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The Statistical Assessmont of Lateat Tiait

Dimensionality in Psychological Testing

(Final Techniecal Report of NOOOL4-82-K-048¢)

Willianm Stout

University of Illiiois at Urbana-Champaig¢n

1. Introduction

In Lord (1980), Frederick Lord states "Therc ie a great nced iov
a statistical significance test for the unidiuensionaiity cf « =0l o Lo
items." 1Indeed, it is an important problem to be able to determinc whetuoer
a test that purports to measure the level of & certaio ability is in renliiv
significantly contaminated by the varying levels of one of more otier abiiities
displayed by examinees taking the test. For example, is a test ¢f wothenacical
ability contaminated by varying levels of verbal ability displayed by =subjects
taking the test? Aé a second example, it is of serious concern in Cannda-thgt
performance on standardized ability tests not be influenced by varyiung eianinoc
of familiarity with the French Canadian or Anglo-Canadian cluture (seec Sarrazip (1983
Fufther, the standard item response theory (IRT) methodology (é.g‘, LOCIST)
is predicated upoﬁ the assumption of unidinensionality. Because of the large
Aumber of private and governmental organizations routinely using tasts to
screen people by assessing their levels of various aptitudes or abiiitics, tle
problem of assessing the dimensionality (especially the unidimensionality)of a
test is of great importance. Now, with the imminent use of computerized adap-
tive testing by the U. S. Armed Forces (a test settinz for which anv two examiu
taking the same test will in general be administered non-identical sets of items
the issue of dimensionality becomes particularly critical,

The basic objective of the project was to develop a practié{blo,

theoretically based statisricsl procedure for testing for the vnidimensionaiity
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of a test., To this end, the following objectives have been attaiﬁod:

(1) The development of an intuitively plausible statistical method for

testing for unidimensionality.

(2) The (rather delicate) derivation of the asymptotic distribution of the
proposed test statistic (of (1)) under the assumptions of unidimensionality

and reasonable regularity conditions, thereby establishing an asymptotic

level o test of unidimensionality.

(3) The development of a rigorous mathematical definition of test dimension-
ality that is item response theory based but yet is consistent with the
classical factor analytic notion of dimensionality and also is not adversely
influenced by the inherent multidimensionality of individual test items.

(4) The establishment of asymptotic power one for the statistical test when-
ever unidimensionality in the sense of the definition referred to in (3) fails
to hold.

(5) The writing of a FORTRAN progr;m.to simulate the use of the statistical
test procedure for the case of a unidimensional test and for the case of a

two dimensional test. Here th;'two dimensional test was modeled both with and
Qithout multiply determined (i.e., multidimensional) test items.

(6) The conducting of preliminary Monte Carlo studies to assess the practic-
ibility of tﬁe prohosed test of unidimensionality for realistic test lengths
and examinee population sizes, these results indicating reasonable faithfulness
to the prescribed level of significance, even in the presence of multidimension:
items, and indicating reasonable power.

(7) The development of an analogous test to that of unidimensionality in order

to test (letting 4 denote dimensionality)

H, :d<d vs Hl ¢ d > d0

where d0 is a fixed integer satisfying d0 > 2.
The remainder of the report is devoted to a description of the attainment

of these objectives together with certain prerequisite background information.



2. A careful statement of the {tem respor e theory model,

The mathematical definition of dimensionality and the mathematical
derivation of the large sample theory for the proposed test statistic both
require a careful statement of the assumptions of the item response theory
model:

Consider sampling J examinees from a population and administering
a test consisting of N items to each sampled examinee, Suppose each item
is scored correct or incorrect. (1 for correct and 0 fcr incorrect).

Suppose th;t associated with each eQaminee is a vector=-valued
variable 0 = (61,92,...,0d) (the "ability" of the examinee) that deter-
mines the probability of a correct response for each item administered to
the examinee. For each sampled examinee j, binary random variables
{Uij} are observed, where i 1s the item index. The {Uij} are the
observed or manifest variables referred to in the discussion of latent

structure models. "Item characteristic curves" are defined by
a = = O-. = = - = P, =
(? 1) P,(8) = Pl =1 | 9, 8] =1 P[uJlj 0 | 8; 01,

the probability of a correct response to item 1, given that the jth
sampled examinee has ability 6. Here it is assumed that examinees are
randomly sampled from an infinite population, thereby inducing a probability
distribution on the O ability space with associated random vector @,
Here we let (Cﬁ,ﬁb,...,glﬂ denote the random vector of abilities for J
sampled examinees. Throughout, @_ is assumed to be a continuous random
vector with density denoted by f£(8). L denotes the domain of f(g) and

is a subset of d dimensional Euclidean space.



7

Item response theory 1s based upon the fundumental assumption of
local independence, which 1s assumed throughout this report. The intuitive
idea is that, conditional on knowing the ability of an exa&inee, the item
responses are independent of each other. That is, for example, the dependence
between Uil and Ui'l for 1 # 1' 1is entirely explained ("mediated") by
knowing the value of Ea. Formally, local independence 1is said to hold

provided

N
22) PIUJ = upligy = upreeealyy = uy 12 = 8l =.]]I PlUjy =ug Q) = 8]

U=y
for all 6 € L and cach choice of u, =0 or 1. Recall that N denotes

i

the total number of items.,

It is also necessary to assume throughout two assumptions about
the sampling of examinees and the independence of information provided by

different examinees, It is assumed throughout that

(2'3) ((-") 992o-.-.91)

consists of independent identicaily distributed (iid) random vectors. That
is, the {gj} are assumed to consist of a random sample,

Now let U, = (U U, denoting the test performance.

3 " Wrpelpgeee sty &
It is assumed that knowing each examinee's 8 produces a sort of conditional

independence: That is, it is assumed throughout that

(2.4) P[_lll " 21’22 = 22""’2] = 2_] IQ}_ = 'QI’QZ 5 ‘92’”.'(2.]='9’J]

]
= P[U, = u, |O, =0.]
JT Py = uy 18 = 9
In other words, the responses of different units are, conditional on knowing

their latent values, independent of each other.



For some purposes the classical definitionol dimensionalitv used in Ltem

response theory will be used in this report (sec Lord and Novick (1968), pp. 359-362
for a good discussion of this). This amounts to stating that d 1s the
correct dimensionality provided the joint distribution of the observed random

variables {U,., 1 <1 <N, 1<j<J} 1is representable in terms of a d

1j
dimensional distribution of i.1.d. S')_j and identical (in j) conditional
distributions of U., given ©,, with local independence and (2.4) assumed,

3

and moreover that such a representation is impossible for d' < d. Here of
course by f‘_) being d dimensional is simply meant (since @ is
assumed to be a random vector of continuous type) that the density f£(¢)
of _(_')_ has d dimensional Euclideuan space as its domain,

It will be assumed throughout the 1eport, that,denoting here the classical
dimensionality l;y d, whenever the joint distribution of the {Uij} 1s
modeled in terms of (identically dis;ributed) latent variables {_G_)j} that
the distribution of © is in fact d dimensional. Such a remark is
necessary, since, of course, it is always possible to use a distribution

-

for © that has dimensionality larger than d.
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3. A statistical approach to the assessment of latent structure unidimensionallity,

As stated in Section 1, themain object of the project was to develop
a statistical method for assessing the choice of dimensionality d. The

dimensionality test of most importance in mental test theory and likely in

A
most other settings too is the test of unidimensionality:
(3.1) H:d=1 vs A:d>1.
Our hypothesis testing procedure to investigate (3.1) is now broken into
steps. By 'score" is always meant proportion correct.
Steps of the procedure:
Step 1: Split the N test items into a long subtest of length n and a
” short subtest of length M, These two subtests are called respectively:
the partitioning subtest (length n) and the assessment subtest (length M),
Observations taken: {U1j td=1,2,000,n0tM; § = 1,2,...,J},
(Typical values in mental test .applications: J =1000, N = 75). {
Step 2: Partition the unit interval [0,1] into subintervals {A(:), 1<kx< Kn}
of equal length, E.g., typical interval: [0.48, 0.52), in which case there
are 25 intervals.
Step 3: Assign examinees to partition subintervals according to their
scores on the partitioning subtest. E.g., if an examinee's partitioning
subtest score is 0.51 and 1f 0,04 is the interval length then the examinee
? is assigned to the interval [0.48, 0.52). Let J(:) be the number of
examinees assigned to the kth interval of the nth partition, the "nth




partition'" being the partition associated with a partitioning subtest of

length n.

Step 4: (Construction of the test statistic). Resubscript the Uij for

ntl < i < ntM such that Ui k ini indicates the correctness of the

response of examinee j of subinterval k of partition n (1 < j j_Jén))
K

to item i. Note that J = Ekgl J;n). In each subinterval of

the partition that contains enough examinees (according to some convention
set by the statistical user), the difference of two variance estimates is

computed. From this point ou, Kn will denote the number of such intervals

rather than the number of intervals of the partition and A{n),...,Aén) will
n

denote the subintervals containing enough examinees. Computation of

83 K? the first variance estimate for interval k: Let
]
(k)
Yy Z1=n+1 Uy it

the assessment subtest score of the jth examinee of interval k on the

assessment subtest. (E.g., j = 2 denotes the second examinee among the

Jén) examinees assigned to interval k ' of the nth partition.) Let
3
a.2) ¥ - zjkl §k)/J(“)

the average of examinee assessment subtest scores for interval k. Let

) 7
~ R (k) _ (k) (n)
(3.3) GY,k = Zj=1 (Yj ) /J
Computation of 05 K the second variance estimate for interval Kk:
Let
( ;(m

a(k) _ ok (n)
(3.4) Py Zj=1 /J

a2 ot Aa(k) _ alk), .2
(3.5) oP,k Zi a+1 Pi (1 Py ) /M t



The test procedure is then to reject H if
K
n 72 ~2
-0
Lem1 %k = %10

appropriately normalized, is sufficiently large.

Normalization: Let

( J(n)

o ko (k) _ (k) 4, 5(n)
00 = L Qg =Y

(3.6) {

A M 2
Supic ™ dgmy P

(0 (1 - 300y (1 - 202

}\
{ i i

Finally, let
K
n 22 2
. Leat (9 " %)

K 1/2
n ~ ~4 i (n)
ot -8 J )
ALy | G, Oy ) = 84 k| Mk }

M4

(3.7)* TET

Then, the procedure is to reject the null hypothesis of (4.1) provided

(3.8) T > Zd'

where Za is the upper 100(1-a) percentile value for a standard normal

distribution,

Remark, The selection of which items are assigned to the partitioning sub-
test and which items will be assigned to the assessment subtest is related

to the power of the test and will be discussed in Section 8.

*See page 30 for a modification of T that may have better small sample
properties.
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It seems uscful to have an intuitive understanding of the procedure
given by (3.8). For this purpose let Kn = 1 and ignore the scaling provided
by the denominator in (3.7). That is, think of the statistical procedure as
rejecting the hypothesis of unidimensionality when 35’1 - 8§’1 is "large" (k=1)
Recall from classical test theory that for a test of length M with Y
denoting proportion right and am denoting the probability that o randomly
selected enxaminee gets item m right, that the Kuder-Richardson formula-20
coefficient P20 is defined by (e.g., see Lord (1980), p. 8)

M 2
M zm=1 Olm(l . am)/bl

Pao "W -1 |1 2

(the division by M2 occurs because Y denotes proportion correct rather

than number correct). Note that

(3.9) - e - ot = o,

Y

2
Pa0 0 if'and only if a

Of course p20 = 0 1is to be psychometrically interpreted (up to an approximation)
as the fact that Y has no reliability at all., Although unrelated to the
author's process of discovery of his unidimensionality test, (3.9) can be

nicely used to give a simple psychometric interpretation and justification

for the test procedure (3.8): 1In the present test setting, 83 k" Gg K is
’ ?
an estimate of 03 - ﬁ=1am(1 - am)/Mz, m indexing the M items of the

2
assessment subtest. Here a and o, are computed for the "population"

of examinees assigned to subinterval 1 by the assessment subtest. Thus

22 - ~2 ”" " - : i
OY,l OP,l large' is evidence that p20 is greater than 0. Thus,
the procedure rejects the hypothesis HO of unidimensionality 1if and only if

the assessment subtest for subinterval 1 examinees shows statistical evidence
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of having some reliability. That is, HO is rejected if and only if there
is statistical evidence that the assessment subtest provides information
about examinee ''true score" (or latent ability from the item response

theory viewpoint) beyond that provided by the knowledge of which partitioning
subinterval an examinee is assigned to by the partitioning subtest. And, the

assessment subtest can only provide such information (except for negligible

finite sample error) provided there is more than onc dimension being measured.
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4. The large sample theory when d =1,

In this section the classical conception of dimensionality described
at the end of Section 2 will be used, The main purpose of this section is
to present the precise conditions under which T, as defined by (3.7), can

be shown to have asymptotically a standard normal (i.e., N(0,1)) distribution,

It is howiver easy to see several reasons why one might also wish
to have the large sample distribution of the Gs’k - Gﬁ’k, suitably stan-
dardized, for each subinterval k. First, in some applications Kn, the
number of subintervalsused in the construction of the test statistic may be
rather small and hence the large sample theory for T fail to provide a
good approximation for the actual distribution of T, In this case, having
the large sample distribution for each ai,k - Sﬁ’k
independence of the 6$,k - Gg’k s Yylelds a large sample theory for T .

when Kn is small, Second, one may wish to construct a new test statistic

in T then, using the

for unidimensionality still based on the summands of T, but with the new

test statistic having a different formula from that of T. 'Finally, and

perhaps most important, one may be interested in assessing the contribution

to lack of dimensionality ;esulting from only a portion of the latent ability spac

That is, one may wish to construct a test statistic based upon only certain

subintervals of the partition, indeed possibly even using only one subinter-
val. Because of the above, it is desirable to obtain the large sample

2
distribution of each o as the number of test items and examinees

- 52
; each become suitably large. Convergence in law (i.e., in distribution)
will be denoted throughout by -l;+. N(u,oz) denotes a normal distribution
with mean | and variance 02. Z always denotes a N(0,1) random variable,

For example, the statement that xn converges in law to a standard normal

random variable would be denoted by
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x —’Zo
n

The two basic large sample thcecorems of this section are based on a set
of assumptions, which are now stated, together with a brief description

of the practical interpretation and reasonableness of each assumption,

First it is assumed that
(401) d = 1

in the classical sense of dimensionality, That is, the iarge sample distri-

butions of the 32 and T are stated in this section under the

= 162
Y,k P,k
assumption that the hypothesis H : d =1 1is true, true in the classical
sense of dimensionality.

It is assumed that
(4.2) min Jé?) +® as n -+ o,

1<k<K .

——"n
This simply amounts to excluding partition subintervals that contain too few
examinees. In practice, some suitable convention would be used, such as
Jlﬁ") >20 for each 1<k <K.

The number of items M on the assessment subtest is assumed to
be fixed as n, the number of items on the partitioning subtest, approaches
o, This means, in effect, that the number of items on the partitioning
subtest must be small compared to the number of items on the assessment
subtest, This amovats to a genuine restriction in the design of the
statistical test in that our theory simply does not support taking M = n = 38

when N = 76 for example. However, if M =5, n =171 produces good results

in terms of attaining a reasonably powerful test with the actual level of

- significance being close to the nominal level of significance, then the



13

restriction becomes non-essential. And, indced, preliminary Monte Carlo
studies support the preceding statement. (Sec Section 7.)

It is assumed that the M assessment items are the same for every
n. This is merely a virtual restriction, having no "real world" content
since in fact in practice one applies the procedure for a particular set
of M 1items and only one choice of n. Although a double subscript nota-
tion would avoid notational inconsistency, we nonetheless denote the. item

characteristic curves (1¢C's) of these fixed M items by
(4.3) Pn+l(6),Pn+2(8),...,Pn+M(O); -w < § < o,
Now, the ICC's for the items of the partitioning subtest are denoted by

(4.8)  Py(8),P,(0),...,P (6),

with the understand?ng that Pi(O) does not necessarily denote the same
ICC on the n'th ‘partitioning subtest as it does on the nth partitioning
subtest for n # n'. Although assuming that Pi(O) is the same for all
choices of partition subtest length n > 1 would only be é virtual rather
than a practical restriction, nonetheless we do not need to make this
restriction.

Certain assumptions are made about the form of the ICC's, First each
ICC is assumed to be continuous and differentiable in 6 and strictly increasing in
Clearly this entirely reasonable restriction needs no explanation nor
defense.

It is assumed that there exists an interval (a,b) such that for

some likely small number € satisfying % > € > 0 that
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(4.5) Pi(e) > € for a<0®<b, 1<1icx<N,
(4.6) Pi(O) <cC for all 6, 1< i <N, some (possibly large) C, and
(4.7) € §_Pi(6)(l - pi(e)) <1l-¢ for a<@<b, 1<i<N

Here (4.5) merely states that there is some ability range over which
items are uniformly (both as € varies and items change) sensitive to ability
differences., This merely amounts to discarding items, as test constructors
do, that are not sufficiently discriminating or are too easy or too difficult,
This practice of discarding overly easy and difficult items also justifies
(4.7), which amounts to not allowing items that are too easy or too difficult,
(4.6) of course states that, even locally in 6, none of the items are
allowed to be too discriminating, It is of course impossible in virtually
all test settings to constrict highly discriminating items, even if sometimes
desirable to do so,- As Lord and Novick (1968, p. 379) state, "We might note
that it is rare to find values of ag (slope) as large as 2 {in aptitude

and achievement testing."

Let Pi(-w) = lim Pi(e). Then let n = sup Pi(dm). It is assumed
0= i>1

that each subinterval of the partition included in the c-astruction of T
lies in the 1ntérval (n,1]. This is merely a technical restriction that
will cause no trouble in practice; and indeed, if needed, this restriction
could be weakened. Typically, n =0, 1/4, or 1/5 1is assumed, based upon
various assumptions about "guessing."

It is required that

@8 3™k < ca?
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for all k, n for some C 1in order to obtain the distribution of T.
If one is merely interested in the distribution of each of the 83 K 812, K
1] ’

separately then (4.8) 1s weakened to

< an

(n)
(4.9) Jk

for all k, n for some C., These two assumptions restrict the number of
examinees per subinterval and in the case of the distribution of T, (4.8) restr
the total number of intervals contributing to T. This is a genuine

(n)K
n

restriction, but, foi’tunately, allowing Jk to be the order of n2 seems

reasonable for most applications, E.g., if the partitioning subtest of a test conslis!

of 100 items, then J J‘((n) K is

(k ). 30 foreach k, Kn = 30 1is such that
"small" compared to n2 = 104. Preliminary Monte Carlo studies again secem
to support the accuracy of the large sample approximation of T for reason-

K
able choices of n and L " (n)’ the number of test examinees (ignoring
k=1 k .

discarded intervals here),

The following assumption is needed for highly technical reasons.
It could undoubtedly be removed, at the expense of a rather complicated
answer for the large sample distribu.tions of 03 K Af”k and T. It is

assumed that there exists some (possibly small) € > 0 such that for all k, n,

and each of the M assessment items (indexed by 1),
.10) |20 — 5| > ¢

where elﬁ“) is defined by, letting Y denote proportion correct on the

partitioning subtest,

E[Y|©O = G(n)] = midpoint of A(n)
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Here E[XI A] deno:es the expectation of a random varlable X, given
that event A has occurred. (4.10) requires that partitioning iutervals
corresponding to examinees expected to get "approximately' half right on
any item of the assessment test should be removed. Since the M items
are fixed and € in (4.10) can be as small as desired, (4.10) will always
be true in practice. But nonetheless some Monte Carlo analysis here
should help support the author's intuition that the practical impact of
ignoring (4.10) in practice should be minimal. Alternatively one could
merely throw out thosé intervals Aén) producing ﬁik)'s exceedingly
close to % for any i = n+l,...,ntM. The mathematically interested
reader is invited to consult p. 119 Serfling (1980) for the need of an
assumption such as (4.10).

This completes the list and discussion of the assumptions required
to obtain the large sample theory when d = 1, In summary, all the assump-
tions either seem quite reasonable or at least, in some cases, not unduly
restrictive. Of course, Monte Carlo studies and the use of the procedure in

actual mental test data arec needed to verify this opinion (see Section 7).

Now the two basic large sample results when d =1 are stated.

Theorem 4.1. Suppose (4.1), (4.2), M fixed assessment items, continuous
and differentiable ICC's, (4.5), (4.6), (4.7), all included subintervals

in (n,11, (4.9), and (4.10). Then (see (3.7)), for any choice of integers

k =k
n ——
(8321 k 8[2’ k)‘/Jl(cn L
(4.11) z = —/— v Ao 7 ASAst n e
Y) -0 -8
Gy (0 = 0y ) = By

M“
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where the rate of convergence of the distribution function of Zn to a

N(0,1) distribution function does not depend cn the sequence {kn}.

Theorem 4,2, Suppose (4.1), (4.2), M fixed assessment items, continuous
and differentiable ICC's, (4.5), (4.6), (4.7), all included subintervals

in (n,1], (4.8), and (4.10). Then (see 3.7),
(4.12) Tn — 7 as n + », ,

Remark. The denominator of (4.11) has a rather tidy matrix representation:

~(k)

Pitn of (3.4) for convenience,

Let, suppressing k, and writing ﬁi for

D = (zpl-l’zpz-l,""2PM_1’1)

and
pl(l'Pl) 0 ces 0 : Pl(l’Pl)(l'ZPl)
0 pz(l'pz) 0 pz(l-pz)(l-?-pz)
I = . 0 : .
* : 0 5
0 0 v oo Py (1=py) Py (1-py) (1=2p, ) |
~ A A A A A A A A 4 A A4 -
P (1-p) (1=2p)) Py (1-py) (1-2py).. . oy (1-py) (1=2py) M (,(Y) - o)

Then, it is trivial to see that
~ AAA 1
3 5= (0fhn)d.

(4.13) (b!l'(ﬁ4(Y) - SY’k) T 4, K]

This may be useful both for interpretation and computer programming purposcs.
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Proofs. The proofs of these two results arc lengthy, delicate, and

make use of sophisticated results from mathematical probability theory.
Their presentation here seems inappropriate. The interested reader is
referred to Appendix I for a complete presentation of the proofs. However,
a brief sketch of the highlights of the proofs seems appropriate. We
will consider Theorem 4.1's proof only, since that of Theorem 4.2 is
rather similar.

Basically, the proof is b&sed upon the central limit theorem
holding for sums of independent finite variance random variables, the
summands suitably similar in magnitude (see e.g., the Lindeberg-Feller
theorem as stated for triangular arrays of random variables in Chung (1974),
P. 205); It is also based on a multivariate version of the "§ method",
the local linearization technique based on multivariate Taylor series
expansion that is so useful in large sample theory (see Serfling (1980),
p. 122). Further, ;he random denominator in (4.11) is permitted by an
application of a Slutsky type argument (see Serfling (1980), p. 19).

Finally, a very delicate question about the asymptotic expectation of
a2 ~2

%,k ~ %,k
estimate for the random ability ©, given that Y (the partitioning

is dealt with by means of a conditional tail probability

score) € Aﬁn). This conditional probability estimate follows in a manner

. similar to the classical exponential probability bounds for sums of independent
random variables (see, e.g., Stout (1974), Section 5.2) and is the most

delicate aspect of the proof.
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5. The concept of latent trait dimensionality

The purpose of this section is to propose a concept of dimen-
sionality distinct from the classical item response theory definition.,

Recall that the classical definition amounts to stating that k 1is thecorrect
dimensionality provided the joint distribution of the observed random

variables {Uij’ 1<1<N,1<j<J} is representable in terms of a

k dimensional distribution of 1id ©. and identical (in j) conditional

3

distributions of U given SG, with local independence and (3.4)

_.j’
assumed, and moreover that such a representation is impossible for
k' < k,

Although mathematically appealing, this definition is rather
inappropriate for assessing the power of testsof dimensionality in the
case of mental test theory. This is because in mental testing, individual
test items clearly have multiple determinants of their respective prob-
abilities of correct response, thus necessitating that 0 in the Piqg)'s
be_multidimensional} This position is perhaps most cléarly and vigorously
pursued by Humphreys (see Humphreys, 1984), Humphreys states:

"The related problems of dimensionality and bias of items are
being approached in an arbitrary and over-simplificd fashion,
It should be obvious that unidimensionality can only be approxi-
mated, Even'inhighly homogeneous tests the mean correlation
between paired items is quite small. The larye amount of unique
variance in items is not random error, although it can be called
error from the point of view of the attribute that one is attemp-
ting tomeasure. Test theory must cope with these small correla=-
tions., We start with the assumption that responses to items have
many causes or determinants."
Humphreys (1984) presents the viewpoint that dominant attributes (dimensions)
result from overlapping attributes common to many items. Attributes unique

to individual items or common to relatively few items are unavoidable and

indeed are not detrimental tc the measurement of dominant dimensions. DBut
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the number of these attributes should not be counted in assessing the
"dimensionality" of the test. Humphreys' writings stress that the observed
low item intercorrelations compel one to accépt the viewpoint of multiply
determined items. Unfortunately, the classical definition takes as test
dimensionality the total number k of all item dimensions, each item
requiring in gencral several (possibly many) dimensions to describe its
Pi(g). As follows from the above discussion of Humphreys' viewpoint, this
fact is true even in sitﬂations where both from a psychometric and a data
analytic viewpoint, one would want to catagorize tests as unidimensional,
Thus the classical definition assigns dimensionality d=k>1 (k thus assigned possi
quite large in fact) in sctiings where one would want to assign d = 1,
The.following hypothetical example is intended to make concrete the multi-

dimensional nature of items in tests that should be considerced unidimensional,

Example 5.1. Consider a "probability" test where Item 1 measures ability in
prqbability but is influenced by many other idiosyncratic factors contribu-

ting to "non-error noise", e.g., a knowledge of the rules of bridge.'

Item 2 measures ability in probability but is influenced among other things

by the examinees' understanding of clementary physics.

Item 3 measures ability in probability but is influenced among other things

by a knowledge of Mendelian genetics.

One clearly is forced to label such a test as multidimensional
according to the classical psychometric conceptualization of dimensionality
described above (indeed, clearly d > 4 will be assigned with the dimen-
sions including ability in probubhility, bridge knowledye, elementary physics

knowledge, and knowledge of genetics).
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Clearly one wants a conceptualization of test dimensionality
sucn that tests such as that of Example 3.1 would be considered one dimen-
sional (i.e., d =1). What is nceded is a conceptualization of dimension-
ality that does not yield an inflated d as a result of the inlierent
multidimensionality of items.

To this end, the following conceptualization of dimensionality is
proposed. Consider a test of length nd + M administered to one randomly
selected examinec yielding random variables {Ui’ 1 <i<nd+ M}, where
n 1s to be thought of as possibly large compared to M, Let f? have a
k dimensional density. (Here k will likely in applications be quite

large because of multiply determined items.) Let

B on nd
J 5 _
(5.1) Y, = z_i.il._ui Yy = f_i:n_tLLL y = Y1=n(d—])+1 %
[} 1 n 9 2 l"l ge ey d bl ’
nd-+M
Y, = lzhnd¥l 1
d+1 M

define a splitting.of the test into d 'partitioning" subtest scores

and "assessment" subtest score Yd+l' Let, for 0 <y <1,

(5.2) &, = Ayl....,yd = {8 : ELY,[ @= 8] = y,E[Y,| 8=0]=y,,...,

E[Ydl 0=0] = yd].

Let

1 1l (> o0
(5.3) s = (Ely, | @ = 0] - Ely,l@ea ])Zf(glge[\ )didy,
0 0 -0 - - b 1 l

Yo - -t \_ Y ——r
d integrals k integrals
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where (0 ]£2C3§X) denotes the conditional density of 6, given O C o,

Relative to the particular splitting that produced YJ’Y?""’Yd+l’ s should

<

be viewed as an index measuring the lack of fit of the assumption that the

dimensionality is d. Let § denote the set of the

nd + M
nn...nM

———

d n's '
possible such splittings. Let

(5.4) Sd = sup s .
s€S

Definition 5.1. A test is said to be of dimension d provided Sd = 0,

In actual applicatipns, taking into account the inlierent

multidimensionality of individual items, it scems reasonable, indced necessary

to assigndimensionality d provided Sd is "small"(Qut not necessarily 0) and S

is "not small", the quantification of "small" ;nd "not small" varying

from application to application. When this last remark is taken into
account, Definition 5.1 is much in the spirit of the factor analytic
conceptualization of dimensionality and 1s precisely in the spirit of the
Humphreys' viewpoint of dimensionality, That is, the dimensionality is
taken to be the number of common factors (dominant attributes) with specific
factors (attributés common to relatively few items) not contributing to

the dimensionality. The simple hypothetical example below is

intended to illustrate this admittedly mathémutically complex but actually

s rather intuitive definition.

d
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Example 5.2. Definition 5.1 will be applied with d = 1. That is, the
question whether d =1 in the sense of Definition 5.1 will be addressed.
Case 1. Suppose that two types of examinees, "rural" and "urban', take

a "reading test'"., Let the classical dimensionality k = 2 with 01
denoting the level of reading ability and 62 denoting familiarity with

urban culture. Suppose, for simplicity, that
PO = (-1,1)] = P[@ = (1,-1)] = %,
defines the latent ability space. Here

(61,62) = (-1,1) denotes low reading ability, high familiaricy

‘with urban culture
and

(91,92) = (1,~1) denotes high reading ability, low familiarity

with urban culture.

Consider the computation of Sd when d =1 in Definition 5.1. I.e.,
consider the question of unidimensionality in the sense of Definition 5.1.

suppose
E[Y, | @ = (-1,1)] = E[Y,]| ©@ = (1,-1)] = %

for a particular splitting to obtain subtest scores Yl’YZ’ That is, both types of
examinees ((-1,1) and (1,-1)) can be expected to on the average get

% of the items on the partitioning subtest right. Thus

A, = {(-1,1),(1,-1)}.

)
%

Suppose that the assessment score Y, has been formed from M items with

identical item characteristic curves, each item dependent on 01 only

(i.e. the items upon which Y2 is based really are pure "reading" items.
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In particular, suppose
Pl(-l) = 1/4, Pi(l) = 3/4

for i=n+1l,.,..,n+ M defines pi(01)° (The range of 0l is {-1,1}).
Since this reading test is clearly contaminated by a second dimension,
d = 2 should clearly be concluded. Replacing the integrals by sums in

(7. 4) because of the artificial discrete nature of this model, one obtains
1]

(5.5) S, 28 = (l-:[Yzl(;)_ = (-1,1)] - !,)2 Lo+ (|3[Y2|9 = (1,-1)] - .'.,-)2.',,' = 1/16,

Thus S1 > 0, reflecting the fact that d > 1 (in fact d = 2) 1in this

case.,

Case 2, Now by contrast, consider a case where reading ability is uncon-
taminated by a second dimension. Suppose in fact that all n + M items

satisfy for 1< i< n+M,

where the latent ability space (reading ability here denoted by Ol) is
{-1,0,1}. Here k =1, Clearly A ={-1}, A = {0}, and A = {1}
a 4 N2

and

S = sup s =0,

S
leading one to conclude that d = 1, as is desired in this situation,
The above example did not have the classical dimensionality k
large as the result_of multiply determined items. llowever, it is intuitivelyclear
that for each test splitting, s asdefined by (5.3) should be small in Example 5.1
since the_re is only one dominant a.ttribute Fherc. For, conditioning on

Q€ Ay intuitively amounts to conditioning on a subpopulation of examinces
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of roughly the same probability ability (indexed by 0l say) but with

possibly widely differing abilities on the other k ~ 1 components of

2
O, Thus for "typical" 8's, given OE€ Ay, (E[Y2!9=0] - E[Y2 |9€ Ay])"

should be small since E[Yzl(-_)=_(l] should be mainly influenced by Ol ~with

the effect of 02....,0 on E[Y2 !9=9_] being small. Hence, as suggested,

k

S1 should be small for situations like Example 5.1. One can construct

examples showing that this is indecd the case. The following example
is such an example. That is, the classical dimensionality greatly exceeds
1 because of multiple determinants and yet the dimensionality according
to Definition 5.1 is 1., This cxample is highly artifical and is merely

intended to make concrete the above comments.

Example 5.3. Suppose the N ICC's are given by

1 3
Pi(_Q) =0, + Bi where 7 <0, <&

and - 21: < 01 <-}T for i =2,...,N. Suppose each G)i is uniformly
distributed over 'its range. Fix M. Split the test into subtests of

size M, N - M = n. Note that

E[Y,|@= 0] = 6, E[Y,|@ = 8] = 0

1°
Hence

E[Y2|_(__-)e Ay] = E[Yzl(')l = 61 and ((-)2,...,G)N+1) unrestricted]

= 01.

Th;.ls recalling (5.2), (5.3), (5.4), Sl =5 =0, Hence d =1, even

though k = N + 1,
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Some final remarks in aiding the reader in interpreting (5.2) -
(5.4) seer 1n order. One should consider d = 1 for ease of understanding
and k small as in Example 5.2. Moreover, one should realize that
(taking d = 1) the integratien over y != merely an averaging process
over y of the contribution to multidimensionality resulting from each
choice of y such that E[Yl |9 =286] =y,

Put qualitatively, s measures, ahong examinees that are expected
to have the same score on the partitioning subtest, the amount of variation

there is in their expected scores on the assessment subtest,
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6. A discussion of power. The preceeding section suggests that if Sl

(see (5.4)) 1is sufficiently large, then one would like to reject the hypothesis
of unidimensionality with high probability. The followling result cstablislies

‘ch a property for long tests and large cxaminee samples.

Theorem 6.1, Let d =1 in (5.3). Suppose for latent ability

Q= (6),0,,...,0,) that

(6.1) the density f(0) 1is a continuous function of 0,
(6.2) each ICC P (0) is continuous in 0,

(6.3) there exists ¢ > 0, M i_l, and some test splitting into subsets

for each n such that

l+ ¢
M

5 > for each n > 1.
Then, for fixed level of significance o, and prescribed power £, 0 < B <1,
(6.4) P{reject H] = P[T > 2:) > 8

for n sufficiently large.

Proof. See Appéndix II for the proof.

The following corollary is useful in interpreting psychometrically

the meaning of (6.1). Let Yj = ng% be the partitioning subtest score of the
’

jth examinee of the partitioning interval Ai”).

Corollary 6.1. Assume all the hypotheses of Thecorem 6.1, except for (6.8).

Suppose for a particular test splitting that for all n and some € > 0
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Then (6.3) holds and hence (6.4) holds for n sufficiently large.
Proof. See Appendix II for the proof.

L

The interpretation of the corollary is that if the average of the item
intercovariances on the assessment subtest 1s bounded away from 0, then the power
can be made arbitrarily close to 1 for large n. Here the averaging is
over both subintervals of the partition and over item pairs of the assessment
test., The idea is that if conditioning still leaves a significant amount of
interitem covariance on the average, then one would want to reject with

reasonable power. Corollary 6.1 guarantees this.
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7. Preliminary Monte Carlo studies: As of the writing of this report,

an extensive Monte Carlo study has been begun. Its purpose is to assess
the performance of the proposed statistical test of unidimensionality for values
. f test length, examince sample size and subtest splitting sizes typlcally
encountered in actual test settings where dimensionality is an issue. A
part of this study will consist of the consideration of minor modifications
of the proposed procedurc in order to improve its performance for small test
length N (and, as turns out to be potentially useful, "large" M/N),

Preliminary Monte Carlo studies clearly suggest the feaéibi]ity of the
test procedure and/or minor modifications of it for actual mental test
applications. The purpose of this section is to summarize these preliminary
findings. A Fortran program to do Monte Carlo simulation of the performance
of the test procedure (given by (3.8)) both when d =1 and when d = 2
has been written. Further, a method of intrecducing multiply determined items
has been programmed, thus handling the d = 2 case when the clasgical
dimensionality k > 2, as well as handling the k =d = 2 case.

hriefiy; in the d = 1 case, the stand&rd three pagametric logistic
model is used with ¢, = 1/5 for all i and parameters (ui, bi) randomly
generated to simulate values typipally occurring in applications, Two

results obtained were that the procedure showed good adherence to the

prescribed level of significunce when

(7.1) J - 1000, N =200, M= 10

and when

]
-J
wn

-
=

]
W
.

(7.2) J = 1000, N
Using a bivariate logistic model for the d = 2 case, the procedure

displayed excellent power for the (7.1) and (7.2) cases,
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The introduction of multiply determined items produced only insignificant
loss of power and a modest increase in the actual level of significance o for

both the (7.1) and (7.2) cases.

Further, as a result of the preliminary Monte Carlo studies, there is

evidence that a minor modification of the denominator of (3.7), namely replacing

‘ : i
n |, ~4 4,k|,.(n)
Diem1 | (B4 D) = 0y ) - _n;;'- 1y
by .
K 8 . 1/2
n A A 4,k A ~4 2 (n)
2k=1[:(“4(y) - OY,k) + :;"*_” G, (1) - OY,k)(Sl&,k/M 13, ,

may considerably improve the performance of the procedure for small test
length N, that is, produce good adherance to the prescribed level of
significance with good power performance still preserved. Use of this
denominator 1is suggested by the well known Cauchy-Schwarz inequality from
mathematics. This and-other modifications of the proposed procedure are

presently being considered.

As the theory suggests, preliminary Monte Carlo studies indicate the
accuracy of the ‘large sample approximation begins to break down when M/N

becomes too large. E.g., N = 100, M =10, J = 1000 seemed to noticeably

inflate the actual level of significance. Various possible modifications of

the procedure may largely eliminate this breakdown.

The Fortran coding, together with instructions, is obtainable from
the author. Agaln, the preliminary nature of these Monte Carlo findings

is to be emphasized.
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8. The choice of assessment test length and assessment test items:  Consider

a mental test setting consisting of an N item test., The choice of M should
be "small" compared to test length N3 the preliminary Monte Carlo studioes
reported on in Section 7 tentatively suggest taking M/N < 1/10. On the

other hand, it is also clear that in a reasonably long test (e.g., N > 100),
the larger that one can safely take M, and thus thcgrcuLcrstatisticulpowerone
attainsT In a particular test appllication withﬁknown N and J, it woﬁld

be feasible for an applicator to conduct a Monte Carlo simulation for various
choices of M in order to select an M that is large enough to provide good
power, yet not so large that the actual level of significénce deviates too

much from the prescribed level .

An even more critical issue is the assignment of test items to the
assegsment subtest, once M has been determined., If done improperly, the
statistical test may have little or no statistical power, The problem is
essentially that, even though it may be true that d > 1 in the sense of
Definition 5.1, nonetheless, the assignment of assessment items may be such
that the two subtests are "paraliel" in a certain sense. That is, letting

Y and Y, denote the proportions correct on the partitioning and assessment

1 2
subtests respectively,

(8.1) EY2 = h(EYl)

may be the case for each examinee, when h 1is a strictly increasing function
that is the same for each examinece. Then in fact the statistical test will

have no power, Indeed, if the two subtests are roughly parallel in the

sense that (8.1) holds approximately then there will be little or no statistical
power. Hence, in order that the statistical test have reasonable power, the

items must be assigned to the two subtests in such a way that if indeed
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d > 1 is the case then there should be little probability that the two

subtests will be approximately parallel.

The procedure for assigning items to the assessment subtest should be

such that, when there are other dominant dimensions present, then the items

that are more heavily influenced by these other dimensions, should (ideally)

all be assigned to one subtest. And hence the items assigned to the

other subtest should bhe less heavily influenced by these other

dimensions,

that

(’a)

(b)

For the assignment of items to the assessment subtest, three methods
cauld be used are:

Expert judgment: One or more experts on mental testing could select a

set of M items that seem to display a common bias or seem to be
significantly influenced by a second dimension. This choice could be
made on the basis.of item content, method of item administration, item .
format, past experience from previous test administration, subjective
impressions, etc.

Factor analytic or other multivariate analyses: Split the text examinee

) population (randomly) into two subpopulations., Use some multivariate

technique on the first examinee subpopulation to select those items that

seem to most represent other unified dimensions than the dominant test

dimension. For example, using the sample tetrachoric correlation matrix,
one could perform the usual factor analysis of the test., Then those M
items with the largest estimated positive loadings (one could use largest
negative loadings just as well) on other dimensions of the factor analysis
relative to the dominant dimension should be assigned to the assessment
subtest. Then carry out the statistical test of Section 3 on the second

examinee subpopulation.
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The point to realize here is that even though there is not an
adcquate.thuorctical or empirical basis to justify the use of factor
analysis to assess the dimensionality of dichotomously scored items;
nonetheless, factor analysis can be used as an atheorctical data-
analytic tool in conjunction with the theoretically grounded procedure
presented in this paper. Since often test population size 1s quite large
in test applications, there scems to be much to recommend this approach.

Random assignment of items to subtests, subject fo user specification

of the magnitude of M,n. The hope here is that the diversity of

item dependence on the various dimensions in the d > 1 case would with high
probability bring aboutltﬂc sclection of sufficiently non-parallel sub-

tests that the statistical test will display reasonable power. At

present, no theoretical nor Monte Carlo work has been carried out to

defend this hope. Indeed, the author is skeptical of the effectiveness

of this method of assigning items to subtests, but Qill, of course

investigate it.

One has to choouse the partition subintervals. These intervals

should clearly be of equal width. Hence, the user is really only

- selecting the number of subintervals Kn. Roughly, these intervals

should be as narrow as possible subject to the requirements that a reasonable
number of intervals (e.g., at least 10) have a reasonable number of examinees (say
at lecast 25) assigned to them and that not too many examincee scores are discarded.

One final minor matter is that a convention for excluding intervals with too
examinees assigned to them must be selected. E.g., one might require

at least 25 examinees/interval,
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After the completion of the extensive Monte Carlo study referred
to at the beginning of Section 7, the author should be able to provide
clearer guidelines on the user specified options discussed here in

3 Section 8 that are required to conduct the statistical test,
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9, Extension to tests of higher dimensionality., The procedure can be

modified to test

H: d<d, vs A: d>d

0 0

for any d. > 2., One merely uses d0 partitioning subtests and one

0 .
assessment subtest and then partitions examinees on the basis of what

partitionery subget of the dO dimensional unit cube their partitioning score

Yl’ Y2’f"’ Yd falls into. The author expects to do some theoretical and

0
Monte Carlo work on the d0 > 2 case in the future,
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Concluding remarks, It should be stressed that the main advantage of

the proposed procedure of this paper is that it has a rigorous asymptotic
theory backing it up. As a result, it should display good power against
those alternatives for which one really does wish to reject the hypothesis
of unidimensionality and it should not spuriously reject unidimensionality
in situations where one does not wich to reject, as has sometimes becen

the case with other procedures. Further, the assumptions required for the
asymptotic theory are rather unrestrictive and are totally non-parametric,
That is, no particular form, such as multivariate logistic or multivariate

normal is assumed for the item response theory model.
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Appendix I. Proofs of Theorems 4.1 and 4.2,

(n)
k

the midpoint of A

Let s denote the radius of Al((n). Let ¢l(<n) denote

l(<n)' Let Olin) be defined by, writing 61(:')

instead of @l = el(cn) for the conditioning event,
(k) |o(n); _ , ()
(1.1) E[Y, [0, '] =¥ 7,

noting that 91((“_), is well defined for all 1<k<K,n>1 by the
continuity and strict increase of the Pi(8) and the definition of

n in Section 4. Suppose, for the € of (4.5) and (4.7), that

1
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1.2

(1.2) Oén) € (a+¢€, b-c¢) forall k,n .

Recall that the density of © is denoted by f£(9). The conditional pro-
bability estimate given in Proposition 4.1 below is central to the derivati
of the asymptotic theory. It is based on the Berry-Esseen theorem, which is
now stated for completeness. Let V(W) denote the variance of a random

variable and ¢(z) denote the distribution function of a N(0,1) random

variable throughout.

Lemma I.1. Fix n. If {Wi,l <1 < n} are independent mean 0 random vari-

ables with

i 1 V(w Yy >0

n n 3 .
then, letting Sn zinl Wi 3 Pn Zi=1E|Wi| s there exists a universal

constant C such that

s cr)
8\1[.)]1’[-'——i7-2 < x] - (b(x)l < —/—-
Vi) vEs,)
' .- = (n) 4(n) _ (n)
Proposition I.1. Fix k,n and denote s, = 8 10 =6, ". Suppose
(L 3) Zn-l_gsniCn-I/Z :

Then, letting Y= YP denote the proportion correct on the partitioning

subtest for a randomly chosen examinee,

2
(n) 2x (n) C exp(-n x /4)
(1.4) P[|l©- 0 |3—€- | yea™1< APV R VX
n n

1/2 and € of (4.5) and (I.2).

for all s < x < (log n)

Proof. Clearly

prje - o] > 22 v o™ <

P[]y - o'W <s ]

(). 2% o (n), ..
(1.5): P[O-0"]> 5 v A7) =
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The denominator is estimated first. For any y >0 ,

(1.6).

(n)
6" +y
= pily - ™| <5 |0 = o0lf(0)a0
e(n)_y
e(n)er -
_>_J pily - E[Y]o1]| + |¢'™ - E(Y|6]] < sn|@= 8)£(8)d0 = -
e(n)_y

say. Now for 0 € [O(n)-y,e(n)q-y] ,

™ - gryley] = erv]o™ - Erv]e)]

n (n)
Liap B877) = P (0)]

n

< Clﬂ(n) - o

by the mean value theorem and (4.6) Thus, continuing (I.6),

(1.7)

choosing

(1.8)

6(“)+y .
Y 3_[ P[]y - E[Y|0]] < s~ Cy|0}£(0)dO
o™ _
y
0(n)+y
?.J PL|Y - E[Y|0]]| < s /2[6]E(B)dE ,
p(®
-y .
sn
y £ 3% °

Now, trivially, writing Ui = Uijk

(1.9)

1

- 3
verle)y <, 27 Elu, - E[U 01" <n .

Further, by (4.7), (1.8), (1.2), (I1.3) it follows that

(1.10)

b

V(ny[8) = II P (0)(1 - P (0)) > en for some € > 0.

Hence, by the Berry-Esseen Theorem (Lemma I.1), noting (I.9), (I.10) and
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(1.3), it follows that

1/2
& n s
- ryloy!
PL|Y - EC(Y]®)] < = 6] ;;P[i{}zziﬁilllL <=2 o)
- V(Y|0)
g 1/2 1/2
s n -5 N
v -C n ] [ : ) R c Y
> + ¢ -9 > - — + Cs N
. - nl/2 {2 2 J - nl/z n
Hence, using (I1.6) and (I.7),
(1.11) P[]y - ’p(n)l <s]> Cs (s nl/2 - n-l/z) .
= "n =~ " n*"n

Now, let x' = 2x/e and consider the numerator of the right hand side of

(1.5) .
raz) ey - e <510 00 >
. ) I pilY - 9™ | < s |0=6]£(0)a8 .
; Jo-o ™ >t n
Assume
(1.13) 16 - 6| >xaco<h .
Now
(1.14) § = P(]y - E[Yle(“)]l 5_sn|01 <Pl|Y - E[YIO(n)llli x|0]

< Pl]Y - Efv]e]] > |E(¥]e] - E(v|e™)] -«

Efy|o™

since, on [|Y 1] <%},

ly - E[Yle(“)jl_g lE[Y]O) - E[Yle(“)]! - |y - E[Y]0]] .

=
v

Now, using (4.5) and (I.2), it follows that

lE[¥]e] - [v|e ™| > elo - 0™ >ext = 2
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Hence, using (I.12) and (I.14)

[L U ~E[U, 10|
(1.15) & < PL|Y - E[¥]e]] > x|0] = P L nx
- = vt |e)”2 vz v, oyt
L i= 1 i i l i
Now,
|u,-E[v, |6]] 1 -
1/2 - B *
V(nY|0) V(L 1 ) ile)
Let
e = nx
V(Ei -1 iIO)
Note that
(1.16) e'c'=~—L— +0 as n-ow
i 1 ile)
by (4.7) and the hypothesis that x < (log n)"‘ll/2 . But, this means that

conditional on © = 6 , the U, satisfy the conditions of the classical

i
Kolmogorov exponential bo;m-ds (see, e.g., Stout (1974), p,262). That is,

1y 2 :
§ < exp [-@—2)— (1L - e'c")]

from which it follows by (I.16) and (I.9) for n large that for 0 such

that |6 - 8| > x,0€ (a,b) ,

2
(1) prlY - EY[6™]] <6 |0 = 6] < exp(ED)

Now assume instead that © satisfies
(1.18) |8 -06™| >, 0¢ (a,b).

Then,; for © > b , using the mean value theorem and (4.5),
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Elv]e] - ev[o™] > Erv[b) - Ev]e™] > €2

Thus, using a similar argument for 6 < a3 ,

E(Y]|O] - E[Y|0(“)]| 3 2,

g Hence, reasoning as in (I.14), it follows, fo; n lai:ge that
§ < PL|Y - E[Y|B]] > 52/2|@ = 0] .
“Hence, for any €, 0, for n large
(1.19) 6 < P[]y - E[Y]|O]] > e |© =0l

Now, it 1s straightforward to verify (see Lamperti (1966), p. 44)) for

0<t <2 that

(9)(1 P, (6))
(1.20) Elexp(t n(Y - E[Y|6])|0] < exp[i Lk =% L t:z(l + t)}.

Then, by Markov's inequality, for 0<t <2, .

i 1P -P, 6)) 2
(I.21) P[n|Y - E[Y[6]] > nE |6] < 2exp(-n€ t:)exp . 5 -t (

There are two cases to consider. First, suppose that n 1s such that

(1.22)  E7_ P (8)(1 - P ,(6)) > 2n/log n .

Then (see (7), p. 44 of Lamperti (1966)) choosing

, = 2€En e = 1
'"'n logn
yields
(1.2) 8 < plaly - ElY[e)] 2 755l 01 < 2 explyg o]
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Suppose, instead of (I.22) that

n 2n
J4=1P4 (0 (L - P (8)) < Born

oo

Then, letting t = and using (1.21) yields

i 1 i(9)(1--1’ (
(1.24) 6 < Pln|Y - E[Y|6]I _-ir— |6] 2 exp(8 1 o8 n)exp &l

22 eplg o s

Combining (I.21) and (I.24) yields, recalling (I.14),

(1.25) s =P[|y - Eq[e™)| < s al01 22 exp (T

for 6 satisfying (I.18). Recalling (I.17), it follows that

2
S < max[exp( i ) 2exp(m)]

)

< 2 exp (-x‘.

for 0 satisfying [0 - G(n)l-i x' by the assumption that x < (log n)-]‘/2

'Hence, using (I.12),
. (n) . . (n) Ran
PUY = 07| <5,]10- 077 > x'] ¢ 2 exp ().

Thus, recalling (I.11) and (I.5) , the desired result follows.

Let k & kn denote a sequence of positive integers throughout the

remainder of Section 4. Recall that

(k) - zn+M

j 1ent1 Ui/

(I.26) Y
defines the assessment subtest score for examinee J of the partitioning
interval Aén) . It can easily be shown (and is intuitivelv clear) that

(1.27) {Y;k)} is identically distributed in j for fixed k and independent

in 3,k .
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1.8
The proof, which follows from (2.3) and (2.4), is omitted. Let

YJ p be the partitioning subtest score of the jth examinee of the
? . .
partitioning interval Al(‘n). Recalling the notation of (2.1), let
) (n) - . (n) : -
(1.28) By = By | [Yj'P €Al = oy = P[Ui+n,1k 1181
and
- - _t™ 2
(1.29)  eZec =e | = Liap o1 = @)/
- (k)
Denote the density of ©, siven B, by fn(°) = fn (*). Let

Jh= Jl((n) throughout.

In order to verify that the asymptotic distribution of

e ~2

Y P - OY,k - cP,k has mean 0, it is neccessary to consider the pre-

asynptotic centering:

Proposition I.2. Suppose (I.3) and that uniformly in k(I < k < Kn)

4
(1.30) Mz—nL +0 as n >,
a .
Then letting 02 = 02 = V(Y(k) B,), it follows uniformly in k that
’ Y ©~ “¥,n,k 1 171 y
1/2

(cz-c)"o as n+> o ,

(1.31) J Y

Suppose (I.3) and, letting K = Kn’ that uniformly in Kk,
" JK(Qlo n)a
(1.32 —-—ZL—— +0 asn+o ,

n

Then, uniformly in k ,

/2(02 -¢)?>0 asn+>o ,

(.33  @r)! :

Proof. Only the proof of (I.33) will be given, since the proof of (I.31) is vir-

Le o}
tually identical. First,_os= E(V(Y[0)) + V(E(Y|0)). Thus U denot ing J )

2 n+M 2 - (n) 2-
oy = f=ntl IPi(G)(l - Pi ) f (0)d6(p1

n+M oM )o



wh

n+M n+M )
= Li-nt1 %4 yi +1'(',‘-_1LE. +
M2 M
n+M n+M 2
P, (0) z a
i=n+1 f=n+l it .(n)
+ j[ i N J f (0)do .
Now,
Zn+M Pi(e) zn'H‘l ai 2 Zn'*'M e 2
i=n+l _ f=n+1 - I=n+l"1i
M M M
n+M n+M mfffu f‘_i_Jz
2 icat1P1®) Lpcgyy 4 ¥ T2
n+M 2
1=n+‘_1_f}__(f_)_ o n+J i1 <ntM L(O)P (6)- 2
M2 M m2
-Zn'i'M O‘2 ) -
i=n+l i |, ntl<diAi'<nddM it
M2 M
Thus,
AR ) 5
n+l <i#i'<nM M
9 :
1 i J 1 oo 2
- w2 (fi=n+l 74 Mz i=ntl
=11 .°(ElP (©,)P,,(©)]B.] - a,a
y2 P HAL oML ' 171!

)

n+M
i=n+l

P, (0)]

I.9

n+M
I=n+l

Thus, it suffices to show that, uniformly in n+ 1 < i # i'<n+M,

(JK)

1/2

cov(Pi(Cﬁ),Pi&G&)IBl) +0 .

.Hence, it suffices to show

(JK)

1/2

as n-+o , uniformly in

Now, letting x'

= 2x/¢

V(Pi(Gﬁ)lBl) >0

n+1<1i<n+M,

&
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(L3 ve©)[B) = f{vicm - Jviw')f‘“)(o')da 1™ (0)a0

(n)
- f’ +x' [ ) - in(e')f(“)(e')dejzf(“)(O)do

(n)

[e(n)_x! ’e(n)_l_x! ]C

+

2
Ei(e) - in(e')f(“)(e')de':l £ (6)d0

R+S , say .

Now, by Proposition I.l, for any sn'ﬁ x < (log n)-l/2

C exp(-nx /4)
72, _ 172" %S
®n

(I1.35) 5§ < ;

sn(n

Consider R. Then, using the mean value theorem, there exist 90 satisfying

190-6(n)| < x' such that

(1.36) lpi(e) = JPi(e')f(n)(B')de'l =
(n)_ . ,
|P1(9) - Je(n)+x Pi(e")f(“)(e')de'- ' B 6"yt (
S (o (™ v, s 'l
(n), . L
- O " o (0nye™ (67)ae’
e(n)_xu i O(n)+x' (n)
< Pi(o) = ) I £ (8')do" +Qn
Ie ! (n) : e(“)-x
@ |, £ nae '
0 /-x'
' ' 0 ™ixt_(n)
< Pi(e) = Pi(eo)I (n ) f 8')de' | + Q
(1) ' | C) PP
= Pi(e)lje( o (“)(e )d8" + £17(9")dd ]
] [e(n)_x,’e(n)+x.]c

o (™),

- (0 )I - ) f(“)(e )de'| + Q

n)
|Pi(9) P, (8 )|IG = (“)(e)de +2Q <Cx'+2Q

A



-

(1.40)

I.11

by the mean value theorem and (I.34). Thus, by (I.34);, (1.35), and (1.36)

r&x' + Qn)2 + Q

AILACHIERE |

|

/ /2

(1.37) (JK) a2,

Thus, it suffices to obtain

/2, /2., 4

"2k} .

0, oK

1/2
Recall that x' = 2x/e. Taking x' = (log n)/n / works for example, estab-

lishing the resule.

2

A2
y " OP ,» suitably nor-

Next, the asymptotic distribution of o

malized, is obtained.

Proposition I.3. Suppose (I.3). Suppose for some £>0 and all

(n) - ,(n)
0 = k)

n+1<i<n+M n>1 that (recalling that

(.39 |p, 0y - 12 > e

" Suppose (1.30). Let

. ‘ = (n) = - - XX =
(1.39 DD = (o) =1, 20, = 1,0%,20 - 1,1)

and, denoting E(Y - E(Y-))_l' by ua(Y),

,ﬁil(l-al) 0 =0 0 oy (1-0) (1-201,)
0 a2 (1—32) see 0 az(l-uz)(l-2a2
_ (n) * * : :
z B zk ) : . . .
0 0 oo O (l-aM) o (1=04,) (1~201,
' 4
Otl(l"‘dl) (1-2u1) a, (l—a.z)(l-ZaZ)' cea,d *CIM) (1-2615{) M {Ll,' (Y)-oi’,)
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Then, letting Z denote a N(0,1) - random variable,

A2 A2
2 % "% 1 _
(1.41) MV ———————= -3 2 as n-+» ,uniformly in k .
. (DZD')l/z

~2

A0
Proof. Since writing "0; = OP" presupposes the assignment of examinees

by the partitioning subtest, it is implicit in the statement of Propositior
J

1.3 that the conclusion of (I.41) is conditional on N Bj'
j=1

(k) . _
L ¥ = = N = R
et, writing Yj Yj Uij Un+i,jk yand LY.j E[Yj[Bj],

= 2., _ 2

Wy ....’U

Mj
Note that

2

2
o ' = - - LN ] -
(1.42) B(H' ) 1B)] = (2a)-1,20,-1,% 20,1 M0 °) .

2

We next compute the asymptotic behavior of the covariance matrix Zw of W

given B Note that, by conditioning on @1,

10

(1.43) = E(U;,B,) = E[P_, (8)B,]

%
and. for 1 1

Recalling the proof of Proposition I.2, for i # i' , it follows that

1/2

(1.45) J °°"(Pn+i(@1)’Pn+1'(@1)|51) + 0

and

1/2

J V(Pn+i(C&)|Bl) +0 as n-o,

Thus, combining (I.43), (I.44), and (I.45), It follows that

1/2

(1.46) J cov(Uil’Ui'llBl) +0 as n-ow .,

Now, by (4.7) and (1.2), for some € >0 and all 1i,k,n



(o 1-e>p,0™ya-r ™).
Now, for X, = (log n)-l, using (4.4),
(n)y, _ o (n),,.(n),
, - P (O = P,(0) - P, (0 f ¢ !
Jog = P, ( | )| ILE {8 =P (077 (1) do]
< P[l(‘)l - O(n)l > xnlBl] + an

Hence, applying Proposition I.1, it follows that

(1.48) a, - Pi(O(n)) +>0 as n-®

uniformly in i . Thus, combining (I.47) and (I1.48), and recalling (I.29),

(1.49) infec >0,1-€2>a(l-a)>e forall i.
n>l 2

Note that
(1.50 V(U,,|B.) = o, - o
: i1t71 i i

. Further, using(I.dé)and elementary calcalation, denoting a,/b,> 1 by a, ~

2 2 . 31 4 _ o
(1.51) - cov(U, ;M7 (Y, ~EY, ) IBI) E[(Uﬂ-ai) |B1] =a, (1 a1 - 2a;) as n->

Thus, recalling (1.40).and (1.46), (1.50), and (I.51), it has been establishe

that, termwise, as n-»® |

(1.52) zw~ I .

Also, note by (I.38) and (I.48), it follows that, for some € > 0
(153 |2ai -1 >¢, Iai(l-ai)(1-2a1)| > ¢

uniformly in 1 .
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Now, armed with the above computations, the proof proceeds
essentially by a multivariate version of the " § method" (see p. 122,

Serfling (1980)). Let

o : _ _ oM i
: (T.34)  Blxpaxys ot taxyyy) = Xy~ Zyag ¥ (%)

* Thus
2x,-1 i <M
i —
98
axi
1 i =Ml
Let, recalling (I.42),
x. =27 w/s u=E[x|r‘§B]=E[WIBJ.
Y B T LR N | = 4ap 3 -11"1

The main thrust of the proof is the establishment of the asymptotic normality

of 8(55) .
- Let
8(x) - s(y) -8y s x-4) 1f x# u,
h(x) = Ix - EJ“
' 0 if x =
where
' ) og
(1.55) g(u,t) =SBt ey t .
g axl 1 3xu+1 M+l
-] u
2 o L2
the differential of g at (u,t) and Ix!" =3 ""x; . Let
= 1W1/2
: by = =R E DI s
X J
. Now,
g(X,)) - s(u) IX, - p b g(u, s X, ~n.)
—J —J —J J =)' =y =]
(1.56) b h(X ) + 5 :

J J J
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By (I.55), letting Mg denote the {th ' component of Hy»
1 1 M1 B
(1.57) = gQusX ~u) == PN, - ) 2B
bJ J'=J J bJ 1=1 iJ iJ axi -
Hy
. 1 ZM el 5 ¥
" = Loy —a ) (2, -1) + M(Y,-EY,) = o))
J1/2(D 7 D,)1/2 g=1| 3 117713 i i i i Y
’ 1 9 [ , 2 2 2.
= iy (e (U =0 ) (2u,-1) + MT((Y,-EY,) "~ o))
J1/2(D 5 D,)1/2 J=11"1=1""4] i i i i Y
Let
- oa(k) o oM _ _ 2,0 (k) (k)2 2
Rj = hj zi=l(Uij ai)(2ai 1) + M ((Yj -LYj )y - ”Y ).

* Now, using (I.52),

J
. (1.58) v(le N B

. s )=V(Rj|Bj)~(DZD).

jl
Moreover, by (2.3) and (2.4), it is easy to show that the {Ri} are, for
each n, 1.i.d. By the Berry Esseen theorem, it suffices to show that
2
inf op >0,
n 1

which will follow from

R

(1.59) - inf @ D)2 50

n
Since D 1s asymptotically bounded away from the M+1 dimensional vecto
0 , it suffices to verify that asvmptotically I is bounded away from the
collection of (M+l)X(M+]l) singular matrices. To this end, it is neces-
sary to obtain an asymptotic expression for u4(Y) -(l: .  Computation sho

that
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4 M 2 3 4
NA(Y) - c\, = 21=1(01-4Qi + 6(11 - 3ai)

+21% a,(1-a)a ,(1-0,)
iy 10 VL

M

- L.

2
-1 i(1 a ) .

Then, although mildly tedious, using |ai(1-ai)| >¢ for all i , some
€ > 0 , it can be shown that I 1s indeed bounded away from the collec-
tion of singular matrices. Thus, noting (I, 57 and applying the Lindeberg-

Feller theorem, conditional on 2 1B.‘l’

—]-'— . — L

vhere 2 is a N(0,1) random variable. Now, since the elements of

J
iI/Jl/2 approach 0 as n-« , it follows that, conditional on jngj .

—P>0 as n-+o ,

.&J-.E.J

%'B
=173’

Hence, conditional on

h(_J h(l-lJ as noo

by the continuity of h at My - But, since h(.EJ) = 0, 1t follows that,

A
3=1By

conditional on

h(KJ)-g*O as n=oo ,

Hence, referring to (I.56), to obtain asymptotic normality, it suffices to

show that

5. - ! J
P——"-J——'-—>x jngj +0 as x-=o,
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uniformly in n . Hence, by Chebychev's inequalit . it suffices that

D I D' is bounded below, which is known from (1.59), Thus, conditional

J .
on jQIBj y letting Z denote a N(0,1) random variable,

g(X.) - gu,)
(I.61) ) 5 0 l#z as n-o
3
Note that
J 2
Ly L (Y.-EY.)
122 2, _ 1/2(%=1""3" "3’ 2| _ 1/2% 2
(1.62) 3oy -0y =3 7 Oy I - BT
Recall (I.49) and (I.31). Hence inf oY’- > 0. Thus
3 n
n E(lYl-EYll IBI) . _C
n3/2 02 - n1/2

Y,

Hence by the Berry-Esseen theorem (Lemma I.1) it follows that, conditional

A
on j-lBj q

J1/2(§;EY1) gl* Z , a N(0,1) random variable.

J
By Chebychev's ‘inequality,- eonditional on jCth

(1.64) ?-EYI—E*O.

' N |
Thus, (I.63) and (1.64) together imply that, conditional on leBj

_ 2
i - EY,) Lo,

-EY,)

Thus, referring to (I1.62) and (I.54), it follows that replacing Z§=1(Y 3

]
by C)’Y2 in (I.61) leaves the conclusion of (I.61) unchanged. Applying
(I.31) of Proposition I.2 to (I.61) and recalling (I.54) then yields the

desired conclusion for each fixed k = kn sequence. Although not explicitly
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stated, all arguments in the above segment of the proof hold uniformly
in k, thus establishing the desired conclusion.

Now the proof of Theorem 4.1 can be completed.

Proof of Theorem 4.1. Trivially follows from Proposition I.3 and the facts that

J
conditional on N Bj’
i=1
(1.65) 4, - aiP—> 0, i,(¥) = u, (M 2, 9, v - oYL 0 as n +®
J
uniformly in 41i,k. Also note that conditioning on N B, 1is implicit in
i=1

the statement of Theorem 4.1,
Remark. Note that, recalling (3.6) and (3.7)

(1.66)  (BSH') = u4(ﬁ4(y) - a,‘;’k)) 3 34,1«

Now, the proof of Theorem 4.2 can be given.

_ K, JIE“)
Proof of Theorem 4.2. Note that condition on B(n) =N N Bgni is implicit
k=l j=1 -°

in the statement of Theorem 4.2. ‘The proof basically consists of a modification
of the proof of Proposition I.3. The main steps are presented, with the details

left to the interested reader: Refer to the proof of Proposition I.3. Let

() _ py(K)y2y

(k)'
L =@ e, 3k ¢y j

LA o+, §kUne2, k000 oY

As in the derivation of (I.52), it follows that termwise, as n - «,

(n)
(1.67) "
Zﬂ(k) Z1<

uniformly on k. Define g(*) by (I.54). Let
J(n).
k (k) ,,(n) K
13,

K Z -1 X K n
e ,u = Ex 3™ = 0 E[ﬂik)lkﬂlBik)J/xn.
n k=




-2

Note that

7{m) ( 2
K)o (k) :
(2 211 Oy " -E ) m S0 g ()
J(n) k=1 Py Py .
k

115 n
gX) = Ly [M

Define g(y,t) and h(x) as in the proof of Proposition 1,3, Let

K
2 _ zkf (n)z(n) (n)’ /J(n)

The rest of the proof proceeds analogously to that of Proposition 1.3, not

that it is necessary to use (I.33) in place of (I.3l1), One concludes,

conditional on B(n), that

5 2 2
2 lx=1 O x ~ %k L

w0 o (n) o(n) (n)r,, (n)
[zk=1(Dk B Pk )/Jk]

(n)’

Now, conditional on B

a(n) a(n) a(n), (n)
DT L D3y
(n) «(n) _(n)y,,(n)
Dk Xk Dk /Jk

P .
> 1 as n -+ e

uniformly in k follows from the fact that (£.59) and (1.65) hold uniformly

in k. Thus, noting again.that (I.59) holds uniformly in k, conditional

on B(n),
K '
n “(n) A(n) “(n) /J(n)
(1.69) k=1 Pk Yk Pil as oo
(n) (n) (n)' (n)
Demi P T B 19

Combining (1.68) and (I1.69) yields the desired result.

DL R

1.19

ing

L
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Appendix II. Proof of Theorem 6.1 and Corollary 6.1.

Proof of Theorem 6.1l. Note that conditioning on B(n) is implicit on the
statement of (6.4). Let k denote the classical test dimensionality and

, Rk denote k dimensional Euclidean space. It follows trivi.a_lly from

Chebychev's inequality that the weak law of large numbers holds for the

partitioning test score Yl’ uniformly in 6. That is,

(11.1) . ¥, - ElY, [0 =081 20 as n~>o,

where the convergence in probability is uniform in 6 € Rk. It thus follows,

denoting the distribution function of a random variable W by Fw and

using (6.2), uniformly in 6 and y that
(I1.2) FYl(ylgﬂ_@_) - FE[YllQI (y|@=08)+0 as n+w

for each 0 <y < 1. Then, for fixed y, it is easy to show, using (6.2)
and denoting the conditional density of ©, given Y ='y, by f£(° | ¥) and

the conditional density of ©, given E[Y|O] =y by g(s]|y) that

- M . . 2
Li=) Py @ Jie) P (1) T
Rk M - j k M £0' y)do'| £(0] y)ds
- R L
; M :
_[ et 1@ Loy @Y oy yyaet| g(o]yras » 0
gk M k M -
__J R -l
P as n+ o, uniformly in y. Thus, integrating over 'y, it follows that
-
M 2
(11.3) U III =1 Py & I 1= P 0" ' |
. i n SRR | 10" | y)de'| £8 ) y)de dy
oo 4 Rk M Rk M =

2
1 l;l=1 Py (9) ZT=1 Pi(g_') -
' —IOIR M 'Ik 88" | y)do] (8| y)do dy + 0
. R°L R :

as n > «w,



-

Similarly,

11l2

K l’ZM p.(8) ZM p,(8")
_ -1 n [ i=1 "i=" _ i=1 "i°" 7 (n),ny
(AL4) Py = Qg =g Lya JRk|. v IRk M B ¥, €A, N
£y, € A™)a

as n*®,

Combining (I1I,.3), (1I.4), and using (6.3), it thus follows that

P >1+e:/2

(11.5) lim
o n M

It is easy to see that, recalling (I.28) and (I.29),

2 | .(n) 2 | (n) -1,

o n A n

(11.6) -h(GY’kl B> ) - E(OP,k. |.B ) = ';m-;_ (OY,k - cn.k)'
) k

Arguing as in the proof of Propositiur; 1.2,

M , M
-J I k-—————-[ e (0" | ¥)dO'| £(0] y)dd dy + 0
R R¥ . - - - =

1 *a 2 -1 Kn oM (n)
(11.7) X Dot Oy g =€) =7 Loy Dyay VI @ Y, €AY ) 40,

KnM

1
2P -

Using (II.5), it thus follows that

7 _]__ n 2 - ..E._
(11.8) lim K Xk.l (°y,k cn,k) Zom "

i



Thus, using (I1I.6) and (Il.7), for all n

B(n), it follows that

K
n ~2 (n)
Ly By | B

I1.3

éufficiuncly large, conditional on

(11.9) ) - E(C, le(“)) iz
: Now,
(I1.10)  ¢f1, > 2 | (M) - p l‘-ﬁlr-l Ziﬂl (Si'k : Ss’k)
- Rl; {E(Gﬁ’k (.B(“)) - E(Gf,’kl 3}
: 2 ;g {2:21 (ﬁén)gl((n)ﬁlin)'/Jl((n)}l/Z ) é zi 1{E(o 13
- 5G2 , 13} B(“):l
: - But, trivially
R {ml B e /J]((n)}ll < o
L - on

as n + %,

for large n

‘ (n),. _Lc
PIT >2 |B7]) 21 Kn-»l as

Thus, the result is proved.

Thus, using this and (1I.9) and applying Chebychev's inequality,

n > o,



L)

I11.4

‘(n)
hpSde
implicit in the statement of Corollary 6.1. It is easy to show that

Proof of Corollary 6.1. Note that conditioning on Y is

(n)
z cov(U,,U,, IY ~E A )
l:1<j_,iM 1’74 1,p k

n,k MZ

M (n)
1 VP @Y, p € A7)

)

w
Hence, (6.5 ) implies that
K
.o n 2 _
Deet Oy i~ o) e
lim K 230
N0 n

a reéult analogous to (I1,8). The rest of the proof proceeds identically to

that of Theorem 6.1 and is omitted.
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