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USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER
PREDICTION BY THE FINITE ELEMENT METHOD - PART 1.

Introduction

In Ref. 1 Hinsman has developed a Finite Element (FE)
program for Numerical Weather Prediction applications. The
grid employed is rectangular with nodes at the intersections
of north-south and east-west lines. It was shown by Stani-
forth and Mitchell (Ref. 2) that the coefficient matrices
for such a grid could be expressed as tensor products. In
these products the factors are matrices which depend solely
on grid spacing in the two orthogonal directions. This
report deals with the coefficient matrix called the "mass"
matrix in FE parlance. (In Refs. 3 and 4 applications of
the tensor product resolution to the FE '"stiffness' matrix
are considered.) The theory which underlies the economical
computational scheme based on the mass matrix resolution is
first presented. Next, the number of floating point opera-
tions and the number of storage locations needed for the
coefficient matrix of this scheme are compared with those
required by other better-known algorithms. A set of FORTRAN
subroutines for implementing the tensor product scheme
(TENSOR) is given in Appendix B.

Theory

Consider the grid shown in Fig. 1. There are n spaces

N 9 10 11 12 9
bafs |5 |7 |s 5 (Note the cyclic
b e rows boundary condition
111 2 I3 4 1 in the E-W direction.)
L A 2, 3, 2,

n columns
Fig. 1. Node numbering and spacing.

along each of e grid lines in the east-west direction. Node
mumbering is from west to east along successive grid lines,




beginning in the southwest corner. There is a cyclic bound-
ary condition in the east-west direction so that the node
number appearing at the beginning of each horizontal row is
repeated at the end. Spacings of the horizontal and the
vertical grid lines are not necessarily uniform.

The computational problem addressed here is the solution
of the equation
~ Mw = v <1>
f where M (t e "mass" matrix) is a square, symmetric matrix of
size ne and w and v are column vectors of height ne. M and
v are input quantities and w is sought. The tensor product
representation of M is

M=MB * MA <2>

where MB is a square, symmetric, tridiagonal matrix of size

b e A A AN

N e and MA is also square, symmetric and of size n. MA is
; tridiagonal except for nonzero elements in upper right and
: lower left corners. MB depends solely on the north-south
- node spacing b and MA depends upon the east-west node spac-
4 ing a . The asterisk (%) denotes the tensor product.
& Explicit expressions for matrices MA, MB, and the tensor
'j product are given in Appendix A.
2 Let MB be represented as (e = 3)
+

mby; mby, O
! MB = |mbzy mbzz mbas <3>
3 0 mby, mbs,
™ If we partition w and v into e n x 1 subvectors so that
f w = :;1 V- :}1 <>
;;3 111 YIII
E we may use <2>, <3> and <4> to rewrite <1> as
3 mbyy MA w + mbya MA w1 =V
X Mbay MA wy + mbga MA wyy + mbyy MA Wy = vy <S>
!.: mbg2 MA VIII + mbyy MA WIII = VIII
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X3

e Define W= <wp Wi Wi

N <6>

g and

( Vo= <vp vy Vi

7 It is easy to verify that the equations <5> are equivalent
I.:-‘. t

or,:r o

W MA WM =V <7>
-r;.'

a Solution of <7> can be accomplished by standard Gaussian
iﬁ elimination procedures. Specifically, the following steps
Sﬁ; are required.

3
s il; LDLT factorlng of MA (n x n).
a2 2 Forwar reduction and back substitution for e right-
. hand side vectors.
AR izg LDLT factorlng of MB (e x e).
X orward reduction and back substitution for n right-
X d side vectors.

This entire process is economical of both storage and arith-
. metic operations because of the tridiagonal structure of MA
NG and MB.

Boundary Conditions

The cyclic boundary condition is implemented by repeating

j§ the node numbers of the western boundary on the eastern

ﬁf boundary as shown in Fig. 1. As already noted, this

f\ accounts for nonzero entries in the upper right-hand and
lower left-hand corners of MA.

% It is sometimes required to impose a Dirichlet boundary

,% condition on the southern and northern boundaries of the

- region. Specifically, the subvectors w and w of the solu-

;F. tion vector w are prescribed. To implement this boundary

‘IE condition the following modifications to the standard

Ei solution procedure are required.

1o In the n x e matrix V on the right-hand side of <7> the
first and last columns are replaced by the prescribed bound-
ary values of w, 1i.e., put vy = W and v, = W, Let

. X = WMB and solve the system
MAX =1V <8>
processing successive columns of V in standard fashion, but

.j omitting the first and last columns. The reduced problem

5
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X and the first and last columns

now takes the form W MB
of X are Wy and wg, respectively. Transposing both sides of
this equation gives

MB WT = XT <9>
where WT and XT are the respective transposes of W and X
(recall that MB is symmetric and is thus not altered on
transposition). Since the first and 1last rows of WT are
known, the corresponding scalar equations are not needed.
Accordingly, we form MBl by deleting the first and last rows
of MB. We also reduce XT to XTl by omitting the first and
last rows. This leaves the result

MB1l WT = XT1 <10>
or, in extenso, this takes the form (for n = 3, e = 5)

k k K|
mby mbzz mbzs O 0 uuu k k k
0 mbi, mbys mbs, 0 uuul|l =tk kk
0 0 mbys mbys mbys uuu k k k
|k k k]

(In WT and XT1 the elements denoted by "k" are known and
those denoted by "u" are unknown.) This equation may be put
in standard form by first altering the first row of XT1l by
subtracting mb,; times the corresponding entries in the
first row of WT and altering the last row of XT1l by sub-
tracting mb,s times the corresponding entries in the last
row of WT. Calling the new right hand side XT2 and forming
MB2 from MBl by discarding the first and last columns and
forming WT1 by discarding the first and last rows of WT, the
result is

MB2 WT1 = XT2 <1l1l>
Solution of <1l1> is carried out by LDLT factoring of MB2,
followed by forward reduction and back substitution.

Floating Point Operations and Matrix Storage Requirements

Presented here is a comparison of floating point opera-
tion counts and matrix storage requirements for the tensor
product scheme and three widely-used solution algorithms for
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;E: solving <7> or its equivalent <l>. Three of the schemes
;:3 take advantage of symmetry of the coefficient matrices and
(fJ store only elements on or above the principal diagonal. One
39 of these, the "band solver" (BAND), places these elements in
:i: a rectangular matrix ne x r, where r is the maximum row
&§ ‘ length of the upper triangle of M. The "sky-line solver"
N (SKY) further economizes by storing only that part of the
K N upper triangle beginning at the diagonal and extending to
{E the topmost nonzero element of each column. These subvec-
‘%: tors are assembled into a single vector. This scheme
- requires an additional integer address vector of 1length
;k' ne + 1, The remaining algorithm, '"successive over-relax-
;:_’. ation" (SOR), is iterative rather than direct.
.
;: In most applications of the direct solvers the number of
-~ floating point operations required to factor the coefficient
_;3 matrix into LDLT form is much greater than those required to
;f complete the process of finding a single solution vector w
_£§ corresponding to a given right-hand side vector v (forward
reduction and back-substitution). In the present applica-
o ‘tion, however, the latter solution process must be carried
f?j out 17 times for each time step, so that the LDLT factoring
i$ makes a negligible contribution to the total computational
expenditure. Accordingly, the operations required for fac-
i: toring are not included in the tabulation below.
.ai In the following table the results given for the number
A$: of floating point operations are given in terms of the grid
T parameters n and e (defined in Fig. 1). One multiplication
Eg (or one division) plus one addition (or one subtraction) is
e counted as one operation. Exact results for these operation
:ﬁ counts would take the form of a polynomial in n and e. Only
- the highest degree terms are given in the table. Since it
;" is not possible to predict the number of iterations per
?¥$ solution when using SOR, the operation count given for that
-1 algorithm is for a single iteration. Also, since the number
= of storage locations required for SOR coefficient matrices
%3 is highly grid-dependent, no such entry is given for SOR.

q
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TABLE I. Operation Counts and Storage Requirements.

( Algorithm || Number of Operations | Number of Storage Locations
' per Solution for Coefficient Matrices
SOR 10 en (1) T T @
SKY 2 en2 en?
BAND 4 en? 2 en2
TENSOR 8 en 3n+de
Notes: -

. Number of ogerations per iteration.
s

1
2. Number of orage location¥ 15 grid-dependent.

Conclusion

Close comparison of operation counts and storage require-
ments leads to the conclusion that the TENSOR algorithm is
clearly superior to the SKY and BAND algorithms.
parison with SOR is not as clear-cut. Considering, however,

The com-

that the operation count for SOR 1is for only one iteration,
there really seems to be little doubt that TENSOR 1is the
method of choice.
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APPENDIX A
MATRICES MA, MB, AND THE TENSOR PRODUCT

Symbols a

in Fig. 1.

MA

(n

4)

i and bi which appear in MA and MB are defined

-Z(a“+a1) ai 0 a, 1
1 ap 2(ait+az) az 0
6 0 a 2(a,+ aj) aj;

ay, 0 as 2(as:+ ay,)
2b, b, 0

MB = & | by 2(by+bz) b,

(e = 3) 0 b, 2b,

The tensor product of matrices C and D may be represented
in block partition form as

€11D c120 ¢330

C*D = €210 €220 ¢23D

C310 CazD C330 i
where the € 5 are the elements of C. Note that, if C and D
have dimensions r x s and t x u, respectively, the tensor

product has dimensions rt x su.

10
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APPENDIX B
FORTRAN PROGRAM LISTINGS

FORTRAN programs for the implementation of TENSOR are
listed here. They appear in the form of subroutines AMTRX2,
FACTOR, BACKA, and BACKB within the test program GAUSS3.
(The subroutines FACTOR, BACKA, and BACKB are adapted from
subroutine COLSOL of Ref. 5.) Also included are GOG3, an
Exec used to execute GAUSS2Z - a dimensioned version of
GAUSS3, and CDIM, an Xedit program used to enter the dimen-

sions.

11




Listing: GAUSS3 FORTRAN
MAIN PROGRAM MASS MATRIX USING TENSOR PRODUCT FACTORS

THIS PROGRAM IS DESIGNED TO TEST THE SCHEME (TENSOR%
WHICH RESQLVES THE MASS MATRIX INTO A TENSOR PRODUC IN
ORDER TO SOLVE THE SYSTEM OF_EQUATIONS M

ggBRgH§INES MAY BE INSERTED IN THE PROGRAM DEVISED BY

annanann

LICIT REAL*B AH,0-2)
COMMON / CM1A/NLA
COMMON 8éA Z1

fols} B

G(
lggggg IO§ g{ZP
READ(S JNLONG, NLAT
LATX= T
1000 WR,%W?%‘?
‘wh

NZ§ EA(ZK) GB1(ZL),GB2(ZL),MA(ZM),

*1
10

/,Q MASS MATRIX - TENSOR PRODUCT RESOLUTION'
iOOl)NLONG ,NLAT
A

00
593

6
6

03

00 FORMA

001

S B: ', (24F3.0
5 f ',{24?3,033
1 LON 24713, NLAT
c ONSTRUCT FACTORS GA, GB1, AND GBZ, OF MASS MATRIX
5 1 AG
501 o 7 9 ) AG: ',(12F4.1))
WRITE(6,504)BG ,
504 0 ] BG: ,(12F4.1))
WRITE 1902)GA,
1002 FO 8) ./, (3X,6F7.3))
WRITE 1094)c31 \
1004 FO §7{ GBl',/,(3X,6F7.3))
WRITE d95)6B2
1005 FO 8){ GB2',/,(3X,6F7.3))
WRITE(6,1003)MA
Y i
CL=GBI(2#*LATX-1
K= (NLAT-1)*NLON
g F NDIR>0 ERE IS A DIRICHLET BOUNDARY CONDITION ON

I
NORTHE Agg SOUTHERN BOUNDARIE

RMA gl 2 ' I1, ,6F8. ﬁ , (4X,6F8.2))
€ PERFORM LDL} FACTORING'OF’ A c31 ’ AND cﬁ
o FA MA , NLONG

[¢]
>
-
L
Q
-3
O
ol
Mﬁ
o]
N

005 GBZ

FA
WRITE£2,100
6
OﬁWARD REDUCTION AND BACK-SUBSTITUTION USING

FACTORS c
D%RICHL%T BOU§DA&Y coﬁDITI N ON NORTH AND SOUTH
f¥g§nzn .GT. eco TO 3

an aa

WRITE (6,510
PERFORM OﬁWAR REDUCTION AND BACK-SUBSTITUTION USING
FACTORS OF }

géLL CKB(GB1,V,MB,NDIR)

CORREC% RIGHT-HAND SIDE FOR DIRICHLET CONDITION

et 0%3 P HEI ey

ITE(6
PERFORM FORW REDUCTION AND BACK-SUBSTITUTION USING

FACTORS OF B%
CALL B. GB2,V,MB,NDIR)

AO N WO an

Y



....................

= 310 wnxrz& e (4%, 6F8.
zf; C REA ixcar HAND Ibé PERFO A SECOND SOLUTION
-z WRIT bIR \'
' NDIR)
- IF ND R GT éo TO 7
Y wn TE(6 ?
:, éKB Bl,V,MB,NDIR)
N 7
) c)-
s 5 %E% ?JzuLAT §L3NG)
- . AﬁKBs BZ V,MB,NDIR)
Ly 16 WRITE
¢ 1003 MA:',2X, 36133
$29 1006 FORMAT $'12X,361I3
> STOP
j\' (o] ****§N¥***************'L******k-.’:*****4‘********************“*
\ c SUBROUTINE FACTOR (A,MAXA NN)
e c NPUT VARIABLES - -’ Cr sttt
- C = STIFFNESS MATRIX STORED IN COMPACTED FORM .
N C MXXA NP) = VECTOR CONTAINING ADDRESSES OF DIAGONAL
R g _ ELEMENTS opqgrprusss MATRIX IN A
o 8 . — gﬁﬂ%sk OF ELEMENTS BELOW SKYLINE
3 8 ) A(NWK? = D AND L - FACTORS OF STIFFNESS MATRIX
< "7 IMPLICIT REAL*8(A Z ' '
L3 c DIMENSION E’?1) éAXA(l) )
e o PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX
) %o DO 140 1 NN
. KN=MAXA (N
. KL=KN+1
SO RU=MAXA(N+1)-1
A SR 0,90, 50
50 Ic& )
»h KLT=KU
DO 80 J=1,KH
-, IC=IC+1
N KLT=KLT-1
st KI=MAXA(K)
R A
\ 1]
a7 60 Egaul 0 1c,ﬁng
‘ PO 70 L=1
5 0 CEAEhhn ey
) 80  K=K+1
:: 90 %fg
e DO 100 KK=KL,KU
! K=K-1
4 o
: B=B K
v 100 A(EK}-C"
X A N)=A

o e R0,

%000 FORMANgé[, TOP - STIFFNESS MATRIX NOT POSITIVE
é{ V NON? g%’(]).‘ XE PIVOT FOR EQUATION

o }DEF N

;S; Tuﬁﬁ/’ )
>

2 13

----------------
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Jedededededodededdededededededodededefedfeod ke dededededede e fededodedodededede oo dededeSededofevevededede

****§g§§2¥$$NE*£AE§QL *X***J***Pl*l***********x***w%*w’Jw

C
C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
8 SUBSTITUTION USING THE FACTORS OF GA

T e

c BIMERSLON A(Y MAXA( )

¢ REDUCE RIGHT-HAND-SIDE LOAD VECTOR
JMIN=1
LATX=NLAT+1

JMAX=LATX

C IS THERE_A DIRI ET BOUNDARY CONDITION?
IF(NDIR.LT.1)GO TO_140

o SKISMnggH AND SOUTH BOUNDARIES

JMAX=NLAT

140 DO 240 J=JMIN,JMAX

156 DO 180 N=1,NLONG
KL=MAXA(N)+

KU=MAXA(N+1)-1

IF&KU—KL 180,160,160

=0,
DO 170 RK<KL,KU
170 C=C+A(KK)*V(K+ (J-1)*NLONG
V(N 35 RSNy = N VS JenLowe ) -
180  CONT
¢ BACK- SUBSTITUTE
DO 200 N=1,NLONG
200 V(ﬁggﬁ 1)*NLONG)=V (N+ (J-1)*NLONG) /A(K)
DO 230 %,NLONG
KL=MAXA(N

Frasa iy

IF (KU-K 23 210 210

DO 220 RK=KL,KU

220 1N£x+ g 1)*NLONG )=V (K+(J-1)*NLONG) -A(KK)*V(N+(J-1)*
%

210

oo

CONTINUE
RETURN

Jededededededododededededodedededodedededededededede dedededodedededododedededededodededededededededededededededede

****§E§§9¥Z¥§§*29&§£££&¥*§%§%&§2£§2**********************

THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
SUBSTITUTION USING THE FACTORS OF GBl OR GB2

IMPLICIT REAL*B A-H
Dxnnusfou A(NkAvtlg?gng(l)
REDUCE RIGHT-HAND-SIDE LOAD VECTOR
LATX=NLAT+1
N=1

Qoo oo

ann

=LATX

C Is RE_A DIRI ET BOUNDARY CONDITION?
IF(NDIR.LT.1)G 0_50

C SKIP NOR AND OUTH BOUNDARIES

i

14




WY,

Fr el
?

—
-

]
e

'-
'-“

L gl
”_

i

)
ARCR)
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P
X

-

Y

5%
#.

.
‘{‘u

SR

<
(7

oraal %

Ky

.A.'.
L.

=quA(§+13-1
KU-KL)180,160,160

K

I
160 5
EO 170 xK=KL,KU
C

170 G+A(KK)*V(J+(K-1)*NLONG
G TR enove)-c

180
g BACK- SUBSTITUTE

DO, 200 NSNMIN,NMAX

. 200 gégffﬁ 1)*NL0NG) =V(J+(N-1)*NLONG)/A(K)
u'fm:‘gn LT.1)GO TO 205
IMAX=NLAT

205  N=LMAX

DO- Kz §
210 g'x Y2347310,210

ngxz 0 KK=KL,KU
220 V(I (K-1)*NLONG) =V (J+ (K- 1) *NLONG) - A(KK)*V (J+ (N-1)*

1NLON
239 NN-I

CONTINUE

RETURN

END
g fededpdededeededohddedodedoododedododrdedevededededededededeRdededdedededededodede et Rt defe Ve RN R
(o] ****§¥E§QQI¥§E*A*§$§§§*******************************;’:***7‘:
¢  THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A
€  TENSOR PRODUCT OF THE CB MATRIX AND THE GA MATRIX.
¢ THE FIRST OF THESE IS NLAT + 1_BY NLAT + 1,SYMMETRIC,
G AND TRIDIAGONAL. THE SECOND IS NLONG BY NI.ONG
€ SYMMETRIC, AND TRIDIAGONAL EXCEPT FOR SINGLE ELEMENT
€ 1N UBPERAICHT HAND AND LOWER LEET HAND.CORNERS. CB. 1S
€  SIORED IN SKYLINE VECTOR FORM (UPPER TRIANGLE WITH SPACE
¢ FOR FILL-IN E LATTER VERSION IMPOSES
&€ A DIRICHLET BOUNDARY CONDITioN ON THE NORTH AND SOUTH
C BOUNDARIES. GA IS ALSO STORED IN SKYLINE VECTOR FORM.
C  INTEGER ADDRESS VECTORS MB AND MA ARE ALSO GENERATED.

IMPLICIT REAL*8(A 0 ~-Z)

CogggﬂlggﬁéA?LAg(NZ§ EA(zg) GB1(2L),GB2(ZL),MA(ZM),

¢ o5 NLONGBg VA éN%?NMQ(GBI{3;§LAT'1)’
C FIND 3 = fELEMENT HEIGHT)/6.
=1 ,NLAT
2 BG J)=B 1+NLONG*£%-1))/3.
C cagg 1§= AND G
GB =1.
2 {f
SR e
4 & Kzi GB1(K
GB T)= *B% )
gg igbar 1 §LAT§
eI
C FIND AG EL?BL NT WIDTH)/6.
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Listing: GOG3 EXEC

FORTGI GAUSS2

< GLOBAL TXTLIB FORTMODZ MOD2EEH

- FILEDEF 0O ‘
~ LOAD GAUSSZ START ;
. i

s

2 ERASE GAUSS2 * Al

N QPY GAUSS3 FORTRAN Al GAUSS2 = =
STACK CDIM

{ STACK FILE

& X GAUSS2 FORTRAN

(‘ )
’s
2
Y
5 Listing: CDIM XEDIT
<3,
e, igg CMSTYPE HT
: ZB=NLON
g B
e 0% c-nraT
g [Zc/3/ * *
I Z1=NLONG*NLAT
N c [Z1/18/ *
. % ZK= ?fgyonc 3
Fob2X
Ao ZL=2* +
- C°£ZL/7/ *
) M=NLONG+1
.. C ézu/7/
i zNNL7
)’ *
. c kY *(§LAT*1)
N SET CMSTYPE RT
N
W
»
'¥
ot
1)
% 17
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