is driven at the free end by a pure force of magnitude F1 .
End (2) of the beam is connected by a damped spring, of complex stiffness
K(li#n), to the long receiver beam.

The point mobility at one end of the source beam before coupling is
defined in 11] as: 0 •
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S 0

M2  Sr +is -is (1)

where Sr S coe S, = S sine cosp (2)

1-sinc sinS 1-sine sinO

S is the real component of the point mobility at the end of anequivalent semi-
infinite source beam, 0= 2kt- j is the phase change in a wave making a
return journey from the end of the finite source beam (at length Z and wavenumber
k). c is the damping parameter, controlling the peak value of the point mobility
S at resonance (when sinP=l) i.e. from Equation 1,

S % 2S/cosE: (3)

It is shown in E2] that the transfer mobility M12 between points 1 and 2
is related to the real component of the point mobility Sr by the expression, 0

IM12 12 = S Sr sine. (4)

Likewise for the uncoupled receiver beam the point mobility at one end is given
in general as:

U 12 = Qr 
+ iQi iQ (5)

where r Q cosa Q, = Q sinB cosO (6)

1-sinB sine 1-sinB sing

where Q is the real component of the point mobility of an equivalent semi-infinite 0
receiver beam. 0 and 0 are thedamping and phase parameters, similarly defined
as for the source beam above. Q is the resonance peak value of the receiver
beam mobility and is equal to

Q - 2Q/cosO (7)

The vibration and power transmission between two systems coupled at a
single point as is Figure 1, can be written in terms of the point and transfer
mobilities [11 as IM12

Ptr=  1'F1 12 . M12' . Re{MR 1 (8) 0

The vibrational power transmission is calculated by substituting for M 2M 12
and M using Equations 1-7, and performing the following algebra.

2.1 The Power Transmission averaged over several receiver beam resonances, <P>

Power transmission occurs between the two beams due to resonances in both
systems. The receiver is assumed to be much larger than the source and so for
each source beam resonance , (0< 9< 2t), there are many receiver beam resonances.
It is therefore assumed that for each receiver beam resonance (i.e.) for an
interval O< O< 2v, Oand hence the source beam mobilityremains constant. The
averaged power transmission due to each receiver resonance <P> , can be found by p

averaging equation 8 over an interval of O< Q< 2n, as follows.

First, substituting equation (5) and (1) into (8) gives
r 12 IM1212. Qr

tr F1 1 '(S+ a + Qr) 2 +(Si+ (9)

where C= (S4Q-w/K).
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By substituting from Equation (6) for Qr and Qt' and by making use of the 0 •
identity

Q2 + = 2 +sinBsing (10)
r +1-sin~sin(

enables equatio (9) to be written in terms of 9 and B

ptr F l12. IM12 12 .Q cos 0 
0 6

a 1 +2Q(S r+ -)cos-sins (a1 -2Q2)sin-2Q(Si+A)cosI1

where a2  = (Sr+ -) 2 + (S +C)2 + Q2. (11)

Using the two angle formula

sin(A-B) = sinA.cosB - cosAsinB (12)

in Equation (11) gives 0 0 42.
tr F 12 " IM 121 Q cos

= I . ,(13)
tr 2 a4-4Q2(Sr -) sn - )

a1 +2Q(S + -)cos-sn sin(-Y)

where 2Q(S 1 +C)
tan y = - (14)

a2 _2Q2

Now as 9 varies over an interval O< 0< 27, all the other terms in equation (13) j
remain approximately constant being functions of either j or w. There is a peak 0
in power transmission associated with a receiver mode whenever sm(O-y) = 1.
The average power transmission from each of these peaks <P> , is formed by
averaging equation (13) over an interval O< G< 27, i.e.

This integral is solved using a standard solution, see for example 131.

0 b-c sinx = (b-c) (15)

a,b,c are constants
b>c.

Therefore,, 2 M1 2 12<p fi IF1I (6
a. +(S r +  _) Q '(6

Substituting for IM12
2 and a2 in terms of S and Si using equations (2)

and (4) respectively, gives

<p> iF1 12  2S.Sr.tanc.Q ( 0 6

(S2 +2) +Sr(Q+ 2_ K-)+ 2S C+CJ2,
r r K i d

where Q2 2 .-Q + (--)W 2 . ( 1)

d K
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By making use of the identity

S2 + 2 =S 2 . (1+sinEsin) (19)
r 1-sine sino

and substituting for S and Si in terms of 9, from equation (3), <P> becomes, 0
after some manipulation

<p> = IF1I2. S sine.2SQ (20)

a +Scose{Q+ -1 - E(a._2S 2 )sin0_2SCcos9Ja2 K 2 sn

e 2 2 2where a2 = S +Qd +C

Using the identity in Equation (12), the term in becomes after some

manipulation.

2  4S Qd] sin(0-y),

where aySC (21)

tan 2 _2S2

2

<P> therefore becomes

2 S sine. 2SQ=p --ItF1f. (22)

2 +Scose(Q+ 2r- 4i 2a2 ~ -2-sn a..4 d] sn -) •

<P>, as expressed in Equation (22) is of the same form as the real component of
the source beam mobility Sr, Equation (2), except that <P> is a function of

9-y rather than 9. This means that the maximum power is, in this case, input and
transmitted at the resonance frequencies of the coupled system when 0-y=1, rather
than at the uncoupled resonance frequency when 9=l.

*V

3.0 EXPRESSIONSFOR <P>, <P> AND <<P>>

The properties of <P> can be summarised in terms of its maximum value
<P>, when sin (0-y) = 1; its trough value 4'>, when sin (9-y)=-l, and the
frequency averaged value <<P>>.

These quantities are found by (i) assuming that2 the damping of the sourcecos8
beam is light, allowing sin e to be written as 1- - . (ii) Assuming SYQd
at the frequency of maximum coupling (when (S+Q-o/K) = 0, then the approximation
may be made

I_ 2S 2Q 2

a2  4S 2Q2 a2 2 d (23)
a2

(iii) dividing the numerator ard demoninator of equation (22) by a . When

sin(O-y) = 1, the peak value <P> is

(cos :) +(coe) d2 d. (4

(-) +(-+(-*" -) )
t Costs+ 4' Q)d

Mi (ii) (iii) 10,
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When sin(-) =-1 the trough value occurs 0

V = IF12 S sine
< F> 4 CO(25)

() +Cos

td

(i) (ii) 0 S

The frequency average value is given by averaging equation (22),over an
interval of O< 9< 2v, but it is also found to be the geometric mean <P> and
<P>, namely

2 S sine Q (

[(2cos 2 cosc 4 cOse)2 Qd 211
td cs t d  Cosa

2
where td is a kind of transmission coefficient for waves in the source beam at
the connecting boundary with the isolatorland is defined as:

2 4QS = 4QS (27)td = 2 $2+Q2 +(S+Q-K)2

2 d

4.0 PARAMETERS CONTROLLING POWER TRANSMISSION

The three parameters which control the power transmission are in the
denominator of Equation 24, they are: (i) (cose/td) 2 the coupling between the
beams (ii) (cosE/cos$) or SQ/Q§ the elative damping of the two beams (iii) the
isolator damping parameter (td Qd/2Q) . The largest of these three terms is 0 0
therefore the controlling parameter in a particular frequency regime.

4.1 Heavy source beam damping and light receiver beam and isolator damping

Under this condition cose/cose is the controlling parameter of Equation
(24). It can be seen from Figure 2 that decreasing cos(the receiver damping
or increasing the source beam damping. decreases the peak power transmission <P>,
but leaves the trough value unaffected. In this condition the vibrational power
input to the source beam is mainly dissipated there. With increasing frequency
a point is reached when (cose/td) 2 > cosccosa or (w/K) 2 > SQ (the break points
in Figure 2). Above this frequency the source beam becomes uncoupled from the
receiver beam and behaves as a velocity source driving the top of the isolator.
The peak and trough power transmission are given from Equation (24) as

1 1.SS(w/K).Q,= . ss.(w/K)2.Q (28)

where S - S cose/2.

4.2 Light source beam damping or heavy isolator damping * S

Under this condition term (iii) in Equation (24) diminishes the low
frequency response seen in Figures 3 and 4. Increasing the isolator damping
and decreasing the receiver beam damping reducing the vibrational power trans-
mission. If there is no isolator damping then then power transmitted equals the
power input to the source beam, which is on average

tr IF 1
2 .S. (29)
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With increasing frequency decoupling between the two beams occurs when
2cos/td2 ) Qd/Q. (The break points in Figure 3).

Above this frequency the frequency averaged power transmission takes

the values given in Equation (28).

5.0 EXPERIMNTAL RESULTS 0

An experiment was set up with the configuration shown in Figure 1 in order
to test the theoretical predictions. The source beam was a 50cm x 3.2cm x 6mm
aluminium alloy bar, with both sides damped with a constrained layer damping
treatment. The receiver beam was of steel and had dimensions 6.21m x 5cm x6mm.
The isolator consisted of two adjacent blocks of natural rubber each lcm x 1.2cm 0

x 1.2cm. The dynamic stiffness was constant at 1.2 x 105N/m until 2 KHz. The

vibrational power input at end 1 of the source beam was measured using the force

and acceleration signals from an impedance head, while the power transmitted to

the receiver beam was measured from the acceleration on the beam using the

expression, I,

as in Ill.

Figure 5 shows the vibrational power (normalised to the input force) input
to the uncoupled source beam. The maximum power is input at the resonances and the
frequency averaged value is given by Equation 29. Figure 6 shows the vibrational
power input to the source beam and transmitted to the receiver beam when the •

receiver beam was semi-infinite. In practical terms this entailed the far end of
the beam being embedded in a sand box.

The frequency averaged power input to the source beam is again equal to that

of the uncoupled source beam (Figure 5, Equation 29). The frequency averaged power
transmitted. Fifs 6 and 7, were predicted from Equations 24-26 using the measured •
values for S,S,Q,Q, w/K. For frequencies less than 400 Hz it was found that the
isolator (Case 4.2) (term iii Equation 24) controlled the power transmission (i.e.
the source beam damping is ineffective).

Figure 8 shows the vibrational power input to the source beam and trans-
mitted to the finite receiver beam (no sand box). It can again be seen that above
400Hz the two beams are only weakly coupled, the power input is not strongly •

influenced by the presence of the receiver beam. Figure 9 shows the frequency
averaged power transmitted compared to that of the semi-infinite beam. Below
the decoupling frequency (400Hz) it can be seen that slightly less power is
transmitted to the finite beam than to the semi-infinite beam, the isolator
damping being more efficient ,,h,:,. the receiver beam is finite.
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'PREDICTION OF SMOOTHED FREQUENCY RESPONSES
USING GENERAL ORTHOGONAL POLYNOMIALS 0 4

M.E. Gaylard

Department of Mechanical Engineering

Brunel University 
0

1. INTRODUCT ION

Smoothed frequency responses describe vibration behaviour without

regard to resonant-antiresonant detail. The object in this paper is to show 0
how they can be predicted from information about stiffness coefficients and 0 0 4
masses, using a series-expansion in general orthogonal polynomials (not just 40
the Tchebyshev polynomials ich were used in a previous paper [1) ).

'N Resonant-antiresonant detail concerns sharpness, range, and location of
resonant peaks and antiresonant notches in the true vibration response, and for
many purposes constitutes the most important feature of that response. Neverthe- 0
less, there is some interest in the part of the vibration response that still
can be examined when resonant-antiresonant detail is unknown, witness two
known approaches: Statistical Energy Analysis -fntand the Mean-Value Method.fj].

' A recently-introduced method- Llis to apply smoothing by means of an
orthogonal polynomial fit. Using a series-expansion, there is heavier smoothing 0
as fewer orthogonal polynomial terms are employed, but resonant-antiresonant
detail can be recovered if the number of terms is sufficiently increased.
Figures I and 2 of this paper show examples of smoothed frequency respon
where nine orthogonal polynomial terms were used to describe a behaviour/F-N"
governed by six modes of vibration.

To obtain a smoothed frequency response, there is no need to establish
the full response which contains resonant-antiresonant detail, nor is there any
need to determine natural frequencies or modes of vibration. It suffices to
know the elements of the stiffness matrix and mass matrix for the structure or
other system under study. By considering real mobility versus frequency, the
smoothed frequency response has a much weakened dependence on damping, compared -
with other measures such as, say, receptance versus frequency (unless many
polynomial terms are used, or damping is heavy). Reference [1] gives details
and theory for smoothed frequency responses relating to matrix-characterized
structures, together with an example on a theoretical structure (a uniform
clamped-clamped beam considered in seven equal elements, which also provides
data for figures I and 2 in the present paper).

Reference [l] also suggests applications where it is reasonable to seek
some advantage from a smoothed frequency response, compared with Statistical
Energy Analysis [2] or mnormal-mode analysis. Such advantages concern volume of
arithmetical working, simplified presentation of frequency-responses, disclaim

of a detailed exactitude which may be spurious because of uncertain numerical -
data, certain possibilities relating to incompletely-characterized structures,
and investigation of the known [4] relation between modal density and the real
mobilities. However, the derivation and method in reference [I] is limited to
one particular sort of orthogonal polynomial (Tchebyshev), and it is natural to

P enquire about the use of other polynomials.

The present paper includes a summary of the theoretical basis in
reference (1], sufficient to introduce some new developments, namely the
extension to the case of general orthogonal polynomials, the suggestion that
it may be profitable to ignore damping so long as smoothed frequency responses
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do not depend on too many orthogonal polynomial terms, and an example with
Legendre polynomials for comparison with earlier results for the Tchebyshev
case.

2. EXPANSION IN GENERAL ORTHOGONAL POLYNOMIALS

Consider the following series-expansion in polynomial functions f n(A) of 0 0
a matrix A,

Re(Y) = (w).f (A) + ().fl (A) +. ........ + (W)'fV (A)) " M-  (1)

which relates to a system with stiffness matrix K , mass matrix M , viscous
damping which is assumed to take the special form cM , and with vector x of
displacement-amplitydes. If there is excitation by sinusoidal forces at
frequency w rad.s with amplitudes recorded in vector F , the matrix force
equation is

(K +jwcM- w 2M).x = F (2) 0

and a matrix of mobilities Y in jwx = Y.F is given by

Y jW(K+ jwcM - WM)-

jw(M-IK + (jwc-w 2 )l) -I.M-I (3)

Re(Y) in equation (1) signifies a matrix whose elements are real parts of

mobilities, and the n (w) are scalar coefficients. Matrix A is equal to M-K,
or, in practice, is linearly related to M-IK for purposes of standardisation.

The polynomial functions f (A) are best computed by means of a recurrence

relation which is given in equation (5) below.

* 0
The coefficients p (n) are constant functions of n and w, regardless

of the rank and content of the NxN matrices K, M, A etc., even if N = I

(when all quantities reduce to scalars). This is easily shown, given a

similarity transformation which diagonalises M IK and consequently A (i.e. a 9 0

transformation like XI ( -K)X = A, a diagonal matrix). Consequently,

determination of the coefficients n (W) can proceed by reference to the scalar

case, using a well-known method which requires that the scalar f (A) are

orthogonal polynomials in scalar A , that is, n *
f fn(A).fm(A).w(A).dA = , (n~m)

a (t(4)

b

and fn2(A).w(A).dA = h 0 0

where w(A) is a chosen weight function, and (a,b) is an interval which, in the
present application, must be chosen to contain all of the eigenvalues of A.
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It is an important feature that any orthogonal polynomial of a continuous 0
variable must [5) obey a recurrence relation:

f (A) = (c1 + c2.A).f 1(A) - c3 .f 2 (A) (5)

where cl, c2 , and c3 are constants which depend on the sort of polynomial *

(Tchebyshev, Legendre, etc. [5] , [6) ), and may depend on n . In the present
work, the same equation (5) is used for the matrix f (A) as for the scalar f (A).

n- n

For the scalar real mobility, equation (3) gives

Re(y) = Re(jw(k/m+ jw c-W 2) .m-l)

= Re(jw(A- z)- m (6)

where A = k/m (7) 5

and z = 2 - jW c (8)

(In practice, identities (7) and (8) are replaced by linear relations, thereby
standardising A and z so that all values fall in some chosen interval, for
example within the interval (a,b) = (-1,1), see reference [1] ). S

The orthogonality expressed in equation (4) permits the following
determination for coefficients in a series-expansion,

I b

n = T- Re(y).f (A).w(A).dAn n an

a

m.h Im( dAl).:9)d

After equation (9), all that remains for determination of coefficients in
matrix equation (1) is to evaluate integrals of the type

bf fn(A).w(A)

= dA (10) 0 0
n a (A- z)

In reference [I], I was evaluated only for one sort of polynomial, then2-

Tchebyshev polynomials fn (A) = T (A) with weight function w(A) = (1- A2) -2 "

see (5] or [6]. A present development relates to the general case, when f n(A) 0 •

is any orthogonal polynomial of a continuous variable. It concerns the reduction

of an integral I to the simplest integral I by exploiting the samen o

recurrence relation, equation (5), as governs the polynomials f (A) in then

integrand. Substituting with equation (5) in equation (10) gives 0 •

b
I [ (c + c2"A).fn-l(A) - c3"fn-2(A)n 1 w(A).dA

a (A - z)
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5. bf (cl+ c2 -z).f nl(A) - c 3 .f n 2 (A) w(A).dA

(A- z)ab

+ 2 (A- z).fn-l(A)
+ "w(A) .dA S

(A -z)a ,b

(cl +c 2 "z).I n - c 3 I1n- 2 + c2 " fn-l(A).w(A).dA (11)

a

But orthogonality in equation (4) gives

bfnl (A).w(A).dA = 0 (n 2,3,4 ........ )

a h (n

joO

because f (A) = a constant, f say. Consequently the integrals in equation
(10) obey he same recurrence relation as in equation (5), that is,

I = (cl + c2 . z).I  - c3. 1n 2 (n = 2,3,4 ........ ) (12)

and, by considering f1 (A) = f ll A - flO0 where fll flO are constants, it is
easily shown that

I, = fl(z).I ° + f ih (13) 01 o 1 F
f

00 b

Both of equations (12) and (13) depend on I = f w "(A)A (14)
00 a (A- z)

If the integral I in equation (14) can be evaluated, then all other
integrals II, 1, 1, etc. in equations (10), (12) and (13) become straight-
forward, and complete the determination for coefficients n (w) in matrix
equation (1). From this general approach, two special cases (those of the
Tchebyshev and Legendre polynomials) are selected for evaluation of I as
follows. 0

For the Tchebyshev polynomials, w(A) = (1-A , standardised interval
(-i,1), contour integration (e.g. in [1] ) gives

Tchebyshev I = -j 2 r
0 (b- a).sin(a +j)

(15)
whence, from equation (13), , = -j2Tr.exp(j(ca +jR

6 (b- a).sin(a + j)

where cos(a +j) is a standardised replacement for z in equation (8), and the
constants in equations (4) ard (5) are taken from references [5] or [6], namely

hn = 7T/2 (nO), c I =0 , c 2 = 2, and c 3  .
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For the Legendre polynomials, weight function w(A) = 1, standardised
interval (-1,1), one can use

(I- z) = r.exp(jO)

(-l- z) = -r'.exp(-jO') = r'.exp(j(n-e'))

in Legendre I = (zdA
o0 (A - z)

-1

= ln(l- z) - ln(-l- z) 0

= ln(r/r') - j(Tr-O-O')
(16)

with I = zI + 21o p

and constants taken from [5] or [6]: h = (n+1 )-, cl= 0, c2= 2- i/n, and
c3= 1 - 1/n.

In practice, the expressions for I and I in equations (15) and (16)
will contain another factor, introduced when equations (7) and (8) are replaced
by linear transformations such that (a,b) is replaced by a standardised interval
(-1,1). Figure 1 shows smoothed frequency responses which were computed from the
alternative expressions for Io, 1I in equations (15) and (16).

3. NEGLECT OF DAMPING

Damping influences the true frequency response through the range and
sharpness of resonant-antiresonant detail, but has little or no influence upon
an average magnitude for real mobilities, taken over a range of frequencies.
Smoothed frequency responses tend to remove the resonant-antiresonant detail,
consequently it is reasonable to expect them to show small sensitivity to damping
(but not if they relate to measures other than real mobility). The latter
measure is a ratio with respect to an excitation-force for the in-phase part
of a response-velocity. It has the property that a decrease in damping causes
the resonant peaks to grow in height, but also to shrink in width, and causes the
flanks of the peaks to decrease. *

Insensitivity to damping can be exploited in the computation of the
smoothed frequency responses in this paper, by arbitrarily setting damping equal
to zero. The advantage is a simplification of arithmetic, because the need for
complex arithmetic disappears in a practical computation with equations (12) to
(16). The results will show some small differences from the case when damping * *
is considered, but these differences are likely to be insignificant, given that
the object of a smoothed frequency response is to ignore detail in the resonant-
antiresonant behaviour. Figure 2 shows a comparison of cases when damping is
considered and when it is ignored, for a smoothed frequency response using
Legendre polynomials.

If a smoothed frequency response were calculated with sufficiently many
polynomial terms, there would be a tendency to reproduce all of the resonant-
antiresonant detail, and it then would be misleading to ignore damping.
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4. EXAMPLE 0 S

Figures I and 2 show an example concerning a theoretical clamped-clamped
uniform beam, taken from a previous paper Ni3 except that Legendre polynomials
now are used in place of Tchebyshev polynomials. By considering seven identical
beam elements, values were derived for 6 x6 matrices of stiffnesses and masses, 0
correspondig to natural frequencies 0.457, 1.256, 2.442, 5.448, and 6.552 times
I/L2 (EI/PA) , where L,E,I,p and A are constants of the beam geometry or material.
It happened that very little participation of the fourth mode of vibration was
predicted for the point where both the excitation and response were considered
(giving a point-mobility for the junction betwen the second and third elements
from one end of the beam). Details of the mathematical model for the beam are 0
given in reference £1]. Legendre smoothed frequency responses were established
from equations (1), (10)- (12) and (16) of the present paper, using polynomials
up to degree v = 9 computed with BASIC on a Microtan personal microcomputer.

Figure I shows a comparison between two smoothed frequency responses, of
the Legendre and Tchebyshev types. Both of these are to be judged in relation 0
to a detailed frequency response which was calculated by normal-mode analysis
after the necessary determinations of natural frequencies and modes, and which
is included in the same figure. Both of the smoothed frequency responses
in figure 1 show the following: a region of low response near an almost
non-participating tourtn mode of vibration; an embryonic appearance of resonant-

0 antiresonant detail for the fifth and sixth modes; and a region of high response
embracing the first three modes. (From the standpoint of computation, these
modes are closer together than appears from figure 1. Computation relates most
closely to a distribution of modes with respect to W 2, but figure I shows a
distribution with respect to w).

Figure 2 shows a Legendre smoothed frequency response, once for the case 0
when damping is considered, and again for the case when damping is neglected.
Excepting the latter case, all of the curves in figures I and 2 relate to a
value c = 0.2 for the damping coefficient in equation (2). Differences are
perceptible between the damped and undamped smoothed frequency responses in
figure 2, but are insignificant in comparison with differences between either of
the smoothed frequency responses and the detailed response which was calculated 0
by normal-mode analysis. The saving of arithmetic through neglect of damping
approached three-fifths of the multiplications needed for a plot of each point on
a smoothed frequency response when the values for the polynomial matrices f n(A)
were given. The latter matrices are constants of the structure, and their
once-for-all determinations for a given structure by means of equation (5) are
unaffected by damping. 0

5. DISCUSSION

The result of equations (9),(10) and (12) - (14) is that the smoothed
frequency response in matrix equation (1) can be used with any system of 5
orthogonal polynomials of a continuous variable, subject only to two conditions:
first, the integral I in equation (14) can be evaluated; second, the chosen
type of polynomial is satisfactory in numerical stability and in practical
convergence of the smoothed frequency response on to the true frequency response
as the degree v is increased.

At the time of writing, only the Tchebyshev polynomials of the first kind,
T (A), and the Legendre polynomials have been investigated and shown satisfactory

.nin a numerical example with a smoothed frequency response.

0S
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Smoothed frequency responses of low degree V (that is, with little or no 0

display of resonant-antiresonant detail) can be approximated by setting damping
equal to zero, unless the true damping is heavy, with a consequent simplification
in part of the arithmetic.

The example in this paper concerns a point mobility, that is, where
excitation is applied along the same coordinate as used for measuring response. 0
However, determination of a smoothed frequency response for a real transfer
mobility is not excluded (although the transfer case may be less important, and
may need more polynomial terms to be considered, see reference [i)).
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DYNAMIC ANALYSIS OF SYSTEMS OF 0
BARS ENCASED IN ELASTIC MEDIUM

S. M. Aljaweini and J. J. Tuma
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Arizona State University 9 0

1. INTRODUCTION

A general method is presented for the analysis of spac6 frames encased fully
or partially in elastic medium and subjected to time-dependent loads of harmonic
variation, such as those arising from rotating or reciprocating machinery. Off- 0 0
shore structures, pipelines, bridges, components of ships and aerospace struc-
tures are examples of such systems. The analysis is restricted to systems of
straight linearly elastic bars of constant sections, which have two orthogonal
axes of symmetry or are axial symmetrical. The time-independent mass of each bar
is uniformly distributed along its axis. The material constants of each bar and
of its surrounding medium are independent of time and are known from experiments.
The sign convention of the transport method and of the stiffness method is used
in the respective sections. F__

From the transport matrix formed by twelve dynamic parameters and twelve
forcing functions of a single bar, the transcendental stiffness matrix is con-
structed and converted into an algebraic stiffness matrix, the elements of which
are truncated series. Analytical expressions are presented for the calculation
of the coefficients of each series, for the location of singularity points of
each series and for the limits within which each series yields results of practi-
cal significance. Finally, a computer program is discussed which generates the
finite element matrices as functions of their respective series, selects the ele-
ment sizes within the predetermined range of accuracy, produces the frequency
determinant, identifies the critical states and yields a complete response of the
system. The historical background of this approach is summarized in [1], [2],
[3].

2. TRANSPORT MATRIX EQUATIONS

Assuming small oscillation about the configuration of stable equilibrium,
the free vibration of a finite bar LR of length sis defined by the transport
matrix equations given in full form in Table 1 and in submatrix form below as

Sc RJ S
A Ls R sLR R()

HR TRL HL HL TLR R

where HR and RL are the dimensionless state vectors of the right end R and of the 0

left L, respectively, consisting of forces U, V, W, moments X, Y, Z, linear dis-
placements T, T, U and TRL, TLR are the dimensionless transport matrices, the
elements of which are the dynamic parameters Tlu , T2u, ..., T3w, T4w, all shown
in Table 1.

The shape parameters 5 * S

2 u 2

s ux sX, = sl Gl (2)
u u EA
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TABLE 1 DIMENSIONLESS TRANSPORT MATRIX EQUATIONS 0

Iu , cos u Tlv " 1/2 (cosh v
+ 

cos 7 V
)  Tlw = 1/2 (cosh w+ Cos w)

T2u " sin u T2v - 1/2 (sinh TV+sin Tv) 
T
2w- 1/2 (sinh w+ sin Tw)

T10 . cos 4 T3v ' 1/2 (cosh T v- cos TV) T3w- 1/2 (cosh w. Cos 7w)

T2 2 sin 
T
4v = 1/2 (sinh T v- sin l V) T4w ' 1/2 (sinh 7 w- sin 7 W

)

UR Tlu -T2 u UL

VR TIV  -T4v -T2v -
T
3v VL

WR 
T
iw 

T
4w -T2w T 3w IL

XR 1, 2# XL

YR T2w T
1

w -T3w T4w TL

zR -
T
2v T T3v TL

UR 
T
2u 

T
lu U.

yR -T4v T3v TlV T 2v L

WR -
T
4w -T3w Tlw -

T
2w WL

"R T20 TIO eiL

1
R T3w T 2w -T4w Tlw *L

'R -
T
3v T2v T 4v T IV 0

u 1  
UR

L lu
VL  TlIV T 4v T 2v -T 3v VR

;1L T Tw -14w T2w 
T
3w WR

YL J T1* T 2# XR

YL -T2w 
T 
w -

T
3w -T 4w R

ZL T2v T Iv T3v -T 4v 7R

UL -T2u Tlu UR
LT4v T 3v Tiv 2Tv VR

WL T4w -T3w Tw 2w WR

iL -T 24 TC 4 OR

DL -T2w T4W TIM iR 0 "

L T3v 2v 
T
4v lu

* 0

* 0
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4 W-/2 k 4 /p 2 - kw•
s sX 1W s /
v _s s f A=sA = W (3)v \/ w Ev v ETw w V El

z y

which appear as arguments in the dynamic parameters are functions of mass per unit
length p, mass polar moment of inertia per unit length p, angular frequency W, 0
moduli of elastic medium ku, kl, kv, kw, functions of the normal section A, Ix,
Iy, I and the elastic constants E, G.

3. STIFFNESS MATRIX EQUATIONS

In terms of the sign convention and notation of the stiffness method, the 0
lower submatrix equations in (1) yield

SL d )-Is A - d ) lA Su - ls LR d) L (4)
RL RLL RL R = LR LR R + dLA

kLL kLR kRR kRL 0

where SLR , SRL are the end reactions, AL, AR are the end displacements and kLL,
kLR, kRL, kRR are the stiffness submatrices shown in full form in Table 2.

Once the dynamic stiffness matrix equations are available for all bars of the
system, the analysis based on the conditions of dynamic joint equilibrium follows 0
the pattern of static analysis and leads eventually to the frequency determinant
equation.

In addition to the treatment of joint loads, the distributed mass bars are
able to account for the dynamic loads acting between the joints as

=+ (5)
SRL kRL kRRO 1

where

SLO kLR RA RO k RL DLA (6)

and DLL' DRA are the absolute load functions given in Table 3.

4. EXPANSION OF STIFFNESS FACTORS

Since the stiffness factors in Table 2 are linear combinations of circular
and hyperbolic functions, the solution of the frequency determinant, even in
cases of frames with a few joints, is a monumental task, requiring a large amount 0
of computer time. Kolousek [2], while investigating the free vibration of free
bars, conceived the idea to expand the stiffness factors into series of HcLaurin's
type. Since each factor is a fraction, the numerator and denominator of which
are transcendental functions, the expansion requires a synthetic division of two
power series or a generation of a series, which is equivalent to the quotient
series. The latter is used below. 4

The dimensionless parts of the stiffness factors in Table 2 are in series
form,
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TABLE 2 ABSOLUTE STIFFNESS MATRIX EQUATION 4

Kiu - EA A cot Dv  . (I-cosh cos 1v)'I K10 - GIx A, cot

Kz - EA I csc O.w - (1-cosh A cos T. K2, G20 ' TO

KIV , Elz Iv (coshr r sin T. - sinh 7v cos 7v) Dv  K4V * Elz AV (stnh 7v "sin 3-
) 
Dv

2 El sinh v sin ' v K5v Elz 1
2 

(cosh i- - cos 7V) Dv
V ~ V El V V

K - El X
3 

(cosh 3- sin 7v + stnh 7v cos '-) Dv K El A
3 

(sinh TV + sin T ) Dv
3v z l v v 6v zv v v

Klw , Ely Aw (cosh 3w sin !w- sinh T. cos Tw) Ow  K4w - Ely xw w(snh 3- sin 3') Dw

K2w El A
2 sinh 7 sin 7 D K5w ' El A

2 (cosh T -cos 5) Dw

E3w AEI A3 (cosh w sin & 
+ 

sinh i cos 3-) Dw K6w Ely A (sinh 3- 
+ 

sin j-) Dw

r -1 0 4

ULR Klu -K2u u L

VLR K3v K2v -K6v K5v VL

wLR K3w -K 2 -K6w -K5w WL

XLR K1, "K20 4 L

YLR -K2w KIw K5w K4w *L

ZLR K2v K1 v  -K5v K4v eL

URL "K2u K1 u UR

VRL -K6v K5v K3v "K2v vR * S

WRL K6w K5w K3w K2w  wR

XRL -K K1  *R

YRL -K5w K4w K2w KlW VR

ZRL Kv -K4v -K2v KIv eR
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TABLE 3 ABSOLUTE LOAD FUNCTIONS

P x,P y,Pz = concentrated loads (N) s,a,b = segments (m)

Ppy pz = intensities of distributed loads (N/m)

Alu,A 2u,...,A 3 wA4w and Blu,B2u.. .,B3wB 4w are the dynamic parameters defined

in Table I for the segments a and b, respectively. 0

A2uPx 1. Concentrated loads B2 uPx
Lu- -EA Ru x EA

U u
"4v ', v z  B4vP y

¢Lv = - A-E P Rv = - EI

A4wP z  a b B B4w Pz

Lw - V E Rw -wEIy
w y xX

L LR = 0 R0 S

IB 3wPz
A 3w Pz B V 3w-- y

L - x 2 Ey s R. = E
a P y BvP y•
A3  y3--

Le - 2EI lRe x- v EIz
T -ABlu_ 1I

Tlu-Av 2. Uniform loads = -P

Lu X2- EA Px-A x
U UTIv-A IV ' BIV - I  -P"

Lv v El Rv -EIz yaT-A Y B- 1 l

Lw El PzX4 b P x Rw =- wTEz

w y w= 0
4wA4w P 0

L T -EI z s w yT - B 4v
T4v-A4v P liRe -E PY 0 0
4 V ZEl7z  y

77



ju CjO + I Cj K + (7)
r=l r

00 [ 1r  X4 I

= CkoC + + Ckr (8)
r=1 kk k +lyJ r=1

=r r-(k 10)rC

where C Jr (10) jr = (100)rkr and j 1,2,k = 1,2, ...,6)

The coefficients Cjr are well known and the coefficients Ckr can be deter-
mined automatically by the generating matrix equation given below. Their numeri-
cal values are listed in Tables 4 and 5.

C N 1
kO kO

C N - D C

ki k1 1 kO
(9)

Ck2 N - D - D1  Ckl

- D 0 N - D 3  - D 2  D 1  -

k3 3 2 1 k2

I S

where Do, D1, ..., are the coefficients of the initial denominator series and
NkO , Nkl , ... , are the coefficients of the initial numerator series.

The singularities of the stiffness factors, given by the zero values of
their denominators, are for

* 0

j = 1, 2 = r, 27r, 3 r,

k = 1, 2, ..., 6 A = 4.730043, 7.853203, 10.995608,

of which only the first ones are considered significant and are used as the
radii of convergence of the respective series. S S

TABLE 6 ADMISSIBLE RANGE

Factor Number of Terms Range of Error

2 0 <X <0.4

K. 3 0 < A < 0.8 c < 5.8(10) -

4 0 < X < 1.1

2 0<X<1.3

Kk 3 0 < < < 2.0 < < 1.4(10) 
3

4 0<X<2.5
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TABLE 4 NUMERICAL VALUES Cjr -

r Clr C2r

0 L.000 000 (E+00) 1.000 000 (E+O0)
1 -3.333 333 (E+00) 1.666 667 (E+00)
2 -2.222 222 (E+00) 1.944 440 (E+00)
3 -2.116 402 (E+00) 2.050 265 (E+00) •
4 -2.116 402 (E+00) 2.099 868 (E+00)
5 -2.137 780 (E+00) 2.133 605 (E+00)
6 -2.164 404 (E+00) 2.163 347 (E+00)
7 -2.192 595 (E+00) 2.192 328 (E+00)
8 -2.221 461 (E+00) 2.221 393 (E+00)
9 -2.250 788 (E+00) 2.250 767 (E+00) 0 0

TABLE 5 NUMERICAL VALUES Ckr

r Ci r C2r C3r

0V 4.000 000 (E+00) 6.000 000 (E+00) 1.200 000 (E+01)
1 -9.523 810 (E-01) -5.238 095 (E-01) -3.714 286 (E+01)
2 -1.626 240 (E-01) -7.661 651 (E-01) -3.648 732 (E+00)
3 -3.196 602 (E-02) -1.487 972 (E-01) -4.934 361 (E-0l)
4 -6.373 130 (E-03) -2.962 389 (E-02) -1.377 192 (E-01)
5 -1.272 857 (E-03) -5.915 478 (E-03) -2.749 213 (E-02)
6 -2.542 758 (E-04) -1.181 694 (E-03) -5.492 613 (E-02)
7 -5.079 765 (E-05) -2.360 708 (E-04) -1.097 306 (E-03)
8 -1.014 808 (E-05) -4.716 092 (E-05) -2.192 147 (E-04)
9 -2.027 329 (E-06) -2.621 314 (E-06) -3.343 481 (E-06)

C4r C5r C6r

0 2.000 000 (E+00) 4.000 000 (E+00) 1.200 000 (E+01)
1 7.142 857 (E-01) 3.095 238 (E+00) 1.285 714 (E+01)
2 1.570 409 (E-01) 7.319 302 (E-01) 3.295 712 (E+00)
3 3.182 050 (E-02) 1.476 527 (E-01) 6.844 299 (E-01)
4 6.369 307 (E-03) 2.959 384 (E-02) 1.374 831 (E-01)
5 1.272 756 (E-03) 5.914 688 (E-03) 2.748 592 (E-02) -
6 2.542 732 (E-04) 1.171 197 (E-03) 5.491 528 (E-03)
7 5.079 758 (E-05) 2.337 475 (E-04) 1.097 083 (E-03)
8 1.480 766 (E-05) 4.668 607 (E-05) 2.191 697 (E-04)
9 2.027 329 (E-06) 9.331 923 (E-06) 4.378 457 (E-05)
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Table 6 shows the range of X's for which the respective stiffness factor
may be approximated by two, three and four terms of its series, so that the trun- S
cation error r-mains below a prescribed value. The three-term approximation is
used as the simplest and most efficient numerical model.

5. FINITE ELEMENT GENERATOR

Once the truncated stiffness factors are available for all bars of the sys- S
tem, the remaining part of the analysis consists of the following steps:

(a) The algebraic determinant of the system stiffness matrix is solved for
the apparent natural frequencies and the shape parameters ', X', X', ,
corresponding to these frequencies, are calculated for all bars.

(b) If these values fall in the prescribed range given in Table 6, the trun-
cation error remains in the prescribed range and the apparent frequencies are the
true values.

(c) If the values of the shape parameters A', X$, and v, Xw, are above 0.8
and 2.0, respectively, the cor-esponding members must be divided so that their
parameters remain in the selected range. The required number of elements in a

particular bar is given as

n = V'/0.8 n = X'/0.8 n = A,/2.0 n = V/2.0 (10)

where the largest n in (10) defines the minimum number of elements in a particu- 0
lar bar, required to meet the desired accuracy.

(d) With the required number of elements known, the new system stiffness
matrix is constructed and the frequency determinant is solved for the natural
frequencies.

(e) The steady state response analysis follows the procedure outlined in
Sec. 3. Since all factors are functions of the forcing frequency, all stiffness
factors and load functions are calculated by their transcendental formulas intro-
duced in Table 2 and in (6).

The procedure described above was programmed in FORTRAN IV listed in [1] and 0
its application is illustrated by a numerical example.

6. NUMERICAL EXAMPLE

A reinforced concrete rigid frame partially encased in elastic foundation
and acted on by concentrated loads of 0 = 350 rad/s, 0 0

P3y = (3560 sin Qt)kN P4x = (890 sin Qt)kN

is shown in Fig. 1. The moduli of foundation are

k = 3.8(10)7 Pa k = k = 1.9(10)7 Pa
u v w

The procedure of analysis follows the steps of Sec. 5. The first three
natural frequencies obtained by using the three-term truncated stiffness factors
are

* 0

w= 329 rad/s w= 390 rad/s W' = 408 rad/s
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18 All dimensions in meters

--6 Zo 

Figure 1. Rigid Frame

The extreme values of the shape factors corresponding to these frequences are,

for l,' < 0.410, A' < 0.958, 'v < 3.371, w < 2.383

for w2"' Au- 0.486, X' < 1.136 A' < 3.671, A' < 2.595

for w, ' < 0.509, X' < 1.189 _' < 3.756, X' < 2.656
3' u- w

As some of the shape parameters exceed the permissible range, the finite element
generator calls automatically for a new system, by dividing the members with

A' > 0.8 A' > 2.0 A' > 2.0

into two elements.

The determinant equation of this new system yields

Wi = 325 rad/s w 2 = 386 rad/s w = 404 rad/s e

and the corresponding shape parameters fall in the admissible range.

The calculations of the joint displacements and of end reactions of particu-
lar members follows the procedure outlined in Sec. 5e. Since the forcing Q is
above wi and below w2 , the critical state is avoided. 0
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RANSVISSION OF WAVES 71 OGF LOCALIZED DISCONTINUITIES;
FVALUAfTON OF TWO APPROACHFS

0. Maidanik and L. J. Maga

David Taylor aval Ship Research and Development Center •
Bethesda, Maryland 200F4, USA

Many a complex dynamic system of interest to structural acousticians

admit, at least on a phenamenonological basis, to modeling by a cascade of •

coun]ed basic one-dimensional (BOD) dynamic systems. A basic dynamic system

is one in which a single wavevector needs to be specified to define

propagation in it. Two approaches are discussed for describing the •

transmission of waves through the coupling junctions; a coupling junction

specifies the coupling between two adjacent BOD dynamic systems. The

transmission between BOD dynamic systems that are singly, doubly, and triply •

removed from each other are cited as examples. The evaluation is carried out

in terms of the two approaches. Similarities and differences in the

evaluations by the two approaches are emphasized and discussed. 4

8 3* I
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AUXILIARY MASS DAMPER FOR CARDAN SUSPENDED GYRO -

J. Rosenberg*, A. Kahana**

A.D.A. P.O.Box 2250, Haifa, ISRAFL AD-P003 646
1. INTRODUCTION -. 0

'The article deals with a spin stabilized platfcrm. In order to isolate
the system from external moments it is suspended through its center of mass bv
means of a cardan. Deviation from ideal suspension, such as friction effects
in the bearings and in the surrounding environment together with external dis-
turbances, generate vibrations in the natural frequencies of the system. These 0 S

vibrations should be suppressed by means of damping effects. The damping
should not impair the isolation of the platform from its environment (as in the
case of damping in the cardan bearings). The simplest model of a cardan sus-
pended gyro involves only one natural frequency, termed the nutation. Several
methods for nutation damping are discussed in the literature:
(1) Connecting a ring partially filled with mercury to the gyro rotor[1 ,2,3]. • 5
The mercury serves as an auxiliary mass damper. Such dampers that are connec-
ted to the rotor are known to cause instability [4,5,6] if the lateral inertia
of the system is higher than the polar inertia. (2) Active damping by means
of a control system [7]. This method may require high energy sources for its
actuators. (3) Using an impact mass damper attached to the platform [8]. In
this method energy is dissipated when non-elastic collision occurs. While such 0 0
damper may prove to be efficient and no tuning is necessary, there is no analy-

tic solution and it is hard to obtain parameters (such as coefficient of res-
titution) for numerical simulation. Any conclusion concerning the use of such
damper should allow for possible damage to the system owing to the impact
effect. (4) Adding an auxiliary mass which is connected to the gimbal system
by means of a spring and a viscous dash-pot. This method has been extensively
used in rotating machine damping and more recently in the aerospace industry in
the damping of dual spin satellite [2,9]. In such cases the damper inertia is
neglected in comparison with the platform inertia. This results in a simpli-
fied model, in which the nutational frequency is taken to be the forced freq-
uency. In the following, the interaction between the stabilized platform and
the damper is considered. This causes the appearance of three natural freq-
uencies instead of the nutational frequency.

2. STATEMENT OF PROBLEM

The equation of motion for a two axis Gyro assuming small angles are as

follows (for detailed discussion see any advanced dynamics textbook e.g. [10]) 6 5

A6 + h; = My
(I)

AV - he = Mz S S

where A is the transverse moment of inertia of the rotor and the platform,
h - the momentum of the rotor defined as h = nJ where n is the spin and J is

the polar moment of inertia of the rotor. My and Mz are external moments. 0
and Y are the angular coordinates of the system defined in figure 1.
Using complex variables: S S

(*) Research Associate.
(**) Research Engineer.
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=0+ i'Y
M= My + iMz

i - V-1

we obtain

n - = (2) 0 0

with the homogeneous solution

TIM = noeiXt

)LI 0 2
= P 

p= 1 is the nutation frequency. By introducing viscous damping f* at the
A

gimbal bearings or the surrounding environment, we modify equation (2) to
yield

n - ipn + f, M (3) 0

where f and the homogeneous solution

= noeipteft (4)

* 6
On one hand, increasing the external damping f increases the rate at

which nutational frequency is suppressed, on the other, such damping impairs
the isolation of the platform from external excitations.

Adding an auxiliary mass damper which is connected to the platform by
means of a spring (K) and dashpot (C) as shown in figure 1, results in the -O 4
following equations of motion:

0+ fo + = 2 + 2Uw n Ea

T + 2n = 2 {w

(5)

+ 6+ W2 + 2 wn= 0n n
a + 'I + {°na+ 2 ;w1 n( = 0

where wn is the natural frequency of the damper; c ( -~ n) is its 0 0 4
damping ratio; C (= m 2 is the nondimensional inertia of the damper. I is the

typical length (shown in figure 1), and a and 8 are small angles defined as a =
r/l; 0 = S/,where r and s are coordinates of the centre of mass of the auxiliary
mass (m) relative to the platform.

Using complex variables 0 S

= 0 + ii

y =a + iS

and substituting in eq. (5) yields: _ 0 4

n+ (f-ip)' - w2y - 2Cw =i 0.n.. (6)
+ l + n Y  + 2Cw = 0

n
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Assuming the solution: 0

n = no eitt; y Y0 e i ~t

we obtain the following polynomial for the eigenvalues:

X3+.2[-p-i(2Cn(l+C)+f)]+X[-W (l+E)+2ipWnw-2fwn ]+w2(if+p) = 0 (7) 0 0

Thus, the solution for the platform equations of motion is given by

Sj=,3qix teXt (8)

nje r e im (8)
= J

where Xj (j = 1,3) are the natural frequencies of the system and Aim (j = 1,3)

are magnitudes indicating the quality of the damping oJf the system. Positive

)im means suppressed vibrations while negative values for Xim signify

instability.

3. ANALYSIS

Using the Routh Hurwitz stability criterion, the polynomial (7) has been

analyzed. It can be shown (Appendix A) that the system is always stable, i.e.,
that as the parameters f,s, Wn,,P are physical quantities whose values are

always positive, Aim will be positive.

The quality of the damper is a function of AJim (j = 1,3). The higher the
value of Xim the better the damping. Optimum damping is obtained when the

im
minimum of the Xi im Qj = 1,3) attains its largest value.

In the analysis, the gyro system is characterized by given (constant) p
and f. The optimization is performed on the damper parameters E, wn and C. 40

Results are shown in figures 2, 3 and 4 for a gyro system characterized by a

nutation frequency p = 377 rad/sec and inherent damping (due to the bearings

etc.) of f 0.9 I/sec.

The optimum value for A. was found to be 50.1/sec. The optimum damperim
was found to have the following parameters C = 0.3; e = 0.05; wn = 340
rad/sec.

The system (5) has been analyzed using the CSMP simulation program with

initial values for ; (=1.0 rad/sec). the results are shown in figures 5 and 6,

in which the effect of the damper on the behavior of the system is simulated.

4. EXPERIMENTAL

An experimental auxiliary mass damper was designed using a ring m)

supported by wire springs and immersed in oil as schematically shown in figure

1. Experiments were conducted by applying a pulsed load to the platform and

measuring the decay rate of the system using noncontact displacement gauges 0 0

(figure 7). Modified Prony method was used for the analysis of the
experimental results [111. In this method curve fitting yields the natural
frequencies as well as the corresponding damping ratios, amplitudes and phase
shifts. The computer code is capable of interpreting constant deformation (DC
level) which is inherent in this type of loading and also purely exponential
variations (as in the case of highly damped systems). 0 •

By varying the mass of the ring, the rigidity of the wire springs and the
oil viscosity, optimum values were obtained. The gyro system had the same
parameter values as those used in the theoretical analysis.
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The optimum Xim obtained was about 20.1/sec. The values of the optimum 4
damper parameters (cw n ) were found to be in close agreement with the theore-

tical values. The value of the optimum damping ratio was found to be 0.1
(figure 8) which differs from the theoretical value. The discrepancv is
thought to be due to the following reasons: (1) Nonlinear effects are neglec-
ted in the modeling of the oil chamber as a linear dash-pot (2) the theoretical
model assumes an idealized two-degree gyro which means infinite rigidity of the
rotor and gimbal bearings etc. Adding more degrees of freedom would complicate

the analysis but might yield a better agreement with the experimental values.
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The damping quality X., (min) vs. natural frequency of the damper for gyro
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The dpmping quality Xi (min) vs. damper inertia E for gyro parameter p
377 ; f = 0.9 sec and damper parameters wn 340 radsec 0.3.
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The damping quality Xi vs the damping rate for gyro parameters p 377-sec'
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Figure 5

CS?4P simulation of Eq. (5) having initial conditions for 0and damping ratio

0. (Other parameters values are p = ad rad = 0.05; f =0.9).
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Figure 6

CSMP simulation of Eq.(5) with initial conditions for and damping ratio
0.3. (Other parameter's values as in Fig. 5).
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Figure 7

(a) Response of the experimental system to pulsed load without a damper.
(b) Response of the experimental system to pulsed load with a damper having

= 0.1 and c = 0.04.
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Appendix A

STABILITY OF THE SYSTEM

Routh Hurwitz criterion for a 3rd order polynomial with complex coeficients can
be stated as follows:

The polvnomial 
I

,3 [a0 +ib9 ] + X
2(al+ib I) + X(a2+ib2 ) + (a3+ib3 ) 0 is stable, if the values

of the minors D1 , D2, D 3 of the determinant

1
aa1 0 0

D aI  ' 2  a3 1

D2  0j b2  b 3  0 0

D 0 1 aI a2 1 a3  0

0 0 b I b 2j b 3  0 -

0 0 1 a I  a 2  a 3

0 0 0 bI  b2  b3

are: D< 0 ; D2 > 0 ; D3 < 0.

In the analysed model (eq. (7)) the minors have the following values:

P I = -p K 0 0

D2  = 22 3 + 2 22 2 2+ 2 2 3 3 2
D2 2Cnf +8 Wn Ef W n f 8 0nf +'C W n f+

+C2 3 n 3n
nf+ 16 Wnf6w f8 n+W +

+ 2Cp 2w f+4C2 3+ 242 24
n Wne +12 Wne +12 WC +

" 4 2p2w2 c+4 2w4 > 0

n n

D3 = -4 2a 4 5-16 3a 5n f4-4 w5ef4-163w5f 4_-16c 4W6C2 f3

_16C2W6 f 3_ 6e2 f3324 6 3- 2 6 3• •

f4C~ 2 2f 7 2 -47 f2-n w
n- f248Ow4 2f2_nf - 48C f4 3  2 _4 s2

-24C3P 2 5ef 2 4 2 5 2 3 w7f2 6 3p2 5f2 •
n P fnSf2416 nf n1

-4 2w 4 nf-16C2 ) Cn 3 f-24 2 nY f-I6 4P2 6~

-8WP awn 2 f-16 20 tc f-32 4p twn f

- 16 C4P2Wf -8c3p 4W - (2Cw2CP 2W2 )2f< 0

Therefore the system is stable.
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ALLEVIATION OF OBSERVATION SPILLOVER IN CONTINUOUS STRUCTURES

A. V. Metcalfe and J. S. Burdess

Departments of Engineering Mathematics and Mechanical Engineering,

The University of Newcastle upon Tyne 0 0 4

1. INTRC ICTION

The design of controllers for complex structures is a challenging
problem with an expanding range of applications which include the control I •
of large scale space structures.Fh.-The purpose of the control system 0
may be tc enable the structure to carry out a spccific task or to combat
vibration. Two examples are the attitude control of a space telescope 4-2
and the control of vibration in helicopters.[-4. Feedback control tech-
niques are often used because of their great flexibility and insensitivity

to unexpected disturbances. However such controllers usually require F 6
knowledge of the displacements and velocities of the significant modes of
the structure and direct measurement of these may be impossible. A theor-
etical solution to this problem is to construct estimates of these variables
from a modest number of sensor signals by using an auxilary system known
as an observer,[4].

The practical situation is less clear cut. There are inherent
problems if many degree of freedom structures or distributed parameter
structures are modelled by a reduced numbei of modes or a finite number
of modes respectively. The most serious of these is the fact that lightly

jdamped high frequency modes may lead to instability via the observer. The

mechanism behind this phenomenum is as follows. The controller may affect 0
modes which have been ignored in the model : this effect is called control
spillover. Motions of these modes contaminate sensor outputs, this effect
is called observation spillover, with the result that the closed loop
system may become unstable. Engineers are aware of these problems, see [51
for example, but in many cases there is sufficient natural damping in the

system to prevent instability. For structures such as spacecraft natural 0

damping may be very small, of the order of 0.005 [6], and a satisfactory
technique to alleviate spillover is crucial.

Several remedies for the spillover problem have been proposed,
notably by Balas [1,6,7]. These can be loosely divided into three main
groups : redesign of the structure and controller with relocation of 0 0
actuators and sensors, signal filtering techniques, and the use of what
Balas describes as additional feedthrough terms in the controller design [7].
The first group includes such strategies as locating actuators and sensors
at the zeros of the mode shapes of the residual modes. Whilst this may
work for some special cases in general it will prejudice the controll-
ability and observability of the system. Signal filtering introduces the 0 0

attendant problems of phase distortion and delay. Now consider the use of
additional feedthrough terms. Assume the system can be realistically
described by N + Q + B modes, a controller can be designed for the N modes
when the Q + B residual modes are ignored, and observation spillover from
the Q modes is causing instability. Use of additional feedthrough terms
offers the possibility of removing this spillover without increasing the •
controller order. However the design procedure requires a model including
all N + Q modes and the resulting modification to the original controller
may adversely affect the remaining B modes. Also implementation may
require additional sensors.
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The contamination of the input to the observer by observation
spillover is the cause of stability problems. In this paper we propose
a method of estimating such contamination and of making allowance for it.
Our suggestion is that this can be done by augmenting the observer with
a further dynamic system which can be described as a disturbance observer.
We have described the use of such a device for the active control of •
vibration in [8].

2. THEORY

Consider a structure which can be described by N + R modes with
modal damping. The N modes will form the controlled subsystem and the •

remaining R modes are the residual modes. The structure and sensor
outputs can be described by the equations

vN = ANVN + BNf (la)

yR = ARVR + BRf (lb)

y = CNV N + CR (lc)

where vN, vR are vectors representing the displacements and velocities of 9 0

the controlled and residual modes respectively. The vectors f and y
represent the control forces and sensor outputs respectively. The
dimensions of vN, VR, f and y are 2N, 2R, m and p respectively and

AN, AR, BN, BR, CN and CR are matrices of the appropriate dimensions.
* 0

The matrix BR represents the control spillover and the matrix CR represents

the observation spillover.

Assume that the reduced order model (AN, BN, CN) is controllable and

observable; conditions for these properties in flexible structures are
presented in [6]. An observer and feedback control law can be designed
for the reduced order model by, for examples, optimal control [9] or
modal control [0 methods. The resulting controller is described by
the equations,

vN = (N- N)vN+ BNf + Ty (2a) 0 •

f = Gv N  (2b),

where vN is the observer state vector and an estimate of vN.'

This would be satisfactory if C were zero but if there is any
spillover there will be an undesirable input CRvR into the observer.

The proposal is to estimate this input and apply a cancelling signal u.
This can be done with the aid of a disturbance observer [8]. The ensuing
control system can be represented by * *

vN = (AN - LCN)v N + BNf + LCNv N + LCRVR + Lu (3a)

f = GvN (3b)
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where u is the output of the disturbance observer which is a dynamic
system represented by

Tz + 'QvN (4a)

E = z - SvN (4b)

u = -KE (4c)

the dimensions of the vectors z, E and u being p. Differentiation of
(4b) and use of (3a), (3b), (4a) and (4c) yields 0 0

(T + SLK)c - SLC (v - v - SLCRV + (TS +Q - SAN - SBNG)VN

N N N RvR +N

(5)

Now choose the matrices T, S and K so that (T + SLK) has eigenvalues with
large negative real parts and set Q such that

TS + - SA N - SBNG = 0 (6)

The motivation for such choices is that if the observer error (v - v )
is small then in the steady state

(T + SLK)c eU SLCRVR (7)

and

u = -KE =--K(T + SLK)- SLCRvR (8)

Consideration of (8) in isolation suggests that SLK should be large
compared with T to make u approximately opposite to CRVR; however the
effect of the disturbance observer on the complete system, consisting
of structure and controller, must be considered.

Define e as the observer error

e =vN - v (9)
NN

and describe the structure and controller by the state space equation 0

N A N+ B N G -B NG 0 0 VN

e 0 A N -LC N LK -LC R e

0 SLCN T + SLK -SLC £ (10)

vR, BRG -BRG 0 AR  vR

In the case when the dimension of y is one T and K are scalar quantities
which we denote by t and k. This is less restrictive than it might

appear at first sight since the system (AN . BN, CN) is observable with 0 0

one point displacement sensor, provided it is located away from the mode
shapes which are to be controlled and the closed loop system has no

repeated eigenvalues [6]. It is shown in the appendix that if k tends
to infinity and all other parameters stay finite then the eigenvalues of
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the system matrix in (10) tend to those of the matrices

AN + BNG, AR and -LCN
N N SLC N t0 ~

We have tested the procedure described in this section for several cases
with the dimension of y set as one and N and R being one or two. A
disadvantage was the tendency for large values of k to move the real
parts of some of the eigenvalues of the parti-oned matrix in (11) to S
the right. However the real parts did remain negative and the practical
interpretation was that the observer took longer to converge onto the
true values. It was possible to compensate for this undesirable effect
by making t large and negative but such remedial action had a tendency
to reintroduce instabilities in the residual modes. These findings are
illustrated by Example 1. •

When the dimension of y is greater than one the situation is more
complex. We demonstrate the stabilisation of a system where the dimension
of y is two in Example 2.

3. EXAMPLES

We demonstrate the use of the noise observer and compare it with
other approaches to the spillover problem in two examples.

Example I

Consider a two mode structure and assume a controller is needed
for the first mode only. There is no requirement for any control over
the second mode save that it should remain stable. In particular take

= B N = CN ( 0) L = [20AN -10 -.l I • •

G = (0 -10)

AR = 0 B R = [0 CR (-.3 0)

Notice that CN and CR imply that only displacement is measured. The closed

loop eigenvalues are

-4.65 ± j 8.12
-10.54 + j 3.62

.049 + j[4.2

and we see that the system is unstable. Set up a disturbance observer with

S = (-1 0) T = t K = k
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The following Table 3.1 gives the positions of the system eigenvalues for 0

varying t and k.

t k Eigenvalues

-100 0 -100 ; -4.7 ± j8.1; -10.5 ± j3.6; .049 ± j14.2
-100 20 -516 ; -5.2 + j8.8; -1.9 4 j9.6; .011 ± j14.1 1 6

-100 30 -717 ; -5.1 ± j8.7; -1.4 ± 19 .8 ; -.004 ± j14.1
-100 40 -918 ; -5.1 ± j8.7; -1.1 ± j9.8; -.013 ± j14.1
-100 100 -2119; -5.1 ± j8.7; -.52 + j9.9; -.034 ± j14.1
0 10 -220 ; -5.1 ± j8.6; -.07 ± -9.5; -.037 ± j14.2

-20 10 -238 ; -5.1 ± j8.7; -.89 ± j9.6; -.016 ± 14.2
-40 10 -257 ; -5.1 4 j8.7; -1.6 + 1 9 .5; .002 ± j14.2 0

Table 3.1 Closed Loop Eigenvalues for Example I with Disturbance Observer

An obvious alternative approach is to reduce either the feedback or
observer gains i.e. the elements of G or L. In this example if L is
reduced to 0

L = I2"8
8o)

S0 j

the eigenvalues of the system without the disturbance observer become 1

-5.1 j8.7; -1.4 +- j9.9; -.004 ± j14.1 .

The approach described by Balas in [71 is not applicable to this
example. It requires the dimension (p) of y to exceed twice the number of
residual modes from which spillover is to be removed. For p to equal two
a velocity measurement must also be made rendering an observer redundant.

Example 2

Consider the four mode system described by the matrices,

0 1 0 0 ~ 0 1 0 0

-100 -.1 0 0 -600 -.2 0 0
AN 0 0 0 1 AR 0 0 0 1

0 0 -400 -.2 0 0 -1000 -.3

0 0'1 0 0 0)

B N  B
0 0 1 0

-.5 .2
r .3 0 .1 0)

C 3 0 .2 O
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*[ : A controller is designed for the two lower frequency modes with S

1l0 0

G =(0 -5 0 10) L= 0 0

0 12

00 0 0

The closed loop eigenvalues are:

-2.69 ± jlO.O
-2.06 ± j18.9
-5.05 ± j 8.8
-6.73 ± j19.3

.092 ± j24.5
-. 119 ± j31.6

and the system is unstable. It can be stabilised by using a disturbance
observe-r with I

S [0 0 0) T 0 1 K 40 -20

0 1 0 360 -180 - -10

The closed loop eigenvalues become: 0

-2.71 j!O.O

-2.05 j j18.9
-1.31 + j 1.3
-2.59 1 j22.5
-.150 + j24.2
-.138 ± j31.6

-24.0
-91.2

The stablisation does not depend on accurate knowledge of AR' BR and CR

in so much as the system appears to remain stable for changes in these .
matrices which would reduce the spillover if there were no disturbance
observer. Here we consider spillover as measured by the maximum of the
real parts of the system eigenvalues.

One alternative approach for removing the spillover is to reduce
the gains in the matrix L. If L is changed to 5

p2 . 5  0

0 0
L 0 3

0 01

the closed loop eigenvalues become:

-2.77 jlO.1
-2.47 + j19.3 * S

-1.30 j 9.9
-1.59 j19.7
-.028 j24.5
-. 144 + j31.6
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Since only one of the residual modes is causing spillover and p = 2 0 0

the approach by Balas can be used. It does not guarantee system stability

as the modifications to the controller may adversely affect the ignored

residual mode. In this example the controller is modified to

v = ANY N + B Nf + L(y - y) + T BQf 0

f = Gv N + P(y - y)

where 0 0

y = CNVN BQ 3

.057 -.0049~

.487 .0096

= -D = (10.09 -239.8).205 .0057 ""

-2.287 -.1372

The closed loop eigenvalues become: 9

-2.78 ± jlO.l
-2.35 ± j19.0
-5.05 ± j 8.7
-6.10 ± j19.1

-.10 ± j24.5 0
-.17 ± j71.O

Figure 3.1 shows envelopes for the displacements of the four modes

with the disturbance observer (dotted line) and the innovations feedthrough

of Balas (broken line). Initial displacements were set at one and initial

velocities and observer states were set at zero. 6 0

VN,l N.............VN3  
6.

lOs lOs

First Mode Second Mode

0 v•.....................-.......--.=

.-. lOs lOs A 0

Third Mode Fourth Mode

Figure 3.1 Envelopes for Modal Displacements.
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4. CONCLUSION

If there are a finite number (R) of residual modes the use of
innovations feedthrough, described by Balas in [71, enables complete
removal of observation spillover when certain conditions are satisfied. 0

Of these the requirement for 2R sensors may restrict its use. Complete
removal of observation spillover depends on accurate knowledge of the
matrices describing the residual modes although the modified controller
may still stabilise the system when these are incorrectly estimated. Also
elimination of observation spillover may increase the control spillover but
this will not make the system unstable. Balas compares his approach with 0
that of designing a reduced order controller in [71.

In practical applications there are likely to be a large or infinite
number of residual modes of which Q may be causing instabilities. Appli-
cation of innovations feedthrough to these Q modes does not guarantee that
the system eigenvalues will not be moved. In fact the modified controller 0

may increase spillover in the other 6 residual modes, but it is hoped that
this will not make the system unstable. For example spillover could be
exchanged from modes with very little natural damping to different
frequency modes with greater natural damping. The use of the disturbance
observer described in this paper is an alternative to Balas' approach,
the disturbance observer having an advantage of not requiring at least 0 4.

2Q sensors.

The disturbance observer can be used in situations where there is
only one point sensor although in the example we considered it was no
improvement on reduction of the observer gains. Nevertheless it may have
applications. If N is large the matrix L will have many elements. If an 0 •

observer has been made and spillover is found to be a problem it might be

more convenient to augment the observer with a disturbance observer than
to change all the observer gains. Secondly whilst the performance of two
strategies may be similar when judged by the position of eigenvalues the
behaviour of the states of interest may differ in the two cases leading to
a distinct preference for one or the other. 6 S

5. APPENDIX

It is assumed that p = I. First consider the case of N = R = 1.
Then L and CR are of the form

L = 2 CR = (c1  c 2 )

The characteristic polynomial of the system described by (10) is S S

A N +BG -XI -BG 0 0 0
A 'NN 0 0 01lk -1lcI  -1lC
0 AN - LCN - I1 12

1 2 k -12 c -12 c2
0 -SLCN  t - Ok - A 0cI  Oc 2

BRG -BRG 0 AR -AI

(12)
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0 0 0o 0 0 0
0 0 0 0 0 0

0 -1c -Ic 1lk 0 -11
1 11 1 2 1 1 2

(7x 4 ) 0 -12c1 2 c2 + (7x4) 12k -1 2 c2 0 0
et - X c Gc2  -Ok 0 0c

1 2 2
0 a 66 a67 0 a66 a67

, 0 a76  a7 7  O a76  a 77

0 0 0

*0 0 0

1 1k -1 c11 1 c2
I1k -lle -llc 2 0

+ (7x4) 12k -12 -12c2 2

-Ok Oc Oc2

0 0 a6 7

O 0 a77

Since the third determinant is zero there are no terms in 4 which involve
the product c k. A similar expansion applied to the second determinant

shows there are no terms involving the product c 2k. Now consider the

determinant (12) with cl, c2 set equal to zero and 1k , I2k replaced by

zero. The resulting polynomial has a common factor (t - 6k - X) and as
AN + BNG1 AN - LCN and AR are all stable the other factor is a polynomial

of degree 6 with all its coefficients strictly positive. It follows that
7has k appearing in all the coefficients except that of X . The

coefficient of A 7 does not involve cI or c2 so the effect of cI and c2  0 0

becomes negligible as k tends to infinity. The required result follows
and the proof generalises for any values of N and R.
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The subject matter of the first part oi tnis study is the deri-

vation of coupled bending-torsion relations characterizing the dyna- -
mical behaviour of unsymetrical cross-section beams. This allows for

the further definition of a beam element with seven degrees of free-
dom per node. The numerical results obtained with the FEM are compa-
red to experiment in some section shape cases.

In order to characterize the displacement field of considered
beams, the method of integrated displacements allows us to consider 0
the so-called secondary effects: longitudinal warping inertia, and

shear deformation due to both shearing forces and nonuniform warping.
The literature on dynamical flexure and torsion of beams is extensi-
ve. Cowper 4I' for flexure and Gay-Boudet 4-2-for torsion introduce
integrated displacements. We extendin the following this notion to

the study of coupled bending-torsion of an homogeneous straight beam. 0

2. BASIC THEORY

2.) Displacement Field

0 is the domain occupied by the cross-section. r is the bounda- 0 0 -

ry, and G is the centroid. In the plane of the section, the principal
axis are noted Gx2,Gx3. C (c2,c3) is the shear center, as defined by
Trefftz [3] (figure 1). +

The displacement of any point M of the beam is noted XM(xi),
with components X i (i=1,2,3). Let us define the seven displacement
parameters: S 0

Three angular parameters: Oi(x:,t) = f-(G-Mxm).xi dQ (1-a)Ii n2

Three linear parameters: Ui(x:,t) = kX xi dQ (1-b)

A warping parameter: 6(x 1 ,t) = f fD.X, dQ2 (-c)

1(x 2 ,x3) is the Saint-Venant warping function defined in C, and

I fD 2 dil is the quadratic warping moment.

Hence, the displacement field takes the form of:
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x = u+ Ax" + '1 (2) 0

According to the above definitions, necessary orthogonality conditi-
ons hold in the domain 0 for the functions 1, x2, X3, 0, T1l, together
with:

fn 2 dQ = fn3 dQ = f(x2n 3 - x3n2 ) dQ = 0 (3) 0 0

2.2 Equations of Motion

Assuming the lateral surface of the beam free of any force, we

take into account as first hypothesis (H.1) the assumption that nor-
mal stresses 022 and 033 are expected to be negligible compared to
ol. Then, the principle of virtual work associated with the displa-
cement field (2) leads to the classical set of motion equations:

pSU,tt = F, 1 + p (4-a,b,c)

[ ] + x 1 XF (5-a,b,c)

And the seventh motion equation is the bimoment one: 0

PI06,tt = B,l + b + (M1 -GJ6 1 ,1 ) - c2 F 3 + c 3F 2  (6)

in which B = fa 11 dQ is the generalized bimoment.
0*

2.3 Constitutive Equations

In order to obtain a technical formulation for the constitutive
equations, we asume as second hypothesis (H.2) that the change in
the deformation n of two infinitely near adjacent cross sections is
neglected in order to evaluate the longitudinal and shear stresses
aij, j = 1,2,3. Thus, starting from the Hooke's law for a linear elas-
tic body, the constitutive equations below are deduced from integra-
tions over the domain of the section:

u1,1 9; 02,1 =M 2  ; 3,, , - B (7-a,b,c,d) *
ES El 2  El 3  EI,

Moreover, noting that the first component ni of T (2) is essentially
due to the shear forces F 2 , F3 and nonuniform warping moment noted
Mruw = (Mi-GJ81,1), we obtain the three followed coupled relations
written in matrix form: *

,- 6 K1 l -K 1 2 -K 1 3  Mnuw/G( 1 1-J)

U2bl - 63- C36  = -K 2 1  K 2 2 -K 2 3  F 2 /GS (8-a,b,c)

u 3 ,1 + e2+ c2
6  -K 3 1  -K 3 2  K 3 3  F 3/GS

110



In (8) appear nine shear coefficients with the symmetry proper-
ties:

II-J
K 2 3 = K 3 2  K1j = KJ1  S , j=2,3 (9-a,b,c)

Starting from the local equilibrium of continuous media, we
show that the shear coefficients Kij can be computed after solving 0 0

three Poisson's problems in the cross section, namely:

i V2 g = f(x 2 ,x 3 ) over Q, with successively f = 2,x ,4.

ag/an = 0 along the boundary F (I0-a,b,c)

with fg dQ = 0

For the complete expressions of Kij see appendix A. The effective S 0

calculus of all bending-torsion constants involved in the aforemen-
tioned relations (I i , J, I0, Kij, ci) has been performed by means of
a boundary element method [4].

3. FINITE ELEMENT FORMULATION

For the setting up of a finite element formulation, let us
first look at the technical expressions of potential and kinetic
energies.

3.1 Potential Strain Energy V(x 1 ,t)

For a beam element of length dxj, and according to H.1, the

general form of strain energy:

dV = faijEijdQ1dxl

reduces to:
reduces to: = 1 +'G126£12 + 2CY13C13) dQ (11)1

Consideration of (2) and H.2 leads to the practical expressions: *

V,i = VO,1 + VTi (12)

in which: M 2  M B
1 . + M + }2 (13-a) S •

0 1 2 ES E 2  El 3  El (

F F 2  2
1 {K 2 + K 3 3 -3 + K 1 1

T, 1 2 22 GS GS G(I1-J)

(GJe ,) 2  F2F3  Mnuw I• . + _'! - (K 2  3+K 32 ) F 2 - {F 2  (K + I- j K 2 ) +
GJ GS G(IiJ) 2 _jS 2
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F3(Kl3 +  K 3 )) (13-b)

S

3.2 Kinetic Energy

In the same way, we retain the simple expression:

i ~2 1 2+i Tl{
T, = - PS (U,t) + - Ol O(D t P{6'1, 6t 1 (,t= ~pSU t)~ ~pI~~ +} (14)

3.3 Definition of the Element p

Seven displacements per node k characterize the motion of the

two-nodes beam element. In a matricial form:

{Wk} = [u 1 1 u 2 ,'gs,u3 ,,ej,' .' ,(]
k

Substituting the static case for the quasi-static dynamical one
leads to an interpolation matrix [A] not detailed here, allowing a
displacement field in the form of:

{W(x 1, t)} = [A(x,)] {W(t)) (15) 0 0

• lwI(t) 1
where {W(t) } =0

3.4 Stiffness Matrix

Introducing the displacement field (15), the element strain

energy is obtained after integration of (13) over the length Z of the

element, and written in the matrix form: 0

2V = {W}T[DI {W}

We detail in Appendix B the stiffness matrix [D] in the simpli-
fied case i %jOK 0. It can be noted that, for symetrical section sha-

pe cases and for uniform warping (Saint-Venant torsion), this stif-

fness matrix reduces to the classical one derived by Przemieniecki [5].

3.5 Mass Matrix

The calculus of the kinetic energy for the whole element by
means of (15) leads to the form:

2T =

in which [M] is a consistent mass matrix, reached after very heavy

calculus. In the much more simpler case of lumped mass approximation,
the kinetic energy reduces to:
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2T P (SU2 2 ,2 -2 k j j(Suj,t + Ij ekj,) + I0k,tkT =,2 jk=2, 3

from which a simple diagonal mass-matrix is easily derived.

4. APPLICATIONS •

Numerical and experimental tests have been performed on several
cantilever beams. For the dynamical flexure and torsion of a rectan-
gular section beam, numerical values of frequencies provided by FEM
and analytical ones are in good agreement with the experiment, espe-
cially for high frequencies. The dynamical torsion of anI-section
beam has been likewise investigated. In such a case, exact analytical
values of torsional constants cannot be reached needing a previous
computational work. The results for dynamical case are detailed in
reference [6], and some of them are recalled in appendix C. In a same
manner, we have also tested two U-section beams (thick and thin). Here
coupling between flexure and torsion occurs, and the whole theory abo-
ve applies. We shall present both numerical and experimental frequen-
cies. Rather good agreement can be noted for all tests,the rank of
the modes concerned depending on the number of elements of the discre-
tization.

5. CONCLUSION

The study of coupled bending-torsion can be performed with ac-
ceptable accuracy by means of the formulation above, starting from
the definition of seven displacements parameters in each section of
the beam. The finite element derived allows a simple numerical pre-
diction of the dynamical behaviour of beams with any cross sections.
Nevertheless, we must keep in mind that an accurate computation of 0 0
coupled bending-torsion constants is the first stage when using this
element.

NOMENCLATURE

E,G Young's and shear modulus.

S,11,12,13 Cross section area and quadratic moments of inertia in G.

I Quadratic warping moment.

J Saint-Venant's torsional rigidity.

F1 ,F 2 ,F 3  Normal and shear forces.

MI,M 2 ,M 3  Torsion torque and bending moments.

U, Linear and angular displacement vectors (components:u i and 0i).

x i  Unit vectors of principal axis.

P Mass per unit volume.

( ),i Partial derivative with respect to x i .

( ) t id. with time t.

/ n Outward normal derivative along the boundary F.

p,m,b Distributed forces, moments and bimoment along the beam.

[I] Diagonal inertia matrix of cross section.

ri Complementary displacement vector.
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Appendix A

Shear Coefficients Kij

Solutions of (10-a,b,c) allow the knowledge of the functions
gi 0 (i=1,2,

3 ) verifying over the domain 0 of the cross-section: 0 0 6

2 9 Sc 3  S72g 1 0  . .. -- -- x2
I 13

Sv2 = S • 3*V 2 g 2 0  iic - 12

1-J12

v2930 = ..

with Dgi 0 / n = 0 ; i=1,2,3 along the boundary P.

Then, the Kij are deduced in the form of:

Ki PD93 •doK 1 1 - 1 - f-g 3 0 d 2

and for i,j=2,3 ; i#j ; k=j-1
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0 1C = f xj gko dII + (j-i) ' f0

Kji = f xj gko dQ + (j-i) c fgko dQ

lj 

c

Kj. /¢gkO dd

1 1 J0C
K1Ij fxj g 30 dO + (i-j) - Jg 3 o dQ

S I i

The properties of symetry of the Kij are shown by means of the •

Green-Gauss theorem, and we find:

I -J
K 2 3 = K 3 2  ; KJ1  S K1j

* p

Appendix B

Stiffness Matrix [D]

We introduce the following dimensionless notations: 0

J G~2 X2 shX2,

a = I + K1 I ; X2Z 2  = ; k = - _

1 1 -J aEI chX9- I

13c 3 2)(k _ ) -
I k0 = {I_ (ak 1 -2) +- ( 3 (k,2)}

E IEI__k___ ko
¢) 12 K 1 1  G I _ ; 1 a (2-k 1 )

EIj Ij = a k ljj (2kC 0
j=2,3 - 4)= 12 Kjj G£ = a k -J (2-k1 )GSZ 2  14

Then, the symetry properties of [D] leads to the following

terms, in the simplified case : i~jKij=0.

s -d = = ES
dl = d= -d = -d8 others d! = dj = d = di 0

1 J 8

2 d9 - d 12 EI3

9  -d9  9 (1 + 3) ()
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3GJ 0d 7 = d i - d 3 1 4 -0

ci = - __Gk0 I_ 1:2 c2  1:3 cd 1=d4 L- (shA2,-cxvchAZ) + 2 ( +)..

• .(shX%. - .c )
2 2

7 GJk0  Io 12 c2 13 c 3

d1 - { (shX9 - cOi) + a ( + )(shX9 - X9)}
aX (chX Q-1) 1 1+4)2 1+43 0

, Appendix C

The study of natural torsional frequencies of a cantilever beam
performed by means of the finite element procedure has been compared
to the experimental datas. The results concerning the relative error
are shown on table I below.

MODE N* I 2 3 4 5 6 7 8 9 to

ERROR 2 0. 0.9 0. 0.7 -1. -0.9 -1.6 -1.3 0.1 2.

Table 1.

M. Ce
Gi

Figure 1. -
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A BOUNDARY ELEMENT PROGRAM FOR THE CALCULATION

OF COUPLED FLEXURE TORSION CONSTANTS FOR

BEAMS OF ANY CROSS SECTION SHAPE

C. Czekajski

Department of Structures 0
National School of Aeronautics and Space

D. Gay and A. Potiron

-s Department of Mechanics
National Institute of Applied Sciences 0 0

Toulouse (France)

I. INTRODUCTION

The study of coupled flexure-torsion of beams by means of a fi-
nite element procedure +-$ needs the foregoing knowledge of a set of
coefficients to be introduced in the corresponding program. The cons-
tants involved by the theory [11 are as follows:

LX2

n 
0

X 3

figure 1.

a) Center of inertia G and corresponding principal axis Gx 2 and

Gx3 for the cross section (figure 1).

! b) Quadratic moments of inertia for flexure 12 and 13. •

c) Quadratic moment for torsion (in principal axis) I,.

d) Constant of torsional rigidity 3.

e) Center of shear C (co-ordinates c2 and c3 in principal axis).

f) Quadratic warping moments I and Ip respectively in G and C. *
g) Shear coefficients for coupled flexure-torsion (nine cons-

tants kij [1i ).

2. BOUNDARY FORMULATIONS

2.1 Classical Torsion Characteristics

The numerical treatment of cases a,b,c is classical. The calcu-
lus of torsional rigidity Jhas alreadybeenperformed by several numeri-
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cal methods (finite differences, finite elements, boundary elements).
For example, it can be deduced from the warping function q of the
Saint-Venant problem:

I V2  
_ 0 inside Q. (figure 1) (I-a)

DO/3n - x 3 n 2 - x 2 n 3 along the boundary F.(I-b) 4

and fdQ = 0 fp x 2 n 2 dF = 0 (I-c)
SF

in this last case, the boundary element method is particularly well-
suited, since it can be shown that:

j {(X3 n + x3 n,) - 4 } dF= X2 n2 x3 3"

Moreover, this approach reduces the localization of the center of
shear C(c 2 ,c 3) as follows: 4

f 2 - * nf +x d3 x n dF

12 Q 2 f x 3 dl

_fdX n2  (3 - x2x 3) dr

C 3 2 2 fx 3 n drI 2 2

2.2 Quadratic Warping Moment

In the same manner, the case f) can also be treated on the boun-
dary as:

dQ= f4 2d2 = -fg 3  Oq.' dr and ID = I- { (fx 3 dQ)2+_(fx 2qdQ} 0 0
F I2 I3

where appearsa function g 3 described later.

2.3 Shear Coefficients

Treatment of case g) (shear coefficients) implies a special
adaptation of the boundary element method to the solving of the fol-
lowing Poisson problem:

V2g = f(x 2 ,x 3 ) inside El (2-a) •

a ag/an = 0 along r (2-b)

and fgdQ = 0 (2-c)

where f(x 2 ,x 3 ) takes the successive forms:

f(x 2 ,x 3 ) = X 2  or x 3  or O(x 2 ,x 3 )
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Then, the shear coefficients k.j are shown to be obtained as

linear combinations [] of the nine integrals: S

Cij - fg f(x 2 ,x 3 ) dQ (3)
2 3

Adaptation of the BEM for each form of fcj~,x3) inproblem (2):

a) f(x 2 ,x3) = X2

The Poisson's problem is reduced to a Laplace one in the form

of:

V 2 (g-u) = 0 inside £
(4) a 0

3gi/3n and Du/3n known along r

and the condition of unicity fgl d£2 0 can be turned into:
£2 * S

fglx 2 n 2 dr + 'fx'n dF = 0 (5)

r r

In this way, the BEM provides the purely boundary form (6) in every

point i on the boundary F (i = 1,N): 0

agi = aui - f(g,-u) nLOg r dr + fLog r g u) dr (6)
r r

The coefficient "a" depending on the smoothness of the boundary L3].
In this way, we can write a system of N+1 equations with N unknowns 0

which is solved in the sense of the minimal least squares.

b) f(x 2 ,x 3 ) = 3 1 3

In a same way, the particular solution retained 
is u = 3

Then the condition of unicity lg2 d2=O turns into: 6 0

x d + - fx 3x'n dr = 0 (7)fg2X2n2 d 6 2 2

r r

c) f(x2 ,x 3) = (x 2,x 3 )

In the general case of any cross sectional shapes, the warping

function 4 can be reached only in a numerical form, after solving the

problem (1). Thus, the simplification above does not hold any more.

the integral formulation of the problem (2) being [3]:

f g3 d foLog r

agi= Jn Log r dr 3 93 d- Log r dLo (8)
F £2g3f

To avoid the calculus of the surface integral in the formulation above, • *
we have changed the problem (2) into a biharmonic one:

V g 3 = 0 inside £ (9-a)

ag,/3n - 0 along F (9-b)
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with the condition of unicity fg 3 dQ = 0 rewritten in the form of:

g3x 2 n 2 dr + -L fox'n 2 dr fx x n, dF 0 (9-c)
r r

The boundary formulation of (9-a) is: 0II
agg3 fAg, - B + C - D Ln dr (10)

in which: A =  {V2(r2 Log r)}.-n

B = V 2 (r 2 Log r)
-* (11)

C = (r2 Log r).n

D = r 2 Log r

In (10), 4 and / n are known from the solution of (1). Then, we ob-
tain a system of N+I equations with N unknowns values of the function
g,, solved in the sense of minimal least squares.

The following step consists in the evaluation of auxilliary 6 0
coefficients Cij (3), boundary forms of which are as follows:

1'2 1 xj j Fj=
Cjj = -fgj- 1 xjnj dr + -Lfxn dr , j=2,3

7r 30F
C2 3 = = ~fg l x~n3 dF +.+ fxlx 2 n3 dr

F r
ifg3 2 1 f X4 5

C21= = C1g2x2n 2 dF +--4 xn 2 dr - 7-ofx xan 2 dF
r r r

5 0
31 = = fg 3 x~n 3 dl + fx~n3 dX + x 3 x 2 n 3 dF

r r 1

C1= -fh 3 dF

In the last integral above appears a function h(x 2 ,x 3 ) which is

shown to be the solution of the following problem:

V 6 h = 0 inside Q

3 3h/an = 0 along F

solved likewise by the BEM [4]. Then,the shear coefficients kij of
the coupled bending-torsion with nonuniform warping are obtained as
linear combinations of the aforementioned Cij [1]. -
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3. NUMERICAL RESULTS 0 4

Among several sections tested, we cite below the results con-

cerning two particular shapes.

3.1 Rectangular Section

In that case, analytical results are known for flexure [51 and

torsion with non uniform warping [6]. Table 1 shows the values ob-

tained with 160 constant boundary elements along the whole boundary,

for a rectangular bxh section, with h/b = 3.

h

b x, h/b = 3 ; number of boundary elements:lb

H 1( K2  2 J K13 c2 /b c,/b J/b' 1 /b'

Fheoretical 1.-8 . 0 1.2 0. / 12 0 . 0. . 8 119

Nume, 8 1 :a

va I ties 1.231 .14 -6 .41-6 1.1997 -O.5E- 1.1998 -0.37E-8 73L-8 ._9 .1194

Table I. * 0

Improvement of accuracy is obtained either by increasing the

number of boundary elements, or by means of higher order elements.

3.2 U Section Shape

For this shape, no analytical values are available. Varying the

number of elements, we have obtained the following results (table 2).

Number of

Houndary Elements

8 2 .580L-b 2.929L-9 -0.02481

120 .5841-6 2.913F-9 -0.02475

160 / 2.5821-b 2.9061-9 -0.027 * O

Table 2.
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The section's characteristics are given in figure 2, in which 0
are also noted the shear coefficients values, and the convergence
obtained. The rather slow rates of convergence for the shear coeffi-
cient of nonuniform warping k 1 l and for the coupling flexure-torsion
shear coefficient k 1 3 are due to successive computation of three
functions, each of them being approximated by lower values. It can
also be observed that the Timoshenko's shear coefficients k 2 2 and 0

k33 are quite stable.

Shear Coefficients 0

K o, 2

330A3%

1.5. - __ 0-
1.L3 2

00

leo

0 K22 0- .1.4_0 ]- •

1.3 Fi2gur

4. CONCLUSION-1

1.2 L J--.3 =

0. Number of Boundary Elements l

'80 12"0 16

Figure 2.

4. CONCLUSION

The main feature of the presented work consists in the introduc- * •
tion of auxilliary functions allowing the conversion of surface inte-
grals into boundary integral expressions.

Accuracy of computed results has been tested on several syme-
tric [2] as well as assymetric section shapes, and the constants ob-
tained compared with analytical ones when previously known. Further-
more, experiment has been performed in the dynamical domain for beams • •
for which analytical values could not be reached, with good agreement
even for high order modes.

We finally note that the aforementioned adaptation of the boun-
dary element method allows a considerable time saving (order of 80%
in our study) compared with the classical finite elcment method.
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A COMPARATIVE STUDY OF SOIL SPRING AND FINITE ELEMENT MODELS
APPLICATION TO NUCLEAR POWER STATION

K. M. Ahmed

National Nuclear Corporation Limited 0
Engineering Department 0

Booths Hall
Knutsford
Cheshire

INTRODUCTION 0 0

A nuclear power station is normally composed of several
buildings some of which have their own separate foundation base mat
or footing. When subjected to seismic excitation the response of
these buildings is coupled through soil structure interaction effects. •
Two basic methods are commonly available to solve the structure-to-
structure interaction effects: The direct finite element method as
implemented by FLUSH,-3 and the lumped parameter finite element
approach. A comparative study between the elastic half space solution
as computed by the MODAN code -4-24)and the FLUSH code for the AGR
island on a single base mat was reported in [5] and good agreement •
was obtained in the computed structural response. The objective of
the study reported here is:

to assess the degree of conservatism in the seismic response
based on analysis using linear soil coupling springs and
dampers. Non-linear seismic analysis have been performed in I 0
recent years using both the embedded and surface-founded
configurations. Results obtained in these non-linear analyses
were compared to those with linear springs. The present paper
addresses the work done at NNC with those comparisons and may be

summarised as:

to compare the dynamic response of the coupled AGR structures
obtained by the lumped parameter finite element approach with
that of the direct finite element solution.

The analysis is limited to the behaviour of the Nuclear Island
under the action of earthquake ground motion acting horizontally S S
in the longitudinal direction. The free field ground motion used
is the modified Parkfield accelerogram with 0.25 g peak acceleration
[51.

2 STRUCTURAL IDEALISATION

The major structural components of the AGR Nuclear Island
considered for this study to consist of the following:

Prestressed Concrete Pressure Vessel (PCPV), PCPV support
system, PCPV internals, reactor building and its services
annexes, fuel handling building complex. 0
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S 0

The structural idealisations for both the finite element soil
and the elastic half space soil models are shown in Fig I and 2
respectively. The idealisation of the structural components in each
case consists of beam elements, with distributed mass, lumped masses,
rigid links and linear-damped-spring elements drawn with such
generality that configurations with a shallowly-embedded base mat can 0
also be effectively represented.

As shown in Fig 2, four sticks have been modelled to represent
the Prestressed Concrete Pressure Vessel (PCPV) and its internals
(gas baffle, graphite core, diagrid and supporting structure) and
reactor building and its services annexes. Two sticks with shear •
spring connections to represent the fuel handling building complex.
These sticks are connected by infinitively rigid members at the bottom
and by three simulated spring damper elements. There are a total of
34 mass points and 34 beam elements and 47 nodes in this model. The
reactor building stick consists of seven mass points and six beam
elements. Kcoup represents the equivalent soil spring including 0 0

soil coupling between the buildings and Ccoup represents the
equivalent radiation coupling damping constant.

3 HALF SPACE APPROACH

In this approach, the effect of the foundation medium (soil) is 0 0

represented by the frequency independent foundation impedance. The
foundation impedance can be simulated by a mechanical analogue
composed of equivalent spring and dampers. The equivalent dampers
represent the effect of radiation damping. The material damping of
the foundation medium is generally neglected since it is small
compared with the radiation damping. This lumped parameter soil 0 0

spring approach is generally used for structures supported at or near
the surface of soils which may be idealised as a uniform elastic half
space.

3.1 Soil Configurations

The necessary requirements specified for this part of the
project was that the choice of the soil models should be such that
they represent a wide range of soil properties, representing also an
envelope of the soil profile for the Heysham II site. Thus specific
information regarding soil layering, material anisotropy, depth
dependent properties and water table is neglected. A set of two
idealised site configurations was selected to sample local soil
profiles encountered in Heysham II site. The idealised configurations
consisted of semi-infinite single horizontal homogenous soil layers.
The four basic parameters used in this study to define the material
properties of the sandstone materials are:

shear wave velocity Vs

damping ratio

Poisson's ratio v

mass density 0
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The other important properties - Young's modulus E, shear
modulus G and compression wave velocity VP - may be evaluated from
the following expressions based on elastic theory:

E = 2 pV2s (1 + v)

G = pV2s (1)

Vp = Vs 2 (1 - 0/0 - 2v)

Within the scope of this study, the two most important soil
parameters which affect the coupled seismic response are taken to be
the shear wave velocity and the damping ratio. An increase in the
shear wave velocity of the soil increases the natural frequencies of
the combined soil structure system. The effect of the Poisson's ratio
and material density are shown to be insignificant for the evaluation 4 4
of the overall response. The values assigned to the soil material
parameters resulted from an iterative process 'Equivalent Linear
Method' on a soil column typical of Heysham II site under an SSE level
of excitation.

These parameters are listed as follows:

I Soil type I Shear wave velocity (M/S) Damping ratio

1 1133 0.011

2 1527 0.017

The above soil properties correspond to soil properties for
layer 12 and layer 26 respectively for the soil model shown in Fig 1.

3.2 Derivation of Coupling Flexibility Matrix

The interaction model is shown schematically in Fig 2. The
interacting structures were idealised as lumped mass cantilevers
supported on soil springs and connected by coupling springs. The
coupling springs take into account the isolated soil spring constants.
The coupling stiffness matrix was derived by computing first the
flexibility coefficients base on the geometric relationships of the
three foundations resting on the surface of a homogenous isotropic,
linear elastic half space and then inverting it. The expressions for 0 •
the displacement of the footings in terms of the corresponding forces
may be expressed as:

d =F f (2)

0 where 0 0

d {ul, vl, e1, u2, v2, 92, u3, v3, e3}

= displacements and rotations of the foundations
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p 0
f [ful, fv1, fell fu2' fv2, f02, fu31 fv3' f83}

= corresponding forces and moments

and 0

[F] = flexibility matrix

The terms of the above flexibility matrix are functions of the
elastic properties of the isotropic and homogeneous foundation media
(Young's modulus and Poisson's ratio), the dimensions of the footings, 3
and the distance between the foundations. The elements of the
3 x 3 submatrices on the leading diagonals of equation (3) represent
the independent uncoupled foundations and maybe evaluated either
numerically (using the procedure for coupling terms described below)
or by using the inverse of the expressions for soil spring stiffnesses
given in 13). The remaining terms of the flexibility matrix which • 0
represent the coupling between the three foundations were obtained in
this investigation by using a numerical procedure as described below.

The coupling terms of the flexibility matrix were evaluated by
computing the displacements resulting from unit loads applied to rigid
foundations in the directions corresponding to the degrees of freedom 0 0
for foundation one, two and three. For these unit loads applied in the
horizontal, vertical and rotational directions for each foundation a
pressure distribution as shown in Fig 3 is assumed. The resulting
displacements at the first footing were evaluated numerically using
the solutions provided by Poulos and Davis 14]. The displacements
at the centres of all other foundations, computed as described above, 0 0
were then averaged and normalised by the total load applied at the
first footing to obtain the corresponding flexibility coefficients.
It may be noted that in the flexibility matrix given by equation (2),
the coefficients representing the coupling between the horizontal
degrees of freedom at one foundation with the vertical and rotational
degrees of freedom at other footings were also considered. Some of 6
these coupling flexibility matrix coefficients were determined from
physical considerations and these are depicted in Fig 4. The term
ro in Fig 4 is the radius of a circular foundation equal in area to
that of the actual foundation.

As mentioned earlier, the diagonal terms of the flexibility 0 0
matrix in equation (3) can also be computed using a numerical
procedure similar to that described above, where each foundation was
assumed to rest independently on the surface of an elastic half space.
For concentrated load applied at the centre of each foundation, the
displacements at the centres of all other elements can be computed
using an assumed pressure distribution. The corresponding flexibility 0 0
terms for the elements can be obtained by averaging these
displacements and normalised by the applied load. The resulting
coupling flexibility matrix of the soil-structure-interaction is shown
in Fig 4 and by inverting this matrix the coupling stiffness matrix is
obtained.

* 0
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3.3 Analysis Procedure

The Nuclear Island has been assumed in this document to have
complete structural symmetry about the vertical plane YZ passing
through the fuel handling building complex and since the exciting
motion is in the direction X, normal to this plane and consequently
antisymmetric to it, then the response of the system must be
antisymmetric about YZ plane. Thus it is only necessary to consider
only one-half of the structural idealisations. The antisymmetric
behaviour of the separate three base mats can be ensured by the
antisymmetric transformation of both the stiffness and damping
matrices thus:

[K] - [TYt [K] [T], [c] = [TYt [c] [T] (4)

soil soil

in which the antisymmetric transformation matrix is

[t -1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 -1 0

0 0 1 0 0 0 0 0 1 p

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

CC] = [a] K] (cc]

in which

l ul vi aei u2 v2 %2 ciu3 cv3 03j

and

uiar the C) cEi Ci

where Cui , Si' Ci are the radiation coefficient for horizontal,
verticaY and velocity modes of isolated foundation raft 'i'

and the displacement vector for the rafts being

{ u l  vI e1  u2  e2 }

where [K] and [c] are the stiffness and damping matrices of
soil soil

the soil respectively.

For each soil condition considered in this document sets of
time-history response curves were obtained . These results were then
combined to produce envelope curves of floor response spectra. From
the calculated time-history response of the system, floor response
spectra have been generated for 5% critical damping and the maximum
peak ground acceleration was set equal to 0.25 g.
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I S
4 DIRECT FINITE ELEMENT APPROACH

The finite element FLUSH analysis is one of the well established
methods used to perform the soil-structure interaction analysis. In
this method, the entire soil-structure system is modelled by a finite
element model. The advantage of the finite element analysis is that 0
the non-linear soil properties and other type of material behaviour
can be approximately included in the analysis. One of the limitations
of the FLUSH analysis is that, although an attempt is made to simulate
the three-dimensional effect, the model is basically a two-dimensional
model. The direct finite element method (FLUSH) in its present form
cannot study the torsional response of a soil-structure system as a 0
result of the non-vertically incident seismic waves, or the lack of
symmetry of the structural configuration. Above all, the two-
dimensional characteristics of the FLUSH analysis may result in
under-estimation of the response of an isolated structure, while
exaggerating the interaction effect of multi structures.

Figure I outlines one-half of the finite element model of the
AGR island and consists of 446 solid elements, two void elements,
90 beam elements and 662 nodal points. The earthquake ground motion
is prescribed at the base of the foundation i.e. at the top of layer
12 (see Fig 1).

* S

The peak acceleration of the Modified Parkfield wave was
normalised to 0.25 g. One-dimensional deconvolution is used to
compute iteratively by Equivalent Linear Analysis strain compatible
shear moduli and damping values in the different soil layers as well
as the rigid base acceleration. The damping values of the soil layers
were up to 20% whilst for the sandstone strata were about 2%. The 0 0
model is equipped with transmitting boundary on the right hand side of
the model to represent the lateral soil to infinity and viscous
boundaries are used by FLUSH to model the out-of-plane energy
dissipation through the soil. A complete interaction analysis is
performed in one step using transfer functions in the frequency domain
and fast numerical Fourier transformations to obtain the time history 0 •
response of the structure to the horizontal base acceleration computed
from the deconvolution processes. The depth of the rigid base
underlying layer 26 which is non-existing in reality is chosen large
enough not to influence the structural response.

5 RESULTS OF THE ANALYSES 0 0

The dynamic analyses of the soil-structure-interaction analyses
were performed using both the modal superposition procedure as
implemented in the MODAN code for the lumped parameter approach and
the complex response method as implemented in the FLUSH code for the
finite element model. In the lumped parameter approach all modes up 0 0
to 35 Hz were considered in the analyses whilst for the finite element
procedure a cut-off frequency of 33 Hz was utilised. The soil profile
used for this exercise corresponds to soil type 2 corresponding to

0
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* 0

layer 26 as stated in sub-section 3.1. Four locations of interest are
chosen for this study for comparing the dynamic responses and these
are:

PCPV vault floor, +0.15 m (node 251)

* 0
reactor building at 0.0 m (node 317)

fuel shielded block at +32.0 m (node 606)

fuel shielded block at +0.0 m (node 616)

Horizontal seismic soil-structure interaction analysis results
obtained using the direct finite element method and the frequency-
independent lumped parameter approach are compared for the above
locations in terms of 5% floor response spectra. In Fig 5 to 8
inclusive the finite element solution is displayed as solid curves
whilst that of the lumped parameter approach is shown as dotted S S
curves. The separation distance between the foundation base mats is
taken to be 25 mm which in essence represents a typical separation
distance between the various foundations of the AGR Nuclear Island.

Figure 5 depict the comparative study of the 5% damping floor
response spectrum for one location on the Prestressed Concrete S S

Pressure Vessel and its primary circuit. For locations on the PCPV,
reactor building and the fuel handling building complex, the spring -

dashpot method predicts a maximum peak spectral accelerations of the
order 10 to 46% higher than the finite element FLUSH method
particularly in the period range of 0.15 seconds to 0.35 seconds.

* 0
The differences in spectral amplitude between the FLUSH - direct

finite element approach and the soil spring solution can be attributed
to the following items:

(1) foundation input motions which characterize the process by
which the seismic waves are scattered by the presence of S •
embedded foundation are not included in the soil spring
approach analysis

(2) hysteretic damping is not included in the soil spring method

(3) the structural damping for the soil spring method was based S 0
upon one dominate natural mode of vibration

(4) the use of free field input motions in the seismic soil-
structure-interaction analysis will result in much more
conservative structural responses as compared with those
obtained by using embedded input motion. This is mainly S S
becauseno filtering effect of the dominate natural periods of
ground motion takes place.

Overall, however, the agreement between the FLUSH and the soil
spring approach response spectra appears to be quite reasonable. The
adoption of two extreme values of soil conditions for the overall S S

evaluation of the seismic response of the AGR plant on a layered site
should be used with some care.
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6 CONCLUSION

The effects of through soil coupling on the seismic response
of the AGR plant have been determined through comparison studies using
surface-founded and embedded models. Currently, the results generated
from MODAN analysis for linear surface-founded models are conservative
in comparison with the embedded plant analysis using FLUSH. This
conservatism in surface-founded models may be removed by using more
accurate soil material damping in addition to radiation damping
simulation. This can be achieved either through the use of non-linear
modelling or hysteretic soil media or by representing the soil region
as a linear viscoelastic half-space as used in CLASSI computer code. S

,In view of the differences in modelling the soil and foundations
and also in the treatment of damping, the two approaches lumped
parameter finite element (MODAN) and direct finite element (FLUSH) -

have predicted comparable responses.
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DYNAMIC RESPONSE OF CRANE STRUCTURE

Chen Wei-zhang

Marine and Transportation Institute
of Shanghai

1. INTRODUCTION

The vibration of a crane structure, when a load on the
ground is hoisted, is the dynamic response of the space structure
to the hoisting excitation. It is a composition of all natural B S
modes. The degree of structural response depends on the hoisting
speed, the elasticity distribution and the mass distribution of
the crane structure-wire rope-load system, and the state of oper-
ation.

In the current crane design specifications of many countries S

and areas, such as BS 2573 of UK, Din 15018 of GFR, JIS 8821 of
Japan, and F.E.M. of Europe, one dynamic load factor Kd is applied
to take this dynamic influence into account, i.e., hoisted load
multiplied by Kd is treated as static one. The factor Kd is ei-
ther given directly or defined as a linear function of hoisting
speed Vh according to the category, rank, and hoisting grade of •
the crane. By this method the complicated response of each crane
can not be fully reflected, therefore, great attention has been
paid to dynamic analysis in crane profession all along.

In the beginning of 1950's a great deal of research in this
field was carried on in the University of Leeds, Britain for the 6
sake of revising the steel structure design specification of the
bridge crane (BS 466). Later on scholars of GFR, USSR and GDR
published references [11,[2,[31 in succession. They analyzed the
dynamic behaviour of bridge cranes before and after the load to
be hoisted was lifted up. The essence of crane structural res-

ponse to hoisting excitation began to be revealed. But restricted
by calculating means, a good deal of simplification was adopted
so that some limitations were brought about.

In the references mentioned above crane structures are all
simplified as spring-mass systems with single degree of freedom
(DOF). Not only is it difficult to choose an assumed mode shape 0.
for a crane structure which has complex geometry, but also the
generalized single DOF system based on the assumed mode shape can
not display the coumpound response of the actual system made up of
multiple modes. For this reason equivalent dynamic response can
not be achieved. In the above dynamic models the vibration of a
structure was entirely described by the displacement of the mass, 0.
and the ratio of the maximum dynamic displacement to the static one
was defined as the hoisting dynamic load factor. This means
that the shape of the dynamic displacement and the distribution of
the inner forces of the structure are considered similar to those
of the same structure under the static load, merely amplified Kd
times in values. In fact, the actual structures are of indefinite •
DOF. Subjected to hoisting excitation there will happen compound
vibration composed by indefinite natural modes with different
frequencies. Since the degree of each natural mode's response to
the same excitation differs from others, and the distribution of
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inner forces corresponding to one natural mode is totally dif- 0

ferent from that under a static load, the maximum dynamic and the
static inner forces of various sections of an actual structure are
not of the same proportion, that is, a united dynamic load factor
does not exist. This has already been verified by a lot of exper-
iments F4-. a

The hoisting wire ropes of many cranes, such as wheel cranes,
gantry cranes, bridge unloaders with rope-trolley, and container
cranes, are wound round a lot of wheels and joined to winding
reels. Thus, the tensile excitation of hoisting ropes will exert
influence on the joints and every place on which wheels are in-
stalled. Similar difficulty is present in determining equivalent
forces of the generalized models as mentioned in the preceding
paragraph.

Some cranes possess other wire rope systems besides hoisting
rope system, such as the luffing rope system, the trolley-driving
rope system, etc. These wire rope systems compose a kind of spe-
cial elements in structure and have an effect upon the stiffness
and stiffness distribution of the structure. Wire rope elements
have peculiar properties different from structural elements.
Therefore, it is necessary to develop their unique element stiff-
ness matrices, and coordinate transformation matrices. These
fActs, however, have never been reflected in the above references.

In this paper I try to transform the crane structure of in-
definite DOF into a space model with definite DOF by using finite
element method and lumped mass method. The amount of joints
(nodes) may be decided according to the level of complexity of the *

actual structure and to the required calculating accuracy. So it
is not difficult to let the model approach the actual structure
and reflect the response of structural modes of higher frequencies.
The model with definite DOF is far more superior to the simple
DOF model.

Based on this model, we can set up its differential equations
of free vibration and then use subspace iteration method to solve
the large generalized eigenvalue problem. Finally the dynamic
response of two phases in the lifting course can be calculated by
employing mode superposition method. The maximum dynamic and
static inner forces of each end of every element and corresponding * *
dynamic factors can be obtained. The whole calculation is carried
out on digital computer.

2. THE DIFFERENTIAL EQUATION FOR FREE VIBRATION OF SPACE FRAME
STRUCTURE POSSESSING WIRE ROPE ELEMENTS

The differential equation for free vibration of a multiple
DOF system may be written in matrix form

M Y + K Y = 0 (1)

in which M, K are system mass and stiffness matrix res- * *
pectively, and Y, Y are generalized acceleration and displacement
vector separately.

There are six DOF corresponding to a joint in a space model.
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If the structure is modeled to have n DOF (n=6nj), where nj de- 0 0
notes the amount of joints of the model), M, K are nxn square
matrices andY Y are nx 1 vectors.

Equation (1) shows that the crucial process involved in
arriving at it is generating M and K of the system.

Through the use of the finite element method K is easy to
determine, but it must be noted that common engineering structures
have no wire ropes so that wire rope elements have never been dis-
cussed in prdinary finite element method. But in crane structures
wire ropes exist universally. In static analysis, the static ten-
sile forces of wire ropes are known constants and may be consid-
ered as external forces to exert on the corresponding joints.
But in dynamic analysis, they vary with the vibration of the load
and every joint concerned, round which wire ropes are wound. This
kind of tensile forces can not be simply considered as external
forces; they are elastic forces of wire ropes, and wire rope ele-
ments must be treated as components of structures. Their stiff-
ness matrices must be superposed to the system stiffness matrix.

Wire rope elements are a kind of special elements different
from common ones. First, wire ropes are flexible components; they
have only axial stiffness but no transverse and torsional stiff-
ness. For this reason, though every joint of a wire rope element
has six displacement components, there is only one force component
-- axial force. Second, all elements of the same wire rope system
are linked together. The tensile force of each branch in the sys-
tem is equal everywhere on condition that the resistance of wheels
and the rigidity of the rope are neglected. So the tensile forces
of all elements in the same system vary simultaneously during the 1 -
whole vibration history, and their values are in definite propor-
tions to each other. The proportions are equal to the ratios of
the branches of the elements. These mean that the displacement
of any joint, round which the wire rope is wound, will produce
elastical tensile forces of all wire rope elements in the samewire rope system. Therefore, stiffness matrix of wire rope ele- I •
ment is more complicated than that of common element, and its
transforriation and summation to the system stiffness matrix are
also out of the ordinary.

These are discussed in detail as follows.

If some wire rope system of a crane is divided into NE ele-
ments (Fig. 1). Take two arbitrary elements, the Kth element and
the Lth element, for example (Fig. 2). Their joints are labeled
i(k), j(k) and i(1), j(l). The system coordinate system is
O-XYZ, and element coordinate systems are Ok-XY and 017X1YlZ1
respectively. The origin of the element coordinat system is
placed at the i-end with the X-axis along the element from i to-
ward j. Now, let us look into the relation between the joint dis-
placements of element L and the joint forces of element K Since
wire rope elements have only axial joint forces, the relation
must be set up referring to truss elements.

Denote the joint displacements of element L as UJ.(1) and
fj(l). The elongated value of the element is

L'-L = 1j(1) -



0 x

zx

Figure 1 Hoisting rope system of a gantry crane.

Ti(k)

UXj(k) 0 0

Figure 2
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If the amount of wire rope branches of the element is 1w(l), 0
as a result of the displacements, the elongated value of the whiole
wire rope system is given by

4- Lw = Iw(l) (L-L)

= iw(l) (;j (l) - tTi(l)) (2) 0

The elastic force of' every wire rope branch is

NW = w~ - (Lw'- L) (3)
Lw 0

where A. is the section area ofL: the wire rope, and Ew is
the modulus of elasticity of the wire rope material. Lw is the
total length of' the whole wire rope in the system.

Let I (kc) be the amount of branches of element K. The joint
forces of eyement K are

-f~k Ew~ (L - Lw) Iw(k)
Lw
EwAw EwAw

Lw L
-EwAw IEl Iwk Y()-EAw

Yi~k Iw~) Iwk) U~l) _w Iw(l) Iw(k) Uj(l)
Lw Lw (4)

As wire rope elements have no other stiffness,' other 
stiff-

ness coefficients are all zero. Thus, the relation between the
joint forces of element K and the joint displacements of element L
may be written in matrix form as follows.

XY (k) EwwIw(l) Iw(k) ~Ui(1)~

Yi~k) Lw il

Nik N symmetry Wi(l)

9xi(k) 4'N (I)

9,. -(k) ym

MZzi(k) Uw~E~ zi (1)

Xj(k) = - - Iw(l) Iw(k) EwwIw(l) Iw(k) Uj(l)

jk)Lw Lw NVi(l)* 
*

0j (k) (1)

WfI .(k) Uj (l)'

or 7k= Kwkl Bi (5)

0 0
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in which Fk- D are the joint force vector of element K
and the joint displacement vector of element L separately, and
Kwkl is named the element stiffness matrix of element K corres-
ponaing to joint displacements of element L.

The relation of joint forces and joint displacement of ele-
ment K is merely a special form of the general relation above
mentioned. In this case, all we have to do is to change symbol
"1" in equation (5) into symbol "k".

It is evident that element K has element stiffness matrix
corresponding to the joint displacements not only of its own
( k=l ), but also of all other elements in the same wire rope sys-
tem ( 1=1,2, . . ., NE but l'k ).

Equation (5) may be expressed with system coordinates as

Tk Fk = Kwkl Tl Dl (6) 0 0

where Tk is transformation matrix of element K, and Ti is
that of element L.

As we all know, Tk and Ti are all orth~gonal matrices. Pre-
multiplying two sides of Equation (6) by Tk , we obtain 9 0

Fk = TkT Kwkl T 1 Dl

Let TkT Kwkl TI = Kwkl

then Fk = Kwkl DI (7) 0 0

in which Kwkl is the element stiffness matrix of element K
corresponding to the joint displacements of element L in system
coordinates.

The next step is to partition Kwkl and system stiffness 0 0
matrix K s according to numbers of the joints, and add the parti-
tions of KwkI which have nonzero terms to the corresponding
positions of Ks with the aid of subsymbols.

In a wire rope system, forming and adding element stiffness
to the Ks should be carried on (NE)5 times, i.e., they must be 0 0
done corresponding to permutation of every value of k and 1, here
k = l, 2, .. ., NE and 1 = l, 2,..., NE.

How to determin system mass matrix is presented in most
modern dynamic texts. In this paper, the lumped mass method is
adopted instead of the consistent mass method. The advantages of 0 0
the former over the latter are:

(1) The former is more simple and can be directly per-
ceived.

(2) Any desired accuracy can be achieved with the former 5
method merely by increasing joints properly. increasing joints
will increase DOF of the system, and a greater computational
effort is required. But it does not cause much difficulty if a
digital computer with large memory capacity is used.
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3. EMPLOYING SUBSPACE ITERATION METHOD TO SOLVE THE LARGE
GENERALIZED EIGENVALUE PROBLEM 0

Determining the harmonic solution of equation (1) leads to
the following generalized eigenvalue problem

K X = p2 M X (8) 0

In the vibration of a crane structure excited by hoisted
load, the major components are those of lower frequencies. A
small subset of lower eigenvalues and corresponding eigenvectors
of the system are imrortant from the point view of engineering.
In this case, the subspace iteration method is very effective. If
m lower eigenpartners are needed, a q-dimensional subspace should
be adopted, where

q = min (2m, m+8).

Since the eigenvalues in a subspace is determined by the
requirements of stagnation points of Rayleigh quotient, and the •
requirenents may turn into another generalized eigenvalue problem,
whose order is reduced to q. The following five steps may be fol-
lowed in iteration cycles after preparing initial matrix composed
by q assumed modes.

(i) Use the following equation to make an inverse iteration
with the aim of strengthening the components of lower frequencies
in the subspace represented by Xk.1

K Xk = YI Xkl (k = 1, 2, . . )
(2) Compute the projection of the original stiffness ma-

trix in the subspace represented by Xk using the equation

K* = !kTK k

(3) Compute the projection of the original mass matrix in S
the same subspace by the equation

M* = XkT M yk

0 (4) Use the QL method to solve generalized eigenvalue pro- *
blem

K* Bk = M* Bk Pi

and objain q eigenvalues of the subspace, which compose the ma-
trix Pk. 0

(5) Calculate corresponding eigenvactors by using

Xk = XkBk

The above steps are carried on until m lower eigenpartners *
converge with enough accuracy.
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4. COMPUTE THE DYNAI1C RESPONSE OF CRANE STRUCTURE IN TWO •
PHASES OF LIFTING COURSE WITH THE MODE SUPERPOSITION METHOD

The equation for the motion of multiple DOF system subjected

to exciting forces is

M Y + K Y = F (t) (9) •

Using m modes Xn(i) (i = l, 2, . m) normalized with
respect to M, to transform equation (9) from physical coordinates
Y to normal coordinates Yn, we will obtain

I in + p2 Yn Fn(t) (10) 5 0
mxm m 1 mXm m X1 m )l

in which Yn = Xjl Y, Yn = Y (the displacement vector and
the acceleration vector of normal coordinates separately), and
Xn is the mode matrix whose columns are normalized modes and whose
order is nxm. 4

Since diagonal matrix p2 is uncoupled, equation (10) can be
written as m independent equations

Yni + P1 Yni = fni(t) (i = 1, 2, 3, • • • , m)

Each modal response due to F(t) and intial conditions Yo
and Yo can be calculated by

Yni = Yoni on sin + fni(c)
yn Pi o 4

sin pi(t-c)dc (11)

where Yo yv lni are the ith elements of initial displace-
ment and initi velocity vector of normal coordinates respec-
tively, and Pi is the square root of the ith element of the dia- 4
gonal matrix p2 .

The total response of the system can be obtained by super-

posing m modal responses as shown in the following equations:

Y = Xn Yn; Y = Xn Yn 0 0

The duration which begins when the tensile force of the
hoisting rope appears and ends when the load leaves the ground
is termed the first phase of the lifting course. In this phase
the response of the structure-wire rope-load system is merely
due to the tensile force of hoisting rope, which is produced by 0
the operation of the hoisting mechanism, and all initial condi-
tions are zero.

Let V(t) denote the velocity of the end of the hoisting wire
which is wound on the reel. The tensile force produced by drawing
rope in (Fig. 3) of each wire rope branch is

EwAw 'tS(t) = V vdtLw 0

146



Y 

y

00

z

Figure 3 The motion of the load's coordinate origin
caused by drawing rope into the reel. *

The exciting tensile force of the kth element in hoisting
rope is

Sk(t) = Iw(k) s(t) Iw(k) j v t

L o

Then we transform it into system coordinates. The excita-
tion vector of system coordinates F(t) can be assembled. We solve 0
the response in this phase by using the mode superposition method
to obtain joint displacement, joint velocities and inner forces
of the elements (which include elastic inner forces of wire rope
elements) of the system.

The criterion for the end of this phase is that the inner *
force of the last hoisting rope element, on which the load is
hung, is equal to the gravity of the load, namely, this phase
ends when the following equation comes true

Sl(t)+ Nl(t) =Q (13)

where Sl(t) = exciting tensile force of the last element
N1 (t) = elastic tensile force of the last element

= the gravity of the load

The second phase in the lifting course begins when the load
is lifted from the ground. In this phase, since the load is hung *
on the flexible component, which has no transverse and torsional
stiffness, some measure must be adopted to prevent the system
stiffness matrix from being abnormal. One measure is to intro-
duce restraints to eliminate the DOF of three rotary motions of
the load, which we are not interested in.
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Two swinging motions of the load may be simplified as the S S
vibration of a simple pendulum (Fig. 4), so that the pendular
stiffness coefficients is given by

kwii22 = kwii3 3= kwjj 2 2 = kwjj 33 = Q1/L

kwij 2 2 = kwij3 3= kwji 2 2  k wji33 =-Q/L (14) 0

kwji2 2  k wjj22 0 0

~wji331

kwjj33
IL0 0/

k- i 22 i

kv, .a22-

Q kwii33  kwij33

Figure 4

After coordinates' transformation, they have to be added to
the system stiffness matrix.

The initial conditions of the second phase are the dynamic
parameters of the first phase at the moment when the load leaves
the ground. They are initial displacements, initial velocities
and tensile exciting forces of the wire rope. Notice that since
the load has been lifted, the exciting force vector becomes in-
stant in this phase, and the gravity Ql of the load must be added 0 0
to the corresponding place of the vector. Similarly, an initial
load velocity Vh, which is down-ward vertically, must be added
to the initial velocity vector because the origin of coordinates
for the load moves up with lifting velocity (Fig. 3) at the be-
genning of this phase; generally it has reached the normal value
by then.

We calculate the dynamic response of the system and obtain
joint displacements and inner forces of coresponding elements in
this phase. Then the dynamic factors of the inner forces of every
element can be evaluated by maximum dynamic forces divided by
corresponding static ones.

5. CONCLUDING REMARKS

The vibration of a struture excited during the course of
hoisting the load is one of the main dynamic responses of the
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crane structure. It effects the dynamic operational performanc, 0 0
and the strength of the crane structure greatly. With the aim o.
designing cranes for good operational and economical performances,
it is necessary to foresee the character of free vibration and the
response to hoisting excitation of the designed crane. It is o er-
simplified to use a single dynamic load factor to reflect this
dynamic effect, and the determinations of the factor in the pre- 0 0
sent crane design specifications and current approximate formulae

[ are too sketchy. We think it is reasonable to set up the multi-
ple DOF model of a complex crane structure, using the finite ele-
ment method and the lumped mass method. Through the use of this
model, we can evaluate the campound response of multiple modes.
It can reflect the influence of the vibration with higher fre- 0 0
quencies. This model has incomparable superiority over a single
DOF model. In line with the character of crane structures, the
influence of wire rope elements must be considered. This is nec-
essary not only to estimate accurately the stiffness and the
stiffness dis-Lribution of the system, but also to determine pre-
cise inner forces history and the exact time when the load leaves 0 S
the ground. This paper makes a detailed study of the element
stiffness matrices and the transformation matrices of wire rope
elements. The results of computing practical instances indicate
that either the natural frequjencies or the dynamic factors of

* inner forces got by this method are more approximate to the actual
situation, and the different dynamic factors of inner forces of 0
the different parts in the structure can be fully reflected.

REFERENCES

1. R. NEUGEBAUER 1957 Der Stahlbau H 1 , 16-21. Dynamische
Krafte in Laufkranen beim Anheben und Abbremsen.

2. Y.Y. GOHBELK 1959 Metal Structure of Crane Designed after
the Phenomenon of Fatigue. USSR: Machine Engineering Press.

3. F. KURTH and G. PAJER 1965 Unstetigfdrderer. Berlin:
Veb Verlage Technik.

4. A.N. DUKILSKY 1971 Handbook of Cranes Vol. 1. Leningrad:
achine Engineering Press.

I S

I S

0

149



0
TATE SPA CE; AP PRCAChI TC 1, I~ t C 'L V S L L I I l

Hu Zong-ru and Yar Junni

Department of Fechenical I,_ gineering 0
Shanghai Jiao Ten! University

(A)0

0)1 'i/ k iA G T

The State S3pr.ce I ethod originatin., from modern control theory is an cl-
fective direct inte"-z-Ain . method. It is also annlicable to -.pproachinr
dynamic response of mechanical system. Its theoretical basis, means of cJl- 9
culation, comnuter nroTram and main characteristics are describe{! in this
paper.

Setting un a mathematical model for the travelling mechanism Cf n over-
head travelling crane, the authors have tried to find the dynamic response of
the system in different conditions using the state snace method. The result • S
shows that this method is a st.ble and accurate theoretical cralcu!,atin g meth-
od suitable for all time-varying loads. It helps to et directly the time
response of a mechanical syster rnd analyse its dynamic characteristics.

2. I,,THL dUCTICN

At present there are two commonly used methods of solving eouations of
motion of linear system: The IFode Summation rethod Pnd the Direct Inte,.grating
Tethod. rode Summa7tion Yethod, however, reouires ertraction of ei.:envalues
and eirenvectors. Desides, the moda! matrix can be used to translate coordi-
nates and uncouple the eeuations on condition that the assumntion of pronor-
tional or modal damping is maae for the damninF vibration of the system, this
has limited its application. The classical numerical inte'r.tin' method. also
has limitation due to its poor stability. By contrast, the st.ate snace meth-
od is an effective directly integrating method which can 1-n uced to :-ive dy-
namic time resnonse of system. it can be ad-onteO for arbitrary damnin- ma-
trices and recuires no extraction of eigenvalues [.;d eJgenvectors, n,-iher 4
does it need to translate generalized coordinates into normal coordinates for
uncounling ecuations. 'Besides, this method provides good stability and ey-
cellent accuracy. It o-n conveniently -at time response under various com-
plicated loeis.

.hile worling on ((Crane Desi-n Rule) , the authors used tbe stayte

soace method in an nroaching dynamic response in different conditions of heavy
mechanical system such as the travel1 in' mechanis of overhead travellin-
crano, and got cuite satisfactory results. In this paper the means of calcu-
lation error -'nalycis and comnuter -,ro,-rams in this resnect are -'iven.

3.1 State 7uations of System

There are n ifferential eourtiors for an n-freedom ,erpes sys.tem,
which can be e-,ressed in mrtri- ,'er -

VY + C + Ky x Q (1)

where x is the colurn vector of thf abrc te disIcomnts. , C, K rCre mass,
dam-inr nnd stiffness matrices re-nectiv'ly (aI! of oder nzn), C is the in-
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put column vector (order r), which is the fcrcin- function of tire t. 0

Take strte variables Z as follows

zi = XI, ... Zn = Xn, Zn+! = 'I, ... Z 2n = in

and rewrite the equea-ions of motion (1, ir terms of Z, ,e hv.

. ... ..... ........1 2n J -I- " -I Z~ I~ i
° -M -c I M

which can be sir.plified as:

Z = FI, Z + (7, (C'

here F is called coefficient matrix (a square matrix of order n), G is call-
ed control matrix (order 2n x r). iquation (3) is called state ecu7,tion of
system.

3.2 Solution of State E&uation

We will just consider the constant coefficient system. Theoretical
calculations and experimental results show that all comr-on mcchanic.l systems
can be dealt with in this way and the accuracy reached is satisfactory.

According to the modern control theory (1), the solution of ecun.tion
(3) is

Z(t) = eF(t-t ° ) Z(to) + J eF(-tl) G C(tl) dt, (4)
to

The expression (4) is also called state transition ecuation which dpscribes
the transition from initial state Z(to) to state Z(t) at time t. e-- is
called matrix exponential and can be represented by the Taylor series,

2 2 4kk 00 ck
e Ft I + Ft + .... Ft - (5) 5 5 -

- kk=o

In order to get a numerical solution we can select a sufficiently
small time interval T during which the column vector (t) is considered to be
constant and renresented by C(KT), its value at the preceding instant. The
input function can also be assumed to be linear or parabolical for hither 5 •
accuracy, and the expression (4) will be different after discretization,
namely,

C(kT + t ) = 4T) a t l <T (6)

then the solution (4) can be rewritten in a difference form as

Z[(k+l)T) = e z(kT) +J eT'l dtI . G c(k) (
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Let .0 S
=," -- = --z -V

k-C
',2 e00dt 4 r k

B(T) = =C T G . , )
0 ~~k=C ... "

Su'cstit-tinc these into tl-e ecuaiion (, we have

Z (I-1)3 A(T),(k2) + ( )

khis is a recurrence formula. Usin7 it recursively will give the values of 0
th.e state vectors of system at time t 2", ... , KT,

3. etermriin' the I.,trix -x non"ti .e

in recent years the st,.te space method has ra-idly developed. Differ-
ent methods for determining matrix e)rnonential hP.ve been nut forward, such as 0 •
the Lnnla.ce transform method, the diagonal matrix method, the awaitinr-
determinative coefficient method, the matri- series method, etc. Here, we
will only deal with the approximate method of matrix series available for
comuter calculations.

2crmula (5) is the Talor series definition of the matrix exonential. 0 5
2his series is alway:s convergent for all arbitrary matrix F and all finite

time interval 2, so it can be truncated at k=m. Then e " .

k=0
Cwing to the development of matrix technique, the truncation error can be
calcuiiated as the function of time interval T. Pand controlled effectively.
But the number m of the truncated terms in the matrix series can be taken by
the ermnirical formula, 23

m = 311 I T + 6 (9)

n
where liFt! = X 1fij

i,j=l

'he c-'culztion c' tra vellin- ecl anim o- overhea6 travelling crane has
proved that formula (0) -s -ocd cneo,h to ia.rre the accuracy recuired in
engineerin.-J (siificant fiuires d>u). In order to be fitted for recursive
caiculation of the cornuter, A(T) anj -.(T) are re.:ritten as the inlay-
rultiplied formulas

AM I+Z (I (I+ .+ 2L(1 .. 0 0
+ m +-- ~ .(+-)

,(T) I (k2---1-- (1+ "'" +..."'m (ll

These two forml:las ar'c very alike. One can use th.c' same p ro,ram to get A(T) 0 0
and B(T), and the intermediate result of calculating, which is obtained in
calculating A(T) can also be used to get B(1). ',his reduces the time for
calculating quite much. A(T) and B(T) are determined only once for a given
problem.
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For a wecaiiea stcm, es'nocially for such -a heavy mcha nical oyctem
- c- ane, uSiw nra : nern unfitt iil ' m717 the val.ues, of elements

n F -nl the naber r too 'bic, ran 2' !make the tire for clcltontoo onrr.
o c* ;~com-u.ter rray b. co< becnuse o-f the snillcver before is ob-

ti- r' -here 'ore, ,we t,-.'e centisecond ( )or millisecond s f

the unit oc- t ire t o reduce tihe fi -ure of each el ement i n F in(3 the 11 F 11 T can

be controlle-6 -itliin thr, lim-it of no more than one hundred 3)

3 Z rror Analysis

rrora- occur at tuo st~e.Cne hind of errors are the truncation er-

rors n-(odced .rhil1e & is deterrined. Because of the conver '-ency of ma,-trix
coet>ls 1-ind cil errors ca~n be cal1cula-ted_ by choosing appropriate m Pnd

thus ca-n be controlled! effectively. That i s why th4 tt saemthdoe
vicdes hi,-ier !-ccura-cy. Another kind of, errors ore produ-ced when cuation()
is rcsieyuse(.. In this ca-se a, stair function Which chang7es after every

JTrc in terva1! T is substituted for npactical input, and because of the limi-
ta-tion of rc-ieteor length of the compouter each calculation has a round-off
error. T'hese tuc7 fpactors are contradictary to each other. The smaller is
the tire intorv'l T. the closer the stair function approaches to the practi-
cal innut, Pand, oni the other hp'nd, the more recursively oalculating times are
f cr -the response in a --Jven time progress. As a result, the accumulated
round-off errors wilbe increased, and the time recuired. for calculating
wiill be a)rolon;g-ed. Since the maximum necked dynamic load cf an overhead
travellin7 cra-ne am.nnea-rs at the very instant just after the machine is start-

ed. th rond-off errr nnt be taken into consideration, and T can be

t-en 2s small as nosFsible.

r* C 'JCLChA9IC: C2? JYf I.I R, 2PCI13i CF Ti'AV-LLITNG DECHAIb CV cV2R:IEAD

Fi.7are 1 silows a travelling- mecha--nism of an overhead- travellin.- crane,
3*icl- cran be simlified3 as i reedtom del-rees system a s shown in Fi7 2. S

'7e'e nlhYsicral -.rrjacrs are inrdiJcated on the fi.ures too.

Girder (inM k)

_'..floor .Teel

7i- 1 rlravellin- mechanism of an
overhead t-ravelling7 crane
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M 4

Fi7. 2 Vech- ni cm reoclel Of the,
trrvellin rerhrnisn

All ro 1onl oes, tcr--*..on-' t3 -f-ce,r -ell ' te c'u*q
ouclyr istributedt -c rin eli.,-:±cit- rrc re-mc' yrectilic~ - -- ec 7nd
stiffneo_ ier- ir .-t -e directicn in~ W ' ch th, c-rne travel I. >e'Cr r-. i-I t"- rn,.
etf hoisting- lop.0, H is the lenrth''r of the cnarr,.ying rone. Fn,4,rre e-
ouivalent ma-sces a.nd ecuivalent sti-fncscec rrl-'tin to the ret- { 1 rujct'jc.
All -f thcm Ca;be cralcuisted. usiiv u~i< ener., mcthoid, by-" !.le " et 1fol-
1 owi nr m~caia formul cc: 0

A ME+ (.1?q )

!ner n 7 -r' c~ tr'-_ cae t I I ey
a.p -r-as s o f end floor I' -s rnd tW- r~vli1 Coipmsnt
mo-mass of gi r,!er
J, -porent of incrt>-- of the cross-sectional area in tile middlle

of girder
L -span

After the -enera lizek cocordina tes -7 .. 3-6 are selected., tie differen-
tial. equations of the systemrn uy be written aocordin7 to thle La-,_ran!7e's eoun- *
ticn.

kinetic eners7Z

T=~~ni~++ 6 ( + i2: l + 27 5 X)

potential ener,-y

u = ijxi - i+l _ + mr C l - oex) S

e neralizeci force
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2 = 
3 = = Q6 = Q =

resistance to motion

(14- -0.02G" sgn (4)

* S
where G- total weirht of the crane

-1 .-:lhen 74 < C

= o
41'

!~ " x 4
> 0 •

Driving force (l= F(t), it denends on mechaonical characterirtics of
the electric motor which are shown in Fig. 3. (a) ani (b) are two nos7ible
ways of starting. In Fig. 3 the curve "0" shows the prenarntory stage. It
oroduces tle prepressing torcue %,o, but can not stp.rt the mecUanism. 'Jhen
the system is in the stage "2", S ,

S(Rotatin Speed) n

n 21 n2

2
1 2

nj 0

K (Oriving n0
ym oment) , -r.n

Rmifl Ymax K

(a) 3udden startin,7 (b) .3mooth starting

Fig. 3 I-echanical characteristics 0 0
of electric motor

= i Ivmax i n2 .5 Fx i2  0- (F(t) =(tYa - R n2-nl (n2-nl)R-

where i-transmission ratio of the mechanism 0
R-radius of wheel I

Obviously, when n, = 0, equation (15) is fit for tl- curve 1"1 in Fig.
3(a).

0 0
Because F(t) is exoressed relating to :i, the final result reflects the

influence of vibration feedbac.h on motor driving torque. (If th p mode surnma-
tion method is used, the matrix made of coefficients of J, can not become dia-
gonal due to the increase of terms of-i and it is difficult to consider
vibration-feedback.) Similarly. the dynamic resnonse of system, whose dnn-
ing can not be neglected, is also obtained conveniently by usin. the state 5 5
space method without making assumption of pronortional or modal dnrping.

Now the motion equationz of the system can be -,ritten in matri- form
(1), and
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m 
0

K1 -Ki_

-K 1  Y1 +1 2 -Ko

-K 2 K2 +K 3  -K1
K -K, K+ -K 

-K-4, K4 -m6g/I

K4 /m 5  -K 4 /m 5 g/H(l + m6/m 5 )

n2 0
R, np-n I

0

-C.02G sgn (-- I

0
0

In deping matrix C all of elements are "C" excent that Cll = n2

With tie introduction of state variables Z1 ... Z1 2 , the equations can be writ-
ten in stpte space form (3).

4.2 3everal Onerting Conditions

4.2.1 Sudden 3tartin, :

"he, tle crane is in busy condition, the system is considered to start
directly in the light of curve "!" in Fig. 3(a). Because the transmission
clearance D exists in the gear train .s shown in Fig. 2(b), the starting pro- 0
cedure is divided into t;o sta ges. In the first stage only m 1 , m2 , m are
moved. ",hen x3 = D, the second st ge eins, and all masses are movea. If D
is very small ani can be neglected, the value of D is considered as D = 0.

4.2.2 Smooth 3tarting:

At first the system is in the preparatory sta°ge, then -tarts succes-
sively in the light of Fig. 3(b). In this wa not only the clearance is re-
moved before the starting, but 1lso the mechanism is prepressed. After pro-
per revising thE program used in condition 4.2.1 can be used for this condi-
tion. The system enters directly into the second stage without passing
through the first stnse, and the static deformations of the system under the 0 *
preTressing- toroue are taken as the initial vlues of state variables and
their initial velocitien remain to be zero (static nrepressing).

4 .2.3 N.ormal 7raking:

157



Thle rrocec',ure i2ii~d into t--o ot-oc. r 11C <first ~z'eis7 :ro the 4.
S-' r4- 4 of lrakin -'o _-ethr~;:r of i erme(Ix- 3 j=D" In this

ctra e it is Su-rnosod th1 t K1=0. If I x4-x 3 I is evu7mi to or bi,7e-r than D,
theni the lat ma,-rt of the -ro :'ar~ used. in condition 41.2.1 or 4.2.? can also
be use. he,(ro.

From theo three orrr-~tinr conditi enp aesrihed nbco we eo.n see that the
--election o ttevariables has. ruch fieyiilTitT an(7 otrte snpoce method can
.^-et tirm-e rernonse directl-Y, so it is2 convenient to anoIyse the system, whose

i-.smter ad ma~ 'ncion r aibe s the connutor nrng-rm is
-f a-ir i' isnle.

A1 nrobler about dyn.-m7ic r osnonso of1 travellingr mchanism ofr overhead
trr'velli n7 crar n beer rr --arrezI 2-i nrcro o.ndi solved using the
dig7ita'l crm

2he m'-,in r'-,mtcrn of crone are: 0 0

-Acicti ngr- mas CCCCO/5CC 7:g, nlumber of soa,-ns 5, rated torque of elec-
tric motor is 77 '-1, ta,-rting_- toronae rary be 12C or 160 7-IC, rotational speed
n, (see Fi,-. Z2''7 r nr. transmiss-ion- ratio of the rehnsm, 1 24~.6, ra-
Ciuc o-f uhqeol R=C. C th(er loa-rreters are g7iven as follows 0 0 G

1- (o 5CC (/r) 1.76 y 10ck 0 0

M' (kg7) 25C, K!~ (Nrn 3.55 x 10~

0 0 0

Snan (i) 1C.5 16.5 22.52.5 31.5

0 0 0 0.

rnZ C 3250O 42CC 5790 8360 10260

mn~(T 52-C 6020 6F.00 8350 9500

Kv 1C/n C0 12.3)6 8.25 2A.13 3.22 2.30

7our c-lculnated on-er-'ti- owtirss rare

(1) imooth otarting : thie nrenrcssin- -orcf- F0  , 3200T

1" 31C U7-otin,7: tihe nrenross' n'- 'e-cn F. 0

tho tross-iscion clea-rance D C,0

60 0
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(3) Sudden starting: D = C.C02rn (or tnh -anic cle .ra-ncc at, the hi- snneed
ge r = 100)

(4) Sudden starting: D = 0.0C"m (or the an-le cle-.,r2.ne a.t thonchsed
g7ear = 400)

The followin- ta7ble illustr-Aes thne resuitp' fror, the crlclll laticns of
dynamnic coefficients (peak to rFtted ratio, ~j In tl!- t.-b1 , onrccoEf- 0
ficient of sprinC K1 is over the curve rnd s-riJn! 1:4 i belo -t. 'e 1 >V
also calculr-ted the d71n~xmic resnonse cf tra,-,smission "-enr testbed usin- thec
samne rora.The results of 2th-- crlculaticns are approa ching- the e -perimrent
results.

Dyne CperatinC S.u-'en sta-rting 3uriaen strrtin,7
mic condi- 3mohsttr7 without iuith transmission clecnrance

coeffi- tion ~mohsatn- transmission
cient clearance D = tOC 2  T = C. CCm

S-DOfl(M) Y=120 r=160 Y.=120 11=160 Y=120 I 1=160, T,1 16c

* 10.52.25 3.0 25 .4 2.9C 3.9 5.0c.
1051.94 30 2.8 52 3.21 ;.02 7520 0

16.5 2.25 2.8 26 .4 2.82 3.97 5.10
1.92 29 2.1 3.5 28 3716.16

22.5 22 2.7 25 332 2.8 3.99
1.6 249 1.92 2.6 .2 29

28.5 X.6 3 .6 3.42 2.7 40
1 .33 20 1.7 2.17 1.4 27 0

31.5 2.8 30 .9 3.46 2.91 ,l

6. COI;,CLU.3IC!4

The state s'naoe method can serve the nurn. se o - nredication of clynamT.ic
response o-fL mechanica l system. It is avery efficient nurmricnal integratingr
method, which can be used to consider all thr, factors, relatin-~ to velocity
(such as the vibration feedLba-cl n'n, i-nr.r ithout t',.( 0ifficulties i.n un-0
coupling- eouations as in the. mode sumrmtion method.

The sta~te snace method g-ets solution of notion ecv'(ations directly in
time domrain. The rcsnonse pt ea~ch ins-tan.t aepend.i only on t~c val-ues of
state vari.7-bles -,t thiLs instant and the input -t the nrecedin,, insta'nt. Thus
the tiansition from one stnte to a nother is flexible. This is imnortant for
apn)roachinp MCC'>r~ical systems with vProscondlitions. ThankLls to thne Csave-
lonment of matrix technique, excellent a~ccuracy and sta bility ca-n be obta-,in-
ed". Iloreover, the state s-aa-ce methodI basedl on tire dIomain mea-ns makes it
poss-ible to nredict a~nO control the timre doma-in narnmeters.
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NON-STATIONARY DIVISION BY THE SPACE TIME FINITE ELEMENT METHOD IN
VIBRATION ANALYSIS

C.I. Bajer

Department of Civil Engineering, Engineering College
Zielona G6ra, Poland 0

1. f INTRODUCTION

Commonly known methods of integration of the motion equation require the 0 )
same partition of the structure into finite elements in each time step. The
stiffness, mass and damping matrices formulated at the begining are valid
throughout the whole time period of computations. If non-linear problems are
considered the global matrix formulation is performed in each step. In plasticity
problems for example the influence of the plastic regions is taken into account

while element matrices are computed. Different functions are integrated in
different parts of the element area. Also in the case of a beam or a plate placed 0 S
on the unilateral foundation the construction in each moment is described by

different differential equations. If the partition is stationary the line which
limits the area of the soil-structure contact does not coincide with the division
mesh. It should be emphasized that in the static analysis the structure is

divided into elements choosing characteristic points or some characteristic
curves, for example in places where material properties or thickness are changed. 0 6
The same rrocedure should be introduced into the dynamic analysis. In this case

the coincidence of the mesh edges and characteristic curves should be assured in\
each moment of the time. Only non-stationary division of the structure can
satisfy that condition. It also enables the solution of quite new class of

problems. The cases involving a moving support require the changeable node

location. In simple load cases a traveling point force can be always placed in 
0 0

the joint.

Correctly formulated non-stationary division can only be performed by the

space-time finite element method [1] ,[2],[31 . Space-time finite element is

a finite element in which additionally the time dimension is considered. •

Therefore a beam element has two dimensions in space and time and it has

a rectangular shape. A plate element becomes a rectangular prism /Fig. I a/.

But non-rectangular space-time elements are also possible /Fig. 1 b/.

6t

beam

ii beam
t

tt plate it0

block

.0Ock 
b

plate b

Fig. 1 Rectangular and non-rectangular space-time elements
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Introduction of the idea of such elements enables the arbitrary division of thetime space and is especially usefull in the case of the time division condensa-
tion in regions of greater stiffness of the construction. The case of a beam
placed on the unilateral foundation is schematically ilustrated in Fig. 2.

t

Fig. 2 Non-rectangular elements in a beam vibration modelling

Below the main principles of the space-time finite element method will be 0 Spresented. The discussion will involve the derivation of stiffness, mass anddamping matrices, the stability and accuracy analysis. In addition the solution
for selected test problems will be described.

2. QUADRANGUIAR BEAM ELEJENT

2.1 General formulation

Let f(x,t) be a displacement vector with elements w and e (w - deflection,
x- angle of rotation). Let the strain vector be E (x, t) which has the form

ax Ax 1
ExL _ e- _ f

ax Tx

t mean angle of shear deformation, et f

-curvature.

Strains can be dependent on the nodal displacement vector

x x V t v (2)

Matrix ] is the shape matrix. Deformations of the element in time E t can be
determined as velocity

eCt = Ft ( Y- )
Strains inside the element in the case of Kelvin-Voigt model can be expressed by * 5
the relation

(E 7 Ft (4)

where 
0 S

E = diag[ A EI (5)

is the elastic matrix, G - shear modulus, A - cross section area, K - shapefactor for cross section, El - flexural stiffness and 1w is an internal damping *
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coefficient. The momentum of the material point Ct (with the mass density )
equals

6t = -m ft m = diag[ A , IJ (6)

m - matrix of elementary inertia coefficients.
Denoting nz as the external damping coefficient the virtual four-work of
internal forces in the volume of element can be equated to the four-work of 0 0
external forces.

S - + Jdc 6 )dV = -, J fT dV (7)
_ x f

V V

Considering (1),(2),(3) and (4) it can be written

(K + U + W + Z) J_= F or KI = F (8)

where

= W- TE 3x N dV (9)

V

1 4 5= ('x)T %kd (10)V SS T

= Bt V) m Ft V dV 0 )

v (1)

V

The global matrix KI for the time layer 'i' can be splitted into submatrices in
a form 0

= i B]

Matrices K, U, W and Z are called stiffness, mass, internal damping and external
damping matrices, respectively. The analysis of the joint connection in several
succesive time layers leads to the global matrix in a form

AI BI 1L 1  Di +A1  B 2 • [ ={F2t (4)
C2  D2 +A3  B3 c3 F3

For one time layer the equation (8) has the Porm for which the step by step
solution is possible:

Ci-1  i-+ (Di 1 + ADiP. + Bi ci+I = F (15) -0 0

In such a case the whole consideration can be reduced to the problem of the
determination of the shape matrix V for the space-time element.
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S
2.2 The first model of quadrangular 

element

Let us assume the element of nodes arbitrarj located in the time space.

Let the diflection in the area of element be defined by a polynomial

w(x,t) = ax3t + bx2 t + cxt + dt + ex3 + fx2 + gx + h (16) •

Let the angle of rotation is

ex(x,t) L (W +~ ~7
"a •

where

DDEI GA
H K

The vector of nodal displacements can be determined from (16) and (17) and then
unknown parameters a,b,c,...,h can be computed. It is easy to form the shape • 0
matrix. But such a procedure provides only the nodal value conformance. We should
assure the conformance of displacements on the edges of the elements.

2.3 The second model of quadrangular element

To provide the displacement continuity on edges the shape function defined •
in local coordinates ,,r is introduced:

(ml =F2 21* (i) fi- 2 (ia2

i=192,3,4

where:

: m (go)  3- + 3 + 2

2 m 2 I ( 3 _52 + To + 1

41~ ~o o

(1) (1) 0 0_2 +1

1, • 
1 

•

m= (1)) (-3 3 -2o + 1)

___r r D D-.I H GA
1+3r H( axI K

Functions of matrixIN(f,) are trantformed to global coordinates x,t by the linear
relations

4 4

L= x. t = i i(-,r) t. (19)
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where: -

N ( = (I +gi) (I +,rT) (20)

xi,t i - nodal coordinates in global coordinate system,
xi,ti - nodal coordinates in local coordinate system.

2.4 Stability analysis

During the examination of the solution, schemes approximated by non-red-
tangular mesh in some cases led to non-stability. A simple mesh was taken for the

I i tert computations (Fig. 3).

t
III 5 / E =1/E

4 _ A= 1
4 A -710-

rI 3 
- I= 0

2 L=I

Lt L
I --

Fig. 3 A mesh of the simple test problem

Each second layer of joints was eliminated and thus regular super-elements were
obtained. The transient matrix T satisfying the relation

rI I T141(21 i

was formulated. As shown for example in 141 the scheme (21) is stable when the
spectral radius of matrix T, ?(T) , satisfies the condition

?(<1 (22)

The relationship between the spectral radius 9 and the value of the mesh point
dislocation 'd' (Fig. 3) for the first and the second model of quadrangle is
shown in Fig. 4 and Fig. 5, respectively.

0.5 "t0-

.25 4 o.5- 4"404 40- 025404 M50-4 0.7-40-4

2 2

S4.45404 4~- .4 4F4 .4- S

0.5.40-4 41340 "4

4.40-4

d d S
1 I I I I -

0 0.1 o.2 o.3 o.4 0 0.1 o.2 o.3 0.4

Fig. 4 The stability for the first Fig. 5 The stability for the second
model of quadrangle model of quadrangle
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Better properties of the second model are evident. Two parameters can be intro- S
duced to express the stability condition for any type of a beam and without
restrictions for stiffness and mass density:

d 1 (23)

h 2 (24)

The second parameter can be evaluated from the definition describing the extremal

time step 'h' for the conditionally stable formulation of the method. S

w hex Y (25)

- the highest modal frequency.
Fig. 6 can be depicted in terms of the parameters and 3.

2-

0O.07

=0.0007

0 0.5 1 1.5

Fig. 6 Stability condition for different values of

It is also interesting whether the vertical displacement of the joint
(parallel to Ot axis) changes the spectral radius value. To determine the value
of V(T) the test problem shown in Fig. 7 was solved.

Fig. 7 The scheme of the test problem

Let us assume the dimensionless parameter

h o(26)

Fig. 8 presents the influence of the vertical displacement h1 on the spectral
radius value.

It should be emphasized that in addition to the tests described above there
exist other succesful test that will not be disclssed here.

1 6
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2

4.O1 .

1

jm 0.35 0 0

0I I I
0.25 0.5 0.75 1

Fig. 8 The extension of the stability range in the case of

the vertical displacement of the joint (Fig. 7)
0 0

3. TRIANGULAR BEAI ELE ET

To form a correctly formulated shape function we must ensure the conform-
ance of displacements on edges in the neighbour elements. The assumption of
displacement distribution varying cubically along the element sides allows the
evaluation of displacements in additional 6 mid-side nodes. Then a polynomial 0 6
of sufficiently high order can be assumed to expres displacement distribution
in the element area.

The displacements on edges are expressed in terms of the nodal values by
the form

.k(.){V k jr]~ r. (27)0 0

Expresions]N k are related to local coordinate as follows:

N Nk11i 12i) ' "

N1 1. = (28

N 21i -i m 22)i-) eO k

2(
N11i M Mim~ - p)U 3oCosk

(0) (1) 2 12 0
N2 _(2-m1  1)cos O 1(k + Ti) sin2 k

1 is the lengh of the side 'k' and cK is the angle between the axis Ox and the
edge of the triangle. The system of coordinates is x,ct, where c is the speed of
the wave propagation in an elastic medium. The distribution of displacements
inside the element is expressed by the polynomials: 0 0 0

w a 1X3+a 2X 2t+xt 2+a3t3+a4x +a xt+a6t +a x+a t+a,
S blx3+bx 2 x2t+xt

2 +b3t3+b4x2+b5xt+b6t2+b7x+bat+b (

The evaluation of displacements in all nine nodes enables the determination of - 0

unknown parameters al,...,a 9 and bI ,...,b 9 . Shape matrix can be easily formulated
when all nodal displacements are determined in terms of the displacement values
in three joints. The stability analysis for the time space partition is presented
in Fig. 9. The partition scheme is the same as shown in Fig. 3. Each quadrangle
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in the mesh is divided into two triangles. *

3-0.7 S=.35
-. 0o7

0 0.5 1 1.5 2

Fig. 9 The result of the stability analysis for the triangular element

4. EXAMPLE OF APPLICATION

Non-stationary division was used in vibration analysis of a beam placed
on the unilateral foundation and subjected to traveling force (Fig. 10). 0 a

.I . ..- .I. ....

Fig. 10 The scheme of a beam on the unilateral foundation 0 0

The partition of the beam was carried out in the points limiting the base-
-structure contact area. In each step the displacements of the beam were analysed
and the points of zero diflection were found. In the partition into elements the
coincidence between the mesh joints and points limiting the contact area was
assumed (Fig. 11). In the area of the solid interaction the time division was
condensed (as shown in Fig. 2).

22 ms

_ _ 23

24*

25

Fig. 11 Accomodation of the partition into elements
to the shape of the contact area S 0
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To simplify the solution algorithm the constant total number of the degrees of
freedom was assumed. Possible introduction of the numerical damping instead of I
the damping matrices formulation considerably shortens the time of computation.

5. CONCLUSIONS

The method described above can be succesfully extended to other types of
structure. In the case of beam vibrations the results differ only by few per
cent as compared to the results obtained with the use of the rectangular mesh
(even if the slope of the oblique edge is close to the permissible value).

When high frequences dominate the stability and accuracy require the
assumption of small time integration step. The contact area changes slowly and
then in succesive steps only elements neighbouring with the contact area •
boundary are modified. The geometry of the rest is unchanged.
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APPLICATION OF THE METHOD OF INTEGRAL "
EQUATIONS TO THE VIBRATION OF PLATES I

J. Scheuren

*Institut fUr Technische Akustik
Technische Universitdt Berlin S •

1. INTRODUCTION

The calculation of the vibrations of an elastic 
continuum 4

normally starts from the mathematical formulation of the problem •
in terms of a boundary value problem. This means, that the field
variables describing the vibrations have to satisfy a differential
equation and certain conditions on the boundary surrounding the
region under consideration. Analytical solutions of such boundary
value problems exist only in some cases with special geometric
configurations. So, normally one has to solve the problem by nume- •
rical methods.,

In many cases it is convenient to replace the differential
equation and the boundary conditions by the appropriate integral
equation containing explicitely the boundary values of the field
variables which yield a unique solution. The representation of the 3 •
sound pressure p(x.) within a volume V as a function of the sour-
ces q in V and the values of the pressure and its normal derivative
on the surrounding surface S is a widely used example of such an
integral equation [1], [2]

-jkr •

p(x fff( e dvi 4- 1 qxqi r q
V

-jkr

-4 P (Xqi) - e -n r dSq ()

S q

1 ap(x e -jkr+- P (XLi e dS
+ 47 ff n 1 r dq

S q •

The quantity

r = x i - Xqi (2)

represents the distance between the source point x and the field
point x., q represents the sources of the sound qi field, given
by the right-hand-side of the inhomogeneous wave equation

Ap + k 2 p = q (3)

and the wavenumber k is given by the angular frequency w and the
phase velocity c of the medium under consideration

k
c

The derivatives ?/3n have to be taken along the surface norma'
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pointing out of the volume V. The index q should illustrate that 0

those derivatives and the integrations refer to the variables x .
The above equations suppose harmonic time dependence and this qi
assumption shall be valid furtheron.

All solutions of equation (1) are solutions of (3), differing 0 0
in the boundary values on S. Equation (1) therefore can be taken
as starting point for the numerical evaluation of the boundary
value problem [3], [4].

In the following, an analogous relationship will be given

for the flexural vibrations of plates.

2. INTEGRAL-RELATIONSHIP FOR FLEXURAL WAVES

The equation of motion governing the flexural vibrations of
thin, homogeneous plates is given by [5]

L(c) = AAC - k 4 = - = q (4)
D

where C is the displacement of the plate, p is the exciting
pressure distribution, which actuates the plate surface, D is the
bending stiffness of the plate and k the flexural wave number.

z, ez  p(x,y)

* 0

To get a unique solution of this equation within a given area S,
it is necessary to specify suitable boundary conditions on the
edge-contour C. They may consist of the specification of two of • 0
the four field variables given by displacement, bending angle,
bending moment and shear force. They also may specify linear com-
binations of those as represented by force or moment impedances.

The edge-contour C may be of arbitrary shape, including N
corner points with smooth curves between them. S

The integral representation of boundary value problems
supposes the considered differential operator to be self-adjoint
and can always be obtained by application of the generalized Green-
formula belonging to this operator. In the present case, this for-
mula can be derived easily from the frequently used relation for • 0
the Laplace-operator A, which, in the two-dimensional case, yields

ff(wAu - uAw)dS = (w - - u -) dl
S
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Replacing u by Au and subtracting from the so obtained equation S S
the one obtained by interchanging u and w gives

!/(wAAu - uAAw)dS = (w 3(Au) awi n nAu +
S C

+ u - (Aw) u) dl (5) 0 0

The vector n defining the direction of the normal derivatives 3/en
is perpendicular to the edge-contour C and points out of the area
S of the considered plate. The integration along this contour has
to be carried out in the mathematically positive sense, which means S S
that the considered area S of the plate lies on the "left" of the
integration path.

Taking into account eq. (4), one can write for the left-hand-
side of eq. (5)

JJ(wAAu - uAAw) dS = JJ(wL(u) - uL(w)) dS (6)
S S

Substituting in (6) w by the displacement C(x i ) = c(x,y) and u by
the Green's function g(x.;X qi), which is defined as a soluti-
on of 5 5

L(g(xi;X = D 6(x i - x q (7)

one obtains

ff (CL(g) - gL(l) dS = a .(Xqi ( ) (8) 0

S D ~qi q
-If q(xi)g(xi;x qi) dS

S

The function c(xi ) is given by

X(x i ) O x i ) = //oXqi) Mx ( i - Xqi) dSqS q

and the index q again indicates that the integration refers to x .
The value of adepends on the position of xi

1 if x. lies inS
c(xi) = 0. if x. lisout of S(9

1

Inserting C and g into the right-hand-side of (5) and interchan-
ging xi and Xqi, one obtains from (5) with (6) and (8)

S(x) (x.) = s/

+ ox 3q (Aqg(xqiXi)) dlq - Ag(x dl (10)
+ q 3n(X i q;x nq *qg( .;x i) dlqC qq C

+ Ci xq dl - / (AqC(Xqi))gx ;x i ) dlq
Sq qiq n q (Aq qi qi i q

173



This is the integral relation belonging to the differential equa-
tion (4). With the exception of the not yet specified Green's
function it corresponds to eq. (1). Complete analogy is obtained
by determining g as the Green's function of an infinite plate. It
again only depends on the distance r = lxi - xI and is given by[53 i qi

g(r) - kJ (H0 (2) (kr) - H (2) (-jkr)) 
(11)

where H (2) is the zero-order Hankel function of the second kind.

0

Eq. (10) immediately shows how the pressure distribution
p = - Dq, the quantities C and AC and their normal derivatives on
C contribute to the displacement of the point x. on S. Its evalu-
ation, however, supposes the knowledge of those quantities,
which therefore have to be determined first. But before discussing
this, eq. (10) will be transformed in order to contain only such
field variables, that appear in the formulation of physical boun-
dary conditions.

3. INTRODUCTION OF PHYSICAL FIELD VARIABLES

The mathematical description of the vibrational state of a
thin plate normally uses, besides the displacement and the rotati-

ID on of a plate element, the shear forces and the moments acting
upon it. They are functions of the position and the direction of
he surface element they are applied to. Given this direction by

n, they satisfy the following relations [5], [6], [71

Z\

M n

Qn
nn -n1 2 *

3 n (12)

(13)

M =- 2) (14)n T~

Mnl - (I - j) D (15)nl17

* 0
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Q = D (n (16)n 3

where j is the Poisson's ratio of the plate material.

The above equations show that the displacement C, the ben-
ding angle 3 and the shear force Qn may be substituted directly
into eq. (10). In order to be able to replace the expression A
in (10) by the field variables defined above, the integral con-
taining A has to be transformed. Introducing the torsional moment
Mnl in accordance with (14) and (15) one obtains

D (n -1)"- +) Mn ( i

The same transformation of the integral in eq. (10) containing
Ag makes vanish the last term after the subtraction prescribed by 5 S
(10). The term before neither contributes to the integral over C
since the gradients of the displacements C and g are continuous
functions even in the corner points.

- g ( 25 ' i) dl =U Dl 3n -n Dl
c

e e f (grad x grad g) dl =0

C

ez here denotes the unit vector in the z-direction. The remaining
terms only contain the field variables defined above.

Next, the field variables belonging to the Green's function
g are introduced. They are obtained 1y replacing C by g in eqs. (12)
to (16) and shall be characterized by the symbol "~", e.g.

= g and Dn = -
n n 3n

Thus, with Dq = - p, eq. (10) yields

-/r_/fp ZdS

+ f C 6n dl- fQn Z dl
C C (17)

+ fnMn dl- JM n dl
C C

+ f lMnl dl- M nl 'l dl
C C

To bring this integral relationship to it's final form, it shall
be taken into account that the independent specification of tor-
sional moments on C overdetermines the boundary value problem un- S
der consideration because of the neglection of shearing deforma-
tions in Kirchhoff's plate theory [7], [8]. It is therefore neces-
sary to replace the torsional moments by an equivalent shear force
distribution on C. This is done by partial integration of the last
integral in eq. (17). In contrast to the transformations leading
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to eq. (17). the discontinuity of Mns in the corner points here
yields additional terms.

d - Mnl N
M nl i d1 1 dl + Z F i i

C C i=1

The quantities F. are point forces actuating on the corner points
and directed opposite to the z-axis. If li, i = 1,...,N
denotes the values of the parameter 1 in these corner points,
they are given by

Fi = F(i) = Mnl (1i- o) - Mn(li+ o) (18) 0

while
= (li) (19)

specify the associated displacements. With the resulting shear 0
force

Mnl
Qrn Qn - 1 (20)

the described transformation of the last two integrals of eq. (17)
finally yields S

a - J !p dS

S

+ I Qrndl - J Qrn dl
C C (21)

+ J RM dl - M dl
C C

N N
+ C 57 . - F. igi=I 1 i=I

4. DISCUSSION

Given the influence functions M, ,n' Q and F. in terms
of the Green's function g, eq. (21) n
specifies how the knowledge of the exciting pressure p on S and
the four field variables on C enables the computation of the dis-
placement in any point of the plate. At the same time it includes
the relationship for the determination of the boundary values not
prescribed by the arrangement under investigation, which always is
given in form of an integro differential equation for the dis- S
placement C on the edge contour C.

Thus it is possible to evaluate the forms of vibration of
thin plates with arbitrary shape for all kinds of excitation.
The special case of vanishing excitations may be used to deter-
mine the natural frequencies and the associated modes of vibrati- • s
on for a given plate-arrangement. By the combination of integral
relations for adjacent areas to a system of integro differential
equations it is in addition possible to solve problems with
regions of constant, but different parameters.
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The advantage of the presented relation as starting point of 0 0
a numerical treatment lies in the fact, that the equations to
solve are reduced to a one-dimensional formulation. This means,
that the number of values to be computed is only proportional to
n, if n points have to be regarded on C to obtain a sufficient
resolution.
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USE OF STRAIN ENERGY DENSITY AS A BASIS FOR FINITE
ELEiIENT IiODEL DEVELOPi4iENT

A.H. Patel and R. Ali

Department of Transport Technology 0 
University of Technology, Loughborough

-The paper examines the use of strain e.ergy density distribution
within daformed structures as a criterion for the development of
progressively refined finite element models. This criterion has U1
been used to study the dynamic characteristics of a cantilever
beam and a diesel engine sump pan. The technique has been used
to identify regions within the deformed structure which need a
more comprehensive modelling consideration.

1. INTRODUCTION 4

In recent years several investigators have put forward theses for the con-
sideration of the variation in s-rain energy density, SED, of a structure under
analysis as a criterion for the development of progressively refined finite
element mesh [1,2,3,41. The basis of these theses is the minimisation of the
total potential energy or the maximisation of the total strain energy[5]. How- 6 S
ever the class of problems for which the SED criterion has been considered so
far is limited to elastostatic problems. For this class of problems the
criterion has proved to be most effective in providing, guidelines for mesh
refinement 31. It is our belief that the same criterion can be extended to
elastodynamic problems.

The method relies on a preliminary analysis of the structure with a coarse
mesh for the determination of the nodal stress vector which is subsequently used
to evaluate the nodal SED [2]. A contour plot of the SED allows the analyst to
identify regions within the structure which may require a more comprehensive
modelling consideration for acceptable results. The use of elements that can
approximate linear SED functions has, however, necessitated the need for numer- 4
ical evoluation of second order variations of the SED distribution within the
deformed structure.

2. THEORY

In a dynamic problem, according to, Rayleigh's principle the best possible
solution will be obtained by minimising the difference between the exact mode

shapes and those resulting from the finite element analysis. Since the SED dis-
tribution within a structure is a function of the deformed shape and consequently
varies according to the deformation, it follows that for static and dynamic
problems, the object is to accurately predict this distribution and as a result
the internal energy of the deformed structure. A distinct implication of this 0 0 4

method is that euch mode of vibration would have to be treated individually thus
necessitating the need for a different mesh for each mode of vibration.

I n a Ritz finite element solution one is concerned with obtaining the best
approximation to the displacement vector and thereby the internal energy of the
anilysed structure. Hence for this solution the primary concern is minimisation - 0 *
of the energy in the error which can be represented by the inner product as

U(u - uh , u - uh)

where u is the exact displacement vector
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u is the displacement vector obtained from a finite element analysis.

h h hAssuming that U(u,u ) is equal to U (6h ,u ), the energy in the error can be
shown [61 to be equal to the error in-the energy

U(u -uh, u -u h) = U(u,u) -U (uhuh) (1)

where the right hand side of equation(l)represents the error in the energy.
For the equation of elasticity, the energy inner product, the internal energy of
the deformed structure is given by the following

U(u,u) = a edV e= [EEdV = (DU)T[E](DU)dV (2)

where a is the stress vector, E is the strain vector, [El is the elastic matrix
and D is a first order differential operator relating displacements to strains.

Since equation (2) represents the strain energy content of the domain, V,
the right hand side of equation (1) represents the difference in the total
strain energy between the exact and the finite element solution. Hence the
minir.iisation of the energy in the error is equivalent to minimising the total
strain energy difference between the exact and the finite element solution. In
addition, since the SED is the integrand of the total strain energy, the finite
elements must be positioned such that the best possible approximation to the
exact SED function is obtained and the difference between the exact and the app-
roximate total strain energy is minimised.

The next question that arises is how should the finite elements be position-
ed to give the minimum difference between the exact and the approximation obtain-
ed from the finite element analysis of the SED function within the deformed
structure. The answer to this question is given by the error estimate for an o
interpolant in approximation theory where the difference between the exact sol-
ution, V, and it's interpolant is given by

jV-Vi1e Cjh ek ID kV, (3)

where C. is a constant, hk is a representative element size, Dk is a differential 4

operato of order k and k-l is the degree of the interpolant that can be approx-
imated by the element e.

For constant strain elements, the SED can only be constant and thus equation
(3) states that the error in the SED function is proportional to the size of the
element times the first variation in the SED. This implies that the error of the 0
approximated SED function will be greater where the exact SED function varies
rapidly because in these regions piecewise approximation of the continuous func-
tion by constant values of the constant strain elements gives a lower average of
the exact SED and hence a lower value of the approximated strain energy content
of that region. For the SED distribution to be better approximated in regions
where the SED varies rapidly smaller elements must be used in comparison with
regions where the variation is not so great. The method used for orientating the
elements for the minimisation of the variation within an element of the exact SED
distribution is described in t7]. Generally the elements are spaced betwen
selected contours so that the exact SED function can be approximated by piecewise
constant values. Hence if the SED field obtained from two consecutive refinements
in a particular region does not change in that region then the best possible sol-
ution has been obtained. In practise, however, the use of smaller elements in
regions of rapid SED variation generally has the effect of producing Z larger
gradient in that region and as such the use of subsequent SED contour olots result-
ing from the refined grid show that further refinement is needed in that region.
For this reason it has been found that the initial analysis should be made with
elements of comparable size if possible and further refinements should be based • 0
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on the contour plot of only the initial mesh until a solution parareter other o •
than SED converges.

Quadratic elements can approximate both constant and linear SED functions
and hence in view of equation (3) the problem becomes one of approximating the
exact SED distribution with piecewise linear values. This suggests that smaller
elements should be used where the variation in the SED gradient is greatest and 0

larger elements where it is least. This second variation in SED is difficult to
evaluate numerically and can be further complicated by elements that can approx-
imate different SED functions in different directions. For most problems,
however, it is found that in regions where the second variations in SED are high,
the first variations are also high. Accordingly both linear and quadratic
element refinements can be based on the first variation in the SED field.

Ecer [8] has suggested a further guideline for producing refined meshes for
dynamic problems based on the minimisation of the variations in the strain energy
content between elements by selectively reducing the size of those elements whose
strain energy content is above a selected norm. Using this criterion he was able
to successfully produce refined finite element meshes for modelling a wheelwell.
In spite of his apparent success, the authors feel that this method is not univ-
ersally applicable as shown below.

Consider a bar of unit thickness with a tapered section carrying an axial
load as shown in figure 1. It was modelled with constant strain triangular
elements. The actual SED distribution plot for this load case is shown in figure
2. For this problem it is noticed that elements in section A have a higher
strain energy content than those in section B or C and thus according to Ecer's
criterion, section A would have to be redefined with smaller elements. The refin-
ed mesh, however, will fail to produce any significant change in the displacement
of the bar since the constant SED field in section A can be exactly represented
by any number of constant strain elements. The region of the bar which needs
redefining with smaller elements is that part of the bar which is tapered since
the linear SED function in that region cannot be accurately represented by the
constant values of the SED which the constant strain elements can approximate.
It is suggested that the reason for Ecer's success in modelling the wheelwell
was due to the fact that regions of high strain energy content were also regions
of rapid SED variation. 0

3. FINITE ELEMENT ANALYSIS

Using the first variation in SED as a criterion for mesh refinement two
dynamic problems were studied. As has been stated previously, different modes of
vibration require refinement in different regions. Accordingly the analyses for S

the two problems were limited to the study of on.e or two modes of vibration only
to demonstrate the effectiveness of the criterion for mesh refinement. For each
problem the number of master degrees of freedom was kept constant and these were
chosen automatically [91.

3.1 Cantilever Beam S

The cantilver beam analysed is shown in figure 3. The elastic modulus of
the material of the beam and it's thickness were 2.09 x 1011 N/M2 and 0.15m
respectively. Since the width of the beam is less than a tenth oF the length of
the beam, shear deformation was neglected. The frequency of vibration for the
first mode of this beam from classical theory is 31.3 Hz.

This problem was solved by using constant strain triangular elements which
are known to yield poor results and provide considerable scope for mesh refinement.
The initial mesh, a contour plot resulting from the initial mesh. a refined mesh
produced from the information afforded by the contour plot and a uniform mesh for
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the same case are shown in figure 4. The results obtained from the three 0

meshes are given in table 1.

The results in table 1 indicate that value of the frequency obtained from
the initial and the uniform mesh are relatively poor in comparison to that
obtained from the mesh synthesized from the information provided by the contour
plot inspite of the larger number of elements used for the uniform mesh. S 0

3.2 Diesel Engine Sump Pan

For the analysis of the free vibration characteristics of a diesel engine
sump pan an initial model was developed. The elastic modulus, Poisson's ratio
and density of the pressed mild steel Olate of mean thickness 1.2mm were taken q
to be 2.0xlO II N/nm2 0.3 and 7800 Kg/m respectively. The initial model consist-
ed of 3 and 4 noded facet shell elements. Advantage was taken of the symmetric
nature of the sump and only half of the structure was analysed. This is shown
in figure 6a. Agreement between the theoretical and measured values of the
frequencies for the first four modes of vibration was fairly statisfactory.
Discrepancies between the two results were noted for the higher modes and 0

accordingly this technique was applied to the fifth and sixth modes. Experimen-
tally measured results for these modes of vibration [10] are shown in figure 5
and table 2. The results obtained from the initial analysis are also shown in
table 2. It was noted from the initial analysis that although the corresponding
theoretical mode shapes tended to have the same general shapes as those measured
experimentally, the frequencies obtained for the fifth and the sixth modes did •
not compare well with test results. The order of the error encountered was 30%
and 42% respectively. This suggested that besides the geometric differences
between the finite element model and the actual sump pan, certain other factors
such as the element displacement formulation were responsible for these large
differences. It was thought that refinement of the initial mesh on the basis
of the SED criterion, whilst maintaining 'he same topology, would allow the
error in the predicated frequencies to be minimised to a level accountable by
the differences in the geometry of the model and the actual sump.

The SED contour plots for the modes in conflict with test results are
shown in figures 6b, 6c. Although the contour plots suggested that the element
concentration in the Z direction should be increased, it was believed that the . 0
out of plane displacement function of the elements could predict the deflection
in the Y - i plane with sufficient accuracy without involving significant inplane
deflections of the elements. As pointed out previously since one is concerned
with the second variation in SED for out of plane deflections, it is not necess-
arily true to assume that refinement in the 2 direction will yield a better set
of results. It was believed that although the concentration of the contours in 0

the X direction is not as great as in the Z direction, the bending deformation of
the elements oF the groove in the X-Y plane would require them to assume a
quadratic form of in plane displacement along the line of discontinuities. The
elements cannot represent this since their displacement formulation allows only
linear displacements. Hence several other meshes based on the refinement of the
base of the pan in the X direction were produced. These are shown in figure 7. • 6
The results obtained from the finite element analysis of these meshes are given
intable 2.

The predicted results from the refined grids show a tendency to converge
rapidly with increasing number of elements in the X direction. However, there is
still a large discrepancy between the two sets of results. It is believed that - 0
this error is largely attributable to the geometric differences between the model
and the actual pan. A better set of results would be those obtained using
elements that allowed quadratic in plane deflections. Accordingly the analysis
of the initial mesh was repeated using 6 and 8 noded facet shell elements. The
results obtained from this analysis are given in table 2. These results indicate
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that the refined mesh using 3 and 4 noded elements, with the base refined in
the manner shown in figure 7c gave results which were comparable to those obtain-
ed using higher order elements which are known to be able to best predict the
deflected shape of the sump pan. The difference between the two sets of results
was found to be due to the need for refinement of the flange [11) and further
refinement of the base. It can be seen that the error in the frequencies of te
refined mesh with respect to results obtained using 6 and 8 noded elements has
been successfully reduced.

4. CONCLUSIONS

The criterion examined in this paper offers a guideline for mesh refinement
for the reduction of errors in the prediction of vibration frequencies. This
has been demonstrated for the case of a cantilever beam and for the selected
modes of vibration of a diesel engine sump pan. From the SED contour plots
obtained from a preliminary analysis it has been possible to systematically
produce refined grids for the problems studied. Although the errors in pred-
icated frequencies for the diesel engine sump pan, using 3 and 4 noded elements,
were considerably reduced by mesh refinement based on the selected criterion,
this problem has demonstrated the need for numerical evaluation of second order
variations in the SED function when using quadratic elements in midelling the
structure. However with a degree of intervention from the user it has been
possible to demonstrate that the first variation in the SED can provide guide-
lines for finite element mesh refinement when using quadratic elements for
modelling purposes.
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TABLE 1 •

Predicated frequencies for the first mode of vibration of a cantilever beam.

Mesh Number of Frequency Hz
Elements

Initial (Fig.4a) 80 45.9

Synthesised (Fig.4c 190 35.9

Uniform (Fig.4d) 240 37.2

TABLE 2

Predicted frequencies for d'fferen. mesh topologies.

Mode Frequency Hz

No. Experimental Initial Initial 3,4 noded Elements
Mesh Mesh

6,8 noded First Second Third
Elements Refinement Refinement Refinement

5 417 541 476 516 513 510

6 494 703 525 601 576 569
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(b) SED Contour plot. 0

(c) Synthesised mesh * 0

(d) Uniform mesh *0 *

FIG.4. Element meshes for the Cantilever beam
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0 (a) Fifth Mode S

*4 0

(b) Sixth Mode

FIG.5. Modes of vibration of the Sump Pan
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(a) First refinement

(b) Second refinement

(c) Third refinement

FIG.7. Refined finite element model
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ANALYSIS OF DYNAMIC STRESS CHARACTERISTICS
OF HOLLOW SHELL TYPE BLADES 0 S

J Thomas and S H Abdulrahman 0
0

Department of Mechanical Engineering (0 0

University of Surrey, Guildford, Surrey, UK

1. ABSTRACT (3
0)

A superparametric parabolic shell element specially adapted for dynamic
conditions is utilised to analyse the vibration characteristics and dynamic
stresses in a hollow aerofoil and symmetrical shell type turbine blades. The
efficiency of the element developed is investigated and is shown to be superior
to other available elements. Various results are presented to establish the
dependence of the frequency on the geometric parameters. Relative principal
stress distributions on a hollow turbine blade, for various modes of vibration,
are presented indicating the variation of the point of maximum dynamic stresses
with mode order. These points are the critical points where the fatigue cracks
may originate leading to the final destruction.

2. INTRODUCTION

The continuous advancement in technology in the fields of aeronautics and
space, demands high performance and reliability of every engineering
components. In turbomachinery the blades have been of interest to designers for
a few decades as they are subjected to severe dynamic environments. The need to
obtain higher efficiency has necessitated the working temperature of the gas
turbines to the limits of the materials used in these turbines. The use of
hollow blades where gases at a lower temperature can be passed through to 0

maintain the temperature within safe limits become an essential part in the
design feature of the blades. It is essential to have an understanding of the
dynamic behaviour of such blades at the design stage.

Several analytical and numerical methods have been developed, one of the
most successful one's being the finite element method. A number of different 0
types of elements were developed and used by various authoq in the study of the
behaviour of thin shells. Some of the early attempts were to use flat plate
elements, cylindrical and doubly curved elements developed from thin shell
theory. The development of three dimensional isoparametric element gave a more
realistic method of analysing the dynamic characteristics of shells.

The three dimensional isoparametric element with numerical integration was
successfully used by Ergatoudis, Irons and Zienkiewicz [1,2] representing the
geometry as shell segments. This element gave good results for most of the
problems, but it was found to be overstiff when applied to thin shell
situations. Zienkiewicz, Taylor and Too [3] modified and improved the element
to overcome the overstiffness and relaxed the element by using the reduced 0 5
integration technique which was presented by Too [4]. Thomas and Mott Soares
(5,6) developed the superparametric parabolic shell element such that it became
applicable to non-linear dynamic analysis of shells and dynamic analysis of
prestressed and rotating shell structures.

Ucmaklioglu [7], Ucmaklioglu and Gill [:3] have studied the application of 0

isoparametric eight noded and ten-noded finite elements to represent shell
structures having geometries with deep curvatures or with sharp connections.
Attention was given to the effect of different numbers of integration points on
the performance of these elements. Finally, the element was applied to predict
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the natural frequencies of oval cross-section and aerofoil cross-section hollow 4
blading. Al-Jumaily [9] and Al-Jumaily and Faulkner [10] developed an

analytical technique in which closed form solutions based on thin shell theory
was used to investigate the vibration characteristics of straight long hollow

symmetrical blades of uniform cross-section. Surana [I] was the first to
introduce the development of isoparametric transition finite elements in

connection with cross-sectional properties of stress analysis of beams. Later p 4
Surana [12] extended the concept and applied the transition isoparametric
element for axisymmetric stress analysis. Furthermore Surana [13] presented an
isoparametric formulation for three dimensional transition elements and applied

it to solid elements and curved shell elements. It was also applied to three
dimensional stress analysis problems to demonstrate its accuracy.

A superparametric parabolic shell element is used in the investigations
presented in this paper. Reduced integration technique and an eigenvalue

economiser is used to reduce the overall matrix size in the resulting eigenvalue
problem. A smoothing technique is used in the evaluation of the stresses at the

nodal points of the element based on the values at the gaussian points used in

the integration process. 0

3. TIEORETICAL (IIDERATIONS

A typical superparametric parabolic shell element with nodes at four
corners and one at midpoints on each side is shown in Fig.l. The element is

referred to a set of curvilinear local non-dimensional coordinates C,n,t and a 0

global catesian coordinates x,y,z. Also a local set of cartesian coordinates
x',y',z' are uniquely defined. The coordinates x,y,z are related to the coordi-
nates x',y',z' by a variable transformation matrix e

The displacements U,V,W within each element in directions x,y,z,respecti-

vely are given by, O

= N(,n) {V4 + Nit ii -2i ........
W i=l 1W " =1

where N.( n) are the shape functions, U.,V.,W. are the displacements at Node ii,81 1 1 -+

and a., a are the rotations about the unit vectors V i and -V2i respectively.

The global coordinates x,y,z are related to the curvilinear coordinates by

x n Ni( 'n + n~ .......

=1 .(Cr Ni( n) 2 .V3 i (2)

where xi,Yi,Z i are the coordinates at node i and V is the thickness vector at

node i. 
3i

The equation (1) can be written as V [N]fqj ......... (3)

where IN] = [N 1 [N [N 3 1..... [N.]... . N

and qj = [(q 1 q 31 ..... jqj, -.... q nN

where I'il = [Ui V W a i.i .......... (4)

3.1 Dynamic Stiffness aA Mass Matrices

The strain energy of an element can be expressed as.

2 

dvolIThe elastic properties ED'] and the strain vector c' can be decomposed

into two parts, inplane and out of plane, such that,
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rr, 1

= E . voiLf m  [D m ]- .} + {FIT[D)]E' dl. (6)_.E 3 1d o ..... (6

On transforming the local displacement vector to global coordinate system, the
strain can be written as

E = LGjfeft~V ......... (7) * 0
Using equations (1),(3) and (7) the striwn energy of the element be expressed as

S.E = - qI [BI]T LD']3LIT dvol {q. (8)

where BL = [GLT03 ......... (9)
The stiffness matrix of the element is 0

[K] = JoI[BLI(DI[BL] dvol

It is more convenient to define the submatrix of the stiffness matrix in the

form (+1(+lf+' if
K. fJJJ [BfLDF]1B.I(J( d~dnd .... (10)Koij 0

where Id is the Jacobian of the transformation from the global cartesian to

curvilinear coordinates. This equation is numerically integrated using Gaussian

quadrature using a 2 x 2 array of Gaussian points.

The kinetic energy of the element is given by

K.E. = - o{} o (N]T[NJ dvol {q} (11)

On transforming the volume from the cartesian to the curvilinear coordinate

axes system the mass matrix of the element can be expressed as,

[Ml= j Pjf p(N ]Tt[N3IJI d~drid

and the submatrix as M j  [N J ddd .......... (12)
i jT[ JJ J ]JI ~r

This equation is integrated numerically using a 3 x 3 Gaussian mesh

The eigenvectors giving the nodal displacements and the eigenvalues giving

the frequencies of vibration of the whole structure areobtained by solving the *
eigenvalue problem generated by the assembly of the element matrices to

represent the whole structure.

3.2 Stress Evaluation

The strain components in the orthogonal local axes system for a shell is

given by T' ' E' Y yII T

& = X X xy x' y xy
* =:[U' V' U'+ V' ')W' + U' aW' V,1  (3)rJ'u )V z Z''1 ' ;u ?-"+ZlT ......... (13),

The stress corresponding to these strains are defined byT
x y I X Z T Y z  ....... (14)

and the stress is related to the strain by the elasticity matrix LD'3 such that *

{o'} = (D']{ {E'}- {g'} I ........ (15)

where {r'} represents any initial strains.
0

Using equations (3) and (9) the equation (15) can be expressed as,

{a'} = [D'][B'J{q} ........ (16)

1 9
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The values of {q} for the whole structure are available as the eigenvectors 0

of the eigenvalue problem solved for the free vibration of the structure. Using

these eigenvalues the local stress components at any point within the structure
can be evaluated from the equation (16) by assigning the coordinate values of the
point under consideration. However the principal stresses at those points are of
more importance than the components of the stresses along the coordinate axes.
The stress calculation give a more accurate value at the Gaussian points used in S
the intregration process. The stresses at the nodal points can,however,be
obtained by using a smoothing technique.

4. RESULTS AND DISCUSSIONS

The superparametric parabolic shell element developed was applied to the S 0
study of vibration characteristics of hollow blades in the first instance. The
cross-sectional views of the blades and dimensions are given in Fig 2 and Fig 3.

Table I shows the frequencies of vibration of a hollow blade of aerofoil
cross-section shown in Fig 2. The length of the blade is 0.2m. The fast
convergence characteristics of the superparametric element clearly indicates S •
that better results can be obtained with fewer number of elements than that
would be required from an isoparametric element. Fig 4 shows the modeshape of
vibration of the hollow aerofoil blade for the first six modes. From the figure
it can be seen that there is considerable distortions in the cross-section of
the blade which would induce high stresses at various points across its section.

Table 2 shows the comparison of frequency values obtained by the present
element and those obtained by using isoparametric element for a blade of 0.4m
length. It can be seen that the convergence is very rapid as the number of

elements increases and also that the results obtained from a 9 x 3
superparametric elements are better than that obtained by a 9 x 10 isoparametric
element. Fig 5 shows the modeshape of vibration of an aerofoil blade of length - 0
0.4m and of cross-section shown in Fig 2. The nodal lines show a very different
pattern from that of Fig 4 which was for a blade of length 0.2. The comparison
of Fig 4 and Fig 5 illustrates the effect of blade length or the aspects ratio
on the vibration characteristics of the blades.

Table 3 compares the calculated values of the frequencies of vibration of 0
a hollow blade of symmetrical cross-section shown in Fig 3. The calculated
results are obtained from a mesh of 8 x 5 having an overall degree of freedom of
600. The theoretical results show good agreement with the experimental results
for all modes considered. Fig 6 shows the modeshape of the corresponding modes
of vibration. The distortions in the cross-section of the blade under certain
modes of vibration is illustrated. 0 0

The relative stress distributiors in the blade of hollow symmetric cross-
section shown in Fig 3 are given in Fig 7. The values of the stresses given are
the principal stresses at the nodal points of the element mesh. The absolute
value of the stresses cannot be obtained until the absolute value of the eigenvectors
can be obtained which in turn requires the magnitude and characteristics of the S
forces applied to the blade. However the relative stress distributions given in
the figure would indicate the points of high stresses and those points where
fatigue cracks are likely to originate under continued operation. This would
give the designer a good estimate of the durability of the machinery under
operating conditions.
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TABLE 3 Comparison of natural frequencies of symmetrical
hol|o- cantileer bladJes of cross-section in
Fig.3 0 Geometrical nodes
a 0.3048 m. b - 0.0762 m. h • 0.0008S eR1  O.OSO a. R

Z 
- 0.076Z, CZ-CI - 0.0317 P 0 Displacement nodes

E - .7x O N/ml h/a
4  

7834 kg/m
3

MODE0 Theoretical freq. Experimental o
N. i(Hz) (8x5 600) freq. (Hz) Error 1.0

152.305 148 2.82 1

474.204 486 2.48

3 705.016 - -

707.289 711 -0.0052 Y,

813.035 793 2.46 z

6 81(.731 813 0.0045 0 I

1082.985 106S l.hh

8 1460.78, 1351 1.3

1739.S94 175 -1.10

10 1864.552 1845 1.04

11 19"2.412

12 201h.144 2039 -. 12
13 2 05.921 206b -0.0068

14 2431.543 2428 X

Fig. I Super-parametric parabolic shell
element

00 h

40

it R

20 R
P,20b

CI 10 20 40 (,n 80 10) (W I

I rit Radius of centre

S17.4 186.1 58.2
I -I.Q. 143,0 -Z2.4
C 12i.0 11.O -85.j

331.8 188.S -257.4

2 Z53.7 109.0 -212.5

Fig. 3 Crescent cross-section
hollow blading Fig. 2 Geometry of tho cross-section

of the aerofoil hollow blade

195



4

upper half lowe half r lf lowe half upper half loer halfWEi/LiuliD i ''
mode 1 Mode 3 Mode 5

4 3 S H "3 756.20 Hz $ 1078.04 Hz

Wtde Z Mode 4 Mode 6
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Fig. 4 Vibration modes of aerofoil hollow blade of 0.2 m

Computed vibration aodes
upper half lower half upper half lower half upper half lower half

-196.69 Izt -7 .833lH slH Hz

Mode7 I-- Xde

Finite element model of (9 x 3, 405, 81)

Fig. 5 Vibration modes of aerofoil hollow blade of 0.4 m
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SOME RECENT ADVANCES IN DYNAMIC AD-P003 657-. *
RESPONSE OF SHELLS

Rakesh K. Kapania and T.Y. Yang

School of Aeronautics and Astronautics
Purdue University, West Lafayette, Indiana 47907 U.S.A. 0

1. \ INTRODUCTION

'Thin shell structures, during their operational life, are often subjected
to dynamic loads that can be both deterministic and nondeterministic. For a cost
effective and reliable design it is important that an accurate dynamic response
analysis be performed. An account of the analytical methods for shell analyses
was given, for example, by Soedel.H7]-> For complex shell geometries and complex
loading conditions, the finite element method has become an attractive option as
a method of analysis..

Many investigators have used the finite element method to study the deter-
ministic response of shells. A brief review of these efforts was given by Chang,
Yang, and Soedel [2]. They used the modal superposition method to study the
transient response of a series of examples. An alternative to the above method
is to use the direct integration methods to solve the governing equations of
motion [3]. Suryoutomo, Gould and Basu [4] employed this method to study the
transient response of revolution shells. Both these studies used the rotational-
type shell elements for modeling the shells.

In this study, both the aforementioned methods were used in conjunction
with a 48 d.o.f. doubly curved quadrilateral shell element [5] for the transient
analyses of shells. These developments were first verified through comparison of
results with those of a spherical cap [2,4] and were subsequently applied to per- 0 0
form a time domain (Monte-Carlo simulation) analysis of a cooling tower under
wind loads.

The development in the research of random response of continuous structures
has had a long history [6]. A review of the applications of the analytical
methods to perform random response of shells is given in reference [7]. In the 0 0
previous analytical studies, the shapes of the shell structures were generally
cylindrical or spherical and the correlation function of the loads were generally
purely random in time and space or random in time only. It was possible to find
the statistics of the responses in an analytical fashion. For more complex shell
geometry and more complex correlation function of the loads which are random both
in time and space, numerical methods may be desirable. An apparent choice appears
to be the development of a basic formulation that uses finite elements to model
the complex shell and Gaussian quadrature to integrate the cross-spectral density
function. An account of the efforts in finite element developments before 1972
on the studies of the random responses of continuous structures was given by
Olson and Lindberg [8].

Olson and Lindberg [8] developed a consistent finite element method for
analyzing the random response of complex structures. The method was based on the
standard modal approach using the mode shapes obtained from finite element solu-
tion. A linear polynomial representation over each finite element of the excita-
tion cross spectral density function was introduced. Thus the spatial integra-
tions involved in evaluating the modal force cross spectral matrix could be S S
carried out in closed form. Dey [91 used a lumped load method to convert the
pressure cross spectral density into the matrix of the cross spectral density of
nodal forces. The approach assumed that the same random force acts on the entire
contributing area around a node with full correlation.
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Thus far, the application of the finite element methods to random response
problems has not included shell elements [8,9]. In this study, the random re-
sponse problem was formulated using the 48 d.o.f. quadrilateral doubly curved
shell element [5]. Here, the displacement shape functions were used to formulate
the consistent or work-equivalent generalized nodal loads based on the random
distributed pressure. Gaussian quadrature was used which allows the use of the
spectral density function in its original form instead of an approximate linear
polynomial form [8]. The displacement shape functions were used to interpolate
the spectral density values at an arbitrary pair of points within two individual
shell elements from the element nodal values. In reference [9], the random
forces acting on the area associated with each nodal point were assumed to be
fully correlated. Such assumption was not made in this study.

The present formulation and integration procedures were first verified
through comparison of results with those of a simply supported cylindrical panel
under purely random loads [10] and were subsequently applied to study response of
a cooling tower subjected to wind loads. Results were obtained, based on quasi-
steady aerodynamic theory and Davenport's spectrum [11]. 0 0

2. METHOD OF ANALYSIS

2.1 The Shell Finite Element

The shell finite element used in the present study is shown in Fig. 1. The
element is a quadrilateral defined by lines of principal curvature; thus it is
rectangular in the local curvilinear coordinate system. The equations are spe-
cialized to general shells whose reference surfaces are a portion of an axisym-
metric surface. An array of eight mapping points specifies a cubic variation of
R and Z in the meridional direction. The element possesses 12 d.o.f.'s at each
of the four vertices: u; 3u/3; 2u/3n; 2u/3C3r; v; Dv/3; Dv/an; 32 v/D3n; w; 0 0
jw/3.; w/Tr and 32w/36tn. The displacement components u, v, and w are in

meridional, circumferential and normal-to-surface directions, respectively. The
displacement functions for u, v and w were assumed to be of the same form, each
consisting of a bicubic Hermite polynomial in and n directions. The detailed
derivation of the stiffness, mass and incremental stiffness matrices can be found
in [5] where the element was applied to perform static, vibration and buckling 0 0
analyses of cooling towers and other shells of revolution.

2.2 Deterministic Response Analysis

The equations of motion for an elastic, viscously damped system subjected
to dynamic loads may be written as 0 0

[KJ{q} + [C] {q} + [M] {q} = {F(t)} ()

in which {q} is the vector of the system's nodal degrees-of-freedom, the dot rep-
resents differentiation with respect to time; [K], [M] and [C] are, respectively,
the stiffness, mass and damping matrices, and {F} is the vector of the generalized 0 0
nodal forces. The vector {q} can be determined by using either modal superposi-

tion or the direct integration method [3]. Both methods were employed in this
study. For the latter case, Wilson-6 method with e=1.4 was used.

2.3 Random Response Analysis

The basic method for computing cross spectrum of random response of a con-
tinuous structure subjected to stationary, correlated (in time and space) distrib-
uted loads was given by, among others, Lin [6]. The cross spectral density of a
response quantity q at two points r, and r:, is given as

$q(rl, r1 ;W) = f (rl)f (r )H (w)H*()i() (2)
qq j~ k k j k jk 40 0
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where f.( r) is the ith undamped natural mode, and
J 0 0

H.(w) = m. 1(, _2 +2i WwJ )-1  (3)

is the complex admittance for Ith mode, the symbols mi, u. w o are the generalizedJ J J
mass, natural frequency and effective damping for the jth mode. The cross-

spectral density function for the generalized forces for the modes j and k is

ljk f m pp (P1 P2;w)f f(PI)fk(P2 )dP1 dpq (4)

D D
where the integrations are extended over the entire domain D and ) p (P2'Q 2 ;w) is

the cross-spectral density of the random excitation pressure and must be known.

Once the spectral density 4q (w) is obtained, many important statistics of
qq

q(t) can be determined. For a Gaussian random process, the response is also a
Gaussian process. For this, it is sufficient to determine only up to second order
statistics, i.e. mean and standard deviation. For a zero-mean excitation, the
response is also a zero-mean process. For a non-zero mean excitation, the re-
sponse can be obtained by superimposing two components: (a) static component due 0
to the mean value of excitation; and (b) dynamic component due to the zero mean
fluctuating part of the excitation. The variance or standard deviation of the
response is given as

*q" =2 qq ()dw (5)

Because of the difficulties encountered in performing the integration in
equation (4), it may be desirable to use the finite element method. In this
method, the matrix of cross-spectral densities of various nodal quantities is
given as

[qq(W)] = [H(w)][ pp(w)][H*(w)] (6)

where [H(w)] is the matrix of frequency response functions and [( pp()] is the

matrix of the cross-spectral densities of the generalized nodal forces. A method
of determining this, using Gaussian quadrature procedure, is presented here.

For the present element, the consistent load vector, after using Gaussian
quadrature procedure based on MxN grid points, is given as

NE M N
{F(t)} = [T]I I [Ni(r k) ] {Pi(rkf;t)}

i=l k=l =l *

R0 (r )R (rk) (rk)WW (7)0 kZ i kZ i kW k

where i is the element number; NE is the number of elements; [TI. transforms all
0 S

the 48 nodal quantities including the consistent nodal loads from element curvi-
linear coordinates to global coordinates; p( ,n;t) is a 3xl column vector con-
taining the distributed loads associated with u, v, and w related d.o.f.'s, re-
spectively; R0 and R are the radii of curvature in corcumferential and meridional

directions, respectively; IJI is the Jacobian of the coordinate transformation;
rkZ represents the location of the Gaussian integration point at ( k, ); and Wk

and W are the two weight factors.

The correlation matrix for the generalized nodal forces can be obtained by

taking the expectation (denoted by E) of the cross product of the generalized
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force vectors at two instants. For the present case, it is given as

NE M N
[ F(tlt2)] = i [T~i [Ni(rk)] R0 (rkz)R. (rk )IJi(rk )I

1=1 k-i i

NE M N T T
WW k E[p i(rk; *t)}{p (r mn;t>)} [N (r mn)]

j=l m=l n=l

[T] T R (r )R (r )IJ.(r )IW W (8)
j 0 j inn m n

In this study, the tangential loads are neglected. Thus the 3x3 matrix
[R] resulting from E[{pi}{p.}T] contains all zero terms for R33 or R pp, which is

the correlation function for the normal pressure. For the stationary normal pres-
sure, the correlation function R pp(tl,t 2) is independent of the time origin and

is a function of time shift '(=t 2-t I) only. The left hand side of equation (8)

becomes [R FF(T)].

The matrix of cross-spectral densities of the generalized nodal forces can

be obtained by taking the Fourier transform of the RFF(1) matrix [6]. Thus, tak-

ing the Fourier transformation of equation (8) and eliminating the shape functions

and correlating coefficients for tangential loads related to u and v displacements
give NE M N NE M N 0

[pp(_)] = I I I I X Y [T]i.{N 3 (rkk )}RO (rkZ)R i(rkk)
i=1 k=l =i1 j=l ml n=1 i1i

jJi(rk)1WkW {N (rm)}T[T]T R0 (r )R (r )W W
i kk Z2 3  mn j 0in 4in n nJ J J

J(rmn) ) pp(rkk. ; rmn.;W) (9) 0 0

where the 48x3 matrix [N] is reduced to a 48xi column vector and the 3x3 matrix
[R] is reduced to one term, all related to w-displacement only. In equation (9),

if the cross spectral density of the normal pressure field, pp(rkZ.; rmn ;W),

which correlates the Gauss point ( k, k) in element i to Gauss point ( m, n ) in

element j is available, the matrix [ pp w)] can be obtained.

The matrix of frequency response functions [H(w)] can be obtained either
using the direct complex matrix inversion method or using the modal superposition
method. Both the methods are described in detail in references [6,10]. The rela- 0 •

tive merits of the two methods are given in [7].

The cross-spectral density matrix of the displacements, [, D , and the
uIu 2

stress resultants, ] for two arbitrary points, rl in element i and r, in

element j can be obtained by using the 48x3 matrix [N] of displacement functions, 0 0

the 48x6 strain displacement matrix [B]T, and the 6x6 stress-strain matrix [D],

for the present 48 d.o.f. shell element [5]. The two matrices are given as [7]

ST [ qqj (w)] [T] T [N(r,)] (10)
rUlu ( q [Nqr)] [TI

[ (r;ro;)] = [D] [T] qq [B(rw)T ) [D](11jIzi [Ti (q ) [T qBr)jD (ii)

Equations (10) and (11) thus convert the matrix of the cross spectral densities
of generalized nodal displacements [Pqqj (w)] for elements i and j to the cross
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spectral densities of the displacements and stress resultants at two desired lo-

cations: r in element i and r2 in element j.

3. EVALUATIVE EXAMPLES

3.1 Step Response of a Spherical Cap

A clamped aluminum spherical cap under a step pressure as shown in Fig. 2
was considered. This problem was previously analyzed by using direct integration
method in [4] and the modal superposition method in [21. Due to the axisymmetric
nature )f the problem only a segment need be modeled. In this bcudy, a segment
subtending an angle of 5' in the circumferential direction was modeled using a
lOxI mesh. Natural frequencies for the first 7 meridional nodes were found to be 0
in excellent agreement with those obtained by Chang, Yang and Soedel [2]. These
7 modes were used to perform the time history response analysis. The results are
shown in Figure 2 along with those obtained using the Wilson-6 direct integration
integration method (At=l.0x10-5 sec.). Both sets of results are in good agree-
ment with each other and also with those of references [2,4].

3.2 A Simply Supported Cylindrical Panel Subjected to Purely Random Loads

The geometric and material data for the cylindrical panel considered is
shown in Fig. 3. An analytical solution for this example was given by Nemat-
Nasser [10]. In this study, a 4x4 mesh of equal sized elements was used. The
results for various natural frequencies for the circumferential wave number n=l,
2,3,4 and the meridional mode number m=1,2,3 were found to be in good agreement
with the analytical solution [10] and are given in reference [7]. Response
spectral densities were obtained using equations (6), (9), (10), and (11) based
on 5x5 Gauss points. Both the direct complex matrix inversion and the modal
superposition methods were used. The auto-spectral densities of the normal dis-
placement at the center point with those of refererence [10] are shown in Figure
3. The agreement among the three sets of solutions is good. The results for the
spectral densities for various stress-resultants were also obtained [7] and excel-
lent agreement was observed between the present results and those of reference
[10].

4. APPLICATIONS 0

After the above numerical evaluations, the present developments were ap-
plied to study the probabilistic response of a fixed base cooling tower subjected
to wind loads. The results were obtained using both the frequency domain analysis
and the time domain analysis (Monte-Carlo Simulation).

4.1 Frequency Domain Analysis

The cooling tower considered is shown in Figure 4 [4]. Three wind veloci-
ties at the throat were considered: 22.35; 33.53; and 44.7 m/sec. The velocity
was assumed to vary logarithmically along the height [11]. The cross-spectral
density p of the pressure field for two points (U1 ,zl), and ")2 ,z2 ) was deter- *

pp
mined from the quasi-steady aerodynamic theory,

~ (t3lzl;& ,z,; ) = 2V C I( )C () ( z z2;W) (12)
pp zi z p p vv'

where V is the mean wind velocity at height z; " is the air density; and C (0)
z p

gives the external normal pressure distribution in ', which were taken from those
obtained from experimental measurements performed on a full scale cooling tower
[12]. For the cross spectral density of the velocity fluctuation qw, Davenport's

spectrum was used [7,11]. The wind pressure on the cooling tower was assumed to
be symmetrical (C (0)=C (-0)) about the windward direction ((=0) at all times.

p p
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Thus only half of the shell need be analyzed. This assumption may, however, not
be accurate when the cooling tower is in the wake of other towers or surrounded
by other structures in the vicinity. In that case, one has to model the whole
shell.

In this study, a 5x5 finite element mesh as shown in Fig. 1 was used to
model half of the shell. All the elements have the same subtending angles. The 0
five element layers have the height ratio, starting from base, of 1:2:3:4.08:2.42.
The probabilistic response analysis was performed using equations (6) and (9-11)
and based on a 4x4 gridpoints for Gaussian quadrature. The damping factor ,j
was assumed as 0.02 for all modes. Only modal superposition method was used and
the 15 lowest natural frequencies and the corresponding modes as given in [7]
were used. The results for the auto-spectral densities for the normal displace-
ment at both the top and the throat at 0=0 were obtained for the three wind velo-
cities [7]. The results corresponding to wind velocity of 44.70 m/sec. are shown
in Figure 4. Both the curves show a peak at about 0.10 rad./sec. which is due to
the peak in the input wind spectra and also show 9 dominant peaks with frequency
values corresponding to the natural frequencies of the tower.

The mean values of the responses of the cooling tower were obtained by per-
forming a static analysis based on a static pressure distribution

1 {cQ() - c } (13)p(z") = P Pi

0 where the uniform internal coefficient C due to internal suction was assumed as
Pi

0.4 [12]. The mean values for the normal displacement at the top and throat (at
r=0) were found to be 30.48 and 45.2 mm/ respectively for the wind velocity of
44.7 m/sec. The corresponding values of the standard deviation were found to be
7.62 and 9.91 mm, respectively. The values of the standard deviation were ob- S S
tained using the trapezoidal rule to integrate the spectral densities following
equation (5) . The peak and the gust response factors were obtained, respectively,
as 3.68 and 1.92 mm at the top and 3.59 and 1.80 mm at the throat. The contours
of the mean and standard deviation of the normal displacement and meridional stress
resultant are given in [7].

4.2 Time Domain Analysis

Time domain or the so-called Monte-Carlo simulation approach is an alterna-
tive to the aforementioned frequency domain analysis method for determining the
response statistics. In this technique, a set of sample functions of the random
excitation are generated. A deterministic time history response of the shell 0 0

* structure is then performed based on these sample functions. The response statis-
tics can then be obtained by processing an ensemble of the time history responses.
For ergodic random processes, however, the required statistics can be obtained
from a single, relatively longer, sample function. Such an assumption is made here.

In this study, the sample function of the dynamic component of the pressure * S
B at any point on the cooling tower was generated using the ARIMA (Auto-Regressive

Integrated Moving Average) models given by Reed and Scanlan [13]. According to
this model, the dynamic component of the pressure on a cooling tower is given as

p(t) = 'I p(t-A t) + I p(t-At) + a(t) (15)

where , and +, are the autoregressive parameters; At was taken as 1 second [13] 0 0

and a(tj is a Gaussian random shock with mean zero and variance c*. This var-
a

iance is related to the variance c- of the pressure fluctuations according to
Yule-Walker relation [13]. p

Based on the values of and $ taken from [13] and the variation of o'
p 0 0

0
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around the cooling tower taken from [14], a sample function of the excitation
pressure was simulated by generating a set of random variables with mean zero S S

and variance a2. The response of the cooling tower was then determined for a
a

mean wind velocity of 44.7 m/sec. at the throat and varying logarithmically in
the height. The time history of the normal displacement at the top and throat
are shown in Figure 5 for 500 seconds of seconds of response. The rms and the
peak values of the response were found to be 3.85 and 12.04 mm (t=125.1 seconds)
at top and 6.23 and 15.24 mm (t=122.15 seconds) at the throat. The spectral 0 0
density of the response can be found using the fast Fourier transform.

5. SUMMARY AND CONCLUSIONS

In this study, efforts were made to perform the deterministic and nondeter-
ministic response analyses of shells of revolution using a 48 d.o.f. quadrilater- S
al shell element [5]. For the deterministic analysis, both modal superposition
and direct integration methods were used. For the random response analysis, a
Gaussian integration scheme was presented to calculate the matrix of the cross
spectral densities of the generalized nodal forces. Evaluative examples with
highly accurate results were presented. The developments are then applied to
study the probabilistic response of a cooling tower subjected to wind loads. •
These developments can be extended to study the probabilistic response of a gen-
eral class of thin shells such as hulls of ships and submarines, skin of flight
vehicles and earth-based thin shell structures.
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Figure 1. The 48 d.o.f. Doubly-Curved Figure 2. Step Response of a Clamped
Quadrilateral General Shell Element. Aluminum Spherical Cap (E=72.345 G Pa,

P=2631 kg/m 3, and v-0.3, h=10.4 mm).
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Figure 3. Auto-spectral Density (mm2-Sec./Rad.) of the Normal Displacement at the
Center Point B of the S.S. Cylindrical Panel Due to Purely Random Loads.
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at Throat.

208



* 0

I 0e

I
* S

I,

I 0 0

4. COMPONENT MODE SYNTHESIS
* TECHNIQUES *

i 0@

I 0S

I
* 0 0

I
* 0

3 0 0

* 0



..

CALCULATION OF EIGENVALUES USING SUBSTRUCTURES
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0)
I. INTRODUCTION (M 0 I00

_'For the calculation of the dynamic behaviour of complex elastic struc-
tures in general the Finite Element method is used. In order to yield good
approximations of the system behaviour, the physical model is divided in a
large number of finite elements. Consequently, an excessive number of degrees
of freedom appear in the idealisation of a complicated structure, but because 0 0
of the used computer storage capacity it is not always useful, sometimes even
impossible, to deal with the resulting large matrices.T

In static problems these difficulties are overcome by using substructure
techniques and static condensation. The complete structure involving an excess
number of degrees of freedom is divided into smaller substructures, where the 0 0
size of the substructures may be determined by physical considerations or by
an admissible number of degrees of freedom. For each of these substructures
condensation is carried out so that the behaviour of the substructure is des-
cribed only by the boundary degrees of freedom and, if necessary, also the
degrees of freedom of special interest e.g. force acting points. After assemb-
ling the substructures, the complete system contains far fewer degrees of 0 •
freedom; this makes it possible to solve large systems without any loss of
accuracy.

This paper deals with the application of a similar method to dynamic
problems: subdivision of the complete structure into appropriate substructures,
exact reduction of the number of degrees of freedom to the number of boundary 0
degrees of freedom, and calculation of the eigenvalues and eigenvectors with
the thus reduced number of equations.

2. DYNAMIC CONDENSATION

After the division of the complete structure in suitable substructures, 0 •
only one of these is analysed. The degrees of freedom are separated into the
remaining boundary, or master coordinates, and in the interior slave coordi-
nates, which have to be eliminated. Thus the substructure eigenvalue equation
is partitioned:

i .I i ms ..
I--2 _j . f-2

K 'K M I M --- I J xJ 0olsm ss sm' SS s

where [K1 denotes the stiffness and [MI the mass matrix. Using the second
part of this matrix equation, a transformation between master and slave coordi-
nates can be calculated: •

{xI--K -XMssI •[K -X I {xm}  (2)
S S s5 sm sm m

This transformation relation allows a reduction of the substructure eigenvalue
problem to an equation of the order m , where m denotes the number of master

01
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coordinates [1]: 0 0

[D(X)] {x} {0} (3)

with the abbreviations:

[D(A)] - [Dram - Dms Dss sm (4)

[DImm = [K m - Mmm], [Din] = [K - XMms e.t.c..

This A-dependent condensed dynamic stiffness matrix can be evaluated for each
substructure and then added up to the overall dynamic stiffness matrix. Now, the
resulting homogeneous simultaneous system of equatiorshas to be solved. The 0
solution of this system of equations is possible only if the determinant of the
matrix [D(A)] becomes zero. This is only true, if A coincides with the eigen-
values of the complete structure. Because of the A-dependency of the matrices
[Dmm], [Dms] e.t.c., only an iterative solution is possible. The matrices [K]
and [Ml for each substructure have to be stored and in each iteration step, and
for each substructure, the matrix [Dss(A)] has to be inverted and then the • S
matrix [D(X)] has to be evaluated. Consequently, this method is unfavourable
and many authors have tried to avoid the A-dependency between the master and
slave degrees of freedom in the transformation relation (2) by simply setting
A to zero:

xI= -[K 1 Ksm] • {Xm}. (5) 0

This means using a static transformation for the calculation of an approximate
dynamic system behaviour [2]. The method must be used with care, because the
results of the above approximation depend on the frequency as well as on the
choice of the master and slave coordinates, and error estimations are necessary [3]. -*

3. IMPROVEMENTS

A better way of attaining the dynamic condensed stiffness matrix [D(A)]
for each substructure is possible using the substructure slave eigenvalue
problem. The slave eigenvalue problem is obtained from the substructure
eigenvalue problem, deleting all terms belonging to the master coordinates.
Physically this can be interpreted as a substructure with fixed boundaries:

([K]ss - cy[Ms]) {f} = 0. (5)

The solution yields the eigenvalues [El and the eigenvectors [4] , where the
eigenvectors are normalized in the following form:

[T [4 )] -[llWT [M ] - '.(6)[4)]T[Kss] [4)] = [s], [rMs][4)]

For a structure, with fixed boundaries, the motion of points within the structure
can be described by modal superposition of the eigenvectors {x 0} = [4] {a},
where {a} are unknown modal coefficients. By releasing the fixed boundaries
an additional term is added to the description of {x } namely, the static
relation between {x } and {xm}, {x 2 } = -[Kss-I Ksm]fXm}. Therefore, {xs}
becomes 

s

{x s {xsl} + Xs2 [ ] }a - [A] (xm} (7) 0 •

with [A] - [K -| K ]. To determine the modal coefficients {a}, the original
transformation matrix (2) is employed and the result is:

{a} - [E(X)][R]{xm}, (8)
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where [R] =[TM _-I. T. K I and [E(A)] [E- XI] -
sm sm •

This yields anew transformation relationship

{x } = ([][E(X)] [R] - [A]) {xm}, (9)

where only the diagonal matrix [E(X)] is frequency dependent, while the other
matrices are constant and need only to be calculated once. Using this new trans- 0 S
formation and the orthogonality relation (6) to evaluate the first part of
eq. (1), the dynamic condensed stiffness matrix can be written as:

[D(X)] = [Kc] - X(McI + [R] [E(X)][R]), (10)

with the abbreviation •

[K] = [Kmm Kms A]
[Mc] =[Mm - MA -ATM + ATMsA].
c m ms sm SS

The great advantage of this equation is the constance of the used matrices.

[K I and [Mc ] are constant and symmetric m xm matrices. The m xs matrix
[R is constant and the only nonconstant matrix is the diagonal matrix [E(X)].
The matrices [Kc ] and [Mc ] are identical to those used in the quasistatic
condensation. The coupling between the master and slave stiffness and mass pro-
perties are accounted for in the residual matrix [R] and the relation between
the slave eigenfrequencies and the actual frequency is accounted for in the
diagonal matrix [E(X)]. It is obvious, that the product [RT][E()][R] is
symmetric, so that only the upper or lower triangle need to be calculated.

The same results can be obtained firstly by simply replacing the matrix
[Dss ]- l in eq.(4) by the well known relation [4]

[Dss ]  = [Kss - XMss] -  = [Z-XI] -  T (1)

and then extensively rearranging the equation (3) using the orthogonal relation
in eq.(6) or, secondly, by the application of the reciprocal theorem as shown in
[5].

4. SPECIAL ASPECTS S 0

To consider some basic properties, the application of the dynamic conden-
sation is performed on a single substructure; in general this is not advantageous.
The investigated example is a simple plane frame, consisting of 6 finite beam
elements with three generalized displacements of each node, see Fig. 1, and
the overall number of the degrees of freedom is 12. The three displacement

Fig. I: Condensation from 12 to 3 degrees *
of freedom

coordinates of node 4 are selected as master coordinates, and the dynamic con-
densation is carried out so that the complete information of the system is con-
densed to the 3x3 matrix [D(A)]. The solution of eq.(3) requires that the
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determinant of the matrix [D(A)] must vanish. Therefore, the determinant values
are plotted against the frequency A from 0 to 100 Hz, Fig. 2. This curve
differs from other determinant value curves by having asymptotic singularities.

These discontinuities are caused by
the eigenvalues of the slave system

-- appearing in the frequency dependent
- I matrix [E(C)]. The obvious disad-

Q° .... I vantage of these singularities is
S _that determinant search methods cannot
-- be employed. More important than the

effect of overflow, which can be
avoided by dividing the elements of the
stiffness matrix by a common factor, is
the effect that the discontinuities at

-the slave eigenfrequencies can leadlw .°to wrong results. This difficulty can
be avoided by multiplying the deter-
minant values with the expression

s

F =i H (ai-A),
Fig. 2: Original and smoothed i=1 1

determinant curve which does not affect the actual eigen-
values, but smoothes the curve making
it possible to apply determinant search

algorithms Fig. 2. 0

To obtain the eigenvalues of the condensed system, it is not necessary to
evaluate the determinant curve. Using the Sturm sequence check, one can always
calculate the number of eigenvalues below a trial value Xt. It is also true
for structures of the present type,where a subdivision in slave and master coor-
dinates has been performed and the slave system is supposed to be fixed [61: 0

it Jo + s{D(At)} . (12)

J is the wanted number of eigenvalues corresponding to frequencies less than
the trial value At . Jo is the known number of the slave eigenvalues correspon-
ding to frequencies less than At , known because the slave eigenvalues have al- 0
ready been calculated. s{D(At)} is the number of negative signs of the elements
of the diagonal matrix [d], when [D(At)] is decomposed by the Gauss elimination
into the product [L][d][L]T. This decomposition is also requiredmfor the cal-
culation of the determinant value of [D(A)], because det[D(A)] =.i dii.
So, two valuable pieces of information can be obtained by decomposing [D(At)],
firstly, the number of eigenvalues corresponding to frequencies less than the 0
trial value Xt and, secondly, the determinant value of [D(At)]. Once the
isolation of the eigenfrequencies has been performed, using the modified Sturm
sequence check, a determinant search algorithm can be applied to the smoothed
determinant curve.

A further point of interest is the frequency dependent diagonal matrix •
[E(A)] in the master-slave transformation, eq. (9). The fixed boundary vibration
of the structure is strongly influenced by the difference between the actual
vibrating frequency A and the eigenvalues [Ej of the slave system. By in-
vestigating the expression A/(ai-A), and if the frequency domain of interest
is known, it is possible to estimate how many of the eigenvalues li of the
substructure have to be considered. The same observation can be made in the S •
third term of the dynamic condensed stiffness matrix, eq.(1O). The elements
of this term can be written as:

S

d.3 r *r*e(X), with e (13)ij rik'jkk k() = /(Ok-X).
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For large values of Ok , compared to X , the expression ek(X) tends to
zero and a further consideration of this element is not necessary. This means
that the summation in eq.(13) can be carried out for k = 1 to t, with t<s,
rather that for k - I to s. By looking at the evaluation of the elements rik
of the matrix [RI, the effect of negle ting the last s-t elements of [E(X)J can
be seen to be identical with the computation of only the slave eigenvalues and
-vectors up to t. Depending on the desired accuracy, a considerable amount of
calculation time and computer storage can be saved, and in the following examples
it is shown that very good results can be obtained using only a few slave
eigenpairs. In this context, it is notable that the order of the dynamic con-
densed stiffness matrix is not affected by the alteration of the number of the
applied slave eigenpairs, it is only dependent on the number of the used master
coordinates. This differs from the methods of component mode synthesis, where 0 0
more considered substructure modes increases the number of generalised coordinates
and the order of the resulting problem [7]. Another important point is he re-
tention of the original coordinates,making it possible to easily manipulate the
mass and stiffness properties of the structures. Additional masses or springs
can be directly added to the dynamic condensed stiffness matrix and no newcalculations of the substructure eigenproblem are necessary. 0 0

5. EXAMPLES

With the proposed method some examples are calculated to show the advantage
of the dynamic condensation applied to substructures, especially identical ones.
The first example deals with a simple spring-mass system. It consists of three 0 0

identical substructures, shown in Fig. 3, with the master coordinates defined
at the end of the substructures, making it possible to connect the substructures
and support the system. The results are compared with the results of a complete

~J.. ...L Ieigenvaluesrs-z0 0

I broutine .689 2.67 5.85 10.0 1.8 20.0 25.1 30.0134.1 37.3 39.3

F 1  I I condenrstion .669 2.6 7 6.66 9.99 I&.8 20.0 25.! 30.0 2&.0 37.3 39.3
m.10kg c . 100 NIm 

L

Fig. 3: Mass-spring system Table 1: Comparison of calculated eigenvalues 0 0

eigenproblem solution. The slight difference between some values is only due to
the ending of the iteration once a certain e-value is reached. The substructure
eigenvalues are identical to the 2nd, 5th and 7nd eigenvalue of the complete
structure, and, inspite of the discontinuities of the determinant value
curve, a solution was possible. The results were obtained using a polynomial 0 0

iteration, where the zero point of an estimation polynomial was employed to
yield a better approximation to the actual eigenvalue. The second example deals
with a two dimensional beamlike structure, Fig. 4. The structure is divided into

E- 21 E12 N/ma

p- 785 E4 kglm'

3, 0 •

- IW

Fig. 4: Beamlike structure consisting of two identical
substructures

0 0 0.
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2 identical substructures. The master degrees are defined, as before, 
at the

joints to connect the substructures and to support the complete structure.
One substructure consists of 32 plane stress triangular elements with a
quadratic displacement function, 170 degrees of freedom with 10 masters at
each boundary and 150 slave coordinates. The complete structure contains
320 dof's expressed in 20 master coordinates. The eigenvalues are calculated 0 0
using different numbers of substructure modes and eigenvalues for the com-
putation of the matrix [R],and also the Guyan-condensation, without slave
eigenvalues, is performed. The results obtained with the polynomial iteration
are shown in Table 2 and it can be seen that, in this example, 8 slave eigen-
modes and -values, of the 150 involved, are sufficient to obtain exact results
in the investigated frequency range of 0-6500 Hz. 0 0

Eigenvalues Nr. of included slave eigenvalues and -modes
in Hz 0 2 4 6 8 10 15

1 27.94 27.93 27.93 27.93 27.93 27.93 27.93

2 176.9 175.6 175.6 175.6 175.6 175.6 175.6

3 595.9 494.7 494.7 494.7 494.7 494.7 494.7

4 1717 981.5 978.2 978.0 978.0 978.0 978.0 0

5 4425 1644 1636 1636 1636 1636 1636

6 --- 2527 2481 2480 2480 2479 2479

7 --- 4425 3526 3524 3524 3523 3523

8 --- 4850 4425 4317 4316 4314 4314 0

9 -.. ... 4801 4789 4788 4785 4785

10 ... ... 6331 6302 6299 6295 6295

Substructure slave eigenvalues [Hz]:

732.9 - 2087 - 4278 - 7506 - 12000 - 17310 - 17710 - 34640 - 40980 - 43530

Table 2: Eigenvalues of the complete structure, computed with different numbers
of slave eigenvalues and -modes.

For the calculation of the eigenvalues between 3 and 6 iteration steps are
necessary to yield accurate results for C = I.E-8. The Guyan-condensation
(no slave eigenpairs are included) yields only 5, instead of 10, eigenvalues and
only the first two can be considered as a good approximation of the actual eigen-
values. Additional to the eigenvalue calculation, the eigenmodes are computed. • *
After the isolation of the eigenvalues, an inverse vector iteration with shift
is used to improve the estimated eigenvalue. The results are shown in Fig. 5
where 24 identical substructures from Fig. 4 are connected to the same structure
as in the previous example, yielding an overall number of dof's of 3200 expressed
in 240 master coordinates. The vector iteration is performed only with ten master
coordinates, so the master displacements are directly available and the slave * *
displacements can easily be found using the transformation relation, eq.(9).
The convergence of the iteration was found to be very good, with only 2 to 5
iteration steps necessary to achieve the permissible error of less than e = I.E -8
between successive iteration results.
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Fig. 5: Eigenmodes calculated using 24 identical substructures

The last example is made up of different substructures. The horizontal part of
the frame like structure is built up of 12 identical substructures, I substruc-
ture is used for the corner and 12 identical substructures for the vertical part.
The substructures are shown in Fig. 6. The lengths for this example were L1=665mm
and L2=860mm and the material properties are the same as shown in Fig. 4.

10 //~=L2112

0 3 5

Fig. 6: The three substructures used

0 The overall number of the involved dof's is 3962 and the number of master
dof's is 240. In the frequency range of 0 to 2500 Hz 17 eigenvalues were 5
found. The results are obtained to the same accuracy both with the polynomial
iteration, as well as with the vector iteration. The first five eigenpairs of
each substructure are taken into account. In Fig. 7 the first seven modes are
plotted. Only the master displacements are shown and marked with symbols. The
substructure corner points are connected, for simplicity, by straight lines, 0 0
although the actual lines are made up of four quadratic functions originating 5 0
from the finite element idealisation.

D 0 0
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6. CONCLUSIONS

Analogous to the condensation of substructures in statics, a dynamic
condensation is performed which enables the description of the substructure
behaviour by only a few remaining d-.grees of freedom. Contrary to the Guyan
condensation, the choice of the master coordinates can be restricted, without 0
any loss of accuracy, to the boundaries and to points of special interest. The
frequency dependent coupling between master and slave coordinates is essentially
expressed in constant matrices, which only need to be calculated once. The totally
decoupled substructures can be analysed independently and a modification of
any one substructure does not affect any other. Analysing the determinant
value curve of the condensed dynamic stiffness matrix reveals the origin of the
existent discontinuities. The application of determinant search techniques
becomes possible by using a smoothing method not affecting the actual eigenvalues.
Depending on the interesting frequency range of the complete structure and on the
fixed substructure eigenvalues, theexpenseof the required calculations of the
substructure eigenvalues and -vectors can be substantially reduced without
deteriorating the results. This method of dynamic condensation, applied to
substructures,makes it possible to analyse systems with a large number of dof's,
because the limited storage capacity of the computer is only used for each one
of the substructures and not for the complete system. The use of identical sub-
structures is very advantageous, because the substructure analysis only needs
to be performed once. Further advantages are possible if thebandnature of the
substructure matrices, as well as the band nature of the overall dynamic stiff-
ness matrix after the composition, can be maintained. Some examples, using iden-
tical and different substructures, have been computed. The results of the deter-
minant search method, as well as that of the vector iteration method,
have been obtained using only a few iteration steps and within a very short
computation time.
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THE IMPROVEMENT OF FREE-MODE METHODS IN COMPONENT MODE 0 0

SYNTHESIS TECHNIQUES AND ITS ACCURACIES

Z.W. Wang and M. Petyt
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ABSTRACT

- Free-mode methods in component mode synthesis techniques are improved by
the use of the concept of 'positive static' residuals, which are developed
according to the theorems given in this paper. The technique of assembly of
complicated structures is also presented. The convergence of the improved free- 0 0
mode method is related to the so-called "eigenfrequency coefficient i", which is
generally greater than 1.0 and smaller than 1.4.

1.0 INTRODUCTION

To model a large and/or complicated structure and to reduce the storage and 0 0
cost of computations, component mode synthesis techniques are playing a more and
more important role and have been developed very rapidly. Generally, there are
three categories of them ([1-5]):

(a) Constraint-mode methods;
(b) Free-mode methods;
(c) Hybrid methods 0 0

This paper is only concerned with the second category.

1.1 Background

(1) Substructure Analysis
The equation of motion of the Sth substructure is as follows 0 0

[MS] { }s + [k]s{x ) {fi} (1.1)
O s

where {x and {X} are the vectors of physical accelerations and displacements
respectively; [m] and [k]s are the inertia and stiffness matrices of this ! 0
substructure; {fj is the vector of the reactions at the interface junctions; the
inner coordinates are free.

Denoting the normal modes as [PIS, then (1.1) becomes

{q}s +[A] 8 {qls 
= [ ]T fJis (1.2)

where {q} is the vector of corresponding generalised coordinates,
[A]: is a diagonal matrix with eigenvalues of the substructure,
[04] is the part of []s corresponding to the coordinates of[Js interface boundaries.

(1.2) is ready for coupling. The conditions of compatibility and equilibrium
should be employed.

At the i'th junction where, say, the q'th, r'th and s'th substructures are
joined together, the compatibility equations are

{Xi)q a {Xi} r = {Xi} (1.3)

and the equilibrium equation is

{f.} + {f.r + {f } 0 (1.4)iq ir is
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(2) Hou's Method.

Suppose only the first few lower frequency modes are employed, then

{Xj } = [OjL] {qL} (1.5)

in which "L" stands for the "Lower frequency modes" selected. Hou used
this expression to assemble the structure. Since the contributions of all
the higher frequency modes are lost, the convergence of the method is bad.
The details of the coupling procedure is in [6] .

(3) Rubin's Method.
Rubin [7] used the following expression

{Xji s [9L] q L I +IG a ] {f } (1.6)

where [Ga _ is the matrix of the static residual flexibilities contributed
by the deletedJAisher frequency modes. Therefore, the convergence is greatly
improved. [G;jj] is obtained by

[CJaj]s [GjjI -[Gj]s (1.7)

where [G] is the total static flexibilities

[G j is the static flexibilities caused by employed modes.

1.2 What are the problems in Rubin's method?

Although the properties of the convergence are very good, Rubin's method
has some disadvantages. When rigid-body modes occur, [Ga ] cannot simply be
obtained by (1-7), because both [Gi] and [G .] are inf(lie. Rubin proposed
a method to calculate the residuals [7] whiih is rather complicated. 0 0

Besides, Rubin's method considers only static residual flexibilities, which,
indeed, are the effects of the stiffness of higher frequency modes. Possibilities
still exist that some of the effects of mass of higher frequency modes may be
taken into account. 0 0

Furthermore, the coupling techniques for a complicated structure divided
into more than two sub-parts is required.

2.0 TWO THEOREMS AND A NEW CONCEPT

2.1 Theorem 1

(a) A dynamic stiffness matrix at a frequency* below its first eigenfrequency
(including at a negative frequency) is always positive definite.

(b) A dynamic stiffness matrix at frequencies beyond its last eigenfrequency
is negative definite. The dynamic stiffness matrix of a continuum will • 0
never be negative definite.

2

*Here "frequency" or "eigenfrequency" is taken to mean its square, i.e. w 2

for convenience.
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(c) A dynamic stiffness matrix at a frequency between its first 0 0
eigenfrequency (including zero frequency if rigid-body modes exist) and the
last one is non-singular, except at an eigenfrequency where it is singular.

2.2 Theorem 2

Residual flexibilities (dynamic or static) within the frequency range of
interest are always finite. 0 0

2.3 The Concept of "Positive Static" and "Negative Static" Residual Flexibilities
2

Based on the above theorems, choose a suitable frequency w so that the
dynamic stiffness matrix is non-singular. Then, the residuals s ill may be
obtained by Equation (1.7), in which

[G] = [V]_ 1  (2.1)

and L rL]T
ii i s a A]j -GL O I ] {j S (2.2)

where2 •[D]s = [K] - W 2 [m] (2.3)

2
Since w 2 is a constant, the receptances at this frequency act like static

flexibilities, as if the vertical axis were shifted to the right by an amount
of 0j2 (or to the left if w2 is negative). Hence, they are called "positive
statdc" flexibilities (or Rnegative static" flexibilities if A2 is negative). 0 0

For the latter, i.e. "negative static" flexibilitles, they are almost
equal to the real static ones if the -w2 chosen is not far from the origin (see
Figure 2.1). While "positive static" f~exibilities are generally greater than
the real static ones (Fig 2.2), since they take into account some of the
contributions of the mass of the mode. In both figures, the curves are the 0 
spectrum of the receptance of a mode of a substructure (hence GO is its static
flexibility (real)); X's are supposed to be the eigenfrequencies of the 5omplete
structure. If this mode is to be deleted and replaced by its value at w0 (in
Rubin's method, it is GO) then its contribution to different modes of the 2
assembled structure is no longer varying but always equal to its value at w .o

In the case of positive w
2 , therefore, the contribution of this mode to the 0 

lower frequency modes (such as r in Figure 2.2) is higher than it should be, and
A is expected to be smaller than the exact one, but not very much. On the other
hand, the contribution to At, say, is lower, however, it is higher than that
given by Go . Therefore the accuracy of the mode of At is enhanced. "Negative
static" flexibilities give nearly the same accuracy as Rubin's Go (see Fig 2.1).

3.0 COUPLING PROCEDURE

Using Equation (1.2), the uncoupled equation of the complete system is:

A* Xl 0' qL LT1H' {fH (3.1) D S
A AH-AIj qH [HT

where A is the square of the frequency; subscripts "L" and "H" denote
"Lower Frequency Modes to be kept" and "Higher Frequency Modes to be deleted",
respectively, for all substructures. [*] is an overall mode shape matrix which is
composed of selected eigenvectors of all substructures; corresponding to each
mode (columns) and the degrees of freedom of interface boundaries (rows); "T"
denotes the transposed matrix.
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Now {q H)will be deleted. The application of conditions of compatibility and 9 0

equilibrium (1.3) and (1.4) to the expression (1.6) and to the second line of
(3.1) gives T -1

{qH} =[AH-XI]-I [ , [wI - [ ]L {qL} (3.2)

where [Gw] is a matrix of overall residual flexibilities which consists 0 0

of individual Usidual flexibility matrices of all substructures; corresponding
to the degrees of freedom of interface boundaries. Hence, the transformation
is formed:

{q} H [AH_XI]-[1 H IT[Gw -1[] {qL} 0

[S]{qLl (3.3)

Substituting (3.3) into (3.1) and pre-multiplying [S]T, the approximate equation 0

of the assembled system is obtained as

([ALI]T+[L]T [G1 ]0[]){qL }= O (3.4)

4.0 THE ACCURACY OF THE METHOD

It was demonstrated in [8] that better convergence would be obtained if
substructure modes are selected according to the ascending order of their
eigenfrequencies. This conclusion is also applicable to free-mode methods.
During the tests, substructure modes will be selected according to this order.

The basic method of research is comparing the approximate results to the
results of the complete structural analysis which are considered as "exact". If
the error is less than say 5%,the approximate results are considered as
satisfactory.

To express the accuracy of a mode, an eigenfrequency coefficient n is used, * S
which is defined as follows: the eigenfrequency coefficient n of the ith mode
of the assembled structure is defined 

as

i  = e l 1(4.1)

where X is the ith eigenfrequency of the assembled structure; we is the
eigenfrequency of the last employed substructure mode (i.e. the highest eigen- • •
frequency mode selected).

For different trials, the structure is assembled for different numbers of
substructure modes, and three n i are chosen:

nM- of the last satisfactory mode, ie. M is the number of
satisfactory modes; 0 0

rM1 - of the second last satisfactory mode;
Tiu - of the first unsatisfactory mode.

It is expected that fLM is greater than 1.0 but not more than 1.4, and u
smaller than 1.0, since the spectrum of the receptance of a mode is a
quadratic curve.
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5.0 EXAMPLES - 0

The authors used analytical modes of beams for substructure modes to
analyse some beams and frameworks. The results show that the conclusions in
Section 4 are correct. It will not be shown here due to the limitation of space.
But it is important to apply this substructuring technique to finite element
methods which are themselves approximate methods. 0 0

5.1 A Cantilever Beam

The data of this beam are shown in Figure 5.1. The n-N relations are
listed in Figure 5.2 where N is the number of total employed modes.

5.2 A Plane Framework (Fig 5.3) 0 0

In Figure 5.4, n-N relations are plotted. Throughout all the trials, w s
are always taken as half of the values of w e s . o

All these figures and tables demonstrate that the conclusions in Section
4.2 of judging the accuracy of the improved free-mode method are basically correct.
The existence of some discrepancies are not surprising because finite element - S
methods themselves are approximate methods and the judging standard of 5% is used.

6.0 CONCLUSIONS

6.1 The following points are obtained:

(1) The problem of calculating residuals is successfully solved by the
theorems in Section 2. At the same time, partial compensations of mass for
higher frequency modes of the assembled structure are obtained while there
is little effect on lower frequency modes.

(2) The use of the overall residual matrix [G I makes it possible to
assemble a complicated structure correctly. S 0

(3) If an eigenfrequency coefficient n M is used, its value of the
satisfactory highest frequency mode is about from 1.0 to 1.4; and nu is
usually smaller than 1.0.

6.2 Disadvantages:

Although free-mode methods have many advantages as stated by previous
papers [1-5] , its hidden disadvantages are exposed when a larger structure is
sub-divided and analysed.

(1) More substructure modes are needed for assembly if rigid-body modes
occur in substructures. 0

(2) The overall residual matrix will be very large if a greater number of
interface degrees of freedom are produced.

6.3 Prospects:

Free-made methods would have a very good future if the overall residual
matrix can be obtained substructure by substructure.

Since "positive static" residual flexibilities are employed, the applications
of free-mode methods to forced vibration would produce accurate results.
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I. INTRODUCTION

>)Let us consider a complicated mechanical object. For the

study of its vibrational field it is sufficient to use a certain

dynamic model. Theory of a medium with complex structure can be

applied to this effect. The properties of the real object can be
reflected in the medium with complex structure, the medium para-
meters are determined by rigidity and mass characteristics of

the object resulting in certain integral characteristics and

spectra. This enables one to avoid too much detailization of the

object structure. The application of the theory of a medium with

complex structure results in obtaining some generalized charac-

teristics of the vibration field. This level of description can be

considered sufficient for many c8 s. But sometimes it is nece-
ssary to find out the vibration sta of a particular element
of the object. It cannot be managed within the integral methods
alone. The problem is that this particular element as such is not
represented in the dynamical model. Thus to analyse the behaviour
of a particular element one ha s to take into account both its
particular structure and the conditions of its interaction with
other elements. Trying to cover the entire complexity of a real
object makes this task completely hopeless. Another possibility
lies in precise consideration of a particular element alone,
with the rest of the object being considered integrally. The
present study is based upon this idea.

2. BOUNDARY PROBLEM OF THE DINAMICS OF A STRUCTURE

Here we use the methods described in [5] and [6] . So far

we ignore damping characterizing all structures. We divide the
structure by the system of surfaces into substructures Vn ( n=I,
2,...N ). The system of surfaces should be set either along the S S

natural boundaries of the structures or along the exterior sur-
face of the entire object.
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Real displacement of a material point within the volume Vn a

is denoted as an(r,t). The displacement field is normally found

by expansion in the terms of natural modes unk(r) of the sub-

structure Vn

an(_,t) = Vn(E,t) + _; Enk(E)gnk(t) (I)

Here gnk(t)are generalized coordinates of the substructure

Vn. Normal modes are required to satisfy zero kinematic condi-

tions on the surfaces separating the substructures. As it is

shown in [5] the best way to select the function vn is for it

to meet the following requirement:

- the equations of static theory of elasticity; 0 0

- given kinematic conditions on the portion of the boundary

involved;

- zero force value on the remaining portion of the boundary.

We place the following expansion (2) in correspondence
with expansion (I) O

n(r,t) = n(r,t) + nk(r)q(t) (2)

In this expansion unk(r) are still normal modes, qnk are generali-
zed coordinates of the substructure Vn corresponding to them.

The function un coincides on the surface of the substructure Vn

with real displacement an, but is extremly smooth.

We take substructure Vs out of N substructures to be des-

cribed accurately.

Kinetic energy of the entire structure V with expansions

(I) and (2) considered is

T = Y2 .. 9  dV = qYq, J k dV +
r=I Vn

N , "o
+~ d4VDk + Y2 9UndV 0

Vn n=I Vn
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S 0

+ ' skcsr J k'--s r dV + (5)

+ ;k isO~kdV +~ S 9 V dv
Vs

The prime here means that the term number s is omitted. Even 0 e

within each of the substructures Vn the density 9 and u are
highly oscillating functions. On the contrary . is extremely

smooth function and it changes very little within each substruc-

ture. So U can be placed outside the integral sign. This opera-

tion will be performed for all substructures V n except V ., The

result is

En*n + Mnk **t 2 ]1
~~12Q + 29qni q~~~n 0

(4)
co

dV +YV Mk

Vs  s Vs

In the formula (4)

= .j 9dV - average density of the object in
_Vn

nk = m- m 9 Unk dV - average displacement of the centre of •

n~aV
mass of substructure V., when it moves according to mode k.

* u is the velocity u of some middle point in Vn* To obtain the
result (4) the orthogonality of the normal modes was used

I~ S P9L nkUur dv = mn~k7 Vn
n I- '5 d5== 6

where 6 is Kronecher delta.
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The potential energy of structure V with expansions (I),(2)

considered is

P=Sva"CoVa dV = 4 N Sv7 -Yeun dV + 4 N IOD

V Vn
N ,OD

5 v+.2..C*-un d + >4n VU.k.*.c*.**-dV+

Vs V
OD (5)

+X51!s..CsrW V _sk Vr .C, .•

+Y2vv- 2O _ dV + =s --S020OLskdV +

8 0S

l VVS aS

where C is tensor of moduli of elasticity ( tensor in 4 dimen-
sions ), V is Hamiltonian operator, -- is the symbol of double
scalar multiplication [2] . Supposing that -% is smooth and the

natural modes are orthogonal

I~ S -- - V-n dV = C nk X
-n S .. 0 9v 0

Vn

we obtain the following result

P 11'S ('.!)n.20 0 (T)n + 2(va)nee ' tnkqn +

" 0(6)

nCnknk  n .C.. dV +y.-V V 5 C;skgsk ,

vs 0 0

* where

CD : -yn C dV - average value of the elasticity modules
-T-n

tensor in substructure n

-k= + C..vui.k dV - average value of stress tensor when
nS substructure is under deformation

VU according to normal mode k.
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Equality S V s -C..Vk dV = 0 proved in [3] that is a result of 0 0

the definition v. is considered in [6]

The work of external forces is written

W= S FosdO + S adV , (7)

0 V
here F is external load on 0, 0 is external surface of the struc-

ture, k is intensity of volume load. Substitution of expansions

a (I),(2) into (7) gives the following result
N N

W Seun do S _.,s do + dV +
0 0
on s Vn

NOo 0O (8)
+ 2E kjv dY + VnQkq + V~ks

4vs 0 0

In the last formula

' a + --k udV + S 2e-nk do]Vi S S
Vn 0 • •

is generalized force for coordinate qnk.

The obtained expressions for T,P and W are considered below
as Riemann sums of the corresponding volume and surface integrals. *
Replacing the sums with integrals we obtain

mk ) dV +
T = {Z u~ + 2(9)u- Ujkqk + 2 d

V-Vs O O

Vs VS
ODC 0 D

P = 7[u_)..<C>..(V U) + 2..sq+ 0 2dV +

V-Vs kk+q (9)

+ Vo o VvdV + ) V 2 -

V2
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W= k- S dV +5F- d+ S Qkq kdV + hv sd0+
V-VS 0-Os vvs vs'S ' d

+ S1'vs do + skg s .
Os

In these formulae
NN N,

U = hn9n  <C) (10)

etc. hn is characteristic function of the substructure V.9 i.e.
h = I, if a point belongs to Vn and hn 0 in the opposite case. 0

If we accept (10) the pass-over from the Riemann sums to
the integrals is accurate. However u, (> ,(C) are supposed below
to be continuous smooth approximations of the step functions (IO). * S

But in this case the expressions TP,W (9) become approximate.
Function u obtained in this way will be continuous function with
the property of extreme smoothness within the entire volume of
the structure. This function best oorrespondsto point displace- 0 0

ment of the carrier structure and is identified with it.

Now we obtain the equations of the structural dynamics
using Hamiltonian variational principle. The performance of this
procedure results in the following system of the differential
equations

in -rve.-7u_+ LE qk -(P)( u+ Uk'qk ) + eK = 0 (11)in V-Vs '

00 0

mkqk + 2 fk1-/m qk + Ckqk + tk''VU + ep))UkeU = Qk (12)

k=I,2,...

in V v.c-.V7s = 0 (13) 0
s s

m -- 7sk+Cskgsk %k- .s v (',

Vs

and the boundary condition on the structure surface

on 0-0 s  !nO[ nqk]* = F (15)

8 N
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Here n is external normal to the surface 0. Continuity condition 0 0

on os in U = Ys (16)
that occurs on internal boundary of substructure Vs completes the

boundary problem. The equations (12),(14) are written with struc-

tural damping considered, because it is the essential means of 9 0

restriction of vibration amplitudes under resonances. Damping is

written in a conventional way, i.e. by addition of components

proportional to speed and damping factor Yk

5. TRANSITION TO THE HOMOGENEOUS MEDIUM WITH COMPLEX STRUCTURE

The boundary problem obtained in this way is extremely

difficult to be solved directly because it contains an infinite 0 •

system of differential equations. Let us perform some simplifying

procedures which enable one to arrive at the boundary problem suitable

for immediate solution. These procedures follow mainly the work
[6j. • 0

We admit that substructures deformations don't affect ave-
rage stresses, i.e. t = 0. Let us consider stationary harmonic
deformation of the structure

_ (r,t) = u (r) exp (iwt) (17)
qk(bt) = qk() exp ('Wt)

etc. Futher transformation will be performed over the amplitudes.

Solving (12) for qk we have

-k(  2+ 2fkki + k (18)

whereqk = V mk  1 the natural frequency. Substitution of (18) into

(II) yields the following equation

v-[42),. -__] + w2 A()u + K = 0 , (I9)

where co 2+ 2 2)-- Ek-
(2o

Mk - +2TkikW+ (K k
UD (20)

2 3
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here A(W) is tensor of some mass inertia of the medium, K is

effective volume load. A(&J) acts as a tensor and differs in vari-

ous directions. This property is unparalleled in mechanics [4]

However a real structiire has such a complicated composition that •
it is impossible to find out its anisotropic axes of the substruc-

ture spectral properties. It makes us accept the hypothesis of
the isotropy of the spectral properties of the object, namely

isotropy of the tensor A(w) 0

A(()) = A(I)E • (21)

Taking into account (21) the equation (19) reads as follow

V. (0I 0.vu_ +( 2 A(W)u + K = 0 (22) 0

4. LOCALITY PRINCIPLE

Tensor A(w) requires close study. We obtain its explicit 0 0

expression C61 . For this purpose first invariant of the tensor

is to be derived

I A(a) o*E = A-)E..= 3A() . (23)

Obtaining of the first invariant based on the equation (20)
yields the following result

2( 1

A(W) = <> + 2- (24)
A) L ; m + i 2 ek'o' + Gk )

We pass over from the sum to the frequency integral. This is

possible due to our assumption of high density natural frequen-

ciescdk spectrum. We place the components in the above sum (24) 0 0

in the ascending order of natural frequencies and introduce the

s y m b o l (k_. _

N( Q k~ l ct k = I~> - k00

Then replacing the sum by the integral we obtain

I =W 2( 2(25)
+~ 2"i&a)+~ m J

The transition from the sum to the integral is provided on one

hand by the high density of spectrum of freguencies k9 on the

other hand it is ensured by structural damping. The fact of

2 3
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existence of structural damping is essential to perform the sum- 0 0

to-the-integral transition. This is accounted for by the fact

that in the absolutely elastic systems the influence of the boun-

dary conditions is extended throughout the system. This is most

explicit in the resonance vicinity. With structural damping pre- 0 0

sent in the system, this relationship is not observed. The higher

the structural damping in the system the more accurate is the

transition of the sum (24) into the integral (25). It means that

each value of the spectrum density has its own critical damping 0 0

value, its being exceeded allows to replace the sum with the

integral.

The possibility of the transition of the sum into the in- • 4

tegral is extremely important, that is why it is given so much

attention here. It was already mentioned above that the behaviour

of a real object that is a body with distinct space heterogeneity

can be described by the differential equation (22). Such an equa- 4 0

tion was obtained by the authors before for the cases of isotropic

[1-3] and anisotropic [4] bodies. But the principle of obtaining

of the equation was quite different in those works. It was assumed

that there exists a certain linear elastic continuous medium e 0

( isotropic or anisotropic ) that was named carrier medium. Each

point of the carrier medium was connected with infinite set of

oscillators which didn't interact with each other. The oscillators

acted as dampers which provided high space absorption of vibration. 0

It is interesting to note that not only the dynamics equation of
the above mentioned works and the equation of this article (22)
coincide, but the expressions of A(W) there and in this article
coincide as well. But the schemes of their obtaining are quite 0 0
different. In this article using some natural assumptions we per-
form the pass-over from entire complexity of the real object to
the equation that was obtained by consideration of the homogeneous
medium with generalized rigidity and spectrum characteristics. 0 0

The transition can be performed due to the possibility of replace-

ment of the sum (24) with the integral (25), i.e. the simultaneous

existence of the certain value of relative spectrum density and

exceeding of a certain critical damping value to which it corres- 4 0

ponds. The above mentioned speculations allow us to formulate the

locality principle. It reads as follows: each object with its own

spectrum density has a certain critical damping value, which being

0 0
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exceeded allows to describe the behaviour of the substructure Vs 0

in the structure V by the following boundary problem ( forced

vibrations are meant )

in V-V s  V.((C>.. u) +W 2A( )u + K = 0 (26)

iV VO( C.v%)= 0 (27) 0

Vsmsk(--W +2 ?kkiJ+ d k )gsk = - -w2 skdV + - -dO(28)

on 0-0s  n-(<C>.evu) = F Vs 0s (29)

on 0s in = v s  (30) 0 0
In other words we describe the behaviour of the structure element

in question accurately, and the rest of the object integrally

using for this purpose the me~hanics of the medium with complex

structure, where the microstructure is a set of oscillators. Thus, * 0

the vibration state of a particular element of a complicated

dynamic structure depends mainly upon the particular composition

of the element itself and upon certain generalized properties of
the remote elements of the structure and does not depend upon 0 a

their details. The locality principle works in the high frequency

band first of all, because it is only there that the relative
spectrum density is high. The locality principle is also absolu-
tely valid for the systems with continuous spectrum, i.e. for 0 a

infinite objects. In this case any damping value is sufficient.
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1. INTRODUCTION

----"The subject of nonlinear vibrations has always been a difficult one. The
primary difficulty lies in the solution of governing equations of motion which
are nonlinear differential equations. Solution characteristics such as existence, S S
uniqueness and superposition, which are taken for granted in linear vibration
problems, are not guaranteed. Often the physical problem itself, including ex-
periment, must be relied upon to suggest a reasonable nonlinear solution (which
is typically not exact, but approximate)..

Vibration analysis of one or two degree-of-freedom nonlinear problems 0 0
arising from discrete systems is complicated enough, and numerous books and
papers have been written dealing with such problems. Plates and shells are among
the most complicated of a hierarchy of continuous systems (including also strings,
beams, membranes and three-dimensional solids). Such problems are even more
difficult, for one must deal with nonlinear partial differential equations,
rather than ordinary ones. Consequently, the most common approach to nonlinear 0 S
plate and shell vibration problems is to assume a mode shape, based upon physical
understanding, intuition or the linear solution, which reduces the problem to one
having a single degree of freedom. More complex solutions assume two or more
modes in tne response, which lead to more accurate results.

In plate or shell vibration problems, nonlinearity may arise in various 0 0
ways; for example, (1) nonlinear stress-strain relations for the material, (2)
nonlinear boundary conditions, such as nonlinear springs or partial slipping, (3)
geometric nonlinearity in the strain-displacement relations, resulting from sig-
nificantly large transverse displacements during vibration. Among these and
other possible causes of nonlinearity, the literature of nonlinear vibrations of
plates and shells deals almost exclusively with the third one. Furthermore, the 0 S
geometric nonlinearity treated is typically quite restricted, and does not con-
sider large inplane displacements.

In spite of the narrowness of the type of nonlinear behavior typically con-
sidered, considerable research on plate and shell vibrations has taken place in
recent years. This is no doubt partly due to the physical importance of large 0 0 S

amplitude, nonlinear effects, and partly due to the fascination and challenge in
solving nonlinear problems. The recent increase in activity in nonlinear plate
vibration during the past decade may be seen in Table 1. It should be mentioned
that the relatively few references found in reference 1 before 1966 are the
result of a more thorough literature search than those followed in preparing
references 2, 3 and 4. Also appearing in recent years is an excellent book by 0 •
Chia [5] which does much to organize and clarify the subject of large amplitude
motions of plates.

The present paper has two major objectives: (1) to present an overview of
the subject of nonlinear vibrations of plates and shells and (2) to summarize the
recent literature in the subject. In regard to the latter objective, publica- 0 0
tions are referenced which have appeared in the past five years, with the excep-
tion of a few background references which extend further back in time. Length
limitations have restricted the scope of the present work to free, undamped
vibrations. While forcing and damping phenomena are also important, one must
begin with a reasonable understanding of the free vibration problem before
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Table 1. Publications dealing with nonlinear vibrations 0 S

of plates

Number of
Period RefernesSource

References

Before 1966 10 [I]

1966-1972 24 [2]

1973-1976 47 [3]

1976-1980 58 [4]

proceeding further.

2. FREE VIBRATIONS OF CLASSICAL PLATES

2.1 Fundamental Equations

Consider a plate of arbitrary shape as depicted in Figure 1. Its thickness
(h) is assumed small in comparison with its lateral dimensions. The xy-plane lies S S
at the undeformed middle surface, located at z=+h/2. Let the displacement com-
ponents of a typical point within the plate be u,v,w in the x,y,z directions,
respectively, while the body is undergoing deformation. Thus, u and v are in-
plane displacements and w is transverse with respect to the midplane.

h

Figure 1. Plate of arbitrary shape, showing coordinates.

The classical equations of plate theory are 'ased upon the Kirchhoff hypo-
thesis; viz., "normals to the midplane of the undeformed plate remain straight
and normal to the midplane and unstretched in length during deformation." With
this assumption the displacements may be written as
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3'w
U U ----

o X
3Yw (1)

V V-Z -"
0~ -z-o

w= w
0

where, in general, u,v and w are functions of all three coordinates (x,y,z) and

of time (t). The terms u ,v and w are displacement components of a point at

the midplane (z=O). Thus, t~e inplane displacements u and v are composed of two

parts - stretching of the midplane (u and v ) and bending, causing additional *
displacements proportional to both the local slopes and the distance of a point

from the midplane. The strains E Fy and y may therefore be written as

2

x x x 2

y 2w (2)
Y YO y 2

,2
C 2z - wZ

xy xy°  Txy Y 0

where c , C and are the midplane strains.
x Y xyo

In the classical, linear theory of plates, the governing equation of trans-

verse motion is uncoupled from the inplane equations. For relatively thin plates, 0

inasmuch as the transverse vibration modes have considerably lower frequencies

than the inplane modes, the inplane equations are usually ignored. Assuming an

isotropic, homogeneous material, one uses the stress-strain equations, integrates

over the plate thickness to obtain the bending moments, and substitutes 
into the

transverse equation of motion to obtain

DV4w + ph- a2
w  N -W + 2N - + N 2 (3)

t2  X 3x
2  xyxy Y 2

where D = Eh 3/1
2 (l-v 2) is the flexural rigidity, V

4 = V2V 2 is the biharmonic

differential operator, , is the plate mass per unit volume, and Nx, N , N are 0 *
the inplane stress resultants (i.e., forces per unit length, or stresss tumes

thickness). For the classical, linear problem, assuming small transverse dis-

placements,N , N. and N are stress resultants which are applied initially

in the xy-plaxe an do nol depend upon w or t.

In the case of large transverse displacements, additional inplane (or * *
membrane) strains are caused by the stretching of the midplane. Then the mid-

plane strains are given by

Du i w) 2

*x 0 +0(
)x= x 2D-x

+ w)2  (4)

Yo Y

3v u__90 + 0 _w w

Xy x y +  x y Y
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where the last terms of equations (4) introduce nonlinearity into the problem,
and where other nonlinear terms are considered to be higher order and therefore
negligible.

The nonlinear equations of motion of the plate are a coupled, eighth
order system of differential equations. This coupled system may be expressed

solely in terms of the midplane displacements u., v0 and w (=w0 ) (cf. [6]).
However, it is often more convenient to utilize the inplane compatibility
equation

2 X 32 2Xo 2
2 Ey (Yxy 32 w 32 w 32 w

+ 2 - x~y 3xty) 2  y2 (5) 0

which equations (4) identically satisfy. To reduce the number of dependent
variables in the problem, it is also convenient to introduce an Airy stress
function (0) related to the inplane stress resultants by

N = =h 2  N -h 2 (6)X ;y2  y 3x 2  xy 3xDy

With p defined by equations (6), and if tangential accelerations (3 2u/3t2 and
a2v/ t2) and body forces may be considered negligible, then the two inplane
equations of motion (which are now equations of equilibrium) are identically 0 S
satisfied by any choice of P. Equations (3) and (5) then become

4 2  2 2  2 2 2 2 y

id4pdw 2w ,22 2w  
3 ww

DV w + Qh w h( 2  2 2 2 -x+y 3xay (7a)
,3t ~ y 3 x

1 4 2 2 2 w( b
E xy 3X 2 Dy2

Equations (7), along with the proper boundary conditions for the plate in
question, constitute the governing equations which must be satisfied by the
problem. Equations (7) are the dynamic form of the well known von Kgrmin plate
equations [7]. One observes that the terms on their right-hand-sides are all
nonlinear. Furthermore, the nonlin arit of the problem depends directly upon
the magnitudes of the curvatures (a w/ 3xL and 32w/3y2) or twist (32w/axay) of
the deformed midsurface. However, since these quantities depend, in turn, upon
the amplitudes of the vibration modes, it is traditional to speak of the "large
displacement," nonlinear vibration problem.

A simplified set of equations accounting for the membrane stretching of
the middle surface during transverse displacement of a plate was derived by
Berger [8], and has been used by many analysts. These equations are based upon
the assumption that the second invariant of the membrane strain tensor is
negligible in comparison with the square of the first invariant. The resulting
equations are considerably more simple than the von Kirm~n equations, but recent
research has cast doubt upon the accuracy of the Berger equations.

Solution of the nonlinear equations, as well as experimental evidence,
indicates that the large amplitude vibrations of plates may be characterized
by a "hard" spring response. That is, the natural frequencies increase as the
vibration amplitude is increased. Typically, significant frequency changes are
found for plates having vibration amplitudes of the order of the plate thickness.
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2.2 Rectangular Plates 0

To solve the nonlinear free vibration problem for a rectangular plate the
most common procedure used is to begin by assuming a vibration mode shape for
w. This mode shape should satisfy the boundary conditions relating to w. Thus,
for example, the fundan.-ntal vibration mode of a plate having dimensions axb
with all four edges simply supported (SSSS) can be represented by 0

w(x,y,t) = sin 7 x sin 2Y '(t) (8)
a b

where L(t) is a function of time to be determined. For the linear, small ampli-
tude vibration problem equation (8) would yield the exact solution with T(t) = 0 •
Asinwt + Bcos-t, with A and B to be determined from the initial conditions. For
the nonlinear problem, the assumed mode (8) is substituted into equation (7b),
which permits one to solve for a corresponding in terms of z(t) and to satisfy
the inplane boundary conditions on u and v. Finally, equation (7a) is satisfied

I& approximately by means of the Galerkin procedure, which results in Duffing's
equation for T(t), 0

dr 2 23
d + W2 + AT 3 = 0 (9)dt2  z

where wZ is the linear frequency. Equation (9) has a well known solution in S
terms of elliptic integrals. From such an analysis, curves showing the ratio
of nonlinear to linear frequency (w_/wo) as functions of the ratio of vibration
amplitude to plate thickness may be plotted. Representative plots are shown in
Figure 2 for a simply supported square plate having edges which are either
completely constrained or movable in the inplane (x or y) directions. It is

seen that frequency increases of approximately 6 and 40 percent are encountered •
for these two cases when the vibration amplitude equals the plate thickness.

30

2-0 immovable edge

100

moroble edge S

a 10 20 5

Figure 2. Ratio of nonlinear to linear frequency versus amplitude/thickness
ratio for a simply supported square plate.
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It should be remarked here that plots of the type shown in Figure 2 do not
usually appear in the literature. What is typically shown for the ordinate is
the ratio of nonlinear to linear period for the vibration cycle. While astrono-
mers and (in some cases) physicists may be primarily interested in the periods
of periodic motion, engineers are nearly always concerned with the frequencies.
In reference I the ratio -,/,n was used to avoid replotting the earlier work 0
reported. However, it is hoped that _n/ will be used in the future literature
of engineering vibrations.

A recent study by Kennedy [9] dealt with a plate having immovable simply
supported edges. The nonlinear governing equations were written in finite dif-
ference form, using a 5x5 grid idealization, and the resulting nonlinear dif- 0 S
ference equations were solved for the time response (and frequency) by means of
an analogue computer. The study showed that -n/-- depends upon the aspect ratio
(a/b) as well as w /h, which agrees with the earlier findings of Chu andma
Herrmann [10]. Specifically, -n/-' was found to increase with increasing a/b.
Other studies using the Berger [8] simplified formulation of the problem have
indicated that .n/- did not depend upon a/b. It was also shown by Kennedy [9] 0 0
that neglect of tangential inertia could lead to noticeable error in cn/w in
some cases (e.g., 3% error for a/b=3 and w /h=l). Sathyamoorthy [6] used the
(alerkin method on the displacement form oTathe von Kgrman equations for the
same problem and also found that -n/-, depends upon a/b.

Only a small amount of additional work on the nonlinear, free vibrations of 0 0

rectangular plates, based upon classical theory, has taken place in recent years.
Banerjee and Datta [11] used the method of conformal mapping to obtain solutions
of the von Karman equations (7) for square plates having movable or immovable
clamped boundaries. Reddy [12] examined thin, simply supported square plates of
isotropic material having square, central cutouts and presented frequencies for
various cutout sizes. The finite element method was used. He showed that plates 0
with cutouts exhibit larger ratios of linear to nonlinear frequencies ( n/_ ) for
a given value of w /h than those without cutouts. Banerjee [13] studied the
completely clamped square plate carrying a concentrated mass. Numerical results
were obtained for the isotropic plate having immovable edges with a concentrated
mass at its center. He determined that ,n/Z is independent of the magnitude
of the concentrated mass, which is contrary to the previous results presented
by Ramachandran [14].

2.3 Circular Plates

For plates having circular boundaries (solid or annular), it is desirable
to express the nonlinear governing equations (7) in polar coordinates. They 5 •
become

4 2.2 2 (1 1 2~q w2 i' 1 w 1 )w

D', w + h - 2 2 + -- r
r r 'r r r 3,-

- 21(! w) 1 (lOa),.r r Tr r

2 2
1.41 lw 2 w i I w + 1 w (10b)
E' r r - r r 2 2

ir r .'

where now the .4 operator is taken in its polar coordinate form.

Sathyamoorthy [15] compared results obtained from the von Karman formula-
tion (equations (10)) with those from the simplified Berger [8] equations for
the fundamental mode (which is axisymmetric) of thin, isotropic, circular
plates having rigidly clamped (immovable) edges. These are summarized in Table 2
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below, where n_/ £ is compared for various values of w /h. One observes thatn ,~max •
the results from the two formulations of the problem do not differ greatly, with
only 0.8 and 1.5 per cent differences of wn/k when wmax/h is 1 and 2, respec-
tively.

Table 2. Frequency ratio versus amplitude, by two theories.

0 0
w wn/W 9
max

h von Kgrmin Berger

0 1.0000 1.0000 0 0

0.5 1.0434 1.0460

1.0 1.1647 1.1740

1.5 1.3405 1.3580 0 0

2.0 1.5361 1.5588

Karmaker [16] also used the von K~rman equations to analyze circular plates
having clamped, immovable edges, with concentrated mass M added at the center.

He arrived at the following nonlinear frequency-amplitude formula:

2 50.2 w 2max 22 .h 4 15 2 [ -h--- + 2.1] (11) ..

(oha 4+15 Ma 2

where a is the plate radius. Setting M=O and using equation (11) to compute
/.. for w /h = I and 2, one obtains 1.21 and 1.70, respectively, which areB . ax

sgnificantTy different than the corresponding values in the first column of
Table 1. 0

The effects of elastic rotational edge constraint upon the axisymmetric
nonlinear vibrations of circular plates having immovable edge supports were
examined by Venkateswara Rao and Kanaka Raju [17] by means of the finite element
method. Other axisymmetric results were obtained by Reddy, Huang and Singh [181,
also using a finite element approach. .0

2.4 Other Shapes

A few authors have presented recent results for the nonlinear vibrations
of elliptical plates. In two similar publications Sathyamoorthy and Chia [19,20]
followed the standard procedure using the Galerkin method with the von Karman .0
equations to analyze elliptical plates having clamped, immovable boundaries.
They presented the interesting result that the frequency ratio w /w is virtually

unaffected by the ratio of major to minor axis (a/b) of the ellipse. Inasmuch
as, following the same procedure, significant differences in wn/wZ have been
found for rectangular plates having different aspect ratios (see Section 2.2),
one could assume that the surprising result for elliptical plates may be due to 0 0
the simple, one term polynomial assumption used for the transverse displacement
(w).

Karmaker [161 solved the same problem by the same method, but included a
concentrated mass at the center of the plate. Interestingly enough, if his

2 7
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results are specialized to the case of zero added mass, it is found that w_/ k
increases with increasing a/b, for a fixed value of w /h. This increase of
wn/w with increasing slenderness is consistent with He previously mentioned
results for rectangles (Section 2.2).

The parallelogram plate was analyzed by Sathyamoorthy [21,22] for the case
when all edges are clamped and movable. From studying the numerical results 6 0
presented one observes a drastic change in on/wz for a given aspect ratio (a/b)
as the skew angle is increased. For example, for a rhombic plate, Kn/Z is
shown to decrease from 1.203 to 1.020 for w /h=1.5 as the angle is increased from

0 00°(square) to 300. This result is rather surprising, considering that the

rhombus is a more slender shape than the square.

Banerjee and Datta [11] also used the conformal mapping approach with the
von K~rm~n equations to solve the problems of simply supported regular polygonal
plates having 3,4,...,8 sides which are either movable or immova'.le Their
results were presented as the nondimensional frequency parameter wa vIT/Eh versus
wmax /h. If these results are replotted as wn/n/j versus w x/h, one finds that,
for a given set of edge conditions, the curves for the valrous polygonal plates
virtually coincide. Chaudhuri [23] analyzed the equilateral triangular plate by
the use of trilinear coordinates and the Galerkin method, along with the von
Kirmin equations.

3. COMPLICATING EFFECTS IN PLATE VIBRATIONS

3.1 Anisocropic Material

For a plate composed of material which is generally anisotropic with
respect to a rectangular coordinate system the first term (D 4w) of equation (7a)
is replaced by -• 1

DI 4w + D + D + D 4w +D 4
1 x4 2x3y 3 x2 y2 4 Dxy3 54 (12)

where D , ,D are constant coefficients depending upon the material properties.
The other gov rning equation (7b) is then correspondingly generalized, with its
first term (V p/E) replaced by five terms similar in form to expression (12).
For an orthotropic material the two equations are somewhat simplified with, for
example, D2=D 4= 0 in expression (12). However, this simplification permits the
widely-usea approximate solution procedure described previously in Section 2.2
to be followed; for an assumed mode shape w(x,y,t) the orthotropic generalization
of equation (7b) may be solved exactly for p(x,y,t), and the Galerkin procedure
followed with the generalization of equation (7a) to yield equation (9).

Several publications have recently appeared dealing with the nonlinear
vibrations of orthotropic plates of rectangular shape [6,13,24-26]. These papers
typically describe plates having the same conditions along all four edges; that
is, clamped or simply supported, and movable or immovable with respect to inplane 6
displacements. Work is generally lacking for nonuniform edge conditions (e.g.,
a CCCF plate), elastic edge supports, point supports and discontinuous edge
conditions. Banerjee[13] considered the effects of a concentrated added mass.
Varadan and Pandalai [26] treated clamped orthotropic plates having added stiff-
ness, the latter being treated as being either discrete or "smeared out."
Prathrap and Pandalai [27] studied the effects of transverse isotropy (i.e., the •
transverse shear modulus is different than the inplane shear modulus).

Plates having other shapes, but made of rectangularly orthotropic material,

have also received recent attention by Sathyamoorthy and Chia. These include
parallelogram (or skew) [22,28,29], circular [30,31] and elliptical [19,321
shapes.
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Material orthotropy may be expressed in terms of any orthogonal, curvi-
linear coordinate system (e.g., elliptic-hyperbolic coordinates). In the case of 0

polar orthotropy, the orthotropic stress-strain relations relate to radial (r)
and circumferential (e) directions, and the differential operator appearing in
the generalization of the von Kirm~n equations becomes considerably more compli-
cated than expression (12), and includes variable coefficients. Circular and
annular plates having polar orthotropy axes concentric with their boundaries
yield nonlinear vibration modes of the form w(r,O)=F(r)uusne, where n is an
integer, and where n=O yields the axisymmetric modes. A few researchers have
recently obtained results for circular [33,34] and annular [35] plates having
polar orthotropy.

3.2 Initial Inplane Stresses

Inplane stresses may exist within a plate in static equilibrium, either by

virtue of edge loadings or internal, self-equilibrating stress states (e.g.,
residual stresses from cold working). In this case the theoretical problem is
changed by the addition of the expression

32 * 2 2•2 w  , 2w  2• •

N + 2N -- + N 3 (13)x x2 xy axay y y

to the right-hand-side of equation (7a). Here N , N , and N identify the
initial inplane stress resultants which, in general, He constant with respect
to time but not with respect to x or y. These are distinguished from and supple- 0
mentary to N , N and N (eqs. (3) and (4)) which are the vibratory inplane
stress resultants caused by large amplitude displacements. As in linear vibration
problems, the effect of positive N * or N * (i.e., tension) is to increase the
natural frequencies, whereas negative N *Yor N * (i.e., compression), or positive
or negative N * (shear) causes the frequencieX to decrease. As a frequency
approaches zex, the plate approaches a buckling state.

Massalas, Soldatos and Tzivanidis [36] examined the large amplitude vibra-
tions of a simply supported rectangular plate subjected to uniform compressive
stress in one direction. Straightforward application of the Galerkin method with
an assumed mode in the form of equation (8) yielded the same form of differential
equation (9) as without initial stresses. Putnick, Matkowsky and Reiss [37] ana-
lyzed the same problem by means of the perturbation method and showed that, as
N is increased, a critical value of N is reached at which the primary vibration

mode bifurcates to a secondary mode. his secondary bifurcation phenomenon has
been observed by a number of people for the large amplitude buckling behavior of
plates.

* S
3.3 Variable Thickness

For a plate having variable thickness, the simple term DV 4w in equation (7a)
is replaced by

V 2(DV 2w) - (l-v)(3 2 D  2w -2 a2D  ;2w + -2D 92w) (14)Sy2 ax2  x y xy 3x 2y2

Since D = Eh 3/12(1-v 2), if h is a function of x and/or y, expression (14)
becomes, in general, quite complicated with terms having variable coefficients.
However, the usual solution procedure may still be straightforwardly followed.
That is, assuming a mode shape for w and solving equation (7b) for , the Galerkin S
method can still be applied to yield an equation in the form of (9).

One recent paper by Banerjee and Das [38] analyzed the simply supported
rectangular plate having parabolic thickness variation in one direction, with
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immovable edges.
0 0

For circular plates having thickness variation expressed in polar coordi-
nates, expression (14) is replaced by another relatively complicated form, but
the solution procedure using the Galerkin method is, in principle, the same. Two
recent papers analyzed circular plates having thickness varying linearly in the
radial direction [39,40], with the edge supported elastically. One [39] used
the Berger equations, the other [40] a finite element approach. It was shown 0 0
[39] that plates with radially decreasing thickness have larger w /wZ than
constant thickness ones, and conversely for plates with radially increasing
thickness.

3.4 Elastic Foundation

If a plate is attached to (or embedded in) an elastic foundation, the
transverse displacement is resisted by a restoring force from the foundation.
When the stiffness of the foundation is linear, a term kw is added to the left-
hand-side of equation (7a), where k is the foundation stiffness (in dimensions
of force per unit area per unit displacement, or F/L3 ). For the classical,
small amplitude vibration problem it is easily shown (cf. [1], p. 1), that al-
though the frequencies are increased by the foundation stiffness, the eigenvalues
are the same, with or without the foundation. However, for the nonlinear, large
amplitude problem the situation is somewhat more complicated.

Massalas, Soldatos and Tzivanidis [36] considered a more general elastic
foundation having linear and cubic restoring force terms (i.e., klw + k3w

3 ), thus 0
obtaining two sources of nonlinearity in the large amplitude vibration problem
for a simply supported rectangular plate. However, they ignored inplane compati-
bility (eq. (7b)) completely in their solution.

3.5 Shear Deformation and Rotary Inertia

Consideration of shear deformation, in addition to the usual bending de-
formation, adds to the flexibility of a plate. Mathematically, the additional
flexibility is typically added to the theory by replacing the slopes 3w/3x and
w/3y in equations (1) by the new variables x and 4; , which are the bending
slopes in the two directions (x and y). Thus, the t~tal slope in a given direc-
tion at any point of the midsurface is comprised of two parts - bending and 0 0
shear - and and 4, are independent of w. Rotary inertia is added to the
translational inerti of a plate by inclusion of proper terms in the rotational
equations of motion. The result is that the fourth order equation of motion (7a)
is replaced by three equations, each of second order, and the eighth order
system of equations (7) becomes one of tenth order in the four variables P, w,

and Both shear deformation and rotary inertia effects decrease the
natural+Yrequencies, and this decrease may become significant for plates having
length-to-thickness ratios of ten or less.

Considerable recent research in nonlinear plate vibrations has included
shear deformation and rotary inertia. Systems of equations have been derived
(cf. [21,28,41-43]). Numerical results have been obtained for thick rectangular
[27,44,45], circular [15,18,30,31,36,44,46,47], elliptical [32,44,48] and skew
[21,29] shaped plates. It has been shown (cf. [46,49]) that the effects of shear
deformation and rotary inertia upon the frequency ratio wni become less sig-
nificant as the amplitude ratio w /h increases.

max

3.6 Laminated Composite and Other Nonhomogeneous Plates

A plate having material properties which are not uniform throughout is
nonhomogeneous (or heterogeneous). Material properties may vary in the inplane
(x and y) or transverse (z) directions. They may vary continuously (e.g., rubber
or styrofoam, or metals subjected to nonuniform, high temperatures) or stepwise *
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(e.g., a layered plate comprised of two homogeneous materials). Of particular 1 0
importance in modern technology is the laminated composite plate comprised of
layers of fibers (e.g., glass, boron, carbon) embedded in matrix materials (e.g.,
epoxy). Each layer may be regarded as an orthotropic lamina, and the fibers may

be arranged in parallel-, cross- or angle-ply orientations with respect to each
other and/or the sides of the plate. While the vibrations of plates having con-
tinuous nonhomogeneity have received little attention, laminated composite plates •
have been studied intensively in recent years. A recent survey article [50] dis-
cussed approximately 60 publications on vibrations of composite plates which
appeared during the past 15 years.

In the case of a typical, laminated composite plate the orthotropic stress-
strain equations must be written for each layer. These equations must then be 0 0
tensorially transformed into the plate coordinate system. Integration over the
thickness to obtain the bending moments (Mx, My, Mxy) and inplane stress resul-
tants (Nx, Ny, Nxy) must be done in a piecewise manner. For symmetrically lami-
nated (i.e., layers stacked symmetrically with respect to the midplane), the
resulting equations for parallel- and cross-ply plates take the same form as
those of an orthotropic plate, whereas for angle-ply plates they are those of a 0 0
generally anisotropic plate (see Section 3.1). However, unsymmetric stacking
sequences yield coupling between bending and stretching even for the case of
linear, small amplitude vibrations. Large amplitudes cause additional coupling.
Generalizations of the dynamic von Karman equations for large amplitude motions
to composite plates of the general (i.e., unsymmetrically laminated) type were
first presented by Whitney and Leissa [51,521. Chia's recent book [5] devotes 0 0
considerable attention to the nonlinear analysis of composite plates.

In recent years Nigoyi and Meyers [24] demonstrated a perturbation method
of solution for Lhe orthotropic plate equations on a series of glass-, boron-
and graphite-epoxy rectangular plates. Sathyamoorthy and Chia used assumed mode
approaches to analyze skew [291 and elliptical [19] plates comprised of boron-
and glass-epoxy materials, respectively. Reedy and Chao [53-55] developed finite
eleme t methods and demonstrated their use on a number of representative cross-
ply ana angle-ply rectangular plates having various edge conditions. Results
were also obtained for composite rectangular plates having rectangular cutouts
[12].

3.7 Initial Imperfections

Consider finally a plate which is not perfectly flat; in its static, un-
loaded condition, the midplane is assumed to deviate from flatness by a maximum
amount which is of the order of the plate thickness. This initial imperfection
in flatness (also called "geometric imperfection") is assumed to vary smoothly
(e.g., sinusoidally or quadratically) between the plate edges. To accommodate
the initial imperfection in the von Karman equations (7), w is replaced by w + w*,
where w* is the imperfection shape.

In the case of a rectangular plate with initial imperfection subjected to
inplane initial stresses and undergoing free vibration [56] the problem is non- 0
linear, even for small vibratory displacements. Initial imperfections of the
order of the plate thickness may result in much larger frequencies in the un-
loaded case. A typical plot of frequency versus initial, uniaxial compressive
stress is shown in Figure 3 for simply supported square plates having various
imperfection amplitudes (w* /h=O, 0.25, 0.5). With increasing initial stress,

maxthe fundamental plate frequency may first decrease and then increase, as shown. 0

Several recent works have studied the effects of imperfections on the large
amplitude frequencies of plates. For rectangular plates, Celep [49] considered
shear deformation and rotary inertia, whereas Massalas, Soldatos and Tzivanidis
[36] included uniaxial initial stress and an elastic foundation. For circular
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plates, Hui [57] showed that initial imperfections may change the large amplitude 0

vibratory behavior from a hard spring to a soft spring type of response. Other
work on circular plates with initial imperfections includes both theoretical and
experimental results [58-60].

* 0
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Figure 3. Effect of initial uniaxial compression and initial imperfection upon
rectangular plate frequency.

4. SHELLS

4.1 Background Information

A shell is the generalization of a plate. That is, one dimension (the
thickness, h) is small compared with the others. However, the midsurface of a
shell is curved. Indeed, three components of curvature (one of them being the
twist of the midsurface) are required to specify completely the shape of the
shell. Plates, as discussed in the previous sections of this paper, may be con-
sidered both physically and mathematically to be special cases of shells - when
all curvatures are zero.

Typically, shells are more difficult to analyze than plates. To begin

with, shells may have an infinite number of curvatures of a variety of types
(e.g., circular cylindrical, noncircular cylindrical, conical, spherical, ellip-
soidal, toroidal, hyperbolic paraboloidal). Further, shell vibrations are typi-
cally governed by sets of eighth order differential equations, compared with the
simple, fourth order equation used for typical (linear) plate vibration analysis, - 0 0

and a large number of different shell theories have been developed (cf., refer-
ence 61). More parameters must also be considered for shells than plates.
However, all the complicating effects which may be present in plate vibrations
may also be present for shells. The relative complexities of plate and shell
vibrations are discussed in detail elsewhere [62].
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As an example, consider a shallow shell panel having constant radii of
curvature Rx and R in the x and y directions, and constant twist Rxy. That is, 0 0
the equation of th4 midsurface is given by the quadric function

S1x 2  2xy + (15)
2 Rxy Ry

Due to the curvature and twist, normal displacements (w) cause additional strains 0 0
w/Rx, w/Ry and 2w/R x. in the midsurface which are added to the right-hand-sides
of equations (4). TNe nonlinear governing equations of motion and compatibility,
(7a) and (7b), then have the terms

1 2 + 2 Y i 1 2a

R ;x2 Rxy Dx~y R Xy2 0 0

1 2w f2 2w 1 32w+ (16b)
R 2 R 3x3y R 2
X X xy y y

respectively, added to their right-hand-sides.

The free vibration characteristics of shells are considerably different
from those of plates. For example, the newcomer to the subject is typically
surprised to find that the fundamental (i.e., lowest frequency) mode of a circu-
lar cylindrical shell typically includes many sine waves around its circum- S S
ference. In the case of large amplitude, nonlinear vibrations, plate behavior
is typically of the hardening type (i.e., frequency increasing with vibration
amplitude); for shells, it may be either hardening, or initial softening followed
by hardening (cf., reference 63). A range of initial softening was also seen
to appear in plates with initial imperfections (see Section 3.7), which are
actually shells having very shallow curvature. In both cases the initial soft 0 0
spring response can be seen mathematically as the result of a second degree term
in T added to the first and third degree terms of equation (9).

4.2 Recent Research

Research activity in nonlinear vibrations of shells has decreased in recent
years, which is the opposite of what was found for plates (i.e., Table 1). For
example, 25 references dealing with the nonlinear free vibrations of circular
cylindrical shells were found to have been written before 1972 [61]. However, the
literature search for the present study uncovered only 7 references for the same
topic for the last 6 years. Doubtless, the decrease is part of an overall decline
of the past decade in the number of shell vibration papers appearing. S

Massalas and Kafousias [64] analyzed long, shallow shell panels of circular
cylindrical curvature resting on a nonlinear, massless, elastic foundation, having
the straight edges clamped. Shallow cylindrical panels were also studied by
Ilina and Kuzemko [65], with an attached elastic foundation having both stiffness
and mass. The problem was partially uncoupled by assuming the foundation res- 1 0
ponse function to be of the same form as for a previously solved linear problem.
Novikov [66] used a nonlinear vibration analysis of axially loaded circular
cylinders to determine lower bounds for their buckling loads. Ramachandran [67]
considered orthotropic cylindrical shells having a wall thicknLss which varies
linearly in the axial direction, both in a vacuum and in an incompressible fluid.
Veda [68] also took up cylindrical shells as part of a nonlinear study of conical 0

shells.

Considerable interest has been shown recently in circular cylindrical
shells having initial imperfections (i.e., deviations of the middle surfaces from

D
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being perfect circular cylinders). An extensive work by Singer and Prucz [69]
modified previous work for axially compressed, isotropic, homogeneous shells to
accommodate axial and circumferential stiffeners. This was done by "smearing
out" the stiffeners into an "equivalent" orthotropic shell. Nonlinear equations
were obtained similar to those of equations (7) with added expressions (16);
however, certain simplifying assumptions were made to linearize them. It was
shown that small imperfections in the orthotropic shells change the frequencies
to a smaller extent than for isotropic shells. More recent work by Watawala and
Nash [70,71] solved the nonlinear equations for the isotropic, unloaded shell,
with or without an internal fluid. It was observed that imperfections typically
increase the vibration frequencies; however, if the vibration mode shape is the
same as the imperfection shape, the frequencies first decrease with increasing
imperfection amplitude, and subsequently begin to increase at an imperfection
amplitude of the order of the thickness or less. It was also shown that the
variation of frequency with vibration amplitude could be either of the hardening
or softening types. Kovalchuk and Krasnopolskaya [72] made a theoretical study
of the double resonances found for a single vibration mode shape when a circum-
ferential imperfection is present. They found that the dif' rence between the
resonant frequencies depends upon the magnitude of the imperfection, and that
only a single frequency exists when an axially symmetric imperfection is present.

Conical shells were analyzed by Veda [68]. Finite elements were used, and
the method of weighted residuals was applied to the time variables to yield non-
linear algebraic equations for frequency as a function of amplitude. Conical
frustrums were considered for all apex angles varying between a cylindrical shell
and an annular plate. Both simply supported and clamped edges were treated.
The nonlinear frequency versus amplitude plots showed initial soft spring res-
ponse at small amplitudes in all cases except for the annular plate, followed by
a subsequent hard spring response.

Shallow spherical shells of polar orthotropic material having clamped cir-
cular boundaries were investigated by Varadan and Pandalai [73]. They found
that for very shallow curvature the frequency-amplitude plots are hard spring
responses, whereas for larger curvatures they are initially soft, subsequently
becoming hard. It was also shown that for Er/E 0 >1 (where Er and E6 are the
meridional and circumferential elastic moduli, respectively), the shell retains
its hard spring characteristic for larger curvatures. Novikov [66] also analyzed
the nonlinear vibrations of spherical shells subjected to uniform normal pressure
to determine lower bounds for their buckling loads. Shahinpoor and Balakrishnan
[74] considered the nonlinear vibrations of a hyperelastic spherical shell made
of an incompressible material such as rubber. Hui and Leissa [75,76] analyzed
the effects of unidirectional [75] and bidirectional [76] imperfections upon the
free vibrations of spherical shells. It was shown that, imperfections may
either increase or decrease the frequency, depending upon the type of imperfec-

tion present, and whether a linear or nonlinear analysis is used.

Toroidal shells were studied by Tabaddor and Stafford [77]. Finite element
incremental formulations were made for cord-reinforced inflatable shells made of
materials having nonlinear constitutive equations.

5. CONCLUDING REMARKS

Nonlinear effects due to large vibratory amplitudes may be very important

in determining free vibration natural frequencies and forced vibration response,
and are worthy of the considerable attention given to them in recent years.
Shells are particularly important structural elements, and more investigations
of their nonlinear response should be conducted.

There do exist several theoretical approaches for dealing with nonlinear
vibrations of plates and shells, and they are straightforwardly used in the
literature. However, reliable, accurate results are generally lacking. Indeed,
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considerable disagreement among existing published results is found. The re-
sulting knowledge in many cases is therefore, at best, only qualitative. The
writer would suggest two improvements in analysis to obtain reliable, quantita-
tive understanding: (1) use of additional, independent functions to represent
the modes (most studies to date have used single function representations of the
vibration modes), (2) examination of residuals of the governing nonlinear dif-
ferential equations to determine how accurately the latter are being satisfied.

Very little attention has been given to nonlinear problems arising due to
nonlinear stress-strain relationships. This topic deserves more attention.

The presence of initial imperfections of flatness or curvature have been
shown to be quite significant in determining free vibration frequencies. These
problems may require the solution of nonlinear differential equations even for
small amplitude vibration studies (e.g., in the case of initial stresses). Addi-
tional investigations, both theoretical and experimental, should be conducted
on this topic in the coming years.
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NONSTATIONARY RANDOM RESPONSE OF NONLINEAR STRUCTURES 0 0

TO NONSTATIONARY RANDOM EXCITATION
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ABSTRACT

-For safety and economical reasons, the nonstationarity of excitation and
response and nonlinearities of structures such as tall buildings, buildingo that 0 0
house nuclear reactors, naval and aerospace structures, and their components
must be considered by the designers. This paper begins with an update review
of the state of the art of techniques used for the random analysis of the re-
sponse of general multi-degree-of-freedom (MDF) nonlinear mechanical systems to
random excitation. Special attention is paid on methods applied to MDF non-
linear systems subjected to nonstationary random excitation. Their suitability 0 0
to finite element analysis of complicated nonlinear structures with large de-
formation of finite strain is discussed. Then a new formulation for the analy-
sis of resptnse of discretized symmetric and asymmetric nonlinear structures,
involving elastoplastic deformation, subjected to nonstationary random exci-
tation represented as a product of an arbitrary time modulating function and a
stationary process is proposed. Application of the method is made for the 0 0
determination of time-dependent variance of response of a quarter-scale physi-
cal model of a class of mast antenna structures. Computed results are included
graphically and discussion is made.

1. INTRODUCTION

For safety reasons, the designers of many modern structures such as tall
buildings, buildings that house nuclear reactors, naval and aerospace struc-
tures, and their components must consider the effects of various intensive ran-
dom excitations. The latter includes earthquake excitation, pressure waves of
an explosion, and continuous atmospheric turbulence. For economic reasons, the
use of the substantial res-rve in strength inherent in most structures due to S S
plastic effects is required. Consequently, for both safety and economic con-
siderations, the nonstationarity of the excitation and response, and the non-
linearities of the structure must be taken into account in the design procedure.
This, in turn, requires the prediction of the nonstationary random response of
nonlinear structures to nonstationary random excitation.

In the next section an update review of the state of the art of techniques
used for the random analysis of the response of general multi-degree-of-freedom
(MDF) nonlinear mechanical systems to random excitation is presented. Special
attention is paid on methods applicable to MDF nonlinear systems subjected to
nonstationary random excitation. Their suitability to finite element analysis
of complicated nonlinear structures with large deformation of finite strain is 0 0 S
discussed. Section 3 includes a new formulation for the analysis of response of
discretized symmetric and asymmetric nonlinear structures, involving elasto-
plastic deformation subjected to nonstationary random excitation. The latter is
represented as a product of an arbitrary time modulating function and a station-
ary process. This new approach essentially treats the governing nonlinear ma-
trix equation of motion as a series of piecewise linear matrix equations be- -

tween time steps. The piecewise linear matrix equations are solved by the ex-
isting method for MDF linear system proposed by To [1]. Application of the
method is made in section 4 for the determination of the time-dependent vari-
ance of response of a quarter-scale physical model of a class of mast antenna
structures. Computed results and discussions are included in section 5. Con-
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cluding remarks are presented in the final section. 0

2. A REVIEW OF EXISTING METHODS

The problem of predicting the response of MDF nonlinear systems to ran-
dom excitations has received considerable attention in the last two decades.
Chronologically, Bendat et al [2], Caughey [3], Iwan [4] and Roberts [5,6] have B

presented their comprehensive and excellent reviews. Recently, To [7] has
carried out a detailed survey on existing methods involving non-parametric ran-
dom excitations. As systems with parametric excitations were thoroughly re-
viewed by Ibrahim and Roberts [8], only non-parametric random excitations will
be considered in this section.

At present, there are five basic methods for the determination of re-
sponse of MDF nonlinear systems to random excitations. These are the statisti-
cal or equivalent linearization techniques, the Fokker-Planck-Kolmogorov equa-
tion or Markov vector approaches, the normal mode approaches, the perturbation
techniques, and the simulation procedures.

2.1 Statistical or Equivalent Linearization Techniques

A number of generalized formulations for the steady-state solution of dis-
crete MDF systems to stationary random excitation have been proposed by Caughey
[3], Foster [9,10], Yang [11], Iwan and Yang [12], Iwan [13], Atalik [14],
Spanos [15], Spanos and Iwan [16], Wen [17], Beaman and Hedrick [18-20], and
Apetaur and Opicka [21]. The work of Beaman and Hedrick improved the accuracy
of the Gaussian statistical linearization (SL) technique by making use of the
Gram-Charlier expansion. In [21] the so-called "second-order" SL technique for
MDF nonlinear systems was presented.

Formulations for response of MDF nonlinear systems to nonstationary ex-
citation were presented by Iwan and Mason [22], Kimura and Sakata [23], Goto and
lemura [24], Kobari et al [25,26], Iwan and Gates [27], and Spanos [28]. The
formulations in [23] and [28] apply to asymmetric MDF nonlinear systems.

The formulations by Iwan and Mason [22] and Spanos [28] may be considered *
the most general ones with regard to their suitability to the finite element
analysis. However, they are not applicable to structures involving large de-
formation with finite strain.

2.2 Fokker-Planck-Kolmogorov or Markov Vector Approaches

These methods make use of the concept of Markov process and capable of
providing exact solution of the transition probability density function. The
response process is assumed to be Markovian or whose projection is Markovian.

Exact steady-state solution of MDF nonlinear systems to stationary excita-
tion were given by Ariaratnam [29,30], Caughey [31,32], and Bolotin [33,34]. * *
Recently, Caughey and Ma [35] obtained exact steady-state response of a wide
class of MDF nonlinear systems to white noise excitation. They indicated that
the approximate nonstationary response can be obtained by a perturbation analy-
sis of Caughey and Payne [36]. The nonstationary solution of MDF nonlinear sys-
tems to nonstationary stochastic excitation has yet to be found.

In general, the Fokker-Planck-Kolmogorov equation approaches are difficult
and computationally infeasible to be applied to structures discretized by the
finite element method.
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2.3 Normal Mode Approaches 0 0

The underlying idea of the normal mode approaches is to reduce a given
set of generally coupled nonlinear second order stochastic differential equa-
tions to one which contains coupling only in the nonlinear terms. The reduced
equations can be solved by using some approximate techniques. Grossmayer's
two-state approach [37] belongs to this category. The major assumption in 0 0
these approaches is the existence of normal modes of vibration. In the deter-
ministic case, Rosenberg [38,39] has addressed on this subject. A rigorous
stochastic equivalence has yet to be found.

These methods can be applied to nonlinear structures involing large de-
formation of finite strain in the context of finite element analysis. There S S
are, however, two penalties. First, with structure discretized into a very
large number of degrees of freedom such as one with tens of thousand degrees of
freedom the task of finding accurate normal modes can be extremely difficult
and expensive. The frontal or wave method of Irons [40], Melosh and Bamford
[41], and Hellen [42] can be applied to improve this problem. The other penalty
is associated with large deformation in which the eigenvalue solution for the • 0
governing matrix equation of motion has to be obtained at every discrete time
step.

2.4 Perturbation Techniques

In these approaches [43-46] the stochastically excited nonlinear struc- S S

tures are treated in a similar manner as deterministically excited ones. The
nonlinearity is assumed to be sufficiently small such that the solution may be
represented as an expansion in powers of some small parameter which describes
the size of the nonlinearity. In references [46] the transient response of MDF
nonlinear system to stationary random excitation was presented. The methods
hinge on the assumption that every sample function of the solution process can
be represented by a convergent series on powers of the small parameter. The
amount of algebraic effort in obtaining the solution is substantial as indicated
by Tung [44].

2.5 Simulation Methods

Digital simulation of multi-dimensional and multi-variate processes of non-
linear structures were presented by Vaicaitis et al [47], Shinozuka and Wen [48],
Vaicaitis et al [49], and Harris [50]. These techniques can readily be applied
to discrete MDF systems. The example problem in [50] indicated that to provide
an accurate value such as the variance of the displacement response 5000 samples
were required. This implies that for large number of degree of freedom systems, 0 0

frequently encountered in the finite element analysis, the computational cost
can be prohibitive. When the number of degrees of freedom is large and the
excitation is nonstationary simulation is economically infeasible. It may seem
logical to reduce the number of samples in the simulation. However, graphs in-
cluded in [50] indicated that considerable discrepancy can occur between theo-
retical and simulated results with 2500 samples in the simulation. • 0

3. A THEORY FOR THE ELASTIC-PLASTIC ANALYSIS

Consider the stochastic matrix equation of motion for the MDF nonlinear
system

M + C k + K x + g(x, ) = e(t) w~t) = P(t)Cl

where M, C and K are the assembled linear mass, damping and stiffness

matrices, respectively;
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.,~ and are the stochastic acceleration, velocity and displacement 0

response vectors of the MDF nonlinear system;

g( , ) is the nonlinear term;

k(t) is the time-dependent deterministive vector;

and w(t) is the Gaussian stationary process. 0 •

For asymmetric MDF nonlinear systems such as those involving the sloshing in
liquid-filled tanks during earthquakes and in the vibration of trolley wires
under wind loads,

g(x,i)#--,j) (2)0

owing to the asymmetry, the solution of equation (1) may not have a zero mean
value.

Equation (1) may be approximated as a series of piecewise linear systems
between time steps such that

M s + C k + K x = Fs (3a)
-% - %S %S%

MM + C + Kx (3b)
- %s+l +  %s+l - %s+l = ks+l

x, + Cx + K x N (3c)
-"IN %N -%N

s = 0, 1, 2, ... , N; 0 S

where ks is the value of k at time step ts;

ks+l is the value of k at time step ts+1 such that At = ts+l - ts
and t = 0;

At is the small time interval in which equation (3a), (3b), and (3c)
can be considered as a linear matrix equation of motion;

= (t)- gss )

= e(t s ) w(t) - g(x ,i ).V s s %S IVS

It is assumed that the step modulated random excitation (ts) is Gaussian so
that for the linear equations of motion the corresponding response process x s is
also Gaussian. Thus, the asymmetric MDF nonlinear system of equation (1) ap-
proximated by (3) imposes no further difficulty other than the solution of the 0 0
individual linear equation. For structure discretized by the finite element
method the total strain tensor {c} may be expressed as

{C} = {E } + { P} + {Ce } + ... (4)

where the subscripts e, p, and e denote elastic, plastic, and thermal parts of -0 0

the total strain tensor, respectively. It should be noted that for large de-
formation involving finite strain equation (4) cannot be applied. Instead, the
formulation given by Lubarda and Lee [51] should be applied.

Applying equation (4) and the finite element method [52], and assuming
damping in the system is proportional then the terms g(xs, s) reduce to g(k.) 0 0
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which is the equivalent nodal forces representing the effects of plastic action
and elastic nonlinearity occuring in the structure. Equation (3) can then be
written in a familiar form, for instance (3a) becomes

M R +Ck +K x = k(t) + N(t) + P(t) + J;(t), (5),%S - l - IV " k5 " s ".p 'p

where NL(t ) represents a load vector arising from large deflections, P (

and PNL(t ) are the load vectors due to the presence of plastic strains and are

associated, respectively, with linear and nonlinear terms of the strain-dis-
placement relations [531.

The piecewise linear equation (5) can readily be solved by making use of
the results in (1]. For nonlinear structure involving elastic-plastic deform-
ation M, C and K are identical in every time step. Consequently, the computa-
tional effort can be drastically reduced.

The numerical solution procedure employed in this paper specifically 0 0
focuses on elasto-plastic dynamic response of mast antenna structures involving
small strains, strain-hardening and hysteresis. It is based on a numerical in-
tegration scheme corresponding to a marching forward process in the time domain.
When the state of the structure is known or has been determined at time ts-l,
the state of the structure at ts = ts 1 + At is obtained, where At is a small

increment of time. For brevity the detailed numerical strategy is not included 0
here in this paper.

4. EXAMPLE

The formulation presented in the last section is applied in this section
to find the time-dependent variance of response of the quarter-scale physical 0 S
model, shown in Figure 1, of a class of mast antenna structures. The structure
is assumed to be rigidly clamped at the base where the nonstationary random
excitation is applied. Thus, the governing equation of motion is

+ += (6)
M-xy --xx, % --xy -xx, (--xy --XX, I

where M xx', C xxand K xxare the mass, damping and stiffness matrices of the con-

strained structure; x and y are the displacement response and prescribed dis- •
placement column matrices, respectively. It can be shown that

M Xx + C x + Kxx = (7)

where = (Kxy) ; note that the stiffness matrix in equation (6) contains the

linear and nonlinear parts. 0 0

For simplicity and economy the physical model of the mast antenna struc-
ture was idealized by three elements, two beam elements and one discrete mass
element. The beam and discrete mass elements used were TB5 and DM3 of reference
[54]. The input data for the example are given in Table 1.

5. COMPUTED RESULTS AND DISCUSSION

For brevity only the variance of the elastic-plastic displacement response
at the tip of the mast antenna structure subjected to a nonstationary random
excitation having an exponential envelope modulating function was evaluated.
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Various hardening parameters X, that is the ratio of the tangential flexural 4
rigidity to the flexural rigidity of the structure were considered. The com-
puted results with 200 discrete points for the excitation duration of 1.25 sec
are included in Figure 2. Note that in all the results it was assumed that the
first two modes of the structure were excited, and the damping for each mode
was 5% critical. Implicit in applying equation (7) is the omission of Mxy
and CIxy which have insignificant influence on the final results. The 4

explanation for the observation is that the value of the elements in the stiff-
ness matrix K for stiff structures is usually several orders higher than those-xy

of the mass and damping matrices.

With reference to Figure 2(b), the peak variance of displacement response 0 a
at the tip of the mast atennna structure increases with decreasing hardening
parameter. This is consistent with the finding for the deterministic excitation
of a different example reported by Duffey and Krieg [551.

Finally, it may be appropriate to mention that for the example considered
every curve presented in Figure 2(b) requires approximately 26 sec of execution 0 •
time of CDC cyber 175 with NOS version 2 machine.

6. CONCLUDING REMARKS

An update review of the state of the art of techniques used for the random
analysis of general MDF nonlinear mechanical systems to random excitation has 4 •
been performed. A formulation with emphasis on its application to general non-
linear structures, discretized by the finite element method, subjected to a
wide class of nonstationary random excitation has been presented. Results for
an elastic-plastic nonlinear mast antenna structure involving deformation of
small strain are included to demonstrate the versatility of the formulation
proposed and capability of the digital computer program developed. 0 0 4

Applications of the present formulation to nonlinear structures involving
material as well as geometrical nonlinearities are in progress.
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Table 1. Input data for the Exmple.

node Coordinate m) 0 •
number

1 0.00
2 0.67370
3 1.34740

E - 2.07 x 1011 N/m
2

3 1-6 2s:
P.7860 kg/m 3  S -10 mcs

YY 1
Mass attached at node 3 - 140 kg
Rotary inertia of attached2

mass - 44.80 kg.m2

The cross-section area and area
moment of inertia of the uniform beam

,1ttoof P are: 2.5844 x 10-3 m2 and 6.23 x 10-6m4

Figure 1. The Physical Model of
Mast An'enna Structure.
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Figure 2(a). The Nonlinear Bending Figure 2(b). The Variance of Displacement
Moment Curvature Relation. Response. The Hardening Parameter,

-O0.05 , - x .10 .... 0.5 s,
2701.00,
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EXTENSION OF TRANSFER-MATRIX METHODOLOGY
TO NONLINEAR PROBLEMS

7J. W. David and L. D. Mitchell
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

1. INTRODUCTION AD-P003 663
Transfer matrices have traditionally been used in the solution of linear

mechanics problems ,4-a-, They have also been extensively used in the 4
analysis of rotor systems. 4+--) In current efforts to solve the dynamically-

coupled nonlinear rotor mechanics equations P-,4-it was necessary to extend the

transfer-matrix technology to this class of nonlinear problems.

Hibner +W+ has shown that transfer matrices can be used on certain classes

of nonlinear problems. He incorporated the nonlinear stiffness and damping 4
effects of a fluid-film bearing in the response analysis of rotor systems.
However, his approach was essentially to linearize the bearing stiffness and
damping about an operating point. Hence, his approach was unable to account for
the multifrequency response that arises from certain system nonlinearities.
Thus, a technique was sought which solved, in an approximate fashion, for the

effects of system nonlinearities on response amplitude and frequency. 
4 .

2. TRANSFER MATRICES

In general, the transfer matrix method is a procedure used to develop a 0
set of algebraic equations which describe the response of a system in terms of
its component physical characteristics. Differential equations are converted to
algebraic equations by an assumption about the response in the time domain

(i.e., harmonic). It also uses an initial-value approach in that, given the
input components variables, the transfer matrix multiples the component input
state vector producing the output state vector. Hence, a system may be modeled
by appropriate multiplication of the transfer matrices for the individual system
components and application of system boundary conditions. The reader is
referred to Refs. 1, 2, and 3 for a more thorough discussion of transfer
matrices. However, an example at this point may enhance understanding.

3. EXAMPLE: LINEAR TRANSFER MATRICES

This section is provided to acquaint the reader with transfer matrices and

to highlight the development presented here. The reader who is familiar with
transfer matrices may wish to proceed to the next section

Consider the system shown in Fig. 1. To model this system via transfer
matrices, we begin with the individual system elements.

The free-body diagram for the spring is shown in Fig. 2. Application of

Newton's second law of motion yields

Ni+ 1 - N i = 0 (1)
or

Ni+ 1 = N i = N(t). (2)
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For a linear spring, the force deflection relationship is 0

Ni = k(xi+ 1 - x id (3)

which can be arranged as

x 1 = x i + Ni/k. (4) 0 0

Defining the state vector as

T
S =[x N] , (5)

Eqs. 2 and 4 can be written as 0 0

which expresses the displacement and force on the right side of the spring as a
function of the displacement and force on the left side and the spring stiffness - •
k. For later use, one can "extend" the transfer matrix by including the
identity equation to render Eq. 7 as

I [1 /k 1o~x (7 0

0 0 0

D _ i+ l - 0
-  -0 7

For the lumped mass of Fig. 1, the free-body diagram is shown in Fig. 3.
Since this mass is assumed to exist at a point and displacements must be single-
valued

xi+1  xi = x(t) . (8)

Assuming the response to be harmonic at the excitation frequency

x(t) - x sin(wt) , (9)

Newton's second law of motion yields the relationship 02

N i+l Ni + Fi = mi Wx (10)

or rearranging
2

Ni+ 1  N i - mi x - Fi. (1)

Writing Eqs. 8 and 11 in matrix form yieldsx12 0 0 x
= mw 1 -F

Si+l -- - (i (12)

Note that "excending" the transfer matrices allowed the inclusion of the

external excitation F sin(wt).

Hence, one can model the system of Fig. 1 by appropriate multiplication of
the transfer matrices. Designating the spring as field I and the mass as field
2, one has

-- 0 1 0_ 1 I"-- j_ - -- "i 1133 0 0 0 1 (13
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or

= Ilm Ik F
3W ,1(14)

1

the boundary conditions for this system are

N3 2 O; xI = 0 . (15)

Hence, solving the equation for N3 subject to the boundary conditions yields the

nonzero initial value

N2 (16)
1 2m

muK

and, substituting this into the Eq. 14 for x 3 yields

F

x3 = 2 (17)
mu
k

which is the well-known frequency response equation for an undamped harmonic
oscillator.

4. EXTENSION TO NONLINEAR PROBLEMS

For the system of Fig. 1, if the force-deflection relationship of the
spring is

Ni = ki{(xi+ 1 - xi) + C(xi+ 1 - xi) 3} (18)

the system is nonlinear. However, following a procedure similar to that for a
linear system, a transfer matrix can be developed for the spring.

As with linear transfer matrices, one begins with an assumption about the
form of the response in the time domain. Here, however, this assumption must be
used with the spring as well as the mass. For this system, the appropriate
response is

xi+(t) - xi (t) = x(t) = xl sin(ut) + x3 sin(3ut) . (19)

It should be pointed out that the correctness of the assumption concerning the
harmonic content of the response is vital to obtaining an accurate solution
(8]. In this case, the necessity of including the sin(3wt) term was found by
initially assuming a harmonic response and noticing the higher-harmonic terms
generated by the nonlinearity. Also, numerical simulation can be used in more * *
difficult problems to aid in making the assumption concerning the harmonic
components in the assumed solution.

Application of Newton's second law of motion to the spring yields

0 = mx - Ni+l(t) - Ni(t); Ni+l(t) = Ni(t) . (20) * *

And, consistent with the assumed displacement response , the internal force is
assumed to be of the form

N (t) - N (t) = N(t) - Nl sin(ut) + N3 sin(3 wt) (21)
i+l i
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At this point, Eq. 19 and Eq. 21 are substituted into Eq. 18 and trigono- * S
metric identities used to reduce power and products of harmonic functions to
simple harmonic functions. Next, all harmonic terms not in the assumed solution
(i.e. sin(5wt), and sin( 7 wt)) are ignored. This is the step that renders the
solution approximate. Finally, applying the principle of harmonic balance
(9,10) yields two nonlinear algebraic equations. For the coefficients
of sin(wt) 4

N1 = xl + (3/4xi3 _ 3/4 x1 2x3 + 3/2xlx3 ) (22)

and for the coefficients of sin(3Owt)

N3 - x3 + c(-i/ 4x13 + 3/2x12x3 + 3/4x3 3  (23)
k

Defining the state vector as

T
S = [xl Ni x3 N311]r , (24)

Eqs. 20, 22, and 23 can be written in matrix form as S S

F l 0 NL xl

N1 0 1 0 0 0 Ni

x3 0 0 1 1/k NL3 x3

N3J0 0 0 1 0 (25)0
0 0 -C7 -- 1 - 1- 1

whereNL = - e(3/4xi3 - 3/4 x1 2x3 + 3/2xlx3 ) (26)

NL3 = - c(-I/ 4x13 + 3/2x1 2x3 + 3 /4x3 3) 3 0

Note that the nonlinear terms are not separated into left and right variables,
but simply carried along in the extension column as a correction term. This
transfer matrix is best understood as a set of nonlinear polynominals to which a
solution must be found. This is in contrast to a standard transfer matrix which
represents a set of simultaneous linear equations which can be explicitly S .
solved. Hence, the solution using this matrix in effect seeks values of the
system variables which satisfy the equations and the boundary conditions.

To develop the transfer matrix for the lumped mass, a similar procedure
was followed. Again, since this is a point transfer matrix

xi+I = xi = x(t) (27)

Assuming the response to be consistent with that of the spring, i.e.,

x(t) = xlsin(wt) + x 3sin(3ut) (19)

N(t) = Nlsin(wt) + N3sin(3wt) (21)

Application of Newton's second law of motion and the principle of harmonic

balance yields

Ni = N1 -mw 2 x1 - F (28) 0 0

and N3 = N3 9 mu2 x3 . (29)
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Again, Eqs. 27, 28, and 29 can be written in matrix form as

xl 12 0 0 ( 0xl~
N -m 0 - NI
x3 0 0 1 2 x 3

. 3 0 ~-9mw 3)iN l 0 0 i9W11N

Hence, systems with these types of elements can be modeled by appropriate

multiplication of transfer matrices and application of boundary conditions.
However, one problem is quite noticeable. That is, the nonlinear terms in the
extension column of the spring transfer matrix preclude an explicit solution.
Hence, an iterative approach is employed.

5. ITERATIVE SOLUTION TECHNIQUE

As can be seen from the example problem, the unknown quantities which are
needed tc solve a problem are the nonzero components of the initial state

vector. In linear transfer-matrix problems, application of the system boundary
conditions to the assembled transfer matrix yields a system of n linear
equations in n unknowns which can be explicitly solved for the nonzero 0 0

components of the initial state vector. And, this initial state vector, when
multiplied by the assembled transfer matrix, satisfies the output system
boundary conditions.

In our iterative approach, we still desire the nonzero values of the
initial state vector that will satisfy the system boundary conditions. 0 0 B
Defining Z as the vector containing the components of the output state vector
that are zero, we can express a correct solution as

Z T Z = 0 (31)

where the underscore indicates a vector. Defining the nonzero components of the 0 0

initial state vector as ZI . one can express Z as
-n

Z = [USIZ + F (32)

where [US] is the appropriate submatrix of the assembled transfer matrix

and F is the appropriate subvector of the assembled transfer matrix extension 0 0

column. Substituting Eq. 32 into Eq. 31 letting [USIT [US] [Al yields

Z T[A]Z + ZIT[US] TF + F T[US]zI +F T F 0 (33)

or

n n 2
E I (a i Z l'iZl' us jiZl' jFj usjFiZ ' +F =0 (34)

r., 7r . is the ith component of the vector _ 1 and Fi is the ith component of
.,ctlr F. Equation 31 can be understood as an objective function for the

.i. where we have the distinct advantage of knowing the minimum value
Wl'r1iation 34 is the objective function cast in terms of the initial

r. 'ience, one can use standard optimization techniques to find Z
.in determine all state vector information at all points in--he

* 0 k
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In the actual solution process, two optimization routines were used, both 0
from the Harwell [I] library. The first, VA09AD, uses a user supplier gradient

while the second, VAlOAD calculates the gradient numerically. Thus, one must

consider obtaining the gradient of Eq. 34 in order to use VAO9AD.

The gradient of the objective function can be calculated from Eq. 34 as

n n az l i ) az
aE E a ( . aZ i
aZl,k i=l j=l aZ l, j 1 aZl,k

+ us. Z. + F. z ) + us ( a j i 0
uij(Zl, k  3 ~k  iJ'Z l,k a Zli 3Zl,k

aFi
+ 2F1 azlk (35)+2i aZIl, k  •

where aZ 1 /aZ1 k is the Kronecker delta 6 .sAll terms in Eq. 35 are readily
calculatea excdpt for F./az Since term is not, in general,explicit function of the Zl, k s, extra consideration is necessary.

Each nonlinear element will have a transfer matrix of the form

where E is the extension column containing the nonlinear correction terms. For
each element, one can calculate aE i/3Z i+l,k . Since the state vector station
i+l can be written as i-il,n~r, EL1] Ln7L E nl Ll ES 00=_+ [0.1]:L f, ...

or • •
U i+l = L 1], S , (36)

one can determine 9Zi+l k/3Zlk approximately as AZ.+l k/a Zlk and hence

E aE~ • AZi+l'k (37) 0 0

3Z ,k az i+l,k AZl,k

From here, one further extends the transfer matrix for each field as

3 EI  3E I  3E n

where [Ji] = 1 1  3Z1 2  
az

-Eif (38)n n
Zl,n 'l n .n

In this fashion, when the overall transfer m. ix is formed as • 0
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the matrix [J] will contain the partial derivatives 3Fi/3ZI,k needed to evaluate

the gradient (35).

6. RESULTS

In using VA09AD and Eq. 35 for the gradient of the objective function,

good solutions were ustil ly obtained. The objective function was usually

reduced to 10- 25 to 10- . However, in ome regions, the routine would not
reduce the objective function below 1 + 10--, even though the gradient was still
nonzero.

The routine using VAIOAD had greater areas of convergence than the one

using VAO9AD, though sometimes up the 800 iterations were required. Sometimes, 4
however, this routine failed to converge to a good solution. These areas were
where the response was a maximum, as will be shown in the next section. The

reason for this nonconvergence is not known, but it is thought to be related to
machine precision. For both routines used, variable changes of 10-15 were

attempted before the convergence routine terminated. This is the practical
limit using double precision on the IBM computer at Virginia Polytechnic 4
Institute.

Comparing values of the gradient calculated by VAlOAD and VA09AD using Eq.

35 showed little difference in the values. Thus, Eq. 24 is thought to give a

good approximation to the gradient of the objective function.

7. COMPARISON OF PROPOSED SOLUTION TECHNIQUE WITH NUMERICAL SIMULATIONS

In order to compare the proposed transfer-matrix scheme with numerical

simulations, damping was incorporated in the model. The procedure for deriving
the transfer matrices is the same as presented in the previous section. The

only difference is that assumed response contains sine and cosine terms.

The numerical simulations were performed using the IBM routine CSMP. The

output data from the CSMP routine was Fourier transformed to obtain the harmonic
components of the response.

The results of the analysis of the system depicted in Fig. 1 (with damping

included) are shown in Fig. 4. The agreement between the transfer-matrix

solution and the numerical integration is generally good. The largest A

discrepancy occurs in the region of w = 1/3 rad/sec. This is because the cubic

nonlinearity generates a response at 1/3 the shaking frequency in this region. * *
In this case, this 1/3 frequency component is about an ordet of magnitude less

than the other components.

In order to test this methodology on multi degree-of-freedom problems, the

system shown in Fig. 5 was anlayzed, the results appearing in Figs. 6 and 7.

There is generally good agreement between the two methods, except for the X3 * *
component in the range of w - 1.0 rad/sec. The transfer-matrix routine had
convergence pro~les in this area and this is thought to be the source of the
error. Even t '~h the amplitudes vary greatly at this point, the frequency
range %,here the peak responses occur is accurately predicted by the transfer-
matrix routine.
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8. CONCLUSIONS 0

The previous examples illustrate that transfer matrices can be modified
for use in solving nonlinear problems. This technique seems to be applicable to
any nonlinear system for which the principle of harmonic balance can be used to
obtain approximate solutions to the governing equations. For the problems 0 0 4
investigated here, the nonlinear transfer-matrix approach appears to accurately
predict system response except in small frequency regions where the numerical
convergence indicates a residual error. This error indicator can be used to
flag the regions where significant error can be expected. However, even in the
error regions the results by the transfer matrix method show the trends of the
solution thus showing areas of significant response. S
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1. INTRODUCTION

-- >The fundamental idea of modal synthesis methods is to describe the movement
of the structure assembly as a superposition of the lower modes of each substruc-
ture. The first method, proposed by Hurty ,44- utilized the "fixed constraint
modes" of each substructure obtained by clamping the internal boundaries.
Initially, this method utilized constraint modes and rigid body modes to describe
the movement at the connection points. Later, Craig and Bampton +4) showed that 0 0

it was not necessary to differentiate between these two sets of modes and that
both could be regarded as constraint modes. This substructure synthesis method
is based on the Rayleigh-Ritz procedure. The other possibility is to utilize the
free modes of each substructure and to impose the displacement boundary condi-
tionso",. The coupling procedure can be implicit or explicit. The latter alter-
native corresponds to the utilization of Lagrange multipliers {5}. As Meirovitch 0 •
and Hale clearly showed in recent studies-f-744 the utilization of unconstrained
modes leads to two basic problems. The first involves modal truncation and the
second, the choice of the weighting functions which guarantee the compatibility
conditions together with the residual methods. 44. The influence of modal trun-
cation is to increase the calculated natural frequencies and thus compensate for
the fact that the set of constraint functions is truncated in the case of conti- 0 •
nuous interfaces, according to the Weinstein method .{9}.

The method of modal synthesis using the free modes, beyond its basic limi-

tations, also converge less rapidly than the method utilizing the constraint
modes as the former method does not allow a good description of the local struc-
ture rigidity near interface boundaries {10}. According to the classical acce- 0 0

leration mode method, the introduction of static responses induced by the boun-

dary forces reduces the influence of the modal truncation{11,12}. Another alter-

native for increasing convergence is the use of branch modes as defined by
Gladwell {13}. Thus, the hybrid method proposed by Mac Neal {14} utilizes the

modes obtained with some boundary coordinates being free and others fixed.

Similarly, Benfield and Hruda {15} utilize modes obtained by using stiffness 0 •

and mass loadings at the interfaces.

In the case in which the modes are obtained from experimental tests, the

basic limitations of the modal synthesis techniques are amplified. In effect,

the number of modes obtained from vibration tests is necessarily low. When the

assembly bring out a larger number of boundary coordinates, the substructure 0 0

synthesis method utilizing constrained modes seems more appropriate. Thus, the

Klosterman method uses fixed boundary and constraint modes {16}. It necessitates
the difficult measurement of connection forces even if there are no redundant

connection coordinates. The other alternative which consists of utilizing the

unconstrained modes cannot lead to good results as the number of experimentally
obtained mode shapes is too low to guarantee the compatibility conditions. 0 0

Hence, the two hybrid methods proposed in this study utilize two independant

mode sets identified separately. The first is based on the Rayleigh-Ritz proce-

dure and uses the "fixed constraint modes" , the second is based on the
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Weinstein method and uses the "free modes". Each of the two modal synthesis 0
techniques defines boundary generalized coordinates by the help of branch modes
obtained with mass loading at the interfaces.

These two hybrid substructure models can easily be extended to the case of
damped structures by using a simple damping model. However, in many structure
assemblies, the losses and the non-linear effects are primarily due to the slip- 0
ping and clearances at the interfaces during forced vibrations. Many authors
have studied the influence of partial slip on the dynamic behavior of joints
{17,19). An analysis based on the cyclic plastic laws allows the definition of
standard joint models. But in the context of modal synthesis methods, it is very
difficult to integrate such models in the case of riveted or bolted boundaries.

The present study proposes three methods allowing the identification of non-
linear joint models from vibration tests. Each of three methods uses one of the
two substructure models previously presented which describe the linear dynamic
behaviour and define boundary generalized displacements. The first method uses
the constrained mode set and is based on a dynamic transformation. It was applied
to blade disk assemblies. The second method uses the notion of non-linear modes
which take into account the non-linear coupling induced by the interface behavior.
It is shown that the non-linear modes can be identified by a method based on the
Ritz-Galerkin procedure. The last method permits the definition of a non-linear
joint model from an identification of Volterra kernels with the help of a corre-
lation analysis.

2. MODAL SYNTHESIS METHODS

Using certain classical hypotheses, the displacement )a of a continuous
elastic structure subjected to force distributions f. along a boundary r
(Fig.1) is a solution to the following boundary value' problem

Lu = - (1)

M C 1' F£ (u(M)) = f. Z £ fm, 2m - 11 (2a)
91 1

M s Si F£ (u(M)) = 0 9 C fm, 2m - 1} (2b) S S

M C S 2  D£ (u(M)) = 0 Z{o, m - I (2c)

In equation (1), L is an elliptic differential operator of order 2m and p
is the mass density. Boundary operators F and D are linear differential
operators involving derivatives normal to the boun&ary and along the boundary 0 •
of order through 2m - 1 and m - 1 respectively. Thus, the nature of the applied
forces in Eq. (3) is dependant on the problem studied. For example, in the case
of the flexural vibration of plates, force and moment distribution by unit of
length are considered along boundary r . The following functional spaces are
defined in accordance with the methods of modal synthesis.

E = lulu c H, M c S2  D u = 0 £ C O,m - 1 1 (3a)

E0 = )uIu c H, M 6 S 2ur D u = 0 Z£ C O,m - } (3b)

Space H corresponds to the space of the functions belonging to the field of
definition of operator L . It is interesting to complete spaces El and E S •
with the help of the norm associated with the elastic energy so as to obtain a
discrete model of the structure. In the case in which the part of boundary S2
is empty, the quotient space with respect to the rigid body modes must be intro-
duced. Since in the procedure for the functional completion the force boundary
conditions are unstable,_the Hilbert spaces E and El obtained corroborate the
inclusion relationship F, C E S S
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Thus, it is possible to introduce the orthogonal complement of E0 in E with 4
respect to scalar product a(. ,. ) in relation to elastic energy.

R = oE0  (4)

"Free boundary modes " xFi and " fixed boundary modes " x . form complete
bases for spaces E and E0 respectively. By choosing the static displacement p
induced by force distributions f and a function u in space E , one can
integrate by parts the quantity a(u,p) to obtain

M-1
a(u,p) = (Lp, u) - = f , D u] (5)

In this equation, scalar product r. , .1 corresponds to an integration along •
boundary r 

L 
a

[u, v] j vdF (6)

The first term of the second mem er of equation (5) is zero, as the static
solution verifies that Lp = 0 . When the functions u belonging to space E0
are considered, the second term is likewise zero. It appears clear that static
solutions p belong to closed separable Hilbert space R. In accordance with
Weinstein's method , finite space Bk engendered by k static solutions pj
and its orthogonal complement Bk are defined as follows

Bk R k (7)

In fact we have

ED... k+ ) Bk ... ) Eo (8)

2.1 "Fixed-constraint mode"method

This method uses a variational formulation based on the theorem of virtual
work. For example, the "free constraint modes " of each substructure are solu-
tions of :

2

a(xFi , v )= Fi (P xFi v ) v E (9)

Following the Rayleigh-Ritz discretisation method, the solution is sought in the
space of finite dimension E n engendered by the n first "fixed constraint
modes " and k independent static deflections p. . As E C E , the n + k1 nK
first resonance frequencies obtained are upper bounds. These approximated natural
frequencies of the free substructure may be characterized by a Min - Max princi-
ple in discrete space Enk

S2 Min Max a(uu) (10) S "
m Cm CEnk u E Cm (pu,u)

During the coupling of the substructures, the compatibility conditions will only
apply to the generalized interface coordinates associated with deflections p, "
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2.2. "Unconstrained mode"method 0

Fixed boundary modes xc. may be approximated by a function belonging to
space Bk. Intermediate prolems of the " first type " are thus defined by
constraint equations of the following form

a (u, Pi) = 0 Vi 1 , k (11)

The intermediate problem of order k is defined by the following

Qk Gu = u (12)
*@ 0

Qk is the orthogonal projection operator onto Bk. The compact operator G may

be expressed by using the Green's functtcng(M,P) obtained when interface 1 is
free

G u (M) = (u (P) , g(M,P) p (P) u(P) ) (13)

kAs function (G - Q G )u belongs to Bk , equation (12) may be written in the
following manner k

k

-
2G uj=1 Pj u P (14)

This equation is recognized as an integral equation of the second kind, and the
unknowns p. as generalized forces. If w-2 is not in the spectrum of operator G
we can apply the resolvent R d- m2 G + I]l  to both sides of (14).
We then have: 

k

u R W (P) p (15)

The resolvent R may be expressed in the basis of the free modes, that is :

R (P.) = p. + W2 00 a(P., x Xp.

(P = i- (16)

i ~~ i,(l 2

In accordance with the classical acceleration mode method, the influence of
modal truncation may be reduced through the introduction of static solution P.
in the expression of the resolvent. Using orthogonality conditions (11), 1

we obtain the following set of equations

k • *
a (u,pi ) = a (p, R (e.) )(Pj (17)

j=1 2 &~*

The approximated natural frequencies of the fixed interfece modes correspond to
values of m which cancel out Weinstein's determinant, that is

det Ia (pi , R (pj ) ) I = 0 (18)

In the case in which the structure is artificially loaded along
boundary r , such an analysis allows us to define a fictive structure for which
the generalized coordinates of boundary Xi are given by the following equation
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Ai  = a (u , p. ) (19) -

By utilizing equation (16), we obtaink k nk= a(Pi Pj) j + 2 a(PiXFk ) a(p.,xF,) (20)

j=1 j=1 Z=1 W2 ( _ W

In these last equations, a modal truncation was introduced. Hence, it would
appear interesting to explicitly point out the participations qj of the modes
considered n k

Xi  +j qj F- s~i j (21a) " 0

j=1 j=1

k
(_ 02 + W2 ) qj = X i (21b)

with •

Xj = a(pi , xFj) (22a)

s = a(pi,p j ) - a(pi,xF )a(pj,xF )w-' (22b) S 0
2=1

Terms S Rij correspond to the components of a first order residual flexibility
matrix.

3. EXPERIMENTAL IDENTIFICATION OF SUBSTRUCTURE MODELS

The methods of experimental identification exposed in Ref.{20,21} permit
an identification of the fixed or free constraint modes used in the modal synthe-
sis methods. These experimental forms satisfy orthogonality relationships identi-
cal to those satisfied by actual normal modes.

a (xi ,x.) = 6? .. (23a)

(p xi, x) = 6ij (23b)

Static deflections p. corresponding to interface loadings are difficult
to obtain experimentally especially when the substructures are only -supported
by elastic supports which allow dynamic decoupling. Thus, we generate space R
through the branch modes obtained by loading the boundaries with a known impe-
dance. The simplest loading consists of a mass distribution along boundary r
(Fig.2). Hence, by the use of independent vibratory tests, we identify k
branch modes xBi , verifying the dynamic equilibrium equation

Lx2 (24)
Bi i pXBi

To each mode xBi is associated a force distribution along boundary r of the
following type

i = - 1i{J D. (xBJ (25)

J corresponds to the inertia distribution along boundary r relative to the
bundary displacement governed by operator D. Static deflection pi corres-
ponding to the boundary loading given in Eq.(25)satisfies the following integral
equation: P = XBi - 2_ GxB(

5(26)
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3.1. Model using "fixed-constraint modes"

The approximated solution u is sought in space E k engendered by the
n first "fixed-constraint modes" x . and the k first- static deflections p,
The Rayleigh-Ritz discretization is written in the following manner

n k •
u x xciqi + > pi Xi (27)

i=1 i=:1

Modal coordinates qi and generalized boundary coordinates X.. are solutions
of the following matricial equation 1

Q~2 0] 1 qj J [ I M cp~ j- 11 =I (28)
1 Mpc J 1

Kpp PC pp_

The identification procedure exposed in Ref. {20} a1iQws the matrices involved 6 -
in this equation to be obtained from vibratory tests. The procedure necessitates
the projection of the branch modes on the "fixed-constraint modes" with respect
to the scalar product associated with kinetic energy

MCBij xci xBj (29)

This scalar product may be approximated by using a mass matrix obtained by
finite element method. If the mass matrix is not known, it is possible to make
a projection by the least square method. This method of synthesis applied to
plate assemblies has given good results, even in highly damped cases {20}.

3.2 Model using "free constraint modes"

This method requires the calculation of the displacements R(pi) induced
by the boundary distribution given in Eq. (25) and for a given frequency CA•

The number of free modes obtained by tests being finite, it is necessary to
truncate the series which appears in Eq.(16)

n

(Pi) = P. + W2( t i xFJ (30)
1 1 2 ) 30j=1 ( -

with ct. ( P ' .XFj)  (31) a

This truncation penalizes much less than the modal truncation employed in
the Rayleigh-Ritz models as the series convergence is improved by using the
static solutions p. . Coefficients a.. are calculated with the help of rela-
tion (9) and of 1the boundary loadiAl given in Eq.(25)

aij 1 ._L J £ Dt (xBi) , DZ (xFj) (32)

2.=1

When the interface loading is induced by rigid bodies - Fig.2 - the scalar
products are replaced by the finite sums of terms associated with the displa- S S

cements and rotations at points distributed along boundary r . In the case in
which the measurement of forces and displacements along the boundary is difficult,
it is possible - as with the "fixed-constraint mode" method - to identify the
model from the measurement of the modal displacements at particular points
defined by a grid of the finite element type.
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The branch modes can then be expressed in the base of the unconstrained modes

Bi= eij XFj (33)

with 0
0ij - ( Bi I 'Fj (34)

These coefficients are approximated with the help of the mass matrix obtai-
ned by the finite element method. Thanks to this series , it is possible to
express the static solutions given in equation (26)

2B Z- 2 K KxFj 35Pi = XBi '01 j=1 i j

According to the Hilbert-Schmidt theorem, the series appearing in this
equation converges uniformly. Coefficients aij given in equation (31) can be 0 S
deduced from this expression of the static deflections. A very simpleresult is obtained

ij = ej(I- / w) (36)

On the other hand, the calculation of terms a(pi , p. ) brings into play
the truncation at order N of the series appearing in Eq.(33)

2 2

a (pi~j = + ~ 2)(37)

2Z=1

N 6k02
+ W2 W2

* 0

TABLE 1

Natural frequency of a simply supported rectangular steel plate (O,6mxO.4mxO,005)

N* of modes 1 2 3 4 5

Eigenvalue of * 4

branch modes 15.97 44.54 80.62 X X
H 8

Estimated
Eigenvalue

H I 114.7 221.5 354.1 401.8 465.5

Exact
Eigenvalue

H t 114.5 220.2 352.3 396.3 458.0 * *
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* 0

Table 1 shows the resonance frequencies of a simply supported plate calculated
by this method from unconstrained modes XFi obtained by freeing one of its
sides and branch modes obtained by adding masses along this same side in the
case k = 3, n =8 and N = 10.

*

4. EXTENSION TO NON-LINEAR CASES

The methods of modal synthesis derived from vibration tests presented
previously can easily be extended to the case of damped linear structures. Thus,
in Ref. {20} a synthesis of the damping using the "fixed-constraint modes" in
the case of assemblies of strongly damped sandwich plates is presented. If the
synthesis method using free modes is utilized, the damping may easily be intro-
duced by replacing the normal modes in the expression of the resolvent given in
Eq. (16) by the complex modes by supposing a purely viscous or frequency-indepen-
dent hysteretic damping. On the other hand, the introduction of non-linear terms
in the structures'assemblies leads to serious complicatications in the utiliza-
tion of the modal synthesis methods. These difficulties are principally due to
the non-linear coupling among the normal modes and to the existance of several
forced solutions for the same forcing frequency.

The sources of non-linear terms in structures's assemblies are numerous
and it is often difficult to make a choice of the non-linear model best descri-
bing them. It has often been observed that the principal cause of large struc-
ture damping is the relative interfacial slip in the joints f22}. Numerous authors
haveclearly shown the influence of the microslip mechanism on the dynamic behavior
of the joints f23 - 25} . Such a mechanism may be represented by a generalized
kinematic hardening model often used in cyclic plasticity theories. In the case
of structures with geometric non-linearity, several authors have shown that the S S
dynamic behavior of the structure may be described satisfactorily by polynomial
series truncated at the third order f26-27}.

Once the non-linear models are chosen, they must be identified from
vibration tests. The diverse methods allowing the identification of non linear
systems may be divided into two families. S S

- Paranetric identification - These methods attempt to narrow the gap between
the non-linear model and the experimental results through an optimal choice of
the model parameters. Research may be done based on the transint or frequency-
response data [26-28}. Some methods use models obtained after linearization of
the equilibrium equations with the help of an averaging or harmonic balance S
technique {29}. In particular, the trials with constant modal coordinate ampli-
tude allow the derivation of impedance curves approaching those obtained in linear
cases. However , the latter procedure can only be applied to systems with weak
non-linearity and in the case of isolated modes.

- Nonparwnetric identification - The non-linear model is sought in the form of a S S
series of particular functions. Thus, the method proposed in Ref. {30} uses the
Chebyshev polynomials. Another possibility is the utilization of a decomposition
of the system response into non-linear subsystems. Hence, certain methods utilize
a finite Fourier series and an identification based on frequency-response mea-
surements 31) and still others a decomposition into Volterra or Wiener series
(32 - 33). Yet, these latter methods - which havethe advantage of separating the S S

identification of the linear part from that of the non-linear j oint - can only be
applied in the case of zero memory non-linear elements.

The three methods for analysis of non-linear structure assembly behavior
proposed in this study utilize an identification technique related to both these
families and each corresponding to an extention in the non-linear case of modal 0 S
synthesis methods from the vibrations tests described previously.
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4.1. Method using non-linear modes

By using a modal synthesis method, the dynamic behavior of a continuous
non-linear structure subjected to a harmonic forcing function is obtained in the
following form

d.+ Q2 q + H(qc ) fo eiwt (38)

The spectral matrix Q2 is constituted by the squares of the natural frequencies.

The displacement of the structure is approximated by
n

u qi xi (39)
i=1 0 S

Linear modes x. are calculated in the case of low amplitude. In Ref. f34),non-
linear matrix H is expressed in the case of a cantilever plate possessing
slipping joints on its boundary. It is obtained from in-plane forces N , N
and N induced by the displacement field given in Eq.(39) and calculated y the
finiteYelement method, that is

Hij (q, q) - (B(N,x ), xj ) qj (40)

2 x. a2 xi 2 x (41)
with B(N , x.) N - -2N - + N - (

x X 2  
xy 3x 3y Y 3 y2

In the case of weak non-linearities, the solution for modal coordinate qi is
assumed in the form of an harmonic function of time

iwt

qi = qi e (42)

By using a linearization method, the modal amplitudes are a solution of the
following matrix system

I 2 + Q2 + I+ j I qa fo (43)

For example, if the K.B.M. method is used, the non-linear stiffness and
damping matrices are given by

27T

i =  -f H-j (I - Cos 2 ( ) de (44)
0

27v

(i. 
=  2 ( H.. sin2 de# (45) 0

lj 27T 0~ -13

If the non-linear stiffness matrix t is symmetrical, the non linear modes
can be defined by the following equations

n
u qi xi( q i )  qi0 7 a ij (qi0) xj (46)

j=1
O-i

with -! w I + + T a = 0 (47)

aii 1 I x(0) = x. (48a,b)

These modes correspond to the non-linear modes defined by Rosenberg 35)
in the case in which the latter are considered as disturbed lines modes and are
calculated by linearization method. The solutions of the eigenvalue problem
defined by equations (46), (47) and (48a,b) are obtained by increasing modal
coordinate qi step by step from zero.
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Only the solution approaching linear mode is retained. In the case of weak non-
linearities, the n non-linear modes x. utilized remain close to the n linear
modes x. and their stability is assured. As Szempliska-Stupnicka (361 has
clearly shown, the deflection at the resonance is close to a non-linear mode in
the case of weak damping.

Modal coordinates qi are given by the following expression
(_M. ( 2 + W2 (ai + jai ) qi = f. (49)

n n
avec M. (qi,) a (qi) f aij (qi) fi-

j=1 j=1

iw! M. (50a,b,c)

The loss factor a is obtained by calculating the energy loss per cycle. In the
case of a cantilever plate with a sliding point, the values of a and 6 as a
function of the modal amplitude relative to the first mode are given in Ref.{371
Although the existance of non-linearities excludes the superposition of solutions
we have observed in numerous examples that the forced response of a non-linear
structure is well described by the following modal decomposition 4

n
- V "W2 + 2 (a ) ~iu X. +j-M.ci ) f).- i (51)
i=1

The identification method described in Ref. {201 allows one to obtain non-linear
modes for several values of modal coordinates q. . It is advantageous to choose
a simple analytical expression for these coefficients. Based on experimental
analyses, it appears judicious to choose the following form

a i i+C q i j (52) •
aij = b.. q. + c.j 2i0

coefficients b.. and c.. are calculated by the mean square method.

4.2. Dynamic transformation method S 0

The utilization of the non-linear modes does not take advantage of the
knowledge of the location of the non-liearities when they originate in the
joints. In the case of a modal synthesis using the free modes, the non-linear
terms only come into play in flexibility matrix SR . The equation giving the
vibration frequency as a function of the displacement amplitude is analogous 0 0
to that obtained by Dowell who uses the lagrange multipliers {38}. If the
method used fixed constraint modes is adopted, in Eq.(28) the non-linear terms
only come into play in the constrained stiffness and damping matrices K et H

_22 p _ W2[I Mcp] + j [ ,)Q2 = p p (
m2(53)

0 KP] MPC M ppj HPP X0 110

The boundary coordinate amplitudes X a are related linearly to the modal
coordinate amplitudes qo

with qo = w2 Z (W) M X0 + Z (W) f0 (54) *
Z (W)= W2I cP+ r2 + j nW2]- (55)
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By using the relationship, linearized equilibrium equation (53) may be condensed
on the boundary degrees of freedom

[K + jH - i0 F0  (56)

with M M +o 2 M Z M (57a) 0 •PP= pppc cp

Fo = po + M Z f0  (57b)

The"mass" matrix M and the generalized force vector F0 depend on pulsation w
The non-linear terms can be obtained from vibration tests through the use of a 0 S
parametric identification method.

4.3. Method utilizing the Volterra series

The preceding methods define non-linear models identified through a linea-
rization of the structure responses subjected to harmonic forces. Yet, in the
case in which the non-linearities are at zero-memory and localized at links, it
is possible with the help of random excitations to identify separately the linear
part of the structure and the non-linear joint model. Although this study could
be extended to the multidimensional case, we shall limit ourselves to the study
of an assembly of two structures whose interface behavior only brings a single •
generalized displacement coordinate into play - Fig.3 - The joint possesses an
elasticity in parallel with an assumed non-linear element of the following form

n
H[X] = 7 (58)

i=2

The dynamic equilibrium of the two assembled structures may be represented
by the following non-linear feedback system

rxt) I X (t) 4

r (t) is the impulse response of the assembled linear system which takes the 4
linear stiffness of the joint into account. Input U corresponds to the intensity
of two balanced forces acting on the two extremities of the joint - Fig.3 -
In general, this input is linked to forces applied to the structures by transfer
functions which we have purposely not expressed so as to simplify the dynamic
equilibrium equation. The latter is written as follows

X (t) = r (t) ( U (t) - H CX]) (59) S •

response X may be divided into Volterra series

(t) z wi (t) + n (t) (60)
i=1 I

with
wi (t) f: U (t - TI) ... U(t - Ti) W(T,... T i)dT,... diT

(61)
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The Volterra kernels w. may be expressed as a function of the subsystems'
characteristics. In the case of a separable white gaussian input process U(t)
crosscorrelation function C (t) verifies the following relation

uw!

cUW (t) = r (t) = c (t) (62) 0

with C (t) = (t) (63)uu

Unlike systems in cascade, the invariance property of the separable process
cannot be used and it is therefore necessary to determine C uwi from measurement
of C u for several input levels. As noise term C tends to zero when
n(t) is zero mean and independent of the input, we obtain

N
C (t) = C (t) (64)
a i •x •w

In these last equation, a truncation of Volterra series was introduced. By using
N equations with aj $ a V. k , the impulse response r(t) for thelinear subsystem Jcan te detarmined Cau

" (65)

CuwN CaN Ui

Modal identification of the linear structure can be obtained by a curve fitting
procedure 39} Knowing r(t) allows the parameters of the non-linear subsystem *
to be identified. Indeed, displacement X is linearly linked to coefficients y,
which appear in equation (57)

AZ A y (66)

9 is a vector composed of displacements calculated at m different moments t. 0 0
m >> n), e is a known matrix which brings input U(t) into play. Parameter'

vector y is obtained by the least squares method

Y [ e - eT z (67)

Vector Z is composed of displacement values measured at moments t.. This
procedure has been successfully tested on analog computer results.

5. CONCLUSIONS

The modal synthesis methods from vibration tests proposed in this study
allow the assembly of structures along continuous boundaries. The extensions to
non-linear cases which were proposed allow the identification of non-linearities
internal to the structures and non-linearities localized at the joints. The expe-
rimental procedures utilized necessitate the identification of two mode sets
and the search for non-linear models with the help of delicate techniques. S •
Nonetheless, the methods' complexity is justified by very difficulty of the
problems treated.
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IN ABRUPTLY NONLINEAR SYSTEMS
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1. ABSTRACT

An approximate technique, ba on a new generalization of the method of
equivalent linearization, is presenLed for analysis of oscillations in such 0 S
abruptly nonlinear systems as those involving vibroimpact between adjacent struc-
tures. The new method introduces a weighting function into the averaging integrals
used in the familiar method of equivalent linearization. *-I The weighting func-
tion is chosen such that the free vibration backbone curve of the approximate
solution matches that of the exact solution at an arbitrary number of preselected
amplitudes. Both one- and two-degree-of-freedom (DOF) examples involving periodic
motion of colliding oscillators are presented to illustrate the nature of the
results. Contact forces are modeled both by a unilateral linear spring and dashpot
and by impulse/momentum and coefficient of restitution approaches. It is shown
that an approximate amplitude-frequency response curve of adequate accuracy can be
obtained with a computational effort several orders of magnitude less than that
required by direct numerical simulation. 0 6

2. INTRODUCTION

When intermittent contact between structures, pipes, or machine parts occurs
during structural vibrations, the effective stiffness and damping of the system

undergo abrupt changes. Such changes also occur in cable-stayed structures when
the amplitude of vibration is large enough to cause one or more of the cables to
go slack and then snap back into a taut configuration. The dynamic analysis of
such systems is seriously complicated by these abrupt changes in system character-
istics which occur at various amplitudes of vibration. Probably the most common
approach for analysis is to use a direct numerical simulation of the equations of
motion, but difficulties can arise because of sudden large changes in system eigen-
values, or in the order of the governing equations. Hence, such simulations can
be quite tedious and expensive. The use of such approximate analytical techniques
as those based on small perturbations is limited by the severely nonlinear nature
of the problem. Furthermore, the accuracy of the approximate solutions generated
by the familiar methods of energy balance, harmonic balance, equivalent lineari-
zation, and slowly varying parameters is generally unacceptable for engineering
purposes. However, presented herein is an improvement to the method of equivalent
linearization, which substantially improves the accuracy of the approximate solu-
tion while retaining the computational efficiency which is characteristic of
methods based on averaging.

3. WEIGHTED EQUIVALENT LINEARIZATION FOR SDOF OSCILLATORS

Consider a single-degree-of-freedom (SDOF) oscillator with a symmetric non-
linear restoring force element F(x,k) as depicted in Fig. 1 a. The equation of
motion for this system under excitation f(t) is

mx + F(x,x) = f(t). (1)

Due to the nonlinear term F(x,k) the solution of this equation is often quite dif-
ficult to obtain, particularly when the nonlinearity is hysteretic in nature, or
when abrupt changes in system characteristics occur at a particular amplitude of
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response. Thus, for computational convenience we consider an equivalent linear 0 0

replacement system shown in Fig. 1 b. The equation of motion for this linear re-

placement system under the same excitation f(t) is

m R + c k + k x = f(t) (2)
e e e e e

Clearly, the extent to which the solution x (t) of Eq. (2) resembles the solution S Sea 
nx(t) of Eq. (1) depends heavily on the selection of the parameters ke and ce

In the special case when the steady-state (periodic) response to a sinusoi-

dal excitation of the form

f(t) = F cos(wt + ) (3) 6 0
0

is sought, an appropriate choice of c and k which minimizes (in a mean-squared

sense) the equation difference between Eqs. (1) and (2) over the class of linear

solutions xe may be expressed as [11
,d [x F x (X 'k )] d [k e F(x e' e k

k = e c (4) e
e dl 2 c e [ 2(4

e e

where the operatord['] represents the time-average over one period of oscilla-
tion T = 27/w of tae linearized response x . The integrals implied in Eqs. (4) 0 •
are relatively simple to evaluate for a broad class of nonlinearities, even in-
cluding hysteresis [2-5] due to the fact that while F(x , ) may be a functionale e
of the entire time history of x (t) it is a single-valued function of time fore
sinusoidal xe(t), as implied in the integrals.

In the slightly more interesting case when the nonlinear term F(x,k) is 0 0
asymmetric (i.e., the restoring force for positive displacements x is different
in character than that for negative x), an appropriate form for xe is that of a
constant or bias term together with a sinusoidal term [6] such as

x e(t) = x + A cos (wt) . (5)

The constant x may be evaluated by substituting x e(t) from Eq. (5) into Eq. (1),
and then requiring the resulting left-hand-side to equal the right-hand-side in
time-average over one period of oscillation. After having so obtained x , the
amplitude-dependent parameters k and c may be obtained from Eqs. (4).°0

e e

The parameters k and c so obtained are, in general, functions of the re- 0 0 0
sponse amplitude A, so that t%e solution of Eq. (2) generally involves an itera-
tive technique. However, very substantial savings in computational effort are
achieved since the original nonlinear differential equation (1) is effectively
replaced by a simpler set of nonlinear algebraic equations.

While this approach is quite useful for a broad class of engineering pro-
blems, it provides an approximate solution whose accuracy may not be acceptable
in all cases. This is particularly true of some problems involving strong nonlin-
earities.

In order to provide a mechanism for improving the accuracy of the resulting
approximate solution, consider a slight generalization of the approach outlined

above. The generalization is obtained by including a weightin2 function w(x) of
the form

N k
w(x) = 1 + X(6)

k=l k

298



in the averages of Eqs. (4). The N parameters a are to be determined by requir-
ing the "backbone curve," or free vibration amplitude-frequency behavior, of the
approximate solution to match that of the exact solution at N preselected ampli-
tudes. This results in N linear algebraic equations which may be solved for the
N unknown parameters Ak. ( Note that the familiar unweighted form of equivalent
linearization may be recovered by simply requiring fk = 0 for every k ).

The backbone curve of a SDOF oscillator may be interpreted as the amplitude u
dependence of the period of free vibration. The period of free ibration of any
conservative nonlinear SDOF oscillator may be obtained directly from a first in-
tegral of the equation of motion, as shown on page 18 of Stoker's text [7]. The
integral often requires evaluation by numerical quadrature. However, the proposed
method has been constructed to conveniently accomodate this most general case,
since only N points on the backbone curve are required, and hence N evaluations
by numerical quadrature suffice. A closed-form expression for the backbone curve
is not necessary.

The order N of the weighting function w(x) must be selected to be large
enough to obtain an adequate polynomial fit to the backbone curve, but small
enough to avoid excessive computation. In the examples which follow, different
values of N between 10 and 20 provided results which were indistinguishable on
the plots.

4. EXAMPLE: ONE-SIDED VIBROIMPACT OF A SDOF OSCILLATOR

As an example of application of the approach just described, consider a
SDOF oscillator whose motion in one direction is limited by the presence of a
stiff but dissipative barrier, as shown in Fig. 2. When the mass is at rest, a
gap of width d exists betwcen the mass and the barrier of stiffness K and vis-
cous damping coefficient C.

The equation of motion for steady forced vibration of the system shown in
Fig. 2 may be written as

mx + ck + kx + 4T(x,k) = F cos(Wt + ) (7)0

where JT(x,A) represents the force on the oscillator mass from the barrier,
which may be expressed as 0 S

K(x-d) + Ck ; x > d and

J(x,k) K(x-d) + Ck > 0 (8)

0 ; otherwise. •
Since the aggregate restoring force is piecewise linear, an exact solution for
the amplitude-frequency behavior of the system may be obtained [8]. Assuming the
response to be periodic motion with one impact per cycle of excitation, the
determination of the amplitude-frequency behavior may be reduced to the problem
of finding the root of a single transcendental equation.

The equivalent linear model for the system is governed by the equation of
motion

mx + c k + k x = F cos(wt +) (9)

e e o

where c and k are the equivalent stiffness and damping parameters previously 6 S
described. e

Let the approximate solution take the form
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x(t) = x + i(t) = x + A cos(wt) • (10)

Substituting Eq. (10) into Eq. (7) and averaging over one cycle of oscillation
provides the relation

2Trkx + K(x o-d)(0 +0 2) + KA(sineI + sin02 ) + wCA(cosO - cose 2  0 (11)

where

01 = tan- 1 (K/wC) _ sin-l d-xo ]
(12)

82=cos-lId-x_

Determination of k eand ce by the weighted equivalent linearization proce-
dure requires N points on the exact backbone curve of the system. Thus, we con-

sider the amplitude-frequency behavio r for free vibrations of the system obtained
by setting c = C = 0. In this special case, the exact period of vibration of the
resulting conservative system may be obtained in closed-form. The resulting natu-
ral frequency w is dependent on the peak displacement (for example) during one
complete cycle of oscillation. However, since the system shown in Fig. 2 has an
asymmetric restoring force, the peak positive displacement is smaller than the
peak negative displacement. For convenience, let the absolute value of the peak
negative displacement be Amax, and regard wn as dependent upon A max . Then, it can
be shown that

W A(13) 0
n max B (A max )

where

S+ 1 + sin- I

i + ma0

B(A) 1 - sin 1  d - 2~} A mx> d (14)

1 ; A <d

max -

Because a closed-form solution is possible in this special case k may beh e
chosen such that the backbone curve of the equivalent linear system matches the
exact backbone curve at every amplitude. This fortunate choice of k is

e

2k (A)=mw (Amax) (15) 0 4
keA n m man

where, in the approximate solution from Eq. (10),

A max = A + ixo0 (16)

0 0
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Although consideration of the weighting function w(x) was not required for
the specification of the stiffness parameter ke, it must be considered now in de- 0 0

fining the damping parameter c e. This may be accomplished by first selecting

(arbitrarily) a global maximum peak response amplitude A* which is intended to
bound from above the response amplitude A which will later emerge as the ap-
proximate solution to the forced vibration problem. Then select (arbitrarily) N
values {A ; i = 1, 2,..., N} such that

max.0 0
d <A < A < ... <A < A*. (17)

- max max2  
maxN  --

For example, the A values may be equally spaced in the interval [d,A*].
max.

For each value of A max Eqs. (11), (12), and (16) may be used to decompose

A into an equivalent static offset x and a harmonic amplitude A..
max. o 1

1 

Requiring the backbone curve of the weighted equivalent linear system to

coincide with the exact backbone curve at each of the N amplitudes just described,
one finds that

k e(A.) ,[AicosO w(Aicos)F(x 0+ Ai cose, - wAiAsine)]
e 2 w n (Ai (18)

m m 4[A
2 cos 2 e w(Aiose)]

for i = l, 2,..., N, where

F(x,k) E kx + ck + ,T(x,k) (19)

and JT(x,i) is described in Eq. (8). Substituting from Eq. (6) into Eq. (18) and
rearranging,

N
X aik c4k = b ; i = 12,..., N (20)

k=l

where

k2l.....2 k+2 k+2

a = k+l C s k+lc F(x + A.cose, -wA sine)] - m w2 (A),4[Ai  cos e] (21)aik =,[ i  0o FX.Aic~@ -i n •
1

b. = d[A.cose F(x + Aicose, -wA. sinO)] - m w 2(A).4[A2 Cos 20] (22)
1 1 0. 1 1 n1 11

After evaluating the coefficients in Eqs. (21) and (22), the N linear algebraic
equations (20) may be solved (numerically) for the set fa k; k = 1, 2,..., N}
which then defines the weighting function.

The method as just described requires the recalculation of the A k's for
each excitation frequency w, because of the dissipative term in the restoring
force. An alternative, which was employed in the numerical examples presented

herein, is to use only the conservative portion of the restoring force for pur-
poses of determining the k'ks. Then the tedious calculation of the a k s need be
performed only once and the results stored.

The equivalent damping parameter ce may then be obtained as

S( = 4[-uA sinP w(AcosO)F(x+ Acos(,, - fiAsine)]
ce(A) = 2

.4[2 A sin2 0 w(AcosO)]

where Eq. (11) is again used to eliminate x° in favor of A.
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Finally, the steady-state amplitude-frequency behavior of the equivalent 0
linear system is determined by k

k ce2 (F I k c'

W2 (A) = e -- _ e e e(24)m 2m 2  \ ] 2m 2  m 2m 2

where the dependence of k and c on the amplitude A of response is implied in
Eqs. (15) and (23) respectively. The approximate forced response of the system

is then obtained by solving the four nonlinear algebraic Equations (11), (15),
(23) and (24) simultaneously.

Shown in Fig. 3 is a comparison of curves depicting the amplitude-frequency 0 6
behavior of the forced vibration of the system shown in Fig. 2. The curve labeled
"exact" was obtained by the method of Ref. 7. The curve labeled "Wtd. Equiv. Lin"
was obtained by the weighted equivalent linearization approach presented herein.
The curve labeled simply "Equiv. Lin." was obtained by the method of Ref. 2,
which is a special case of weighted equivalent linearization with ik = 0.

The curves in Fig. 3 illustrate the substantial improvement in accuracy ob-

tained by the proposed method over that of "unweighted" equivalent linearization.
After a one-time effort to obtain the coefficients xk and develop an algorithm
for k and ce from Eqs. (15) and (23), the weighted equivalent linearization al-
goritfm is computationally the same as the equivalent linearization method [2].
Hence, the computational costs for both are quite similar. This is a significant 0 S
advantage for more complicated examples where an exact solution is not available,
because direct numerical simulation from Eq. (1) is typically two or three orders
of magnitude more expensive than the solution of the equivalent linear problem as
outlined herein.

5. EXTREME CASE OF SDOF VIBROIMPACT WITH A RIGID WALL 0 0 0

As an example of a problem with a severe nonlinearity, consider the vibro-
impact of a SDOF oscillator with a rigid wall as indicated in Fig. 4. The equa-
tion of motion for this system is again Eq. (7) where, in this case, the nonlin-
ear restoring force .9(x) is as shown in Fig. 5.

The rigid barrier may be regarded physically as a limiting case of the
spring-dashpot assembly of Fig. 2 as K - -. In the limit, the spring-dashpot as-
sembly produces a force-displacement behavior as shown in Fig. 5. Note that .9 be-
comes conservative in this limit, and the collisions between the oscillator mass
and the wall occur instantaneously, impulsive forces of interaction are generated,
and energy is conserved. Thus, an appropriate technique for generating an exact 0 0 .
solution in this case may be based on impulse-momentum considerations. This ap-
proach applied to vibroimpact is presented in Ref. 9, and was used to generate

the exact solutions discussed later in this section.

It is interesting that, even in this limiting case as K - o, the equivalent

linearization technique yields an equivalent stiffness k which is finite. In 0 0
fact, from Eqs. (13), (14), and (15), one finds that

k;A <d
max 

-

k e lim k = k (25)
K -od 2 ; A m x> d 0e sinl(d max ••

ma x

for the weighted equivalent linear stiffness in this limiting case. Similarly, it

can be shown using the unweighted equivalent linearization approach that
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kec = (26) 0 S

(3 4d ; Ax >d.
max+ d m

Note from Eq. (25) that as A -- 0, k e - 4k, while from Eq. (26) ke - 3kHecte egtdm e . e e.
Hence, the weighted equivalent linear stiffness (which yields the correct period
of oscillation for free vibrations) is substantially larger than the unweighted
equivalent linear stiffness.

Both the weighted and unweighted equivalent linearization algorithms yield
the result

c e lim c = c. (27)
e e

This result is consistent with the fact that as the wall becomes rigid no defor-
mation of the viscous damped C occurs, and hence no additional energy dissipation
occurs.

Furthermore, it can be shown that

lim x = d - A. (28)
K o

The equivalent linear solution in this case may then be constructed by simulta-
neously solving Eqs. (24), (27), (28), and either (25) or (26).

Presented in Fig. 6 is a comparison of curves which represent the amplitude
frequency behavior for the forced vibration of the system shown in Fig. 4. The
excitation level and linear oscillator parameters are the same as those used to
construct Fig. 3. Again it is found that the weighted equivalent linear solution
is substantially more accurate than the unweighted solution. In fact, the weighted
approximate solution is found to be remarkably accurate in predicting all features
of the response except the very peak of the curve.

6. APPLICATION TO MULTIDEGREE-OF-FREEDOM (MDOF) SYSTEMS

In order to investigate the validity of the weighted equivalent lineariza-
tion approach for MDOF systems, the simple 2 DOF system of Fig. 7 is considered.
The system is piecewise linear and sufficiently simple that an exact solution is
obtainable for calibration of the approximate results. The system consists of two
adjacent linear SDOF oscillators separated by a gap of width d. Collision between
masses is cushioned by stiffness K and viscous damping C. Excitation is provided *
by simultaneous support acceleration z(t) of both walls. The system response is
that of uncoupled SDOF oscillators as long as (Y2 - yl) > d. However, the vari-
able x defined as x = Y2 - y1 always displays two degrees of freedom regardless
of response level, and proviAes a convenient description of overall impact beha-
vior of the system.

For the case when the base excitation has displacement amplitude z and
driving frequency w, an exact solution for the steady-state periodic motion of
the system was obtained by numerical integration of the equations of motion with
appropriate periodicity conditions.

Two approximate solutions for the steady-state response were also obtained S S
by the method of equivalent linearization. In each case the nonlinear restoring
force was replaced by an equivalent linear stiffness and damping term as pre-
viously discussed. The approximate solutions for yl and Y2 (and hence also x)
were assumed to consist of a constant bias term together with a sinusoidal term,
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as in Eq. (2). In each case the equivalent linear stiffness was obtained from the
SDOF analysis replacing k with the effective stiffness of the system in Fig. 7
for equal and opposite forces applied to the masses.

Shown in Fig. 8 is a comparison of approximate and exact amplitude-frequency
curves for the system shown in Fig. 7. Again it is found that the weighted equi-
valent linearization approach results in a substantial improvement in the accu-
racy of the approximate solution.
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304



KL _

K 
1 0 0  *OI- -0-04

.0.#s 0 0
Km

10 Equiv. Lin.

Arnax Wtd. Equiv. Lin./

5 EXact1

0 0
0-4 0-6 0-8 1-0 1-2 14 156 18

Fig. 3 Amplitude-frequency response of the SDOF system shown in Fig. 2,
as determined by an exact and two approximate analyses. 0 0

00 0

0 
0 0

kRigid______

d
M Wall

* 0

Fig. 4 SDOF vibroimpact model Fig. 5 Force-displacement relation
with rigid wall, for nonlinear term in rigid

*vibroimpact model. *

305



*d 0 5

Wtd. Equiv. Lin. -41 - - .o.0o0 Exact--/I- -
Fig. 6 Amplitude-frequency EatI I

response of the system Ii
shown in Fig. 4, as d Equiv.Lin.-/

determined by an exact

and two approximate 5 //
analyses.

0
0"4 0"6 0"8 1-0 1"2 1.4 16 1"8 2"0

M M2Fig. 7 Two DOF vibroimpact
©, model with base

excitation.

Y2
f[t) Et

K 100

7 .0. Equiv. Lin.
MI 1 Wtd. Equiv. Lin.

6 Exact 1
k2

Fig. 8 Amplitude-frequency 5 91CIz0.04

response of the 2 DOF Xmai

system shown in Fig. 7, d/ 

as determined by an I /, •/
exact and two approxi- /
mate analyses. 2

2 3 4 5

k2

306 *N ".. ... ..



THE NUMERICAL SOLUTION OF DISCONTINUOUS 0 0

STRUCTURAL SYSTEMS

W.K.D. Borthwick

Department of Mechanical Engineering
University of Dundee 0 •

1. INTRODUCTION

-This paper presents a numerical method, based on the classical fourth order
Runge-Kutta process which is suitable for the solution of systems of ordinary 0 0
differential equations with discontinuous right hand sides. These could, for
example, include structural systems with discontinuous stiffness, mass or dampin:
or indeed any system whose discontinuous characteristics may be expressed in
terms of discontinuity functions. There is no restriction on the size of the
system or on the number of discontlinuity conditions. Typically the solutions to
such systems consist of continuous pieces, which may be integrated quite S 0
satisfactorily by the basic Runge-Kutta process (or other convergent integration
algorithm). Difficulties arise, however, when one or more components of the
solution encounters a discontinuity. Generally, the timing of these discontin-
uities cannot be predicted in advance of the solution. Therefore timing errors
in switching the system parameters are in general introduced unless all
discontinuities occur at mesh points of the discrete solution. These timing S •
errors generally have a catastrophic effect on the global accuracy of the
numerical solution, with the order of convergence collapsing to one after only
one discontinuity traversal. The practical significance of this is demonstrated
in Section 2, using a simple discontinuous structural problem.

The structural dynamics literature contains many examples of systems with S
discontinuities. Grubin [1] describes impact dampers which have jump discontin-
uities in velocity. Masri [2] studied a two-degree-of-freedom system with
discontinuous stiffness and damping. Mounting systems for vital equipment in
buildings and ships are often required to satisfy the conflicting requirements of
shock protection and noise isolation. This can be achieved through use of mounts
with piecewise linear stiffness, as in Iwan [3]. Similar snubber-support systems
are described by Lashkari and Weingarten [4], for complex pipe net-works. Stiff-
ness discontinuities are also found in rotating machinery (blade rubs in turbines)
and electrical switching mechanisms. Systems, such as the nonlinear vibratory
conveyor studied by Leckie and Barr [5], which incorporate connections by Coulomb
friction, may give rise to equations with discontinuous mass. Discontinuous
problems range from very large (finite element based) systems with discontinuities
in some components, to small two- and three-degree-of-freedom problems. Except
in certain trivial cases, closed-form analytical solutions are not obtainable.

2. BACKGROUND THEORY

The solution by direct numerical integration of large continuous non-linear 0 0
problems in structural dynamics is now relatively commonplace. There exists a
considerable number of sophisticated library programs, as surveyed by Noor [6].
The options available for numerical integration are generally confined to fixed-
step low order algorithms such as the familiar Newmark, Park, Wilson-6, or
Houbolt algorithms. This perhaps reflects Dahlquist's [7] celebrated theorem on
the A-stability of linear multistep methods (LMM), which states that the maximal 0 0
order of any LMM, consistent with A-stability (i.e. unconditional on stepsize h),
is two. In fact, the numerical analysis literature contains several classes of
algorithms which circumvent Dahlquist's "barrier" (see Lambert [8]). However all
A-stable algorithms are implicit in some sense, and all require matrix inversion,
which can be a major computational deterrent. The literature contains conflicting
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views on the relative efficiency of explicit versus implicit algorithms. 0

Belytschko et al [9], and Braekhus and Aasen [10], have favoured explicit

algorithms, particularly when accurate integration of medium/high modes is
sought. This is significant for discontinuous systems where sudden changes in
system parameters and/or shock excitation are likely to perpetuate the high mode
response. Furthermore in transient response calculations of discontinuous
systems, it can be critical to the global accuracy that the relative phase 0

relationships between the various modes are faithfully reproduced (this is
demonstrated in Section 2.3). These factors, combined with ease of implement-
ation, justify consideration of the explicit classical fourth-order Runge-Kutta
algorithm as a suitable basis for a numerical method for discontinuous systems.

r 2.1 Loss of order of convergence on discontinuous systems. 0 0

Consider the initial value problem

y' = f(t,y) ; y(o) = (I)

Solution of equation (1) by direct numerical integration over the interval 0 0

t = [O,b], involves stepwise computation of the sequence {y }, n = 1,2,.., b/h,
where y is an approximation to y(t ), the exact solution. ~ Each value y is
compute by a recurrence formula, or algorithm. From classical numercia
analysis theory (Lambert [8]), the traditional results on convergence, order,
derivation of asymptotic formulas for the error, etc., are only guaranteed for
an algorithm, when the function f(t,y) in equation (I) satisfies the Lipschitz S 0
condition

11f(t,y) - f(t,y*)Il <LIly - y*1I (2)

where y, and y* are two distinct values lying in a bounded region of the
solution space. The order of convergence of an integration algorithm may be 0
formally defined as the largest integer p which satisfies

Zim HlY(tn) - y11 = O(hp )

h-*O (3)
nh-t

Feldstein and Goodman [11] have proved that if any algorithm of design
order p > I is applied to a differential equation (1) which does not satisfy the
Lipschitz condition (2), its order of convergence in general collapses to p = I
after only one discontinuity traversal. This is demonstrated numerically in
Section 2.3, and the consequences for problems in structural dynamics are

considered.

2.2 Discontinuous test problem

Consider the two degree-of-freedom system illustrated in Fig. l(a). For
displacements exceeding the gap condition, the mass m contacts precompressed
snubber springs. The resulting stiffness characteristic for the spring
connecting the mass m to the base is illustrated in Fig. l(b). It can be seen
that as m1 contacts tAe snubber spring, there is a jump discontinuity in the
spring force as well as the spring stiffness.

This system may be non-dimensionalised with respect to displacement by 0
* making the substitution x = u/u . Non-dimensionalisation with respect to time

is accomplished by the substltufion

d2u d2x k
= - = W 2. wherew 2 1

d dt 2  mi m
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Making the additional substitutions 0 0

2 k2 W2 m22 = - ; 2 = -; m = m
2 m 2  W1 1

enables the equations of motion to be expressed in non-dimensional form S

K= x where K = -M 1 (K+H) (4)

and where the various matrices M, K, H, K are defined

M m K = -_g 2 q2) (5a,b)(x 0) (r -)
H =( (Xl) O) K ( (0) (5c,d)

Thus K is a matrix of stiffness increments whose accumulation is controlled by 0 0
the matrix H which contains Heaviside functions. Thus the element H(xl) in
(5c) is defined

H(x1) 0(O for IxlI <1 (6)
H(Xl) = 1 otherwise(6 •

1 =x;2 3 42Let xl; Y = x2; y I; Y = x2 (the superscripts denote component
numbers of y). Equation (4) may now be written in first-order form

y' ay ; where a = [A + HA (7)

The partitioned matrices A, and A are obtained from the matrices in (5)

I A = 0 ~ I-
A M-lK 0 (M-K 0

For larger systems advantage must be taken of the sparseness. In view of
the Heaviside function (6), which switches the jump discontinuity in force, the
first-order system (7) does not satisfy the Lipschitz condition (2) at Ily! = 1.
The system (7) provides a suitable test equation for discontin,,ous problems in
structural dynamics, for it is possible to obtain an analytical solution (see

Appendix I). The jump discontinuity causes an instantaneous change in the modal
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spectrum. O 0

2.3 Fixed-step integration of the discontinuous test problem.

The loss of order of convergence after only one discontinuity is

demonstrated numerically using the classical fourth-order Runge-Kutta process.

h
+n+l = n ( + 2k2 + 2k 3 

+ k 4 )

w e e k k y + 1-hwhere - (tn'Yn) 3 = f(tn + "h + 2)-

1 1 (8)
!2  = f(t + -h y + -hk k =  f(t + h, + hk3 ) 0 S

This Runge-Kutta process is applied to the discontinuous test problem (7) with

the particular choice of parameters r = 11.5, m = 0.1, 0 = 4.582576. For

Ilyl < 1, the eigenvalues are p, = 0.951516, P2 = 4.816079, whereas for ]lyI > 1,
yi = 5.114166- W.1 = 4 990190. The system is subject to the initial conditions 0 •
y(O) = 1.5, y( 6 ) = y(O) = 4 y(O) = 0. The results of numerical experiments to
determine the order of convergence are presented graphically in Fig. 2(a) and (b).
In each Figure, the ordinate is the uniform norm for the first displacement

component

max yj y(t) ; j = 1, 2, ... , ns

J J

evaluated at the fixed station t = n h. This is plotted as a function of h.

1 0•

( t

(a) (b)

I " .

fig. 2: Fied statioa covergence at (a) t - 0.12 (before discontinuity); (b) t 0.24(after discont inuity). •

0 1
In Fig. 2(a) the fixed station is t = 0.12 and ns assumes the values 2 , 21,
212. The trend line on this log-log plot has gradient four, corresponding to the
design order of convergence p = 4 of algorithm (8). This is as expected over the
initial continuous piece of solution, prior to the first discontinuity at

t = 0.2298. The effects of rounding errors are clearly evident for h < 0.01.
Both the exact solution ly(t) and the numerical approximation were computed in

single precision arithmetic. Fig. 2(b) shows the fixed station convergence at
t = 0.24 after the first discontinuity, with h taking the same values as before.

The trend line shown, which is drawn through the upper set of points, has slope
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one. Isolated points of high accuracy are therefore ignored, as they correspond
to a discretisation where a mesh point nearly coincides with the discontinuity. 6 0
Comparing values for the uniform norm in the two plots at, for example h = 0.03
shows that the error after the discontinuity is a factor of % 680 times greater
than before. For continuous problems one would not expect the error to grow
more than linearly with the total number of steps.

This section is concluded with a practical demonstration of how costly it 0 S
would be to obtain a converged solution over a lengthy interval. The discrete
solution {ly n } obtained by applying the Runge-Kutta process with the fixed step-
size h = 0.005 is shown in Fig. 3 superimposed on the exact solution ly(t)
(faintey line). The discontinuity surface is represented by the chain dotted
lines Iyj = 1. Although the stepsize corresponds to 't 250 integration steps
per period of the highest frequency present, the numerical solution starts to 0 0
diverge around t = 13. Considerable errors in the phase of the lower mode then
become evident. The poor performance of the Runge-Kutta process on this
relatively simple test problem provides the motivation for the development of
special procedures for locating points of discontinuity.

0O 0

.o ".P. .'000 3 3

3. SPECIAL DISCONTINUITY SEARCH PROCEDURES

The problem of locating points of discontinuity may be formulated as the
algebraic problem of solving for the roots of the equations

Jy(t,y(t)) = 0; j = 1,2,..., r (9)

where Jy denotes the jth component of the discontinuity function y(t,y(t)). In
applications, the numerical solution {yn} replaces the exact solution-y(t). The
general case has r distinct discontinuity conditions (9). The discontinuous
test problem (7) has the single discontinuity condition y(t,y(t)) = I y(t)I - 1.
A discontinuity is detected in the jth component of y in any-integration step
Jn = ft n'tn1] which satisfies the bracketting condition

Jy~ < 0 (10)

Yn n+l

The overbar notation signifies here that the function parameters have not been
switched in accordance with y n+i

The formulation (9) provides the flexibility necessary for handling problems
with discontinuous stiffness, mass, or damping. Similar formulations have been
used by O'Regan [12], in a variable weight Runge-Kutta process, and by Hay et al. * *
[131, who proposed a general computer program structure for handling discontinuous
systems. This program could be adapted to accommodate virtually any combination
of integration algorithm and direct interpolation scheme, although the example
given is essentially equivalent to the Regula Falsi method. Clearly it is possible
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to adapt most of the standard procedures for the solution of equations (9).
Newton iteration is widely favoured because of its rapid convergence. Making
the substitutions

p(t) = Jy(t,y) (11)

and applying Newton's method to equation (9) in the bracketting step J one
obtains n 0

t[v+l] = t[V] - '(t[V]) (12)

where the superscript v denotes the iteration number, and the overbars indicate 0 S
that the function is not switched. It is necessary to insert an integration step
(with stepsize t[V] - tn) between iteration steps to update and, through (12),

41(t[VI). A disadvantage of Newton's method is the need for-evaluation of the
derivative of the discontinuity function T" = JY'.

Mannshardt [14] has proposed transition methods for discontinuous systems 0 S

based on algorithms of Runge-Kutta type. The increment function of the one-step
algorithm is incorporated directly into a modified Newton iteration scheme, in
which the derivative is evaluated only once at the start point tn. This elimin-
ates the prodigious effort involved in evaluating the derivative of the increment
function at each iteration step.

3.1 Construction of a New Inverse Interpolation Scheme

The search procedure now proposed has comparable rate of convergence to
Newton's method, but avoids differentiation of the discontinuity function. The
procedure is based on quadratic inverse interpolation of the discontinuity
function. The inverse interpolation problem is illustrated in Fig. 4. 0 0t~t (/ *- - t: : 1-n,, f -n Iim (x=t)

- (93: Iwv'r.,, tn,ti (pamr trrs not
-ittihed/ K K n 

s 

I $ is'r tc vfl 'ricJl approximItim

.... Q(#) polynnnial %hich int .rpolatv
invcrc fun.ti- at tabulated

I-l o'if 'G 5

/

0~0

The curve t = G( ) (where (t) j j(tq(t)) represents the exact trajectory of the 0 0

inverse discontinuity function. LUt C = G(O) be the exact value of the switching

point. The inverse function G( ) represents the exact solution if the function
parameters are not switched at . In the numerical solution the inverse
function G( )is approximated by the discrete solution 16n }. This enables the

polynomial 9( ) of degree s to be constructed which interpolates (s+l) tabulated
values of {G 0}. Evaluating Q(O) fi *,provides the desired approximation to the • 0

switching point.

The new scheme avoids the wasteful computation involved in continuing the
solution beyond the bracketting step for (s-1) additional points (or alternatively
storage of back values). The interpolation points are instead confined to the 0
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bracketting step. The basic integration over the continuous pieces is performed 4
by the Runge-Kutta process (8). At each step the discontinuity functions (9) are
evaluated. The end points of a step Jn satisfying the bracketting condition (10)
therefore provide two interpolation points. The third interpolation point is
provided by the approximation

1 (k+k) (13)~n+2 = n " _1-2(3

aot global error at the two end points O(h4), the design order of the
algorithm (8). The local error at the midploin is obtained for the scalar equation
y = f(t,y) by making the usual localising assumption Yn = Y(tn). Expanding

y(tn + 4h) in a Taylor series about Y(tn), and k2 in a Taylor series about f(tn,yn)

Y(t + h) - (y + W (kl + k2)) h (2Ff - G) + 0 ()4 (14)
ynt 2 n 2) h9h y 20

where F = (ft + ff) ; G = (ft t + 2ffty + f2fyy)

p 3
The error in the approximation (13) is therefore O(h ), the same order as the -
error in quadratic interpolation.

For notational convenience, the subscripts n, n+j, n+l, will be replaced by

the numbers 1, 2, 3. The three interpolation points become

( = t1 ; Q( 2) = t2 ; Q(i3 ) t3  (15) 0

where n y(tn); 2 n+ n+; 3 n+l'yn+l

The interpolating polynomial Q is constructed using Aitken's algorithm (see
Henrici [15], p.210). Evaluating the polynomial at 0 = , Aitken's scheme is setout -

t j, = tj (j = 1,2,3)

For k = 1,2,..., j-1

t = tk'k - 1ktjk (16)

j,k+l - k

Aitken's algorithm enables polynomials of higher degree to be constructed
recursively from polynomials of lower degree. The final approximation to the root
is given by = t3 3. The Runge-Kutta process (8) is then applied again at t = tn
with the fractionea stepsize hf = (C - t ). The process is repeated as often as
is necessary until the switching condition

* [(17)

is satisfied. The function parameters may then be switched and the algorithm
applied again at * over the residual piece of the original step J.n

4. ACCURACY OF THE INVERSE INTERPOLATION SCHEME

A formula for the error in inverse interpolation is given by Ostrowski [16].
Applying this formula to the 3-point scheme (16) gives the estimate for the error
in approximating the switching point

a_3) (3 (-1) l2 (18)

where lies in ( 1 i 3) and () denotes differentiation with respect to '. If all
interpolation points are close to the root, the product Pt243 means that the
error (18) will be small. This is one advantage ofconfiniing the inverse inter-
polation to the bracketting step. Assume (i) that 4(t) is sufficiently
differentiable on Jn and (ii) that the root7 of i(t) lies in Jn such that
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t!
= t + nh,O < q < 1. Taking account of the global error in the interpolation 0 •

points (Il = i(tl) + 0(h4 ), etc.), and expanding these in Taylor series about the
switching point = t + nh

n2E1 = ( -h)+O 4 )
= ( ) - nh (Q)+ (nh)2-

3 (2-r0 2h2_ 3
= (+(I-n)h) + O(h3 ) = 2( )+((-n)h4'(C)+ . T ,,(")+O(h3 ) (19) S 0

'3  = i(C+(l-n)h) + O(h 4 ) = ()+(l-)h' (l-n) 2 h 2 - ( )+O (h 3 )

Noting that, by definition, T(C) = 0, and substitjting from equations (19)
for the product Ip2 3 into equation (18) and writing G (C) as a polynomial in

W'(t) and its derivatives (Ostrowski [16]) enables the expression (18) to be 0 0
rewritten 3 3

- = (2I3-3 2 +n)(- (t) )( )+3,,( t 2 ,(t h (20)

12 (t) 5(

where ' denotes differentiation with respect to t, and G() = t is some
intermediate point of Jn Equation (20) ihows that the error i the inverse 0 0
interpolation scheme (16) is normally O(h ) but may become large if
(i)P'(M) >> ''(t ) which is unlikely in J, or iP'(1) 0-'(t ) << 1, which
corresponds to te critical case when the solution trajectory is tangential to the
switching surface. In this situation inverse interpolation is unreliable (as is
Newton iteration). It is then necessary to resort to the straightforward
bisection method. • 0

5. TOLERANCE ON LOCATING THE SWITCHING POINT

Preliminary numerical experiments with one-degree-of-freedom systems more
or less confirm Mannshardt's theory that to maintain global order of convergence
p, all points of discontinuity must be 3located with accuracy O(hq), where • 0
q > p-l. Therefore specifying c = O(h ) in equation (17) should be sufficient for
the Runge-Kutta process with the search procedure (16). However, the theory is
based on the tacit assumption h - 0, whereas it is generally the aim of structural
dynamicists to use moderate values of h. In practice it is found that a tolerance
E = O(hq ) with q > p yields improved global accuracy, (especially for systems).
There is a need for methods which automatically match the stepsize and switching 0 -

tolerance to the problem being solved.

6. COMPARISON OF THE INVERSE INTERPOLATION SCHEME WITH NEWTON'S METHOD

The Runge-Kutta process (8) has been applied in conjunction with Newton's
method (12), -o th% test problem with stepsize h = 0.04, and switching tolerance 0 0 S
5 5.0 x 10 (-h /5), the minimum practicable for single precision implementation.
The basic discretisation corresponds to % 31 steps per period of the highest
frequency present. The results are presented in Fig. 5(), which shows the
displacement-time curve for the component y, scaled by Ymax = 1.5. The
numerical solution {lyn/lymax} is superimposed on the continuous line which 0
represents the exact solution ly(t)/ Ymax" Both solutions are in very close • 0
agreement up to t = 19, where they start to diverge.

This solution may be compared with that in Fig. 5(b) generated by the
Runge-Kutta process with the new search procedure (16). The same parameters have
been used in both cases. Both search procedures yield virtually identical
approximations, and the computational costs are comparable. The new search 0 0

procedure required an average of 6.31 step changes per discontinuity. This
compares with 5.07 for Newton's method. This slight cost disadvantage must be
weighed against the need for evaluation of the derivative of the discontinuity
function i'(t) = iy'(t,y) in Newton's method. Very considerable savings are
achieved by either search procedure when compared with the fixed step solution
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in Fig. 3, which required 5.9 times as many steps and is less accurate. -

A

- 0. 2 4 o 8 10 12 i4 16 15

0.50

2.1

FIG. 5: Runge-Kutta process ()applied with discontinuity search procedures •
(a) Newton iteration; (b) new inverse interpolation scheme.

7. CONCLUSIONS

The inverse interpolation scheme proposed offers certain advantages when
compared with the more usual form of inverse interpolation. The interpolation 0 0
points are confined to the initial bracketting step, thus avoiding unnecessary
storage of back values. This is also an advantage when multiple discontinuities
occur at intervals of comparable length to the integration step. Furthermore the
error analysis showed that the error is small when all the interpolation points

Sare close to the root. The scheme has been demonstrated in practice to have
comparable rate of convergence to Newton's method, but avoids explicit differen- 0 • 4
tiation of the discontinuity function. in experiments, both the new scheme and
Newton's method have considerably better convergence properties than straight-
forward linear interpolation, especially when a stringent switching tolerance is
specified. The fact that the basic algorithm is not A-stable may not be a dis-
advantage. In many cases the discontinuities may perpetuate significant high
mode response, accurate simulation of which can often be achieved more cheaply 0
using conditionally stable algorithms. The use of implicit A-stable algorithms
and the concomitant increased stepsizes may even result in the solution 'skipping

over' discontinuities.

APPENDIX 1: Exact Solution to the Discontinuous Test Problem

In the ith sub-interval (t d .t, + where the solution is contipuous,equation (4) may be uncoupled usinA th 'rnsformation x

local matrix of eigenvectors. The iuncoupled problem may be wrltten in terms of
the local principal co-ordinates q = [lql 2qi]T,

q = iq i  (a)
i i 2where 5: Rune-si is the diagonal matrix of eigenvalues sn u s c 2 of

)JI i2 I{-(l(r-)H(XI ) (m+)Q2) ±[(l(r-)H(x Ii) (M
+I

)
Q2

)
2

P2 i -4Q2 (l (r-1)H(xl i))M

3.15



The solution to an individual component of the uncoupled system (a) becomes
j"i

jqti = qico t+q i i

q (t q 0 cosJt + - sinjt ; j = 1,2
PJJ

i ji jii
where t t-tdi, and qi^, q are obtained from the conditions at the end of
the (i-l)st sub-interval). The solution.ip local generalised co-ordinates is
obtained using the transformation xi = Z1q1 . This is computed at steps of length
hr << h. The time points of discontinuitlies are located by Newton iteration.
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.-.----- • -N NONLINEAR FORCED VIBRATIONS OF BEAMS
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1. INTRODUCTION

Many optimum or minimum-weight designed structural components are unouL

severe operational conditions. In many cases, the small deflection linear 0 s
structural theory is no longer applicable. Considerable research effort has
been devoted to obtain the approximate solutions for nonlinear response of
beam structures under harmonic excitation. The common approach is to assume
some form for the spatial solution, usually a linear mode shape, and then
solve the governing nonlinear partial differential equation using Galerkin's
method. This reduces the governing equation to a nonlinear ordinary 0 0
differential equation of the Duffing type. Most of the investigations have
been concerned with beams of simply supported ends.(e.g., [1] and [2], plus
others too numerous to mention).

Bennett and Eisley [3] used a multiple mode (3 modes) Galerkin approach
and the Wegstein iteration scheme in investigation of nonlinear forced 6
response of a clamped beam subjected to a concentrated harmonic force. Busby
and Weingarten [4] employed the finite element technique to obtain the
nonlinear differential equations of motion with 2-mode participation for beams
of simply supported and clamped boundary conditions. The method of averaging
is then used to obtain an approximation solution. A numerical-perturbation
technique for the nonlinear forced response of general structural elements was
proposed by Nayfeh, Mook and Lobitz [5]. The problem is represented as a
nonlinear temporal problem and a linear spatial problem. The spatial problem
can be treated by using either finite-difference or finite element technique,
while the temporal problem is solved by the method of multiple scales. Large
amplitude forced vibrations of a hinged-clamped beam having a discontinuous
cross section was investigated. •

In this paper, a finite element formulation is presented for nonlinear
vibrations of beam structures subjected to harmonic excitation. Longitudinal
deformation and longitudinal inertia effects are both included in the
formulation. These effects were not considered in existing finite element
nonlinear vibration of beam and plate structures [6], [7]. A harmonic force 0 0

matrix is developed for nonlinear oscillations of a beam element under uniform
harmonic excitation. Formulation of the harmonic force matrix follows the
mathematical basis [8] that the simple harmonic forcing function (Pocos Wt) is
simply the first order approximation of the Jacobian elliptic forcing function
(BA cn (pT, k)). Also the well-known perturbation solution of a Duffing
system to a simple harmonic forcing function is the first order approximate 0 0
solution of the simple elliptic response. Derivation of the harmonic force
and nonlinear stiffness matrices are given. Nonlinear forced response to
uniform harmonic excitation and improved nonlinear free vibration results are
presented for beams with various boundary conditions. Finite element results
of simply supported and clamped beams with inplane movements restrained at
both ends are compared with solutions of simple elliptic response, approximate 0 0

perturbation methods and other approximate numerical approaches.
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2. FINITE ELEMENT FORMULATION

The strain energy of a beam element shown in Fig. 1 is given by

i = Iu I w2 ( r2W )2 0
U= 2 fo [ES (a-u + f -w) + EI( x2 )- )] dx = UL+ UNL (1)

where I is the beam element length, E is the Young's modulus, S is the area of
cross section, and I is the moment of inertia. The linearizing function f is

defined as 0

f bw(2f = 2- (2)

This type of linearization has been used efficaciously in earlier studies of
nonlinear free vibration problems. As will become evident later, this linear-

re izing function is displacement dependent and actually evaluated at the corres- 0
ponding deflection shape of the beam. The linear strain energy in Eq. (1) is

1 f I au2 (2 w 2
L 2 [ES (-) + E - d (3)

L 0 a062)]d

which leads to the element linear stiffness matrix [k]L.

The kinetic energy of the beam element executing harmonic oscillations
is

22 2T- pS f (Cz +v )dx (4) •

0

where p is the mass density. It yields the element consistant mass matrix
[m). Both [k]L and [m] are standard matrices available explicitly in
literature[9].

The displacement functions for the beam element are chosen as 0 0

2 3
w = a 1  +ax+ a3 x + a4 x u = a5 + a6x (5)

The element nodal displacements at the two end nodes are

{6}T = [,I 1 1 w2  e2 u u2]  (6) 0 0

and are expressed in terms of generalized displacements

{a}T _ [a1  a2  a3  a4  a5  a6] (7)

1 0 0 0 0 0

0 0 0 0 0 0

{a} - 3/12 -2/1 3/ 2  -1/t 0 0 {6} = [T]{6} (8)

2/ 3  1 /1 - 2/13  1/i2  0 0
0 0 0 0 1 0
o 0 0 0 -1/y 1/1
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The nonlinear strain energy in Eq. (1) is 0 0

ES2ES u bw f2 bw2
U - - f [2f. -+ f (-) ] dx (9)

NL 2 0 -xX T

The terms in Eq. (9) can be expressed as 0 0

u 0 0 0 0 0 1] {a} = [C][T]{6} (10)

_w [0 1 2x 3x2 0 0] (a) - [D][T]{6} (11)

Substituting Eqs. (10) and (11) in Eq. (9) yields the element nonlinear

stiffness matrix

[k]N L = ES [T]T f (f [C]T[D]
0

+ f [D]T [C] + f 2[D]T[D]) dx [T] (12)

in which the linearizing function f is evaluated from the expression

1f -[D] [T] {6} (13) 0

where the element displacements {6} are obtained from the beam deflection

discussed in Section 3. This indicates clearly that the nonlinear stiffness
matrix depends on the deflection of beam.

With a standard beam deflection w = Rq(t)$(x) where R is the radius of •

gyration of the cross-sectional area, Hsu [8] presented both the exact and3

approximate solutions of a Duffing system to forced vibration q,T + q + Pq

- F(T). With a simple elliptic forcing function BA cn (pT, k) - Bq as the

external excitation to the system, an elliptic response q A cn (pT, k) is

obtained as the exact solution. When the forcing function F(T) is a simple 0
harmonic P cos wT, an approximate solution obtained from the perturbation -.

method is te well-known result

2p
3 2 o(-) - I + W - -A(4

Expanding the elliptic forcing function into the Fourier series and comparing

the orders of magnitude of the various harmonic components, Hsu concluded that

the simple harmonic forcing function and the corresponding perturbation

solution are simply the first order approximation of the simple elliptic

forcing function and the associated elliptic response. In obtaining the exact
solution, the simple elliptic forcing function is treated as a linear spring

force. The potential energy of a beam element due to the uniform harmonic
forcing function can thus be approximated by

B 2(1)0V f w dx (15)
0
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Examining Eqs. (4) and (15), the element harmonic force matrix under uniform 4
loading F0 cos t is

156 symmetric
cFo 42

[h] = 420AR 54 1322 156 2
-131 -31. -22 412 01 6
0 0 0 0 0

L0 0 0 0 0 Oj(16)

the actual applied force intensity F (N/m or lb/in.) is related to the
dimensionless forcing parameter P0 and the dimensionless forcing amplitude
factor B by 4

P cF
2 O (17)

ARpS L

where c is a constant given by c = f0 dx/ fo$ dx , which is simply the ratio 4

of areas under beam mode shape and square of mode shape. The harmonic force
matrix depends on the maximum beam amplitude A = wmax/R and Po"

The application of the Lagrange's equation leads to the stiffness equa-
tion of motion for a beam element under the influence of inertia, elastic,
large deflection and uniform harmonic excitation forces as 0 6

[m] {6} + ([kIL + [k]N L - [hi){6} - 0 (18)

Nonlinear free vibration is a special case of the more general forced vibra-
tion problem with P or [h] = 0 in Eq. (18)

3. SOLUTION PROCEDURE

Equation (18) is solved using an iterative procedure outlined as
follows. First, the linear free vibration problem of a given beam is solved

2
WL 0[M] }o= [K] {} o  (19) 6 0

where [M] and [KIL are the system mass and linear stiffness matrices, respect-
ively, and wL is the fundamental linear frequency, {}o is the corresponding

L ~0
linear mode shape. The mode shape is then normalized with respect to the
maximum beam amplitude A, and is used to obtain the element nonlinear 0 0
stiffness matrix [k]NL through Eqs. (12) and (13). The element harmonic force

matrix is obtained through Eq. (16) for given P0. The nonlinear forced beam

vibration is approximated by a linearized eigenvalue equation of the form

2 [M] {W} -([K]L+ [K]NL- [HI) {} 1 (20)

where w is the fundamental nonlinear frequency and {$} is the corresponding

mode shape of the first iteration associated with amplltude A and force Po.

The iterative process can now be repeated until a convergence criterion is
satisfied. Three displacement convergence criteria proposed by Bergan and
Clough [10] and a frequency convergence criterion are used in the present
study. The three displacement norms are the modified absolute norm, the modi- 6
fied Euclidean norm and the maximum norm. The frequency norm is defined
as A__I/Wi, where Aui is the change in nonlinear frequency during the i-th

iteration cycle. A typical plot of the four norms versus number of iterations
for a simply supported beam of slenderness ratio L/R = 100 with immovable
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axial end supports subjected to an uniform harmonic force of Po = 2.0 at A =

4.0 is shown in Fig. 2. The results presented in the following section,
convergence is considered achieved whenever any one of the norms reaches a

value of 10- 5 .

4. RESULTS AND DISCUSSION 4

4.1 Immovable Axial End Supports

The fundamental frequency ratios w 1 L of free vibration at various

amplitude for a simply supported beam (L/R = 100) with both ends restrained 0 •
from longitudinal movement are shown in Table 1. Due to symmetry only one-
half of the beam which is divided equally into six elements is used. Results
with and without considering effects of longitudinal deformation and inertia
(ELDI) in the analyses are both given. It shows that the improved finite
element results by including ELDI in the formulation are to reduce the
nonlinearity. The elliptic function solution [8], (11] is also given to 0 0 4
demonstrate the closeness of the earlier finite element results without
ELDI. Raju et al. (12] used the Rayleigh-Ritz method in investigation of the
effects of inplane deformation and inertia on large amplitude flexual
vibration of slender beams. Appropriate frequency-amplitude relationship
using Rayleigh-Ritz method is also given in Table 1. This clearly demon-
strates the remarkable agreement between the improved finite element and 0 •
Rayleigh-Ritz solutions.

TABLE I

Free Vibration Frequency Ratios w/wL

for a Simply Supported Beam with Immovable Axial Ends 0 0

Without ELDIa With ELDI (L/R = 100)

Elliptic Finite Element Rayleigh Finite Element
A Function Ritz 6 0

Solution First Final Solution First Final
[11] Iteration Result [12] Iteration Result

1.0 1.0892 1.0895 1.0888 1.0607 1.0613 1 .0 6 13 (3 )b
2.0 1.3178 1.3203 1.3119 1.2246 1.2270 1.2269(4)
3.0 1.6257 1.6295 1.6022 1.4573 1.4620 1.4617(4)
4.0 1.9760 1.9761 1.9216 1.7309 1.7383 1.7375(6)
5.0 2.3501 2.3396 2.2544 2.0289 2.0393 2.0378(7)

a. Effects of longitudinal deformation and inertia
b. Number in brackets denotes the number of iterations to get a converged

solution.

Table 2 shows the frequency ratios of the same simply supported beam
subjected to an uniform harmonic force of Po 2.0. It demonstrates the

closeness between the earlier finite element results without ELDI, the simple
elliptic response [8] and the perturbation solution. The present improved
finite element results indicate clearly that the effects of longitudinal
deformation and inertia are to reduce the nonlinearity.
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0 0

TABLE 2

Forced Vibration Frequency Ratios w 1w L

for a Simply Supported and a Clamped Beam with Immovable Axial Ends

Without ELDIa With ELDI

A Simple Perturbation Finite Element Finite Element 0 S

Elliptc Solution First Final Final
Response Iteration Result Result

[8]

Simply Supported Beam Subjected to P = 2.0 (Fo = 1322 lb/in.)0 0

- 1.0 1.7852 1.7854 1.7852 1.7856 1.7682(3) b

k 2.0 0.8472 0.8660 0.8621 0.8460 0.7108(4)
1.6557 1.6583 1.6563 1.6512 1.5829(4)

* 3.0 1.4003 1.4216 1.4102 1.3760 1.2123(4)
1.8217 1.8314 1.8226 1.8002 1.6743(4)

* 4.0 1.8413 1.8708 1.8453 1.7846 1.5871(6)
2.1013 2.1213 2.0988 2.0495 1.8759(6)

* 5.0 2.2606 2.2995 2.2525 2.1619 1.9371(7)
2.4361 2.4673 2.4236 2.3432 2.1337(7)

Clamped Beam Subjected to P - 1.0 (Fo = 3277 lb/in.)
0 0 0

k 1.0 0.2118 0.2165 0.2096 0.2091 0.1772(3)
1.4307 1.4307 1.4297 1.4297 1.4251(3)

k 2.0 0.8279 0.8292 0.8215 0.8203 0.7905(4)

1.2987 1.2990 1.2942 1.2936 1.2743(4) 0 •

* 3.0 1.0401 1.0433 1.0279 1.0239 0.9726(5)

1.3232 1.3248 1.3127 1.3099 1.2694(5)

* 4.0 1.2183 1.2247 1.1979 1.1888 1.1151(6)
1.4101 1.4142 1.3910 1.3836 1.3197(6) 0 0

k 5.0 1.3938 1.4042 1.3619 1.3457 1.2513(8)
1.5322 1.5401 1.5016 1.4874 1.4014(8)

a. Effects of longitudinal deformation and inertia. 0 0
b. Number in brackets denotes the number of iterations to get a converged

solution.
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Similar results of a clamped beam (L/R - 100) with immovable axial end 0 0 4
supports subjected to an uniform harmonic force of Po = 1.0 are also given in
Table 2.

4.2 Movable Axial End Support

Figures 3(a) and (b) show the JAI versus w /w for a simply supported 0 0 4

beam of slenderness ratio L/R = 100 and 20, respectively. One of the end
supports (x - L) is assumed to be free to move in the axial direction. For a
highly slender beam (L/R > 100), the hard spring type nonlinearity due to
large deflection is so small as shown in Fig. 3(a), therefore, it can be
practically neglected. Longitudinal deformation and inertia effects are more
pronounced in a short beam than a long one. As a consequence, the reduction 0 6
of nonlinearity due to longitudinal deformation and inertia, from the nearly
small deflection linear case in Fig. 3(a), leads to a situation that the beam
eventually exhibits slightly soft spring type nonlinearity as shown in Fig.
3(b). Atluri [13] also obtained similar nonlinearity of softening type in his
investigation.

5. CONCLUSIONS

The finite element method has been extended to analyze nonlinear forced
vibration problems. A harmonic force matrix was developed for a beam element
subjected to uniform harmonic excitation. Improved finite element results on
nonlinear free flexural vibration of slender beams are achieved by considering 0 -

longitudinal deformation and inertia effects in the formulation. Nonlinear
free vibration can be simply treated as a limiting case of the more general
forced vibration problem by setting the harmonic force matrix equal to zero.
The effect of midplane stretching due to large deflection is to increase the
nonlinearity, however, the effects of longitudinal deformation and inertia are 0
to reduce nonlinearity. For beam with end supports restrained from axial 0 0
movement, only hardening type nonlinearity is observed. For beams of large
slenderness ratio with a movable axial end support, the increase in
nonlinearity due to large deflection is partially compensated by the reduction
in nonlinearity due to longitudinal deformation and inertia. This leads to a
negligible hardening type nonlinearity, and thus small deflection linear
solution can be used. For beams of small slenderness ratio, however, 0 0
softening type nonlinearity is observed.
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SNAP-THROUGH OF INITIALLY BUCKLED 
BEAMS

UNDER UNIFORM RANDOM PRESSURE

Paul Seide
Department of Civil Engineering

University of Southern California

AD-P003 668 0 4
1. INTRODUCT1ON

"Aircraft structural components such as engine air intake ducting and rear
fuselage and empennage structures which are located in the vicinity of 

jet

engine exhausts experience combined heating and random dynamic excitation which
result from the acoustic or pseudoacoustic noise emitted by the jet efflux.1-
A program to obtain a measure of the effects of the thermal-acoustic enviro*ent
-ha;n "fi describedin reference- [111 Among the qualitative phenomena which
have been revealed experimentally by that investigation is that there are 0 •
limited ranges of temperature and acoustic environment which cause violent oil-
canning vibrations of plate structures. If the sound pressure level of the
random acoustic environment is kept constant and the steady-state temperature
is increased, the RMS strain response was observed to increase slowly until
some "critical" temperature was reached beyond which oil-canning vibrations
occurred and the RMS strain response increased rapidly at first. As the steady- 0 0
state temperature was further increased, the RMS strain response reached a peak
value and then decreased rapidly to some value lower than the pre-critical level.
The large stress reversals that occur during oil-canning vibrations in suffi-
ciently high intensity acoustic environments can lead to early fatigue failure.
Although the experimental data obtained in reference [1] were used to define
a region of instability, the data are insufficient to inspire confidence in 0 0 a
the accuracy or reasonableness of the semi-empirical criterion.

A perusual of the literature indicates that the only analytical investi-
gation of a similar problem is available in reference [2]. Here the interest
centers on the time required for the maximum deflection of a simply supported
arch to first reach or exceed a certain critical value. The method used in 0 0
reference [2] can be described as an "experimental" one since the equation of
motion of the arch, represented by that for an equivalent single-degree-of-
freedom system, is integrated numerically for loadings given by a random-number
generator. Enough of these numerical experiments are conducted to yield a curve
of the probability of first-passage snap-through at a given time as a function
of time. The response of axially compressed initially buckled beams to deter- 0 0 0
ministic transverse load has been discussed in a number of papers. The buckling
and snap-through behavior of steep buckled simply supported beams under concen-
trated and uniform static transverse loading is investigated in reference [3].
The snap-through of shallow buckled clamped beams due to harmonic support exci-
tation was studied in reference [4]. In references [5] to [8] results for the
small large amplitude free vibrations of buckled beams are given. The response 0 •
of such structures to random loading has not been studied however.

In view of the meager available literature on the problem, an investigation
of the response of initially buckled beams was undertaken through Air Force
Office of Scientific Research Grant No. 79-0013 with the University of Southern
California. The present paper describes a part of the work done toward further 0 0
understanding of the phenomenon.
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2. EQUATION OF MOTION 0 •

The equation of motion of an initially buckled beam is derived under the
assumption of small strains, moderately large deflections, and negligible longi-
tudinal inertia. Consider an initially straight beam (Fig. 1) whose ends are
brought together a certain amount, d. If d is less than a critical value d
the beam is compressed only and does not bend. The axial compressive load

N in the beam is less than the Euler buckling load and is given by
0d

No =Ed (1)

where E is Young's modulus of the beam material and A the beam cross-sectional *

area. If, however, d is greater than d cr the beam buckles with a deflection

w s(x). For relatively small buckle amplitudes the axial compressive load NO

remains constant at the Euler buckling load N
cr

0 0For a simply supported beam the Euler buckling load is given by

2E

N = El (2)
cr L2

0 * 0where I is the centroidal axis moment of inertia of the beam cross section.
The initial buckled shape is a half sine wave

ws = wsinL (3) 0 0

with an amplitude given by

0 0
2 TL -(d-d-) (4)

w0  cr

and

Sd d - (5)
cr 2

AT,

With the ends of the beam now fixed in the compressed position, the beam
is next subjected to uniformly distributed time dependent loading (Fig. 1).
The equation of motion of the beam, including viscous damping with a damping *
coefficient 2, is given by

44- 2

I s (w+w ) (w+w 2
El- 4 + N - + A - + w + p = 0 (6)42 ~ 2 t p 6x x i t 0 0

where w is the additional beam deflection,N is the axial compressive force
exerted on the beam by the supports, and I is the density of the beam material.

00 0 0
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The change in the axial compessive force from its initial value N 0  4

is determined by the additional stretching or compression the beam undergoes

during its motion. The amount by which the ends of the beam move together
prior to motion is equal to the sum of the change of length due to the critical
load and the amount by which the ends move together due to beam bending. Thus

N0L L (dws\
2

AL = 0 + f -, dx (7)

where w s vanishes if N is less than N cr. With ws given by Eq. (3), Eq. (7)

yields the result of Eq. (5). When the beam deflects from its static position, 6 •
the beam ends would tend to move, were they not fixed in position, an addi-
tional amount equal to

1 L f S 121 ) dx (8)
0 Px Sdx)

This change of position must be negated by stretching the beam by an axial
tensile force given by

L dw

EAAL EA dWs
AN L L -x ( w + 2 -x dx (9a)

Thus

N =NO EA L ww dWs

N2N o - + 2 -x/ dx (9b)

Let the additional dynamic deformation be assumed to be symmetric and

to be given by

0 (2m-1)'x ( 0
w = w sin (0)

m=l m L

Then the equations for the time dependence of the coefficients wm may be

obtained by substitution in Eq. (6) to yield, in nondimensional form,

2-
d w dw22

_+ __ + [(2m-1) -N] (2m-1) (W+ w ) = -
d2m 0Oml 2m-1S dT2

m = 1, 2, ... (Ila)
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0 S
with

1 -2 1 2 -
N 0 + 4 w 0 - Z ( 2 n-1) (w W0  ) (1ib)

n=1

0 0

Here

4 A
w ~ - =wv'7 (1a - - 0 0 4m wm YiA (2a r5  EI (12d)

2
T L- -El t (12b) N 2NL2/ E (12e)

L2 pA N 0L/rE

- L 2_ 2 24 2 (12c) N =NL2/T EI (12f)

0 p q

6 pq (12g)

p q

The nature of the equations is best illustrated by considering only
the term for m equal to unity. Then Eqs. (11) reduce to

*

2-d w dw

dT+ 1}j- 4 w I (w I+ w 0 W I + 2wo) = -P (13)

which is of the form of the equation of motion of a mass-spring system with a
nonlinear spring stiffness. The restoring spring force is shown as a function
of 7 I0 in Fig. 2. The spring resistance is of the softening type as Wl

decreases from 0 and is actually destabilizing when the beam becomes susceptible
to snap-through from the buckled position on one side of the initially straight
axis to the buckled position on the other side. Thus the beam would be expected
to vibrate about the static buckled position for small excitations but to snap
back and forth between the two equilibrium positions for larger excitations.

* 0

332



3. DYNAMIC STABILITY OF INITIALLY BUCKLED BEAMS UNDER UNIFORM RANDOM PRESSURE

An important consideration in the study of critical random loading of
initially buckled beams is the definition cf what constitutes instability and
the method of calculation of that critical loading. If it is supposed that
for low levels of spectral density of loading the beam vibrates about its 0
buckled equilibrium position while at high levels of spectral density the beam
snaps through repeatedly and vibrates about its straight zero-deflection posi-
tion, then presumably there is a critical value or range of spectral density
value for which snap-through is first initiated.

A description of the behavior of the initially buckled beam can be based 0
on time aver'ages of the response. A computer program was developed to calcu-
late the response of a compressed beam, buckled or unbuckled, over any desired
length of time and to obtain time averages of various quantities at stated in-
tervals.

To integrate the nonlinear equations of motion, a fourth-order Runge- 0 0
Kutta method of numerical integration reference [9] was used. A random loading
function having a Gaussian distribution with a mean of zero and a specified
deviation c was generated. The loading function consists of steps which are

constant over a given constant increment of time AT. A typical generated time
history of loading is shown in Fig. 3. The statistics of the distribution have
been studied in references [2] and [10] from which the value of the power spec- 0 0
tral desnity parameter can be determined as

S0 = 0AT (14)

In the numerical integration process, the constant integration time step was
taken as some integral division of AT, generally AT/5. The number of terms
in the Fourier series expansion of the deflection function was taken as three
in all cases. 0 0

The primary object of investigation is the average frequency of snap-
through, defined as the number of zero crossings N(T) of the maximum deflection
divided by the time T, i.e.,

T 0

The number of crossings of the zero axis of the maximum deflection function, *
both from above and from below, was counted during the calculation procedure.
At stated intervals, a time average of the crossing rate was calculated. It
was observed that this calculated rate was reasonably constant when the time
was sufficiently long, and that different loading sequences led to essentially
the same result. Some of the results are shown in Table 1. The time averages
shown for w0 equal to 10 suggest the calculation of a critical spectral de I
parameter based on the average frequency vanishing or becoming very small, since
for 0O equal to 10 the average frequency is zero whereas for o0 equal to 100

the average frequency of snap-through is 1.56. Additional caluculations were
made for various combinations of values of wO , li, AT, and a0.
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Some correlating parameters may be deduced from the following 
consider- 0

ations. If only one term is retained in Eqs. (11) and the resulting Eq. (12)

is divided by w0, the following is obtained.

2 w 1I w 1
1 d

wo W 0 W I1 + W1
+ + +P+ =_ (16)

d(w T)2 -0 d(w0T) 4 o 0 0 w 0

Since the first term predominates in the series, the above equation indicates

that initially buckled beams having the same modified loading function p/w0

as a function of modified time W0T will have nearly identical deflection ratios 0 0

Wl/W 0 * Since the standard deviation a0 of the random loading is a measure of

load intensity, these results suggest that random loadings having the spectral

density value of

w 0AT =0 (17)

should yield nearly identical average responses. 0 •

In addition, the investigation of reference [11] indicates that the pri-
mary white noise spectral density parameter is

___ -
(18)

The results of reference [11] were also found to be insensitive to the *
parameter p. It is possible then that beams of different initial amplitudes
having the same value of

1 0 (19)
8 - -4(9

w 0  w0  w 0

would have similar average response.

These conjectures are tested in Fig. 4 where the various frequency results

for initially buckled beams are plotted as a function of the spectral density

parameter SWO . The frequency has been modified by division by w0, since the

results should depend on w T . It will be seen that the results for the beams

of different initial buckle amplitudes appear to nearly coincide in the vicinity *
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* 0
of region of vanishing frequency of zero-crossing. Thus an estimate of the
critical spectral density parameter for snap-through and subsequent oscil-
lation between buckled equilibrium positions is given by

=0.001 w (20)
0

4. RMS RESPONSE OF INITIALLY BUCKLED BEAMS UNDER UNIFORM RANDOM PRESSURE

(a) Numerical Integration Results

Although knowledge of the critical spectral density of loading is useful,
it is also of interest to determine the expected average and root-mean-square
(RMS) deflections and stresses of the beam since these affect the fatigue life
of the structure. During the integration process which led to the result of
the maximum preceding chapter, a record was kept of the RMS deflections and
stresses at the beam center. The integrated deflections and stresses and
their squares over the time period were calculated using an extended Simpson's
Rule formula(reference [141).

As stated times the RMS center deflection and outer fiber stresses were
calculated. It was observed that after a sufficiently long time period the
averaged values became reasonably constant. The mean values calculated
at the end of the maximum time period in each case are plotted in Figs. 5 and
6, together with some theoretical results which will be discussed later. Only
the RMS stress having the greatest magnitude is given. For sufficiently large
values of the parameter S the two values of stress were essentially the same. 0 0

The results exhibit remarkably little scatter and thus indicate the pri-
mary importance of the spectral density parameter S and the lesser importance
of the damping parameter p. The results also indicate, as would be expected,
that the effect of initial buckling becomes less important as the spectral den-
sity parameter S increases. The deflections and stresses are then large enough 0 0
for the beam behavior to be similar to that of an unbuckled beam under large
loading. The RMS deflections appear to first decrease as the spectral density
parameter increases and to then increase. This phenomenon is explainable as
the result of a shift in the average deflection from the buckled position to
the unbuckled beam reference axis. The mean position of the buckled beam would
tend to shift toward the straight reference axis because of the softening spring 0 0
characteristic for inward deflections and hardening spring characteristic for
outward deflections exhibited in Fig. 2. Unfortunately, the few results ob-
tained for the variation of the average deflection with S are insufficient to
define the shift.

(b) Approximate Analytical Investigation S 0

The computation effort involved in these calculations is very great, so
great as to motivate an approximate analytical treatment of the problem. The
method of equivalent linearization (reference [131) which was used in reference
[11] for unbuckled beams suggests itself as a possible means of obtaining an
approximate solution which can be compared to the numerical integration results 0 0
for an accuracy check. There are certain complications in the present case,
however, the method of equivalent linerization has been applied successfully
in cases on nonlinearities which imply a zero mean displacement. In the present
case, however, the restoring force is reasonably symmetrical only for small
motion about the buckled equilibrium position and for large snap-through
motion about the straight reference position. Between these two extremes the 9
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mean displacement shifts from the buckled to the unbuckled position. 0 0

The two extreme cases are considered herein as providing possible bounds
on the YMS displacements and stresses. The method of equivalent linearization
involves replacing the nonlinear terms in each of Eqs. (11) by an equivalent
linear term. The equivalent linear term is determined by requiring that the
mean-square error be a minimum. For small motion about the buckled equilibrium 0 4
position the nonlinear terms in each of Eqs. (11) are replaced by a term of
the form k w . When motion about a mean straight reference position is con-

sidered, the nonlinear terms in Eqs. (11) are replaced by equivalent linear
expressions kmWm+ woi). The procedure is similar to that of reference [11

and leads to the curves of Figs. 5 and 6. 0 0

(c) Comparison of Simulated and Equivalent Linearization Results

It will be noted that the deflections obtained by the numerical integra-
tion are reasonably bracketed by the two sets of approximate curves. The RMS
deflections with respect to the straight reference position approach the static S S
buckle deflection for small excitation and merge with the curve for large snap-
through deflections about the straight reference position as the excitation
increases. For an unbuckled beam (w0 = N0 = 0) the equivalent linearization
results reduce to a single curve. In this case the numerical integration and
equivalent linearization results are in very good agreement over a quite large

0 range of the parameter S. 0 •

In agreement with the numerical integration results, the deflection for
all values of w tend to become equal. . The equivalent linearization deflec-
tions appear to becomeincreasingly larger than those obtained by numerical
integration for large S. This disagreement is possibly due to use of the method
of equivalent linearization beyond its range of applicability (see, however, 0 0
reference [14]). Certainly the beam is very highly nonlinear for large deform-
ations. It is also possible that the constant time increment used in the simu-
lation process for the random loading is too large. The average period of
vibration about the straight position decreases as the excitation increases,
whereas the time increment over which the loading remains constant was not de-
creased. This could conceivably result in decreased deflections. Additional S S
calculations to prove or disprove this contention would be quite costly, however.

Also shown in Fig. 5 are the critical values of the spectral density para-
meter S given by Eq. (20). The RMS deflections only appear to first depart
significantly from the static value at this point rather than to have an abrupt
discontinuity.

Similar agreement is found for simulated and equivalent linearization
stress results in Fig. 6. There is again a transition of the simulated stresses
from those given for vibrations about the buckled position to vibrations about
the unbuckled position. The somewhat strange behavior of the approximate theo-
retical results consisting-of the stress of the two approximate results crossing 0 S
for large wo, but not for w0 of unity, is confirmed by the simulated results.

Again the stresses given by equivalent linearization deviate from the simulated
results for large S. The approximate results are conservative, however, and
are thus useful. Indeed, they may be more reliable for the reasons discussed
earlier. *

5. CONCLUSIONS

The present investigation serves to cast some light in the behavior of
initially buckled beams under random loading. A reasonable indication of the
critical spectral density of loading required for beam snap-through appears *
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to be the vanishing of the average zero-crossing frequency of the beam. While S S

this criterion does not lead to a completely precise value, due to the lengthy
calculations required, an estimate of the critical power spectral density para-
meter has been obtained as

-4S =0.001 w O.

An investigation of the RMS response of initially buckled simply supported beams
does not reveal any drastic change in the vicinity of the critical spectral
density. The onset of snap-through does herald the possibility of stress rever-
sal, however.

Bounds on the RMS response have been obtained by considering vibrations 0
about the initial buckled position as an average and about the straight refer-
ence position as an average, together with the method of equivalent lineariza-
tion. The results obtained by numerical simulation of random loading indicate
a smooth transition from the first to the second type of behavior and in the
limit are in good agreement with the approximate analytical values.

The results obtained suggest the need for better analytical techniques
to furnish the required data. While useful results have been obtained by num-
erical load simulation and integration of the differential equations of motion,
the calculations are quite costly and time consuming. Further studies on
methods for estimating the response of highly nonlinear structures for random
loading are thus required. 0
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Table 1. Effect of Seed Value and Maximum Integration Time on

Zverage Zero-Crossing Frequency (i = AT = 0.1)

0 _ _ _ _ _ _ _ _ _ __ _ __ _ _0 0

w0 1.0 10.0

0 100 100 10

Seed Value 999999999 123456789 999999999 369121518 999999999 369121518 0 0

T N(T)/T N(T)/T N(T)/T N(T)/T N(T)/T N(T)/T

3141.6 1.980 1.909 1.548 -

6283.2 1.945 1.916 1.579 1.55 0.000 0.000

9424.8 1.947 1.926 1.551 - -

* 12566.4 1.948 1.935 1.555 1.55 0,000 0.000 0 0 0

15708.0 1.953 1.935 1.556 ---

18849.6 1.957 1.552 1.54 0.000 0.000

21991.2 1.961 - 1.555 -

25132.8 1.969 1.547 1.55 0.000 0.000

28274.4 1.957 1.550 - - *
31416.0 1.955 1.550 1.56 0.000 0.000
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ACCURATE NONLINEAR EQUATIONS AND A PERTURBATION SOLUTION FOR 0 •
THE FREE NONPLANAR VIBRATIONS OF INEXTENSIONAL BEAMS

A. Luongo (*), G. Rega (**), F. Vestroni (**)

(*) Istituto di Scienza delle Costruzioni, University of Rome, Italy
(**) Istituto di Scienza delle Costruzioni, University of L'Aquila, Italy

1. INTRODUCTION

Many works on what is generally termed nonlinear structural vibration pro-
blems have appeared in the literature. Most of them concern the dynamic behaviour
of single beams having various support conditicns and forces with different appro -

ximations regarding the kinematics of the beam model, the ordering of the elastic > S
nonlinear terms and the accounting for the inertia terms [ I I . Relatively few work
were devoted to the study of nonplanar motions, for which the introduction of sin
plifying assumptions is less easy and more questionable. The axially restrained
simply-supported beam was considered in reference [2] in absence of torsional mo-
tions and assuming linear curvature of the beam. The same assumption had already 0
been made in reference [31 for a base-excited inextensible cantilever beam, not- 0 *
withstanding in this case large curvature can occur. This problem was successively CA)
treated in references [4] and [51 including nonlinear inertia and nonlinear curva
ture; in particular in the former the general order-three nonlinear differential 0)
equations of a compact beam are derived considering bending about two principal
axes and torsion, while the study of the forced motion of a fixed-free beam is .
developed under the assumption the torsional frequency is much greater than the S -

flexural ones.
- -,-In the present work free nonplanar motions of an inextensional elastic beam
with no warping and shear deformation, supported in an arbitrary manner but no
axially restrained, are studied without introducing simplifying assumptions. The
kinematically nonlinear beam model is derived within the theory of rods from a
continuum mechanics point of viewJ-64.) Although e4-sewher-e- the usefulness of such 0 -
model is not recognized, it has been followed here because its major generality; indeed
it permits an unitary approach for both cases of inextensional and deformable beam[j.,

After introducing the conditions of inextensionality and shear indeformap1l
ty, the exact equations of motion are explicitly obtained through the extended'
Hamilton's principle. The equations are then expanded up to order-three nonlinea
rities without any ordering assumption with respect to the configuration variables. 0 -
A system of three partial integro-differential equations are obtained which are
accurate for studying moderately large oscillations of a beam having two flexural
and one torsional components of equal order.

Three ordinary differential equations are derived via a Galerkin procedure
adopting three eigenfunctions of the system as spatial shapes of the three confi
guration variables, and are analysed by the multiple time scale perturbation techni 0 0 S
que. The conditions involving the linear frequencies under which internal resonance
occurs are examined and various cases of resonance are evidenced. The solution of
the equations in absence of internal resonance, which allows to study the nonlinear
coupling phenomena among the three modes considered, is accomplished.

The complete analytical developments of the equations and solution presented
here are contained in reference [8]. 0 0 0

1

2. INEXTENSIONAL BEAM NONLINEAR MODEL

The kinematical behaviour of an indeformable beam is described referring to
a one-dimensional polar continuum beam model [61 in which the conditions of inter
nal constraint are introduced. 0 0

Let the initial static equilibrium configuration C0 (at time t ) of the beam
. 0 0B be straight. By assigning to each point P EB an abscissa s on Co, the initial

configuration is defined by a position vector r(s,t 0 ) and an orthonormal basis
B(s,t 0 ) _ EB {b* 0 ,b 0,, 0 }. In the following a0 is the inertia principal basis,
b(s,t0 ) being aligned with the beam axis.
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Let C be the beam configuration at time t, defined by 7 (s,t) and e(s,t) {b1 , * 0
b ,b }. By assuming the initial configuration as the reference configuration, the
referential description of the beam motion from C0 to C is given by:

U(s't) = r(s,t) - r(s,t o ) .(s't) = R(s,t) (s,t o )  (11,2)

where u is the displacement vector field and R is the rotation tensor field. The
rigid rotation R of the cross section at s is described as the composition of three *
successive elementary rotations R1, R2 , R3 which lead the triad E0 to match the
triad 6; their amplitudes are the angles el(s,t), 02 (s,t), e 3(s,t).

Define now the deformation field with respect to the reference configuration.
If q(s,t0 ) is a material vector solid with basis 0, the corresponding vector
A(s,t) is given by the relationship:

q (s,t) = R(s,t) q(s,t 0 )  (2)

The curvature tensor field C defined by the equation [61:
q'(s,t) = C(s,t) q(s,t) (3)

is assumed as a measure of the flexural and torsional deformation of beam, where
S)' = /s. By deriving Eq.(2) with respect to s, accounting for C(s,to) -O,
eliminating -*(s,t0) through Eq.(2) and equating the resulting expression to Eq.(3),
it follows:

C = R'RT (4)

where the orthogonality property of R was accounted for; C is a skew tensor.
The shear and axial indeformability of the beam is expressed as:
r (s,t) = R r'(s,t 0)  (5)

The spin tensor field W is defined by the relationship:

q(s,t) = W(s,t) q(s,t) (6)

analogous to Equation (3), being () = / from which it follows:

W = R T  (7)

Introduce now the scalar components of the previous quantities. The compo-
nents of u with respect to basis e0 will be denoted as u(s,t) = {ul, u2, u3}T;
the representation of R in such a basis is given by the matrix R = R1R2R 3, whose
j-th line gives the components of the unit vectors b.(s,t), (i=l,2,3), on the
axis of unit vector b.(s,t0 ).

The components Oof C and W with respect to the basis are:

C = RT R' W =RT R (8,9)

Eq. (8) gives the expressions of the three independent components c1 2, c1 3,
C 2 3 of the skew tensor C with respect to the basis 6. The quantities:

-c 2 3 = al cos6 2 cos e 3 + 62 sine0

2  3 = -e cos 02 e3 + 0; cos 03
n = -e1( = 0

1 
sin + 0

3 22 3

are defined as torsional and flexural curvatures of the beam in a finite deforma S •
tion. The expressions for the components of the angular velocity W(s,t) of the
basis are obtained from Equations (10) by substituting the prime with the dot.

The representation of Equation (5) on the basis 60 is given by three
scalar equations, from which the relationships follow:

u2 sine 1 - u3 cos 01
tan 02 = ( )11)1l+u

u2 cos 01 +u3 sin 0tan 03 = (112)
3 (+u + (u' sin 01 - cos0e)'1 1
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(+ ) 2 + u + + 2  1 (12)

To identify the beam configuration at time t with respect to the reference

configuration the six variables ul, u2 , u 3, 01, e2, 03 have been introduced. The

internal constraint conditions (11), (12) allow to reduce to three the number of

configuration variables. However, Eqs.(ll) give directly 02 and 03 in terms of the

other four configuration variables, while an integral relationship only between u l

and u', u' can be obtained from Eq.(12). This entails that when obtaining exact • S

equations of motion by variational procedure, Eqs.(ll) will be accounted for at

once while Eq.(12) will be added through a Lagrangian multiplier. In a second

stage, in which three approximate nonlinear equations of motion in the variables

u2 , u 3, 81 amenable to a perturbation analysis are obtained, the following order-

three expansions will be used to eliminate 02 ' 0 , u I :

2 3 ' +u'0 + I , ' -u 2 ;, 1 12 ) (13 ) 0)-- 3-  +,Ul 3_U 22_ , 3 1 ) o(11U11
0-u' 13 21 (3 U3 6121 1 3230 +(u01 1 ( 1 -'' 4u,2 , 1 902 1,2

U 3  u u , 1  1 u2 - -u 2 1 - - u 3  u2 ) + 0 
(U 3ue U) 

(132)

U (U'2 + U'2) + 0 (I1U14) (14)
- 2 3

3. EQUATIONS OF MOTION

3.1 Exact equations

The equations of motion are obtained through Hamilton's principle. Referring

to basis 0 which is taken coincident with the principal basis of the constitutive

law, the Lagrangian £ per unit length of beam is as follows:

3 3 3
1 - 1 V 2 j E.22 Y + 2 i i- (15)

where m is the mass per unit lenght, I., J. are the principal mass moments and

geometric moments of inertia of the beam, El = GJ1 is the torsional stiffness, 0

E 2 = EJ2, E 3 = EJ 3 are the flexural stiffnesses, with E elastic modulus.

The extended expression of the Hamiltonian reads:

H = { 12 2 I L + (+ul) 2 uI } dsdt (16)

Zbeing the beam length, from which it follows:

=t2 z 1 + 2 ( + U' 2 +

6H = t- u) 2
- U 2 - u 21 +

-A[(l+u,)6u +u;6u' + u36u3] }dsdt (17)

where it is:

3. 3 3
6£ = mZ.u. 6 u. + E.l.W. 6W. - Eiii 61i (18)

11 1 1 11 1 1 1 |3- 1 1

3 awi 3 wi . 0 O
6W.= 2.- 60. + Zj -- 6e. (19)

3 3 1 i

i -. 60 + Z. 60' (20)

and A(s,t) is a Lagrangian multiplier with the meaning of an axial force. The
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virtual variations 682, 603 in equations (19), (20) will be expressed in terms of 4

the variations of the remaining configuration variables through the relationships:

3 DO . 0
60. = 1 6 66, (j = 1,2,3) (21)83 iku- k1 .1 6 + 1

k k8+

where the derivatives D0 /au' . (j=2,3) are obtained from equations (11)
and 6 .. is the Kronecker sym9ol. J

By substituting Eqs.(18)-(21)into (17), performing a few integration by
parts with respect to both time and space and imposing 6H=O for each 6u. (i=1,2,3),
60 , kinematically admissible and for each 6X, the following differentiaf equations S S

describing the free finite motion of beam:

3 Do.

Gk  {.[ B.-A ja u (1-6 ) + X(6 k+uk)}' mUk (k=1,2,3) (221)
k j J ~ I ji kikk

3 • 0
E [B.-A.] DO./30 = 0 (222)
ij J 3 ]

3

[1-E (6k+U'k ) (6klU'k)] =0 (223)
1k ki uk k' k

are obtained; the relevant boundary conditions read:

3 3

SG 6u u' - H0601} = 0 (23)
{-g kk k k k 10

being . .3 3a. a . 0

H =Z.E.. Eu E(l-6j) He=Ej E E (24)
k 1 1 -j k 1 1i i i O De13

In equations (22), (23) it is:

3

A. = E.E.p.(azi./ s3e!-p./ae.) + E.E.j2 D./38 (25) 0 0
S 33 (j=1,2,3)

B, = Z.I.w.( 2 w./It3. - w./DO.) + EI .. aw./iA. (26)J iii 1 3 1 1 1i 1I 3

By substituting the functions i., w., ae./Du', a0./0 and considering 02, 03 as
functions of the remaining four config ration vAriables ul, U2. u3, 01 to be ex
pressed via equations (ii), exact explicit equations of motion and boundary con 0
ditions can be obtained [ 8 1.

3.2 Equations with order-three nonlinearities

The exact equations (22) are valid for arbitrarily large deformations of
the beam. They are not amenable however to an analytical solution still able to
give information on the nonlinear coupling and resonance phenomena which occur in
moderately large deformations of the beam as well. Therefore a set of five appro
ximate differential equations of motion in the variables ul, u2, u3 , 81, X with
nonlinear terms up to third order - which still retain relevant information about
the motion - is obtained by developing all terms in equations (22) in Taylor series *
and substituting the order-three expansions (13) for 02 and 03. Besides, taking
into account that the axial displacement ul is a second-order variable with respect
to U2 , u3, X is obtained as second-order variable as well through integration of
the axial equation of motion. By substituting ul and X in the transverse and tor
sional equations, the following system of order-three integro-differential equa-
tions with the unknowns u 2 , u3, 0e81 is obtained: 6
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+ " ,,',2 +u,2a,1 u10]i2~uu +i_3[u
G2= {13[U2+U22 +2 +  "- 3

-2u 0L - (I1-I)ul -l Ef 2u' +i u' 2u - El [u"0' + u200"] - E 2uu'' +'

+ (E2-E3)[ (')' ,' 2 - 2u2 'I + (EI-E 2 )uU
2 - 1/2 m u fS S (U22 U

ds ds +mus 2 u (271)
+mu2Is Ui 1(O) ds+uG( 2G)}' = 2 2;

= ~ ~U2 U3 +UU2U2U3 .U3U3 +U 2  
U'2 [ )- 2U2UU-U ] +

-(12-13)I[(u8)" +ii0 2 +2uO]-m 2 [u '3' +u 2 u 3 uu 2 ul +uu +u'2 ' ] +

El [(u2O')' + u00" - 2u2u2u" - u3
2 u"' 1+ (E 2 -E 3 ) [ (u'2O)' + Ul, e+ 2u'0' ] +

-i/2mu fss (U',2 fU,2
/2mu 2 +u 2 )dsds +mu' i 1 (O) ds +u3G 1 ()} =mro 3  (272)

£0 f

Go  {I 0-u,'i! + lu@ + 2u uI-+u 20 - '' "u - 2uu'L0' + 2 " - 2u+
[Lu2u ,2 8 +u 3 -20 + u2 2  

U +I2 fi +

U320 ' ' I + (E,-E 2+E 3 ) [ u'ful3 -u 2 O+u' eO 1= 0 (273)

As regards the boundary conditions, by using Eq. (14) to write 6u' in terms
of 6U , 6 u , expanding Hk in power series and eliminating e2, e3, ul, the follow-
ing explicit conditions are obtained:

Glo6uil = 0 G2 6u2 0 = 0 G3SU3 0 (28 )
C0 10 1293

H.. ' -0O H36u ' =- O H 0 213 1 = O(28 )10 10 0 a 0 4,5,6

where:
H2 =H 2 -u H1 =E l u+u 2 u1"+E1 u 0' +E 2 u'u'u"- (E 2 -E 3 )[u l-u 0 2

1 (291)

H2 H2 H- uH, = E31 u + E~~u u 2 ' +E'Uf 7

H 2 E W +u 30' , ,2 u,, F I -(E-E 3 )fu,( + u',("1 (292)
H3 =3 -u 3  U3 u +~u u, u"] - Ej[u20 u0 - 2 u

U2u3 + u2O+ U 2 ' - - U (293)

Eq. (281) is used to determine ul(O) and G1 (k). The remaining Eqs. (282) - (286)
are the boundary conditions for the nonlinear system (27), which allows to study
moderately large oscillations of a beam having two flexural and one torsional com * *
ponents of equal order; the system and the boundary conditions show both quadratic
and cubic nonlinearities.

If beams with high torsional rigidity are referred to (compact beams), the
previous system can be simplified by neglecting the torsional and flexural inertia
terms. From Eq. (273) it ensues that 0 is a second-order variable as well, which
can be related to U2, U3 by neglecting terms of order higher than three in that 5
equation, and integrating it. Successively substituting 0 into Eqs. (271,2) two
integro-differential equations in the variables u2, u3 are obtained, which contain
cubic nonlinearities only. They were deduced already by Crespo da Silva and Glynn
1 41 referring to a fixed-free beam and are accurate for studying flexural-flexural
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oscillations of compact beams in which the angle of twist e is forced statically.
As regards the boundary conditions, it is worthwhile to notice that, for compact

beams, the nonlinear conditions are satisfied by the corresponding linearized ones
for many constraints of practical interest [ 8 1.

4. PERTURBATION EQUATIONS

In the following development reference will be made to the general system

(27), since it allows for studying the effects of nonlinear coupling between fle
xural and torsional oscillations of the beam.

The following non-dimensional quantities are introduced:

u2 = u 2 /Z u3 = u3/Z s = s/k T = Wt (30) 0 •

w being whatever real frequency of the beam, and the solutions to the equations
of motion are approximated by one mode as:

el =f l (s)ql(T ) u2= f 2 (s)q2(T) u3 = f3(s)q3(T) (311,2,3)

where f.(s) are the eigenfunctions of the linearized problem and qi(T) are unknown

time functions. The Galerkin procedure is used to transform tne partial differen-
tial equations into three ordinary equations with quadratic and cubic nonlineari-

Lies:

mlq ! +klq1 =F~q2q3 ,q 2 q3 ,q~q3 ,q~q2 ,q 3 ,qq 2q 2 ,41 q 2q 2,qlq2 ,qlq 3q 3,ilq 3 q 3 ,

q2 2 2)
q3 ,qlq 2 ,qlq) (321) 0

m2q 2 +k 2 q2 =F(qMq3 ,qlq 3 ,q3, q ,q2 q2 ,qjq 1q ,q q q qqq2 qq2 q2
q33 2i 2"" M 2

,qq2 (322)
2 ,3 q2

m3q3 +k3q3 =F(Ml2,qlq2,qjq2,qjq2,q2q3,qAq2q3, q3q3,qN3,q1qM3,qjqjq3,

q~q2 q 3 ,qq 3 ,q2 q 3 ,q1 ,q 3 q 0 42 '2 3 1qq q33) (32 3)

The dot now denotes the derivative with respect to T. The coefficients of the li
near and nonlinear terms depend on the elastic, geometric and inertial properties
of the beam and on numerous integrals of products of the eigenfunctions f. as well
as on the boundary values of such products. F means function of the arguments.

Analysis of the nonlinear terms in Eqs. (32) gives some general indications
with regard to the phenomena which can occur in the finite free dynamics of the
beam. The occurrence of nonlinear terms of pure nature (q.,q3) in the equations
for the flexural variables assures that the corresponding monofrequent oscilla-
tions can exist under particular initial conditions for the remaining variables,
with frequency dependent on the amplitude of oscillation and temporal law diffe- 0 B

rent from the linear one; instead the torsional monofrequent oscillation is always
coincident with the linear oscillation. This is bound up with the torsional cur-

vature I being linear in the angle of twist el and with the relevant constitutive
law having been assumed linear as well. A more correct analysis of oscillations

having a prevailing torsional component would require consideration of a nonlinear
constitutive law between torque and torsional curvature. However Eqs. (32) are ac 0 4
curate for studying cases in which either ql,q 2 ,q 3 are of the same order orqj is
of order higher than q 2 ,q3 . In such cases phenomena of modal coupling and internal
resonance among the three variables can be analysed. In the first case the beam

can undergo flexural-flexural-torsional vibrations, in the second case flexural-

flexural vibrations in which the angle of twist is forced dynamically at an higher
order. 0 4

To obtain the solution to system (32) the multiple scale method [I] is
adopted. A perturbation parameter e of the order of the amplitude is introduced
and the variables q. are considered functions of a sequence of independent time
scales To, Tl,...T n which are related to T by the expressions T = Cn T, and areSn n
expanded in power of E:

0 0
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q, =c qi l (T0 ,
T I 'T 2 ) + C

2qi 2 (T0 ,T1,T 2 ) +c
3qi 3 (T °,T1 ,T 2 ) + O(c"T) (33)

By expressing the time derivatives in terms of the Tn variables and substituting
Eqs. (33) into Eqs.(32), a system of three partial differential equations with
the unknowns qij is obtained; from this,equating coefficients of like powers oft,
a sequence of three linear systems is obtained - at the orders cE

2
,E

3 - in
each of which the non-linear part is known from the lower-order solutions [ 8 1.
The problem is completed with the initial conditions:

q.(0) = Eqi ii (0) = -qi (34)

from which, accounting for Eqs. (33), the conditions to be associated with each
system of the above mentioned sequence are obtained.

5. STUDY OF THE EQUATIONS AND SOLUTION IN ABSENCE OF INTERNAL RESONANCE

The periodic solution

SAj (T 1 ,T 2 )eiwj To + c.c. (35)

is adopted as the solution (generating solution) to the system of equations at
the c-order. In Eqs. (35) w. = Akjm is the frequency of the beam over the dimen
sionless time scale T, A.(TI,T 2 ) is an unknown complex function, c.c. and the over
bar (e.g., Aj) indicate the complex conjugate. Substitution of Eqs. (35) into the
system at the E -order gives:

Dooq 1 z +w q 1 2 =F[A2 A 3 e i(2+3)T°,A 2 A3 e i(3-,2)r°'iDIA 1 e iWIT]+c.c. (361)

D0 0 q22 +W q2 2 
= F[AA 3 ei(W1+W3)T, AA 3ei(W1-3)T, iDA 2 e i  ]2T

0
+ c.c. (362)

D0 0q 3 2 +3 q 3 2 =F[AiA 2e
i (A+i2)T 0 , A3i( e- 2)T

0
,
i A

3e
i ]+c 'c "  (363) 0

where the notations Di=a/DTi and Dij=ab/aTiDTj are used for the sake of simplicity.

Analysis of system (36) shows that internal resonance occurs at the order
t
2 if the linear frequencies of the three components verify the conditions:

W + W= h k (j,h,k = 1,2,3; j~h~k) (37)

All three components of the motion are involved in the energy exchange phenomenon
which characterizes this internal resonance situation.

The case q, of order higher than q2 and q3 is now examined; in this case
the generating solution (35) has two non-zero components only, i.e. A1 (T1 ,T2)EO.
Equation (361) shows that, in absence of internal resonance, a torsional component •
of order E2 is forced dynamically from the flexural components provided these are
both different from zero; this constitutes a classical phenomenon of nonlinear
modal coupling. The same equation shows that a monofrequent planar flexural vibra
tion can occur in conditions of internal resonance as well, with no torsional com
ponent, since zeroing of the secular term in Eq. (361) entails A 2A3=O and thus
either A 2=O or A 3=O. However flexural frequencies do not change at this order. 5

5.1 Absence of internal resonance at the E 2-order

Coming back to the case q1, q2, q3 of the same order, zeroing of the secu
lar terms in Eqs. (36) gives Aj=Aj(T 2) showing no frequency correction occurs at
this order for the j-th component. The solution to system (36) is then obtained.
By substituting it and the generating solution into the system of perturbation
equations at the order 6 , the following equations are obtained:

D W0 q 1 3 +2q 1 3 
= F[AIA e i (1+ 2 W2)T0, A2ei( 2 2-W)TO,AiA ei(w+2W3)T0,
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AjA2e1(23-W1)To, (A2B3+A3B2)e i (W2 +
W3)To

, (A2 B3 +A3 B2 )

i(W3-"2)T 0  (AKA ,A A A ,iD A )e iwTol+ c.c. (381)

eA 1A 2 2 '1 3 3 2 1

Dooq2 + 2 q2 F|A 3e3iT ' A2 A e i (
W
2 + 2

W)T 0
' A2 e i (2l -W2)T 0

'  0
002q3 2 23 2FA 1 2 1 A1 2

23 i(W 2 +2W 3 )To 2A ei(2eo3-2)To, (A1 B3+AB )e1(W1i+3)TO

A 2A 3e ,A2 A3 e AB3+ /)

(AIB 3 +A3 B1 )ei(W3 - 
1 )T ° , (A 2A,AA 1 A 2, A2A3A3 ,iD2A2)

e ] T + c.c. (382)

2 q A3di(03O T A2A e i(W 3 +2i 2 )T0  A 2  ei(2W2-33)TO A 2
3 3 33= 3 3 , AA 3

i (2w :+i 3 )T0  2- i(2w,-W3)To (I (I+2)To
e ,AIA3e , (A)B2(+A 2TB)e

Ci(W2-Wl)To • •

(AIB 2 + A 2Be ,(A3A 3 ,A 2A2 A 3 ,AIA 1A3 , iD 2A 3 )

iw To]+ c.c. (383)

The amplitudes Bj of the homogeneous solution to system (36) appear in Eqs.(38),
for which the same dependance on T, and T2 as for the amplitudes A. is assumed. 0 0

Analysis of system (38) gives the conditions under which internal resonance
occurs at the order c . Since conditions (37) were excluded, it occurs if:

Wj = Wk (j,k =1,2,3) (39)

In this case two components of the motion only are involved in the resonance S 0
phenomenon; as a particular case, resonance involving all three components can

still occur if WI=2=W3.

The resonance between the two flexural components, which occurs if W2=.w3,

was studied by Crespo da Silva and Glynn [9 1 referring to a fixed-free beam with
high torsional rigidity; in that case the torsional component is simply forced 0 0

statically by the flexural variables, i.e. it oscillates with the nonlinear fre-
quency W2=W3. Instead, when the system with three components is considered (beams
with low torsional rigidity), the torsional variable lives in the beam oscillation
with a constant amplitude and with its natural frequency modulated on the slow

scale T2 by the amplitudes of the remaining two variables.

If the case qj of order higher than q2, q3 is examined, Eq. (381) shows 0 0
that the angle of twist is never forced at the c 3-order, which entails some inte
resting consequences.

In absence of whatever resonance, a motion with prevailing flexural compo
nents having frequencies dependent on the two amplitudes occurs, in which a forced
torsional component of orderE 2 exists. If either A 2EO or A 3EO as well, corrected
plane flexural monofrequent oscillations occur.

In conditions ofresonance at the 6
3 -order involving the torsional frequency,

two distinct casescan be considered. a) If one flexural frequency only is involved

(e.g., W==2#L3), the same motions as in absence of whatever resonance occur, i.e.
either a prevailing flexural vibration with two components having nonlinear fre-
quencies or, in particular, flexural monofrequent vibrations. b) If both flexural S S

frequencies are involved (1=W2=W3), resonance occurs between the two flexural
variables, the £2-order forced torsional component always being present in the
oscillation.
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5.2 Absence of internal resonance at the c3-order

Considering again qj, q2, q3 of the same order, the zeroing of the secular
terms in Eqs. (38), when the polar forms:

Ak(T2) = ak(T 2 )/2 eik(T2 ) (40)

are introduced and the real and imaginary parts are separated, provides a diffe-

rential system with respect to time scale T2 having the unknowns ak, k' whose

solution reads:

ak = cost Tk = fkt +0 (k=1,2,3) (41) (42)

The functions pk depend on the amplitudes a and the linear frequencies of the

three components. The values of ak and k = k (0) are determined by means of the

initial conditions at the c-order. The solution to system (38) is then obtained.

To write the temporal laws of motion in circular form, the amplitude Bj

and Cj of the homogeneous solutions to systems (36) and (38) are written as:

Bj(T 2 ) = bj/2 eiv)j(T2) Cj(T 2 ) = cj/2 eiXj(T 2 ) (431%2)

where the phases j, Xj depend on T2 like the phases Pj:

A0 0
j=@T+ jXj =  jT + Aj (441,2)

The values of the amplitudes b-, c- and of the initial phases p, Xq are determin... d 2 reseclvly The
ed by means of the initial con3itions at the order 2 and 3 respecively. The 0
following expressions are finally obtained for the temporal laws of the motion:

q, = Eajcoslj + 62 fF~a 2a 3cOs (P3±(2 ),b jcos ~l] } + c 3 F[a la 2cos(2(P2! 4)ala 2~

(2 3±I ),a2bcos( 3± 2), a3b2cos( 2 ±c3),ClCOSX]}
q =  a 2c Os (D2 +  62 {F [a a c s 3 ) b c s 2] C OS 3 { F [a 3c o s 3 q2 , a 2 C S 24 1 0

a2a2 cos(21±2),alb3Cos(T3± 1)-ablcos(Tl±) o (45)

q3 = E a  c s  + 2 { F [a  a  c Os ( 2 !4 ) , b ~c s 3 COS 3 fF[a 3cos34) a 2a cOs(2(D±(D )  0
3 2 O ' + 1 2 2 1 3 3 )

a 2a cos(2(P -(P),alb2Cos(T2±(P ), ab cos( (P 2,ccosX3

In equations (45) the phases 0i, T'p Xi read:

- 0 - 0 - T(6

1D 
= 

W 
+  

. = 
T + 

1 = 1 Ti +i (46)

w. being the nonlinear frequencies of the three configuration variables:1

W = 1 (d a -d 2 )21
8W2  133a3 122a2

-= W 84 (d23 a -d 2 2 2a2-d 1 l2 a (47)

3 
= 8 2  

3333 223 1

83

The coefficients d which appear in Eqs. (47) depend on the linear frequencies w
and on the beam properties.
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6 . CONCLUDING REMARKS 0 4

Accurate equations for studying flexural-flexural-torsional vibrations of
inextensional beams have been obtained and a perturbation analysis up to C 3order
has been developed. After identifying the conditions of internal resonance, the
laws of motion (45) of the beam in absence of resonance have been obtained which
allow to study modal coupling phenomena among the three configuration variables.

The equations put into light a strong modification of the temporal laws
with respect to the linear ones. Indeed the motion of the i-th component is de-
scribed by the superposition of several harmonics with frequencies combinations
of the three nonlinear fundamental frequencies (47):

i w(Wj±wk' Wi±2wj '  i±2wk (i,j,k=l,2,3;i~jjk) (48)

3w . (i=2,3)

Harmonics having the same frequency (w., w. w ) but different phases occur; such
differences however reduce to zero if he ar~icular case of zero initial velocity
for all components is considered. 0 0

The relations (47) show that the nonlinear frequency of each variable
depends on the squares of both its own amplitude of oscillation and the amplitudes
of the remaining two variables. The dependance on its own amplitude does not occur
for the frequency of torsional vibration, which is always coincident with the
linear one in the monofrequent vibration. 4 0
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PARAMETRIC VIBRATION IN LARGE BLADES a
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1. INTRODUCTION

Parametric vibration of structures is a generic term which relates to
their motion when they are modelled by differential equations which include 0
coefficients which are explicit functions of time. In fact the term is often • 0
reserved for situations in which the oscillation of the structure is effectively
due to this time variation of parameters. The condition may then be referred to
as parametric instability or as parametric resonance. However such structures
will also in general be subjected to forced excitation in the usual way that is,
by non-homogeneous terms in the describing differential equations. This sort
of excitation is important in parametric structures just as it is in structures
modelled with constant coefficients. A review of the literature of the field
of parametric vibration can be found in references [i].

-- The basic problem considered in this paper is that of a long flexible
elastic beam rotating about a horizontal axis passing through one end normal to
its centre line. Such a beam is subjected to gravitational forces which vary

from an effective compression when the beam is above its axis of rotation to a
tension when it is below. The beam thus undergoes a time dependent variation
in axial force. The lateral or bending motion of the beam is influenced by
such axial loads, the bending frequencies tend to be reduced by axial
compression and raised by axial tension. Thus the equations of motion for
bending of the beam will include time dependent terms which account for the 0 6
axial force. These terms are explicitly time dependent if the angle of
rotation of the beam is regarded as given and if axial vibration of the beam is
neglected.

The beam is therefore an example of a structure undergoing parametric
excitation. If the rotation rate about the axis is constant the parametric 0 e
excitation is periodic. This is not a necessary condition for periodicity but
will be assumed to be true for simplicity in what follows.

As well as the lateral natural frequencies of the beam being influenced
periodically by the gravitational loading they are also altered by the centri-
fugal field due to the rotation. This can be thought of as a tension field 0 -
rotating with the beam and acting to stiffen it flexurally. The stiffening
effect depends on the angle of the plane of flexure of the beam relative to the
plane of rotation. For instance vibration in a direction normal to the plane
of rotation is generally much more affected by the centrifugal field than
bending vibration occurring in the plane of rotation. In any event, the centri-
fugal field for increasing rotational speeds very quickly dwarfs the relatively 0 5 -
small periodic changes due to the varying gravitational field and this makes the
problem somewhat different from the usual class of problems in parametric
structural vibration. In fact it may make it virtually impossible for
parametric instability to occur at all.

The problem is interesting in its own right but it clearly is directly 0 5 6
relevant to the oscillation of the blades of large wind turbine generators.

2. EQUATIONS OF MOTION

For the purpose of analysis the simple one dimensional Bernoulli-Euler
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level of modelling of the beam dynamics will be considered adequate, that is, 0 0
the effects of shear and rotatory inertia and so forth will be neglected.
While equations will be derived for a general beam element further discussion
of the motion will usually be restricted for simplicity to the case of a lumped
mass at the end of a weightless beam. It is thought that this rather drastic
specialisation will not lose any of the essential features of the dynamics at
least for the first mode. Flexural vibration along one principal direction 0 0
only is considered. More general theories including pretwist and torsion are
feasible but confusing for present purposes.

2.1 Beam Bending in Direction a from Axis of Rotation

The beam is taken as having mass per unit length m and stiffness E1 in the * 0
direction of bending. If a triad of moving unit vectors, i, j, k is taken at

the base of the beam,that is at the axis, with i directed along the axis of the
beam and k along the axis of rotation, the situation for an element dx of the
beam at a typical angle 6(t) from the vertical is as shown in Fig. 1.

Fig. 1. Beam element (a) configuration and axes
(b) cross-section and direction of motion

In terms of the moving vectors i, j, k the position vector r of the
typical element is r = xi + (-wsincO + (wcosa)k while the angular velocity of • 4
the vector system is Z5 = Uk where the dot signifies the time rate as usual.

The acceleration of the element can be evaluated and is

[r -X6 2 + 2 5sin, + w~sinal]i + [-i sina + w62sina + 2xe + xe] + [ cosalk

4*
e 0 0

if equation (1) is rewritten as r = a 1 + a2J + a 3k then the equations of

motion of the beam element defined by planes normal to the x axis and dx apart
as indicated in Fig. 2 can be written, assuming deflections and slopes to be
small, as follows.

P*~ aSG'

Fig. 1. Forces P and Q and moment R on beam element

mail eP/lx - mgcose; m(a3cos - a2sin) = Q/3x - mgsinglsine;

0 = R/3x - Q + P~w/nx [ (2)
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Along with equations (2) we have the usual moment-curvature relation 0 0

R = -EIw" where dashes indicate differentiation with respect to x. Using the
acceleration components (1) the equations (2) become

aP/ax = m(x - x02 + 2z.sina + w~sina) + mgcose

m(w W0sin 2 - 2xsina - xesin) + mgsinasine

3R/3x = Q - Paw/ax (

a2w/ax 2 = -R/EI

The moment R and the shear Q can be eliminated from (3) if desired to
give the two equations 0 •

(EIw")" - (Pw')' + m(w - w02sin2t - 2xesina - xesina) = -mgsinasine]
P' = m(x - x02 + 2w6sin + wesina) + mgcose (4)

The second equation of (4), neglecting the term x, can be integrated from x to
the far end of the beam x = k and substitution for P(x) and P'(x) made in the
first equation. The result is a very complicated nonlinear integro-differential
equation in w with time dependent coefficients depending on e(t). If we
simplify this equation by neglecting c, e, P(Z) and all nonlinear terms then the
governing equation for w is

(EIw")" + (gcosek mdx - 6( mxdx)w" - (mgcose - mx0 2 )w'
Jx )x

+ m(w - w62sin2a) = -mgsinsine. (5)

An approximate solution of equation (5) could be obtained by for instance
expanding w in a sum of the eigenfunctions of the non-rotating beam and applying
Galerkin's method. Here however it is preferred, hopefully without losing any
of the essential mechanics of the problem, to simplify matters considerably by S
taking a mass distribution in the form of a point mass at the free end of a
massless beam. Hence the problem is specialised to the case m(x) = M6(x-k)
where M is the point mass at x = Z, located by the 6-function.

The equation of motion for M is most directly obtained by using equations
(3). The lateral displacement of M is denoted by W. Integrating the first
two of equations(3) and using the end conditions P(Z) = Q(X) = 0 gives,
neglecting k and x terms

P(x) = -Mgcos8 - M(Z0 2 + 2Wesin, + Wesina) 1
Q(x) = -Mgsincsine - M(W - W;2 sin 2i - Z0sina) (6)

It is clear from these equations that P and Q are not functions of x. The third
and fourth of equations (3) can be used to eliminate the bending moment R and
give the differential equation for the beam displacement shape in terms of P and
Q and the end deflection W. Thus, w" - (P/EI)w = -(P/EI)W + Q(k - xYEI, and
this equation is easily solved incorporating the end conditions w() = W,

* w(0) = w'(O) = 0. The last two conditions are those appropriate to a cantilever 0 0
fixing at x = 0. This solution provides an expression for Q in terms of W and P,
in fact Q/W = (P/L)/[I - (tanhak/ak)], where a2 = (P/E1). This can be
approximated by the expression Q/W = (3EI/Z 3 ) + (6P/5).

Substituting from this in the second of equation (6) and substituting for P
from the first gives the final differential equation for W. This takes the 0 0
form 3E1 + 6 6 "

MW + {-- + Me2(- - sin 2a) - -_ MgcosO}W = Mtesina - Mgsinasine
Z~3 5R

+ -2Ms iW + M sinaW28. (7)
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If the rotation rate 6 is taken as a constant 0 and if the nonlinear term - S
WW is ignored, equation (7) takes on the simple form

M + 3El M+ 2 6- *2) - 6Mg cost = - Mgsinasin2t

J3 5 5Z.

The extreme cases of this equation are for a = 0 and for a = 7/2. Thus,
for a = 0°; motion out of plane of rotation 0 0

MW + -3EI 6 2 6 = 0 (8)
X3 {- -7M - 3 Z2 cos~2t1W=0(85 52

for a = 900; motion in plane of rotation

MW + {- + I Q2 - 6 MgR cosSt}W = - Mgsin2t (9) S SX3 5 5 2,

Examination of these equations shows that the non-rotating flexural stiffness
(3EI/£ 3 ) is increased by the centrifugal stiffening to an extent which is much
greater for out of plane motion. The parametric excitation is due to the
gravity field while in the case of in-plane motion gravity also provides a non-
homogeneous or forcing term -Mgsinot. S S

2.2 Beam not Normal to Axis of Rotation

As a slight extension of the problem considered in 2.1 we now examine
briefly what additional terms are introduced by having the beam's free centre-
line set at angle 8 to the plane of rotation which is still considered to be 0 0
vL:tical. The undistorted beam or blade would then describe a cone of half
angle (7/2)-a about the horizontal axis of rotation (see Fig. 3).

Restricting attention to the case of out of
'plane' motion (a = 0°) and taking again the simplej case of an end mass on a light beam, the equation for S •

this case, corresponding to equation (8) for 8=0 is
.3El.6I6_

MW + --3) + - 2 8 - M 2 sin2 3- cos cos62t}W =

.Ax of Mgsinacos 2t - MS2ksin~cosa (10)

The angle 8 has therefore very slightly

Fig. 3. Blade set at $ altered the centrifugal stiffening and the parametric
to rotation excitation but it has introduced on the right hand
plane. side a DC and a periodic forcing term.

2.3 Beam's Plane of Rotation Inclined to Vertical 0 0

As a different variation on the problem of 2.1, the plane of rotation is
now taken to be at an angle y to the vertical so that the axis of rotation is
also at y to the horizontal (see Fig. 4).

Vertical 5 5 5

In this case, again for the one degree of
freedom problem vibrating out of the plane of
rotation the equation of motion is

Mii + { + 6. Mq22 - 6 Mcosycost}W = Mgsina (11)
Z 
3  5 52.

Fig. 4. Blade rotating which is similar to equation (8) but with a slight
in a plane at modification of the parametric excitation term and
y to vertical, the addition of a DC term to the right hand side.
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3. PARAMETRIC INSTABILITY 0 0

The differential equations derived above all include a periodic
coefficient on the bending deflection W. The deflection is thus under para-
metric excitation and for some values of the parameters a growing oscillation
or parametric instability of W might be expected. To investigate this further
the equation can be rewritten in a way that will allow its easy comparison with S S
the Mathieu equation for which the stability properties are well documented.

Thus if the homogeneous equation (8) for out of plane vibration is
considered for example, it can be rewritten in the form

+ W2(1 - C COSIt)W = 0 (12)Ir rwhere,w 2 = (3EI/Mi3 ) + (6Q2/5) = W2 + (6Q2/5)
r 06 (13)

to = (6g/5kw2); E I+ ( 2/Wo)2].

The quantity eo is the magnitude of the parametric excitation when the rotation
speed is negligible compared with wo . For finite Q the parameter is Er which 0 S

is less than to.

This equation (12) is a typical form for a parametrically excited
structure but it differs from the usual situation in that the natural frequency

tr is an increasing function of the parametric excitation frequency 2. Further,
the excitation parameter er is a decreasing function of 2. These two features 0 S
completely change the stability of equation (12) and some of the instability
zones which would normally be associated with it may be unattainable.

To see this more clearly the equation (12) can be changed to the canonical
Mathieu form by making the transformations

z = Qt/2, a = (2w r/Q)2, q = J(2wr/Q)2Er (14)

so that equation (12) becomes

d2W + (a - 2qcos2z)W = 0 (15)dz 2

The a, q, plane of equation (15) is divided into stable and unstable areas, 0 0

maps and details of the structure of the regions can be found in references[2]
and [3]. For engineering purposes it is more meaningful to have the stability
regions on the plane of (2/2wr) against Er which can be arranged using the
transformation in (14).

The stability map is indicated in Fig. 5. For a given system Er starts 0 0 •
as Eo on the abscissa where 0 = 0. For increasing Q, cr reduces along the
curve given by equations(13). Such curves are shown as dotted lines.
The relationship is

Er = E [1 - 4k(S/ 2wr)2] (16)

where k is the rotation augmentation factor of the natural frequency being (6/5) 9 0 S

for out-of-plane vibration (equation (13)) and (1/5) for in-plane vibration.
In general k = (6/5) - sin2a for a concentrated mass moving at a to the axis of
rotation, see section 2.1. It can be seen that cr0 for ("/2wr) = 1/2k which
is 0.4564 for out-of-plane motion and about 1.118 for in-plane motion. This is
also the maximum value that can be reached by the parameter (0/2wr) for very
large Q. It can be noted that the excitation parameter Eo is related to the -0 S

static buckling load of the blade. If the Euler buckling load is PE=(2EI/4i2)

and the gravity load Mg = KPE where K is a number then E0 = (72K/10). For
1 I, Co has a value of about 0.987.
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Fig.5. Stability diagram for rotating blade. Typical
operating characteristics; = 0 ,-- - = 90°  S S

The unstable zones are the shaded areas of Fig. 5. They emanate at
Er = 0 from the points 1, 1/2, 1/3, 1/4, etc. and become progressively
narrower. It can be seen that the out-of-plane motion broken curves cross
only the higher order regions and never reach the really significant .. ..
instabilities around J and 1. The in-plane curves cross all the unstable 0

zones. For ntermediate cases instability zones are included up to (Q/2wr) =

0.4564/1(1 - -sin 2a). Thus if attention is restricted to out-of-plane motion
there are only a few narrow speed zones in which parametric instability might
arise. Further, in the presence of damping the instability zones retreat from
the (0/2wr) axis and this effect is greater for the higher order zones. If the
damping ratio is the unstable zone associated with (0/2wr) = 1/k starts at 0

approximately Er = (4c)1/k.

Experimental work simulating this case did show significant amplitudes of
motion in the neighbourhood of the rotational speeds (Q/2wr) = 1/6, 1/5, 1/4.
Such motion may however be associated also with forced vibration and this
question is examined theoretically in the following section. 0 0

4. FORCED VIBRATION

Equation (10) covers the case of the flexural motion at a = 0 of a blade
which is slightly inclined at angle to the rotation plane. It thus simulates
very roughly any initial lack of straightness of the blade. The homogeneous 0 S

part of the equation has the same structure as before but there are now non-
homogeneous terms, one constant or DC, and the other periodic at frequency 0.

The equation can be written

+ {W2 + Q2( Cos2a - sin 2 6) _ cosacos0t)W = gsinacos t - Q2 ksin~cosa (17)

where W2 is as defined in equation (13). The rotating gravity-free blade now
0

has frequency wr given by

W2 = w2 + k02 = W2 + (6 COS 2
- sin2B)Q2 (18)

r 0 0 5
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If the following transformations are incorporated in equation (17), 0 0

Co = (6gcos /5R2), C = Eo W2/2
o0 o r 0 o0  rI

z = (fit/2), a = (2wr/r)2, 2q = (2Qr/SI) 2 % Cr (19)

y = (w/)

then it is found to reduce to the form, 0 0

d2 + (a 2qcos2z)y = Acos2z + B (20)dz 2

5
where A = Sqtan , B = -2sin2

Equation (20) is a non-homogeneous Mathieu equation. In general we are
interested in the steady-state response of y to the input on the right hand side
but in particular we wish to establish whether there are resonance responses at
relatively low values of (/2wr) perhaps in the vicinity of the instability
zones of Fig. 5.

Now the Mathieu equation on the left of (20) does not 'recognise' either
the sinusoidal or the constant input of the right, that is B and Acos2z are not
'natural' functions for it. It is analogous to an input of say a periodic
square wave into a simple linear oscillator. The square wave is not natural to
the equation but it is possible to break it down into a series of functions which
are, that is to carry out a Fourier analysis of it. In the same way here, the S S

quantity Acos2z + B which is periodic of minimum period ff can be written in
terms of Mathieu functions of the same period.

It is therefore assumed that the terms of the right of (20) can be
written in the form

Acos2z + B = Foceo(z,q) + F 2ce2(z,q) + F4ce4 (z,q) + .... (21)

where cem(z,q) signifies the cosine type of Mathieu function of order m and the
Fm are constants. The means of establishing these constants will be returned
to below.

Also, to give a more realistic modelling of the system through any 0 S
resonance a damping term proportional to y is introduced. The equation to be
solved for steady state motion is thus

d2 Y + 2P ddi + (a - 2qcos2z)y = Fsces(zq). (22)
dZ2  dzss

s
The solution can be expected to be expressible as a series in the even 0 0

order Mathieu functions, we thus take the steady-state solution in the form,

y I [ 2pce 2 (z,q) + S se (z,q)] (23)__ pz 2pse2p

The even order sine type of Mathieu functions se2,(z,q) have been included
because of the damping term, that is effectively they atcommodate the associated 5 S
phase shift. With the parametric excitation q zero the functions would revert
to cosine and sine as could be expected in the solution of (22) with q = 0.

Substituting from (23) in (22) and bearing in mind that the function cer
is a solution of y" + (ar - 2qcos2z)y = 0 and that ser is a solution of
y" + (br - 2qcos2z)y = 0 where ar and br are the characteristic numbers,

functions of q, associated with cer and ser respectively, equation (22) becomes
(r = 2p),

Cr(a - ar)cer + Sr (a-br )ser + 2 (Crce' + Srse') = Frce (24)

p=o p=0  p= 0
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If this equation is multiplied by ces and integrated from 0 to 27 then by
virtue of the orthogonality properties of the Mathieu functions and 

assuming

them to be normalized to 7, that is

ce2 dz = se2sdZ =

o 
o

there results irCs(a - as) + 2p 1 SrKrs = wFs  (25)

p=O
itr

where Krs se' ce dz and r and s are even, r = 2p.

Multiplying instead by ses and integrating as before similarly 
leads to

TrSs(a - bs) - 2p I CrKsr = 0, (26)

p=O
r2Tr r2Tr

where Ksr =j se' sce d = Ce'rsesdz. • 0whre or s rZ

0 0

The quantities Ksr are functions ot the parametric excitation q and can be
calculated from series expansions for the Mathieu functions. Equations (25) and
(26) then formally provide a basis for the calculation of the various coefficients
C and Sr of the solution in terms of those F s of the excitation. In fact if
tie series

= Ao (2m)cos2rz and se B n+2)
Ce2m =r=A se02n+2 B 2r+2 sin(2r + 2)z

are ed the coefficients Ksr can be evaluated. The coefficients A 2r(
2m) and

B 2r+22n+) are known as series expansion on the variable q (see for instance
reference [3]).

Finally, the values of the coefficients F s in equation (21) can be
established by substituting the Fourier expansion for ce2m given above in
equation (21) and comparing coefficients on either side.

5. EXPERIMENTAL

Some experimental work has been carried out to establish the nature of the
oscillatory behaviour of a model blade in the laboratory. Two identical strips
of spring steel 25.4 mm x 1.52 mm x 0.868 m long were attached diametrically
opposite each other on a small diameter hub. They were oriented so that the 0 S

flexible bending direction was normal to the plane of rotation (i.e. a = 0°).

End masses were bolted to the blades.

The hub was driven by a J hp servo-controlled motor and the whole
assembly was mounted on a rigid pillar with the axis of rotation horizontal.
The motion of the blades was monitored through the signal from a strain gauge 0 0
attached about 150 mm from the root and feeding into a strain meter through a
precision slip-ring. The strain output was filtered to remove high frequency
noise and was displayed on a recording oscilloscope. An accurate signal
generator provided a timing signal to go along with the strain trace while a
non-contacting magnetic probe was set up to give three blips per rotaticn from
which the position angle 8 of the blade at any stage could be determined. • S

With the parameters used, the blade mass was 0.280 Kg and the end mass
0.201 Kg, the natural frequency of the non-rotating blade was determined for
a range of position angles 8 and was found to vary approximately sinusoidally
from about 22.2 cycles per minute (cpm) in the vertically upward position
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e = 0, through 39.7 cpm in the horizontal position to 55.8 cpm at e = 180*. S

The variation of the average vibration frequency with the rotation speed
was found by giving the blade a disturbance at each chosen Q. This was
accomplished by the somewhat inelegant but effective means of attaching a loose
length of string to the end mass and giving it a judicious pull. The resulting
decaying oscillation provided a natural frequency wr and an approximate damping

ratio.

It was found that wr varied with 2 almost exactly according to the
theoretical result for a concentrated mass w2 = wl2 + 6Q2/5.

r o

The mean damping appeared to be very low at zero speed (e = 900) about 0 S

0.37% in fact, but it rose rapidly with 0 then levelled off beyond about
= 10 rpm to a value between 21% and 3%.

The oscillation of the blade was recorded over a range of rotating speeds
up to around 40 rpm which is just over (2/3)wr. At certain speeds large
amplitude oscillations built up and these were particularly noticeable in the 0
vicinity of (/2wr) equal to 1/6 and 1/4 and to a lesser extent at 1/5. No
significant oscillation was found near (0/2wr) = 1/3.

Typical records are shown in Fig. 6. The timing trace frequency is 5 Hz.
The lowest trace in each case is the output from the magnetic probe and this
provides the relative phasing. The point relating to e = 00 is indicated. The 0
maximum peak to peak amplitude for each case is also stated.

e-O

0.0@

Theg2rait 1/4- IX - 2 b.lad Ma eA. e 1 to=I be bCou

'00

................... ... ...... .... ..... ... ............ ...

j!~~zII SA 14 3"W Mw.A.44t1~e 78.... (Vtdji

Fig. 6. Experimental Responses

The gravity load on the vertical blade is estimated to be about 0.77 of
the buckling load so that co = 0.76. For the lowest speed trace of Fig. 6, 0 0

= 14.30 rpm and Er 0.66, thus a 36, q 12, For a damping factor of
0.025 of critical, the estimated cut-off for the 1/6 zone is v7 = 0.68. This
is however approximate but it shows that conceivably the 1/6 order instability
zone might just be entered. The beam used had also a definite initial lack of
straightness which as has been shown, would induce a forced input at that speed.
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It is difficult to separate forced from unstable motion. The unstable motion
theoretically grows without limit but nonlinear factors intervene and limit the
amplitude.

Similar comments apply to the motion at 1/4, i.e. 24.00 rpm for which
Er = 0.53, a = 16, q = 4.25. The limiting c for that case is estimated from
4= 0.53 so it is just possible that the operating point is in the unstable 0

region (see Fig. 5). Again forcing is possible due to the lack of straight-
ness with a resulting motion of the form of se4 (z,q).

The intermediate trace near I/5 has however no theoretical forced
excitation. The operating point on the (0/2r) versus cr plane must be within
the unstable 1/5 boundary but again with amplitude limited by nonlinear factors. 0 0
It is noted that the amplitude obtained in this zone is typically less than in
either the 1/4 or 1/6 zones suggesting that in these other cases the unstable
motion was augmented by the forced motion.

No evidence of motion in the 1/3 region was foun4. Around this zone
cr 0.35 while the front of the stability zone is at 70.1 = 0.464 which 0 S
indicates that the operating point is clearly outise the unstable zone while in
addition no forced oscillation of the odd functions is predicted.

These results and observations are very preliminary and much further work
remains to be done before the problem could be said to have been properly
researched. The results do however appear to agree more or less with what was 0
anticipated qualitatively and give some encouragement for further effort.

6. CONCLUSIONS

The linearised equations of motion for a slender beam rotating in a
gravitational field have been derived and examined in some detail for the
special case of a light beam carrying an end mass. It has been shown that the
zones of parametric instability of the beam may or may not be crossed as the
rotational speed is increased depending on both the direction of the vibratory
motion relative to the plane of rotation and the damping.

Initial lack of straightness of the beam also occasions forced motion which S
should result in resonance near the even order instability boundaries.

The experimental results presented do show the existence of large
amplitude motion at the speeds predicted but separation of the unstable from
resonant behaviour would require much more work including an analysis of the
system's nonlinear behaviour. 5 •
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DAMPED VIBRATIONS OF A JOINTED CANTILEVER BEAM -

H. WiBbrok

Institut fUr Mechanik, Universit~t Hannover

Hannover, West Germany 4

l. INTRODUCTION

In many cases welded structures like machine frames have a very small in-
herent damping capacity. In general this leads to an unfavourable noise and 0 0
vibration behaviour. Some methods to increase the damping are known:

- visco-elastic layers,
- discrete viscous dashpots,
- admission of sliding friction by decrease of the interface pressure in

joints. 0

The application of these methods to machine tool frames is restricted by some
disadvantages. Visco-elastic layers must be very thick. Discret dashpots are
more suitable for the reduction of local vibrations. The optimization of friction
damping in the joints requires a non-acceptable loss of stiffness. This paper is
concerned with the idea of avoiding this stiffness reduction by additional

0 frictional interfaces. Such interfaces are formed by fastening additional e.g. 0 0
beam-like elements on the vibrating frame regions. These so-called frictional
ledges 4F-ig.--> can be fixed with an interface pressure for maximal damping
without any reduction of the machine stiffness.

Due to the friction non-
linearity the general knowledge 0 0
about the vibrational behaviour

Friction Ledges of structures damped by dry Coulomb
friction is small. Therefore prac-
tical application of the frictio-

Constructive Joints nal ledge concept needs research
in some open questions. The most S 0
important point is the dependence

Additional Interface for of the maximal frictional damping
Damping Increase on the corresponding interface

pressure. For the investigation of
these questions the following
simple model of a structure damped 0 0
by frictional ledges is used: A
cantilever double beam has a fric-
tional interface in the neutral

Figure I Forge hammer frame damped by axis, which is prestressed by bolts.
frictional ledges I shall present some numerical and

experimental results of the system 0 0

behaviour contributing to the so-
lution of the unsolved problems.

2. THEORETICAL CONSIDERATIONS

The treated system (Fig. 2) consists of two bars, which are connected _0
by 1O equidistant bolts in long-holes. Because of this screwing design relative
motion of the bars is restricted only by the tangential friction forces in the
interface and not by the shear resistance of the bolts. To avoid friction bet-
ween bar and nuts roller cages are built in.
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Here the bending vibrations of the jointed beam and the friction coupled
longitudinal motions are considered.

//

"U----x_,L I ii )i
/ =500

Figure 2 Analysed system

2.1 Computational Model

Using the finite element method the two rods are modelled by 12 usual
beam elements with cubic shape function in lateral and linear shape function
in longitudinal direction (Fig. 3).

yW EI.p const.

2 1a

CN T

-L

Figure 3 Computational modeL

The normal behaviour of the prestressed interface is determinated by the
characteristics of the rough bar surfaces and of the bolts (Fig. 4). The inter-
face without bolts does not transmit tensile forces. In the compressive region
the strong progressive stiffness can be approximated by an exponential function

ifl1 = C. AWlB (1)

The experimentally determinated parameters B and C depend on the materials and
the surface roughness [1]. Tensile forces are transmitted by the screwing. The
bolt stiffness is linear and assumed to be constant distributed over the whole
beam length. The resulting stiffness follows by parallel connection of the
interface and the screwing, which means mathematically superposition of the S S

two spring characteristics. This nonlinear normal stiffness is linearized in
the working point, which results from the prestress. Assuming a linear distri-
bution over one beam element the linearized normal interface stiffness is re-
duced to static equivalent nodal springs.
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Figure 4 Normal interface characteristic

Tangential forces in the interface are transmitted by Coulomb friction.
Two contact conditions are possible during motion: sticking and sliding. When
the actual tangential force between two opposite interface points is less than
the maximal possible sliding force, sticking friction occurs. Inspite of this
friction of rest in the interface longitudinal relative motion of the beam
axes is possible because of the beam shear flexibility. In the computational 4

model this effect is taken into account by a series connection of sliding
friction elements and a linear tangential stiffness cT . For determination
of cT a bending beam loaded by an additional distributed tangential force T
is considered (Fig. 5). The evaluation of the shear stress distribution [2] yields

Y T Additional
Td x Displacement

Shear Stress
dx I Distribution

Figure 5 Tangential interface characteristic 0 0

a parabolic function with the value

T (b width of the beam) (2)
b
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on the forced side of the beam. The tangential load T leads to an additional

displacement of the amount g at the beam edge. The tangential interface stiff-

ness cT is defined

cT T (3)
T 2g

With the above relations follows

4 Gb (G shear modulus (4)
T 5 h h height of the beam).

The continuous tangential interface beha-riour of the physical system is figured

in the computational model by discret tangential springs cT between opposite
nodes in the case of sticking friction and by discret friction forces at the

nodes in the case of sliding.

2.2 Equation of Motion 0 •

The tangential relative dis-

placement ur between two opposite
nodes i and i+1 (Fig. 6) is de-
fined as

Ur =u 2 - U '1 -,"  j -DJ,

u =u -u i -a( i  +i + .

(5 ) U 2 0

Sticking contact yields with
i +1

Au = 0,r

A(2g) =-A[ui+ l -u i -a( i+ l + i

(6)

an incrementally valid stiffness rela-
tion between the contact forces and the Figure 6 Tangential relative dis-
beam displacements (Fig. 7): placement ur

AN. = c* A(2g),I CT

AN. = -cT A[u - u. - a(i + l + .i)] (7)

The excentric origion of the tangential contact forces leads to moments

AM. a -AN. (8)
1 1

The complete stiffness relation for a node pair in sticking contact can be

formulated: 0 4

Ni I a -1 a 2 uiA Mi =--C a a2 -a a2  .A i (9)

Ni+ I  T -1 -a I -a ui+1
Mi+ T a a2 -a a2 J i+1
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Figure 7 Contact forces

In sliding contact the tangential springs persist in their excursion, if the
normal contact forces do not change. The absolute value of the tangential inter-
face forces is determinated by the normal interface forces Fi and the coeffi- .
cient of friction vi (Fig. 7). The sliding friction forces act always in S •
opposite direction of the tangential relative velocity ur

N i

Mi a1 = i•F. • sgn a r (10)

i+1
M i+]  a

For numerical solution by a step-by-step integration procedure the equa- * *
tion of motion is formulated for both contact cases in incremental form. The
following notation is used:

{u1 displacement vector,

[M] mass matrix,

[KB] stiffness of the beams,

[KN ]  linearized normal interface stiffness,

[KT] tangential interface stiffness,

{F S} elastic forces vector,sp S S I

{F F  friction forces vector,

{P} external load vector.

365



Equilibrium at an arbitrary time t+At requires: 0 S

sticking [M]{u} + {F I + ([K +[KN ]+[KT)Au= FF t t+At ()
t+At + Sp t B'+IN+K Au Pt +{p} (II)

sliding [M]{ui}t+At + {Fsp }t + ([KB]+[KN])A{u} = {FF }t+At + fe}t+At (12)

The inertia forces [M]{i}t+At , the nonlinear elastic forces fFSp}t , the
spring forces increment of the beam stiffness and of the linearized normal
stiffness ([KB] + [KN]) A fu} and the external loads {P} are identical

stifnessUKBI+[Kt+At
in both contact cases. Differences exist in the terms of friction. During
sticking contact the tangential stiffness [KT] acts in the system. This S •
matrix is filled with one tangential element stiffness matrix (eq.(9)) for each
sticking node pair. The tangential springs _T are loaded by the preceding
motions. This tangential spring forces at the time t appear in the vector
{FF t. During sliding contact the tangential stiffness vanishes, on the right
hand side are now the sliding friction forces (eq.(1O)) at the considered time
of equilibrium t+At . In general the equation of motion is of mixed typ, S S
because the contact conditions are changed for each single node pair, if
necessary.

2.3 Numerical Procedure

The integration of the equation of motion is carried out with the New- S S

mark method [3]. This integration scheme is used because of some advantages
in this case. It is unconditionally stable, even if the step length is greater
than the period length of higher frequency vibration parts. The Newmark method
is an one-step-scheme. More-step-algorithms would considerably complicate
the friction change-over. Similar integration schemes always have solution
errors, represented as period elongation and amplitude decay [31. The Newmark 0 •
method has a relative small period elongation and no amplitude decay, which is
of particular interest for damping investigations.

For application in the present case the Newmark integration scheme must
be coupled with an alogorithm for control and change-over of the frictional
contacts in the interface. The following procedure has been found to be most S S
advantageously: Theknowncontact conditions of all node pairs at the time t
are assumed to be valid during the following time step At . With these
frictional conditions the integration over this time step is carried out by
the Newmark algorithm. In the case of sliding contact previously the sliding
forces {FF} t+At are evaluated by cubic extrapolation from their preceding
values. After calculation of all required values at the time t+At a control S S
of the contact conditions at all node pairs is performed. The change-over de-
cision bases on the principle: Sticking is true, where and when ever possible.
Thus the question is, whether a sliding assumed node pair would also be possible
with sticking contact, or whether a node pair in sticking contact at the time t
retains its contact condition at the time t+At . In the change-over decision
the amount of the transferable tangential force IN Trt+AtI and the amount S •
of the sum of the tangential force Nt at the time t and the tangential
force increment for sticking friction ANst are compared:

INt + ANsti J NT - sticking friction (13)> sliding friction

The tangential force increment for friction of rest ANst is also calculable
in sliding contact. For that purpose the assumption is made, that a change-
over of only this one node pair to sticking contact at the time t would result
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only in a small change of the relative displacement increment in the interface 4
Au:

r

ANst cT * Au (14)

St r

If the contact conditions evaluated in this way agree with the assumed
contact conditions at all nodes, the solution increment is true and the next
time step can be calculated. If the assumed contact conditions do not agree
with the calculated ones at one or more node pairs, the procedure returns to
the starting time t . For a more accurate evaluation of the real change-over
time than the time step At is divided into n smaller time steps At*: 0 0

At = n * At* (15)

The calculation of the displacement increment Au and the control of the
contact conditions now are carried out as before with the time step At . 0 0
The change-over of the friction contact works during the smaller time step
size At* different in two program versions: in the first version the change-
over takes place at the beginning of the time step, in which the change-over
criterion is reached. In the other version only the next time step is computed
with the new contact conditions. Sufficient agreement of the numerical solu-
tions computed by both versions is criterion for the size of the time step At*. 0 0

2.4 Numerical Results

2.4.1 Free Vibrations

After some investigations concerning stability, accuracy and computation 0 •
time optimization of the developed procedure first free vibrations of the fric-
tional damped beam are considered. Figure 8 shows the computed free vibration
of the cantilever beam after deflection by a single force F at the free end.

Y, W

* 0 0

Y0 0 0

Figure 8 Friction damped free vibration

The enlarged deflection w is plotted versus beam length coordinate x and
time t . Two distinct regions appear: in the beginning a hard damped section
of about 3 periods followed by a stationary vibration with small amplitude.
The shape of the static bending line is similar to the first vibration mode of
the cantilever beam. Therefore essentially the fundamental oscillation appears
and the damped section shows a linear envelope, which is typical for systems
with Coulomb friction. Figure 9 shows the lateral deflection w , the longitu- 0 •
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dinal motion u and the tangential relative displacement u at the beam S S* r
length coordinate x=0.5L versus time t . The longitudinal displacement u

lateral deflection w
W longitudinal displ. u

.................. tang. interface disp(. Ur

0.01w "
U X 1000

time-0.011 m

Figure 9 Displacements at x = 0.5 L

is caused by the friction forces. In the damped region its magnitude is limited
by the change-over to sliding contact. The following stationary region is
governed by continuous sticking contact. Here the relative displacement ur
becomes constant and the flexural and logitudinal motions w and u become
harmonic because of the now linear character of the system. The potential energy
of the jointed beam (Fig. 10) is maximal in the cusps of the vibration, where
also the short sticking intervals appear. This short conservative behaviour *

total energy
L I patential energy 6 S

° 'I I
o:

0 100 0 30 0 40

timet *

Figure 10 Energy of the free vibration

causes the saddle points of the total energy curve. The following undamped

vibration contains in this example less than one percent of the initial total
energy. 0 0
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Figure 11 Influence of the interface prestress on the damping

The main purpose of the vibration analysis with interface damping
becomes evident in figure 11. Here the total energy-time-relation is plotted •
against the beam interface pressure. During vanishing interface prestress
no friction forces act and thus no damping occurs. At high prestresses no
energy dissipation occurs, because all the time the tangential interface forces
are transmitted by friction of rest. Between these extremes a region of inter-
face pressure is optimal in the sense of a damping maximum. Inside this
optimal region higher values of interface pressure lead to strong initial
damping with a following stationary vibration of higher amplitude. On the other
hand lower values lead to a smaller energy dissipation, but to a following
motion of smaller amplitude.

In a number of parametric variations different influences on the optimal
interface pressure and on the arising damping factor were investigated. Here
just one result: The optimal interface pressure for maximal damping is pro-
portional to the initial static deflection.

2.4.2 Forced Vibrations

Besides free vibrations the behaviour of the jointed beam excited by a
harmonic load at the free end is considered. Because the numerical integration •

always yields the complete solution, the simulation time must be choosen long
enough for complete dying-out of the transient vibration. The resonance curves
for angular frequencies

Q : 1200 sec-

are computed for different interface prestresses and presented in figure 12.
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Figure 12 Resonance curves at different interface prestresses

Analogue to free vibrations no friction forces occur if the interface pressure
vanishes. In this case the resonance curve passes into the amplitude
characteristic of a single linear beam with the two lowest angular eigenfre- .
quencies

-1 -1
Wsl = 100 sec I "2sl = 640 sec

At high interface prestresses even largest tangential forces are transmitted by
friction of rest. The resonance curve again has linear shape, but now with
resonance in the natural frequencies of a nearly double thick beam

-1 -1
W 1st - 190 sec , (W2  = - 1216 sec I

Between these extremes exists a region of interface pressure with smaller re- 0
sonance amplitudes caused by the frictional damping. In this optimal pressure
region the linear character of the resonance curve is lost due to the
Coulomb friction. The resonance peak of the fundamental vibration is depressed
and inclined to lower frequencies. This inclination can be explained by the
degressive characteristic of the tangential springs cT and the Coulomb friction

0elements jointed by a series connection [4]. Analogue to free vibrations para- 0
metric variations yield as one result a proportionality between the optimal
interface pressure for maximal damping and the excitation force amplitude.

370



3. EXPERIMENTAL ANALYSIS 0

3.1 Test System

Parallel to the theoretical considerations presented in the last chapter
experiments are carried out. The arrangement of the experimental rig is shown
in figure 13. The theoretically rigid clamping is approached by astiff hydrau-
lic clamping device. Two transducers are mounted on the test beam. The strain
near the fixed end of the beam is measured by strain gauges. An opto-electronic
displacement transducer measures the lateral deflection near the free end.
Both signals are amplified and recorded. In the case of free vibration measure-
ments the shaker for harmonic excitation is exchanged by a device for static
deflection.

Hydr Clamping Device

Shake Prestressed

Strain Gauges S o u o
0

e Bem
///// , / JLurninescence Diode

Dspl. Transd ucer

I~Impulse Grenerator • •

Transient

Recorder

Figure 13 Arrangement of the test rig

3.2 Experimental Results

Figure 14 shows the computed and the measured deflection of the free
end of the beam versus time. The first frictional damped periods agree qualita-
tive in numerical computation and experiment. The amplitude of the calculated

a0T0
Deflection of

o015 the Free End
/ of the Beam Computation Mesurement0070 mm * *

a~o AAAAAAAAMAMAA*A4~~
00 O0100 04 05 06 0 089 .........

aw - 7 1,r(2,J, Periods) - fsec (30,6 Period s);--

Figure 14 Comparison Computation - Measurement

vibration after one second is Imm. In the measurement a weakly damped vibration
(material damping) with an amplitude of 1.1mm at time T = Isec appears.
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A counting of the periods over the first second yields a mean value of fre- 0 0

quency of 29.3 Hz in the computation and 30.6 Hz in the experiment. A value for
comparison: the undamped fundamental bending frequency of a beam with equal
dimensions, but without interface is 32.6 Hz. More experiments and corresponding
computations with initial static deflection as well as harmonic excitation are
carried out. In all these cases a comparison between measurements and calcu-
lations yields sufficient agreements. 0 0

6. CONCLUSIONS

A computational model and an integration procedure for the computation of

frictional damped vibrations of structures with interfaces are developed. Model
and calculation algorithm lead to physical plausible results in all possible 0 S

contact conditions, like sliding friction or friction of rest, vanishing or high
interface pressure.

Corresponding experiments are carried out. Considering the large range
of the friction coefficient and of the other parameters of important influence
on the system behaviour, measurement and numerical computation show an accep- 0 B

table agreement. Consequently the developed computation model and numerical pro-
cedure are suitable for vibration computation of the investigated double beam
and other similar structures with frictional interfaces.

A distinctive maximum of the frictional damping exists at an optimal
interface pressure. Thus the frictional ledge concept is a useful method of 0

damping increase.
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THE EFFECT OF SMALL CLEARANCES AND FRICTION-LOADED CONSTRAINT
POINTS ON BENDING WAVE ENERGY TRANSMISSION IN A LONG BEAM 0

M.J.H. Fox

CEGB, Berkeley Nuclear Laboratories

1. INTRODUCTION

Many different classes of structure contain beam or shell-like components
which efficiently transmit mechanical vibration in the form of bending waves 0 0
from one part of the structure to another. Studies of the effect of various
forms of constraint and structural discontinuity in attenuating such waves have
been carried out. For example, discontinuities in structural material and cross
section have been considered ([l], Vl, 2). Joints ([2], [3]), 'blocking'
masses, and sequences of regularly spaced masses or pinned supports [I], V4, 5
form further examples of attenuation mechanisms. Many of the investigations
have considered the beams, or plates, to be sections of infinite systems with
bending waves incident en the constraint or discontinuity being reflected and
transmitted in various proportions. The radiated waves are assumed to travel
out of the region of interest in the problem and have no further influence on
it. This assumption may be seen to be physically realistic in some
applications, as for instance where sound transmission from a concentrated
source region is being considered, with sufficient structural damping for
multiple reflection to be ignored. It may also lead to useful results in
systems subjected to distributed random forcing, to be treated by the methods of
Statistical Energy Analysis. Here, the results for coupled infinite systems may
be used to define a mean 'transmission loss factor' for assessing relative
vibration levels in different parts of the structure, [4], [5]. 0 0

This paper considers the effect on bending wave energy transmission in an
infinite beam of constraints in the form of nonlinear force/displacement or
force/velocity relationships. A point receptance method is used, whereby the
linear (Euler beam theory) equations for the beam in the absence of the
constraints are used to derive explicit expressions for displacement or velocity 0 0
at the points where constraints are to be applied, in terms of applied forces at
these points. Substitution of the chosen forms of these forces then lead to
(nonlinear) integral equations determining displacement or velocity at the
constraint points. In this way the infinite number of degrees of freedom of the
original problem have been reduced to a number equal only to the number of
nonlinear constraints, for numerical solution. This is analogous to the process 0 S S
adopted by Dowell [6] for finite systems.

2. SINGLE STICK-SLIP CONSTRAINT

The numerical solution is carried out, firstly, for a force-velocity
relationship modelling stick-slip behaviour at a single constraint. For very S S
small values of velocity the force is assumed to increase linearly with velocity
up to a limiting value. In this 'sticking' phase the force can take any value
required for overall equilibrium up to the limiting value, the associated
velocity being negligible in the context of the wiole system. When the limiting
force value has been reached, the force remains constant for all further
velocity increments, allowing 'slip' until velocity returns below the limiting S S S
value, when 'stick' is re-established. Solutions are found modelling steady
state periodic response to an incoming harmonic wave, for different values of
the ratio : limiting applied force/shear force amplitude of incident wave.
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0 0

2.1 Equations of Motion

The beam is taken to lie along the x-axis with transverse displacement in
the y-direction. The velocity field produced by a harmonic incoming wave of
frequency w from a negative x-direction, together with the onward travelling and 0 0

reflected waves generated at that frequency, is shown in figure 1. k is the
wavenumber of the waves, given by Euler beam theory as 0 = w 2p/EI, p being the
mass/unit length and E1 the bending stiffness of the beam. The nonlinear nature
of the force/velocity relationship to be applied at x=0 will result in waves at
harmonics of the incoming frequency being generated, these will be superimposed
on the fundamental reflected and transmitted waves to produce a more complex S S

waveform. The higher harmonics will each produce a velocity field as shown in
figure 1, each with its appropriate k-value, but without an incoming wave

component.

The continuity equations at x=O may now be written in the frequency domain
as: •

iWUo  + a + b - c - d = 0

kwUo  + ka + ikb + kc + ikd = 0 (1)

-k2iU 0  + k2 a - k2 b - k2 c + k 2d = 0

-k3WU + k 3a - ik3 b + k3c - ik3d =iwF/EI

for continuity of velocity, angular velocity and bending moment, and equality of S S

discontinuity in rate of change of shear force to rate of change of external

applied force, respectively. iwU o is now understood to be the time Fourier

transform of the incoming velocity field at %=O and F the time Fourier transform
of the applied force. The equations may be solved for the Fourier components of
standing, reflected and transmitted waves at frequency w to give:

a = c = -iw;/4EIk 3
, b = wF/4EIk3, d = iU O + wF/4EIk 3

and so the Fourier transform of velocity at x--O is

iWU(OW) = iWUo - (l+i)iwF/4EIk
3

Reverting to the time domain, the velocity at x=O is:

dU (0,t) = 2 Re 7 {iw - (l+i)iw (w)}eiwtdw
dt o 0 4EIk3

dUo (t) - 2 f F(T)Re{jo(l+i)il-/2 eiw(t-T)dw}du

dt 8(EI)l/4 p
3 /4

using the beam bending wave characteristics, Elk4 = pw2, and the explicit

expressiB for the Fourier transform F(w) in terms of the time-history of the

force. --=(t) is the velocity associated with the incoming wave field at x=O.
dt

The inner integral may be evaluated explicitly [7] to give

374



IF
F

- x
0X

beikx aek be k x de'ikx

4 i
I 

0 S

Figure 1. Single Interaction Point Velocity/Displacement Field.

Transmission
("1.)

100 Incident energy

Reflected energy
90

so

Harmonics

70

40 Figure 2. Transmitted and
Reflected Energy,

30 vs. Limiting

20 - Transmitted energy 
Friction.

0
0 0.1 0.2 0.3 6.4 0.5 0.6 0.7 0.8

FIElk 3 U, 2 g --

375



Re f (l+i) iw - I 2 eiw(t-)dw = - t(> .
0 t-T

=0 t<

which leads to an integral equation for du (O,t) 0 0
dt

du(0,t) dU ) + t FTr) dT (2)
dt dt 21/4 3/4 -- /(t - "c)

dt dt2/2it(EI) p P -0 0

2.2 Solution Technique

The equation was solved using a step-by-step timewise integration until
the difference between successive cycles of response was less than some pre-set
small value, starting from a state of rest at t = 0. As the assumed
force-velocity relationship: 0

F= -a r/b du~ b
dt dt

- -a du > b (3)
dt 0 4

a du < -b
dt

is piecewise linear an implicit integration scheme, with its advantage of
enhanced numerical stability permits extraction of explicit expressions for
du/dt at the current time step from (2). Here a is the limiting friction force,
while a/b is the slope of the force-velocity curve modelling the 'sticking'
phase of the motion, b being a small quantity.

2.3 Results

Having found the steady-state response of velocity, and hence applied
force, in the time domain, a Fourier transform routine was applied to recover
the frequency-domain coefficients a, b, c, d of standing, reflected and
transmitted waves for the fundamental (incoming wave) frequency, and harmonics.
Figure 2 shows the proportions of energy reflected Ind transmitted, as a
function of the ratio of limiting friction a, to 3 2Uo/A, which is a measure of
the internal shear-force amplitude associated with the incoming wave. The
vertical distance between the two broken lines is a measure of the rate of
energy dissipation in sliding. At zero limiting friction there is no constraint
on beam motion, and all the incoming energy is transmitted. As limiting
friction is increased there ts a minimum on the transmission curve near a
limiting friction of 0 35 3/2U /A, and the curve rises again to a value of 50% 0
transmission as friction is further increased. This 50% value is that obtained
for transmission past a single pinned support on an infinite beam, and
represents the situation in which sliding motion has been prevented by the
friction force.

3. SINGLE CLEARANCE CONSTRAINT 0

The equations are next solved for a displacement-dependent force modelling
beam motion in a clearance which has no influence on the beam until the
displacement exceeds a certain value. A simplified model of the impact process
is used in which a stiff spring relationship between force and displacement is
assumed once the latter exceeds the clearance value. Again, solutions •
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representing steady-state response to an incoming harmonic wave are sought, and 0 S

the interest is now in finding the dependence of onward transmitted energy on
the incoming wave ampliltude/clearance ratio.

3.1 Equations of Motion and Solution Technique

The applied force is taken to have the form: 0 0

F=0 lul < a

-K(u-a) u > a (4)

f -K(u+a) u < -a 0 0

at x = 0, where a is the clearance, and K the stiff spring rate providing a
restoring force after impact. As the force is displacement, rather than
velocity, dependent, modifications must be made to the previous solution
technique. It proved most convenient, for the numerical integration, to use (2)
for the time-stepping equation, with a simultaneous integration of du/dt being 0 0

carried out to obtain the current value of u, and hence F.

3.2 Results

Figure 3 shows the proportion of incident energy transmitted onward past
the clearance, as a function of the ratio clearance/incoming wave amplitude. As • S

the applied force is conservative, no energy is dissipated in the clearance, and
the reflected energy is represented by the deficit in transmission. At zero
clearance, the effect is that of a pinned support and 50% of incident energy is
transmitted. As the clearance is increased the proportion of transmitted energy
reduces, to a minimum of around 30% at clearances of around 0.3-0.4 of the
incoming wave amplitude, with an increasing proportion of this energy appearing 6 0

in harmonics generated by the impacting. The transmission then starts to

increase again, but only to a value of 70% for a clearance equal to the wave
amplitude. For clearances greater than this a solution in which the wave
continues through the clearance unaffected by its presence is clearly possible,
and it is this solution that is found by the numerical technique. It is
possible that there is a range of clearances greater than one wave amplitude for • 0
which a second, contacting solution also exists; this would give a continuous

branch to the transmission curve rising to 100% at a value greater than 1.

4. TWO STICK-SLIP CONSTRAINTS

The cases for two constraint points on a beam are considered next, to S S

permit the investigation of the dependence of transmitted energy on separation
of the points. The force at each constraint point is related to the local
velocity by the forms (3) used for a single point.

4.1 Equations of Motion

The notation used for the various standing and travelling wave components
in this case is indicated in figure 4. Frequency-domain equations to determine
the corresponding coefficients are set up as in section 2.1, but now considering
continuity and force-balance conditions at each of the two clearances. These
result in the solutions:

a - -iw(F I + F2 e-k)/4lk 3  A = -iWF2 /4EIk
3

b - w(FI + F 2ei
k1)/4EIk3 B - WF2 /4EIk

3
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c = -iwFi/4EIk3  C = -iw(F 2 + F, e-kl)/4EIk3

d - iwUo + wF /4EIk3  D = iwUoe- ik t + w(F + FI e - i k l ) / 4 E l k 3

The time dependence of velocity at the second constraint point x=-, is

du ( dt) =  
_-t) I 0 {FI(,)A(t, ) + F2 (-) B(t t)}dt

dt dt 4up3/4(EI)/4 -r

at x - 0 (5) 0 0

dU dU1(Ot) =f dU(t) - 1 f{Fl( )B(t, ) + F 2 (T)A(t,)j}dr (6)
dt dt 4up3 /4 (EI)1/4

dUA
where (t) is the velocity of the incoming wave field at x=I,dt 0

A(t, ) - Re i frO-i/2(eiW(t-) - WI/2L + ieiw(t- ,) - iwl/2L)d.
0

where L = pl/4 (EI)-1/41, so that kI = wl/2L

B(t,T) = -1(2n/t-T), the kernal for the single support case. After some
substitution, A may be reduced to [7]:

A(t,i) = - /2. (cos ( L2 )+ sin ( L2 )) t >
t-U 4(t-c) 4(t- )

=0 t<t < 0

4.2 Solution Technique

A becomes singular as t- , with an increasingly rapid oscillatory

behaviour. This is because A, representing the response at the second
constraint point due to the force applied at the first constraint point is, at S S

very small time-differences dominated by the high frequency components which
have the necessary high propagation speeds to travel between the support points
on such a short timescale. To overcome this problem in integrating (5) and (6)
the forces are approximated by linear functions in each time interval (t-(n+l)s,
t - nc) and the resulting products with A, B integrate to give weighting factors
for the values of F1 , F2 at the ends of the interval in terms of trigonometric 0 0

functions and Fresnel integrals [7], which are available from computer numerical
algorithm packages [8].

This gives a pair of implicit, but piecewise linear, equations for the
values of du/dt at the two constraint points, for the current time step. These
may again be inverted to obtain explicit expressions for du/dt at the * *
constraints.

4.3 Results

Figure 5 shows the dependence of transmitted energy (including that in
harmonics) as a function of the ratio: constraint separation/wavelength, for - * S

three different values of limiting friction, covering the range of values for
which sliding was seen in the single-point analysis. Also shown for comparison
is the curve obtained for the case of two simple pinned supports at the
constraint points, from a linear theory. At the lowest friction value the
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sliding forces dissipate about half the incident energy independently of the 0 0

constraint separation. As the friction is increased, however, the additional
constraining force is sufficient to reproduce the feature seen in the pinned-
support curve of a resonance near a separation of 0.6 wavelengths where a peak
in transmission levels is found. A qualitative difference in the forms of the
pinned support curve and of the higher friction value curves is seen at low
separations. The effect of two pinned supports being moved together on a beam, 0 0

is equivalent to introducing a clamped condition there, preventing all energy
transmission. This is only achieved because an idealised pinned support can
resist an arbitrarily large lateral force, so that the pair can, by means of
equal and opposite lateral forces, apply the required moment on the beam even as
their separation tends to zero. This is not true for stick-slip constraints
however large the limiting friction there will come a point at which, as the 0 0

constraints are moved together, the limit is exceeded and slip will occur at one
of them, allowing energy transmission.

5. TWO CLEARANCE CONSTRAINTS

The case of a beam with two clearance points is treated as in the previous 0 0

section, where the forces at the two constraint points are now governed by the
local displacements according to (4). As described in section 3.1, additional

integration steps are required to derive the displacements from calculated
velocities.

The transmitted energy vs. separation/wavelength results for clearances 0 •

0.1 and 0.2 x incoming wave amplitude (figure 6) again show a similar form to
those for pinned supports, with the pinned support curve as an upper bound,
except at small separations. At small separations the clamping effect of two
pinned supports is not seen, as even very small clearances allow some rotation
of the beam as they are brought together. For larger clearance values (e.g. 0.5
x wave amplitude) impacting at the first constraint point reduces the amplitude • 0

sufficiently to prevent contact at the second, and so transmission is
separation-independent.

6. CONCLUSIONS

This paper has considered theoretically the effect on bending wave energy 0 0

transmission along an infinite beam of nonlinear constraints modelling friction
loaded 'stick-slip' support points and small clearances. Single constraints of
either type are found to produce a similar degree of attenuation (about 50%) to
that produced by a pinned support, provided that either the friction is high
enough, or the clearance is small enough, to provide a significant degree of
interaction between support and beam. 0 •

Higher attenuation may be obtained with two such constraints provided the

separation is correctly chosen. As for two pinned supports, a separation of
around 0.6 wavelengths introduces a resonant effect, giving comparatively low
attenuation. Unlike idealised pinned supports, however, which clamp the beam
as they are brought together, friction loaded supports and clearances suffer a 0 0

loss in attenuation potential as they approach each other. The optimum
separation, for most significant friction levels and for small clearances,
appears to lie in the range 0.2 - 0.4 wavelengths.
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REVIEW OF AIR-BLAST RESPONSE OF BEAMS AND PLATES I
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1.,, INTRODUCTION

The objective of the present study is to provide a comprehensive review ot
the behaviour of beams and plates which are subjected to air blast loadings.
Since this is a compilation and analysis of published research results, it will
also serve as a guide to the needs for future research.

At first, loading characteristics and material properties are discussed.

Then the responses of beams and plates are considered for various ranges of load- • 0
ing. Throughout the study nondimensional parameters which best represent the
structural behaviour are presented. The selection of these parameters is deter-
mined by the requirement of most complete presentation with minimum variables.
Also, similarities between beams and plates are derived and areas of deficient
knowledge are pointed out._Te presentation here is necessarily brief, but full
details are available in [ I

0N

2. LOADING CHARACTERISTICS

A typical pressure wave from an explosion has an overpressure phase and
then an underpressure phase. If the source is a conventional explosion and not
too far from the target, the peak over-pressure pm is much larger than the peak
underpressure. Hence, in practice, the negative phase is often neglected. Also,
since the rise time is very short compared to the total duration of positive
loading TO a zero rise time is often assumed. For blasts in air the peak
pressure pm, duration of load rO , and impulse per unit area I, which is the
integral of the pressure time history, are usually expressed as a function of the
scaled distance Ro /W1 1 3 from the explosion. Here R is the distance from the
explosion and W is the equivalent TNT weight of explosve. Empirical charts are

available which give data for both incident or reflected pressures, and side on
pressures. See for example, j2] (Ch. 4).

The response of a structure to a blast load is highly dependent on the
duration of loading. This is best described by an iso-response plot (2] (Ch.
2), as presented in Fig. I. The plot presents the combinations of pressure and
impulse which, when applied on a certain structure, result in a similar specified
response. The response may be a displacement at a point, the elastic limit
stress, tensile failure or any qualitative or quantitative response as desired.
The iso-response curve shows that there are minimum values of pressure and
impulse which are necessary to obtain the required response. In the quasi-static
realm, the load is applied slowly and therefore the impulse is very large, but,
since the response is dominated by the load level, the desired response will be
obtained only if the minimum pressure is applied. In the impulsive realm, a high
level of load is applied during a very short period. Here, the impulse is the
dominant loading parameter, and regardless of the magnitude of pressure, if the
impulse is below the minimum, the iso-response is not reached. In these two
extreme realms, the history of loading is not important, and the peak pressure
Pm or the maximum positive impulse I, respectively, are the only significant

loading characteristics.

* Now with Armament Development Authority, Israel.
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The period T of the linear natural frequency of the structure in the parti- 6 6
cular mode of response relative to the duration of loading To provides a
criterion to determine the loading realm. When T o/T < 0.2, an impulsive approach
provides a fairly good estimate of the response, whereas for T o/T >> 1, a step-
load approximation becomes reasonable.

In the dynamic realm, the entire history of loading p(t) affects the 0 •
response. The most severe response is obtained when the external load follows
the natural response of the structure. There have been attempts to eliminate the
need to investigate separately the responses to each pulse shape. The idea is to
find the response to a certain shape and then to correlate other load histories
to that with the known response. See for example Youngdahl [31 and Robinson [4].
However this approach has not been pursued thoroughly and much more work is • 0
required before definitive results will be available.

3. MATERIAL PROPERTIES

The most commonly used stress-strain relations are bilinear elastic-
plastic. When the response is deep inside the plastic domain, a rigid-plastic 0 0
behaviour is commonly assumed. Materials that exhibit weak strain-hardening are
usually assumed to be perfectly plastic.

Yield criteria are required to define the limits of elasticity and the
onset of plastic flow. The Tresca and the von Mises yield criteria as well as
the square Johansen criterion have all been used for the principal bending * 0
moments in a plate. The results obtained using the various criteria differ from
each other by approximately 10% or less, with Johansen's criterion always giving
the highest loads.

When the loading conditions involve bending moments M and in-plane forces N
or when transverse shear forces Q are included, the yield criteria have to - 0

combine these forces to provide acceptable results. For example, for rectangular
beams with restrained axial motion at the supports, the yield condition

I ol+ (N)2 (1)
M 

0



was employed in [5], whereas the square-type condition

(IM I - I)(12-1 - 1) ( 0 (2)

was used in (6], where MO, NO and Q are the appropriate independent plastic
limiting quantities.

For materials that exhibit strain rate sensitivity (like mild steel), the
plastic domain for a high strain rate may be at a stress level two times that of
the static one. In a typical blast test on a structure, the strain rates are
time dependent and, in principle, the material behaviour at the plastic range
should be updated continuously. In practice, fairly good predictions have been
obtained for models where the yield level is assumed to correspond to the yield 0 S
level at the highest strain rate, and then held constant (see, for example, [7-
8]). The justification is that most of the energy is absorbed by plastic
deformation at the highest level of stress.

4. BEAMS

The collapse pressure under a static load is an important quantity in the
quasistatic realm of loading, and is an important parameter used in
nondimensionalizing the dynamic results. Consider a beam of rectangular cross
section, either a cantilever or a symmetrically supported bar, of length L,
loaded by a slowly increasing uniform lateral pressure p. At a load level py, an
extreme fibre reaches the yield stress Oy and for p>py, plastic deformation 0
occurs. The bending moment per unit width at the cross-section of incipient
yield is

MY = Oyh 2 /6 (3)

where h is the beam depth. Therefore the yield load is given by 0

py = aly h2/L2  (4)

where a, = 1/3, 4/3, and 2 for a cantilever, simply supported and clamped beam,
respectively. For a perfectly plastic material, the maximum bending moment per
unit width is: 0 0

MO = oyh2/4 (5)

and the ultimate or collapse pressure p0 is given by:

Po = "2 oYh 2/L2  (6) 0

where 02 - 1/2, 2 and 4 for the above three cases, respectively.

When the ends of the simply supported and clamped beams are held fixed
against in-plane motion, tensile forces along the beams change the deflection and
the stress distribution through the thickness. The higher the deflection, the 5 4

poorer the results obtained by the pure bending approximation. These effects are
illustrated in Fig. 2 for the simply supported beam, where ot is the stress due
to maximum membrane force and ob is the maximu m bending stress. It is clear
that once the deflection reaches an appreciable fraction of the beam depth, then
nonlinear effects play a significant role.

4.1 Dynamic Response of Cantilevers

Baker et al. summarized in [91 and [2] (Ch. 7) test results on cantilevers

loaded in the dynamic and impulsive realms. For cantilevers that responded
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* elastically, bending strains eb were measured at the root, but for higher
impulsive loads measurements were not taken during the tests and only the final
tip deflections wtip were measured.

In the impulsive realm, the loading is expressed by the impulse I. The
plastic deformation results of the impulsive loading tests are presented in Fig.
3 as a function of the parameter I/LVV- , which contains a plastic material
property, instead of I/LV- as used by Baker et al. For the response in the
plastic range, the yield stress 3y is considered to be a more appropriate
parameter than the elastic modulus E. The impulse required for incipient
yielding is given by

I _ V h Vey h

LVOyP V6 L

where ey is the yield strain corresponding to the yield stress Oy. The test
results agree well with this estimate in that no appreciable permanent deforma-
tion occurred until the impulse exceeded this elastic limit. •

The significance of the elastic response part decreases for higher
impulses. A simple analysis for a rigid-plastic material with a single plastic
hinge at the root gives the relation

sin-' (wtiP) = 2 (L)3 12 (8) •
L h Oyp

which, as shown in Fig. 3, overpredicts the deflections. However, if the elastic
energy for incipient yield is subtracted from the input kinetic energy, this
equation becomes

sin -I (W.tp) = 2 (L)3 12 -1 L (9)
L h L2 Oyp 3 h

Eq. (9) is also shown in Fig. 3 and it clearly gives a much better representation
than Eq. (8).

4.2. Dynamic Response of Symmetrically Supported Beams

Symonds [101 obtained the permanent response of simply supported and
clamped beams with no axial constraint subjected to rectangular pressure pulses.
It is possible to write the deflection equation for both beams in a single
equation: 0 0

3 Pm rm 3 , P 1
2ph wmax = 2 (10)

Poo 4 Pm Pm> 3
3 Po Poo 4 P

where po is the static collapse pressure given by Eq. (6).

With the following definitions of nondimensional impulse T and pressure p:

pmt m o % -P Wmax p P pm/Po (11)
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Eq. (10) can be written as:

= 8 (12) •i12 3/4 ) p > 3

Eq. (12) may be plotted as a single iso-response curve of p vs. T. In the
impulsive loading realm, p + - and 1 + 1 or

Wmax , 2 12 (13)

h 3ihpP

where I = PmT 0 .

In an extensive experimental study, Florence and Firth [il] tested the
response of beams to impulsive uniform lateral pressure. The boundary conditions • 4

approximated clamped (c.) and simply supported (s.s.) edges with free axial
motion. All of the results are plotted together in Fig. 4 in the form of normal-
ized maximum permanent deflection wmax/h versus the impulsive loading parameter

12 /h2pop. The impulsive load result of Eq. (13) is also shown for comparison.
The experimental data appears to agree with the prediction at low levels (wmax/h
(10), but deviates significantly from it at high levels. 0 0

Symonds and Mentel [51 extended the solution for the rigid-plastic beams to
include effects of axial tension for the case of impulsive loading. It results
in a nonlinear correction term for Eq. (13) in the form

'max + 4 [Po(S')jz m = 2 12 0 0

h 3 PO  h 3 h2pop

where po(s.s.) is the static collapse load for the simply supported beam. This
result is valid for Wmax/h 0.5. For response beyond this limit, the membrane
force reaches its maximum value with resulting zero moment, and the beam responds

as a taut string. Using an approximate analysis to this problem, Symonds and - •

Mentel [51 give the following estimate of the maximum permanent deflection

Wmax IL 1 PO (15)

h 2h2VTYp 4 po(s.s.)
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Because of the nature of the approximations, Symonds and Mentel estimate that Eq. 0 0
(15) should provide an upper bound for the permanent deflection.

The clamped beam test results processed from the experiments of Humphreys
[12] and Jones, Griffin and Van Duzer (13] are presented in Fig. 5 along with the
predictions of Eqs. (13), (14) and (15). It appears that Eq. (15) fits the
aluminum specimen data fairly well but is significantly above the steel results. 0 0
Much of this difference can probably be attributed to the rate sensitivity of the
latter. It is also clear that Eq. (14) lies close to the experimental data for
low loads but lies significantly below it at high loads. Symonds and Mentel [5]
have noted this and suggested that for high loads the deflection should vary
linearly with impulse as given by Eq. (15) but that the result should fall
between Eqs. (14) and (15). 0 0

6 6

o 
S

Fig. 5. Permanent Deflection of Clamped Fig. 6. Permanent Deflection of Simply •

Beam With Axial Restraint. Supported Circular Plates.

5. PLATES

The deflected shape of a plate is generally not a developable surface and
so stretching occurs even when free in-plane motion is allowed at the edges • •
Thprefore, pure bending theory is restricted not only to thin plates, but also to
small deflections.

For a perfectly plastic material, the static uniform lateral pressure
capacity of a circular plate [141 is given by

s stci3 Oyoc2 = 6 fre (16) 

and

Po = 2.815 Oy(2 - 11. 2  -  (17) •

for simply supported and clamped edges, respectively, where Mo is given by Eq.

(5), h is the plate thickness, and the Tresca yield criteria is used.
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For rectangular plates, the solutions depend also on the aspect ratio a/b, 4 S
where a is the length of the plate and b is its width (a'b). The static collapse
pressure for simply supported edges is:

3 1 2h)2 6M°
Po 2(3-20) b (b/2) (3-20) (18)

where the aspect ratio parameter 8 is given by [15]:

= (b/a) L3 + (b/a) 2 - b/aj (19)

For a clamped plate, po is 1.9 to 2.0 times larger than that given by Eq.
(18), depending on the yield criterion used in the analysis. 0 S

Linear pure bending theory is adequate when w/h < 0.4 for simply supported
plates or w/h < 0.5 for clamped plates. Larger deflections require inclusion of
the membrane stresses which as a result yields nonlinear equations for wmax/h.

5.1 Dynamic Response of Circular Plates

The permanent deflection of circular plates due to a pressure pulse of
magnitude Pm and duration T was studied by Hopkins and Prager [161 and Florence
[171 for simply supported and clamped edges, respectively. They used linear pure
bending theory with rigid-plastic material obeying the Tresca yield criterion.
Their solutions may be written together as 0 S

f Pm Po P)

2ph wmax = P (20)
2ma 3 P !m 2 )

° Po P0 -3 Po -2

where po is given in Eqs. (16) and (17) for the two boundary conditions.

Florence [18] obtained test results for circular plates and these are
replotted in Fig. 6. The linear prediction of Eq. (20) for pm/Po - and To + 0
is also shown for comparison, and is clearly not very good. Jones [19] improved
the theoretical predictions by including both bending and membrane effects, but 0 6
his results are in a form that cannot be easily presented.

Here we propose an empirical curve of the form of Eq. (14) for beams. The
result is plotted in Fig. 6 where the 1/16 coefficient of the cubic term was
obtained simply by adjusting the curve downward until it gave a close upper bound
to the data. 0 0

5.2 Dynamic Response of Rectangular Plates

The permanent response of a rigid-plastic rectangular plate to a uniform
pressure pulse was studied by Jones [151. He assumed deflection shapes similar
to the static ones even for large dynamic pressures for which an initial flat • 0
area in the centre was observed in tests [20]. His solution for a rectangular
pulse shape may be written for simply supported and clamped plates as:

2ph 3- 2 • {[l + 2 ( - 1)(1 - cos YT )]1/2 - 11 (21)
2 wmax T0 = 0Po T o2 T

- where P is the static collapse pressure of Eq. (18), p - pm/po and the parameter
Y is defined by
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24
I2 -G * + -1-)/(3- 2 ) (22) 0

Pb- -

Note that Y has the units of frequency and hence it provides a second natural
time scale of the structure. Unfortunately Eq. (21) does not include the effect
of membrane stresses.

Experimental results [211 of the permanent deflection at the centre of
built-in rectangular plates (a/b = 1.69) under impulsive lateral pressure are
presented in Fig. 7. (The data with edge slippage were not included.) Note that
the results for the mild steel specimens fall significantly below the the alumi-
num ones which is consistent with the fact that the mild steel is much more
strain rate sensitive than the aluminum. Two theoretical curves are also shown
for comparison. The linear prediction of 0 0

Wmax =4 - 0 12 (3___ _ 12(23)
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which was derived in i for impulsive loading appears to be adequate only for

Wmaxn < . The other curve is the empirical nonlinear bound curve of Fig.
6 with appropriate modifications for aspect ratio for rectangular plates. Again
it appears to provide a reasonable upper bound.

6. COMBINED RESULTS

In considering the response of structures to lateral blast loading, it is
common to present the permanent response of beams and plates separately . The
method proposed here, which includes effects of aspect ratio, combines and

unifies the presentation of results for all impulsively loaded flat structures.
Thus, the test results for clamped beams, simply supported circular plates andclamped rectangular plates are presented together in Fig. 8 in a log-log plot.
Only the aluminum 6061-T6 specimen data are shown in order to emphasize the

tructural effects and minimize the material property effects. The maximum
permanent deflections of the beams are slightly lower than those of the plates.
Note, however, that the edges of the circular plates were without in-plane
restraints. It is seen from Fig. 8 that all the experimental data are
effectively collapsed together and the fitted curve provides a reasonable upper
bound for all the data. 

•
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7. CONCLUDING REMARKS 0

The iso-response plot has not been included herein because of the lack of
experimental results and theoretical solutions over the full duration of loading.
The p-T relations discussed in [1] , were obtained for pure-bending and rigid-
plastic approximations which introduce two major disadvantages: I) with the
exception of beams which are not axially restrained, the pure-bending solutions 0
are restricted to small deflections, and 2) the rigid-plastic approximation does
not correctly model the natural frequency of the structure, and hence the solu-
tions are only valid for durations of loading well removed from the natural
period of the structure. Hence, these equations have little practical
significance.

Another assumption in these solutions, and also in their nonlinear exten-

sions, is the rectangular shape of the history of loading. When the loading is
not impulsive, the response depends on the history of loading and therefore the
iso-response plot obtained with the rectangular assumption will differ from
reality. Correlation parameters between different shapes of loading may provide
the means to apply iso-response plots of the rectangular pulse to other shapes, •
but these parameters have yet to be verified.

Further research is needed to establish realistic iso-response plots even
for simple shapes of loading. These require nonlinear theoretical solutions and
extensive test programs that cover the dynamic loading realm. At present, even
the simplified rigid-plastic approximate solutions are incomplete in that for
beams and circular plates the solutions are for impulsive loading only. The
nonlinear analysis of rectangular plates reviewed herein, did not allow for
deflection modes other than the static one. It appears from the analytical
complications which arise even for the most simplified structural and material
approximations that one has to resort to numerical methods in order to obtain
more realistic results for the entire range of loading. 0

Further research is also required to investigate the effect of different
shapes of loading. Hopefully correlation parameters can be found to cover such
effects and thereby reduce the number of iso-response plots required to cover all
loading shapes. The area of stiffened plates and anisotropic plates has hardly
been touched and much work is needed here [1]. 0
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