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USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER

PREDICTION BY THE FINITE ELEMENT METHOD - PART 1.

Introduction

In Ref. 1 Hinsman has developed a Finite Element (FE)

program for Numerical Weather Prediction applications. The

grid employed is rectangular with nodes at the intersections

Iof north-south and east-west lines. It was shown by Stani-
forth and Mitchell (Ref. 2) that the coefficient matrices

for such a grid could be expressed as tensor products. In
these products the factors are matrices which depend solely

* v on grid spacing in the two orthogonal directions. This

report deals with the coefficient matrix called the "mass"

matrix in FE parlance. (In Refs. 3 and 4 applications of

the tensor product resolution to the FE "stiffness" matrix

are considered.) The theory which underlies the economical

computational scheme based on the mass matrix resolution is

first presented. Next, the number of floating point opera-
tions and the number of storage locations needed for the
coefficient matrix of this scheme are compared with those

required by other better-known algorithms. A set of FORTRAN

subroutines for implementing the tensor product scheme

(TENSOR) is given in Appendix B.

Theory

Consider the grid shown in Fig. 1. There are n spaces

1g - -1 011 12 g.

b24 5L5f 8 1 (Note the cyclic
i e rows boundary condition

1b1 2 i4 1 n the E-W direction.)

n columns

Fig. 1. Node numbering and spacing.

along each of e grid lines in the east-west direction. Node
numbering is from west to east along successive grid lines,

3
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beginning in the southwest corner. There is a cyclic bound-

ary condition in the east-west direction so that the node

number appearing at the beginning of each horizontal row is

repeated at the end. Spacings of the horizontal and the

vertical grid lines are not necessarily uniform.

The computational problem addressed here is the solution

of the equation

MW = v <1>

where M (t .e "mass" matrix) is a square, symmetric matrix of

size ne and w and v are column vectors of height ne. M and
v are input quantities and w is sought. The tensor product

representation of M is

M = MB * MA <2>
where MB is a square, symmetric, tridiagonal matrix of size
e and MA is also square, symmetric and of size n. MA is

tridiagonal except for nonzero elements in upper right and

lower left corners. MB depends solely on the north-south

node spacing b and MA depends upon the east-west node spac-
ing a . The asterisk (*) denotes the tensor product.

Explicit expressions for matrices MA, MB, and the tensor
product are given in Appendix A.

.1 Let MB be represented as (e = 3)

Mnb1 1 nib12  01
M iMb2 x Mb2 2 Mb23  <3>

L0 Nib3 2 NMbS3

If we partition w and v into e n x 1 subvectors so that

* "V <4>

we may use <2>, <3> and <4> to rewrite <i> as

mbl1 MA WI + mb12 MA WI V

mbl 1 MAw + mb 12 MA w + mbls MA w - v <5>

inbi 2 MA wIi + mb,3 MA wiII -VIII

4



Define W <WI W wiii >

<6>
and V - <vI V Vl >

It is easy to verify that the equations <5> are equivalent

to
MA W MB = V <7>

4 Solution of <7> can be accomplished by standard Gaussian

elimination procedures. Specifically, the following steps

are required.
l) LDLT factoring of MA (n x n).
2)Forward reduction and back-substitution for e right-
Shand side vectors.
LDLT factoring of MB (e x e).
Forward reducgion and back-substitution for n right-
hand side vectors.

This entire process is economical of both storage and arith-

metic operations because of the tridiagonal structure of MA

and MB.

Boundary Conditions

The cyclic boundary condition is implemented by repeating

the node numbers of the western boundary on the eastern

boundary as shown in Fig. 1. As already noted, this

accounts for nonzero entries in the upper right-hand and

lower left-hand corners of MA.

It is sometimes required to impose a Dirichlet boundary
condition on the southern and northern boundaries of the

region. Specifically, the subvectors w and w of the solu-

tion vector w are prescribed. To implement this boundary

condition the following modifications to the standard
solution procedure are required.

In the n x e matrix V on the right-hand side of <7> the

first and last columns are replaced by the prescribed bound-

ary values of w, i.e., put vI = wI and ve = we. Let

X = W MB and solve the system

MA X V <8>

processing successive columns of V in standard fashion, but

omitting the first and last columns. The reduced problem

4, 5
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now takes the form W MB X and the first and last columns

of X are WI and we, respectively. Transposing both sides of

this equation gives

MB WT = XT <9>

where WT and XT are the respective transposes of W and X

(recall that MB is symmetric and is thus not altered on

transposition). Since the first and last rows of WT are

known, the corresponding scalar equations are not needed.

Accordingly, we form MB1 by deleting the first and last rows

of MB. We also reduce XT to XTl by omitting the first and

last rows. This leaves the result

MB1 WT = XT1 <10>

or, in extenso, this takes the form (for n= 3, e = 5)

kkk

mb2 i mb22 mb 2 3 0 0 u u u k k k

mb 32 mb 33  mb 34 0 u u u k kk

0 0 mb4 3 mb44 mb4 5  u u u k

(In WT and XTI the elements denoted by "k" are known and

those denoted by "u" are unknown.) This equation may be put

in standard form by first altering the first row of XT1 by

subtracting mb21 times the corresponding entries in the

first row of WT and altering the last row of XTl by sub-

tracting mbs times the corresponding entries in the last

row of WT. Calling the new right hand side XT2 and forming

MB2 from MB1 by discarding the first and last columns and

forming WT1 by discarding the first and last rows of WT, the

result is

MB2 WTl = XT2 <11>
Solution of <11> is carried out by LDLT factoring of MB2,

followed by forward reduction and back substitution.

Floatino Point Operations and Matrix Storage Requirements

Presented here is a comparison of floating point opera-

tion counts and matrix storage requirements for the tensor
product scheme and three widely-used solution algorithms for

6
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solving <7> or its equivalent <1>. Three of the schemes

take advantage of symmetry of the coefficient matrices and

store only elements on or above the principal diagonal. One

of these, the "band solver" (BAND), places these elements in
a rectangular matrix ne x r, where r is the maximum row

length of the upper triangle of M. The "sky-line solver"

(SKY) further economizes by storing only that part of the
4upper triangle beginning at the diagonal and extending to

the topmost nonzero element of each column. These subvec-

tors are assembled into a single vector. This scheme

requires an additional integer address vector of length

ne + 1. The remaining algorithm, "successive over-relax-

ation" (SOR), is iterative rather than direct.

In most applications of the direct solvers the number of
floating point operations required to factor the coefficient

matrix into LDLT form is much greater than those required to

complete the process of finding a single solution vector w

corresponding to a given right-hand side vector v (forward

reduction and back-substitution). In the present applica-

tion, however, the latter solution process must be carried

out 17 times for each time step, so that the LDLT factoring

makes a negligible contribution to the total computational
expenditure. Accordingly, the operations required for fac-

toring are not included in the tabulation below.

In the following table the results given for the number
of floating point operations are given in terms of the grid

parameters n and e (defined in Fig. 1). One multiplication

(or one division) plus one addition (or one subtraction) is
counted as one operation. Exact results for these operation

counts would take the form of a polynomial in n and e. Only
the highest degree terms are given in the table. Since it

.6 is not possible to predict the number of iterations per:.Nr
solution when using SOR, the operation count given for that

algorithm is for a single iteration. Also, since the number
of storage locations required for SOR coefficient matrices

is highly grid-dependent, no such entry is given for SOR.

7
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TABLE I. Operation Counts and Storage Requirements.

Algorithm Number of Operations Number of Storage Locations

per Solution for Coefficient Matrices

SOR 10 en (1) (2)

SKY 2 en2  en2

BAND 4 en2  2 en2

TENSOR 8 en 3 n + 4 e

Notes: 1. Number of operations per iteration.
2. Number of storage locations is grid-dependent.

Conclusion

Close comparison of operation counts and storage require-

ments leads to the conclusion that the TENSOR algorithm is

clearly superior to the SKY and BAND algorithms. The com-

parison with SOR is not as clear-cut. Considering, however,

that the operation count for SOR is for only one iteration,

there really seems to be little doubt that TENSOR is the

method of choice.

8
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APPENDIX A

MATRICES MA, MB, AND THE TENSOR PRODUCT

Symbols ai and bi which appear in MA and MB are defined

in Fig. 1.

2(a 4+ a,) a, 0 a 4
aMA = ax 2(ai+ a2 ) a2  0

- 0 a 2  2(a2+ a ) a3

(n = 4) a4  0 a 3  2(a3+ a4

2 b, b, 0

MB = b, 2(bl+ b2 ) b2
• 0 b2 2 b2

I C~~e = 3)6[02 1

The tensor product of matrices C and D may be represented

in block partition form as

FcxxD C12 D C23Dl
C*D = c21 D c22 D c23D

Lc31 D c32 D c33 ,

where the ci are the elements of C. Note that, if C and D

have dimensions r x s and t x u, respectively, the tensor

product has dimensions rt x su.

10

*4 . ""'""?' q" , '~ 4 ,' .- % .;. . ' .... '.._ ..-



APPENDIX B

FORTRAN PROGRAM LISTINGS

.4"

FORTRAN programs for the implementation of TENSOR are

"'. listed here. They appear in the form of subroutines AMTRX2,

FACTOR, BACKA, and BACKB within the test program GAUSS3.

(The subroutines FACTOR, BACKA, and BACKB are adapted from

subroutine COLSOL of Ref. 5.) Also included are GOG3, an

Exec used to execute GAUSS2 - a dimensioned version of

GAUSS3, and CDIM, an Xedit program used to enter the dimen-

sions.

.'3,
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Listing: GAUSS3 FORTRAN

C MAIN PROGRAM MASS MATRIX USING TENSOR PRODUCT FACTORS
C
C THIS PROGRAM IS DESIGNED TO TEST THE SCHEME (TENSOR)
C WHICH RESOLVES THE MASS MATRIX INTO A TENSOR PRODUCT IN
C ORDER TO SOLVE THE SYSTEM OF EQUATIONS M w = v. THE
C SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED BY
C HINSMAN.
C

IMPLICIT REAL*8A-HO-Z)
COMMON/ CMIA z
COMMON/ CM8AZ
COMO AG( B ,A~BGZC) ,GA(ZK),GB1(ZL),GB2(ZL),MA(ZM),
1MB ZNlDIMENS ION V(ZP)

READ151%VNR69a, NLAT
LATX= NiT1

1000 RIT( 9O MASS MATRIX - TENSOR PRODUCT RESOLUTION'

Fm IT6.001)NLONG ,NLAT
READ A1Ak
WRIT 6,15M)

>" 503 WRITE,, 593)B ;33
503 FORMATA ', 24F3~A: ' 24F3

1001 FORMAT( NLONG = 13, NLAT =',13 g)
C CONSTRUCT FACTORS, CA, aBI, AND GB2, OF MAS MATRIX

CALL TRX2
WRITE 6 591)AG

501 FORMA I AG: ',(12F4.1))
WRITE 94)BG

504 FORMA I BG: ',(12F4.1))
WRITE 6 02)GA,

1002 FORMA' C). GA,/,(3X,6F7.3))WRITE 6 1094) GB1

1004 FORMAT ( ,,GB1',/,(3X,6F7.3))
WRITE 6li .5) GB2

1005 FORMA' (/ GB2',/,(3X,6F7.3))WRITE6 ii00)MA
WRITE 06 MiB
CU=GB3
CL=GB 2 TX -1)
K= NLAT- *NLONG

C IF NDIR>0 THERE IS A DIRICHLET BOUNDARY CONDITION ON
C NORTHERN SOUTHERN BOUNDARIES.

READ V
WRITE N2 IR'V' :

502 FORMAT IR = ,I V: 6F8.2 (4X,6F8.2))
C PERFORM LT TORING OF A, GB1, AND G&-CALL FACTOR GA MA NLONG

CALL FACTOR(GB i, M,LATX
CALL FACTOR B2,MB, LATX
WRITE 16,100 GBA
WRITE (6, 00 GB1
WRITE( 6 1005 GB2

C PERFORM FORWA REDUCTION AND BACK-SUBSTITUTION USING
C FACTORS OF GA

CALL BACKA (GA V,MA.NDIR)
C DIRICHLET BOUNDAY CONDITION ON NORTH AND SOUTH
C BOUND IES ?

IF(ND R.GT. 0)GO TO 3
WRITEt6 510V 

T

C PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING
C FACTORS OF GB1

CALL BACKB(GB1,V,MB,NDIR)
GO TO 6

CORRECT RIGHT-HAND SIDE FOR DIRICHLET CONDITIOND z J= 0

NLNW -
2 V J+K =V'3i -LVJ .NLAT OLNG)

ITE 6 10iV
C PERFORM OAWARD REDUCTION AND BACK-SUBSTITUTION USING
C FACTORS OF GB2

C BACKB(GB2,V,MB,NDIR)

12
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6 WRITE(".. 510 FORA(-V _a6F b,(4X,6F8.2)
C EDAZ6, H DI AND PERFORM A SECOND SOLUTION

READI& *NDfR V
CA L2 ~ONIR,V

CAL BAd VMA,NDIR)
IF NDIR.GT. 60OTO7
WRITEI 6t510
CALL A ( B,V,B,NDIR)
GO TO 16

7 DO 5 J=1 LO G
V +J ON )=V J GIo )-UvJ

5 V(J+K] =VJ+K )=LV( J +NTCfl0NG)
WITE 6 510)
CALL 6.l.B B2,V,MB,NDIR)

16 WRITE 6510 V
1003 FORMA MA::,2X,3613)
1006 FORMAT MB: ,2X,3613)

STOP
C *******

SUBROUTINE FACTOR (A, MAXA, NN)

C . "--'I NPUT VARIABLES -.-................
C . ANW = STIFFNESS MATRIX STORED IN COMPACTED FORM
C . A(NNP) = VECTOR CONTAINING ADDRESSES OF DIAGONAL
C . ELEMENTS OF STIFFNESS MATRIX IN A
C . NN = NUMBER OF EQUATIONS
C . NWK NUMBER OF ELEMENTS BELOW SKYLINE
C. -OTTPUT--
C. A(NWK = D AND L - FACTORS OF STIFFNESS MATRIX
C . . iMLICIT'REAL*8(A-.-H Q-±).

DIMENSION A(1),MAXA(1)

C PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX

0 DO 140 N=I,NN
KN=MAXA(N)
KL=KN+ 1
KU=MAXA(N+1) -1
KH=KU- KL

50 IFJK$110,90,50
IC=O
KLT-KU
DO 80 J=1,KH
IC=IC+
KLT=KLT- 1
KI=MAXA (K)
ND=MAKA K*1)-KI-1
IF(NDI8 80

60 KK=MIN 0C, D
C=0.
DO 70 Lf1 K

70 C-C+A(KI~tJ A(KLT+L)
80 A(KLT ) =A(KLT) -C

V8 90 K=K+l-'-,'90 K=N
B=O.
DO 100 KK=KL,KUK=K- 1
KK-KKI=tMAXA K)C=AN(K= A)

BB+ *i A(K
* -100 AKK=C

11Q A '1ZO 12 140
1 T IouT,2600)*,A(KN)

STOP
140 CONTINUE
000 FORMATIL,' STOP - STIFFNESS MATRIX NOT POSITIVE

VEFINI , ,LL.._ SITIVE PIVOT FOR EQUATION

RtTUi" iOT E20.12)
END

13



C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GA
C

IMPLICIT REAL*8(A-H O-Z)
COMMON CM1A/NATNONG
DIMENS ION A()V 1),MAXA(l)

C REDUCE RIGHT-HAND-SIDE LOAD VECTOR
C

JMIN-
LATX=NLAT+ 1
JMAX=LATX

C IS THERE A DIRI LET BOUNDARY CONDITION?
IF(NDIR.LT. )GO TO 140

C SKIP NORTH AND SOUTH BOUNDARIES
JMIN=2
JMAX=NLAT

140 DO 240 J=JMIN JMAX
150 DO 180 j=,NL6NG

KL=MAX +N 1
KU:MAXA +1 -1

160 IFJKU-KL 18 ,160,160

C=O.
DO i70 KK=KL,KU
K=K-1

170 C=C KKJ V(K +J-L ONG )

180 CONTINUE
C
C BACK-SUBSTITUTE%'." C

DO 200 N=1,NLONGK- (N A(N
200 V A(N+(- i*NLONG):V(N+(J- 1)*NLONG)/A(K)N: NLONG

"-' DO 230 L=ZNLONG
KL=MAXA N)+
KU=MX R +1- 1

210 IFKU-KL)230,210,210

DO 220 KK=KL,KU
K=K-

2 0 CONTINUE
RETURN
END

C

C

C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GB1 OR GB2
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON CM1A/N T N ONG

CDIMENS ION A(1 ),Vf1) ,MAXA(1)C
C REDUCE RIGHT-HAND-SIDE LOAD VECTOR
C

LATX=NLAT+ 1
NMIN=1
NMAX=LATX

C IS THERE A DIRI CHLET BOUNDARY CONDITION?
IF (NDIR.LT.) GO TO 50

SKIP NORH AND SOUTH BOUNDARIESNMIN=
NMAX=NLAT

10 DO It8 J=1,NLONG,50 DO =80 N=HNMAX
KL=MXAINNI

14
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KU=MAXA +1. 1
160+F.. 118k '160,160

:. :,c=o.
DO 170 KK=KLKU
K=K-1

170 C=C+A KKjV(J+ (K- 1 ) NLONG).
V(J+(N- 1 )*9ON)=V J(3 N ONG)-NC

180 CONTINUE
C BACK- SUBSTITUTE

S".DO 200 N=NMIN,NMAX
K= (N

200 V "J4tN1 *NLONG)=V(J+(N-1)*NL0NG)/A(K)
IN=2

L AX=LATX
IF" NDR.LT.1)G TO 205
LM N=
LMAX=NLAT

205 N=LMAX' DO 230 L=LMIN,LMAXKL=MAXA N)+ A

210 l --IF( KU '- P  2 3 0 ' 1 0 ,' 2 1 0

210 K=hoNi
DO 210 KK=KLKU

20 K=K- 1
~~~~220 V J+ 'K- )*NLONG):V (J+ (K- 1)* NLONG )-A (KK)* V (J +(N- 1)*

R8 ONTINUE

C END
C

C
C THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A
C TENSOR PRODUCT OF THE GB MATRIX AND THE GA MATRIX.
C THE FIRST OF THESE IS NLAT + i BY NLAT + 1 SYMMETRIC,
C AND TRIDIAGONAL. THE SECOND IS NLONG BY NLONG
C SYMMETRIC AND TRIDIAGONAL EXCEPT FOR SINGLE ELEMENTS
C IN UPPER AIGHT HAND AND LOWER LEFT HAND CORNERS. GB IS
C STORED IN SKYLINE VECTOR FORM (UPPER TRIANGLE WITH SPACE
C FOR FILL-IN) AS GB1 AND GB2. THE LATTER VERSION IMPOSES
C A DIRICHLET BOUNDARY CONDITION ON THE NORTH AND SOUTH
C BOUNDARIES. GA IS ALSO STORED IN SKYLINE VECTOR FORM.
C INTEGER ADDRESS VECTORS MB AND MA ARE ALSO GENERATED.
C IMPLICIT REAL*8(A-H6 O-Z)

COMMON/C MI.ALF ' ,LO 1
CO BO AG B BLAT .)AZ),GB1(ZL),GB2(ZL),MA(ZM),

-C DI IN NLATAGNL GB12*MAT-1),
C GAI3WNLONG-,3 I, MA(NLONG 1),MBtNLAT+2)-- UTX= LA

C FID N LEMENT HEIGHT)/6.,'2 BG, Jf i+ NLONG'kjj-1) )/ 3.

• GB: "GI )
3O NLAT

2 GJ= iNG*J 1))/3.J)

GB K _
GB K)- Bi

4 GB +1'=G1K.
GB T.= *B4 NLAJ)
GB *NAT1 =BG (NT)
GB .
GB N-T) .
GB Z*NLtT1=O

C FIND G EL NT WIDTH)/6.

15
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DO 1~ J~l NLONG
10 AGJJ =A(J5I3.
C GENERA E GA*

GAO. =2*(AG1+AG(NLONG))

12 GAMK+1 jA J-1)
KP2J*N ONG

*K K3NLONG-4
DO 1 .4 K=K1,K2

14 GA(K)=0.
GA~ 3 NLONG-3 )=AG (NLONG)

C GENERATE DIRECTORY VECTORS
MB 1)=1
DO,6 J=1 NLAT

16 4+)2(NLAT+ 1)
4A%1=1

DO 1 LN

END
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Listing: GOG3 EXEC

ERASE GAUSS2 * Al
SOPY GAUSS3 FORTRAN Al GAUSS2
STACK CDIM
STACK F ILE

X GAUSS Z FORTRAN
FORTM GAUSS2
GLOBAL TXTLIB FORTMOD2 MOD2EEH
FILEDEF 05 DISK
LOAD GAUSS2 (START

'p. Listing: CDIM XEDIT

SET CMSTYPE HT

C ZB/6/~
0 CNLAT~

.4 ~Zl=3NLONGNI3

C ZK/15/*

ZL=2*NLAT+l
'PU. C ZL/7I * *

10ZM=i1ONg. 
1

C1oX/ 7/
C /

ZP=N NG(ILAT. 1)

SET CHSTYPE RT

* 17
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