




Signal-level processing is largely a matter of arithmetic manipulations,

comprised of tasks such as transformation, interpolation, and filtering.

These signal-level tasks are readily supported by currently available numeric

signal processors. To some degree, increasing signal-level demands can be

met by brute force increases in computer power with networks of available

processors. Unfortunately, increases in the number of digital imagery

sensors and image users tend to suggest that processing demands should

increase by two orders of magnitude over the next few years. Meeting such

an increase will have to be accomplished by both an increase in signal-level

performance and a shift of some of the burden from the signal-level to the

symbolic-level.

Symbolic-level processing is concerned with the detection of relation-

ships among entities having certain semantic attributes, and involves

symbol manipulating tasks such as searching, decision making, and path

finding. Available numerically-oriented processors are poorly suited for

these tasks. This is particularily true of high-performance signal processors

which rely heavily on pipelining, since their pipelines generally have to be

flushed and refilled with each decision branch. While many non-numeri~c

processors have been proposed and a few built, there are two important

disadvantages to attempting to satisfy increasing image processing demands

through a network of numeric and non-numeric processors. First, the net

would be inhomogeneous, leading to problems in hardware maintenance, and

probably severe problems in interfacing and software development and change.

The second disadvantage is major and relates to the difficulty of smoothly

shifting the processing burden from the signal level to the symbolic level.

The preceeding observations suggest a need for a processor with both

improved signal level computing power and high performance at the symbolic

level of image processing. This report deals with the current status of

an architecture research project being performed jointly by Control Data

Corporation and Carnegie Mellon University to develop such a processor.

At this point in time, the processor detailed design is approximately 75%

complete, and work is beginning on various elements of software to be used

with the processor.

-2-



TECHNOLOGY

There are two basic approaches towards improving the performance and -

cost-effectiveness of a digital processor. Gains in processing speed may

be achieved through the use of ne-w component technology, providing an

increase in the basic speed of the processor building block or logic gate

and/or a decrease in signal interconnect time through the use of large scale

integration techniques. Such an approach is relatively straightforward,

assuming the technology is available. A second method of securing improved

processor performance is through the use of design and architectural

improvements. Such improvements must be firmly based on experience gained in

past development programs and systems applications.

The SPARC processor design utilizes both methods to attack the problem

of increased performance. Early in the program a technology investigation

was conducted; the results of which indicated the most cost-effective tech-

nology for next generation image sensor processing equipment to be an ECL LSI

technology which has been developed by Control Data Corporation over the past

five years in conjunction with device fabrication performed by Motorola and

Fairchild.

Some significant features of this technology are presented in Table 1.

The fabrication process provides a semi-custom version of LSI. With this

process, the cost of fabricating new chip types is much lower than with a

completely custom LSI. In this technology, the diffusion pattern is fixed,

and is the same for each chip type. Only the top two layers of metalization

interconnect are used to provide the variable structure. The basic internal

propagation delay utilizing this technology is approximately 750 pico seconds

per gate, a factor of 4-5 improvement over commonly used TTh technology. The

level of integration, 168 2-input gates per array, while being considerably

smaller than that available with MOS type technologies, is significantly-

higher than that which is commonly available in high performance technology

such as ECL. Thus, logic packing density is increased with the corresponding

decrease in gate interconnect distance and delay, resulting in performance

gains.

-3-



TABLE 1. ECL LSI ARRAY DESCRIPTION

* 168 ECL GATES PER ARRAY

* 2 INPUT AND-NAND GATES

* 165 x 175 MIL DIE

* 4 GATES PER CELL

* 48 SIGNAL PINS

e EXTERNAL GATES

e 8 LOADS PER OUTPUT

0 COLLECTOR DOTTING

* EMITTER "AND"

0 SUBNANOSECOND GATE DELAY

0 1-5 WATTS

-4-



A new printed circuit board design was also developed by Control Data

for use with the ECL LSI arrays. The basic element is a 10 x 12 inch,

15-layer circuit board which may be used to hold up to 150 LSI arrays. A

significant feature of this board is the inclusion of the signal line

terminating resistors required by the ECL technology as a buried layer in the

LSI board itself. Thus, no valuable board real estate need be used for these

resistors, as is common in other ECL designs where the line terminations are

housed in dual or single in-line packages or even as discrete components.

The use of the board termination resistors has been estimated to increase

available board real estate by as much as 50%, while providing a relatively

quiet, controlled impedance environment for signal transmission.

Due to a rather high power dissipation of the ECL LSI arrays (1-5 watts

per array) an efficient heat transfer mechanism is required to remove the

power generated by the electronics. This is achieved in the ECL LSI tech-

nology through the use of a freon refrigeration system. Each LSI array, when

mounted on the circuit board, rests directly upon a copper tube through which

freon refrigerant is continually pumped. The cooling systemtherefore, is

an integral part of the circuit board assembly. This refrigeration system

allows relatively uniform device operating temperatures to be maintained

throughout the system. Junction temperatures on the order of 45-50 degrees

Centigrade are achieved, thus increasing component reliability significantly.

Most system designs based on the LSI technology also make use of lower

power compatible technology, such as SSI and MSI parts of the Fairchild F100K

logic family, and various high-performance ECL RAMs. These devices, in

general, dissipate less power than the LSI arrays, typically on the order of

half a watt per chip. They therefore do not require the intimate contact with

the refrigeration system that the LSI arrays do. In order to efficiently

package these devices, an auxiliary circuit board was designed which effectively

allows up to 160 of these lower power devices to be mounted in the same area

that 15 LSI arrays would occupy. The SPARC processor makes use of both ECL LSI

arrays and of SSI, MSI, and RAM devices mounted on auxiliary boards.

-5-



Another key element of this technology is that the machine is

completely simulated at the gate level prior to fabrication, utilizing

extensive automated design and simulation software packages developed by CDC.

The effectiveness of this approach has been drastically demonstrated in a test

bed project in which checkout time following assembly was reduced to a few

weeks. This contrasts greatly with the normal checkout of a new computer

which can take several months, if not years. Some features of the simulation

and other automated design tools used in the SPARC project are listed in

Table 2.

All of this technology has been previously developed by Control Data

Corporation to provide a basis for future lines of high-performance, general-

purpose computers. When the SPARC project was begun, the technology had

already been demonstrated, and was being used as the basis of several advanced

versions of CDC commercial machines. It therefore was available to be used

as the basis for the SPARC processors.

PROCESSOR ARCHITECTURE

The basic processor block diagram, as shown in Figure 1, consists of a

collection of relatively autonomous functional units which communicate with

each other via a generalized interconnection tiechanism which can be thought

of as a crosspoint switch.

Processors such as SPARC achieve their performance rate through the use

of a high degree of internal parallelism. That is, they possess the ability

to perform several operations at a time. Theoretically, each processor

functional unit may be performing a different operation at the same time.

Since it is relatively unusual for the result of an operation performed in a

particular functional unit to be utilized repetitively by the same unit, a

means must be provided to transfer the results from one functional unit to

another.

-6-



TABLE 2. AUTOMATED DESIGN TECHNIQUES

* LOGIC SIMULATION

75,000-100,000 GATES

24 ARRAY TYPES

10 BOARDS

GATE, FOIL, COAX DELAYS TO 10 PS

WORST CASE VARIATION

ASSIST

* BOARD ROUTER

CYCLICAL

INTERACTIVE

PHOTOPLOT TAPE

SIMULATOR INPUT

* ARRAY GENERATOR

DIGITIZED ARRAY LAYOUT

SPACING CHECKS

MASK GENERATION TAPE

SIMULATOR INPUT

-7-



+1 +

-4

o

nin



Several approaches have been historically used to provide this internal

data transfer capability. One of the more common is to provide an internal

data bus, or combination of busses, joining together many of the functional

unit inputs and outputs. However, as the numbe.: of internal functional units

in a processor increases, such data busing schemes begin to suffer bandwidth

limitations, since only one transmitter on a given bus may be active during a

given time period. Thus, the effective amount of parallelism realizable in

practice in the machine tends to be limited by the bandwidth available for

transmitting results. Another classic mechanism for providing inter-unit

transfer capability is through the use of a central register or register file,

from which all functional units obtain input operands, and into which all

results are returned. This architecture, while attractive from several stand-

points, as the amount of parallelism in the machine is increased, also begins

to suffer from bandwidth problems. If the register file is implemented using

small, extremely fast random access memory devices, it is constrained to

performing only one operation at a given point in time. That is, only one

unit may be obtaining operands or delivering results at a time. Implementa-

tions using individual registers or flip-flops, providing multiple, simultane-

ous read/write capability may be devised. However, these tend to become

exceedingly cumbersome and bulky as attempts are made to provide more and more

parallelism.

A third alternative is to interconnect the processor's functional unit

by means of a generalized crossbar switching network, through which large

quantities of data may be simultaneously routed from multiple sources to

multiple destinations. Such a network offers the advantage of extremely high

data transfer bandwidths, as well as complete generality of functional unit

interconnection. While such generalized interconnection schemes become

prohibitedly expensive in terms of hardware reuqired when the total number of

interconnections becomes large, this penaity is not as severe when a limited

number of data sources and sinks are considered. The SPARC processor implements

a 16-input, 18-output crossbar network which contains about 207 of the total

amount of the processor hardware. This network is capable of routing any of

sixteen-bit input quantities to any of the IS destinations on a given clock

cycle. Thus, the theoretical internal data transfer bandwidth of the SPARC

-9-



processor approaches 12.8 x 109 bits per second, significantly higher than

that which may be achieved through data bussing or register file approaches.

The implementation of such a network lends itself nicely to the LSI technology

described above, and the entire network provides a data transfer bandwidth

capable of supporting the parallelism of the processor at a reasonable cost

in terms of hardware complexity.

A block diagram of a typical SPARC functional unit is shown in Figure 2.

The units perform such basic functions as integer addition/subtraction, shift

and masking operations, bit-by-bit logical operations and multiplication.

Additional units provide temporary storage mechanisms for operands and results,

while still other functional units implement processor input/output me .;.sms.

Each unit contains input registers which are controlled from the micrc struction

word. All the units, with the exception of the multiply hardware in RC,

perform their designated operations and deliver results via the cross Ar

switch to the input register in another functional unit in one machine cycle

time. In addition, most of the units contain hardware to compare the result

of the operation to a previously defined quantity held in an auxiliary

register in the unit. The results of these comparisons are available by the

processor control mechanism for use in branching and decision making.

A processor containing a relatively large number of functional units,

such as SPARC, which are capable of simultaneous operation and are inter-

connected by a generalized high-bandwidth data transfer path, must be

supported by a control structure capable of preserving order amongst the

p internal operations and data paths. Furthermore, in a processor such as

SPARC in which the individual operations performed by the functional units

are for the most part rather simple, and capable of being executed in the

same amount of time as required to fetch control instructions from the

memory, a large control bandwidth is required. The control mechanism must be

capable of supplying information to a large number of functional unit and data

routing mechanisms from each instruction if maximum use is to be made of the

inherent parallelism available. In addition, it is desirable to have the

format of the control mechanism to be quite general and flexible, capable of

-10-



COUNITION

161/ 1616AR OI

FROM INTAD ER ALPTH

CONTROL INPTCS

Figute 2 FuCctiDalIOni

16 ~ ~ ~ - 16CMAR-OI

COMPAR LATC

12



accommodating and controlling a variety of functional units, some of which

have not yet been conceived. To accomplish these goals, the instruction

format shown in Figure 3, as the original SPARC instruction format was

devised. Four ideiutical fields in the instruction were to be devoted to

functional unit control. Information intended for any functional unit could

be presented in any of the four control fields, identified by the portion of

the field containing a unit tag. Information in these dynamic control fields

would include functional unit tags, information specifying the operation which

was desired to have the unit perform, and bits to control the clocking of data

into selected functional unit input registers. A K or constant field was

provided to give the ability to insert constants from the microinstruction

into the internal processor data stream, as well as providing base addresses

for branching instructions. Control of the data routing mechanism in the

crossbar was to be provided via a small, high-performance, second-level

control memory which was indirectly addressed by the X field in the SPARC

microinstruction. This memory, 72-bits wide, provided all the information

necessary to specify crossbar routing for a given instruction cycle. This

memory was intended to be sixteen words deep, thus allowing any of sixteen

crossbar patterns to be specified by a 4-bit in the microinstruction. Other

instruction types were to be utilized for leading and unloading the ivstruction

memory and the crossbar memory. This control structure was documented early

in the SPARC program and released to software analysts for investigation and

trial coding of selected algorithms.

As this analysis progressed, certain deficiencies in the proposed instruc-

tion format were identified. The first problem became evident in the area of

functional unit control. The instruction format described allowed control of

only four functional units from each microinstruction, out of a possible total

of sixteen, which might be included in the processor. Data could only be moved

to a functional unit through use of one of the control fields. Since most of

the SPARC units complete their operations in a single instruction~ cycle time,

this control structure forced a large percentage of the functional units to

be idle at any given moment, and resulting in relatively inefficient use of

processor hardware.

-12-



ORIGINAL SPARC INSTRUCTION FORMAT

T X K DC3  DC2  DCI DC0

TYPE XBAR CONSTANT UNIT CONTROL

FINAL SPARC INSTRUCTION FORMAT

x K C IDC3  DC2 IDCI IDC0 0

lBAR CONTROL CONSTANT CLOCKS UNIT CONTROL

Figure 3. SPARC Instruction Format

-13-



An obvious solution would be to increase the processor control bandwidth

by including more dynamic control iields in an instruction, up to a theoret-

ical maximum of sixteen. Since each functional unit was felt to require

approximately twelve bits of control information, this solution would lead

to a prohibitively wide microinstruction word. Therefore, another approach

was developed. The software analysis work showed that in the normal pipeline

method of coding algorithm kernels, while it was desirable to be able to pass

data through functional units and have them perform an operation at a clock

cycle rate, in many cases it was not necessary to actually change the operation

which the unit 'was performing at the same rate. That is, a certain number of

program initialization steps could be performed in which adders could be

instructed to add or subtract, memories instructed to index in a certain

manner, shift counts established, and the like, after which data could be

streamed from unit to unit simply by controlling the clocks of the unit

input registers and the crossbar routing mechanism. To this end, the functional

unit input register clock control bits were moved outside of the dynamic

control field and placed in a section of the microinstruction dedicated to

this function. Utilizing the final SPARC instruction format as shown in

Figure 3, incorporating this modification, it is now possible to change the

operation taking place in four functional units in a single cycle, and further-

more, to control data routing to all of the functional units in the same

microinstruction. This has resulted in greatly increased processor performance

and much more efficient use of the hardware, with the number of functional

units in simultaneous use limited only by the ingenuity of the programmer.

A second problem with the instruction format was found to be related to

the depth of the crossbar control memory. While the sixteen words or

patterns available generally proved to be sufficient to handle an algorithm

kernel, problems arose as the kernels were nested together into actual programs

to provide useful functions. The problem was further complicated by the use

of generally coded subroutines to perform functions for multiple uses, and

grew increasingly worse when interrupt programing was considered. It

quickly became apparent that a sixteen-word crossbar memory was inadequate.

One solution to this problem was to increase the depth of the crossbar control

mmory. There proved to be several technical problems with this approach,

-14A-



basically related to the size of memory chips available which would meet the

performance required of such a second level memory. After examining several

possible approaches, the final solution to this problem for the SPARC

processor evolved as the complete elimination of the second-level crossbar

control memory, appending the XBAR control field to the microinstruction instead.

This solution, of course, increases the total number of memory chips required

in a processor. However, it simplifies the hardware design by eliminating the

second-level memory and its associated addressing, timing, and control

mechanisms. This solution completely eliminates all programming problems

associated with the limited depth of crossbar control, since each and every

microinstruction has a complete crossbar control field associated with it.

Thus, the final SPARC instruction format evolved. Control of functional

unit operation is contained in four completely general dynamic control fields.

The movement of data through the units is controlled by dedicated clock bits

in a separate field in the microinstruction. The constant/branch address field

remained. The type and crossbar memory address fields of the original mitro-

instruction have been eliminated and replaced by a wide field, giving complete

control of the data routing mechanism during each instruction execution time.

The capabilities of the various SPARC functional units are given in Table 3.

The adder and *multiplier units can perform operations on 16-bit operands, or

can treat their inputs as two sets of 8-bit byte operands. In the case of the

multiplier, this means that two independent 16-bit results can be produced

simultaneously by two B-bit multiplier operations. A 32-bit result is produced

when the operands are treated as 16-bit words. The adder and shift/boolean

units are capable of handling operands longer than sixteen bits. In the case

of SPARC, the adder units can perform 32-bit additions or subtractions in each

instruction cycle. Data memories are treated by the control structure of the

processor in a manner identical to other functional units. Each memory has a

capacity of 1,040 16-bit wcrds, and performs a read or write operation in one

machine cycle time. The memories are provided with several different modes of

addressing, including automatic indexing. A general purpose register file unit

has been included to provide temporary storage for operands. In signal level

image processing tasks, where several functional units may be connected to form



TABLE 3. FUNCTIONAL UNIT CHARACTERISTICS

UNIT NO. OPERATIONS DATA TYPES *

ADDER 2 l's Complement Word

2's Complement Dual Byte
Increment Double Word **
Double
Merge Bytes

MULTIPLIER I 2's Complement Word
Magnitude Dual Byte
Cross-Byte

SHIFT/BOOLEAN 1 Right Shift Word
Right Circulate Double Word **
0-15 Positions
16 Boolean FNS.

FILE I Simultaneous Dual Word
Read & Write Double Word
8 Word Capacity

Data Memories 2 Read or Write* Word
1024 Word Capacity Double Word **
16 Indices
Direct
Indirect
Post-Increment
Post-Decrement
Post-Add Constant
Post-Subtract Constant
Address Compare

RING PORT I Ring I/O Word
16-Word Input Buffer
16-Word Output Buffer
Connects to all Files,

and switches

• 16 BITS PER WORD, 8 BITS PER BYTE

II WITH TWO FUNCTIONAL UNITS OF THIS TYPE

-16-

raU- -



pipelines, the file unit has been found to be extremely useful in realizing

the small delays necessary in programming tight pipes. Basic processor 1/0

is handled through the functional unit called the Ring Port. This port allows

multiple copies of the processor to be connected together by means of a

ring communcications network. It also serves as a vehicle to allow the SPARC

processor to interface with PDP-11 or other types of external equipment.

Other functional units can be developed to provide higher performance

capabilities as may be required in certain applications. The processor is

designed to allow new units to be connected to the machine without disturbing

the physical hardware, and without impact on the microinstruction format.

Floating-point and Fast Fourier Transformer operations are examples of processes

which may require specialized units in certain applications. The processor

control unit, including the program memory, is shown attached to the crossbar

in a manner similar to any other functional unit, and is referenced in the

microinstruction for branches and condition sensing in a similar manner.

There are a number of applications in which the performance capabilities

of a single SPARC processor will not meet the computational requirements.

Typically, in these applications the same algorithm or program is run con-

tinuously. The same algorithm or a small number of algorithms are repeatedly

used to process the data. In addition for the need for high computational

capability, in some applications the input/output requirements can exceed

several hundred megabits per second, thus requiring a very flexible and high-

performance system I/0 structure. Although these processing systems tend to

be dedicated in these applications, there is a need to be able to run several

types of algorithms on the same processor array. Therefore, there is the need

for a reconfigurable structure, and in general, specialized configurations

are to be avoided.

An interprocessor communication mechanism is needed which provides the

necessary bandwidth between processors. There are several candidate archi-

tectures, including fully interconnected systems, shared memory systems, and

bus-oriented structures. Recently at CDC another form of communication between

processors has been studied, called the Ring System. The Ring Interconnect

-17-



System is most often used in low data rate applications such as telephone

networks, minicomputer interconnection systems, and in peripheral 1/0 systems.

CDC has been experimenting in using the ring to tightly interconnect high-

performance processors. Several examples of candidate Ring System configura-

tions are shown in Figure 4. With the Ring System architecture, the data is

passed from one processor to another, and circulates around the ring until

being removed by the destination processor. In the CDC design, the data does

not pass directly to the internal processor data/instruction network, but

instead through a piece of the hardware called the Ring Port, which makes

decisions regarding the passage of data. The ring shifts simultaneously in

a synchronous manner so that multiple data types can exist on the ring

simultaneously. Effectively then, the data bandwidth is multiplied by the

number of processors on the ring, providing that the algorithm or computational

work can be appropriately structured. In signal processing applications which

CDC has investigated, the algorithm can generally be partitioned so that the

main data flow takes place between adjacent processors on the Ring. The Ring

System represents a relatively low cost, high-bandwidth mechanism for passing

T ' data between processors. The form of the Ring System which CDC has been

investigating most closely is shown in the lower left-hand corner of Figure 4.

This form has two counter-rotating rings in which all processors are connected,

and in which data flows in opposite directions. This system can provide up

to 1.4 megabits per second of data and control flow in each direction.

An initial approach to interfacing SPARC through PDP-11 equipment at CIIU

is shown in Figure 5. With this design, the PDP-11 is provided with a Ring

Port which has nearly the same capability as the Ring Port contained within

the SPARC processor. Through this mechanism, the PDP-11 can communicate with

SPARC and also with any of multiple processors which may be included in a

Ring System Array.

CABINETRY

An investigation into the chassis, cabinetry, power supply, and cooling

apparatus required to house the SPARC processor revealed the existence of a

current cabinetry design which is in pilot production for another Control Data



.01

of 0 0404 4

00

ow of 04



0
1-4 0

04

010

-20-4



project. This design, which is self-contained, requiring only adequate supplies

of AC power and chilled water, was found to be suitable to house the processor

as well as provide adequate support for future expansion. The decision was

made to utilize this chassis for the initial SPARC machine, thus minimizing

the amount of mechanical design on the project. Orders have been placed for

piece-parts required to build the cabinet and for fabrication. Delivery of

the cabinetry is expected in March of 1979.

SOFTWARE EFFORT

Both CHU and CDC are engaged in developing software to support the SPARC

processor. In the case of CMU, the microcode cross-assembly and register-level

simulator are designed to operate on the PDP-11 host computer for SPARC under

the Unix operating system. At CDC, the microcode cross assembler and register-

level simulator will be written in fortran to operate on large CDC GP computers

such as 6000, 7000, or CYBER lines. CMU will also develop a library of image

understanding algorithms coded for SPARC that will analyze the performance of

the hardware on these problems. CDC software also includes diagnostics

and development of the basic operating system. CDC software effort is being

supported by Control Data and not by the Image Understanding Program. Although

the two microcode cross-assemblers will be implemented in different codes,

the basic user interaction features are expected to be equivalent. The

basic design objectives for the assembler are listed in Table 4. Work on

providing a more usable instruction format for the program is continuing.

The direction the format development is taking is taking is indicated in

Table 5, with examples of coding shown in Table 6. In addition to the low

level coding language, considerable work needs to be done on the higher

level languages. A language capability is needed to support initial

algorithm development. As the algorithm matures, portions of it (kernels)

can be converted to higher performance microcode. In addition to these

languages, it appears that in many applications a fortran programming

capability will be needed.

-21-



Design goals for the simulator have been defined and include such

features as the ability to operate in both interactive and batch environments,

user selected machine configurations, breakpoint features, the ability to run

user selected checkpoints and to restart from checkpoint files and various

trace and dump options. The main computer implementation language for the

CDC version of the simulator shall be fortran and the simulator shall be so

coded as to operate on Cyber systems.

As an aid to visualization of the parallel data flows found in an

efficient SPARC program, the SPARC data flow graph has been devised. This flow

graph is shown in Figure 6. Each symbol on the flow graph represents the SPARC

functional unit. Each successive column moving from left to right, represents

one instruction step. Lines are drawn from functional unit outputs in one

column to functional unit inputs in the next, to represent the crossbar

requirements in the receiving column. Such tools allow the programmer to

easily visualize the parallel operations which take place in a SPARC processor

and to intermesh various related or unrelated operations to achieve maximum

functional unit usage.

STATUS

The objective of the current phase of this project is to produce a processor

and have it installed at CMU early in the Fall of 1979. At the conclusion of

the first six-months of the project, the hardware design is approximately 75%

complete. The partitioning of SPARC functional units, including the adders,

shift/boolean unit, data memories, and multiplier into ECL LSI and MSI arrays

has been completed and logic diagram for these units have been prepared.

Work is still in progress on design of the control and input/output sections.

The gate-level simulation of these units is also approximately 75% complete.

The majority of the SPARC electronics hardware consists of existing types of

ECL LSI arrays, which have been developed for future and general purpose CDC

machines. However, in addition to utilizing fourteen existing arrays types,

three new array types are being developed for SPARC. This development is being

undertaken to improve the machine design and in particular, to greatly reduce

-22-



TABLE 4. MICROCODE ASSEMBLER

0 FREE FORMAT INPUT

0 PRODUCE ABSOLUTE/RELOCATABLE BINARY

0 CONDITIONAL ASSEMBLY

0 PROGRAM STATISTICS

0 SYMBOL & FUNCTIONAL UNIT CROSS-

REFERENCE

0 BATCH OR INTERACTIVE

* LOGICAL DIAGNOSTICS

0 DATA FILE INITIALIZATION

-23-



TABLE 5. GENERAL SOURCE FORMAT

FIELD TYPE GENERAL FORM

LABEL I to 8 characters, begirning with a letter, eg.

Part 2

CONSTANT K - CONSTANT

MAP DEST - OP (RA, RB, RC, RD/Cl, C2, C3, C4)

JUMP JA (CLK) if (OPRI, R, OPR2)

COMENT "COMMENT"

-24-



TABLE 6. MICROINSTRUCTION EXAMPLES

TOP K = $3B27 AO = ADD(D2,D3) "ADD SUMS

FO - G4X(,Bl) "WRITE G, LOCATION 4

BO = *(,AO) "CLOCK AO TO BOOLEAN

BI = PASF(FO) "SHIFT FILE F

FO = F5XGX7(BO,BI) "MOVE TEMP VARIABLES

I AO = *(LO) "ADD CROSS PRODUCTS

Al - *(HO) " DITTO

K - SUB2 JK(PUSH) "JUMP TO SUBROUTINE SUB2

-25-



0 4lC T h Ct1 eJQ4

0 cl 1 1 4

0 0 1 1 .4

cl 0 1 1 4

0, 4l1 1

-26-



the chip count and improve performance. An example of a place in which a new

chip type is warranted is in the central data switching data mechanism of the

processor. This switch cannot be implemented with existing circuitry without

a major sacrifice of machine capability. Since a new array type was necessary,

a gate-level of the array has been done. Additional arrays which provide

improved capability in the control section are also in process. At present,

more than one-half of the machine's electronic components have been ordered.

The new array types mentioned above have been placed on order with the CDC

Array Development Center. Also on order is the processor cabinet which

contains power supply wiring, power supplies, freon cooling equipment, and

considerable power distribution and protection mechanisms. This cabinet,

developed by CDC for a new product line, has the capacity to hold three SPARC

processors and thus provides considerable expansion capabilities for future

upgrades in hardware capability at CMU.

Documentation on the SPARC processor has been produced in the form of a

processor design specification which is revised, as required, to reflect the

latest statu's of the processor design. In addition, requirements definition

documents and preliminary reference manuals are being prepared for the micro-

* code cross-assembler and the register-level simulator. Coding is now in

progress on these two software elements. A griat deal of the initial design

of the processor diagnostic programs and basic operating systems have also

been performed.

CONCLUSION

The cooperative research project between CDC and CMU has developed a new

problem-oriented, high-speed digital process architecute for image processing.

Under the current project, a processor is being developed which will be capable

of approximately 0.2 billion instruction peBr second'execution. In addition

to the initial capability of the processor to be interfaced directly to a

host PDP-11 machine at CMU, the processor will have the capability of being

configured in groups or arrays to provide more processing power if required

for more complex algorithms. Such a complete processor system would not only

include processors and the host machine, but a hierarchy of memory, including

several levels of bulk memory and interfaces to other forms of peripheral

equipment. -27-


