

MICROCOPY RESOLUTION TEST CHART-

NAVAL POSTGRADUATE SCHOOL Monterey, California

AD-A143 273

OTC FILE COPY

USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER

PREDICTION BY THE FILTITE ELEMENT METHOD - PART 1

R. E. NEWION April 1984

Final Report for Period October 1982 - September 1983

Approved for Public Release; Distribution Unlimited

Prepared for:

Neval Environmental Prediction Research Facility Monterey, California 93943

84 OR 26 165

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent D. A. Schrady Provost

The work reported herein was supported by the Naval Environmental Prediction Research Facility.

Reproduction of all or part of this report is authorized.

This report was prepared by:

18) R. E Newton

Professor of Mechanical Engineering

Reviewed by:

Matto

Paul J. Marto Chairman, Department of Mechanical Engineering

Released by:

John'N. Dyer Dean of Science and Engineering

URITY CLASSIFICATION OF THIS PAGE (When De	No Entered)			
REPORT DOCUMENTATIO		READ HISTERCTIONS BEFORE COMPLETING FORM		
HEPOHT NUKSEN NDC60_94_001	1 A AILIZ	3. RECIPIENT'S CATALOG NUMBER つて		
ILSO7-94-901 TITLE (and Subtitio)	V4 11-17 3 8	S. TYPE OF REPORT & PERIOD COVERED		
USE OF THE TENSOR PRODUCT FOR N PREDICTION BY THE FINITE ELEMEN	UMERICAL WEATHER T METHOD - PART 1.	Final, October 32 - September 83		
		6. PERFORMING ORG. REPORT NUMBER		
AUTHOR(+)		5. CONTRACT OR GHANT NUMBER(4)		
R. E. Newton		N668568447R84103		
PERFORMING ORGANIZATION NAME AND ADDRE	:\$\$	10. PROGRAM ELEMENT, PROJECT, TASK ANEA & WORK UNIT NUMBERS		
Naval Postgraduate School Monterey, California 93943		61153N		
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Naval Environmental Prediction	Research Facility	April 1984		
Monterey, California 93943		13. NUMBER OF PAGES		
MONITORING AGENCY NAME & ADDRESSII dille	rent from Controlling Office)	15. SECURITY CLASS. (of this report)		
		Unclassified		
		156, DECLASSIFICATION/DOWNGRADIAG SCHEDULE		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Dis DISTRIBUTION STATEMENT (of the aboutact enter	stribution Unlimit	ISO, DECLASSIFICATION, DOWNGRADI.4G SCHEDULE		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Statement (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY HOTES	stribution Unlimit	ed		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Statement (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY NOTES	stribution Unlimit	ed		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Statement (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY NOTES	stribution Unlimit ed In Block 20, 11 different fro and identify by block number)	ed		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Statement (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY NOTES REY WORDS (Continue on reverse eide if necessary Finite element, numerical weath)	stribution Unlimit ed In Block 20, 11 different fro and identify by block number) er prediction, ten	ed Report		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Dis DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Finite element, numerical weath	ed in Block 20, if different fro and identify by block number) er prediction, ten	ed Report) Sor product		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution STATEMENT (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY HOTES KEY WORDS (Continue on reverse eide 11 necessary Finite element, numerical weath ABSTRACT (Continue on reverse eide 11 necessary This report concerns applic large sets of linear equati diction problems. The coef the "mass" matrix in finite tensor product resolution i imposing Dirichlet and cycl	er prediction, ten and identify by block number) er prediction, ten ficient matrix e element parlar s presented, al ic boundary cor	ed an Report sor product in solving Numerical Weather Pre- considered is called ice. Theory of the ong with methods for iditions. Operation		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution STATEMENT (of the abstract enter DISTRIBUTION STATEMENT (of the abstract enter SUPPLEMENTARY NOTES REY WORDS (Continue on reverse etde II necessary Finite element, numerical weath ABSTRACT (Continue on reverse etde II necessary This report concerns applic large sets of linear equati diction problems. The coef the "mass" matrix in finite tensor product resolution i imposing Dirichlet and cycl	er prediction, ten and identify by block number) er prediction, ten and identify by block number) er prediction, ten ficient matrix e element parlar is presented, al ic boundary cor	ed an Report) sor product in solving Numerical Weather Pre- considered is called ice. Theory of the ong with methods for iditions. Operation		
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution STATEMENT (of the abotrect enter DISTRIBUTION STATEMENT (of the abotrect enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Finite element, numerical weath ABSTRACT (Continue on reverse side if necessary This report concerns applic large sets of linear equati diction problems. The coef the "mass" matrix in finite tensor product resolution i imposing Dirichlet and cycl FINITE 1473 EDITION OF : NOV 53 IS ONS 5/N 0102-014-6601	ed in Block 20, 11 different fro and identify by block number) er prediction, ten and identify by block number) er prediction, ten and identify by block number) cation of the ter ions arising in fficient matrix a element parlar is presented, al ic boundary cor out out an	ed a Report) sor product in solving Numerical Weather Pre- considered is called ice. Theory of the ong with methods for iditions. Operation sified		

SUCUMITY CLASSIFICATION OF THIS PAGE/Man Date Entered

20. ABSTRACT

counts and storage requirements are compared with corresponding numbers for some widely-used solution algorithms. Listings of Fortran programs for implementing the tensor product solution system (TENSOR) and testing it are given.

Accession For	•
NTIS GRA&I	
DTIC TAP	
· Unaphour and	
Jultin lon	
	_
By	
Distribution/	
Availability Codes	
Avail major	
Dist Special	
A-1	
and the second se	_

DD Form 1473 Jan 13 5/N 0102-014-6601

unclassified

SECURITY GLASSIFICATION OF THIS PAGE(Then Deta Entered)

USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER PREDICTION BY THE FINITE ELEMENT METHOD - PART 1.

and all all a little and a little

Introduction

In Ref. 1 Hinsman has developed a Finite Element (FE) program for Numerical Weather Prediction applications. The grid employed is rectangular with nodes at the intersections of north-south and east-west lines. It was shown by Staniforth and Mitchell (Ref. 2) that the coefficient matrices for such a grid could be expressed as tensor products. In these products the factors are matrices which depend solely on grid spacing in the two orthogonal directions. This report deals with the coefficient matrix called the "mass" (In Refs. 3 and 4 applications of matrix in FE parlance. the tensor product resolution to the FE "stiffness" matrix are considered.) The theory which underlies the economical computational scheme based on the mass matrix resolution is first presented. Next, the number of floating point operations and the number of storage locations needed for the coefficient matrix of this scheme are compared with those required by other better-known algorithms. A set of FORTRAN subroutines for implementing the tensor product scheme (TENSOR) is given in Appendix B.

Theory

Fig. 1. Node numbering and spacing.

along each of e grid lines in the east-west direction. Node numbering is from west to east along successive grid lines, beginning in the southwest corner. There is a cyclic boundary condition in the east-west direction so that the node number appearing at the beginning of each horizontal row is repeated at the end. Spacings of the horizontal and the vertical grid lines are not necessarily uniform.

The computational problem addressed here is the solution of the equation

Mw = v <1> where M (t e "mass" matrix) is a square, symmetric matrix of size ne and w and v are column vectors of height ne. M and v are input quantities and w is sought. The tensor product representation of M is

where MB is a square, symmetric, tridiagonal matrix of size e and MA is also square, symmetric and of size n. MA is tridiagonal except for nonzero elements in upper right and lower left corners. MB depends solely on the north-south node spacing b and MA depends upon the east-west node spacing a. The asterisk (*) denotes the tensor product. Explicit expressions for matrices MA, MB, and the tensor product are given in Appendix A.

Let MB be represented as (e = 3)

$$MB = \begin{bmatrix} mb_{11} & mb_{12} & 0 \\ mb_{21} & mb_{22} & mb_{23} \\ 0 & mb_{32} & mb_{33} \end{bmatrix}$$
 <3>

If we partition w and v into e n x 1 subvectors so that

$$w = \begin{bmatrix} w_{I} \\ w_{II} \\ w_{III} \end{bmatrix} \qquad v = \begin{bmatrix} v_{I} \\ v_{II} \\ v_{III} \end{bmatrix} \qquad <4>$$

we may use <2>, <3> and <4> to rewrite <1> as

Define

$$W = \langle W_{I} W_{II} W_{III} \rangle$$

and

$$V = \langle v_1 v_{11} v_{111} \rangle$$

It is easy to verify that the equations <5> are equivalent to

$$MA W MB = V <7>$$

<6>

Solution of <7> can be accomplished by standard Gaussian elimination procedures. Specifically, the following steps are required.

 $\{\frac{1}{2}\}$

LDLT factoring of MA $(n \times n)$. Forward reduction and back-substitution for e right-

de vectors. ctoring of MB (e x e). reduction and back-substitution for n right-{}} orward vectors.

This entire process is economical of both storage and arithmetic operations because of the tridiagonal structure of MA and MB.

Boundary Conditions

The cyclic boundary condition is implemented by repeating the node numbers of the western boundary on the eastern boundary as shown in Fig. 1. As already noted, this accounts for nonzero entries in the upper right-hand and lower left-hand corners of MA.

It is sometimes required to impose a Dirichlet boundary condition on the southern and northern boundaries of the region. Specifically, the subvectors w and w of the solution vector w are prescribed. To implement this boundary condition the following modifications to the standard solution procedure are required.

In the n x e matrix V on the right-hand side of <7> the first and last columns are replaced by the prescribed boundary values of w, i.e., put $v_T = w_T$ and $v_e = w_e$. X = W MB and solve the system

$$\mathbf{M}\mathbf{A} \ \mathbf{X} \ = \ \mathbf{V}$$

processing successive columns of V in standard fashion, but omitting the first and last columns. The reduced problem

<8>

now takes the form W MB = X and the first and last columns of X are w_{I} and w_{e} , respectively. Transposing both sides of this equation gives

MB WT = XT

<9>

where WT and XT are the respective transposes of W and X (recall that MB is symmetric and is thus not altered on transposition). Since the first and last rows of WT are known, the corresponding scalar equations are not needed. Accordingly, we form MBl by deleting the first and last rows of MB. We also reduce XT to XTl by omitting the first and last rows. This leaves the result

MB1 WT = XT1 <10> or, in extenso, this takes the form (for n = 3, e = 5)

					[k	k	k	l I				
mb ₂₁	mb 2 2	mb 2 3	0	0]	u	u	u		[k	k	k	
0	mb 3 2	mb 3 3	mb ₃₄	0	u	u	u	=	k	k	k	
Lo	0	mb 🖡 3	mb 4 4	mb ₄₅	u	u	u		Lk	k	k_	
				-	Lk	k	k_					

(In WT and XT1 the elements denoted by "k" are known and those denoted by "u" are unknown.) This equation may be put in standard form by first altering the first row of XT1 by subtracting mb_{21} times the corresponding entries in the first row of WT and altering the last row of XT1 by subtracting mb_{45} times the corresponding entries in the last row of WT. Calling the new right hand side XT2 and forming MB2 from MB1 by discarding the first and last columns and forming WT1 by discarding the first and last rows of WT, the result is

MB2 WT1 = XT2 <11> Solution of <11> is carried out by LDLT factoring of MB2, followed by forward reduction and back substitution.

Floating Point Operations and Matrix Storage Requirements

Presented here is a comparison of floating point operation counts and matrix storage requirements for the tensor product scheme and three widely-used solution algorithms for

solving <7> or its equivalent <1>. Three of the schemes take advantage of symmetry of the coefficient matrices and store only elements on or above the principal diagonal. One of these, the "band solver" (BAND), places these elements in a rectangular matrix ne x r, where r is the maximum row length of the upper triangle of M. The "sky-line solver" (SKY) further economizes by storing only that part of the upper triangle beginning at the diagonal and extending to the topmost nonzero element of each column. These subvectors are assembled into a single vector. This scheme requires an additional integer address vector of length ne + 1. The remaining algorithm, "successive over-relaxation" (SOR), is iterative rather than direct.

In most applications of the direct solvers the number of floating point operations required to factor the coefficient matrix into LDLT form is much greater than those required to complete the process of finding a single solution vector w corresponding to a given right-hand side vector v (forward reduction and back-substitution). In the present application, however, the latter solution process must be carried out 17 times for each time step, so that the LDLT factoring makes a negligible contribution to the total computational expenditure. Accordingly, the operations required for factoring are not included in the tabulation below.

In the following table the results given for the number of floating point operations are given in terms of the grid parameters n and e (defined in Fig. 1). One multiplication (or one division) plus one addition (or one subtraction) is counted as one operation. Exact results for these operation counts would take the form of a polynomial in n and e. Only the highest degree terms are given in the table. Since it is not possible to predict the number of iterations per solution when using SOR, the operation count given for that algorithm is for a single <u>iteration</u>. Also, since the number of storage locations required for SOR coefficient matrices is highly grid-dependent, no such entry is given for SOR.

Algorithm	Number of Oper per Solut:	rations ion	Number of Storage Location for Coefficient Matrices		
SOR	10 en	(1)		(2)	
SKY	2 en²		en²		
BAND	4 en²		2 en²		
TENSOR	8 en		3 n + 4 e		

TABLE I. Operation Counts and Storage Requirements.

Notes: 1. Number of operations per iteration. 2. Number of storage locations is grid-dependent.

Conclusion

Close comparison of operation counts and storage requirements leads to the conclusion that the TENSOR algorithm is clearly superior to the SKY and BAND algorithms. The comparison with SOR is not as clear-cut. Considering, however, that the operation count for SOR is for only one iteration, there really seems to be little doubt that TENSOR is the method of choice.

List of References

1. Hinsman, D. E., "Numerical Simulation of Atmospheric Flow on Variable Grids using the Galerkin Finite Element Method," Doctoral Dissertation, Naval Postgraduate School, March 1983.

2. Staniforth, A. N., and H. L. Mitchell, "A Semi-Implicit Finite Element Barotropic Model," Monthly Weather Review, v. 105, p. 154-169, February 1977.

3. Dorr, F. W., "The Direct Solution of the Discrete Poisson Equation on a Rectangle," SIAM Review, v. 29, p. 248-263, April 1970.

4. Lynch, R. E., J. R. Rice and D. H. Thomas, "Tensor Product Analysis of Partial Difference Equations," Bull. Amer. Math. Soc. v. 70, p. 378-384, 1964.

5. Bathe, K. J., <u>Finite Element Procedures</u> in <u>Engineering</u> <u>Analysis</u>, p. 721,722, Prentice-Hall, 1982.

APPENDIX A MATRICES MA, MB, AND THE TENSOR PRODUCT

Symbols a_i and b_j which appear in MA and MB are defined in Fig. 1.

$$MA = \frac{1}{6} \begin{bmatrix} 2(a_4 + a_1) & a_1 & 0 & a_4 \\ a_1 & 2(a_1 + a_2) & a_2 & 0 \\ 0 & a_2 & 2(a_2 + a_3) & a_3 \\ a_4 & 0 & a_3 & 2(a_3 + a_4) \end{bmatrix}$$

 $MB = \frac{1}{6} \begin{bmatrix} 2 b_1 & b_1 & 0 \\ b_1 & 2(b_1 + b_2) & b_2 \\ 0 & b_2 & 2 & b_2 \end{bmatrix}$ (e = 3)

The tensor product of matrices C and D may be represented in block partition form as

$$C * D = \begin{bmatrix} c_{11} D & c_{12} D & c_{13} D \\ c_{21} D & c_{22} D & c_{23} D \\ c_{31} D & c_{32} D & c_{33} D \end{bmatrix}$$

where the c_{ij} are the elements of C. Note that, if C and D have dimensions r x s and t x u, respectively, the tensor product has dimensions rt x su.

APPENDIX B Fortran program listings

FORTRAN programs for the implementation of TENSOR are listed here. They appear in the form of subroutines AMTRX2, FACTOR, BACKA, and BACKB within the test program GAUSS3. (The subroutines FACTOR, BACKA, and BACKB are adapted from subroutine COLSOL of Ref. 5.) Also included are GOG3, an Exec used to execute GAUSS2 - a dimensioned version of GAUSS3, and CDIM, an Xedit program used to enter the dimensions.

Listing: GAUSS3 FORTRAN

	C MAIN PROGRAM MASS MATRIX USING TENSOR PRODUCT FACTORS
	THIS PROGRAM IS DESIGNED TO TEST THE SCHEME (TENSOR) WHICH RESOLVES THE MASS MATRIX INTO A TENSOR PRODUCT IN ORDER TO SOLVE THE SYSTEM OF EQUATIONS M w = v. THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED BY HINSMAN.
	IMPLICIT REAL*8(A-H,O-Z) COMMON/CM1A/NLAT,NLONG COMMON/CM8/A(Z1),B(Z1) COMMON AG(ZB),BG(ZC),GA(ZK),GB1(ZL),GB2(ZL),MA(ZM), IMB(ZN) DIMENSION V(ZP) DIMENSION V(ZP)
	LATX=NLAT+1 WRITE(6,1000) 1000 _FORMAT(//, MASS MATRIX - TENSOR PRODUCT RESOLUTION
	WRITE(6,1001)NLONG,NLAT READ(5,*)A,B WRITE(6,500)A
	WRITE(6,503)B 503 FORMAT(/, B: ',(24F3.0)) 500 FORMAT(/, A: ',(24F3.0)) 1001 FORMAT(', NLONG = ',13,') C CONSTRUCT FACTORS, GA, GB1, AND GB2, OF MASS MATRIX CALL AMTRX2
	WRITE(6,501)AG501 FORMAT(/, AG: ', (12F4.1))
	$ \frac{WRITE(6,504)BG}{FORMAT(7,1000)BG}; (12F4.1) $
	$\frac{WRITE(6, 1002)GA}{FORMAT(7, 06A), 7, (3X, 6F7.3)}$
	1004 FORMAT()/(GB1',/,(3X,6F7.3))
	1005 $FORMAT()/(AO_3) = GB2', /, (3X, 6F7.3))$
	WKIIE(6, 1003)/IAWRITE(6, 1006)/IBCU=GBI(3)CL=GBI(2*LATK-1)
	K=(NLAT-1)*NLONG C IF NDIR>O, THERE IS A DIRICHLET BOUNDARY CONDITION ON C NORTHERN AND SOUTHERN BOUNDARIES. READ(5.*)NDIR.V
	WRITE(6,502)NDIR,V 502 FORMAT(/, 'NDIR = ',I1,/,'V: ',6F8.2,/,(4X,6F8.2)) C PERFORM LDLT FACTORING OF GA, GB1, AND GB2 CALL FACTOR(GA,MA,NLONG) CALL FACTOR(GB1,MB,LATX) CALL FACTOR(GB2,MB,LATX) WRITE(6,1002)GA
	WRITE(6,1004)GB1 WRITE(6,1005)GB2 C PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING C FACTORS OF GA
	CALL BACKA(GA,V,MA,NDIR) C DIRICHLET BOUNDARY CONDITION ON NORTH AND SOUTH C BOUNDARIES ? TEXINDER CT 0)CO TO 3
	WRITE(6,510) C PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING C FACTORS OF GB1 C FACTORS OF GB1 CALL BACKB(GB1,V,MB,NDIR)
675) 975) 1924	C CORRECT RIGHT-HAND SIDE FOR DIRICHLET CONDITION 3 DO 2 J=1 NLONG 1 U DIRICHLET CONDITION
	$2 \qquad \qquad$
	C PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING C FACTORS OF GB2 V MB NDTR)
X	
	12
2	

WRITE(6,510)V FORMAT(/, V: ,6F8.2,/,(4X,6F8.2)) AD A NEW RIGHT-HAND SIDE AND PERFORM A SECOND SOLUTION READ(5,*)NDIR,V WRITE(6,502)NDIR,V CALL BACKA(GA,V,MA,NDIR) IF(NDIR.GT.0)GO TO 7 WRITE(6,510)V CALL BACKB(GB1,V,MB,NDIR) GO TO 16 DO 5 J=1,NLONG V(J+NLONG)=V(J+NLONG)-CU*V(J) V(J+K)=V(J+K)-CL*V(J+NLAT*NLONG) WRITE(6,510)V CALL BACKB(GB2,V,MB,NDIR) WRITE(6,510)V CALL BACKB(GB2,V,MB,NDIR) WRITE(6,510)V FORMAT(/,' MA:',2X,3613) FORMAT(/,' MB:',2X,3613) STOP 6 510 7 5 16 1003 1006 MA:',2X,3613) MB:',2X,3613) STOP ĒND ***** С SUBROUTINE FACTOR(A, MAXA, NN) CCCCCCCCCCCC INPUT VARIABLES ---S = STIFFNESS MATRIX STORED IN COMPACTED FORM (NNP) = VECTOR CONTAINING ADDRESSES OF DIAGONAL ELEMENTS OF STIFFNESS MATRIX IN A = NUMBER OF EQUATIONS = NUMBER OF ELEMENTS BELOW SKYLINE OUTPUT A(NWK) MAXA(NNP) NN NWK A(NWK) = = D AND L - FACTORS OF STIFFNESS MATRIX İMPLİCİT REAL*8(A-H,Ö-Ż) DIMENSION A(1),MAXA(1) PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX DO 140 N=1,NN KN=MAXA(N) KL=KN+1 KU=MAXA(N+1)-1 KH=KU-KL IF(KH)110,90,50 K=N-KH IC=0 KLT=KU DO 80 J=1,KH IC=IC+1 KLT=KLT-1 KI=MAXA(K) 50 =MAXA(K) =MAXA(K+1)-KI-1 (ND)80,80,60 =MINO(1C,ND) LO 70 L=1,KK C=C+A(KI+L)*A(KLT+L) A(KLT)=A(KLT)-C K=K+1 K=N B=0; DO ;-60 70 80 90 B=0 DO 100 KK≈KL,KU K=K-1 KI=MAXA(K) C=A(KK)/A(KI) B=B+C*A(KK) A(KK)=C A(KN)=A(KN)-B IF(A(KN))120,120,140 WRITE(IOUT,2000)N,A(KN) STOP 100 $\frac{110}{120}$ WRITE(10UT,2000)N,A(KN) STOP CONTINUE FORMAT(//,' STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE',//, NONPOSITIVE PIVOT FOR EQUATION 14,//,' PIVOT = ',E20.12) RETURN END 140

***** С SUBROUTINE BACKA (A, V, MAXA, NDIR) CCCC THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-SUBSTITUTION USING THE FACTORS OF GA IMPLICIT REAL*8(A-H,O-Z) COMMON/CM1A/NLAT,NLONG DIMENSION A(1),V(1),MAXA(1) CCC **REDUCE RIGHT-HAND-SIDE LOAD VECTOR** JMIN=1 LATX=NLAT+1 JMAX=LATX IS THERE A DIRICHLET BOUNDARY CONDITION? IF (NDIR.LT.1)GO TO 140 SKIP NORTH AND SOUTH BOUNDARIES JMIN=2 С С IP NORTH AND SOUTH BO JMIN=2 JMAX=NLAT DO 240 J=JMIN, JMAX DO 180 N=1, NLONG KL=MAXA(N)+1 KU=MAXA(N+1)-1 IF(KU-KL)180,160,160 K=N C=0 140 150 160 C=0 <u>Ď</u>O_ĺĮO KK=KL,KU Ĉ=Ĉ+Å(KK)*V(K+(J-1)*NLONG) V(N+(J-1)*NLONG)=V(N+(J-1)*NLONG)-C CONTINUE <u>K-K-</u>1 170 180 ĈCC **BACK-SUBSTITUTE** DO 200 N=1, NLONG DO 200 N=1, NLONG K=MAXA(N) V(N+(J-1)*NLONG)=V(N+(J-1)*NLONG)/A(K) N=NLONG DO 230 L=2, NLONG KL=MAXA(N)+1 KU=MAXA(N+1)-1 IF(KU-KL)230,210,210 K=N 200 $\begin{array}{l}
 IF(KU-KL)220, 220, KK=KL, KU \\
 K=N \\
 V(K+(J-1)*NLONG)=V(K+(J-1)*NLONG)-A(KK)*V(N+(J-1)* \\
 INLONG) \\
 N=N-1
\end{array}$ 210 220 230 240 N=N-1 CONTINUE RETURN SUBROUTINE BACKB(A.V.MAXA,NDIR) CCCC THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-SUBSTITUTION USING THE FACTORS OF GB1 OR GB2 IMPLICIT REAL*8(A-H,O-Z) COMMON/CM1A/NLAT,NLONG DIMENSION A(1),V(1),MAXA(1) CCC **REDUCE RIGHT-HAND-SIDE LOAD VECTOR** ATX=NLAT+1 LATX=NLAITA NMIN=1 NMAX=LATX IS THERE A DIRICHLET BOUNDARY CONDITION? IF (NDIR.LT.1)GO TO 50 SKIP NORTH AND SOUTH BOUNDARIES NMIN=2 С С NMIN=2 NMAX=NLAT DO 240 J=1,NLONG DO 180 N=NMIN,NMAX KL=MAXA(N)+1 50 150

KU=MAXA(N+1)-1 IF(KU-KL)180,160,160 K=N C=0, 160 DO 170 KK=KL,KU Ř=K-1 Ĉ=Ĉ+Â(KK)*V(J+(K-1)*NLONG) V(J+(N-1)*NLONG)=V(J+(N-1)*NLONG)-C 170 180 ĊŎŇŦÌŇUĒ C C C C **BACK-SUBSTITUTE** DO 200 N=NMIN, NMAX K=MAXA(N) V(J+(N-1)*NLONG)=V(J+(N-1)*NLONG)/A(K) LMIN =2 LMAX=LATX IF(NDIR.LT.1)GO TO 205 LMIN=3 LMAX=NLAT N=LMAX DO 230 L=LMIN, LMAX KL=MAXA(N)+1 KU=MAXA(N)+1 IF(KU-KL)230,210,210 K=N DO 220 KK=KL,KU K=K-1 V(J+(K-1)*NLONG)=V(J+(K-1)*NLONG)-A(KK)*V(J+(N-1)* INLONG) N=N-1 POWTYWE 200 205 210 220 N=N-1 CONTINUE RETURN END 230 240 C ******** SUBROUTINE AMTRX2 ***** THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A TENSOR PRODUCT OF THE GB MATRIX AND THE GA MATRIX. THE FIRST OF THESE IS NLAT + 1 BY NLAT + 1 SYMMETRIC, AND TRIDIAGONAL. THE SECOND IS NLONG BY NLONG, SYMMETRIC, AND TRIDIAGONAL EXCEPT FOR SINGLE ELEMENTS IN UPPER RIGHT HAND AND LOWER LEFT HAND CORNERS. GB IS STORED IN SKYLINE VECTOR FORM (UPPER TRIANGLE WITH SPACE FOR FILL-IN) AS GB1 AND GB2. THE LATTER VERSION IMPOSES A DIRICHLET BOUNDARY CONDITION ON THE NORTH AND SOUTH BOUNDARIES. GA IS ALSO STORED IN SKYLINE VECTOR FORM. INTEGER ADDRESS VECTORS MB AND MA ARE ALSO GENERATED. INTEGER ADDRESS VECTORS MB AND MA ARE ALSO GENERATED. IMPLICIT REAL*8(A-H, 0-Z) COMMON/CMIA/NLAT, NLONG COMMON AG(ZB), BG(ZC), GA(ZK), GB1(ZL), GB2(ZL), MA(ZM), IME (ZN) DIMENSION BG(NLAT), AG(NLONG), GB1(2*NLAT-1), GA(3*NLONG-3), MA(NLONG+1), MB(NLAT+2) LATX=NLAT+1 FIND BG = (ELEMENT HEIGHT)/6. DO 2 J=1, NLAT BG(J)=B(1+NLONG*(J-1))/3. GENERATE GB1 AND GB2 GB1(1)=2.*BG(1) GB2(1)=1. DO 4 J=2.*BG(1) GB1(K)=2.*(BG(J-1)+BG(J)) GB1(K+1)=BG(J-1) GB1(K)=GB1(K+1) GB1(Z*NLAT)=2.*BG(NLAT) GB1(Z*NLAT)=1. GB2(2*NLAT+1)=0. FIND AG = (ELEMENT WIDTH)/6. 15 CC С 2 C С

Listing: GOG3 EXEC

ERASE GAUSS2 * A1 COPY GAUSS3 FORTRAN A1 GAUSS2 = = &STACK CDIM &STACK FILE X GAUSS2 FORTRAN FORTGI GAUSS2 GLOBAL TXTLIB FORTMOD2 MOD2EEH FILEDEF 05 DISK LOAD GAUSS2 (START

alay an an a

Listing: CDIM XEDIT Listing: CDIM XEDI SET CMSTYPE HT TOP * ZB=NLONG C /ZB/6/ * * TOP * ZC=NLAT C /ZC/3/ * * TOP * Z1=NLONG*NLAT C /Z1/18/ * * TOP * ZK=3*NLONG-3 C /ZK/15/ * * TOP ZL=2*NLAT+1 C /ZL/7/ * * TOP * ZM=NLONG+1 C /ZM/7/ * * TOP * ZN=NLAT+2 C /ZN/5/ * * TOP * ZP=NLONG*(NLAT+1) C /ZP/24/ * * TOP SET CMSTYPE RT

INITIAL DISTRIBUTION LIST

11

•

122.22

		Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2.	Research Administration, Code 012A Naval Postgraduate School Monterey, California 93943	1
3.	Professor R. E. Newton, Code 69Ne Naval Postgraduate School Monterey, California 93943	10
4.	Professor R. T. Williams, Code 63Wu Naval Postgraduate School Monterey, California 93943	5
5.	Professor A. L. Schoenstadt, Code 53Zh Naval Postgraduate School Monterey, California 93943	1
6.	Professor D. Salinas, Code 69Zc Naval Postgraduate School Monterey, California 93943	1
7.	Professor R. H. Franke, Code 53Fe Naval Postgraduate School Monterey, California 93943	1
8.	Superintendent Naval Postgraduate School Monterey, California 93943 ATTN Code 0142 Library	2
9.	Commanding Officer Naval Environmental Prediction Research Facility Monterey, California 93943	10
10.	Doctor A. N. Staniforth Recherche en Prevision Numerique Atmospheric Environment Service Dorval, Quebec H9P 1J3	1

