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SUPERSONIC FLOWS AROUND A CIRCULAR CONE WITH OR WITHOUT BLOWING ON

THE SURFACE

E. Carafoli, C. Berbente and P. Marinescu

SUMMARY

This article studies the flow around a straight circular cone with

or without blowing in the presence of a supersonic current parallel to

the axis of symmetry. First we consider the case of a solid circular

cone for which a nearly exact solution is found for the equation of

motion. Thus formulae are obtained for simple calculation to determine

the angle of the shock wave, the fields of speeds and pressures. The

results obtained are very consistent with the data of other authors

using numerical methods and with experimental data. This fact made it

possible to extend the method to the case of flow around a permeable

porous cone with suction or normal injection on the surface.

The results obtained may be applied directly to the calculation

of the fuselage of supersonic and jet aircraft, or the thermal pro-

tection of the tip of aircraft by sonic injection and rockets, or the

thermal protection at the tip of aircraft by injection of a liquid or

gas. Likewise the use of suctions through the walls reduces the inten-

sity of the shock wave for a certain period of the flight, eliminating

a series of harmful effects of the latter.
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1. MOTION AROUND A SOLID CONE WITHOUT BLOWING

A circular cone is considered located in a supersonic current of

velocity Uoa(fig. 1).

Figure 1

Designating by V(8) the velocity component according to the radius

of the vector, we may write r, = V(O)=v,

re - (1'dO

d'V

dO'

Since the movement is conical, the velocity field is given by the

Taylor-Maccoll equation .- "-.. ar - "') " o. Vo)

in which a represents the local velocity of sound, given by the relation

a' - a - Y -(' -V' - V"), :3)

where Yis the ratio of the specific heat (Y=l.4 for air).

Introducing the velocity of interference V, given by the equation

-2-
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V - V Ui cosO, (v' r + U. si ll o " U- '0 ' s O) (4 )

equation (2) becomes

a( s n) ,. 4- v(tgO + ( 2 -  as- 0.

Since it is not simple to solve equations (2) or (5) we propose
to linearize them by replacing the nonlinear term V' 2 2by the function

- - Z * 6
as

suitably chosen, thus the solution which results will have a simpler

form leading at the same time to more exact results.

Consequently, instead of equation (5) we will solve equation
(I - t1)v " t ' tgO 4- (2 - tz) r = ,

whose general solution is:

U-

where the coefficients C and D are constant quantities, while I is the

result of the following integrals:
I dO t, H ,g d

BV).20 2 (9) I

From equation (8) we deduce immediately
V, C' V

tg 0. (10)
11 vI E) 0 UT0

to determine the constants C and D we use the boundary conditions with

(=8 c ) and for the shock wave (8=6s). Since the speed normal to the

surface of the cone is zero, we will have
0 =0,, 1' = r, - U. 0inO0 -0 . (I

From the equation of conservation of masses and impulses we have

the relationship 0=0,, t'..-O, (12.)

-3-
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0=IT, 0 =U( k) (I (I) 2b)

where

k . . K, = M e' i0,. (13)

Applying conditions (11), (12a) and (12b) we then deduce:

-. o (Cli + D) sin0, sin0,, (14a)

CI. + D = 0, (141)

H, (C8 , + )sn0,)RnH 0_ Co 0,, . (,-4c,
Starting from them we obtain

- = (( - l,)eoso (D C - l), (15.a)U.,

C . H, sill 0_Cos 0,
I + Hr( I, - ,),Rinl O,. co." O,

- 1 - tgo,. -
M 2, - (! - k) H,

where Hc, Hs, Ic, Is represent values of H and I for e=ec and e=es  To

determine the function t 2 , we may observe that (fig. 2) the function V1/

a2 and its first derivative become equal to zero for 0=0 but the flow

after the shockwave has a normal subsonic component. rven in the case
2when the motion is incompressible we will have t =0, and we obtain from1 0_

equation (9) 110 si!l0, 00 1 111 tg--- . (17)

We may note the fact that relation (17) furnishes results close to

the real ones which makes it possible for us to choose a simple expres-

sion t in the form s= b(.r-I), -. (-in- 0 n1 1,2,..., (1)-4-n 0o

-4-
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where

b =l kK---c(19)

22

the values of t 2 being determined on the basis of the boundary condi-

tions (12a) and (12b).

1

p

Figure 2 e

Expression (18) as resulting from the applications, gives nearly

exact values and leads to practically applicable expressions. These

expressions are simple, being established in the form of a correction

to the incompressible solution (17).

Introducing expression (18) in (9) we have
rctgdO dx ( 20)__

The integral (20) is solved immediately and rr-sults in the expres-

sion: 0 (- crx)" (mint 0)"(1-~.)
_ --- -(21)

(s (iin0)' minO0

in which some constants are given up which can be included in the gen-

* eral constant C and we note

b

-5-
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To calculate the integral I we observe that expression (21) may be

expanded in the form1° _ [I - (I -- in 0) ]*(1 - or)' [I- -8 (I - in O .) 1 -- m,,r)

.H sin0 Kin 0

Z +g1- - - ") n 'A sin"O, (23)

in 0 %in* 0, Sin, 0.

where6, and 6 are constants chosen suitably to represent better the de-

velopment of the two binomials of expression (23). It is observed that
foBo= 8,=Owe obtain expression (17) and H0 . Consequently 6 and 6

represent correction terms before the basic integrals H0 and 10. Like-

wise it is possible to put the function H in a simpler form, retaining

only the important terms of (23) and certain terms in i/sino and

terms in sine-0 which have a larger coefficient before the final term.

Consequently we may write
1,--]-1 I-8

H".-fe(24)

where the coefficients 6 and e are determined from t,-e condition that

the function (24) is obtained from the points 0=8 c and @=es, where the

values of H in these points are given by (21):

=-. C '1-- ,_ -I- (I- Or. . (25)

- °Hin t

From conditions 0=6 and 8=8 we have

+ CPA~ 0"-o. 1 - (26)H,, si 0,S

. and consequently we obtain
S"'" Hr, sin0, - HiinO. (2-)-'?~~~ ~ ~~ --- I...... ; t .. .. . (7

"'k- HII.(.,, - I)H, ,ill , O i'

We emphasize the fact that the expression (24) is only used to

calculate the integral I, the single place where it is necessary that

the deviations are the smallest, as follows from the integration.

With expression (24) obtained for 1/H the integral (9) may be ob-

tained easily in the form

-6-
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- .ina-0(J 0-- ( -, to t1- .(28)I 1 ID cos'0 (~

As may be seen, the basic term of the integral I is I1 the others

being correction terms, a fact which makes it possible to simplify the

calculations. Thus all the above expressions are easy to manipulate

and lead to results which practically correspond to the numerical cal-

culations.

The verifications carried out show that the same results :are

valid for the complete flow conditions in which the shock wave remains

attached, including the transonic conditions, corresponding to n=4 and

leading to an expression for I deduced from (28) in the form

= 1 ) 10 + C C080+!-) (29)

V Determination of the angle of the shock wave. To determine the

angle e of the shock wave, we will apply equation (15c) which leads to

the expression I H.in 0, cos0 tg0, 30

This expression may be solved in a simpler or more complicated man-

ner, through numerical examples. This is accomplished more easily by

using the method of successive iterations which leads but after the se-

cond approximation to exact values. For this purpose we will seek the

most suitable starting expression for the real value using for H in the

first approximation the expression given by (17), i.e. H =sin 8 H =c c s
sine es . We will write siliab +i, 1 osO 31)

5 M, I kI+ (1o,-Io,)sill'O, cosO cosO*

Starting from this and observing that the last two factors of the

*O second term of the right hand side of equation (31) are mutually com-

pensated, tending to the value 1, we will write in the first approxi-

mation ' (32)..... i-k "

Sk

-. -7-
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In the above equations (31) and (32) the index* was introduced to

designate the starting value 95 After calculation of 9* from (32) we
S

will introduce this value in (15b) and (21) and we recalculate the value

of E from (15c) in the form

Sin'O(. __ (t t1)
(I -k) !J ,

With this value of 8, we will calculate the new characteristics

of motion C, H, I.

Calculations of pressures: After the pressure drop by the shock

wave (transformation accompanied by losses), the gas undp-qoes isen-

-..- tropic compression, reaching a maximum pressure at =0 c

Designating by p S the immediate oressure after th( hck wave we

have p, - 2y j1 Ki,"(2 -( -) 1', k P1, (3-.
... p, y4 1  Y- ,I

a ratio which we designate by X, to simplify the writing of the following

formulae.

After the shock wave the transformation of the gases are isentropic,

the ratio of the pressure p under the current angle 9 and the pressure

pomay be written in the form
p _ p p, [( - 1 2 '2

where W rerresents the --vimum speed, given by the equation /7/

1 + _ . (36)

From the boundary conditions in (12a) and (12b) we obtain

Il-s ~ * 1-kf(37)

In this case, for a certain angle 0 and for the surface of the so-

lid cc,-, ("="c' V=V c # V'=O) we have

• -8-

-f".- . ," ', .. - ". . • ." " ." . . "-** . '..- . . •. -'-.' " '-. ."" "- - " .". -" ."' - ". .." .. . . .- " .. '.* *, °*. ' -"-* " -- "• # .. # . - l ' 'o ' •
"

. • . - . . . . . . . . .• ' .°e * m



Y - ' - -2 Y
2 1

P' (712_ I 1

,) ) t ]2a9-~P " (k ,-k)

Knowing the ratio of pressures, from the equations (35) and (38) it

is possible to calculate the pressure coefficients C defined by the

relation

"'- 2', P (40)

Verification and comparison. The comparisons are made for two im-

portant parameters of the flow, specifically the angle of the shock wave

8 s (equation 33) and the pressure coefficient on the body C (equations

39 and 40).

From figures 3 and 4 we observe that the results obtained practi-
cally for 8 and C coincide with the values obtained by numerical in-

-' s pc

tegration of equations (2), (3), (4), for a large interval of mach

numbers (M.=1.25-5.7) and the deviations (8 =10°-50 ) covering the en-
tire supersonic and hypersonic range are moderate.

It is observed that the method is applicable also in cases when the

_ flow conditions are transonic, as occurs, for instance, at ?%=1.25,
0 0-

@c=20 ° or at M.,4=2, @ =400 In the latter case the flow is very close
c ofCsock- 0

to the point of detachment of the shock wave (0detachment=4 1 .5°

We may therefore observe the satisfactory consistency of the ana-

,. lytical formulae and the results obtained by numerical integration, as

well as the experimental data, which implies a very high precision for

the distribution of velocities.

-9-
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2. FLOW AROUND A POROUS PERMEABLE CONE WITH SUCTION1

It is assumed that thrr'ugh the walls of a cone, with a half-angle

at the vertex 8=ep (fig. 5) the suction is carried out at normal speed

W . On the vector radius 8 =8 c, the normal speed is equal to zero and
p
therefore the cone forms with this angle a straight definite shaft with

solid equivalent by analogy to the previous case.

Designating by ea coefficient in the form

"<I (41)

for the characteristic of suction, and taking the boundary conditions

just as in the previous case, with the difference that the walls are

porous we will have

resulting in 0 60, 1'>- i'p- 1T 1 ii0,= I',, (42)

Li] 2 ' .  ', l .i,0, (43)

and consequently we find for C the expression
C (_= _ P1,, A , fin 0- Cos 0, "# , ,,Jill 0, co, 0,. , (44)

+ -,-, , 0,, + H(1. - I,)sin , .osO)

obtained in the same way as expression (15b).

We will consider three important situations of the calculation:

a. Direct problem. The angle 8 and suctions Wp or the parameter

-P.iu0! I) are given, together with the Mach number of the flow M

From equation (44) we calculate the angle 0 of the equivalent cone,
0using for H the expression H =sin 8

We will obtain successively, observing that the denominator does

not differ much from unity,

A similar article, "Supersonic Cone with Blowing", E. Carafoli and C.
Berbente was published in The Aeronautical Quarterly, London, 1976.

0;% i-11
"- - l



A--.

. ..-.

*With the value of 8c given by (45c) the problem is solved in the
C0 0 0 0 0

case of a solid cone and we obtain the values of H , H , C , I
*Then we calculate the expression for the angle 0c in two approximations

- of the equation (44) in the form

sin 20, H: 2±H(I.O- )ih2e0 4'
sin20P H, 2 + 1(Ji. in 20,,

This new value of deduced from (46) is sufficiently accurate andc
no more corrections are needed. The upper index (0) was introduced for

designating the first approximation.

b. Indirect problem. The parameters B and eare given, and we
seek the angle wh"*.ch requires the implementation of a definite suc-

" tion of parameter B. In this case we calculate from (45b) the value of

the angle 8 through a first approximation, which is designated by
p p

We will obtain just like for (45c)

sin'0 n --- 1- I - si 0,. 20," (47)

The correction of *he angle 0 is accomplished using once again the• p
equation (44) in the form

sin20, 1 H, 2 1PI(1, - 1,)sin2 " (42)
sin2 0, H° 2 + H(1,-.)sin20,

'-. The necessary speed of suction is calculated by means of relation

-'. (41) l, (p - 1) UT sin O. (49)

c. Mixed problem. We observe that the angle of the solid equiva-

lent cone c may be used as a parameter for the suction. This means

-12-
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This means that 8 may indicate the intensity of the section by choosing
p

the angle 0<e <1p, In this case the flow is determined and there
c p

only remains the calculation of the suction speed for e=ep from equations

(42) and (16) (w](

It is found that it is simpler to solve this in the third case.

3. CONE AROUND A POROUS CONE WITH INJECTION

V, V

M.

Fig. 1

If through the porous wall a fluid is injected at a constant speed

(W >0), for example for the purpose of thermal protection, a surface
p

of separation will occur between the injected fluid and because of it

a current to infinity, located under an angle 8c' 0p (fig. 6). On this

surface of separation, the normal speed component is cancelled (Vc=O)

and may therefore be defined also in the case of suction as an equiv-

alent cone. However we should observe that the radial speed component,

that is V, may present a drop at 8 =8 c . This drop occurs even if the

fluid injected is identical to the external one, but it has a different

stagnation pressure. Consequently the conical surface 0=0c represents

the conical layer which maintains a stable form if the pressure in

these two flows, internal and external of the cone 8c are equal (pci

Pce ) •

-13-
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The external motion around the equivalent cone of half-angle ec
has been studied previously (paragraph 1). We will now study the

motion of the inside of the equivalent cone, which may be treated inde-

pendently of the external one. The problem is therefore reduced to the

study of the motion inside a solid cone of half-angle e after the in-
c

jection of a fluid through a porous cone of half-angle p coaxial with
p

the solid one (fig. 7).

Flow inside a solid cone following a subsonic blowing through a

coaxial internal porous cone.

Let us consider a porous cone of half-angle 8 =8 p inside a solid

cone of half-angle 8c (fig. 7). The fluid injection is carried out

through the porous wall along the normal, at a constant speed W, more

than 0, along the radius. In the following we will assume that the

speed W is subsonic (t2 < 1). The problem is bound with the solutionP P
p 2of equation (2) which we shall linearize by introducing the function t

.in the form - 0) V" + V' ct0 + (2 -- t2) I '. (51)

The difference for the previous case for the solid cone consists

in the fact that the function t2 must be considered on the descending

branch (19<8 fig. 2) and the speed of sound is obtained from the expres-

sion as -o, + (V1 2 :-1'- 1"'), (52)

where e represents the speed of sound e=0 .-- p P

. The general solution of equation (51) is similar to that given for

equation (8). We will write'.-'. " I" = (G'I + P) .s 0, (

where the function I is given by (9) , by the constants G and F are de-

termined from the following boundary conditions
0 0 0,, V 1 W,, a a,, (54S)

e= e, V= 0. (5b)

. , I"

-14-
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We obtain immediately from these two equations (54);

V I, H,H. sin 2 0, it, ' 2 -, (55i.a)
,,...... in 0, 2H in 9 28 2H ,p sin2 6p4- [,--1)/!1. Hpin 26,qii 2 0,

- .-"F = 2 (,r.hb

\H,. in 2 0,

For the function t we will choose an expression of the form
Rill 0 , 6

t2=b( X~ ~= (- o)M m 7-,,.. (r0

which is similar to the form (18) but for negative n.

The coefficient b is determined from the equations
t~lJ 11f'

2

%---- - (57)

For t 2=0, we obtain expression (17) for the functions H0 and I in
0 0

the form

Ho = sin 0, 10I + In tg- • (58)
('ORO 2

For this case which corresponds to an incompressible motion, the

constants which we shall designate as F0 and G0 are obtained from the
A expressions (55). The same movement may take place if a liquid is in-

jected for cooling purposes. Let us consider the angle = corres-
• ponding to t1=l (fig. 2) where 81 represents the boundary value which

is never reached in subsonic blowing, that is we will always have 8 '
p

" 1  Taking
1 b

• -
I V( 

9SIsin 0c 1i- + v= b ,(

we can write

I cOfIRt.
lip? (60)

or choosing suitably the constants
I 1 1 1 l-iH - Fill 0)j

~ H (Raill 0)'", 1 Rill' si 0 oil" 61

-15-
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Since v and a have low values, the expression (61) may be expanded

in suitable manner, which, just like expression (23) will be used only

for integration.

' .Thus using suitably chosen constants 6.0 6 we may write

1 - (-. silkO) 1 -

II sitO I -8, - i Oj S''ili6
-. sill" 0

Sil'.0 + 2 vl -- si- 0,(62)
• ".- sin=O(sin 0)n"

Just as in the previous case we can consider a suitable value for
6 and 6 for the purpose of a better representation of expression (61).

Observing that the first and last terms of (62) are preponderant, the

.. . above expression may be written with sufficiently good approximation in

a form similar to (24): 1 j-' (

H ill 0 (sin (63)

The constants 6' and e' are determined from the conditions that at

the ends of the interval 0=0 and @=@ c, the expression (63) coincidesp c
with (61) that is H will have two values H and Hc

l. - (sill 0 1c"! - 1)', 1i, -= (sill OrV ( -1 - 64):b;:sill' o,!v

By this means we may easily deduce that

1 ~. -. iii0, -r, sill U0, ].--;] _ #,., ,- H,, ,, - , , -_Kllo - n- r) (65
" H A - Xr) H,

Consequently, the integral I will have the form

dO
8I (1--8')I , + '-- - , (66)

") sl 0 sin + 1 0

Results very near to exact ones are obtained for m=3 when the

expression (66) leads to ,( 1
!.l 1 - ? i, -4 2 IgO + - tgaO-ctg 0 (67)

3

-16-
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Calculation of pressures. We designate that p the pressure on the

internal cone 0=0p and Pc the pressure on the external cone C=8
c . Desig-

nating by p the pressure at a current point, we will have
Y Y

pp~ (-j4 1u4  
= 1NI.(

wbere the maximum speed W. is given by the expression.

'14; = 11 -+ + . (69)
Y -1

From here we calculate the pressure coefficient

(P -1 (701)

M being the Mach number at 9=0.
p p

Determination of the lines of current. It is useful to know the

form of the lines of current in the region inside the two cones in view

of multiple applications. In the first row we will give the expression

of the angle a of inclination of the total speed, on the side of the

surface of the porous cone
",-'" ~ H _] 2/(H, sin20,)-2/lH, in 20,) 4. (1,-/ t 1, .(J1

"" IVP 2/(H, . in 20d1- ([, - I1

We will determine below the function of the current T using the

equation of the lines of current in spherical coordinates, for the

special case of conical movement

dR Rd 0'. . ... .... 72 )
11 V,

The function of the current is introduced in the form

= R -P sin Oi'dO = R2) P (OI + F) gin0 d0, (73)
se Pi e Pi

where for e=c we obtain the line of current T=0, while P1 represents

the reference density and it may be shown that Pl=P c In case of in-

-17-
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2=
compressible flow, p=p=constant, we have t =0 and we obtain for the

function of the current the following expression
R' (G,[0+F) -sinOdO 2- Go sin t 0 n tg - -co 0 +

+ F9 ain tO + congt]. (74)
,N

where the constant is determined from the condition 0=0.

For the general case on the basis of the expressions (67) and (73)

observing that we can find for P the average value and therefore the

ratio P/,', of small variations (p/p 1  1), we have

=_ l ')"O r sinr'Ontg . -eogOe -

+ 2 Ge'(tg - 2sin 20) + F %in'Ot- connst. (73)
3

Thus we obtain the analytical expression for the function of the

current, which may be applied without any difficulty.

Examples of calculation and choice of the injection parameters.

In case when we consider a motion in two coaxial cones (Fig. 7)
of which we know the half-angle of th,, solid Ld 0 = 9,and the half-
angle of the internal permeable cc-. = Op , L t t i W Lh the speed of

sound ap ie level of the porous wa.- ku- 60) iui tht blowing speed
W along the niormal, t2 may be calculated along the walls according
p p

to the relation

which is implemented if the blowing is subsonic. In this case all the

relationships of the calculation are explicit and there is no difficul-

ty in their application.

.* In case the fluid is injected inside a current from infinity

* (fig. 6) the cone 8=0 represents the surface of separation between
c

" two flows (one internal) (8 8c) and the other external (8 8 ) We

cc.-. may disregard the eddy effect, located at 8=e c, as well as the heat

:'" -18-
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- exchange, because the latter is generally of secondary nature and rep-

* '- resents only a correction which may be added subsequently. The prob-

lem is solved by considering simultaneously two flows, the external

one whose solution has the form (8) and the internal one given by

equation (53).

The stabilization of the quantities characterizing the flow leads

to the following situations of calculation:

a. Direct problem. The characteristics of the external current

are given: U. M&, p., angle 8p, the speed of sound ap, the speed of

. injection Wp and pressure pp, and we seek how to determine the position

"of the equivalent cone and the position of the shock wave c, at

the same time as the entire field of motion. Together with the con-

stants C, D, G, F we have six unknowns for which we have six equations

given by the two conditions 8=8 (equations 12a and 12b), three con-
s

ditions for 8=8 (equation 11 and 54b for the external flow and thec
internal flow and equality of pressures) and the condition 8=8p

Taking into account the expressions of the integration constants (15a,

15b, 55a and 55b) the problem is reduced to finding the angle of the

solid cone 8 and the angle of the shock wave Os from the system of

equations:
"+ tgO5  H,,sin 20("*/-M Yi 0, - . . . ..• (76)

- .A1 (l-k,) I1,, 2 + H ,(I,-Ie,) sinl 20.

Y,

a - V2

_e y1*2*.* iV,( (77)

'S..

where the indices e and i refer to the external and internal flows

0O respectively. From expression (77) we observe the appearance of a new

important parameter; the ratio pp/p .

.'19
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The system of equations (76) and (77) is easily solved by attempts

observing that at the value chosen for the angle 8c (ec 8 p), both the

internal and external flows are completely determined, This initial

value is modified until equation (77) is verified.

b. Indirect problem. The quantities are given which characterize

the internal flow a , Wp, p p, 8 and the angle 8 and we attempt to

determine the characteristics of the external flow with surface of

separation at 8=8
'4' c

Since the internal flow is totally determined and therefore the

angle 8 c is given, there remains the determination of the constants C

and D along with the parameters of the external flow MC, Uc, po, and

the angle 80, that is six unknowns. In this case we have four equations

given by the two conditions at 8=8 (equations 12a and 12b) and two

conditions at 8::8 (equations 11 and 77). The result is that two of
C

the parameters of the external flow must be chosen. If we give M

and U then the angle 8 is calculated from the equations (15c) or (76)

while the pressure p and therefore the stagnation pressure from the

external flow are obtained from (77) (before and after the shock wave).

In this case in the indirect problem the equation of calculation

becomes explicit. We may observe lthat the speed U may now be deter-

mined from the equations referring to the external flow, as represent-

ing only the stages of movement. Consequently in the indirect problem

we cannot consider the values MM and pm as known simultaneously. If

the values are given for p. and U., then Mm and the angle 8s are deter-

mined from trials by means of the system of equations (76) and (77).

Comparison with other methods. Figures 8 and 9 show the diagrams

of the results obtained on the basis of the analytical methods proposed

O and are compared with values determined by numerical integration by

Emanuel /2/. We find a very good consistency both as regards the angle

of blowing a, (formula 71) and the ratio of pressures p /p . The para-
2 p

meters chosen were 8p and 8 for which we considered three values:

-20-
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Figure 9: Key: (a) present theory; (b) numerical method /2/.
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