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PREFACE

This conference follows the very successful first event in the series
organised by the Institute of Sound and Vibration Research in July 1980,
The second conference has support from the Air Force Wright Aeronautical
Laboratories in the USA, the European Office of Aerospace Research and
Development and has the continuing objective of reviewing advances

which have been made in theoretical and experimental structural dynamics,

Dynamic structural analysis now benefits greatly from the availability

of large computational facilities, either for theoretical work or signal
processing. Most work 1s, however, based upon the assumption of linear
behaviour, an assumption which is often not valid in practice. Although
the balance of the conference is biased towards linear vibration, a section
on nonlinear vibration is included which has attracted contributions on

a variety of problems,

Generally, the conference papers cover a wide range of topics and it is
hoped that this will stimulate discussion and promote liaison between the

participants,

I hope that you enjoy the conference both technically and socially,

P




Editors' Preface

We should like to thank all authors for their contributionms.
Due to the high standard of the papers we accepted more than for
the previous Conference. Many were suitable for more than omne
session. In selecting which one, we have tried to establish an

interesting and well balanced programme.

Our thanks also go to the members of the organizing committees

iy

for their help in many ways.
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WAVE PROPAGATION IN CIRCULARLY CURVED BEAMS AND RINGS

*New York Institute of Technology

| —— Omer A. Fettahlioglu* and Giora M. Yehodian*¥
L **polytechnic Institute of New York

1. INTRODUCTION

The first comprehensive treatment of inextensional vibrations of cir-
cularly curved beams was presented by Lamb (1] using Hamilton's principle.
For other early investigations concerning the incomplete circular ring under-
going inextensional deformations reference may be made to Den Hartog (2,3]
and Archer [4]. A myriad of authors have treated various aspects of the
problem that no attempt will be made here to provide extensive survey.
Seidel and Erdelyi [5] derived the frequency equation of a thick free ring by
considering the bending, shear and extensional strain energies together with
the translational and rotational kinetic energies. They calculated the fre-
quencies by specializing their frequency equation to inextensional deformation
for a free complete ring. Rao and Sundararajan {6] adopting the same pro-
cedure as was done for the Timoshenko beam [7] examined the inextensional
vibrations of a free ring including the effects of shear deformation and rota-
k ' tory inertia, and determined the natural frequencies of a stiffened ring.
@ Veletsos and Austin {8] presented an analysis of the free vibrational charac-
teristics of circular arches vibrating in their own planes. Their study which
is based on Fliugge's equations for cylindrical shells accounts for the extensi-
bility of the arch axis but neglects the effects of rotatory inertia and shear-
ing deformation. In a later paper; Austin and Veletsos [9) presented a
method of analysis based on Federhofer's system of differential equations
which includes the effects of rotatory inertia and shearing deformation.
Their governing equations were solved numerically by a combination of a
Holzer type iterative procedure and an initial value integration.

-

>The present theory which deals with the problem in its general form
has~beefi, developed previously by the first author [10} from variational con-
siderations using Hamilton's principle to derive the exact equations of motion
for thin circularly curved beams and rings, together with consistent bound-
ary, discontinuity and initial conditions in terms of the radial and tangential
midsurface displacements, and the rotation of the normal. The theory ac-
counts for the effects of extensional, flexural and shearing deformations, and
rotatory inertia. The effects of distributed elastic foundtions in the direc-
tions of the radial and tangential displacements and the rotation are also
incorporated into the equations of motion. .

The vibration and wave propagation analyses on which the present in-
vestigation is based properly begin with the resolution of the foregoing equa-
; tions of motion into three-uncoupled sixth order homogeneous differential
® equations in terms of the radial and tangential midsurface displacements, and

the rotation. Using the classical form for the traveling wave solution, the
frequency equation is derived in closed-form, in terms of the flexural, trans-
verse shearing and extensional stiffnesses as well as the three spring con-
stants of the elastic foundations as precisely identifiable parameters.__ The
_ frequency equation reduces to that found by Rao [6] neglecting the /éffects
® of extensibility and elastic foundations; and it coincides with Lamb's equation
{1] deleting the effects of extensibility and transverse shear. '

Exact solutions for _the three deformations are derived from the three
uncoupled homogeneous differential equations in terms of six independent

8¢9 £00d-AV



constants of integration. The response of curved beams with various end
conditions (fixed-fixed and hinged-hinged) are then formulated by means of
the exact deformations and stress resultants.

Exact solutions are also derived for the phase velocities of the propa-
gating elastic waves in rings and curved beams. The governing dispersion
relations are derived and illustrated in terms of short and long wave lengths,
cutoff frequencies and standing waves.

Wwith the exception of Graff [11], little attention has been given to wave
propagation in rings with or without the effects of extensibility and/or
shearing deformation. Dispersion curves and frequency spectra wherein the
effects of curvature, extensibility and shearing deformation on the wave
propagation characteristics of curved beams may be assessed, are generally
not available in the literature.

2. DERIVATION OF GOVERNING EQUATIONS

A thin circular ring element (Fig. 1) that is symmetrical about the plan
of its centroidal axis is considered to be deformed in the plane of its initial
curvature with normals preserved in the process (Bernoulli-Euler hypothesis).

The strain of a fiber at a distance z from the centroidal axis resulting

from bending of the ring accompanied by stretching of its centre line is
expressed in the form

ey = £0-2(0'/R) (1)
where prime denotes differentiation with respect to 6 and ¢ is the relative
rotation of the deformed element. In accordance with the linearized strain-
displacement relations of the Sanders' [12] thin-shell theory reduced to one

dimension, the extensiona: strain of the centre line and the total rotation of
the deformed element are, respectively,

g£o = (v'-w)/R and X = (wWw'+v)/R (2)

The total rotation depends not only on the relative rotation of cross sections
of the ring element, but also on the shear as follows:

X = (W'+v)/R = ¢+y 3)

where ¢ is the relative rotation when the shearing deformation is neglected

and ¢ is the angular deformation due to shear at the neutral axis in the same
cross section.

With the use of Hooke's law and the strain distribution defined by Eq.
(1), the thrust and the bending moment become, respectively,

T = ffEsedA = (EA/R)(v'-wW) (4)
M= ffEeasz = -(EI/R)¢' (5)

where, A and I are the cross sectional area and the moment of inertia of the
cross section, respectively.

The shear stress resultant is given by Timoshenko in the form

N = kAGYy = (kAG/R) (w'tv-R¢) (6)

.



where k is the form factor for shear, depending on the shape of cross section.

For thin-ring kinematics given by (1) and the load system illustrated in
Fig. 1, the tangential and radial motions are coupled, as described by the
following system of differential equations which were derived in [10] using
Hamilton's principle:

a(v'-w)+c(w"+v'-Re' )~k Rw=pARW
a(v"-wH)-c(w'+v-Ro)-kaRv=pARV )
bR2¢"+cR(W'+v-R¢)-K3R0=pIR}

The constants a, b, and c are defined as
a=EA/R; Db=EI/R3; c=kAG/R (8)

The dots denote differentiation with respect to time, and p is the mass den-
sity of the ring.

The consistent boundary conditions at each end of the curved beam are

c(w'+v-R¢$)=N or o&w=0
a(v'-w)=T or &v=0 (€))
-bR2¢'=M or 6¢=0

where N, T, and M are the values of the stress resultants at the boundaries.

The vibration and wave propagation analyses on which the present trea-
tise is based, properly begin with the resolution of the foregoing equations
of motion (7) into three-uncoupled sixth order homogeneous differential equa-
tions. Since each of the normal modes of free vibration of a thin curved
beam executes a simple harmonic motion with an associated natural frequency,
the period and phase of motion are the same for all points in the curved
beam. Therefore, the time dependence of the beam variables can be removed
by assuming that their spatial and temporal variations are separable in the
following form:

v(e,t) = v(e)-et; w(e,t) = w(e)-et; 6(8,t) = &(6)-e™t (10)
The substitution of (10) into (7) and the elimination of W,V and ¢, succes-
sively (considering the operational coefficients of the variables W,V, and )
with the notation of D=d/de, yields
{D8+a; D4+a, D243}V (6)=0
{D8+x; D44y D243 }W(0)=0 (11)
{D8+x; D4ty D243 }(8)=0
where, in the absence of elastic foundations [13], ki=ks=ks;=0 in (7),
«,=[2420Z+X0Z]; *=[Q222(1+2X)+(Z-XZ-1)+1] (12)
a3=[X0323-0222 (1-X)-022+Q(Z+1)]

a4
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in which the measures of transverse shearing and extensional deformations
respectively, are

X=E/kKG and 2=b/a=1/AR? (13a,b)

The dimensionless circular frequency, © is given in terms of dimensional
circular frequency, w in the form

02=0=w?R4(pA/El) (14)
In the absence of the effects of shearing and extensional deformations, X=0
and Z=0, resgectively, the operator in (11) reduces to the form:
{Dé+2D4+(1-Q)D*+Q} which, then, coincides with the statics solution given in
{10] for Q=0.
3. SOLUTION FOR FREE RING

The normal modes of a complete ring in the form

W(8) = A exp(-in8); V(6)=Azexp(-inb); #(6)=Azexp(~-ind) (15)
give the frequency equation from (11) as follows:
B1Q3+BoQ2+B 3By = O (16)

XZ3; By = -[n2Z22(1+2X) + Z22(1+X) + 2]

where, B1

"

Bs

which reduces to the form given by Lamb [1] for the case of inextensibility
(Z=0), neglecting the transverse shear effect. (16) rewritten in terms of
mode number is: n®-a;n%+toeyn?-ag = 0.

[N1Z(2+X) + n2(1+XZ-Z) + Z+1]; PBg = -n2(n2-1)2

The roots of the frequency equation (16) give the solutions of the

propagating elastic waves of the following form for the vector of the defor-
mations, v, w and ¢

y = & expli(yt-8)A) (17)
where, the dimensionless wave number, A and phase velocity, y are
A=Rm ; Y=0*/A (18)

in which m is the dimensional wave number; and O* is related to the dimen-
sional circular frequency, w as follows:

Q* = (/1w = wR(p/E)t = (a2) (19)
The term (E/p)i is the bar velocity. The dimensionless time, 1 in terms of
the dimensional time, t is chosen to be: 1 = (1/R)(E/p)?. Accordingly, (16)
reduces to a cubic in y2 or a quadratic in A2, respectively,
AH(XZ)Y8 - AZ[A2Z(1+42X) + Z(1+X) + 1]y* + [A4Z(2+X)
+ N2(14XZ-2) + 2 + 1] ¥ - Z(A%-1)2 = 0 (20)
2[Xy® - (1+2X)y* + y2(2+X) -1]A% - {[1+2(1+X)]y*

- (14X2-Z)y?% -2Z)}A% + [(1+2)y%-Z] = 0 (21)




An horizontal asymptote, y = 1.0 (bar velocity) is obtained from (21) for
A>», neglecting the shearing deformation (X=0); a second horizontal asymptote,

1
¥y=X"? (shear velocity) is also obtained from a study of the behavior of the
phase velocity with respect to the wave number for various physically realistic
values of X (measure of shear deformation), X>1.

4. CURVED BEAM OF GENERAL BOUNDARY CONDITIONS

The general solution of (11) in the form

§j = {V,W,¢}T = 7\i ef® (22)

gives the auxiliary equation
ré + [240Z(2+X)Irt + [Q2Z22(1+2X) + Q(Z-XZ-1) + 1]r? + [X(QZ)3 - (92)2(1-X)
-0%2Z + Z2+1)] = 0 (29)

The roots of this polynomial (23) are functions of Q; and the elimination of
the arbitrary constants from the six boundary conditions (three for each end)
gives the frequency values [13]. The behavior of the roots of (23) is deter-
mined by substituting the value of Q calculated from Lamb's "classical" inex-
tensional solution as an upper bound [1]; the result is 3 pairs of complex-
conjugate roots as follows: p;+qii, py-qii, -py*qii, -pi-dii, Pstqsi, Ps-dsi.
Therefore, the general soluton of (11) for steep arches (o > 180°) is of the
form

V = {exp(p,0)[F,cosq,0+F,sing,8+F 36cosq,6+F ,6sinq,6]
+ exp(ps8)[Fscosqs6+Fesings0]}
W = {exp(p;10)[C;icosq,6+Cssing,6+C36c0sq16+C46sinq,6] (24)

+ exp(ps8) [Cscosqs6+Cesings6]}
¢ = (exp(p18)[H;cosq,0+H,sinq6+H308c0sq,6+H6sinq,0]
+ exp(ps8)[Hscosqs6+Hgsings]}

The eighteen constants of integration are not all independent. The conditions
that insure that the equations of motion (7) are identically satisfied by the
substitution of the foregoing deformations (24) by means of (10) yield after
substantial algebra the admissible deformations in terms of six independent
constants of integration: Fi' i =1,...,6. The relations which connect the

twelve dependent constants to the six independent constants are

H ={H,c0sq,0+H;, sinq,8}F; ; H 7{H,,c0sq, 6+H;,sinq,6}F,
H3={H;3c0sq16+H;3sinq;0+H3306Cc0sq,0+H 30sinq,;0}F4
H4={H,4c05q,6+H;45inq,0+H340c0sq0+H446sinq,0}F 4

Hg ={H 55c05q6+Hg5 singg 63F; ; Hg={H;¢ COSq56+Hse sings 63K (2%)
G ={C11€08q;6+C,; sinq,6}F ; Ca={C;, cosq,6+Cz55inq,6}F,

C3={C;3€05q18+C;35inq8+C3306c0sq;+C436sinq,6}F 5

™




C4={C14C08q19+C24Sinq16"‘C346C05q1+C4quinq19}F4
G ={C55c08qs0tCs5 5inqs81fs ; Ce={Cse cOSqs8+CeesinqsbiFe

where, the coefficients of the trigonometric functions, Hi' and Ci- for i,j =
1...,6 are given in the Appendix. ) )

For shallow arches (angular span, «<180°), the behavior of the aux-
iliary egquation (23) is characterized by three distinct pairs of complex-
conjugate roots which require some adjustments in the deformation expressions
(24) pertaining to the steep region. The solution for the shallow region
given in [13] is not the scope of this paper.

5. NUMERICAL ANALYSIS

Numerical results presented herein are obtained by the computer pro-
gram RADA([14] which is capable of performing dynamic response analyses of
rings and curved beams with general boundary conditions.

5.1 Case of a Free Ring

The variation of the normalized frequency, ﬁ/ﬁc, i.e., the ratio of the

frequency determined herein to that given by Lamb (1], Qc = n2(n2-1)2/
(p2+1), with respect to Z = I/AR?, is presented in Fig. 2 and 3 for a free
ring.

The frequency spectrum exhibits clearly the effects of shearing and
extensional deformations over that of rotatory inertia in causing a deviation
from the frequencies given by the classical formula of Lamb. This behavior
is more pronounced with higher modes. An increase in the value of X = E/kG
which implies that the ring is more flexible in shear, causes the natural
frequencies of free rings to deviate more and more from the "classical" for-
mula. The present results are compared with those of Rao [6] and with the
experimental values of Kuhl given in [5]. The curve of variation of O* =

L 1 1

Q%22 = wR(p/E)? versus R/t (radius to thickness ratio) for a thin ring reveals
that the present results are closer to the experimental values than those of
Rao, since Rao neglected the effect of extensibility. An additional advantage
of the present investigation is that the two higher-branch frequencies are
also obtained and presented in Table 1, which is not possible with the
Rayleigh's method employed by Den Hartog [2,3] and the inextensional "clas-
sical” solution given by Lamb [1].

The variation of the phase velocity with respect to the wave number is
described in Fig. 4 corresponding to two values of the measure of extensi-
bility, Z, for a fixed value of transverse shear deformation. Both branches
approach the bar velocity (y=1) as the wave number becomes very large;
however, the upper branch representing the longitudinal mode is nearly equal
to the bar velocity for any wave number except in the immediate vicinity of
A=0, which corresponds to very long wave length limit. The longitudinal
mode is not influenced by the change in the measure of extensibility, Z.
The lower branch representing the flexural mode is extremely sensitive to a
change in the measure of extensibility: decreasing Z lowers the phase velo-
city considerably such that for the limiting case of inextensibility (Z=0) the
ve]oglty tends to zero; thus, the flexural mode becomes insignificant and the
longitudinal mode governs. When the effect of transverse shear deformation,
X, is taken into account, the flexural wave (lower branch) approaches the

-l
shear velocity (y=X"?) faster as Z becomes larger. Furthermore, the longi-
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tudinal mode does still approach the bar velocity (y=1) as before; but, the
propagating wave is also influenced by the shear mode which appears as the
higher branch. This branch approaches the bar velocity as A increases;
however, it tends to infinity as A tends to zero, at a much faster rate with
increasing Z. Table 2 presents exact numerical results for the phase velocity
corresponding to various levels of X and Z effects for numerous wave numbers.

5.2 Arches with General Boundary Conditions

The deformations (V,W, and ¢) which are the solutions of the differen-
tial equations (11) are given by (24). The stress resultants are then ob-
tained in exact form by the substitution of (24) into (4), (5), and (6) and
are presented in [13]. Arches of any boundary conditions can then be
analyzed in a consistent manner accounting the combined effects of extensional
and/or shearing deformations.

The boundary conditions at both edges of the fixed and two-hinged
arches are: V=W=¢=0 and V=W=M=0, respectively. These conditions yield six
simultaneous homogeneous algebraic equations in terms of the frequency, the
roots of the auxiliary equation (23) and the six independent constants of
integration, Fi(i=1...6). The determinant of the coefficient matrix must

vanish for a nontrivial solution of the boundary equations. In this analysis
an upper-bound frequency is calculated from Lamb's inextensional formula,
thus permitting the explicit solution of the auxiliary equation. With the
assumed value of Q and the calculated values of the roots of (23), the con-
dition of the vanishing of the determinant is checked. By systematically
varying Q and calculating the value of the determinant, the convergence to
the correct values of the natural frequencies is accomplished.

The variation of the fundamental frequency with respect to the angular
span, « is exhibited in Fig. 6 for both fixed and two-hinged arches. The
effects of extensibility and transverse shear are illustrated in Table 3 for the
fixed arch, wherein, an increase in each of the measures of extensional and
shearing deformations causes a decrease in frequencies.
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Table 1

Effect of shearing and extensional deformations on frequencies of a free ring.

~

Q0 o
(10%)
X 0.0 3.0 0.0 3.0
o) 0.00 0.001 0.00 0.001 0.00 0.001 0.00 0.001
2 7.2 7.17 7.19 7.1 50 5 50 5
3 58.6 57.5 57.4 55.6 100 10 100 10
4 213 208 210 199 170 17 170 17
5 554 540 548 504 260 26 260 26
6 1192 1150 1175 1044 370 37 370 37
Table 2
Effects of shearing and extensional deformations on phase
velocities of a free ring.
Y
X 0.00 1.0 2.0 3.0
A 10 3 10 2 10 3 10 2 10 3 10 2 103 | 102
40 0.371 0.784 0.292 0.68 0.333 0.582 0.317 | 0.51
80 0.625 0.93 0.554 0.82 0.494 0.662 0.45 0.56
160 0.848 0.981 0.735 0.9 0.617 0.694 0.53 0.572
184 0.887 0.985 0.773 0.92 0.638 0.698 0.54 0.574
Table 3
Effects of shearing and extensional deformations on frequencies of fixed-arch.
Q
« 220° 260°
;3 3.0 0.0 3.0 0.0
0.000 2.451 2.452 1.43 1.44
0.0005 2.448 2.449 1.425 1.43
0.0007 2.446 2.447 1.424 1.43
0.001 2.444 2.445 1.42 1.425
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APPENDIX

H11=-(h1h3+h2h4)/(h§+hi); H12=(h1h4+h3h2)/(h§+hi)
H13:-{1/(h§+hi)}{(h3/q1+h4/P1)(h2+h4H33)+h4(hs/P1'h4/Q1)H43}
H14:-{1/(hi+h§)}{(h3/P1-h4/ql)(h2+h4H44)+h4(hs/Q1+h4/P1)H34}
H21=‘(h1h4'h2h3)/(h§+hi); H22='(h1h3'h2h4)/(h§+hi)
H232-{1/(h§+hi)}{(h4/q1‘h3/P1)(h2+h4H33)+h4(h4/P1+h3/Q1)H43}
H24=-{1/(h§+hi)}{(h4/P1+h3/q1)(h2+h4H44)+h4(h4/q1-h3/P1)H34}
H33=-(h1h3+h2h4)/(h§+hi); “34=(h1h4‘h2h3)(h§*hi)
H43='(h1h4‘h2h3)/(hi+h§); H44=‘(h2h4+h1h3)/(h§*hi)
Hgs=-h;o{(1+X+h;;) (hg+thoX+R)+2ho(1+X)XP5qs}
Hse=h12{‘2(h9+h9X+R)XPSQS+h10(1+X)(1+X+XP§)}
Hes=-hy2{(1+X+h1;) (14X)h10~2XP5qg [hg (1+X)+R]}
Heez-hlz{2(1+x)hIGXP5q5+(1+X+XP§—Xq§+XQZ-1)[hg(1+X)+R]}
C113-hy3{P1(1+h7H11)~qiheHz1}; Cr2=-h13{P1h7H;p-q; (1+hgHz2)}
C13=-hy3{P1(C33+h7H;13)-q1(C43thgHz3)+hgHas}
C14=-h;3{P1(Ca4th7H14)-q1(CaqthgHoy)+hglay}
C213-h13{q1(1+hgH11)+P h7Hz1}; Co22=-h13{P1(1+hyH22)+q1heHy2}
Co3=-hy3{P1(C43th7H23)+q, (Ca3+hgH;3) +hgHya}
Cz4='h13{P1(C44+h7H24)+Q1(Cs4+heH14)+th44}
C33=h14{(P1h5*Q1h2)(h§+hi)‘P1R(h1h3+h2h4)+RQ1(h1h4’h2h3)}
C34=h14{(h2P1'hSQI)(h§+hi)+P1R(h1h4'h2h3)+RQI(h2h4+h1h3)}
C43=h14{(Q1h5‘P1h2)(h§+hi)'Q1R(h1h3+h2h4)'P1R(h1h4‘h2h3)}
C44=h14{(P1h5+Q1h2)(h§+hi)+Q1R(h1h4‘h2h3)'PlR(h2h4*h1h3)}
Ces=-hy5{qs(1+hgHs5+h;oHes)+P5(hgHgs~hjoHs5) }
Cee=-h15{P5(1-h1oHsethgHge)+qs5(hgHsethioHee) }
Cs5=-h15{P5(1+hoHss+hoHes5)-qs(hyolssthoHgs) }
Cse=h15{qs(1+h;olse*+hotes) ~Ps(hoHsg+hyoHee) }
h1=X(QZ+l-Pf-qf) ; hp=2XP,q,
ha=R{OZZX(14X)+XZ (P1-q 4P 1X- X)X} ; hy=2(1+X)Pq XZR;

2 2 2 2 2 2
hs=X(Py-q1+0Z)~1; hg=R{XZ(QZ-P;~q;)-1}; ho=R{XZ(P;-q;+QZ)-1}
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10.

11.

12.

13.

4.

2 2 2 2
h8=2XZR§Q1;P1); hg=R{XZ(Ps-q5+QZ)-1}; h;0=2P5qsXZR
hy1=X(P5-q5+0Z)-1; hy2=(1/{(ho*thgX+R)Z+(1+X)2h¢2)}

2 2 2 2 2 2
hy3={1/(P1+q1)}; h14=1/{(X+1)(P1+q1) (c?+d?)}; hy5=1/(Ps+qs)
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: CALCULATION OF NATURAL FREQUENCIES OF SPECIALLY ORTHOTROPIC
\\}> MULTILAYERED THIN CIRCULAR CYLINDERS

C. B. Sharma and M. Darvizeh

University of Manchester Institute of Science and Technology
Manchester MAO 1QD

1. INTRODUCTION

It is of great technical importance to investigate the dynamic
characteristics of thin walled circular cylindrical shells with some
complicatiry parameters because of thelr use as basic elements in modern light-
weight structures. It is immensely useful to obtain the natural analytical
frequencies for specially orthotropic multilayered cylindrical shells serving
as complete structures or structural components. In the recent past many new
areas in this field have been explored L1] and as such the dynamic response of
such composite materials and structures will continue to be of considerable

interest in the industrial applications.

6£9 £00d-AQVv

Previous analyses of this problem were mainly confined to the simply
supported poundary conditions e.g. Dong [21, Bert et al [31, Stavsky and Lowey
[Li, Greenperg and Stavsky [5) ete., owing, perhaps, to the computational
complexity}y The procedures employed were also not so easy to handle as regards
calculation.of vibraticn characteristics in general and natural frequencies in
particulaf.”It is the main aim of this paper tc present a simple theoretical
analysis for determining the natural analytical frequencies of thin walled
circular cylindrical shells with layers of homogeneous isotropic or specially
orthotropic material symmetrically situated about the shell mid-surface with a
variety of end conditions viz: clamped-free, clamped-supported, clamped-clamped
etc. The theory governing the response is based on the Love-Timoshenko hypothesis
regarding deformation and is capable of handling a shell structure comprised of
an arbitrary number of thin bonded layers which can have different thicknesses
and elastic material properties,[6].

The procedure adopted for the sclution of governing equations is a simple
one. It is an application of the Rayleigh-Ritz approximate variational procedure.
Various boundary conditions are incorporated via the approximation of the
longitudinal modal forms by the characteristic functions of a vibrating beam.
These functions were successfully used by one of the authors in dealing with
the vibration characteristics of isotropic thin circuiar cylinders [7]. Procedure
yields a cubic frequency equation. Out of the three roots of this cubic (which
is solved exactly) two are several orders higher that the third one and are not
cf any immediate practical interest. Fcr various reasons the lowest or [undamental
natural frequency of the structure d the mode (or modes) associated with it,
are wsually of mest interest to the an‘ﬁlyst and the designer.

An extensive computer exploration is carried out for natural frequencies
for various shell geometrical and material parameters. To ensure a check on the
validity of the present analysis and its computational implementation the case
of free wvibration characteristics of homogeneous isctropic cylinders is
deduced as a particular case of the anlaysis given in this paper. The results
obtained this are comparc: witn the results of previous analytical [ &) and
experimental [ 4] investigations and it was found that the two sets of analytical
results were ldentical and agreed very well with the observed results for the
boundary conditions considered. Calculations are also carried out for three-
layered orthotropic plywood shells and sandwich shells with the inner and outer
lagyer made of steel and the niddle layer of a solid plywood board. Graphical
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illustrations of these and various other results are given for various boundary
conditions.

2. THEORETICAL CONSIDERATIONS

The formulation is on the basis of a thin shell theory with axial and
circumferential co-ordinates represented by x and 8 respectively. The deformation
of shell reference surface is expressed in temms of displacements u, v, w in the
axial, circumferential and radial directions respectively, with positive normal
drection outwards. Using Timoshenko-Love theory, the strain components €0

Eas Yyp and the changes of curvature Ker Kg and Kxe are given as

= A = 1 = 1
€. ex + ZKys Eg ee + ZKgs Yyg Yxe + 2ZKXe
where
e; = 3u/2x, sé = (1/a) (3v/38 + w), Y;B = 3v/ax + (1/a)du/d86
2 2 (l)
2
K= azw/ax . Ky = (l/az) (3 w/a8” - dv/a8),
2
Keg = {1/a) (9 w/3x36 - av/ox)

and a 15 the shell radius.

2.1 EBxpressions for strain and kinetic energies

The general forms of the strain energy U and the kinetic energy T for
laminated orthotropic cylindrical shells are given as in reference [2].

2 2 2
= 1 ' + t o1 4 ' ' '
U=3 J [ (A, el 2A12€x € Azzee + AGGYxe + 2BlleX K
0

X
0

+ ' ' ' '
2B12(ex K. +€' K ) +2B 'k + hBSGY K

0 5 X 2279 © x6 x6
+ D 2 42D + D 2 + 4 z G
11%% 2D, K Kg 2258 Dk gl adfdx (2)
and om 1,
. f fe2 e2  e2
T =3 $ pplu + v +w 1 adfdx (3)
0 0

where the shell stiffnesses A.., B.., and D.. are defin=d as
1J7 i iJ

s By D) = J e SN(n = n ), MuZ -2 )
i3? Ti3? i 'k_lQij hy g-170 B0 TRy,

1(h° - h )) (W)

and L being the shell length and o the mass density per unit of surface area,
l.e.

n
%=[Mﬂm=fo¢%-hbﬂ. (5)
k=1
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In equations (L) and (5) and h _y ere the distances measured from the
re ference s%ﬁgace to the outer an% inner surface of the kth laminate respective-

ly and Qij are the elastic moduli of the k'th laminate,

2.2 Modal forms and variational formulation

It is reasonable to suppose that the modal forms of cylindrical shells
are periodic in the circumferential direction and have a harmonic time depend-
ence of frequency w. Hence one can postulate that a general relation for the
displacements u, v, W can be written in the form

(uy, v, w) = (A¢'m(x) cos pb, B¢m(x) sin pé@, C¢m(x) cos po) (6)

where ¢ (x) represents unknown axial mode function, dash denotes different-
iation Wwith respect to the argument and A, B, C are amplitude coefficients.

Upon substitution of modal forms (6) into the energy expressions (2) and
(3) and applying Rayleigh-Ritz variational procedure, one obtains as a consequence
a homogeneous system of linear simultaneous equations for the generalised
amplitude coefficients A, B and C. Condition for the existence of a non-trivial
solutior set for this system (i.e. letting the determinant of the coefficien
matrix vanish) one obtains a cubic equation in the frequency parameter A(=w")
as

det [aij]= o, i,j=1.2.73 (7

where a.. = ¢
3J
a =-ppa Nm I

+ OLA(SiJ, 13

an expression involving integral of the characteristic orthogonal

8 . peing the Kronecker delta and the parameter

iJ
2 ( 2
functions ¢ (x)) for the first row and p.a for the second and third rows of the
symmetric matrix [aij]' The expression for the matrix elements c, ., are given as

follows: 1)
2 2.2 2
e = Ny (a N A+ I,Ag)
2
¢, =y I (ah, - Bp,) - I,(ah - 2B}
2 2 2.2 2
ey = N {Il(aAlz -pB,) *ta Qn B, +2p LB}
e, = \pz/a?){azA - 2aB_+D._} +N I.{a’A . - baB.. + LD }
22 22 22 22 m "2 66 66 66
3,3
c,, = (p/a)(ad,, - B,,) - alp /a")(aB,, - D,,) (8)
2
+pi, {al (aB), - D), ) - 2I,(aBg, - 2D )}
c..=A_ +N {2I (aB _ - p°D. ) + a®D . + lp? 1D}
33 22 m 1 12 12 11 66

2
- (p /az)(2a1322 - pzDzz) .

Here Nm's represent the eigenvalue properties of the characteristic functions
¢m(x) and integrals I1 and I, involving these functions and their derivatives
(with respect to the argumen%) are given by

L L

fos ) e et a1, = ) [ e, (9)

0 m Al 2 0
The cubic equation (7), for each pair of axial and circumferential wave numbers
m and p respectively, gives three roots for the frequency parameter, A, that
correspond to motion that is predominantly radial, axial or circumferential.
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Since the radial frequency is much lower that the other two, and as most shell
vibrations include radial excitation, it 1is the lowest of the frequency triplet
that is of most structural interest both to the analyst and the designer.

2.2 Special case of an isotropic cylinder

Free vibration analysis of istotropic cylindrical shells is deduced as a
particular case of the foregoing analysis for a laminated orthotropic shell.
Following the usual notations and defining

h/2 2

(Aij, i3 DiJ = f-h/e(l’ Z, 2 ) Qij dz (10)

with
2

Q) = Q, = E/(1-v7), q, = Bv/(1-v), Qg = E/2(1+v) (11)

and
h/2
Pp = ( pdz = ph , (12)

-h/2

the foregoing analysis 1s reduced to one for the special case of an isotropic
cylinder.

2.3 Boundary conditions

The choice of axial modal forms ¢_(x) is made to satisfy a prescribed set
of end conditions. To approximately achleve this the characteristic functions of
a vibrating beam are introduced in a general form

F (N x) = cosh Nx- cos Nx- can (sinh N x - sin N x) (13)
m'm m m m m

where the properties and the numerical values of these functions and the associated
parameters N_ and c_ are found tabulated in reference [10] for various end
conditions. For the™hree sets of boundary conditions considered here, viz,
clamped-free, clamped-supported and clamped-clamped, ¢m = Fm and ¢'m = Nm F'm

are to be taken in equation (6). It may, however, be remarked that these
general form choices for the axial mode function ¢m in equation (6) are
satisfactory within certain limitations inherent in the variational procedure.

The values of the integrals I, and I, given in equation (9) are of immense
interest when ¢_'s are represented by the characteristic beam functions given by
equation (13). These have been calculated [11) and the expressions for I, and

12 corresponding to various end conditions can be found in reference [ 7].

3. RESULTS AND DISCUSSION

The discussion of numerical results of multi-layer specially orthotropic
thin sylinders with clamped-free, clamped-supported and clamped-clamped edges is
presented in what follows. The results are given in graphical forms.

3.1 Clamped-free cyiinders

To start with cantilever cylindrical shells are to be analysed. As indicated

o = Fn(me) is taken in here and appropriate values of characteristic parameters
i)

given in [10Jare used.
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3.1.1 Homogeneous 1sotropic case

This problem has received ample attention and it is also not the main aim
of the present paper. But to ensure a check on the validity of the present
analysis and its computational implementation the case of free vibration
characteristics of homogeneous isotropic cylinders is deduced following the
procedure given in the section 2.2. The results of frequency variation with
the circumferential wave number, p are illustrated in the Figure 1 for a given
shell whose geometrical and material parameters are listed on the Figure 1
itself. Three different curves correspond to first three axial modes {m=1,2,3)
and follow the well known pattern of a frequency increase with an increase in
the axial wave number, m. For a fixed axial wave number, the natural freguency
vs circumferential wave number curve normally contains a dip which is due to
the decrease in membrane part and the increase in bending part of the strain
energy as p is increased. The lowest values of the frequency for m=1,2 and 3
correspond to p=5,8 and 10 respectively. The agreement with the experimental
results of reference [9], which are shown as broken lines (m=1,2), is
apparently very good. It can thus be inferred that the homogeneous isotropic
cases can be directly deduced from the general case.

3.1.2 Three-layered orthotropic case

Figure 2 analyses a three layered orthotropic ply-wood shell (geometrical
and material parameters given on the Figure U). Frequency vs circumferential
wave number curves are again drawn for m=1,2,2. The pattern is similar to that
displayed in the previous Figure. As would be expected, lowest frequencies and
the corresponding p-values are different from the prewvious case. By taking zero
the inner and outer lgyer thicknesses a shell made of solid wood board can be
analysed. These particular kindof shells were considered because the material
property data was easily available.

Natural frequencies of a sandwich type of three-layered cylindrical shell,
consisting of inner and outer steel layers and the middle layer made of ply-
wood, are plotted with the circumferential wave number, p in Figure 3 where all
the relevant geometrical and material properties are also listed. The minimum
frequencies for the axial modes m=1,2,3 correspond to p=2, 3,4 respectively.
Since the parameters are arbitrary so these can be chosen by the user to the
necessary advantage.

Figure L shows a logar;thsmic plot of frequency against the dimension-less
geometrical parameter A(= Lh2Ah3 ) for several values of p 2 1 and m=1,2,3.
Clearly the minimum frequency always occurs for m=l. Modal behaviour of a
cylindrical shell consists of looking at the minimum natural frequency (which
is the envelope of frequency curves drawn for constant values of p). Each value
of p provides one member of a festoon like family of curves. Each curve takes
its turn to provide the lowest member of the family over a particular range of
values of A, and indeed it adopts this special role precisely in its transition
region, where the bending and stretching effects are of the same order. Also it
is clear from looking at the frequency envelope that the fundamental natural
frequency decreases with increasing A, with all other parameters remaining
the same. These frequency envelopes are similar to those drawn by Forsberg {12].
But it should be noted in particular that non-dimensional geometrical parameter,
A, used here is more useful measure of the length (see for example [131) than
the dirension-less ratios %/a and a/h used in [12] separately. Another
important point brought out clearly by the Figure 4 (as in [14]) is that the
circumferential mode number p corresponding to the fundamental mode depends
strongly on the shell gecmetry, i.e. on the value of the dimension-less group
A
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2.2 Clamped-supported cyilnders

In Figures 5-7 variation of frequency against the circumferential wave
rurber is rlotted for clarmped-supported shells and pattern of these graphs is
sirdlar to those in Figures 1-3 for the clamped-free case. Figure5 deals with
a three-layered isotropic cylinder (geometrical and material parameters are
listed in the Figure). As can be seen that lowest frequency for the first three
axial modes m=1,2,3 correspond to p=%,11,13 respectively. Figure 6,7 correspond
to the same shell parameters as Figures 2,3 respectively. Overall natural
frequencies are a little exaggerated because of the end x=L being supported
(arounting to the introduction of a const.aint) rather than free as in the
previous case. This point is also brought out clearly by comparing the Figure
s for a clamped-supported shell with 1ts counterpart Figure 4 for a clamped-
free shell (all the parareter being identical). Overall pattern of the Figure
2z 1s the same as that of Figure b.

3.2 Clarped-clamped cylinagers

Figures j-11 depict the behaviour pattern of natural frequwncies against
the circumferential wave number, p for a shell clarmped at both the ends and
these can now be corpavred with theilr counterparts given by the Figures 5-7
respectively. It is founi that all cother parameters being the same, the
frequencies in a clanped- clanped case are a little higher than the correspond-
ing freguencies 1in a clamped-supported or indeed for a clamped-free case. Figure
12 has tne identical parameters to the Figures L and ¢. Frequency envelopes
made by festoon type of curves alsc emphasize the point that the frequencies
for a clarped-clanped case are Ligner either than that for a clamped-supported
or a clamped-free case, all shell parameters being identical.

Corparing the groups of Fi_ ures 5 and 93 2, 6 and 10; and 3, T and 11
Wwho have identical shell parameters, it can be seen that for sufficiently high
circumferential wave numboers th: influence of change in the boundary conditions
at the end x=L is not felt and the frequency parameters are more or less equal
to each other in that region for the various groups.

. CONCLULING REMARELZ

The gynaric response o7 larinated specially orthotropic thin circular
cylindrical shells is analysed based on Timoshenko-Love theory by the use of
Fayleigh-Ritz variational procedurc. Tne approach is simple and straightforward
and provides a powerful tocl to calculate the natural frequencies for a variety
of voundary conditions viz clamped-free, clamped-supported, clamped-clamped
etc. Paper also studies the influence of boundary conditione on the modal
vehaviour of cylindrical snells. An example of isotropic cylinder is studied
as a particular case of the present aralysis which yielded results which agreed
well with some existing experimental results. Similar comparision was not
possible for orthotropic cylinuers because of non-availability of previous
results for the bourdary conditicns considereda. Although available shell para-
meters were used but the anziysis 1s capable of nandling all sorts of shell
goemetrical and material parareters. The main airn of the paper has been to
Z1ve tne desigrner a simple useful predictive tool for the natural frequency
of such shells with a variety of tew.dary conditions. Computer time required
Lrowiniral nly nueeds sclution of o cublc to caleulate matural
frequencies. It 13 nop2 i that thls paper will provide a small step in the
drecticn of provlen soluticon in this area because of the ecasy adaptabllity
cf the methed iiscussed.
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\\\\\ DYNAMIC RESPONSE OF LAYERED ORTHOTROPIC CYLINDRICAL
SHELLS SUBJECTED TO PRESSURE AND AXIAL LOADINGS

0.A. Fettahlioglu®* and A.M. Sayed+®*
New York Institute of Technology® and Polytechnic Institute of New York**

1. . INTRODUCTION

\

* “This paper presents a study of the dynamic response of layered orthotropic
cylindrical shells subjected to uniform pressure and/or axial loading,
accounting for the influence of the change in the meridional slope (the so-called

pressurization effect), the transverse shear deformation and the rotatory inertia.

/

Earlier analytical efforts were restricted to cylindrical shells either
considering a single-layer orthotropic construction or excluding some of the
above-mentioned effects. Mirsky obtained solutions in terms of infinite series
for the axisymmetric vibrations of single~layer, orthotropic cylinders
neglecting the effect of pressurization [1, 2). Dong formulated the problem of
the free vibration of laminated orthotropic cylindrical shells in terms of
three, second-order, partial differential equations involving the three
orthogonal displacements as dependent variables; however, he did not consider
the effects of pressurization, rotatory inertia or the transverse shear
deformation. He obtained closed-form solutions for frequencies of the free
vibration of simply-supported cylindrical shells and presented an iterative
procedure for the case of general boundary conditions [3]. In a later paper
[4], Dong showed the determination of the frequencies of axisymmetric
and asymmetric vibrations of laminated, orthotropic shells of revolution by the
finite-element method. Dym studied the effects of pressurization and of dele-
tion of the in-plane inertia on the vibrations of a single-layer orthotropic
cylindrical shell, but he neglected the effect of transverse shear deformation,
[5]. Penzer and Kraus presented an exact solution for the free vibration of
single-layer orthotropic shells having arbitrary boundary conditions, con-
sidering the effects of normal pressure, axial load, rotation including the
centrifugal and coriolis forces and torque [6]. Their solution does not account
for the layered orthotropic construction and the transverse shear deformation,
Bert and Chen (7] presented an analysis for the propagation of free harmonic
waves in fluid conveying, single-layer cylindrical shells of orthotropic
material by placing emphasis upon the difference between the behavior of pipe
constructed of fiber glass-epoxy composite material and that of steel pipe,
neglecting the transverse shear deformation. In a later paper [7], Bert and
Chen extended the shear deformable analog of Sanders' theory to cylindrical
shell vibration accounting for bending-stretching coupling. Thus, in this
investigation, this coupling is also included as the arbitrarily prescribed
orthotropic shell element is considered. The analysis is presented in much more
detail in [8, 9, 10 and 11], in which asymptotic solutions for the static stress
and deformation in orthotropic shells of revolution including thermal loading,
stability and the extension to wave propagation are also treated.

In this treatise, the governing equations of motion for the axisymmetric
vibrations of thin, orthotropic layered cylindrical shells are obtained from
those for general nonhomogeneous shells of revolution given in [8, 11]
by specializing them to the cylindrical shell geometry. The equations of motion
of the orthotropic cylinder herein are obtained in terms of a new system of six
coupled first-order partial differential equations, accounting the influence of
the change in the meridianal slope (the pressurization effect), the transverse
shear deformation and the rotatory inertia. The fundamental dependent
variables, in terms of which the equations of motion are presented, are taken as
those quantities that appear in the appropriate boundary conditions of the
classical theory on an axisymmetric circular edge. The governing equations of
motion are in such form that no derivatives of the shell or orthotropic material
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properties appear in the coefficients of these equations.

The system of equations is cast into a vector equation involving only one
derivative with respect to the space variable, the dimensionless arclength,
providing a substantial mathematical reduction. The form of the vector equation
is such that the asymptotic and stepwise integration techniques are directly
applicable to their solution.

The frequency equation of the simply supported orthotropic layered cylin-
“drical shell with properties varying through the wall thickness but remaining
constant along the meridian is derived in exact closed-form accounting for the
effects of pressurization and shearing deformation. This frequency equation is
a sixth degree polynomial in Q including all the effects, and reduces to a fourth
degree polynomial in ) neglecting the effect of transverse shear deformation.
In the limiting case of a single-layer isotropic cylinder without the pressuri-
zation effect, the frequency equation reduces to that given by Steele [12].

The variation of the natural frequencies is also treated by considering the
order of magnitude of the terms in the frequency equation, associated with a
large parameter introduced into the coefficients of the equations of motion.
The approximate solutions are then obtained in closed-form by grouping the
frequencies into regions of membrane wave, bending wave and a transition region
from membrane to bending wave. These solutions which are quite accurate for
thin cylinders, are relatively simple and in compact form, enabling the fre-
quency analysis using a pocket computer. The numerical results confirm that the
present approximate solutions are in excellent agreement with the exact solu-
tions presented herein.

The frequency spectrum exhibited in the figures clearly indicates the fact
that the pressure and/or axial loading have significant effects on the natural
frequencies for both isotropic and orthotropic layered cylindrical shells. The
transverse shear deformation is also seen to have a considerable effect, only,
on a higher branch curve which represents the shear mode; a decrease in its
value increases the frequency. The behavior of the composite shell is also
significantly affected by the relative values of the various elastic constants.

2. DERIVATION OF EQUATIONS

The equations of axial, radial and moment equilibrium are [13]:
d/ds (rv) = -rp; d/ds (rH) = Ne - TPy

(1)
d/ds (rM¢) = Me cos¢ + rH sin¢ - rV cos¢

where Pv and PH are the axial and radial components of the surface loading. The
compatibility equations are [13]:

dx/ds
dv/ds

K¢; d/ds h = 8¢ cosd ~ X sind + p/Eoto Q sir¢

(2)
e¢ sin¢ + X cos¢ - (u/Eoto) Q cos¢

where X is the rotation of the meridian, h and v are the radial and axial dis-
placements, and Eolp is the equivalent transverse shear modulus.

The well known constitutive relations for a layered orthotropic shell are:

NQ = C11 g, +C ae + K K, + K K

11 "¢ " "M12 Mo
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Ng = Cip €9+ Cpp Eg * Kyp Ko * Koy Kg

My = D1 %o * D1z Ko * Kip 8o ¥ Ko 8

Mg = Dyy Ko *+ Dyy Kg * Kyy £y + Kyy &9

The typical notation is employed (See Fig. 1). For a layered shell, Fig.
2, the elastic parameters are computed from the formulas

(3)

€1 Zgr1 T g
Tk J1,.2 2
Kii )= 51 Fii 02 G 5 (4)
1.3 _ 53
Dy; 3 (a1 ™ %)
where, Fij are the elastic properties. With the kinematic relations
g = h/r ; Ke = Xcos¢/r (5)
and the relation: H cos¢ + V sind all the equations may be reduced to the

following matrix eq&%tlon for the axisymmetric deformation of the shell of
revolution, in which the axial and radial motions are coupled:
2
Fo 2 y=o 6
~ 91 ~

where, A is a large parameter and SR is a reference parameter

a yt+tA-y+t

>
®
»

1
A2

A [R/co]% and c, =t [12(1-002)]-% (7)

of the cylindrical shell of radius R and the dimensionless arclength and time
are chosen to be

x= s/R ;  T= (t5/AR) (E /m)? ®)

in which, ms Eo, to and v, are the reference values of the mass density,

Young's modulus, the shell thickness and Poisson's ratio, respectively; t*
is the time and s is the arclength.

The vector stress and deformation quantities are

M
T HA VA h v
v 2l gt BT Er 0 X R'R | 9)
~ 000 ) oo
The matrix Aij is given in [8, 11]. The non-zero elements of the F matrix are
- 2 2 - -~
Flé = (1/12)°) (to/co) ; F25 = 1 and F36 =1 (10)
The propagation of traveling waves is considered in the form

y (x,1) =y (x) 10TA
~ ~ (11)

where the dimensionless frequency, Q is related to the circular frequency, w as
follows: Q@ = (t*/t) w = wRA (mo/Eo)% in which (E /m )1 is the bar velocity.
Then, the frequency in cycles per second is f = (Q/ZnRA)(E /m )}2

27

.

—.




The substitution of (11) into (6) yields
- % g; y + (A - QZF) cy=0 (12)

where § must satisfy the end conditions. For cylindrical shells with simply
T

~

supported ends §T(o) = §

~ ~

(2) = [0, H(EA?‘XO’ xk-l, 0, v/R] which implies M¢ =
oo

V = h = 0 at both ends.

Exact solutions in closed -form are obtainable for orthotropic layered
cylindrical shells of constant thickness and material properties along the axial
direction since the coefficients of the equation (12) are constant. For simply
supported ends without axial constraint, the spatial dependence in the axial
direction is taken to be proportional to exp(-i mxA), where m is the dimension-
less wave number. The explicit form of the soluton is

;, - ge-imx)\ (13)

where, o is the eigenvector whose components are the amplitudes of the stress
resultants and deformatons. The substitution of (13) into (12) yields
(imL + A - 0%F) - g =0 (14)

which is an homogeneous system of equations whose nontrivial solutions are given
by the characteristic equation as follows:

liml + A - Q°F| =0 (15)

a4 is the corresponding eigenvector of the matrix (A - sz). The imaginary part

of § will satisfy the simple-support conditions at x = 0 and x=¢ if mA£ = nn for

~

n=1,2,3... Hence, m = nn/AL.

The characteristic equation (12) takes the following form:

i 2
im 1 0 pR/Eotoco - (Q to/hco) /12 0 0
. 2
(co/tJ B4 im B13/A 0 B,y - 0 0
0 0 im 0 0 -2
2 =0
(co/to) B44 0 (colto)B34/A im -(co/to)B14 0
2 - .
0 = 0 (up/E_t_)-1 im 0
9 (16)
(co/to)B34/A 0 B33/A 0 -B13/A im

in which to is the wall thickness, Eo/u is the equivalent transverse shear
modulus and p is the pressurization effect defined by the relation

p =V, +pR/2 (17)

The elements of Bij are given in terms of the elastic parameters (4) in [8, 11].
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A typical element of Bij is

-1 22
Byy = [B 7(2C) 5Ky K 5=CPoD 7€ K ) +Con 1Bt
where, B = C; D, - Kil

For the special case of a single-layer isotropic shell, Bi" reduce to the
following form: J

Bjpy=1 3 B =0 5 Bz =w o By =0

Byy=0 3 By =1/12 5 Byy =0 , 7 Paw Y as
Bypy=v i By =05 BygEl-um 5 By =0 )
B,, =0 B,y S U ; B(‘3 =0 ; By = 12(1 - v%)

The expansion of the determinant (16) yields a sixth degree polynomial in Q
including the effects of pressurization and transverse-shear deformation as

follows:

6 4

A +Ba*+col+D=0 (19)

_ 2 6
where A=y (633844 834)/12A

) 2 2.2 Sy - a6 p2 3y - (m2/122%
B = (By,B,, - B3,) [(c /t )°A™" ((Wp/E t )-1) - WA (R%p/E t7) - (m“/12A")]
6 2 2 -4 2
+ (u/12A7) (B, By, + 2 B B By, ~ B],By.) + pA " [m"By, - (By/12)

2 2,2,,-2
(Bl3 + B, Byy + m AN

6,02 30 7 S
C=uh "(R7p/E t ) [-B 3By By, + BY.Biy = ByyB3, + BygBy, * BiyBysByy,

2,-4,.2

2,2 3 _ 2 2,-2 )
+ B,,m A°] + m“A (R p/Eoto) [333844 834] + (co/to) A [(pp/Eoto) 1] x

2 2 2
13814834 * ByyByq - BysBy, - ByuBag - ByaBy, -
6 2

- 2.-4 2 2
WA By3BiuBay ¥ umA (B By 4 By, gy * ByyByy g AT+ B,

2
(B B11B33Byy ~ By,

4, -2

2)-2 - 2 -2
* (e /ty) m°A T(By Byy - BygBy ) v mA T(Byy + B, 00) tmT (e /t ) A

[Cup/E L)) ~1] (By3By, - By, Bas)

D= {-mz[-m2 - Blé (co/to)] [-m2 + B14 (co/to) ((up/Eoto)-l)] + [-m4B11 u/)\2

+nf BB (e /e )P (p/Ee)-D] + (a2/A%) (R%p/E t3) [-A%82,

2
" By T M BByl
For the limiting case of a single-layer isotropic cylindrical shell, (19) takes
the following form:

Q® ((1-vH2/8) + 0* (02 (1-0B)/A%] (-p-1) - [(1-0%) WA*] [m + (1-u )/A ]
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[(1-02) p/A®] [v? + 12(1-v%) R%/E )] + (1-02)/A% [(up/E t ) -1]3

Q? (@A) [ur2(1-v®)] + m? p(1+u2)/AY + [(p/E t ) -1] [-(W2/A%)

+

(1-09/A% - ] + 120-08) ®Ep/EED) [@2(1-01)/A%) + (w?/x%)

12u(1-v2) (R%p/E t3) [m? + (1-02)/A%1/A% + {-n® + n? ((up/E t ) -1]

+

120 (1-0%) (R%/E e (A + W/A*] - mu/a? = o (20)
When p=0 (19) reduces to that given by Steele [12].

3.  APPROXIMATE SOLUTIONS

The curves of variation of the natural frequencies Q as a function of the
wave number m can be developed by a series of order-of-magnitude approximations
with respect to the large parameter A. This is done in what follows
by neglecting the pressurization effect. For m and Q both 0(1), and using the
fact that A is a large number, (19) yields the bending waves analogous to those
in an Euler-Bernoulli beam on an elastic foundation

2 _ 2 2 2 2

Q= (to/co) /Baa[(m + Blaco/to) + (co/to) 811344] (21)

which reduces for the case of isotropy to 92 = m4 + 1 as given by Steele [12].

For m << 1, the frequency equation (19) yields

m? = (Q/A)2 (8,28, + (8, - o) (8

2 2
33844 = B3gd 1 / By (Byy - 9 (99
For the case of isotropy, (22) becomes

n? = (/0% (1-0-v9)0?] / (1-0%) (23)
Tracing back, one can obtain this result by assuming all the transverse shear

and bending stresses to be negligible. Consequently, this gives the "membrane
waves." The ordinate to orgin (m=o) obtained from (22) is

2 _ 2 2
Q" = By, + (By3B,,) / (BysB,, - B3)) (24)

which reduces to the ring mode, Q=(l-uz)-% for the isotropic cylinder.

Furthermore, for Q

v

O(A), the frequency Equation (19) takes the following form:

®W120%) [Byy8,, - 82,1 + * /N [(N2(c st )? - nP/12) (ByB,, - B2)

2 2 2 2 2 4
- bm”(By, + B44/12)] + Q°(1/A%) [B33 (m™ + (e /t ) B, )" +m

Bhas12
2 2 2 2 2 2 2 _
+m ((co/to) B44A + um“)] - m° [m® + (co/to) BIA] =0 (25)
The ordinate to orgin (m=o) is
c 2 c |4 c 2 82 B Y
e IR T et
° W ° " o' 1By, = BysBy,
(26)

which reduces to the form
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B

o? = A%/ (i 27
representing the shear mode of isotropic cylindrical shells [12].
Moreover, for Q > O(Az), (19) resolves into two equations:

m2 - p@/N? =0 (28)

4 2 2 2 b, o _
m - m (833 + 844/12) Q/A)° + (B33B44 B34) Q/A)'/712=0 (29)
For the case of isotropy, (29) reduces to the following form:
w? = @/N)2 (1-0%) (30)

The positive real values of Q resulting from all the approximations studied
can be evaluated using a pocket computer. The values are exhibited in Fig. 3
and 4 in correlation with those corresponding to the exact solution (19). The
numerical results support the fact that the approximate solution may be used in
lieu of the exact solution.

The quantity nm/AL is small, except for very short cylinders whose length is

1
in the magnitude of (Rt)2. For A very large (that is, very thin shell), the
curve of variation of Q versus m in the transition region from membrane to
bending wave becomes very flat and a large number of natural frequencies are

found near Q = (Bll)!2 (Q = 1 for the case of isotropy). 1In fact, if just the

membrane solution is used, an infinite number of natural frequencies approaching
X

the limit Q = (Bll)% can be determined; however, in the range (Bll)?<9< the

value of Q given by (20), referred to as a "zone of silence" none can be found.
Since the cylindrical shell has an ample number of natural frequencies in the
range Q = O(Bll)’ for most problems the higher branch and the deviation of the

bending solution curve for large Q are not important. Therefore, the transverse
shear deformation and rotatory inertia effects may be neglected.

Furthermore, for Q<(B1 )%, the analysis for general boundary conditions can
be performed as in the static case. The membrane solution is determined from
the conditions on the axial force, V or axial displacement, v. The "dynamic
edge-effect" solution provides the constants to satisfy the conditions on H or h
and M or X. The mode s.ape is essentially "membrane" with the edge-effect cor-

rection. Moreover, for Q>(Bll)%’ the membrane solution is still wvalid but the
1
solutions which give the "dynamic edge-effect" for Q<(Bu)'2 become short wave-

length bending solutions ({8].
4, AXTSYMMETRIC STABILITY LIMIT

A "classical" stability limit for orthotropic layered cylindrical shells is
derived by the first author in [8] from the frequency equation (19) by setting Q
equal to zero and minimizing p in the resulting equation with respect to the
wave number, m.

~ . 2_ 2 %
dp/dm = 0 yields m —i(colto)(B14+B11B44)

which gives the minimum value of the pressurization parameter, p defined by
(17), as follows:

p = -(2E_t2/R) (B, + (B%A+BllBaa)%]/Baé (31)
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Indeed, (31) reduces to the well-known classical stability limit for homogeneous
and isotropic cylinders. In fact, (31) is only a special case of the more
general stability limits for orthotropic layered shells of revolution given in
f9] by the first author.

5. NUMERICAL ANALYSIS
Numerical results presented herein are obtained by the computer program DAS
[14] which is capable of performing dynamic analyses of orthotropic layered

shells of revolution.

The properties of the isotropic and orthotropic cylindrical shells for the
base curves (solid lires) are listed in Tables 1 and 2, respectively.

TABLE 1 - Isotropic Cylinder '
Length Radius Thickness E Poisson's ratio 7]
L(cm) R(cm) t(cm) (Pa) v
254 152.4 0.635 6895x10’ 0.30 3.0

TABLE 2 - Orthotropic Cylinder
(L = 254 cm; R = 152.4 cm)

Layer Thickness E E 3] v
(cm) %) ) 98

1 (Inner) 0.254 6895x10; 3448x10. 0.30

2 (Middle) 0.254 4137x10] 2069x10] 0.30 3.0

3 (Outer) 0.254 2758x10 1379x10 0.30

The variation of the frequency with respect to the wave number is presented
in Fig. 3, 5 and 6 for the isotropic, and Fig. 4 and 7 through 9
for the orthotropic cases. The figures demonstrate clearly that the pressuri-
zation has a significant effect on the natural frequencies especially for the
m>0.1 range of the membrane and bending (lower branch) waves. The higher branch
of the bending wave (shear mode) is not affected by the pressurization. The
effect of internal pressurizaton (p>0 and/or V>0 for m>0.1) is to stiffen the
cylinder with respect to the frequency, thus causing frequencies to increase;
however, the external pressurization (p<0 and/or V<0) has an adverse effect on
the frequency.

TABLE 3. Natural frequencies TABLE 4. Natural frequencies
for isotropic cylinder for orthotropic cylinder
R/t m Ql fl(Hz) R/t m Ql fl(Hz)
120 1.04 1.337 71.7 100 1.04 1.056 75.9
240 1.04 1.345 25.5 200 1.04 1.043 26.5
480 1.04 1.342 18.0 300 1.04 4.872 10.7
E, = 6895x10’ Pa ; m_ = 2641 kg/m> E, = 6895x10” Pa ; m, = 1761 kg/m’
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Tables 3 and & describe the effect in the change of the ratio of radius to
thickness (R/t) on the frequencies given by the lower branch; increasing R/t
ratio lowers the frequency values. The inclusion of transverse shear deforma-
tion does not influence the lower branches of the membrane and bending waves.
The reversal of the sequence of lamination in Table 2 increases frequencies
considerably for m>0.1, Fig. 9. The replacement of the values of E¢ with Ee in

Table (E6>E¢) produces a large increase in Q. An increase in the shear defor-

mation (the shell is more flexible in shear) decreases frequencies of the higher
branch of bending wave (shear mode).

A

2o P
S v p NORMAL

X~ ||

l M -, Q&tjk\ S&§§&§SSX f s

TN

0\

/
VIl
NOAMNMMNNN

FIGURE 1 Shell Geometry FIGURE 2 Layered Shell Element
e | aQ VALUE GIVEN BY EQ. {20)
80 400.
2 .
A HIGHER BRANCH OF 2.;1
172 BENDING WAVE
70 pli=y2)
( SHEAR MODE )
L
2]
— MEMBRANE SOLUTION ENDING
_avhe WAVE
( vz) 1 me0(1)
{ RING MODE ) i
BENDING I
SOLUTION
e
MEMBRANE SOLUTION 837
577
TRANSITION ON EXACT
SOLUTION FROM MEMBRANE
TO BENDING WAVE — EXACT SOLUTION
ol . — ' — —==- APPROXIMATE SOLUTION
v 3 E ] m L
YRV} v , — -
(o] .5 [} m
Coverea - Nombe . NRTH Figure & Citcular Frequency tor Orthotrepue Uvlhindrical
fraar ::‘:::::‘-:J:::'\‘Vw \..,r:‘th;:::,- : ‘1,’.(',‘.:”' fotror Shell (kxact and Approximate Solutions)

33




I ~

.

T o V=175l x 10 N/m\ ‘y ,
st I °=12066x10 Pa /

) I

I
4 p=08V=0
{Bose Curve /
Lower Branch)

3 /
2.

. p=-6895 Pa or
78 V=-52.53 N/m
o A n

l. 2. m

Figure 5. Circular Frequency For Isotropic Cylindrical
Shell (Effect of p or V)

= . pe12066xI10* Pa 8

!
| # ve8785x10* N/m
| 5.1 | y

sl p=0BV=0

|

I

1

! ‘ { Bose Curve )
Lower Bronch

| /

V:-5253x10* N/m

/
/
/X_presssno“% 8
/
/
/

\\ v A

I 2 m

Figure 6. Circular Frequency for Isotropic Cylindrical
Shell (Effect of p and V}

400.

b
)

V=175.x100 Nrm —,
P=120.66 x 10*Pa— 7,
7/
,\7

P=08V=0

{ Base Curve 4

Lower Branch)
d

i Il

5 . m

Figure 7. Circular Frequency For Orthotropic Cylindrical
Shell (Effect of p or V)

0

2
400
.
2F p
: : Chonge in E X,
! Vg
! 7’
H 7
! (Bose Curve 7/
I Lower Bronch) Ve
| Ve
] 7
! P
e m
" E¢:=2
e37 ! LAYER  EPa)
/] I 2758 x107
! 2 4372107
J 3 6895 10
o A i
5 . m

Figure 9. Circular Frequency Fur Orthotropic Cylindrical
Shell (Effect of E)

Figure 8. Circular Frequency For Orthotropic Cylindrical
Shell (Effect of p and V)

L

Q
400.
oF p=17.24x10* Po &
V= 4553x10* N/m ’
,/
d
Ve
rd
’ 2
7 < /,
” rd
I p=0 & V=0 g ~id
{ Base Curve P Ld
Lower Bronch) P -
.37 e =T
o \_P=-|7.24xoo‘ Pa &
V=-0.438 x 10* N/m
1 L
° 5 l. m

Acknowledgement

The authors would like to thank
Dr. Carl J. Turkstra, Chairman
of the Department of Civil and
Environmental Engineering at Poly-
technic Institute of New York for
his helpful discussions and support
throughout this research work.




TR T T

- TTTTTWNT T T T T

-

REFERENCES

1.

2,

10.

11.

12,

13'

14,

I. MIRSKY 1964 Journal of Acoustical Society of America, 36 (11).
Axisymmetric Vibrations of Orthotropic Cylinders.

I. MIRSKY 1966 Journal of Acoustical Society of America, 39 (3).
Three-dimensional and Shell-theory Analysis for Axisymmetric
Vibrations of Orthotropic Shells.

S.B. DONG 1968 Journal of Acoustical Society of America, ii (6).
Free Vibration of Laminated Orthotropic Cylindrical Shells.

S.B. DONG and L.G. SELNA 1970 Journal of Composite Materials, 4.
Natural Vibrations of Laminated Orthotropic Shells of Revolutien.

C.L. DYM 1971 AIAA Journal, 1201-1203. Vibrations of Pressurized
Orthotropic Shells.

L.E. PENZES and H. KRAUS 1972 AIAA Journal, 1309-1313. Free

Vibration of Prestressed Cylindrical Shells having Arbitrary Homogeneous

Boundary Conditions.

C.W. BERT and T.L.C. CHEN 1975 Trans. ASME, Journal of Pressure
Vessels Technology, Paper 75 PVP-18. Wave Propagation in Fluid-
Conveying Piping Constructed of Composite Material.

0.A. FETTAHLIOGLU 1972 Ph.D, Thesis, Polytechnic Institute of
Brooklyn, New York. Static, Buckling and Vibration Characteristics
of Orthotropic Nonhomogeneous Shells of Revolution.

0.A. FETTAHLIOGLU and C.R. STEELE 1974 Journal of Applied Mechanics,
Series E, 41, Asymptotic Solutions for Orthotropic Nonhomogeneous
Shells of Revolution.

0.A. FETTAHLIOGLU and P.C. WANG 1977 Proc. Third International
Conference on Pressure Vessel Technology, Tokyo. Asymptotic Solutions

for Thermal Stress and Deformation in Orthotropic Nonhomogeneous Shells

of Revolution,

0.A. FETTAHLIOGLU and P.C. WANG 1983 ATAA/ASME/ASCE/AHS 24th
Structures, Structural Dynamics and Materials Conference, Lake Tahoe,
Nevada. Paper ATAA-83-0893-CP, Axisymmetric Vibrations of
Pressurized Orthotropic Nonhomogeneous Shells of Revolution.

C.R. STEELE 1971 1Int, J. Solids and Structures Z'(9), 1171-1198.,
Beams and Shells with Moving Load.

E. REISSNER 1950 Proc. Third Symposium on Applied Mathematics.
McGraw Hill, New York, 27-52, On Axisymmetrical Deformations of Thin
Shells of Revolution,

0.A. FETTAHLIOGLU and A.M. SAYED 1982 Polytechnic Institute of

New York and New York Institute of Technology, User's Manual.
Dynamic Analysis of Shells (PINY/NYIT - DAS).

35 <

e

B,

®




| N

13

AMPLITUDE GROWTH IN VIBRATIONS OF ARMS
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ABSTRACT.

- The Timoshenko theory of flexural vibrations of beams and the WKB method
are adopted to evaluate the amplitude changes of the free vibrations of beams,
the length of which varies linearly with time. It is found that the change is
dependent only on the length increase (or decrease). Results are also given for
the frequency modifications.

AN

1. INTRODUCTION

Some mechanical systems are required to change their length while in ope
ration, This is the case of manipulator arms or deployable antennas,the length
of which can be varied by amounts equal to many times the initial (or final)
span. In such cases it can be expected that the amplitudes of the flexural vi-
brations originated by the manoeuvres are not constant; in particular, it has
been observed that when the length of a mechanical arm is increased to reach
seme target, undesired vibrations are originated, so that the successive phase
of the operation has te be delayed until the oscillatory motion is damped by
dissipative forces [1]. Thus, the study of the dynamics of beams with variable
length seems to be interesting in technical problems, in order to decide if the
addition of dampers is required.

The problem seems to have some interest also from the point of view of
the techniques of solution, because the use of the methods usually adopted for
beams of constant length cannot be extended to this case. Further, to the know
ledge of the authors, only a few works have been devoted to the analytical in-
vestigation of strings and beams with variable length,

In the present case, the problem can be simplified, because it is plausi
ble to assume that the velocity at which the length is changed is small,if mea
sured in units of the fundamental periods of the free vibrations; therefore,the
use of a perturbation method (the WKB method) is allowed.

Two other hypotheses are inherent in the mathematical model which will be
presented in the following paragraph:

a) it is assumed that the initial or final configuration of the arm is such
that it cannot be considered as slender, so that shear and rotatory iner
tia can have non negligible effects. Accordingly, the Timoshenko theory
will be adopted;
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b) the effect of weight is not taken into account. This is partly because some
preliminary computations carried out with the Euler-Bernoulli model have
shown that, for masses up to about 100 Kg and length increases equal to 4
times the initial one, the weight effect is negligible. The other reason is
that some very interesting systems with variable length have been designed
to be used during space missions. Among others, this is the case of the de-
ployakle boom which will be mounted on the Space Shuttle to provide the ini
tial gravity gradient at the beginning of the deployment in future missions
of tethered satellites [2],

2. MATHEMATICAL MODEL AND METHOD OF SOLUTION.

According to [3], the equations of motion are:

¥yt v
VR A SY—» =0
Al ax
* P
“ *
-?’LWLI S S
554 O 2
ot
q* M*
81
- = — < < 1
— - (0 < x < 2(8)) (1)
* *
V = - KAGQ
’\* * *

The meaning of the symbols are given in the table at the end.

Egs. (1) constitute a system with constant coefficients,but defined in a
time dependent domain. To reduce the problem to one with time independent boun
dary conditions, the following substitution is made:

x =5 « 2(t) (0<s <1 (2)
so that it can be written:
o * *
vl Oy + gy—-= 0
32 s
o 328" *
- a——+152L —+ v =0
S at/
BQ* M*
il 291— <
ds ET (Ois—l) (3)
* 1 oy
= - —(_y—__
v KAG(Q ds 8)

where the field of definition is constant, but the coefficient { depends on ti-
me.

It is now assumed that the length is changed linearly with time (which
seems quite plausible in most applications), so that:
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git) = 2+ Qt (4)
o

with £ = constant. As noted in the introduction, the hypothesis is also made
that:

— << 1 (5)

is valid at any instant; in other words, the time interval during which the
length is changed must be much longer that the period T of the fundamental
mode in the configuration with maximum length. In this Case the system is a
diabatic, so that eq.(4) can be rewritten as:

Lit) = &+ elt (6)
o

and perturbation methods can be adopted for its solution, In the present in
vestigation, system (3) is solved by means of the WKB method [4], looking for

solutions having the form:

. w(T) L W)
* LTk i
y (s,t) = y(s,T) e ;B (s,t) = R(s,T) e
(7
. T
X g W0 L B
M (s,t) = M(s,T) e " VvV (s,t) = V(s,T) e €
where € is a small parameter, T = €t is the slow time and:
yis,T) = gn y (s, T) €7 B(s,T) = gn Bn(s,r) £ )
X n ® n )
M(s, ) = In M (s,T) € ;VI(s,T) = Ln V_(s,T) € JY(T) = |n Y (1)
Substituting egs.(7) in (3), it is easily found:
peety+ 2 ety - Lylh vv =0
£ £ [
- M o+ el Q(é + Zi_é@ + i.B@ - 17'8@2) + v =0
O € € I
lo -2 ©
B' == M
voo L -
Y = 56 (KAGB - V)

where the dots and the apices mean, respectively, differentiation with respect
to T and to s.

Introducing egs.(6) and (8) in (9) and separating the contributions per-
taining to different orders of € and, for each order, real quantities from i-
maginary ones, it is found that the O-th order contribution is exclusively
real and is given by:
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O o (o] o [o] (o]
3 s (10)
By = 81 Yo
I
LI -
yo KAG (KAG Bo Vo)

when dealing with perturbation methods, it is frequent that the complete n-th
order solution can be found only if some information about the n+l-th order is
available. In this case, further information about egs.(10) is provided by the
imaginary part of the first order expansion, which gives:

2y b +y Yy =0
.o.o oo (11)
+ =
28owo Bowo 0
Eqs.(11) can be satisfied by: y =B = wo = 0; therefore, it appears that
egs. (10) constitute the usual system governing the vibrations of a beam with
length 20. In particular: @O(T) = const = W, The real part of the first order
is:
IJQ,(ZII)J)y +le)2+g'—Ty.2)-V'=0
0 ""o"1%0 170 Qo 0 0 1
o » * 5 2 L . . _
1020(2wow160 + Blwo + 20 Ty wo) + M1 2 Vo Qovl =0

) (12)

S S
B1 T EI (2T M, QoMl)
QI - L3
L
1 - o ey » T8 < v - kv
o o
and from the imaginary part of the second order:
y:--l_y 8:—?)_].'.—8 (13)
1
Zwo o 1 2wo o

if the initial phase is wO(O). After some algebraic manipulation on egs.(12),
it is also found:

¥y g
M, = (_—2% T M
° . (14)
v, = é— T KAG B - (ﬁl—-+ g--- T) V
1 L o 2 2 o
[e] lo]

Egs.(13) and (14) give the first order corrections as functions of the O-th or
der quantities and the unknown frequency variation. To determine &1 it must be
remembered that system (10) admits exponential solutions:

As As _ As _ As
yo(s) = yooe ' Bo(s) = Booe ' Mo(s) = Moo e ' Vo(s) = Vooe

(15)
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and, that, for each vibration mode and for each value of A in any mode:

2 292 2 2.2 2
s - KAGAS + ulowo v - EI(KAGXA +u20wo)>\ . uzowo
00 KAGA 20 Yoo * "oo KAG Qé Yoo * Yoo % Yoo
(16)
Introducing eqgs.(13), (14) and (16) in (12), one can write:
{ KAG A2«
Aol a-— ) (17)
on 22 2
o¥on
Finally:
2
b% KAG A :
Yln - - 2 2n ) %E a8
on u20$o

and similar formulas for B, , M and v can easily be found from eqs.(13) and
(14). Thus, it is seen that 'the glrst orger corrections of any mode are the sum
of two different contributions pertaining, for the same value of n, to the two
different values of A’ which can be found equating to zero the determinant of
the coefficients of system (10).

3. COMPUTATIONS AND RESULTS

It is now convenient to introduce non dimensional parameters.Let it be:

ag?
2 _ EI %2 = kG - __9©
b® = ﬁir'w P =g a I (19)

(o}

so that the biguadratic equation relating A to wo can be written as:

b’ 22 %
R -2+ AP l 20
A2 2pq| (p+1) * [(p-1)* + x ] (20)

2 2
If: (p—l)2 + é—fig—- >(p+1)2 let us write: (case a)
b

, 1 » 4 p?Q? 3
af = == 1~ (p+1) + [(p-1)° + A e My (21)
n 2pg b2
n
and in the opposite case : a;z = —ai (case b)
Further:
, , 4 P 3
8 Lac U Y -P—~br21 ] I (22)

So that the amplitude corrections are:

Y
in _ - 2, AL
Kan = (.__1a = (1 ~-pagq an) - (case a) (23)
on o
or: y
in 2. AR
= (== = ' —_— 24
Ky'n (yon)‘i (1 + pqan ) 420 (case b) (24)
and:
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Y1in A%
Ke = (—)ga = (1 +pqgB?) =
" Yon "n n 420

(25)

The values of the adimensionalized frequency b, needed to compute o, o'
and R are found solving the frequency equation., If the arm is assumed to have

a clamped end, while the other is free, the boundary conditions of the 0-th or
der problem are:

y (0) = SO(O) =M (1) = Vo(l) =0 (26)

and the frequency equations corresponding to a cantilever, both in case a) and
b}, are given in.[5]. For sake of brevity, in the following, formulas are gi-
ven only for case a) because the changes in case b) are obvious. Therefore:

yo(s) =Yg + Yoo (27)
with:

Ygp = C1 sinh bas + C2 cosh bas (28)

Yoo = C3 sin bRs + C4 cos Dbfs

Now, from egs.(17) and (18) it can be seen that, for each n, at the first
order of £ there are both two values of the frequency and the amplitude correc
tions, depending if o or B values are substituted for A. Thus, K is the correc
tion to the exponential part of the solution, while the trigonométric part is
changed by K,. Accordingly, the following quantity has been taken to measure
the change o? amplitude vibration during the length variation in any mode:

K vy + K, vy
a(r) = ->701 B 702 (29)

Yo

A simple computer program has been implemented to find the five lowest roots
of the frequency equation corresponding to conditions (26) and to evaluate h4'at the
free end of the cantilever. In the computations, it has been assumed that the arm

is made of steel, so that: E = 2.1-10'!'N/m? and v = 0.3; further,the Cross sec-
tion has been considered to be a thin walled hollow circle and the pertinent shear
coefficient has been computed with the formulas of Cowper [6]. The value of p has
been held constant in any computation, while the slenderness ratio g has been
considered as a variable parameter. Some preliminary runs showed complete agree-
ment with the results at the end of [51.

The main result of this investigation is shown in fig.!, from which it is
apparent that 'a'changes linearly with the length increase.

This result is valid for any vibration mode and for any value of p and g,
so that it can be concluded that the amplitude change with length is a purely
geometrical feature, being completely independent from characteristics of the
O-th order solution different from vibration amplitude.

In fig.2 the ratio K,/K_ is shown for four values of q as a function of the
rnode number.It is.interest@noato note that for slender arms the two amplifica-

tion factors are almost equal and of opposite signs, while as rotary inertia and
shear forces increase, K can change sign, so that the exponential and the trigo

nometric part of the vibration can be changed by very different amounts.
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FIG.]l - Amplitude as a function of length change

18
kB/4<a

Figs.3 and 4 show,respectively, the adi-
mensionalized frequency modifications of

Yo, and Ygp UP to mode five. As éwla is

16 N ] positive, corresponding to frequency in
crease, it is seen from fig.3, that the
frequency of the upper modes can decrea
se if the arm is sufficiently thick. On
\ the contrary, AwlB is negative, and from

o—J

12 \ Fig.4 it can be seen that the frequency
\ modifications corresponding to B are ne
x 9=500 \ gative in any case. In both cases, the
o q=1000 \ asymptotic values tend to those given by
the Euler-Bernoulli thecry and the ef-
8 + q9=2000 : .
\ fects of rotary inertia and shear forces
e 4=10000 \ are apparent for g < 2000.

| In conclusion, beats are present

X in the vibration, due to the proximity

of (w+ Aw ) to (w + Aw,) , and their
a’'n R'n

I amplitude variation is slower and slower
as long as g tends to infinity.

/
7
// ,
4
Ait
;e
rd
Al
’
4
/

2 LN + FIG.2 - Ratio of the amplification fac-
- I tors for the first five modes.
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FIG.4 - Adimensionalized change of the upper modes, corre-
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LIST OF SYMBOLS

a(T) amplitude change

A area of the cross section

b : adimensionalized frequency

E : Young modulus

G : shear modulus

I: moment of inertia of the cross section

Io moment of inertia of a beam with unit length

K : shear coefficient

Ka’ K8 : amplification factors corresponding to o and B values of

the wave number

£(t) length of the beam

Ro : initial length of the beam

M*(s,t) : bending moment

p: ratio to measure the relative effect of rotary inertia

for given shear and flexural rigidity

q : slenderness ratio

s : adimensionalized space variable

V*(s,t) : shear force

y*(s,t) : beam deflection

a*(s,t) : slope due to shear

B*(s,t) : slope due to bending

Awna' AwnB : frequency modifications of mode n

A adimensionalized wave number

H o= mass per unit length

T : slow time

Y1) phase angle
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~ SEISMIC STRESS FIELDS FOR NUCLEAR ELBOWS
~ USING TOROIDAL ELASTICITY THEORY

H. A. Lang

Director - LANG-Research West AD-P003 642 “

Santa Monica, California, USA
/ ABSTRACT

Toroidal elasticity, first introduced at London, England (1980) is a new
tool of stress analysis. It merges a toroidal geometry with the fully three
dimensional theory of elasticity. For isotropic materials, it includes both
stress and strain compatibility relations in order to ensure that the deforma-
tions are properly determined and topologically correct. Since the theory is
complete, all three components of displacement, all six components of strain,
and all six components of stress may be determined.

The compatibility equations, though rigorously correct, are lengthy. To
apply the theory to a large number of boundary value problems, the method of
successive approximation has been adopted. All equations are expanded in powers
of 1/R (where R is the toroidal radius). This leads to a set of working
equations appropriate for the solution of problems.

In the present paper the methods of toroidal elasticity are extended to
the problem of determining the stress fields in a hollow circular elbow or pipe
bend under the action of seismic accelerations.

‘'The seismic accelerations are represented by equivalent body forces X,Y,Z2
acting in arbitrary directions. The seismic forces may also be viewed as upper
bounds obtained from seismic response curves.r<:

Calculations are made for parameters Sy = 0.35 and s, = 0.30, corresponding
to major elbows of nuclear plants.
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1. NOTATION
r, ¢, O
Cr’ a

y T

Tr¢’ s’ T¢6

2. INTRODUCTION

toroidal coordinates
normal stress components
shear stress components
toroidal radius

inner radius

outer radius

r
R
1+ s cos ¢

Seismic forces (per unit volume)

32 + L3 1 32

T 952 T s as | 82 392
+ +
or o¢ 08
3 _sing¢d_
cos ¢ s s 3¢

Toroidal elasticity (as used in this paper) refers to the application of
the classical theory of elasticity to a toroidal geometry as typified by solid
circular ring sectors, pipe elbows, and curved pipe bends. The term "toroidal
elasticity' was first introduced in [1] where it was emphasized that the theory
was complete because of the inclusion of both stress and strain compatibility

equ tions.

This means that the theory is topologically correct and can be used

to wotermine stresses, strains, and displacements everywhere in an elbow.

Because the rigorously correct compatibility equations are lengthy, it is

desirable to apply the method of successive approximations.
expended in powers of 1/R (where R is the toroidal radius).

All equations are
The result is a set

of working equations appropriate for the solution of many boundary value problems.

The method of successive approximation has been applied to the determination

of stress fields for

(1) twist of elbows, pipe bends and ring sectors.

(2) in-plane bending of elbows under the action of pressure and

end-bending moments.

(3) in-plane bending of elbows under the action of end normal force

and end shear force.

(4) out-of-plane bending under the action of end bending moments and

end twisting moments.

(5) out-of-plane bending under the action of end shear force.

There exists a total of 16 solved problems for ring sectors and for pipe
elbows under end loads and pressure.

In addition to these statically loaded problems, two problems involving
seismic accelerations in a solid circular ring sector were solved [2], [3].
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The specific objective of the present paper is to determine the stress
fields for an elbow arising from two of the three constant components X, Y, Z
induced by seismic accelerations. The three components X, Y, Z may be viewed as:

»

1 - Equivalent body forces -X, -Y, -Z
2 - Extreme or upper bounds obtained from seismic response curves

3 - Derived from displacements up sin wt, v, sin wt and v, sin wt
so that X = - Y, w?, Y = - v, w? and Z = - v, w?

(where the time term sin wt is omitted everywhere)

As shown in Figure 1, the components in the toroidal elastic frame of
reference are related to the components X, Y, Z by the direction cosine scheme.

X Y Z

Fr cos ¢ cos O cos ¢ sin © sin ¢

F F'q> ~ sin ¢ cos © - sin ¢ cos 9§ cos ¢
Fe - sin © cos © 0

L In the present paper, only the field of stress due to components X and Y
(J will be considered. The Z component, which requires separate discussion, is
deferred to another paper.

The stress field of the X component can be derived from the stress field
for the Y component by a simple substitution. Therefore, it is only necessary
to consider the Y component in detail.

The stresses are given by a converging series such that
S(total) = S(0) + S(1) + S(2) + ... (where S is any stress)

The working equations consist of terms on the RHS which may be called
equilibrium functions or compatibility functions. These functions are developed
in the body of the paper.

3. STRESS FIELD FOR INITIAL STATE (0)

The equations of motion are

3(o s) 3T o
—r 1 _re ¢ _ i
s + s e S (YR sin 8) cos ¢
30 3(T_.82)
¢ .1 " re °__ i i
s30T 52 5e (YR sin 8) sin ¢ (1)
3(T__s) aT

ro 1 _96 _ _

s9s + s 3¢ (YR cos 0)

These equations are satisfied by the initial field of stress given by:

or(O) = (YR sin 6) s cos ¢ 0¢(0) = (YR sin 8) s cos ¢

06(0) = (YR sin 9) 2vs cos ¢ Tr¢(0) =0 (2)
1 -

Tre(O) = (YR cos 8) E-s T¢6(0) =0
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The expression for o, is based on the initial condition, 2, = 0. It can
be shown that the initial Stress field satisfies all six conditions of strain
compatibility and, therefore, represents an allowable field of deformation.

To continue the analysis, it is convenient to omit the multiplier

(YR sin #) from the first four stresses. We also omit the multiplier (YR cos 9)
from the last two stresses. Thus

00 = (or + o¢ + 06)0 =2(1+ v) s cos ¢ (3)

The equilibrium functions for the next state of stress are

No(l) = [(oO - Or) cos ¢ + Tre] 0 = vs - (1;%_22> s cos 2¢
_ _ ; _ (1 -2v) .

NO(Z) [(o¢ 09) sin ¢]O = ———E——-—-s sin 2¢

N0(3) = = [2 Trv cos ¢ + OQJO = - (1 + 2v) s cos ¢

The compatibility functions for the next state of stress are

aor 30¢
V() =—=1 v = —t =
(D = 50 NORS Sl
30
- _9 1 98 _ . =
VO(3) = 39 + T+ 3q - 2(1 + ) V0(4) 0
dT
_ 2're _5
VO(S) Y + 2 cos ¢ = 5 cos )
T sin ¢
S < A, ; = -2 &
V0(6) = S 2 sin ¢ 7 sin 0
4. STRESS FIELD FOR STATE (1)
The equations of motion are:
120 Ty o)
s as s 03¢ ] 1 0
L 30 1 a(TrSZ)
(E 36 157 s )1 =N (@ ()
e 1 7o ) =N (3)
s 3s s 9¢ 1 %
All terms on the LHS refer to the stress state (1).
A solution is readily found to be
v s? B2 2D2
= X - 2 - - A=A, - -
Or(l) =3 [ +—-T— (s Sh )J (1 2\))[ 5T C2 ;Z—]COS 24
\)[ Sasb 2 2 2 B2
- - 2 2 2 - - = 4+ —
0¢(1) 4 LS + ——57——-+ (sa + Sy )] (1 2v)[ 2A s¢ + o + Cz]cos 24
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B D

= - - 2 _ 2 _ 2 ,
Tr¢(1) (1 2v) [Azs o + C2 ;7{}81n 24
d
g Qs 2 2
oe(l) d0 > (1 - 2v) dls + 5z ) cos 24
24 2
s “s
(9 +8}! > __a’b 2 2
Tre(l) (——Ig~—) [ s ——37——-+ (sb + sa ) | cos ¢
11 8) 9+8(5232) 9
- 11 - 8v 2 _ v a b _ + 8v 2 2 .
Too (D) [( 16 /° 16 s? 16 Gp *s,) [sine
In the above, the boundary conditions determine A2, B2, C2 and D2
The boundary conditions are o, = 0 at s = s.0 Sy and Tr¢ =0 at s = s> S
We find
L 24 2 L 2 2 L L 2. 2
! (sb + 4s sy + s ) 1 (sb + s, )(sb + s, + 5,72 )
=% Z =% 2
(5,2 - 8% (s,% - 8,2
b, L. 2 2 2¢ 2¢c b 24 2
3 8, 'Sy (s < + sy ) 1 s, 5 (sb + s, 5,5, )
5, 7% 2 2z 772 2 2
(sb - s %) (sb - sa )
The compatibility equations for stress state (1) are:
aT 2
2 _ 4 _m_z _ 1 3@ - _
(voqr 2 5% E’Z(Gr °¢)+1+v_—2'as : Vo(l)
Voo b TETo 2 oy, L (L8, L.3%0)) . _v (2
006 " 82 3¢ sZ2 Yy ¢ 1+ v\s 3s ' s2 3¢ 1 0
2
v = -V
47 2
2 2 3 _ _ _rd 1[;30_1@]=_
(VO Tr¢ + 57_8¢ (Gr 0¢) Y + 1 +vls 9sd¢ s2 3 ) VO(A)
T aT
2 __r8 2 _ ¢86 -
(vo Tro =52 ~ 82 9 )1 Vo (5)
T aT
2 0 2 ro -
(Vo Too sg *$7 o )1‘ Vo (6)

These are satisfied by the solution of Equations (5) providad that

2

d1 = 4A2 v-=-1 and d = - 2D2v

2

To complete the solution for oe(l), we take

d

= - % (s 2+s.2) .

0 a b

The equation for d0 follows from the boundary condition Tre(Z) =0

for s =8, s
a

b*
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5. STRESS FOR STATE (2)

The algebraic details for the determination of the six stresses for

state (2) are reasonably lengthy.

this stress state.

state (2) can be found in [4].

6. STRESS RATIOS

Since expressions for all
body of the paper, the field of

number).
o
T

%

T
ro

$9
The

= 3 =3 aQ
@

by replacing the multiplier YR sin 6 by XR cos © and by replacing the multiplier

Thus
= YR
= YR
= YR
= YR
= YR
= YR

6 [Eq.
6 [Eq.
6 [Eq.
6 [Eq.
6 [Eq.
6 [Eq.

sin
sin
sin
sin
cos

cos

(2) +
(2) + Eq
(2) + Eq
(5) + ..
(2) +
(5) +

Eq

Eq.

Space limitations require the omission of

.1

. (5) + ...

.1

(5) + ...
.5+ ...
. (5) + ...

]

]

However, the complete mathematical development for stress

unknown coefficients have been determined in the
six stresses may be summarized (by Equation

(8)

stress field resulting from the X-seismic component can be determined

XR cos 6 by - XR sin 0.

The equations in square brackets represent stress ratios.

Calculations for the stress ratios on the inner and outer surfaces of an
elbow or pipe bend are determined using s
values correspond closely to major nucleaf elbows.
elbows of heat exchangers and steam generators based on a specific design for a
breeder reactor plant.

Because of the boundary conditions, T

= 0.30 and s

vanishes.

= 0.35.

These two

They were determined for

Moreover, T o= 0.175

YR cos € on the outer surface and Tre = 0.1§ YR cos 6 on the inner sErface.

The remaining stresses are given in Table 1 and have been computed for

seven values of the circumferential angle, ¢. Maximum values are underlined.
7. Table 1. Stress Ratios
Radial Stress (o,/YR sin 6 or or/XR cos 9)
$° 0 30 60 90 120 150 180
Outer Surface 0.35 0.3031 4§ 0.175 0 -0.175 ]-0.3031| -0.35
Inner Surface 0.30 0.2598 | 0.150 0 -0.150 ~0.2598| -0.30
Circumferential Stress (G¢/YR sin 9 or o¢/XR cos 9)
$° 0 30 60 90 120 150 180
Outer Surface 0.6892 0.6423 | -0.0424 |-0.4030 | -0.3924 |-0.1494] -0.0108
Inner Surface -0.1880 | -0.0001 | 0.3462 0.4242 0.0462 | -0.5197 | -0.7880
Meridional Stress (oeéYR sin 6 or o4/XR cos 6)
$° 0 30 6 90 120 150 180
Outer Surface 0.2627 | 0.3439 |-0.0571 {-0.2337 i-0.2671 | -0.2008| -0.4427
Inner Surface -0.0078 | 0.0248 | 0.0723 0.0390 | -0.1077 [ -0.2870| -0.3678
Shear Stress (T¢8/YR cos 6 or - T¢9/XR sin 6)
$° 0 30 60 90 120 150 180
Outer Surface 0 -0.0748 |-0.1297 |-0.1497 | -0.1297 | -0.0748 0
Inner Surface 0 -0.0952 |-0.1649 |-0.1903 |-0.1649 |-0.0952 0
52
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8. MAXIMUM STRESSES -

) ®
From Table 1, it is possible to determine the maximum stresses and their
location. For the Y seismic component only
Maximum circumferential stress = -0.788 YR (at ¢ = 180°, 6 = 90°, s = sa)
Maximum meridional stress = -0.4427 YR (at ¢ = 180°, 6 = 90°, s = sb) , °
For the X seismic component only
Maximum circumferential stress = -0.7881 XR (at ¢ = 180°, # = 0°, s = sa)
Maximum meridional stress = -0.4427 XR (at ¢ = 180°, 6 = 0°, s = sb)
For both X and Y seismic components v °
Maximum circumferential stress = -0.788R VGFT:T;E-
Y
(at¢=180°, S=sa’ tan@:—)—(—)
For equal X and Y seismic components
Maximum circumferential stress = -1.114 YR (at ¢ = 180°, s = S, 8 = 45°) . °
Maximum stresses o and Tr¢ are located (very nearly) at the geometric mean
radius s = ,/sasb
9. CONCLUSION -
) ]
The six stress components for stress states (0) and (1) have been
determined in the paper. The method of successive approximations, as mentioned
previously, can be continued but the algebraic details become lengthy. The steps
for the determination of stress state (2) are detailed in [4].
The maximum value of & for an elbow is 90°. However, this value can be 7 i -‘V”
decreased or increased to correspond to a curved pipe bend or a partial elbow.
The stresses 0, and o, at the outside and inside surfaces of an elbow are
readily determined b$ compu%er routines for both X and Y seismic components.
Two computer routines (in Fortran), incorporating stress state (2) as well as ,
stress states (0) and (1), have been established. o
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Figure 1. Toroidal Coordinates and Seismic Axes X, Y, 2
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VIBRATIONAL POWER TRANSMISSION FROM A SHORT SOURCE BEAM

__:;’ TO A LONG FINITE RECEIVER BEAM VIA A VIBRATION ISOLATOR

e
-

R.J. Pinnington
Institute of Sound and Vibration Research
University of Southampton

1.0 INTRODUCT ION

In many engineering situations machines have to be mounted upon a
flexible foundation, and as a vibration control measure compliant isolators are
used to mechanically decouple the two systems from each other. The effectiveness
of this vibration isolation is most completely described in terms of the
vibrational power transmission to the flexible foundation.

For large complex foundations it is difficult and often unnecessary to
predict detailed narrow band power transmission. A rather more practical
approach is to predict the frequency averaged power transmission in terms of a
few controlling parameters namely; the frequency averaged point mobilities of the
machine and foundation structures, and the stiffness and damping of the isolator.
In |1| this method was used to analyse the low frequency problem, where the
machine was represented by a rigid mass and the foundation represented by a long
finite beam.

> In this paper the higher frequency vibration is considered, where the
machine can vibrate in the natural modes of vibration.For simplicity the machine
is represented by a simple free-free beam excited at one end. This is connected
at the undriven end via a rubber spring to long finite beam, (the finite but
large flexible foundation). This configuration was chosen as the analysis
renders a simple algebraic solution for the frequency average power transmission.
However, the results are more generally applicable, as the solution requires
only the frequency average mobility of the two systems at the coupling point.

The theoretical formulae are compared with some experimental measurements
of a short finite beam coupled via an isolator to an "infinite beam" and a long
finite beanm.

M~

2.0 THEORY

The system under consideration is shown in Figure 1.

Force F Source
1 beam rubber

& //// isolator
Power — 5 //////
Input (N ?
i 5
finite or

power
transmitted Point mobility_ at infinite

position 3 is Mp

FIGURE 1

The short source beam is driven at the free end by a pure force of magnitude Fl.
End (2) of the beam 18 connected by a damped spring, of complex stiffness
K(1+4in), to the long receiver beam.

The point mobility at one end of the source beam before coupling is
defined in [1] as:
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Mz = Sr + 1Si - 18 (1)

where S cost S sine cos
8 = —, Si = 8 sine cosp (2)

l-sine sing@ 1-sine sing@

S is the real component of the point mobility at the end of anequivalent semi-
infinite source beam, @= 2k~ -g- is the phase change in a wave Mmaking a
return journey from the end of the finite source beam (at length £ and wavenumber
k). € 1s the damping parameter, controlling the peak value of the point mobility
S at resonance (when sin@=1l) i.e. from Equation 1,

§ 2 28 /cosE 3

It is shown in [2] that the transfer mobility ﬁl between points 1 and 2
is related to the real component of the point mobility §r by the expression,

M, 1% = § s_ stne. @

Likewise for the uncoupled receiver beam the point mobility at one end is given
in general as:

M12 = Qr + iQi - 1Q (5)

where cos Q s8inf cos@
Q. = ’ Qi = — (6)

1-sinB sin® 1-ginf sin®@

where Q is the real component of the point mobility of an equivalent semi-infinite
receiver beam. # and O are the damping and phase parameters, similarly defined

as for the source beam sbove. Q 1is the resonance peak value of the receiver
beam mobility and is equal to

~

Q # 2Q/cosB N

The vibration and power transmission between two systems coupled at a
single point as 1s Figure 1, can be written in terms of the point and transfer
mobilities [1] as )
M,
= - [ 2
/M, + Mg+ £(1+in) ]|

- 2 =
P, = ilr | . Re {M_} (8)

The vibrational power tramnsmission is calculated by substituting for 'ﬁz, M

12
and Mh using Equations 1-7, and performing the following algebra.

2.1 The Power Transmission averaged over several receiver beam resonances, <P>

Power transmission occurs between the two beams due to resonances in both
systems. The receiver is assumed to be much larger than the source and so for
each source beam resonance , (0O< @< 2r), there are many receiver beam resonances.
It is therefore assumed that for each receiver beam resonance (i.e,) for an
interval O< €< 27, @ ,and hence the source beam mobility, remains constant, The
averaged power transmission due to each receiver resonance <P> , can be found by )
averaging equation 8 over an interval of O< ©< 27, as follows, ’

First, substituting equation (5) and (1) into (8) gives

|m Iz. Q
Per = HF1'2' rlf, l'z 2 9)
S+ 1= + Q0% +(8,+c4,) ,
where C= (S+Q-w/K).
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By substituting from Equation (6) for Qr and Qi' and by making use of the

identity
i
Q: + Qf = QZ_ 1+sinBsine , (10)
1-sinfBsine
enables equation (9) to be written in terms of © and B

|M12|2. Q cos

_ 2
Pemtm 2 W 2 ., 2
a1 +2Q(Sr+ %—)cosB—sinS[(al =20 )sine-zQ(Si+A)cos€]

where a = (Sr+ 3&52 + 3,402 + @2, (11)

Using the two angle formula

sin(A-B) = sinA.cosB -~ cosAsinB (12)

in Equation (11) gives
2
lMlzl . Q cosB

_ 2
P_= é|F1| . ,(13)

a3 +2Q(S_+ 2 cosp-sing[ai-4Q%(s_+ ﬁﬂ)zj% s1n(0-Y)

where 2Q(Si+C)

tan Y = 2 2

a1 - 2Q

(14)

Now as © varies over an interval O< 6< 27, all the other terms in equation (13)
remain approximately constant being functions of either @ or w. There is a peak
in power transmission associated with a receiver mode whenever sm(8-y) = 1.

The average power transmission from each of these peaks <P> , is formed by
averaging equation (13) over an interval O0< 6< 27, 1i.e.

1 27
< P> = —— P, .d®
2n JO tr

This integral is solved using a standard solution, see for example !3].

27
1
2n [ . dx = d 3 (15)
O b-c sinx (b-c)
a,b,c are constants
b>c.
2
Therefore, 2 [Mlzl .Q
<p> = i|F1| -3 — (16)
a) +(Sr+ T{—) Q

Substituting for |M |2 and az in terms of S_ and S, using equations (2)
12 1 r b}
and (4) respectively, gives

3 2S.Sr.tan€.Q
<P> = &|F. |7 . ’ Qan
1 2 o2 A 2nw 2
(Sr +Si) +Sr(Q+ X )+ 281C+C%Qd
where
2 _.q2 ,wa nw, 2
Q=9 + ¢+ ). (18)
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[ )
By making use of the identity
2 2 (l+sinesin®)
] + Si = 8°. (19)
r l1-sinesing@
and substituting for S_ and Si in terms of @, from equation (3), <P> becomes, ®
after some manipulation
S .
<p> = ilFllzo sine,285Q (20)
~
ag +Scose {Q+ 122} - sine [(ag-zsz)sinQ-ZSCcossb] .
[ ]
2 _ <2 .2 2
where a, =8 +Qd +C“~,
Using the identity in Equation (12), the term in [ ] becomes after some
manipulation.
4 2 ' ®
[az - 482‘2‘,]i sin(g-v),
where
tany = —%Sc—z (21)
a2 -28
) [
<P> therefore hecomes
2 S sine. 25Q
<> = iIFll . ; . (22)
2 2 2nw 4 2.2 -
a2 +Scosg (Q+ T)-sin&[az-tk's Qd] sin(@-vy) ’ Py
<P>, as expressed in Equation (22) is of the same form as the real component of
the source beam mobility S_, Equation (2), except that <P> is a function of
@-y rather than . This means that the maximum power is, in this case, input and
transmitted at the resonance frequencies of the coupled system when @-y=1, rather
than at the uncoupled resonance frequency when @=1, » ®
~ v p
3.0 EXPRESSIONS FOR <P>, <P> AND <<P>>
- The properties of <P> can be summarised in terms of its maximum value
<P>, when sin (@~y) = 1; its trough value <b>, when sin (@-y)=-1, and the
frequency averaged value <<P>>, » ® .1
These quantities are found by (i) assuming tggézzghe damping of the source
beam is light, allowing sin ¢ to be written as 1- 5. (i1) Assuming S7#Qq
at the frequency of maximum coupling (when (S+Q-w/K) = O, then the approximation
may be made
2 22,2 o 25%Q] L ®
la3 - 4”@ = & - = (23)
2
(i11) dividing the numerator and demoninator of equatian (22) by ag. When
sin = 1, the peak value <P> is
@-y) , p ° ° .1
<P> = Q\Fl‘z. S sin e 2 Q.2 (24)
cost COSE d d
—— b (—— —
( t ) (cosB)+( 4 ¢ Q) ) S
d 1
|
() (11) (111) 3 ® L)
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When sin(ﬂjy) =«1 the trough value occurs

v 2 S sine
<> = }|F | i, s (25)
t2 cosf
d
(1) (i1)

The frequency average value is given by averaging equation (22),over an
igterval of O< @< 27, but it is also found to be the geometric mean <P> and

<P>, namely
S sine

<<P>» = ilFllz > Q (26)
2cos .2 ,cose 4 cose < vd 21&
=) +(cos3 ) +(Q_)J
d td cosf

where t2 is a kind of transmission coefficient for waves in the source beam at
the connecting boundary with the isolator,and is defined as:

tg: 4Q2 T2 24QS 2 0
a, s +Qd +(S+Q-K)

4.0 PARAMETERS CONTROLLING POWER TRANSMISS ION

The three parameters which control the power transmission are in the
denominator of Equation 24, Ehey are: (1) (cose/td)2 the coupling between the
beams (ii) (cose/cosB) or SQ/Q§ the Eelative damping of the two beams (iii) the
isolator damping parameter (td Q./2Q)“. The largest of these three terms is
therefore the controlling parameter in a particular frequency regime.

4.1 Heavy source beam damping and light receiver beam and isolator damping

Under this condition cose/cosf is the controlling parameter of Equation
(24). It can be seen from Figure 2 that decreasing cosg(the receiver damping)
or increasing the source beam damping,decreases the peak power transmission <P>,
but leaves the trough velue unaffected, In this condition the vibrational power
input to the source beam is mainly dissipated there, With increasing frequency
a point is reached when (cose/td)2>fcose/cosﬁ or (w/K)2> SQ (the break points
in Figure 2). Above this frequency the source beam becomes uncoupled from the
receiver beam and behaves as a velocity source driving the top of the isolator.
The peak and trough power transmission are given from Equation (24) as

~ A v
®> = 3l Psfwmta, @ = 3r, |85 w020 (28)
where § - 8 cose/2.

4.2 Light source beam damping or heavy isolator damping

Under this condition term (iii) in Equation (24) diminishes the low
frequency response seen in Figures 3 and 4. Increasing the isolator damping
and decreasing the receiver beam damping reducing the vibrational power trans-
mission. If there is no isolator damping then then power transmitted equals the
power input to the source beam, which is on average

2
<<P>> = QIFII .S. (29)

59




With increasing frequency decoupling between the two beams occurs when
2cos/tg2 ) Qq/Q. (The break points in Figure 3).

Above this frequency the frequency averaged power transmission takes
the values given in Equation (28).

5.0 EXPERIMENTAL RESULTS

An experiment was set up with the configuration shown in Figure 1 in order
to test the theoretical predictions., The source beam was a 50cm x 3,2cm x 6mm
aluminium alloy bar, with both sides damped with a constrained layer damping
treatment. The receiver beam was of steel and had dimensions 6,21m x 5cm x6mm.
The isolator consisted of two adjacent blocks of natural rubber each lem x 1.2cm
x 1.2cm, The dynamic stiffness was constant at 1.2 x 10"'N/m until 2 KHz, The
vibrational power input at end 1 of the source beam was measured using the force
and acceleration signals from an impedance head, while the power transmitted to
the receiver beam was measured from the acceleration on the beam using the
expression, 2 2
P = 4|v|® x rely}/ Ingl”.
as in |1|.

Figure 5 shows the vibrational power (normalised to the input force) input
to the uncoupled source beam. The maximum power is input at the resonances and the
frequency averaged value is given by Equation 29, Figure 6 shows the vibrational
power input to the source beam and transmitted to the receiver beam when the
receiver beam was semi-infinite, In practical terms this entailed the far end of
the beam being embedded in a sand box.

The frequency averaged power input to the source beam is again equal to that
of the uncoupled source beam (Figure 5, Equation 29), The frequency averaged power
transmitted Fi;s 6 and 7, were predicted from Equations 24-26 using the measured
values for S,S,Q,Q, w/K. For frequencies less than 400 Hz it was found that the
isolator (Case 4.2) (term 1ii Equation 24) controlled the power transmission (i.e.
the source beam damping is ineffective).

Figure B shows the vibrational power input to the source beam and trans-
mitted to the finite receiver beam (no sand box). It can again be seen that above
400Hz the two beams are only weakly coupled, the power input is not strongly
influenced by the presence of the receiver beam, Figure 9 shows the frequency
averaged power transmitted compared to that of the semi-infinite beam. Below
the decoupling frequency (400Hz) it can be seen that slightly less power is
transmitted to the finite beam than to the semi-infinite beam, the isolator
damping being more efficient .h-on the receiver beam is finite.
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PREDICTION OF SMOOTHED FREQUENCY RESPONSES
USING GENERAL ORTHOGONAL POLYNOMIALS

M.E. Gaylard

Department of Mechanical Engineering
-Brunel University

1. INTRODUCTION

N\

"‘SSmoothed frequency responses describe vibration behaviour without
regard to resonant-antiresonant detail. The object in this paper is to show
how they can be predicted from information about stiffness coefficients and
masses, using a series-expansion in general orthogonal polynomials (not just
the Tchebyshev polynomial%ljyich were used in a previous paper [1] ).

vv9 €00d-Av

> Resonant-antiresonant detail concerns sharpness, range, and location of
resonant peaks and antiresonant notches in the true vibration response, and for
many purposes constitutes the most important feature of that response. Neverthe-
less, there is some interest in the part of the vibration response that still
can be examined when resonant-antiresonant detail is unknown, witness two
known approaches: Statistical Energy Analysis {€£>and the Mean—Value Method.f?].

~> A recently-introduced method —[-].) is to apply smoothing by means of an
orthogonal polynomial fit. Using a series—expansion, there is heavier smoothing
as fewer orthogonal polynomial terms are employed, but resonant-antiresonant
detail can be recovered if the number of terms is sufficiently increased.
Figures 1 and 2 of this paper show examples of smoothed frequency respon?§;;\
where nine orthogonal polynomial terms were used to describe a behaviour ~
governed by six modes of vibration.

To obtain a smoothed frequency response, there is no need to establish
the full response which contains resonant-antiresonant detail, nor is there any
need to determine natural frequencies or modes of vibration. It suffices to
know the elements of the stiffness matrix and mass matrix for the structure or
other system under study. By considering real mobility versus frequency, the
smoothed frequency response has a much weakened dependence on damping, compared
with other measures such as, say, receptance versus frequency (unless many
polynomial terms are used, or damping is heavy). Reference [1] gives details
and theory for smoothed frequency responses relating to matrix—characterized
structures, together with an example on a theoretical structure (a uniform
clamped-clamped beam considered in seven equal elements, which also provides
data for figures 1 and 2 in the present paper).

Reference [1] also suggests applications where it is reasonable to seek
some advantage from a smoothed frequency response, compared with Statistical
Energy Analysis [2] or normal-mode analysis. Such advantages concern volume of
arithmetical working, simplified presentation of frequency-responses, disclaim
of a detailed exactitude which may be spurious because of uncertain numerical
data, certain possibilities relating to incompletely-characterized structures,
and investigation of the known [4] relation between modal density and the real
mobilities. However, the derivation and method in reference [1] is limited to
one particular sort of orthogonal polynomial (Tchebyshev), and it is natural to
enquire about the use of other polynomials.

The present paper includes a summary of the theoretical basis in
reference 1}, sufficient to introduce some new developments, namely the
extension to the case of general orthogonal polynomials, the suggestion that
it may be profitable to ignore damping so long as smoothed frequency responses
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do not depend on too many orthogonal polynomial terms, and an example with
Legendre polynomials for comparison with earlier results for the Tchebyshev
case.

2. EXPANSION IN GENERAL ORTHOGONAL POLYNOMIALS

Consider the following series-expansion in polynomial functions £ (A) of
a matrix A,

Re(X) = (6_(w).£ (A) + 6 (@) E (A) +.renen +o @£ () (1)

which relates to a system with stiffness matrix K, mass matrix M, viscous
damping which is assumed to take the special form cM, and with vector x of
displacement-amplitydes. If there is excitation by “sinusoidal forces at
frequency w rad.s with amplitudes recorded in vector F, the matrix force
equation is

(K + jucM - w?M).x = F (2)

and a matrix of mobilities Y in jwx = Y.F is given by

= 0 + jocd - w?) !

= oK+ Gue-wh1) Tt (3)

Re(Y) in equation (1) signifies a matrix whose elements are real parts of
mobilities, and the ¢n(w) are scalar coefficients. Matrix A is equal to §—¥§,
or, in practice, is linearly related to gflg for purposes of standardisation.
The polynomial functions fn(é) are best computed by means of a recurrence

relation which is given in equation (5) below.

The coefficients ¢n(w) are constant functions of n and w, regardless
of the rank and content of the NxN matrices K, M, A etc., even if N=1
(when all quantities reduce to scalars). This is easily shown, given a
similarity transformation which diagonalises MTIK and consequently A (i.e. a
transformation like 571( K)X A, a diagonal matrix). Consequently,
determination of the coefficients ?n(m) can proceed by reference to the scalar
case, using a well-known method which requires that the scalar fn(A) are

orthogonal polynomials in scalar A, that is,

b
S £ (A).f_(A).w(A).dA = O, (0 #m)

a (4)

b
and j fn (A) .w(A).dA = hn

a

where w(A) is a chosen weight function, and (a,b) is an interval which, in the
present application, must be chosen to contain all of the eigenvalues of A.
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It is an important feature that any orthogonal polynomial of a continuous
variable must [5] obey a recurrence relation:

fn(A) = (c1 + CZ'A)'fn-l(A) - 03.fn_2(A) (5)

where Cys Cys and cq are constants which depend on the sort of polynomial

(Tchebyshev, Legendre, etc. [5] , [6] ), and may depend on n. 1In the present

ﬁork, the same equation (5) is used for the matrix fn(é) as for the scalar fn(A).

For the scalar real mobility, equation (3) gives

Re(y) = Re(jw(k/m+ jw c —wz)—l. m-l)
= Re(jw(a-2)"Lm h) (6)
wvhere A = k/m 7
and z = wz-jw c (8)

(In practice, identities (7) and (8) are replaced by linear relations, thereby
standardising A and z so that all values fall in some chosen interval, for
example within the interval (a,b) = (-1,1), see reference [1] ).

The orthogonality expressed in equation (4) permits the following
determination for coefficients in a series—expansion,

b
¢n(w) = ~hl— { Re(y).fn(A).w(A).dA
n a
b
-w fn(A)-W(A)
= oh o Im — dA 9)
“n (A- z)

After equation (9), all that remains for determination of coefficients in
matrix equation (1) is to evaluate integrals of the type

b
( £ (A).w(A)

a (A - 2)

1 =
n

dA (10)
In reference [1}, In was evaluated only for one sort of polynomial, the

Tchebyshev polynomials fn(A) = Tn(A) with weight function w(A) = (1- Az)-%,

see [5) or [6]. A present development relates to the general case, when fn(A)

is any orthogonal polynomial of a continuous variable. It concerns the reduction

of an integral In to the simplest integral I0 » by exploiting the same

recurrence relation, equation (5), as governs the polynomials fn(A) in the

integrand. Substituting with equation (5) in equation (10) gives

(c.* c,.A).f _(A) - c,.f _(A)
In - { 1 2 n-1 3" n~2 w(A).dA

a (A~ 2)
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=( (cg+ cypez) f 1 (A) ~ cpuf ) (A)

w(A).dA
a (A - 2z2) .
c, (A-2).f __(A)
+ ( 2. nml  L(a).da
(A -2)
b
= (c1 +c2.z).In_1 - C3'In-2 + Cye ( fn_l(A).w(A).dA (11)
a
But orthogonality in equation (4) gives
b
g £ (A).w(A).da = 0O (m=2,3,4,00un.. D)
a
=N =
£
GO

because f (A) = a constant, f say. Consequently the integrals in equation
(10) obey Phe same recurrence £&lation as in equation (5), that is,

I = (c, +c .z).In (n=2,3,,4,000.... ) (12)

n 1t % - eyl

-1 n-2

andr by considering fl(A) = fll.A- flo’ where fll’ flO are constants, it 1is
easily shown that

LR (13)
11°-2
£

00

I1 = fl(z).Io + f

w(A).dA

-2 (14)

b
Both of equations (12) and (13) depend on IO = foo'g
a

If the integral I _ in equation (14) can be evaluated, then all other
integrals I1., I,, I., etc. in equations (10), (12) and (13) become straight-
forward, and completé the determination for coefficients ¢ (w) in matrix
equation (1). From this general approach, two special cas@s (those of the
Tchebyshev and Legendre polynomials) are selected for evaluation of Io as
follows.

For the Tchebyshev polynomials, w(A) = (1—A2)_£, standardised interval
(-1,1), contour integration (e.g. in [1] ) gives

=j2n
(b-a).sin(a+ jB)

Tchebyshev Io =

(15)
_ —j2m.exp(j(a +jB)

(b-a).sin(a+ jB)

whence, from equation (13), I1

where cos(a + jB) is a standardised replacement for 2z in equation (8), and the
constants in equations (4) ard (5) are taken from references [5] or [6], namely

hn=7T/2 (n#0), =0, ¢, =2, and Cq =1.

¢
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For the Legendre polynomials, weight function w(A) =1, standardised
interval (-1,1), one can use

(1-12) r.exp(jf)

(-1-2)

-r'.exp(-jB') = r'.exp(j(n-8"))

(A-2z)

1
in Legendre IO = ( da
-1

In(l-2) - In(-1- 2)

In(r/r') - j(m-6-06")
(16)

with I zI + 2

1 o

and constants taken from Eﬂ or [6]: h_ = (a+1l) ", c.=0,

- 1 n 1
c,= 1-1/n.

cy= 2-1/n, and

In practice, the expressions for I and I, in equations (15) and (16)
will contain another factor, introduced when equations (7) and (8) are replaced
by linear transformations such that (a,b) is replaced by a standardised interval
(-1,1). Figure 1 shows smoothed frequency responses which were computed from the
alternative expressions for Io’ I1 in equations (15) and (16).

3. NEGLECT OF DAMPING

Damping influences the true frequency response through the range and
sharpness of resonant-antiresonant detail, but has little or no influence upon
an average magnitude for real mobilities, taken over a range of frequencies.

Smoothed frequency responses tend to remove the resonant-antiresonant detail,

consequently it is reasonable to expect them to show small sensitivity to damping
(but not if they relate to measures other than real mobility). The latter
measure is a ratio with respect to an excitation-force for the in-phase part

of a response-velocity. It has the property that a decrease in damping causes
the resonant peaks to grow in height, but also to shrink in width, and causes the
flanks of the peaks to decrease.

Insensitivity to damping can be exploited in the computation of the
smoothed frequency responses in this paper, by arbitrarily setting damping equal
to zero. The advantage is a simplification of arithmetic, because the need for
complex arithmetic disappears in a practical computation with equations (12) to
(16). The results will show some small differences from the case when damping
is considered, but these differences are likely to be insignificant, given that
the object of a smoothed frequency response is to ignore detail in the resonant-
antiresonant behaviour. Figure 2 shows a comparison of cases when damping is
considered and when it is ignored, for a smoothed frequency response using
Legendre polynomials.

If a smoothed frequency response were calculated with sufficiently many
polynomial terms, there would be a tendency to reproduce all of the resonant-
antiresonant detail, and it then would be misleading to ignore damping.
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4, EXAMPLE

Figures 1 and 2 show an example concerning a theoretical clamped-clamped
uniform beam, taken from a previous paper [1] except that Legendre polynomials
now are used in place of Tchebyshev polynomials. By considering seven identical
beam elements, values were derived for 6 x 6 matrices of stiffnesses and masses,
correspondi?g to natural frequencies 0.457, 1.256, 2.442, 5.448, and 6.552 times
1/L2(E1/pA)?, where L,E,I,p and A are constants of the beam geometry or material.
It happened that very little participation of the fourth mode of vibration was
predicted for the point where both the excitation and response were considered
(giving a point-mobility for the junction between the second and third elements
from one end of the beam). Details of the mathematical model for the beam are
given in reference [l]. Legendre smoothed frequency responses were established
from equations (1), (10) - (12) and (16) of the present paper, using polynomials
up to degree V=9 computed with BASIC on a Microtan personal microcomputer.

Figure 1 shows a comparison between two smoothed frequency responses, of
the Legendre and Tchebyshev types. Both of these are to be judged in relation
to a detailed frequency response which was calculated by normal-mode analysis
after the necessary determinations of natural frequencies and modes, and which
is included in the same figure. Both of the smoothed frequency responses
in figure 1 show the following: a region of low response near an almost
non-participating tourth mode of vibration; an embryonic appearance of resonant-
antiresonant detail for the fifth and sixth modes; and a region of high response
embracing the first three modes. (From the standpoint of computation, these
modes are closer together than appears from figure 1. Computation relates most
closely to a distribution of modes with respect to w?, but figure 1 shows a
distribution with respect to w).

Figure 2 shows a Legendre smoothed frequency response, once for the case
when damping is considered, and again for the case when damping is neglected.
Excepting the latter case, all of the curves in figures 1 and 2 relate to a
value ¢ = 0.2 for the damping coefficient in equation (2). Differences are
perceptible between the damped and undamped smoothed frequency responses in
figure 2, but are insignificant in comparison with differences between either of
the smoothed frequency responses and the detailed response which was calculated
by normal-mode analysis. The saving of arithmetic through neglect of damping
approached three~fifths of the multiplications needed for a plot of each point on
a smoothed frequency response when the values for the polynomial matrices f (A)
were given. The latter matrices are constants of the structure, and their =
once-for-all determinations for a given structure by means of equation (5) are
unaffected by damping.

5. DISCUSSION

The result of equations (9),(10) and (12) - (14) is that the smoothed
frequency response in matrix equation (1) can be used with any system of
orthogonal polynomials of a continuous variable, subject only to two conditions:
first, the integral I in equation (14) can be evaluated; second, the chosen
type of polynomial is satisfactory in numerical stability and in practical
convergence of the smoothed frequency response on to the true frequency response
as the degree v 1is increased.

At the time of writing, only the Tchebyshev polynomials of the first kind,

T (A), and the Legendre polynomials have been investigated and shown satisfactory
in a numerical example with a smoothed frequency response.

71




Smoothed frequency responses of low degree Vv (that is, with little or no
display of resonant-antiresonant detail) can be approximated by setting damping
equal to zero, unless the true damping is heavy, with a consequent simplification
in part of the arithmetic.

The example in this paper concerns a point mobility, that is, where
excitation is applied along the same coordinate as used for measuring response.
However, determination of a smoothed frequency response for a real transfer
mobility is not excluded (although the transfer case may be less important, and
may need more polynomial terms to be considered, see reference [1]).
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1. INTRODUCTION

>‘A general method is presented for the analysis of spacé frames encased fully
or partially in elastic medium and subjected to time-dependent loads of harmonic
variation, such as those arising from rotating or reciprocating machinery. Off-
shore structures, pipelines, bridges, components of ships and aerospace struc-
tures are examples of such systems. The analysis is restricted to systems of
straight linearly elastic bars of constant sections, which have two orthogonal
axes of symmetry or are axial symmetrical. The time-independent mass of each bar
is uniformly distributed along its axis. The material constants of each bar and
of its surrounding medium are independent of time and are known from experiments.
The sign convention of the transport method and of the stiffness method is used
in the respective sections. f:-

From the transport matrix formed by twelve dynamic parameters and twelve
forcing functions of a single bar, the transcendental stiffness matrix is con-
structed and converted into an algebraic stiffness matrix, the elements of which
are truncated series. Analytical expressions are presented for the calculation
of the coefficients of each series, for the location of singularity points of
each series and for the limits within which each series yields results of practi-
cal significance. Finally, a computer program is discussed which generates the
finite element matrices as functions of their respective series, selects the ele-
ment sizes within the predetermined range of accuracy, produces the frequency
determinant, identifies the critical states and yields a complete response of the
system, The historical background of this approach is summarized in [1], [2],

[3].
2. TRANSPORT MATRIX EQUATIONS
Assuming small oscillation about the configuration of stable equilibrium,

the free vibration of a finite bar LR of length s is defined by the transport
matrix equations given in full form in Table 1 and in submatrix form below as

(1)

where HR and HL are the dimensionless state_vectors of the right end R and of the

left L, respectively, consisting of forces U, V, W, moments X, Y, Z, linear dis-

placements ¢, §, § and TRL, TLR are the dimensionless transport matrices, the

elements of which are the dynamic parameters Ty,, Toy, ..., T, , T, , all shown
u 3w’ 4w

in Table 1.

The shape parameters

(2)
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TABLE 1

DIMENSIONLESS TRANSPORT MATRIX EQUATIONS
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which appear as arguments in the dynamic parameters are functions of mass per unit
length u, mass polar moment of inertia per unit length p, angular frequency w,

moduli of elastic medium k., k4, ki, ky, functions of the normal section A, I_,
Iy, Iz and the elastic constants E, G. X

3. STIFFNESS MATRIX EQUATIONS

In terms of the sign convention and notation of the stiffness method, the
lower submatrix equations in (1) yield

)-1

)-1 -
S =d s__A - d A S =-4d s, A+ d A 4)
LR RL "RL L RL R RL LR "LR R LR, L
H_J (SR —_— e ed
kLL kLR kRR kRL

where Spp, SRL are the end reactions, A;, Ap are the end displacements and kpp,
kpr> kRL» krr are the stiffness submatrices shown in full form in Table 2.

Once the dynamic stiffness matrix equations are available for all bars of the
system, the analysis based on the conditions of dynamic joint equilibrium follows
the pattern of static analysis and leads eventually to the frequency determinant

equation.

In addition to the treatment of joint loads, the distributed mass bars are
able to account for the dynamic loads acting between the joints as

SLR qr o M A SLo
= + (5)
SRL kRL kRR AR SRO
where
SLo = = kir ®ra Sro = 7 kpp fLa (6)
and QLA’ ¢RA are the absolute load functions given in Table 3.

4. EXPANSION OF STIFFNESS FACTORS

Since the stiffness factors in Table 2 are linear combinations of circular
and hyperbolic functions, the solution of the frequency determinant, even in
cases of frames with a few joints, is a monumental task, requiring a large amount
of computer time. Kolousek [2], while investigating the free vibration of free
bars, conceived the idea to expand the stiffness factors into series of McLaurin's
type. Since each factor is a fraction, the numerator and denominator of which
are transcendental functions, the expansion requires a synthetic division of two
power series or a generation of a series, which is equivalent to the quotient
series. The latter is used below.

The dimensionless parts of the stiffness factors in Table 2 are in series
form,
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TABLE 2 ABSOLUTE STIFFNESS MATRIX EQUATION

Kjy = EAX cot 'x'u D, = (l-cosh Tv cos X v)" Kyp = BI, 2, cot T.
Kpy = EA L esc Tu o, = (V-cosh A, cos Tu )'l KZo = Gl 2y CSC To
Ky = EI 2, (cosh Tv sin i'v - sinh Tv cos Tv) o, Koy = EI, ;v (sinh Tv - sin Tv) D,
Ky = El, A% sinh Tv sin 'x'v 0, Key = €1, Af, {cosh Tv - cos Tv) 0,
K3y = EI, A3 (cosh i'v sin Tv + sinh Tv cos Tv) D, Key = EI, x?, (sinh iv + sin Tv) D,
Kjw = Ely 2, (cosh 3, sin 3, - sinh X cos X)) D, Kgy = EI 2, (sinh A, - stni) o,
Kow = EI, A2 sinh X sin X D, Ky = EI, A2 (cosh X - cos 1) O,
Ky * “.V A3 {cosh Tu sin i'" + sinh 3 cos 30, Kow * Ely A: {sinh 3 + sin 3, 0,
M r T
Yr Ky X2y “
iR K3y Kav Kev Key !
LT K3w Kow Kew Kow "
LT 1o ) !
e *ou Kiw X5 Kaw !
e | . Koy K1y sy ov & %
Upy Ko K Up
YaL Koy Ksy K3y Koy 0
WL “Kew Ksw K3w Kow "R
Yo K2y Ko ®
Y Ksw Kaw Kow Kiw g
I Iy | I Ksy Kay ~Kay Kiv Jr ]
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TABLE 3

ABSOLUTE LOAD FUNCTIONS

Px’Py’Pz = concentrated loads (N) s,a,b = segments {(m)
px,py,pZ = intensities of distributed loads (N/m)
A]u’AZu""’A3w’A4w and B]u’BZu""’B3w’B4w are the dynamic parameters defined
in Table 1 for the segments a and b, respectively.
0 = - 7'\zupx 1. Concentrated loads ® BZqu
Lu A EA Ru X EA
u u
Ay, P B, P
- 4v 4 4y
v T T T E p *Rv T T 3T EI
vV 'z Z!Y z b vV 2z
Lw = 7R EL / y P, / TR,
® e
o = A3wpz l{/ )_4/// ’QR B3’z
T T2 S A EI
Ly A2 EIy A - v Bw ; y
® = - A—§V—P-x 'q)RG - .__.3_‘{_1
T
Le A2 EIL \ A, EL
o = - Tu™My p 2. Uniform loads ® ) Byy”! p
™" TR x | *Ru X2 ER 'x
o = - T]v-AlvP z ‘6 ) By p
Lv AFEL Ty K | Rv AT ELy
vz a_ b , Bv ]z
T, -A -
: 1
o = - W W, ;7 ‘4;7 bp, = - W - P
Lw AFET z p 2 EL 2z
Wy y /px « w oz
TRl 0
%o ™ O L P2 _ R
o = - Igw'A4w P o Baw P
Ly AS EIy z s } W Ay EIy z
- 7 [
d = - .T_4V A4v P 3 '(DRG - B_g_v_ P
Le NIEL, 'y | BELy
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‘a0 * L Sy |70 K56 = S0+ 1 iT0 7
r= r=1
) - Xi r ) - X: r
K " %0 * L G {700 M = S0 * L (100 (8)

r= r= . -
where er = (10) er, Ckr = (100) Ckr and j = 1,2,k = 1,2,...,6)

The coefficients C;, are well known and the coefficients Ekr can be deter-
mined automatically by the generating matrix equation given below. Their numeri-

cal values are listed in Tables 4 and 5.

—_ —1» e -— —
Cro Neo 1
Cr1 Nag - D Ceo |
_ _ 9)
Cr2 L Nep = Dy - Dy 1
C ) % N - D - D - D c
K3 K3 3 2 1 K2
. . J -

where Dg, D,, ..., are the coefficients of the initial denominator series and
Nkos Nkis ..., are the coefficients of the initial numerator series.

The singularities of the stiffness factors, given by the zero values of
their denominators, are for

=1, 2 Y

m, 2w, 3m,

k=1, 2, ..., 6 X

4.730043, 7.853203, 10.995608, ...

of which only the first ones are considered significant and are used as the
radii of convergence of the respective series.

TABLE 6 ADMISSIBLE RANGE

Factor Number of Terms Range of Error
2 0<X<0.4
K. 3 0 <x<0.8 e < 5.8(10)""
j 2rz <
4 0<x<1.1
2 <X=<1.3
Ky 3 <X < 2.0 £ < 1.4¢10)73
4 0 <X <2.5
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TABLE 4 NUMERICAL VALUES er
r C]r c2r
0 | 1.000 000 (E+00) 1.000 000 (E+00)
1 {-3.333 333 (E+00) 1.666 667 (E+00)
2 | -2.222 222 (E+00) 1.944 440 (E+00)
3 |-2.116 402 (E+00) 2.050 265 (E+00)
4 |-2.116 402 (E+00) 2.099 868 (E+00)
5 |-2.137 780 (E+00) 2.133 605 (E+00)
6 |-2.164 404 (E+00) 2.163 347 (E+00)
7 |-2.192 595 (E+00) 2.192 328 (E+00)
8 |-2.221 461 (E+00) 2.221 393 (E+00)
9 |-2.250 788 (E+00) 2.250 767 (E+00)
TABLE 5 NUMERICAL VALUES Chr
r C]r C2r C3r
0 | 4.000 000 (E+00) 6.000 000 (E+00) 1.200 000 (E+01)
1 {-9.523 810 (E-01) -5.238 095 (E-01) -3.714 286 (E+01)
2 |-1.626 240 (E-01) -7.661 651 (E-01) -3.648 732 (E+00)
3 |-3.196 602 (E-02) -1.487 972 (E-01) -4.934 361 (E-01)
4 |-6.373 130 (E-03) -2.962 389 (E-02) -1.377 192 (E-01)
5 |-1.272 857 (E-03) -5.915 478 {E-03) -2.749 213 (E-02)
6 |-2.542 758 (E-04) -1.181 694 (E-03) -5.492 613 (E-02)
7 |-5.079 765 (E-05) -2.360 708 (E-04) -1.097 306 (E-03)
8 |-1.014 808 (E-05) -4.716 092 (E-05) -2.192 147 (E-04)
9 |-2.027 329 (E-06) -2.621 314 (E-06) -3.343 481 (E-06)
| r C4r C5r C6r
0 | 2.000 000 (E+00) 4.000 000 (E+00) 7.200 000 (E+01)
1 7.142 857 (E-01) 3.095 238 (E+00) 1.285 714 (E+01)
2 | 1.570 409 (E-01) 7.319 302 (E-01) 3.295 712 (E+00)
3 | 3.182 050 (E-02) 1.476 527 (E-01) 6.844 299 (E-01)
4 | 6.369 307 (E-03) 2.959 384 (E-02) 1.374 831 (E-01)
5 | 1.272 756 (E-03) 5.914 688 (E-03) 2.748 592 (E-02)
6 | 2.542 732 (E-04) 1.171 197 (E-03) 5.491 528 (E-03)
7 | 5.079 758 (E-05) 2.337 475 (E-04) 1.097 083 (E-03)
8 | 1.480 766 (E-05) 4.668 607 (E-05) 2.191 697 (E-04)
9 | 2.027 329 (E-06) 9.331 923 (E-06) 4.378 457 (E-05)
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Table 6 shows the range of A's for which the respective stiffness factor
may be approximated by two, three and four terms of its series, so that the trun-
cation error r.mains below a prescribed value. The three-term approximation is
used as the simplest and most efficient numerical model.

5. FINITE ELEMENT GENERATOR

Once the truncated stiffness factors are available for all bars of the sys-
tem, the remaining part of the analysis consists of the following steps:

(a) The algebraic determinant of the system stiffness matrix is solved for
the apparent natural frequencies and the shape parameters X&, Xé, X&, X&,
corresponding to these frequencies, are calculated for all bars.

(b) If these values fall in the prescribed range given in Table 6, the trun-
cation error remains in the prescribed range and the apparent frequencies are the
true values.

(c) If the values of the shape parameters X&, X$, and X&, X&, are above 0.8
and 2.0, respectively, the cor-esponding members must be divided so that their
parameters remain in the selected range. The required number of elements in a
particular bar is given as

n=1'/0.8 n A¢/0.8 n Av/2.0 n AW/Z.O (10)
where the largest n in (10) defines the minimum number of elements in a particu-
lar bar, required to meet the desired accuracy.

{d) With the required number of elements known, the new system stiffness
matrix is constructed and the frequency determinant is solved for the natural
frequencies.

(e) The steady state response analysis follows the procedure outlined in
Sec. 3. Since all factors are functions of the forcing frequency, all stiffness
factors and load functions are calculated by their transcendental formulas intro-
duced in Table 2 and in (6).

The procedure described above was programmed in FORTRAN IV listed in [1] and
its application is illustrated by a numerical example.

6. NUMERICAL EXAMPLE

A reinforced concrete rigid frame partially encased in elastic foundation
and acted on by concentrated loads of © = 350 rad/s,

P3y = (3560 sin Qt)kN P&x = (890 sin Qt)kN

is ghown in Fig. 1. The moduli of foundation are

k = 3.8(10) Pa k =k =1.9(10) pa
u v w

The procedure of analysis follows the steps of Sec. 5. The first three
natural frequencies obtained by using the three-term truncated stiffness factors
are

wi = 329 rad/s wé = 390 rad/s w! = 408 rad/s

'
3
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Figure 1. Rigid Frame

The extreme values of the shape factors corresponding to these frequences are,

for Wy X' < 0.410, A'! < 0.958, ' < 3.371, X' < 2.383
u - ¢ — v w =

for wé, X' < 0.486, A' < 1.136 1A' < 3.671, A' < 2.595
u — ¢_ v — w —

for mé, A< 0.509, X' < 1.189 X' < 3.756, X' < 2.656
u ¢ — v W

As some of the shape parameters exceed the permissible range, the finite element
generator calls automatically for a new system, by dividing the members with

x> 0.8 A s 2.0 2> 2.0
¢ — v = w =
into two elements.
The determinant equation of this new system yields

= 386 rad/s w, = 404 rad/s

w, = 325 rad/s w 3

1 2
and the corresponding shape parameters fall in the admissible range.

The calculations of the joint displacements and of end reactions of particu-
lar members follows the procedure outlined in Sec. 5e. Since the forcing @ is
above w; and below wy, the critical state is avoided.
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TRANSMISSION OF WAVES THROUGF LOCALIZED DISCONTINUITIES:
EVALUATION OF TWO APPROACHES

G. Maidanik and L. J. Maga
David Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084, USA
Many a complex dynamic system of interest to structural acousticians
admit, at least on a phenomenonological basis, to modeling by a cascade of
couvled basic one-dimensional (BOD) dynamic systems. A basic dynamic system
is one in which a single wavevector needs to be specified to define
propagation in it. Two approaches are discussed for describing the
transmission of waves through the coupling junctions; a coupling junction
specifies the coupling between two adjacent BOD dynamic systems. The
transmission between BOD dynamic systems that are singly, doubly, and triply
removed fram each other are cited as examples. The evaluation is carried out
in terms of the two approaches. Similarities and differences in the

evaluations by the two approaches are emphasized and discussed.
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AUXILIARY MASS DAMPER FOR CARDAN SUSPENDED GYRO

J. Rosenberg¥*, A. Kahana*¥

A.D.A. P.0.Box 2250, Haifa, ISRAFL AD-P003 646

1. INTRODUCTION

v

\

—The article deals with a spin stabilized platfcrm. 1In order to isolate

the system from external moments it is suspended through its center of mass bv
means of a cardan. Deviation from ideal suspension, such as friction effects
in the bearings and in the surrounding environment together with external dis-
turbances, generate vibrations in the natural frequencies of the system. These
vibrations should be suppressed by means of damping effects. The damping
should not impair the isolation of the platform from its environment (as in the
case of damping in the cardan bearings). The simplest model of a cardan sus-
pended gyro involves only one natural frequency, termed the nutation. Several
methods for nutation damping are discussed in the literature:
(1) Connecting a ring partially filled with mercury to the gyro rotor [1,2,3].
The mercury serves as an auxiliary mass damper. Such dampers that are connec-
ted to the rotor are known to cause instability [4,5,6] if the lateral inertia
of the system is higher than the polar inertia. (2) Active damping by means
of a control system [7]. This method may require high energy sources for its
actuators. (3) Using an impact mass damper attached to the platform [8]. In
this method energy is dissipated when non-elastic collision occurs. While such
damper may prove to be efficient and no tuning is necessary, there is no analy-
tic solution and it is hard to obtain parameters (such as coefficient of res-
titution) for numerical simulation. Any conclusion concerning the use of such
damper should allow for possible damage to the system owing to the impact
effect. (4) Adding an auxiliary mass which is connected to the gimbal system
by means of a spring and a viscous dash-pot. This method has been extensively
used in rotating machine damping and more recently in the aerospace industry in
the damping of dual spin satellite [2,9]. 1In such cases the damper inertia is
neglected in comparison with the platform inertia, This results in a simpli-
fied model, in which the nutational frequency is taken to be the forced freg-
uency. In the following, the interaction between the stabilized platform and
the damper is considered. This causes the appearance of three natural freq-
uencies instead of the nutational frequency,

2. STATEMENT OF PROBLEM

The equation of motion for a two axis Gyro assuming small angles are as
follows (for detailed discussion see any advanced dynamics textbook e.g. [10])

AO + hY = My

. (1)
AY - hO

Mz

where A is the transverse moment of inertia of the rotor and the platform,

h - the momentum of the rotor defined as h = nJ where n is the spin and J is
the polar moment of inertia of the rotor. My and Mz are external moments, ©
and ¥ are the angular coordinates of the system defined in figure 1.

Using complex variables:

(*) Research Associate,
(**) Research Engineer.
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description of cardan suspended gyro with an auxiliary mass damper.
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we obtain

n - iph = %- (2)

with the homogeneous solution

Al =0 Ay =P

p = D is the nutation frequency. By introducing viscous damping f* at the
gimbal bearings or the surrounding environment, we modify equation (2) to
vield

(1] L4

n-ipn+ fn =4 (3)
_ f* .
where f = ~ and the homogeneous solution
= ipt _~-ft
ﬂH noe e (4)
On one hand, increasing the external damping f increases the rate at

which nutational frequency is suppressed, on the other, such damping impairs
the isolation of the platform from external excitations.

-y

Adding an auxiliary mass damper which 1is connected to the platform by
means of a spring (K) and dashpot (C) as shown in figure 1, results in the
following equations of motion:

2 .
+
w eq 2;0) EQ

O+ £fO0 + p¥

Y+ fY - pO

2 L]
mneB + Z;wneﬁ

(5)

2 a + 2;wna =0

a + 0 + wn
B+ ¥+ wlg+2wp=0

where w, (=/§) is thg natural frequency of the damper; g (= YEQGE) is its
damping ratio; € (= M%) s the nondimensional inertia of the damper., 1 is the
tvpical length (shown in figure 1), and @ and B8 are small angles defined as a =

t/I; B = s/lwhere r and s are coordinates of the centre of mass of the auxiliary

mass (m) relative to the platform.

Ising complex variables

n 0+ iv¥

Y a + 18

and substituting in eq. (5) vields:

n o+ (f-ip)h - wgey - 2zw, EY =0

. . 2 .
Y + n + wny + 2cwny =0

(6)
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Assuming the solution:

=y elkt; Y =¥ elAt

we obtain the following polynomial for the eigenvalues:

A~°‘+)ﬁ[—p—i(u;mn(1+e)+f)]+)\[-mf1 (1+e)+2ipcmn—2;fmn]+wﬁ(if+p) =0 n

Thus, the solution for the platform equations of motion is given by

ixde -a ¢
n= I n.e Te 1m (8)
. 1,3 i
where Ag (J 1,3) are the natural frequencies of the system and A (J =1,3)
are magnitudes 1nd1cat1ng the quality of the damping of the system Positive

Aim means suppressed vibrations while negative values for Aim signify
instability.

3. ANALYSIS

Using the Routh Hurwitz stability criterion, the polynomial (7) has been
analyzed. It can be shown (Appendix A) that the system is always stable, i.e.,
that as the parameters f,e wn,c P are physical quantities whose values are
always positive, A;. will be p051t1ve.

The quality of the damper is a function of AJ (j = 1,3). The higher the
value of A;, the better the damping. Optimum damping is obtained when the
minimum of the AJim (j = 1,3) attains its largest value.

In the analysis, the gyro system is characterized by given (coanstant) p
and f. The optimization is performed on the damper parameters €, w, and Z.
Results are shown in figures 2, 3 and 4 for a gyro system characterized by a
nutation frequency p = 377 rad/sec and inherent damping (due to the bearings
etc.) of f =4~ =0.9 l/sec.

The optimum value for Aﬁn was found to be 50.1/sec. The optimum damper
was found to have the following parameters T = 0.3; € = 0.05; w, = 340
rad/sec.

The system (5) has been analyzed using the CSMP simulation program with

initial values for © (=1.0 rad/sec). the results are shown in figures 5 and 6,
in which the effect of the damper on the behavior of the system is simulated.

4, EXPERIMENTAL

An experimental auxiliary mass damper was designed using a ring (m)
supported by wire springs and immersed in oil as schematically shown in figure
1. Experiments were conducted by applying a pulsed load to the platform and
measuring the decay rate of the system using noncontact displacement gauges
(figure 7). Modified Prony method was used for the analysis of the
experimental results [11]. 1In this method curve fitting yields the natural
frequencies as well as the corresponding damping ratios, amplitudes and phase
shifts, The computer code is capable of interpreting constant deformation (DC
level) which is inherent in this type of loading and also purely exponential
variations (as in the case of highly damped systems).

By varying the mass of the ring, the rigidity of the wire springs and the
oil viscosity, optimum values were obtained. The gyro system had the same
parameter values as those used in the theoretical analysis.
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The optimum A;. obtained was about 20.1/sec. The values of the optimum
damper parameters (E,wn) were found to be in close agreement with the theore-
tical values. The value of the optimum damping ratio £ was found to be 0,1
(figure 8) which differs from the theoretical value. The discrepancv is
thought to be due to the following reasons: (1) Nonlinear effects are neglec-
ted in the modeling of the oil chamber as a linear dash-pot (2) the theoretical
mode)l assumes an idealized two-degree gvro which means infinite rigiditv of the
rotor and gimbal bearings etc. Adding more degrees of freedom would complicate
the analysis but might yield a better agreement with the experimental values.
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The damping quality A; (min) vs. natural frequency of the damper for gyro
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SOT
Aim [min]
[i/loc]
404
304
20+
40 1
T Y ™ 1 v T T —
0 0.02 0.04 006 008 ¢«
Figure 3
The 1fmping quality A; (min) vs., damper inertia € for gyro parameter p =
377%%3; £=10.9 "/, ,. and damper parameters w = 340 %%E ;¢ o= 0.3,
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Figure 5

CSMP simulation of Eq. (5) having initial conditions for © and damping ratio

¢ = 0, (Other parameters values are p = 377%%%; € = 0.05; f=0.9).
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CSMP simulation of Eq.{(5) with initial conditions for O and damping ratio
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Figure 7

(a) Response of the experimental system to pulsed load without a damper.
(b) Response of the experimental system to pulsed load with a damper having
£ =0.1 and € = 0,04,
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Appendix A

STARILITY OF THE SYSTEM

Routh Hurwitz criterion for a 3%9 order polynomial with complex coeficients can
be stated as follows:

The polynomial

A3[a°+ib ] + Az(al+ib1) + X(az+ib2) + (a3+ib3) = 0 is stable, if the values
of the minors Dy, Dy, D3 of the determinant

[ [ [~ I l -~

) 1 a | a, a, | 0 0

1
0 b b b I 0 0
DZJ 4 ___i_J 2 3
DS< 0 1 a, a, I ag 0
0 b b b 0
. _#____.___:1.._.__1___ _fiJ 3

0 0 1 a, az 53

{ -_O 0 0 b1 b2 bSJ

are: D1< 03 Dy >0 Dy < 0.

In the analysed model (eq. (7)) the minors have the following values:

Dl=-p<0
D, = 2cmnf3+8czmﬁefzugef2+8;2m§f2+8c3mﬁe2f+
+4cwiezf + 16c3waef+6;wief+8c3mif+2§wgf +

+ Zcpzmnf+4;2w4€3

2,42 2,4
n€ *12¢ wLE +12¢ woe +

+ 4c2p2w€e+4;2wﬁ >0

Dy = —A;Zwﬁf5-16g3mgef4-acmﬁef4—16;3m3f4—16;4mge2f3
-16;2wgc2f3-wge2f3—324mgef3-24;2wﬁef3
-16;4mgf3-8g2wgf3-8czpzwﬁf3—1eg3w;e3f2
-Acwae3f2—48;3w;ezf2-8§wlef2-48c3wlef2—4cw;sf2
-24c3P2w3€f2-45P2w36f2~16c3w;f2-16;3pzwgf2
-4;2m8eﬁf—16g2wﬁe3f-24;2w§e2f-16c4p2wgezf
-8;2p2wgszf—16;2m§ef-32;4pzwgef

-16c4P2wﬁf—8c3P4mge - (2;wﬁ—2cp2wﬁ)2f <0

Therefore the system is stable.
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ALLEVIATION OF OBSERVATION SPILLOVER IN CONTINUOUS STRUCTURES
A. V. Metcalfe and J. S. Burdess

Departments of Engineering Mathematics and Mechanical Engineering,
The University of Newcastle upon Tyne

1. | INTRC WICTION

The design of controllers for complex structures is a challenging
problem with an expanding range of applications which include the control
of large scale space structures,Ft1:-> The purpose of the control system
may be tc enable the structure to carry out a spccific task or to combat
vibration. Two examples are the attitude control of a space telescope £23
and the control of vibration in helicopters,[-3}> Feedback control tech-
niques are often used because of their great flexibility and insensitivity
to unexpected disturbances. However such controllers usually require
knowledge of the displacements and velocities of the significant modes of
the structure and direct measurement of these may be impossible. A theor-
etical solution to this problem is to construct estimates of these variables
from a modest number of sensor signals by using an auxilary system known
as an observer [4].

T

The practical situation is less clear cut. There are inherent
problems if many degree of freedom structures or distributed parameter
structures are modelled by a reduced numbev, of modes or a finite number
of modes respectively. The most serious of these is the fact that lightly
damped high frequency modes may lead to instability via the observer. The
mechanism behind this phenomenum is as follows. The controller may affect
modes which have been ignored in the model : this effect is called control
spillover. Motions of these modes contaminate sensor outputs, this effect
is called observation spillover, with the result that the closed loop
system may become unstable. Engineers are aware of these problems, see [5]
for example, but in many cases there is sufficient natural damping in the
system to prevent instability. For structures such as spacecraft natural
damping may be very small, of the order of 0.005 [6], and a satisfactory
technique to alleviate spillover is crucial.

Several remedies for the spillover problem have been proposed,
notably by Balas [1,6,7]. These can be locsely divided into three main
groups : redesign of the structure and controller with relocation of
actuators and sensors, signal filtering techniques, and the use of what

Balas describes as additional feedthrough terms in the controller design [7].

The first group includes such strategies as locating actuators and sensors
at the zeros of the mode shapes of the residual modes. Whilst this may
work for some special cases in general it will prejudice the controll-
ability and observability of the system. Signal filtering introduces the
attendant problems of phase distortion and delay. Now consider the use of
additional feedthrough terms. Assume the system can be realistically
described by N + Q + B8 modes, a controller can be designed for the N modes
when the Q + B residual modes are ignored, and observation spillover from
the Q modes is causing instability. Use of additional feedthrough terms
offers the possibility of removing this spillover without increasing the
controller order. However the design procedure requires a model including
all N + Q modes and the resulting modification to the original controller
may adversely affect the remaining 8 modes. Also implementation may
require additional sensors.
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The contamination of the input to the observer by observation
spillover is the cause of stability problems. In this paper we propose
a method of estimating such contamination and of making allowance for it.
Our suggestion is that this can be done by augmenting the observer with

a further dynamic system which can be described as a disturbance observer.

We have described the use of such a device for the active control of
vibration in [8].

2. THEORY

Consider a structure which can be described by N + R modes with
modal damping. The N modes will form the controlled subsystem and the
remaining R modes are the residual modes. The structure and sensor
outputs can be described by the equations

VN T ANVN * BNf (1a)

Ve = ARVR + BRf (1b)

y = CNVN + CRVR (1c)
where vy Vg are vectors representing the displacements and velocities of

the controlled and residual modes respectively. The vectors f and y
represent the control forces and sensor outputs respectively. The
dimensions of vy VRe f and y are 2N, 2R, m and p respectively and

Ayr Ags By Be» Cy and Cp are matrices of the appropriate dimensionms.

The matrix B, represents the control spillover and the matrix C

the observation spillover.

R

Assume that the reduced order model (AN, BN, CN) is controllable and

observable; conditions for these properties in flexible structures are
presented in [6]. An observer and feedback control law can be designed
for the reduced order model by, for examples, optimal control [9] or
modal control [10] methods. The resulting controller is described by
the equations,

\'

N (AN - LCN)VN + BNf + 1y (2a)

Gv (Zb)s

£ N

~

where vN is the observer state vector and an estimate of VN'

This would be satisfactory if C_ were zero but if there is any
spillover there will be an undesirable input CRVR into the observer.

The proposal is to estimate this input and apply a cancelling signal u.
This can be done with the aid of a disturbance observer [8]. The ensuing
control system can be represented by

~

N

- +
(AN LCN)vN + BNf + LCNVN + LCRvR Lu (3a)

f Gvy (3b)
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where u is the ocutput of the disturbance observer which is a dynamic
system represented by

z =Tz + QVN (4a)
£ =2 - SvN (4b)
u = -Ke (4c)

the dimensions of the vectors z, € and u being p. Differentiation of

(4b) and use of (3a), (3b), (4a) and (4c) yields
€ = (T + SLK)e ~ SLCN(VN - VN) - SLCRVR + (TS +Q - SAN - SBNG)VN
(5)

Now choose the matrices T, S and K so that (T + SLK) has eigenvalues with
large negative real parts and set Q such that

TS + Q - SA = SByG = 0 (6)

The motivation for such choices is that if the observer error (vN - VN)
is small then in the steady state

(T + SLK)e = SLchR (7)

and

u = —Ke = K(T + SLK)-ISLCRVR (8)

Consideration of (8) in isolation suggests that SLK should be large
compared with T to make u approximately opposite to C,v,; however the
effect of the disturbance observer on the complete system, consisting
of structure and controller, must be considered.

Define e as the observer error

e =v, ~V 9)

and describe the structure and controller by the state space equation

n )
VN AN + BNG BNG 0 0 vN
e| _ 0 AN - LCN LK —LCR e (10)
€ 0 -SLC T + SLK =-SLC €
N R
lvR | BRG -BRC 0 AR vR

In the case when the dimension of y is one T and K are scalar quantities
which we denote by t and k. This is less restrictive than it might
appear at first sight since the system (AN. BN’ CN) is observable with

one point displacement sensor, provided it is located away from the mode
shapes which are to be controlled and the closed loop system has no
repeated eigenvalues [6]. It is shown in the appendix that if k tends
to infinity and all other parameters stay finite then the eigenvalues of

99

R e —

» o
» o
e
» o e
Ve o

[ )

<
e o
° o
[ ()




«‘w‘vv-—v

the system matrix in (10) tend to those of the matrices

AN - LCN 1k
AN + BNG, A_ and (1)

R -SLCN t + Slk

We have tested the procedure described in this section for several cases
with the dimension of y set as one and N and R being one or two. A
disadvantage was the tendency for large values of k to move the real
parts of some of the eigenvalues of the parti.ioned matrix in (11) to
the right. However the real parts did remain negative and the practical
interpretation was that the observer took longer to converge onto the
true values. It was possible to compensate for this undesirable effect
by making t large and negative but such remedial action had a tendency
to reintroduce instabilities in the residual modes. These findings are
illustrated by Example 1.

When the dimension of y is greater than one the situation is more
complex. We demonstrate the stabilisation of a system where the dimension
of y is two in Example 2.

3. EXAMPLES

We demonstrate the use of the noise observer and compare it with
other approaches to the spillover problem in two examples.

Example 1

Consider a two mode structure and assume a controller is needed
for the first mode only. There is no requirement for any control over
the second mode save that it should remain stable. 1In particular take

1 \ (o)
Ay = 0 1 BN - |0 cN = (1 0) L = 20
(-100 -.1 1 0
G = (0 -10)
{o 1 _ {0} _ (.
A © -200 —.1} °r .3J -39

Notice that CN and CR imply that only displacement is measured. The closed

loop eigenvalues are

-4.65 + j 8.12
-10.54 + 3 3.62
.049 + jl4.2 ,

and we see that the system is unstable. Set up a disturbance observer with

S = (-1 0) T=1¢t K=k .
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The following Table 3.1 gives the positions of the system eigenvalues for
varying t and k.

t k Eigenvalues
=100 0 =100 ; =4.7 * j8.1; -10.5 * j3.6;5 .049  t jl4.2
=100 20 -516 ; ~5.2 + j8.8; -1.9 + j9.6; .011 t j14.1
=100 30 =717 ; -5.1 t j8.7; -1.4 + i9.8; -.004 t jl4.1
-100 40 -918 ; =5.1 * j8.7;  -l.1 * j9.8; =-.013  * jl4.l
-100 100 -2119; =5.1 * 38.7; -.52 + 39.9; -.034  t jl4.l

0 10 =220 ; -5.1 + j8.6; -.07 ¢ j9.5; -.037 * 314.2
-20 10 -238; =5.1 : j8.7; -.89 +39.6; -.016  * jl4.2
=40 10 =257 =5.1 + j8.7; -1.6 + j9.5; .002 * 514.2

Table 3.1 Closed Loop Eigenvalues for Example 1 with Disturbance Observer

An obvious alternative approach is to reduce either the feedback or
observer gains i.e. the elements of G or L. In this example if L is
reduced to

r )
_ 12.8]
L=
L0
the eigenvalues of the system without the disturbance observer become
-5.1 ¢ §8.7;  -1.4 *39.9; -.004 t jl4.l
The approach described by Balas in [7] is not applicable to this
example. It requires the dimension (p) of y to exceed twice the number of

residual modes from which spillover is to be removed. For p to equal two
a velocity measurement must also be made rendering an observer redundant.

Example 2

Consider the four mode system described by the matrices,

0 1 0 0} 0 1 0
-100 -.1 0 0 -600  -.2 0
N o 0 0 1 AR =1 o 0 0
0 0 -400  -.2 0 0 -1000  -.
o) o)
1 0O 0 o0
1 -.3 C. =
B, = B = N
N 0 R 0 o o 1 o0
-.5 2
.3 0 .1 0)
C ==
R v 3 0 2 0
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A controller is designed for the two lower frequency modes with

10 0
G=( -5 0 10) L=19 0
0 12
0 0

The closed loop eigenvalues are:

-2.69 + j10.0
-2.06 * j18.9
-5.05 + j 8.8
-6.73 + j19.3
.092 *+ j24.5
-.119 + j31.6 ,

and the system is unstable. It can be stabilised by using a disturbance
observer with

) ( -
s-[0 o o o e 1 = [40 20
-1 0o 1 o0 360 -180 -5 -10

The closed loop eigenvalues become:

-2.71 + j10.0
-2.05 + j18.9
-1.31 + j 1.3
-2.59 + j22.5

-.150 + j24.2
-.138 + j31.6
-24.0
-91.2

The stablisation does not depend on accurate knowledge of AR’ BR and CR

in so much as the system appears to remain stable for changes in these
matrices which would reduce the spillover if there were no disturbance
observer. Here we consider spillover as measured by the maximum of the
real parts of the system eigenvalues.

One alternative approach for removing the spillover is to reduce
the gains in the matrix L. If L is changed to

(2.5 0)
0

o w O

the closed loop eigenvalues become:

-2.77 * jlo.l
-2.47 ¢+ j19.3
-1.30 * j 9.9
-1.59 ¢ j19.7
-.028 * j24.5
-. 144 + 331.6
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Since only one of the residual modes is causing spillover and p = 2
the approach by Balas can be used. It does not guarantee system stability
as the modifications to the controller may adversely affect the ignored
residual mode. In this example the controller is modified to

~ ~

ANVN + BNf + L(y - y) +V BQf

~

f =Gv, + ¢y - y)

N
where
. . 0}
= CNVn Be © —.3J
.057 -.0049)
.487 .0096
® =l _ 205 0057 ¢ = (10.09 -239.8)
-2.287 -.1372

The closed loop eigenvalues become:

-2.78 *+ jl0.1
-2.35 + j19.0
-5.05 + j 8.7
-6.10 + j19.1
-.10 + j24.5
-.17 + j71.0

Figure 3.1 shows envelopes for the displacements of the four modes
with the disturbance observer (dotted line) and the inncvations feedthrough
of Balas (broken line). Initial displacements were set at one and initial
velocities and observer states were set at zero.

S
Vv \‘\
B e
’: 10s
gf
First Mode Second Mode
.." \"T.‘s~ r\;,
v R h L P SRnel
Rl 'R, 3 RESTS
— -
- mLeTT 10s — ,’..’-7 """"" 10s
L= -
Third Mode Fourth Mode

Figure 3.1 Envelopes for Modal Displacements.
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4. CONCLUSION

If there are a finite number (R) of residual modes the use of
innovations feedthrough, described by Balas in [71, enables complete
removal of observation spillover when certain conditions are satisfied.

Of these the requirement for 2R sensors may restrict its use. Complete
removal of observation spillover depends on accurate knowledge of the
matrices describing the residual modes although the modified controller

may still stabilise the system when these are incorrectly estimated. Also
elimination of observation spillover may increase the control spillover but
this will not make the system unstable. Balas compares his approach with
that of designing a reduced order controller in [71.

In practical applications there are likely to be a large or infinite
number of residual modes of which Q may be causing instabilities. Appli-
cation of innovations feedthrough to these Q modes does not guarantee that
the system eigenvalues will not be moved. In fact the modified controller
may increase spillover in the other B residual modes, but it is hoped that
this will not make the system unstable. For example spillover could be
exchanged from modes with very little natural damping to different
frequency modes with greater natural damping. The use of the disturbance
observer described in this paper is an alternative to Balas' approach,
the disturbance observer having an advantage of not requiring at least
2Q sensors.

The disturbance observer can be used in situations where there is
only one point sensor although in the example we considered it was no
improvement on reduction of the observer gains. Nevertheless it may have
applications. If N is large the matrix L will have many elements. If an
observer has been made and spillover is found to be a problem it might be
more convenient to augment the observer with a disturbance observer than
to change all the observer gains. Secondly whilst the performance of two
strategies may be similar when judged by the position of eigenvalues the
behaviour of the states of interest may differ in the two cases leading to
a distinct preference for one or the other.

5. APPENDIX

It is assumed that p = 1. First consider the case of N =R = 1.
Then L and CR are of the form
3
11
L= C, = (c
2

The characteristic polynomial of the system described by (10) is

0 0 0
Ay * ByG - M ByG 0 0 0
0 Ay - LC - 1 1k “liep thie
N 1.k -1l.c -1.c
o(r) = 2 271 272
- - - 0
0 SLC, t - ok - A e, oc,
_ 0 -
B,G e A - )1
0
(12)
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Since the third determinant is zero there are no terms in ¢ which involve

the product Clk' A similar expansion applied to the second determinant

shows there are no terms involving the product czk. Now consider the

set equal to zero and 11k, 1.k replaced by

determinant (12) with s 9

zero. The resulting polynomial has a common factor (t - 6k - X)) and as
AN + BNC, AN - LCN and AR are all stable the other factor is a polynomial

of degree 6 with all its coefficients strictly positive. It follows that
¢ has k appearing in all the coefficients except that of A7. The

coefficient of A7 does not involve ¢, or ¢, so the effect of <) and ¢,

becomes negligible as k tends to infinity. The required result follows
and the proof generalises for any values of N and R.
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A NEW BEAM FINITE ELEMENT WITH SEVEN DEGREES OF FREEDOM
AT EACH NODE FOR THE STUDY OF COUPLED BENDING-TORSION VIBRATIONS

A, Potiron and D. Gay
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l. INTRODUCTION

AD-P003 648

~— The subject matter of the first part or this study is the deri-
vation of c