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transmitting and receiving arrays is developed in this thesis. This method is 
an extension of Stepanishen's spatial impulse response technique to free field 
line arrays of finite elements with time delay beamformers. An impulse response 
function is defined at a field point resulting from a distribution of sources 
and arbitrary time delays. The transient pressure field arising from the ele- 
ment distribution and time delay is then obtained by convolving the time deriva- 
tive of the impulse response with the excitation waveform. 

The impulse response for several discrete element line array systems is 
obtained and shown to be a series of impulses. The strength and location of 
the impulses is related to the geometrical properties of the array, the beam- 
former time delays and the field point. 

The impulse response for a continuous line array with an internal propaga- 
tion speed is developed as a linear superposition of three dimensional point 
sources with initial excitation times dependent on their location within the 
array.  In this instance the magnitude and duration of the impulse response is 
dependent on the geometrical properties of the array, the speed of propagation 
within the array and media, and the location of the field point. The receiving 
response of an array can also be evaluated using the same impulse response 
technique. 

Based on the numerical results obtained and favorable comparisons with 
other techniques when possible, it appears the impulse response technique is a 
viable approach for analyzing the formidable problem posed by array systems 
which generate or receive transient pressure fields. The technique yields a 
spatial impulse response which is dependent on element size, array geometry 
and the beamformer. The impulse response can then be convolved with a variety 
of excitation waveforms to conduct an array system analysis as a function of 
waveform design or received signal. 
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I.  INTRODUCTION 

The radiated field generated by baffled pistons has necessarily 

received considerable attention because of its fundamental importance 

in the analysis of many acoustical systems. Although the field 

produced by a piston of arbitrary shape is widely studied, most efforts 

can be traced to a few fundamental methods of analysis (Harris). Each 

approach can be derived from the wave equation with boundary and 

initial conditions. 

The first studies of the baffled piston made use of the Rayleigh 

surface integral solution for the time dependent velocity potential. 

The Rayleigh integral is a mathematical statement of Huygen's 

principle. This principle states that every point on a vibrating 

surface may be considered a source of outgoing spherical waves and the 

net field can be obtained using linear superposition. 

The other two methods can be derived from the Rayleigh integral in 

a very similar manner. In each approach the surface integral is 

transformed into a line integral expression by means of a translation 

of the coordinate system. The order in which the integration is 

performed determines whether the Schock or convolution approach will be 

obtained. 

The Schock integral decomposes the transient field into 

geometrical and diffraction waves (Harris, ibid). The convolution 

integral method introduces a spatial impulse response and the field for 

any arbitrary source motion can be obtained using the fundamental 

concepts of linear system theory. 
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Apparently Morse was the first to derive an expression for the 

transient field arising from a circular piston but Stepanishen is the 

best known author of articles related to the convolution integral 

representation. His development is based on a Green's function 

solution to the wave equation. The radiated field is expressed in 

terms of a convolution integral which lends itself to the study of 

other interesting transient field problems. 

Although considerable work has been devoted to the analysis of the 

steady state response of line arrays, little effort has been devoted to 

a systematic analysis of the transient response of these arrays. The 

subject of this thesis is the extension of Stepanishen's (Stepanishen, 

Phd. Thesis) impulse response technique to free field line arrays of 

finite elements with time delay beamformers. A simple approach to 

evaluate the transient and steady state response of transmitting and 

receiving arrays is developed and used to obtain numerical results. 

The present development is based on a Green's function solution to 

the time dependent wave equation. An impulse response function is 

defined at a spatial point resulting from a distribution of sources and 

arbitrary time delays. The transient pressure field arising from the 

source distribution and time delays is then obtained by convolving the 

time derivative of a source function with the impulse response. 

The development of the impulse response technique as extended to 

include point source distributions and beamformers is presented in 

Chapter II. The development is then expanded in a straightforward 

manner to include a complete pulse-echo system. 

The impulse response technique is then used in Chapter III to 

evaluate the impulse response and transient pressure field for several 
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cases where the results can be obtained in closed form or via other 

methods. These cases serve to illustrate, clarify, validate and 

demonstrate the utility of the impulse response technique. 

In Chapter IV the numerical results for several complex systems, 

comprised of simple or finite size sources, such as curved arrays and 

frequency focused and scanned line arrays are presented and analyzed. 

Through these examples the usefulness and applicability of the method 

will become apparent. 

Chapter V contains a summary of the conclusion reached in this 

thesis and touches briefly on several areas where the technique can be 

expanded to systems more complex than those examined in this thesis. 



11. THEORY 

A. Introduction 

In this chapter, the salient linear system concepts and signal 

processing requirements needed in the formulation and computer 

implementation of the transient array response problem are presented. 

A brief discussion of the basic theory required to describe the impulse 

response of arrays and beamformers is followed by a discussion of the 

impulse response of a pulse-echo system. 

B. Linear System Concepts and Signal Processing 

A system in this study is meant to imply devices which process or 

modify signals. A device, in general, will perform some type of 

operation (for example, a mathematical identity or a digital computer 

algorithm) necessary to synthesize more complex problems. An intent of 

this study, as mentioned earlier, is to perform an analysis of the 

transient response of multidimensional arrays. Within this context a 

system analysis is to study the output of a system as a function of 

various input signals and system parameters. A signal represents some 

physical quantity such as voltage, pressure or velocity. 

Three special signal types require definition before proceeding. 

The impulse function, denoted by 6(t), is a signal of unit area which 

vanishes everywhere except where the functional argument is zero. It 

follows then that a time shifted delta function satisfies the following 

identity (Papuolis) 



+C. 

^(T) 6(tQ - T) dT = .^(tg) (2.1) 

The unit step function is defined as: 

u(t) =0    ;    t < 0 (2.2) 

= 1    ;    t > 0 

Based on the unit step function it is convenient to define a 

rectangular or boxcar function as: 

b(t) = u(t - t^) - u(t - t^) = 0    ;    t < tj (2.3) 

=1    ;    tj < t < t^ 

=0    ;    t > t^ 

In many cases it is desirable to express the output of a system in 

terms of an input and the impulse response. By definition, the impulse 

response, h(t), is the output of a linear, time invariant system when 

the input is a delta function. This leads to the familiar convolution 

integral: 

t  .     ■ 

y(t) =   x(T) h(t - T) dT (2.4) 

0 

which relates the output y(t) to the input signal x(t) and the impulse 

response of the system. This equation will also be written as: 

y(t) = x(t) * h(t) (2.5) 

where the asterisk denotes the convolution process. 



If the Fourier transform of f(t) is defined as 

r 
F(a)) =   f(t) e-J"^ dt (2.6) 

then a transform pair can be expressed as: 

f(t)<=>F(<o) (2.7) 

where 

f(t) =1^   F(a.) e^"^  d... (2.8) 

—oo 

The evaluation of the convolution in Eq. 2.5 can then be accomplished 

in the frequency domain using the following equation 

y(t) = F"^ |Y(a,)| = F"^ <{x(a,) H(a,)^ (2.9) 

where capital letters indicate a transform and F"-^ denotes the 

inverse Fourier transform operator. It is noted that the Fourier 

transform of the output of a linear system is given by the product of 

the system transfer function and the Fourier transform of the input 

signal (Brigham). 

To analyze complex systems using digital computers, it is necessary 

to develop discrete forms of the system functions. The notation f[n] 

will mean an array of numbers defined for every integer n. This 

sequence of numbers is the discrete form of an incrementally sampled 

continuous function. For example, given a function f(t) the sequence 
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f[n] = f(nT) (2.10) 

obtained by samplings f(t) in increments of T is a discrete form of the 

function. 

A general discrete form for the output of a linear system y[n] to 

an arbitrary input x[n] using a sampled version of the impulse response 

h[n] can be expressed as: 

y[n] = 2^   '^^^'^ ^^^  ~ "^^ = ""^"^ * ^^"^        (2.11) 
k = -oo 

For the case when the impulse response is casual and x[k] = 0 for k < 

0, the lower limit is 0 and the upper limit is N. 

A discrete Fourier transform pair may be defined as follows: 

N - 1 
       ,   ,        -o mn 

m = 0 

m = 0, 1, ...,  N-1 (2.12) 

N-1 

n = 0 

n = 0, 1, ...,  N-1 (2.13) 

This requires both the time and frequency domain functions to be 

periodic. 

The preceding expressions relate N samples of time and N samples 

of frequency and approximates the continuous Fourier transform pair of 

Eq. (2.7). The validity of this approximation is dependent on the 

frequency and time extent of the function f(t). 
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This study addresses, to a large extent, transient phenomena which 

infers finite duration waveforms. Because the signals and the impulse 

response function used in this study are time limited, sampling will 

result in aliasing. It will therefore be necessary to choose sampling 

intervals such that aliasing of either the impulse or signal transform 

is reduced to an acceptable level. 

C. Impulse Response Method 

Consider the problem of determining the time dependent pressure at 

a spatial point r resulting from a specified spatial and temporal 

velocity distribution of an array of sources in an ideal fluid of 

density p and acoustic propagation speed c. The inhomogeneous wave 

equation, formulated in terms of a velocity potential (^ and source 

terms Q is 

2 
^  v^ (j _1^1_|= _Q (2.14) 

c at 

Using a Green's function approach (Morse and Ingard) the solution 

to this equation for unbounded medium is (see figure 2.1 for coordinate 

definitions) 

^(r,t) =1  dtg J drg g(f,t|fQ,tQ) qd^g'^O^      ^^.IB) 

0    R3 

where the time dependent Green's function is 

.  gCi-.tlr t^) = ^ ^_ (2.16) 
4,r|R| 



XQ. Yo. ZQ) 

Figure 2-1.   Coordinate Definition. 
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The pressure may then be obtained from 

p(r,t) = p 
3^(r,t) 

3t (2.17) 

When the time dependence of the source term is independent of its 

spatial coordinates and is expressed in terms of a source strength 

q(t), Eq. (2.15) may be written as 

^(r,t) = q(to) dtQ 
6(t - t„ - 

c ' dr. 
4ir R 

(2.18) 

where R^ denotes the spatial domain of the source. Defining an 

impulse response at the spatial point of interest resulting from a 

distributed source excited at t„ as 

h(r,t) = 
«(t-to- If') 

4ir[Ri 
dr. (2.19) 

and substituting into Eq. (2.18) we obtain a convolution integral for 

(^(f,t) of: 

(^(r,t) = q(t) * h(^,t) (2.20) 

When the distributed source or array is composed of N simple 

sources, the source strength can be expressed as 
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N 

q(r,t) = ^ q(t - t^) 6(-?- r^) (2.2I) 

n = 1 

where r^ denotes the source locations and t^ is the time at which 

the nth source is excited. For this case (i{r,t)  can be expressed in 

the form of Eq. (2.20) where the spatial integral in Eq. (2.19) can be 

written as 

N |r - r I 
___ 6(t - t  - I HI) 

h(r.t) = y   "   ^ ^ (2.22) 

I    n I 
n = 1 

Equation 2.22 represents the impulse response at a spatial point r' 

arising from a collection of sources located at points r and 

initially excited at some time t . 
n 

D. Beamforminq 

An array problem in general consists of summing the outputs of 

individual elements. A beamformer in general is a device which 

rearranges the element outputs such that an overall increase in some 

performance parameter is noted. For a monochromatic input signal the 

response of a simple beamformer and array, containing N elements at a 

point r is of the form 

N 

<^-^ IR I 
n = 1 I " 

(2.23) 
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where k = oi/c and kR is the signal phase at a distance R and ^ 
•I n    n 

may be associated with a preselected phase adjustment. A is an 

arbitrary amplitude shading factor. Making the usual far-field 

assumptions, factoring out the time dependence, and setting the shading 

weight to unity, the above equation reduces to the well known 

beampattern function of the form sin N^/siniJ'. While this formulation 

is simple, there are no computational problems with extending Eq. 

(2.23) to more complex situations such as shading or when wavefront 

curvature is appreciable. The expression for the proper phase 

adjustment merely becomes more complex (Steinberg). However, the 

solution is still only for the monochromatic steady state case. 

As shown, the transient response of an array is relatively easy to 

compute as long as it is possible to determine its impulse response. 

The basic problem is to develop the impulse response for an array with 

a beamformer. Note in equation 2.22, t^ is an arbitrary time when 

the nth element is excited and may be controlled as in a time delay 

beamformer. Furthermore, IR^ I/c is the time required for a • 

disturbance originating at the nth element to reach the field point. 

This can also be controlled to some extent by adjusting the location of 

the elements. This is a form of a geometric or spatial beamforming. 

Consider for example the array and beamformer depicted in figure 

2.2. As shown, t^ represents a time delay for the disturbance s{t). 

The disturbance is then propagated at speed c and arrives at (x,y) at 

* = t^ + IR^I/c. It is easy to see that when 

t  +i-n.i-1 
n  c - ^n+1 

R ^, I 
-V (2.24) 
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TRANSDUCER 

DELAY SYSTEM 
 X 

GENERATOR 

Figure 2-2.   Conceptual Array and Beamformer 
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all disturbance arrive at the same time thus maximizing the impulse 

response function. 

Thus it may be stated that equation 2.22 is the correct equation 

fcsr the impulse response of an array of simple sources with a 

beamformer where t^ is associated with a temporal beamformer and 

|R^|/C with a spatial beamformer. 

E- Impulse Response of Pulse-Echo System 

Thus far the development has concentrated on the spatial impulse 

response function of an active array and beamformer at the spatial 

point of interest. To extend this study to include the transient 

response of a pulse-echo system consider the block diagram of figure 

2.3(a). 

The system consists of a sending array with components denoted by 

s and n subscripts and a receiving system denoted by r and m 

subscripts. Because the time delay beamformers, array elements and 

media paths for the transmit and receive arrays are linear casual 

systems connected in cascade, they may be rearranged. By assuming each 

element in a given array is electrically and mechanically similar and 

collecting the time delay and media delay systems into one term (see 

Eq. (2.22)) the diagram can be redrawn in simpler form (figure 2.3(b)) 

which closely resembles the form illustrated by Stepanishen 

(Stepanishen, JASA, 1981). In this diagram the transmit element 

transfer function G^M  relates the excitation voltage E M  to the 

source strength QM.    The source strength q(t) is the instantaneous 

media flow away from the source where 

q(t)<=>Q(a)) . (2.25) 
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Similarly the receive element transfer function G (u) relates the r' 
force F^((o) on the transducer to the voltage output E (u). 

The total system response may now be formulated using the 

following equations: 

Qs = gs(t) * e^(t) 

P3 = p|t qs(t) *h^(^,t) 

let S = 1 ; ideal reflector 

Pr = Ps 

%  = Pr(t) * h^(r,t) 

and finally 

e^(t) = p It {e^lt) * g^{t) * h^(r,t) * h^{r,t) *  g^(t)|   (2.26) 

Equation 2.27 describes the transient response of a pulse echo 

array system containing time delay and spatial beamformers and provides 

the means to conduct a system analysis. If for example the transmit 

and receive elemental sources are ideal then g (t) = g (t) = 

K6(t).  If the beamformers are also ideal, then 

h5(r,t) = N6(t - t^)/4ir|R I   ;    h^(r,t) = N5(t^ - t^)/Air IR'^ I 
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In this case if e^(t) is a sinusoidal pulse the received voltage 

output e^(t) is also a sinusoidal pulse of the same length as the 

original pulse but is delayed in time an amount (t + t ). If the 

beamformers are not focused on the ideal target the impulse response 

decreases in amplitude and exhibits some temporal spread. This results 

in a decreased output voltage somewhat longer than the original pulse. 
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III. SELECTED RESULTS 

A. Introduction 

The general theory of the impulse response approach to examine the 

transient behavior of the acoustic field arising from an array system 

as a function of space, time and source function was presented in the 

preceeding chapter. Since the problem becomes complex very quickly, it 

is worthwhile to examine a few simple cases for which solutions via 

other techniques are available for comparative purposes. These cases 

will serve to illustrate the validity and utility of the impulse 

response technique and perhaps clarify the approach. 

B. Simple Source 

The impulse response at a field point resulting from a simple 

source can be obtained directly from Eq. (2.22) and is shown in figure 

3.1. The velocity potential is simply the convolution of an impulse 

and a source strength function. The pressure may then be calculated 

using Eq. (2.17). The velocity potential and pressure for three common 

source strength functions are shown in figure 3.2(a) and (b). 

For the case when the source strength term is a monochromatic 

sinusoidal pulse of period T and amplitude S the pressure is given by 

P^^^ = - fff S cos (tot - kr) ; 0 < t - ^ < T       (3.1) 

which is the same equation found in Morse and Ingard. For the 

frequency modulated source function of similar amplitude, period and a 

slide constant u the pressure is: 
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\ 
h(t), \ 

\ h(t) 
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\ 
\ 

■1 N 1 \ 
47rR 
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Figure 3-1.   Impulse Response of Simple Source. 
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0(t) 

47rR 

47rR 

4TrR 

VELOCITY POTENTIAL 

AA/W 

CW 

LFM 

BOXCAR 

R/c R/c +T 

(a) 

CW 

LFM 

I       BOXCAR 

Figure 3-2,        Velocity Potential  and Pressure Resulting from CW,  LFM 
and Boxcar Source Strength Functions. 



P(t).-5^ 

where 0 < t - r/c < T 

-ult-^ cos .t - kr ^ ^ ^t - I 
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(3.2) 

Thus, the amplitude of the pressure is linearly dependent on time. In 

the case of the rectangular source function the pressure is simply two 

impulse functions of opposite sign as noted on the figure. 

C. Line Array of Simple Sources 

A straightforward extension of the simple source is a line array 

consisting of N simple sources located a distance d apart as 

illustrated in figure 3.3(a). The farfield impulse response when all 

sources are excited simultaneously, based on Eq. (2.22) is 

h(r ■-'=^z4-^) (3.3) 

n = 1 

where 

RpI = |r| - nd sin &. 

Note that t^. and t^ where 

f        r  Nd sin © 
""i - c    c  

t, = r. 
f  c 
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Figure 3-3.   Line Array of Simple Sources and Corresponding Impulse 
Response. 
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are the times corresponding to the initial and last impulses 

respectfully. 

Thus, the impulse response is a series of impulse functions 

beginning at time (r - Nd sin »)/c, corresponding to the array element 

nearest the field point, separated by At = (d sin »)/c, and ending at 

t = r/c, as illustrated in figure 3.3(b). 

The transient pressure response can be computed as a function of & 

according to 

P(r,e,t) = p 1^ q(t) * h(r,e,t) (3.4) 

If q(t) is a pulsed harmonic function with a time duration T„ > Nd 

sin &/c, a steady state solution will be realized at times greater than 

r/c. For example, let q(t) = Re |Ae^"'*'^l for t 2 0. Then for 

t >  r/c the pressure is 

p(r',9,t) = Re pckA 
4irr 

ito(t - I + (N - m)       iy(t - I + (N - 2)11^) 

io,(t - |) 
^^^F 

(3.5) 

This expression can be rearranged, e^'"^^ " "^'^^  factored out such 

that ij; = (d sin &)/c, and rewritten as 

p(r,©,t) = ReH ckA 
iJt-I.a 

4irr 

111) sin ( N Y~ sin e 

/kd sin (-s— sin e ^'^i 
(3.6) 
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where in general 

N - 1 
E. Na 

gina ^ ^^" 2 ^i(N - Da   . (3.6a) 

n = 0      ^^"" f 

The term of equation 3.6 in brackets is related to the 

conventional beam pattern expression for a line array of N elements. 

It is therefore apparent that the impulse response of an array can be 

used to obtain conventional steady state beampatterns. 

It is simply observed that the time interval between impulses in 

figure 3.3b can clearly be related to a frequency and in fact any 

multiple of this fundamental frequency will maximize the steady state 

response for a specified (d sin &)/c as shown in figure 3.4(a). If a 

frequency is selected such that f = (2M - l)/2At the steady state 

response is zero as one would expect; however, there is a non-zero 

transient effect as seen in figure 3.4(b). 

For reasons which will become important later, it should be noted 

that the time interval between impulses is constant, therefore, a 

waveform with a constant period is required to achieve a focusing 

effect. 

If the excitation time t^ for each elemental source is 

controlled, the resultant impulse response for the farfield is 

IR 
V^ 6lt - t - -i-l-y 

^'^•" ■ L ^ hf-^^       ■ (3.7) 
n = 1 



25 

h(t) 
(ARRAY) 

P(t) 
(ELEMENT) 

P(t) 
(ARRAY) 

P(t) 
(ELEMENT) 

P(t) 
ARRAY 

STEADY STATE 

Figure 3-4,   Dependence of Transient Array Response on Frequency. 
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When t^ = |Rn|/c = (nd sin ©)/c the impulses from all elements will 

arrive simultaneously and the array is optimally focused. What may not 

be obvious but is clear from the impulse response function is that the 

array is focused for all frequencies. Thus, the time delay beamformer 

is a broadband system. 

0. Continuous Line Source 

When the general source distribution in space is such that it can 

be represented as a continuous line source a closed form solution for 

the impulse response may be formed by a linear superposition of simple 

sources. Assume the simple sources are of equal strength and uniformly 

distributed along the x-axis from x = 0 to x = L. The impulse response 

Eq. (2.19) may then be written as 

r  ^(t-t,-iii) 
h(r,t)=  -A ^^^^dx. (3.8) 

J 4ir|R|       0 
L 

where t^ denotes the initial excitation time of the source located at 

XQ. For reasons which will become obvious let the elemental sources 

be initially excited according to the linear relationship t„ = x^/v;  v 

then represents a speed at which a disturbance propagates within the 

line source. Denoting a as the total time required for a disturbance 

to reach the spatial point of interest, the impulse response is 

a 
r min 

h(f,t) = i- 
4ir 

5(t - ct)  ,    1 

"' |R(»o(t))|  (x - Xj(t)) (3.9) 

a max 
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where XQ(t) is obtained from the quadratic equation 

2 
^^--7)-i7-^)^(^'-H^)-^      ,3.0, 

Thus, Eq. (3.9) is quite easy to evaluate numerically if one notes that 

0 < XQ < L and because the equation is quadratic, more than one real 

solution may exist and both must be included in the solution of Eq. 

(3.9). 

From Eq. 3.9, it is clear the time dependence of the impulse 

response is dependent on the field point and the speeds of propagation 

within the source and medium. First consider the case where a 

continuous line source of length L is uniformly excited, that is the 

propagation speed in the source is unlimited. The impulse response for 

this case, obtained from Eq. (3.8) is 

c 

^^^'^) =4.7(^^7^ ' ^ >c (3.11) 
and 

t^. < t < t^ 

When the field point (x,y) is located within the region defined by 

lines normal to the array end points, the impulse response can be 

evaluated in two parts. The impulse response always begins a t.= y/c; 

and there are symmetrical elemental contributions to the impulse 

response until such time (t^) that the nearest end point of the array 

has made a contribution as illustrated in figure 3-5(a). The remaining 

segment of the array is then the sole contribution to the impulse 

response which persists until the time 
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Figure 3-5.   Impulse Response of Continuous Line Source. 
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^   si/   ^   (X - P- 
'f ^   c     ; X < 2 

or 

t,=v^ X       L 
— ; X > Y 

(3.12) 

whichever is greater. The impulse response for this case is shown in 

figure 3-5(b), 

When the x value of the field point is outside the positive 

half-space region defined by the array the impulse response duration is 

defined by 

^i "    c 

/2 ^ 2 , yy -^x 
(3.13) 

As the distance between the source and field point increase the impulse 

response becomes shorter in duration and nearly uniform in amplitude; 

that is, it approaches a rectangular function. If we further restrict 

the field point location such that x >> L the impulse response strength 

is 

X » L 
h(r,t) = 

Air|rI sin 9   t- 1 ^ < t,. 

The pressure when the source is an impulse is thus 

(3.14) 

p(r,t) =—^e£  6(t - 
4ir |R I sin © 

x).fvz^); (3.15) 
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which except for a factor of 2 is the same as for a planar baffled 

piston (Stepanishen, JASA, 1971). 

Thus far the discussion has dealt with collections of simple 

sources or a line source. It is now straightforward to replace the 

single impulse function of a single source with the impulse pair of an 

extended source so long as the far field assumption with respect to the 

individual radiators is not violated and care is exercised when 

evaluating the impulse pair strength and location in time. 

The impulse response for an array of identical extended uniformly 

excited sources and a beamformer when the field point is located in the 

far field of the individual element may now be written as: 

h(r,t-t^) = 0' = E 
n = 1 

4-,-zJ4i)-.(.-.^-vz^jsi) 
sin 9 n 

(3.15) 

where e^ is the angle between the normal to an element and the field 

point. 

The previous development assumed for simplicity that the line 

source was uniformly excited. Now, consider a simple case of the more 

general impulse response when the speed of propagation down the source 

is finite. This translates into a delay associated with the excitation 

function which is spatially dependent on the source location. As will 

be shown later, this speed could be associated with the speed of 

electromagnetic propagation, the speed of a propagating wave in a 

different medium or a well designed delay line for a beamformer. 
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Assume the distance from all points on the source is large 

compared to the source length. From figure 3.5 we note: 

Yg = XQ sin & ,  R/c is a bulk delay 

and the point on the array XQ is energized at time t = tg = XQ/V. 

Defining 

n = 1/v - sin e/c , (3.17) 

The impulse response function for this system is from equation (3.8) 

h(r dx, 

THR 6(t --- nXQJdXg 

Letting ? = f + nx^ 

R + I 

h(r,t) = 
4TrRn 

6(t - ?) d? = 
AirRn ult--;-u^t-^-nL (3.18) 

R 
c 

This time limited function has three regions of particular 

interest dependent on the value of n. 

When n > 0, the leading edge of the impulse arises from the source 

point farthest from the field point and the trailing edge location is 

dependent on the values of v, c and e (see fig. 3.7). That is, the 

path directly through the medium is the fastest. 
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When n < 0, the reverse is true and the leading edge is dependent 

on V, c and e-  so it is faster to travel down the source than through 

the media to the field point. 

When n = 0, then sin e-  = c/v, and along this radial in the 

farfield all elemental point sources contribute at the same time thus 

forming a single impulse at t = R/c. 

To change the direction for the focused beam the value of v can be 

changed. This is not generally practical, however, from the impulse 

response function it is apparent that what is needed to transform the 

impulse response of the array to an impulse function, which is 

equivalent to focusing, is to have nL = 0. Because L cannot be zero n 

must be set equal to zero. Noting that t^ = L/v the time delay 

required to focus an array of this type at a bearing of e is t^, = (L 

sin e)/c. This equation is entirely equivalent to a phase shifter in 

narrow band beamformers. The significance of the results is that the 

proper time delays required for beamforming can be obtained directly 

from the array impulse response function, 

E- Frequency Focused and Scanned Line Array 

One further application of the impulse response technique to array 

system analysis is worthwhile. Consider an electronically focused and 

scanned line array. This type of array system, often used in acoustic 

imaging, has been described by Kino (Kino IEEE) and examined in some 

detail by Souquet et al. (Souquet et al.). They have shown a time 

dependent frequency signal sent through a delay line can be used for 

the purpose of electronically focusing and scanning. 
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Figure 3.8 illustrates the concepts in an array system of this 

type. The initial excitation time of each element is delayed an amount 

determined by the delay line speed and element position. The element 

remains energized for the pulse length. Normally the pulse length is 

less than the time required for a disturbance to transit the delay 

line. In effect this results in a subset of elements energized at any 

instant of time. This subset forms an active array which transits the 

array elements at speed v. This is the basis of a scanned array. 

For focusing, a Linear Frequency Modulation (LFM) chirp signal of 

the form 

e(t) = Re |exp [i(a.Qt + ut^/2)]| ; 0<t<T        (3.19) 

is used in practice as it is easily generated; the exact non-linear 

chirp required for exact focusing has been developed (Souquet). The 

instantaneous frequency of the LFM chirp is shown in figure 3.9. It is 

noted that u,, the mean frequency of the pulse, must meet the 

condition (Souquet) 

(ii^ = 2Nirv/Ax (3.20) 

if the excited portion of the array is to have a maximum response 

normal to the array. To focus at a radial distance y from the array 

requires the LFM slide constant u be defined as (Souquet, et al.) 

V  = (o^v^/cy. (3.21) 
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Figure 3-9.   Instantaneous Frequency of LFM Chirp. 
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Thus, the selection of the center frequency, which is dependent on 

the interelement spacing and delay line velocity, determines the 

azimuthal angle of the maximum beam while the LFM slide constant 

determines the range. Note when large focusing ranges are desired u 

tends toward zero and the instantaneous frequency required for focusing 

is constant. 

It was of importance to this study to determine if the impulse 

response technique can be effectively and efficiently used to analyze 

the same complex array system. 

If each element of the array is considered a simple source the 

discrete impulse response is given by Eq. (2.22) where the beamformer 

delay is given by: 

t^ = (n - 1) Ax/v = x^/v. (3.22) 

The strength of the impulse arising from each element is simply dependent 

on range. The location of each impulse, found by using Eq. (3.10), is 

quadratic and may lead under certain conditions to difficulties which are 

addressed in Chapter 4. 

Consider now the case when the focal range is large with respect to 

the entire array length L. The amplitude of each impulse response in 

this case will be nearly constant. Furthermore, the equation for the 

arrival time at the focal point from the nth element is approximately 

^ . J^- \^^ 
^  V ^y " 27^ ' (3.23) 
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Therefore, 

\v y y / 

This equation is linear in x„ and in the neighborhood where x = x 
■' n 

Eq. (3.24) reduces to 

AX 
V At=^   . (3.25) 

Recalling (fig. 3.3) the frequency required for focusing is 

inversely proportional to At, the frequency needed to focus this array 

system is V/AX. This is the same constraint imposed by Souquet (Eq. 

(3.20)). 

For a sample point in the farfield the scanning process is 

achieved with a short cw pulse traveling down the array. Applying 

reciprocity, a pulse moving down the array and illuminating a sample 

point in space is the same as a stationary pulse in an array and a 

moving sample point as illustrated in fig. 3.10. It is important to 

note that neither the source nor receiver are moving but are controlled 

by switching action. There are no doppler shifts occurring. 

For the case illustrated in fig. 3.10(b) the pressure response in 

the farfield is 

I ,• fkn p-j(kR - tot)  ^. Nkd .   1     ,^ ,^, 
p(R,e.t) = Re '-^ ^^""T^^"^ I     (3.27) 

I sin -^ sin 9 

where Q is the source strength of an element. 
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A simple relationship exists between e and v in this case that is, 

R sin e = vt. Upon substitution and removal of the carrier frequency 

the envelope of the pressure is: 

JpCkQ e-JIK" - "')  sin  (N|^) 

■"^•"•" ■ '' I Tar  .     .kfeT 
(3.28) 

The amplitude of the pressure response in the farfield is of the 

sine form with a maximum occurring near the time when x - x = 0 if 
n 

the transmitted signal is a cw pulse. This result, based on an 

analysis of the impulse response function, is the same reached by 

Souquet, et al. 
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IV.  NUMERICAL RESULTS 

A. Introduction 

As shown in the previous chapter through the use of several simple 

cases, the impulse response technique can be used to examine the 

transient response of array systems. In this chapter the transmit and 

receive responses of complex systems, comprised of simple and extended 

sources, such as non-colinear arrays and frequency scanned and focused 

line arrays are examined. The analysis is done using a computer 

implementation of the impulse response approach. 

B. Continuous Line Array 

Consider the case of a continuous line source of finite length. 

Furthermore, let us assume there is a finite speed, v, associated with 

the propagation of any disturbance along the length of the source as 

illustrated in figure 4.1. The impulse response may then be 

represented in closed form by Eq. (3.9). 

Consider first a case when v is very  large and the array length is 

0.2 m. With the field point located at (0.05, 0.1) and c = 1500 m/sec, 

Eq. (3.9) can be numerically evaluated to obtain the impulse response. 

The result of this computation is shown in figure 4-2(a). First note 

the initial strength of the impulse response is very large (observe the 

vertical scale is disjoint) but rapidly diminishes. During the first 8 

wsec contribution to the impulse response are the result of the 

elemental sources between 0 < x < 0.1 which are symmetrically located 

about x = 0.05 m. The strength of the impulse response from 75 to 120 

usec is due to the elemental sources from 0.1 to 0.2 m. When the field 
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point is located outside the region defined by the array, for example 

at (0.4, 0.1), the impulse response strength (figure 4-2(b)) at any 

given time is the result of a single elemental source and thus the 

function is continuous within the time period defined by t. and t^. 

As a comparison now consider the same cases except the value of v 

is substantially reduced to 2000 m/sec. The impulse response, when the 

field point is located within the region defined by the array is 

presented in figure 4-2(c). The response is now a continuous function 

and the strength is substantially less than when v was very large. 

When the field point is located outside the region defined by the array 

the impulse response (figure 4-2(d) is shorter and the range of 

strength values is greater than in figure 4-2(c). 

Another simple example exists when the field point is located on 

the array bisector at a distance such that y » L. The array is then 

excited at one end, as shown in figure 4.1, by a CW pulse of duration 

T. The excitation, while traveling down the array at speed v, causes 

each elemental source to radiate. 

For this case the impulse response closely resembles a boxcar 

function and the duration of the pressure transient is simply equal to 

the sum of the temporal extent of the excitation and the impulse 

response. 

Consider now a specific case when the array length is 0.2 m with a 

delay line speed of 2000 m/sec. The focal point selected is (.1, 10.0) 

thus y » L. The normalized instantaneous pressure response for this 

case, when the excitation is a sinusoidal pulse with center frequency 

of 1 MHz and duration 10 usec, is depicted in figure 4-3. The temporal 

extent of the transient is 110 usec, a result of the 100 usec impulse 
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response and 10 usec pulse length. The absolute time of first arrival 

is also noted on this figure (as it will be in subsequent figures when 

appropriate) as t- . 
T 3, 

In chapter 3 section D, it was shown the impulse response for a 

continuous line array is an impulse when the distance to the field 

point is large compared to the array length and the bearing is 

e = sin" (c/v), that is n = 0. In this case the far field pressure 

is simply a delayed, time derivative of the input signal. When n is 

less or greater than zero the impulse response is spread in time (fig. 

3.2) and the resultant pressure response will exhibit temporal dispersion. 

Consider the example depicted in figure 4-4 where the array length 

is 0.2 m and the delay line speed is 2000 m/sec. The three field 

points of interest lie on the arc of a 10 m circle at bearings such 

that the three possible ranges of n are examined. 

The transient pressure response for a 20 usec CW pulse at each of 

the three field points is presented in figure 4-5. When n is greater 

than zero the time (t^^) at which a disturbance first reaches the 

field point is associated with the end of the array located at the 

coordinate system origin. The transient duration is about 55 usec 

(fig. 4-5(a)) and a steady state pressure response is never achieved. 

In figure 4-5(b), the pressure function appears to be a near 

replica of the input signal as expected when n equals zero. There is a 

transient effect near the beginning and end of the response but for the 

most part this figure represents a steady state solution. The arrival 

time of the initial disturbance is as expected the same as in the n > 0 

case. Further it should be noted that the ratio of the pressure 

amplitudes shown in figures 4-5(a) and (b) is nearly 60:1. 
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When n is less than zero, the initial'disturbance arises from the 

end of the array nearest the field point. This means it is faster for 

a disturbance to travel through the array before entering the media 

than to travel solely in the media. The transient response begins at 

6652 usec and lasts about 35 usec so that the end of transient, for the 

n < 0 case, is the same as the beginning of the transient when n > 0. 

In the case for which figure 4-5(c) is presented, a steady state 

solution exists for about 5 usec and is noted near the middle of the 

transient. As in the case for n > 0 the amplitude of the transient is 

substantially less than in the case when n = 0. 

C. Discrete Line Array 

1.  Colinear Array of Discrete Elements 

Consider an array system composed of linear elements and a time 

delay beamformer. The individual elements may be simple or extended 

sources; however, the selection of points is restricted to the far 

field of the individual elements where the impulse response of the 

individual element can be represented as a boxcar function. The 

impulse response for this system can be obtained from Eq. (3.16). 

As a simple example, consider the five element colinear array and 

beamformer illustrated in figure 4-6(a). If the beamformer is removed 

by setting all time delays in Eq. (3.15) to zero the derivative of the 

transmit impulse reponse at the field point is as shown in figure 

4-6(b). The strength of the positive and negative impulse pairs is 

determined by the distance between the center of the element and the x 

coordinate of the field position. When this distance is less than L/2 

(on-axis case) the strength is, from Eq. (3.11), c/4irL. The location 
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of each impulse in the time domain is determined by the element 

location and spatial extent L. With the field point located directly 

above the second element, the impulses from elements 1 and 3 are 

colocated and simply summed using linear superposition as indicated by 

the stacked arrows of figure 4-6(b). 

When the beamformer is used to focus the array at the field point 

by setting t^ = R^ /c the temporal spread caused by the element 

location with respect to the field point is removed. The temporal 

spread caused by the spatial extent of the elements still exists as 

shown in figure 4-6(c). That is to say, as expected, the directional 

characteristics of the elements are not removed. Therefore, if the 

total time spread of the array impulse response shown in figure 4-6(c) 

is small compared to the highest frequency component of the input time 

function and the pulse duration is greater than the impulse spread, a 

steady state solution approaching an ideal array output will be 

obtained. 

The transmit and receive transient response of more complex 

colinear arrays can now be examined. Consider the array  system of 

figure 4-7. This 35 element array has an interelement spacing of 3 mm 

and elemental lengths are 1.5 mm or one wavelength at 1 MHz. The array 

is focused at the focal point (.03, .09). The derivative of the 

impulse response at four field points along the line y = .09 are shown 

in figure 4-8(a-d). As the field point approaches the focal point, the 

temporal dispersion of the impulse function decreases and there is some 

reordering of the arrival structure. Large differences in the strength 

of the impulse pairs occur because the effects of spreading and element 

directivity are included in the impulse response. 
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Figure 4-7.   Conceptual Diagram of Thirty-Five Element Colinear Line 
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The transient transmitted pressure response for this array system 

excited by a 20 ysec CW pulse is shown in figure 4-9(a-d), The time 

dependent structure of the pressure at field points other than at the 

focal point is quite complex. This is due to the interference created 

by the individual elements and beamformer. It is easy to see in figure 

4-9 that a steady state solution is achieved near the center of each 

pattern in figures 4-9(b-d) but the magnitude of the level is 

substantially less than at the focal point. The pressure at the focal 

point exhibits some degradation because of the directional (temporal 

spread) characteristics of the individual elements. This is also the 

cause for transient effects noted near the beginning and end of the 

pressure response in figure 4-9(c). 

2.  Curved Array of Discrete Elements 

Now consider a somewhat more complicated array system in which the 

elements of finite extent are tangent to a smooth curve such as the 

ellipse in figure 4-10. The impulse response is still obtained from 

Eq. (3.15); however, care must be exercised to evaluate the angle 

between the field point and the normal to the elements as shown in the 

figure. 

For comparative purposes the elliptic array case contains the same 

number of identical elements and has the same field points and focal 

point as the previous colinear system. The interelement spacing is 

•non-uniform along the array but linear (3 mm) in the xndirection. The 

time derivative of the impulse response for the selected field points 

along the y = .09 line are shown in figure 4-ll(a-d). When compared 

with the responses obtained for the colinear array, several interesting 
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features can be noted. In general the response functions for the first 

three field points (a, b, and c) are similar in nature and the 

differences in strength and temporal width are not very great. A 

perusal of the response functions for the focal point reveals that, 

although the time delay beamformer has colocated the impulse pairs in 

the colinear and curved array systems, the geometric curve of the 

ellipse has reduced the time spread caused by the individual elements 

and thus provides better system performance. 

It is also interesting to note there are substantial differences 

in strength between the impulse functions presented in figures 4-8(d) 

and 4-ll(d). This is because in the elliptic array the last field 

point illustrated is not within the region defined by the long dashed 

lines in figure 4-10. These lines, normal to the end elements of the 

array, define an area within which the angle between the field point 

and an element normal becomes small for one or more elements. 

The transmit pressure responses obtained from the impulse 

functions of figure 4-11 and a 20 usec CW pulse of frequency 1 MHz are 

presented in figure 4-12 for completeness. 

Figure 4-13 illustrates similar results for field points along the 

line X = .03. The impulse values for the first two field points are 

low despite their proximity to the array because these points are 

outside the region defined by element normals. Steady state solutions 

are observed in the transient pressure responses of figure 4-14 because 

in each case the pulse length exceeds the duration of the impulse 

responses. 

It is interesting to note that for certain source functions low 

amplitude pressure fields can exist in close proximity to curved arrays 
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when the field points are outside the region defined by the array 

geometry, element orientation and spatial extent. Furthermore, curved 

arrays can further enhance array performance at focal points by 

reducing the temporal spread caused by element length. There is no 

improvement, however, in the case when the elements behave as simple 

sources. 

3.  Frequency Focused and Scanned Line Array 

Consider the frequency focused and scanned line array system 

illustrated by figure 3.8 when the distance to the focal point is 

large. In this case the FM slide constant is very small. The 

instantaneous transient pressure response obtained using the impulse 

response technique and the indicated variables is shown in figure 

4-15(a). Based on the discussion in Chapter 3, the sine dependence on 

time is expected. This is a bit more obvious if the instantaneous 

results are demodulated to obtain the signal envelope and converted to 

decibels. This was done to obtain figure 4-15(b). It can be noted the 

ratio of mainlobe to first sidelobe is very near the expected value of 

13.5 dB. Also of interest is the slight asymmetry of the response in 

time and amplitude. This is due to aberration induced by the pulse 

traveling down the delay line (Souquet). 

Consider now the case when the field point is relatively close to 

array but still at a range such that each element behaves as a simple 

source. The strength of the impulse response arising from each element 

is quite simple but its location in time relative to other elements is 

more complex and governed by Eq. (3.10). This equation is quadratic in 
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nature, thus it is possible to have two disturbances from non-contiguous 

elements arrive at nearly the same time. 

Figure 4-16 is a set of three curves depicting the time required 

for disturbances emanating along the array to reach the field points. 

For example, when the field point is located at (.1, .1) it takes about 

110 usec for a disturbance to travel down the array to the element 

located at XQ = ,085 and then through the media to the field point. 

In the case when the field point is (.2, .1) two elements can 

contribute to the impulse response at nearly the same time during the 

first 6 usec of arrivals. In this case the time when the array is 

focused at (.2, .1) is outside the time period of double reception, 

hence the double receptions will not degrade the focusing. However, 

under certain conditions, for example, higher values of v, when 

doublets arrive during the focusing period, some degradation in array 

performance is expected. Because v is finite the doublet pairs will 

not in general arrive at exactly the same time. The focusing period is 

defined as the time at which the pulse is centered under the focal 

point. For example, in fig. 4.16 the focal period when x = .1 and the 

pulse period is 20 usec is about 130 usec. 

The impulse response for a 100 element array and delay line with 

an internal speed of 2000 m/sec at the field point (.l,.l) is depicted 

in figure 4-17. The values were selected in order to compare the 

results with those obtained by Souquet, et al. In this particular 

case, the field point is located over the array midpoint, thus, there 

are as many impulses to the left as to the right of the maximum value. 

However, the temporal spread about the maximum value is not symmetrical. 
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As discussed in Chapter 3 the frequency required to obtain the 

constant phase values required for focusing can be readily obtained by 

determining the time between impulses. The solid line in figure 4-18 is 

a graph of the frequency required at the last 75 out of 100 elements to 

focus this array at the specified field point. 

For a given pulse length only a portion of the array is excited at 

any given time.  If the exact frequency content required for focusing is 

replaced by an approximation as in the case with an LFM chirp, then a 

reasonable facsimile of focusing can be achieved. The dashed line 

represents the LFM chirp selected for focusing based on equations 3.19, 

20 and 21. Thus, in the focusing process, the LFM chirp exhibiting the 

frequency versus time character depicted by the dashed line in figure 

4-18 moves down the array at speed v. When the two graphs coincide, 

focusing occurs at the specified field point. This occurs when the pulse 

is under the field point.  It can be shown by differentiating the 

argument of the delta function in Eq. 2.22 twice with respect to x the 

siide constant requ 

the field point is independent of x and proportional to v /cy. This is 

the same restraint i 

When the LFM si 

red for focusing when the pulse is located beneath 

mposed by Sauqet et al. 

gnal selected by Souquet containing a center 

frequency of 2 MHz is convolved with the impulses of figure 4-17 and 

differentiated, the resultant pressure field is shown in figure 4-19(a). 

Figure 4-19(b) is the envelope of 4-19(a) in dB. It is shown here only 

for comparative purposes and to aid in comparing the results derived here 

with the results published by Souquet et al. It is clear the array 

system is focused at the spatial point of interest at a time (126 usec) 

when the pulse is centered in the delay line below the field 
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point. There are several other features in the transient pressure 

response which can be explained on the basis of the impulse response 

function. As was just shown in the far field case a CW pulse traveling 

down the delay line leads to a conventional beam response when the 

interval between impulses in linear (see fig. 4-15 and Eq. (3.28)). 

Note from the impulse response in figure 4-17 that the temporal samples 

are non uniformly spaced in time, this is analogous to unequal element 

spacing (Handbook of Array Technology). 

It is well known from antenna design theory that the 

radiation-pattern of an aperiodic spatial array may be described in 

three parts (Steinberg). The maximum response region exhibits 

characteristics for which the array is designed. This is followed by a 

clean sweep region and then a region of moderately high levels called 

the plateau region. These regions are then analogous to the time 

domain response observed in figure 4-19(a) with a few complications. 

Observe, there is a maximum response at about 127 ysec, are regions of 

very low amplitude adjacent to the maximum response and the resemblance 

of plateau regions near the beginning and end of the transient 

response. The picture is somewhat complicated because in this instance 

the amplitude response is dependent on time and a moving pulse leads to 

non symmetrical results because of aberration. 

Of interest at this point is that the transient response, if 

viewed as the output of a non-uniform spatial array, can be improved by 

reducing the plateau. This can be accomplished by decreasing the 

frequency or the interval between elements. The constraint given by 

Eq. (3.20) allows any multiple of the fundamental frequency to be used 
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for focusing, yet any multiple of the fundamental will shorten the 

clean sweep region interval and raise the plateau region values. 

For example, the same values used to generate figure 4-19(a) are 

again used except AX is changed from 2 mm to 1 mm. This results in the 

transient response shown in figure 4-20.  Note in this case the 

leading plateau region is nearly gone and the trailing plateau arrives 

substantially later in time. Also, note the mainlobe and associated 

sidelobes have increased in temporal extent as expected. The same 

results can be obtained by changing the center frequency to 1 MHz and 

leaving the interelement spacing at 2 mm. 

The process of scanning and focusing is somewhat complicated and a 

similar example presented from another viewpoint may help explain the 

complicated transients. 

The total pressure from an array system, as illustrated in figure 

3-8, at a specified focal point (.l,.l) is due to a summation of 

pressures from each element in the array. The time required for the 

leading edge of a pulse to reach the focal point is presented in figure 

4-16. The temporal extent of the contribution from each element is the 

pulse duration. Figure 4-21(a) illustrates the pressures arising from 

each element of a 50 element array with an interelement spacing of 

2 mm. The center frequency of the LFM chirp is 1 MHz and focused at 

the line y = .1. Figure 4-21(b) is the result of summing the element 

contributions as a function of time. 

At the time when the phase of all elements contributions is nearly 

the same, as indicated by the dashed line in figure 4-21, focusing 

occurs and a significant increase in the response is noted. 
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The previous results are based on an array of simple sources. Now 

consider the effects caused by transducers of finite length. As 

described earlier the result of this inclusion is to change the impulse 

response of a single element from a single positive pulse to a 

rectangular function. The duration and location in time is determined 

by the bearing of the spatial point of interest and the length of the 

radiator (see Chapter 3, section D). Selecting the same variables as 

used to produce figure 4-19(a) and including the effects of extended 

sources 1.3 mm in length leads to the results shown in figure 4-22. 

The principal effect is a reduction in amplitude of the plateau 

regions. A simple analysis of the beam response for a single element 

1.3 mm in length driven at 2 MHz indicates a null in the beampattern at 

about 16 degrees. This indicates the most noticeable change in the 

transient response will occur relatively near the maximum response. If 

cancellation were desired at times correspnding to the center of the 

plateau region then somewhat shorter elements would be more appropriate. 

Thus far the transient pressure response generated by a frequency 

focused and scanned line array has been investigated using the impulse 

response technique. The analysis is now extended to include a 

receiving array such that the transmit and receive response of an array 

can be evaluated. 

Consider the case illustrated in figure 4-23 where an ideal 

reflector is located at a field point. Also assume, for simplicity it 

is only possible for energy radiated from the target to be received on 

the receiving array. The receiving array interelement spacing and 

radiator lengths are identical to those of the transmitter array. 

However, the receiving array is specified to have a conventional time 
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delay beamformer instead of a delay line for the purpose of focusing in 

the near field. 

When the receive array is focused on the target located at (.l,.l) 

the receive array system output is similar to the pressure radiated from 

the target as can be seen by comparing figure 4-22 and 4-24. This is as 

expected because there is no modification made by a time delay beamformer 

in the case of ideal focusing. The only change occurring is the result 

of the finite length radiators. 

In the case when the receive beamformer is focused at spatial points 

other than the target location the beamformer and array elements will 

modify the receive array otput. For example figure 4-25 a, b and c 

represent the transient response of the receive array system output when 

the transmit array is focused at (.l,.l) and the receive array is focused 

at the three locations shown in figure 4-23 along the y = .1 line. Note 

the last position coincides with the target on the focal line of the . 

transmitter system.  It is easy to see the receive system is 

substantially affected by the focal point selected. What is not obvious 

because of the self-scaling graphs is the maximum values at the various 

points differ by almost a factor of ten between the values obtained at 

X = .1 and X = .06. Similar results are obtained whenever the receive 

system is not focused on the target. 
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V. SUMMARY AND CONCLUSIONS 

An approach has been developed to analyze the transmit and receive 

transient pressure fields of line arrays with time delay beamformers. 

This approach is based on an extension of the spatial impulses response 

developed by Stepanishen for planar pistons in an infinite baffle. The 

impulse response function can be used to analyze array systems. The 

simple convolution of the spatial impulse response for an array system 

and an arbitrary source waveform can be used to analyze array system 

performance as a function of waveform design. This approach therefore 

can be used to conduct a rather complete systems analysis. 

The impulse response for a curved or straight line array system is 

shown to be series of impulses when the elements can be treated as 

point sources. The magnitude of the impulses is determined by the 

geometrical properties of the array. Their locations in time are 

determined by the geometrical properties of the array and the 

beamformer time delays. 

When the elements are of finite length and located far from the 

field point the impulse response for the element is a rectangular 

function. The duration of the rectangular function is related to 

element size and location relative to the field point. 

In array systems of finite elements the single impulse of a point 

source is replaced with the appropriate rectangular function. The time 

interval between the pulses is then used to design waveforms for 

optimizing array system performance. 

The spatial impulse response for a continuous line array with an 

internal propagation speed is developed as a linear superposition of 
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three dimensional point sources with initial excitation times dependent 

on their location within the array. The magnitude and duration of the 

spatial impulse response is dependent on the geometrical properties of 

the array, the speed of propagation within the array and media, and the 

location of the field point. In the far field this result reduces as 

expected to a rectangular function. 

The impulse response for a complex array system of discrete 

elements and a delay line which can be used for scanning is developed. 

An anlysis of the resultant impulse response is used to determine the 

type of signal waveform required to focus the output of the array. 

This waveform is then convolved with the impulse response to obtain the 

time dependent pressure field of this type of array at field points of 

interest. 

Based on the numerical results obtained and favorable comparisons 

with other techniques when possible it appears the impulse response 

technique is a viable approach to analyzing the formidable problem of 

analyzing array systems subject to transient pressure fields. The 

technique yields a spatial impulse response which is dependent on the 

geometry of the problem and beamformer. The impulse response can then 

be convolved with a variety of signal waveforms to perform an array 

systems analysis as a function of waveform design. 

Though not investigated there appear to be several areas where 

this technique may be modified or extended in a straightforward manner 

to examine other problems. In this thesis the input excitation 

waveform was modeled as if it were generated by a single function 

generator. There are no foreseen problems if the excitation at each 

element is independently controlled. This would permit the 
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introduction of amplitude and phase shading as well as frequency 

parameters in the array system analysis. 

The arrays described in this study were considered to be line 

arrays; however, the technique can be extended to include planar or 

three-dimensional arrays without much difficulty. 

In addition, it appears this approach can be used when the methods 

of source images are applicable. Thus, the impulse response technique 

may be used to analyze a much wider range of problems than considered 

at this time. 
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