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The Statistical Assesanant of Latent fruit 

Dimensionality in Psychological Testing 

(Final Technical Report of N00014-82-K-0486) 

William Stout 

University of Illi^oi;: at Urbana-Champaign 

1.  Introduct Jon 

In Lord (1980), Frederick Lord states "There is a great need fn 

a statistical significance test for the unidimenslonality of <i .^ t of Lt;t;r. 

items."  Indeed, it is an important problem to be able to detormim; wl.etiier 

a test that purports to measure the level of a certain ability is in reality 

significantly contaminated by the varying levels of enr of more other abilities 

displayed by examinees taking the test.  For example, is a test of tiathe-natlca] 

ability contaminated by varying levels of verbal ability displayed by subjects 

taking the test?  As a second example, it is of serious concern in Canada that 

performance on standardized ability tests not be influenced by varying examinet 

of familiarity with the French Canadian or Anglo-Canadian cluture (see Sarrazin (193 

Further, the standard item response theory (IRT) methodology (e.g., LOGIST) 

is predicated upon the assumption of unidimenslonality.  Because of the large 

number of private and governmental organizations routinely using tssts to 

screen people by assessing their levels of various aptitudes or abilities, the 

problem of assessing the dimensionality (especially the unidimenslonality) of a 

test is of great Importance.  Now, with the imminent use of computerized adap- 

tive testing by the U. S. Armed Forces (a test setting fQr which any two exa^ius 

taking the same test will in general be administered non-identical sets of items 

the Issue of dimensionality becomes particularly critical. 

The basic objective of the project was to develop ? practicable, 

theoretically based statistical procedure for testing for the unidlnensionality 



of a test. To this end, the following objectives have been attained: 

(1) The development of an intuitively plausible statistical method for 

testing for unidlmensionality. 

(2) The (rather delicate)  derivation of the asymptotic distribution of the 

proposed test statistic (of (1)) under the assumptions of unidlmensionality 

and reasonable regularity conditions, thereby establishing an asymptotic 

level a test of unidlmensionality. 

(3) The development of a rigorous mathematical definition of test dimension- 

ality that is item response theory based but yet is consistent with the 

classical factor analytic notion of dimensionality and also is not adversely 

influenced by the Inherent multidiraensionality of individual test items. 

(4) The establishment of asymptotic power one for the statistical test when- 

ever unidlmensionality in the sense of the definition referred to in (3) fails 

to hold. 

(5) The writing of a FORTRAN program, to simulate the use of the statistical 

test procedure for the case of a unidimensional test and for the case of a 

two dimensional test. Here the two dimensional test was modeled both with and 

without multiply determined (i.e., multidimensional) test items. 

(6) The conducting of preliminary Monte Carlo studies to assess the practic- 

ibility of the proposed test of unidlmensionality for realistic test lengths 

and examinee population sizes, these results indicating reasonable faithfulness 

to the prescribed level of significance, even in the presence of multidimensioni 

items, and indicating reasonable power. 

(7) The development of an analogous test to that of unidlmensionality in order 

to test (letting d denote dimensionality) 

HQ : d < d0   vs   H. : d > d0 

where   d0    is a fixed integer satisfying    d-, ^ 2. 

The remainder of the report  is devoted to a description of the attainment 

of these objectives together with certain prerequisite background information. 



2.    A careful statement  of  tho  Item res|>oi   e  theory model. 

The mathematical definition of dimensionality and  the mathematical 

derivation of the large sample theory for the proposed test  statistic both 

require a careful statement of  the assumptions of the item response theory 

model: 

Consider sampling    J    examinees from a population and administering 

a test consisting of    N    items to each sampled examinee.      Suppose each item 

Is scored correct or incorrect.     (1    for correct and    0    for  incorrect). 

Suppose that  associated with each examinee is a vector-valued 

variable   ^ =  (o-.e,,... ,0 .)     (the "ability" of  the examinee)   that deter- 

mines the probability of a correct  response for each item administered to 

the examinee.    For each sampled examinee    J,      binary random variables 

^ ^-M^    are observed, where    1    Is the item index.    The    {U   .)    are the 

observed or manifest variables referred to in the    discussion of latent 
- 

structure models.     "Item characteristic curves" are defined by 

(2.i)      P1(e) - Pdj^ - i | er - ej • i - Ptu^ ■ o | e. - el, 

the probability of a correct response to item    1,    given that the   jth 

sampled examinee has ability    6_.    Here it Is assumed that examinees are 

randomly sampled from an infinite population,  thereby inducing a probability 

distribution on the   £   ability space with associated random vector   0. 

Here we let (0, ,92... # ,0j)    denote the random vector of abilities for    J 

sampled examinees.    Throughout,    Ö    is assumed to be a continuous random 

vector with density denoted by    f(6).    L   denotes the domain of    f(ö) and 

is a subset of    d    dimensional Euclidean space. 



Item response  theory     la  based upon the  fundamental  assumption of 

local independence, which Is assumed throughout this report.    The Intuitive 

Idea is that, conditional on knowing the ability of an examinee,   the item 

responses are independent of each other.    That  is,   for example,   the dependence 

between    U..    and    U.,.     for    1^1'     is entirely explained  ("mediated")  by 

knowing the value of    6 .     Formally,   local independence is said  to hold 

provided 

(2.2) P(üu. VU21 ■ „2 UN1 - uN | Sj - 61 = TT P:uu - "! !§! • il 

for all    6^ G L    and each choice of    u    = 0    or    1.     Recall that    N    denotes 

the total number of  items. 

It is also necessary to assume throughout two assumptions about 

the sampling of examinees and the independence of information provided by 

different examinees.    It  is assumed throughout that 

(2.3) (ö^^ Oj) 

consists of independent identically distributed (lid) random vectors. That 

is, the {0.} are assumed to consist of a random sample. 

Now let £. ■ (U,.,^ ,...,U ), U, denoting the test performance. 

It is assumed that knowing each examinee's 6^ produces a sort of conditional 

Independence: That is, it is assumed throughout that 

(2.4)        PI^ - u^ - u2 Vj = uj |«^ . e^ = e2 
(ij=ij] 

In other words,   the responses of  different units are,   conditional on knowing 

their latent values,   independent of each other. 



For some purposes thu cla.sa i oal dcf Init ion ot d Imtmslonal i f v used in Lteni 

response theory will be used in thiy report  (sec. Lord and Novick (1968),  pp.  359-362 

for a good discussion of this).    This amounts to stating that    d    Is the 

correct dimensionality provided the joint distribution of  the observed random 

variables    {U.,, 1 £ i f. N,  1 £ j ^ J}    is representable in terms of a    d 

dimensional distribution of  1.1.d.    Ö.    and identical  (in    j)    conditional 

distributions of   JJ.,    given    ^ »    with local independence and  (2.4)  assumed, 

and moreover that such a representation is impossible for    d* < d.    Here of 

course by    0     being    d    dimensional   is simply meant   (since    0      is 

assumed  to be a random vector of continuous type)  that  the density     f(-j) 

of    Ö     has    d   dimensional Euclidean space as its domain. 

It will be assumed throughout the import, that,denot Ing here the classical 

dimensionality by    d,    whenever the joint distribution of  the    (^.J    is 

modeled In terms of  (identically distributed)  latent variables {© }   that 

the distribution of   Q      is in fact    d    dimensional.    Such a remark, is 

necessary,   since, of course,   it  is always possible to use a distribution 

for   ®      that has dimensionality larger than    d. 
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3,  A statistical approach to the asbessmunt of laumt structure unldinu'nsumal ity, 

As stated in Section 1, the main object of the project was to develop 

statistical method for assessing the choice of dimensionality d. The 

dimensionality test of most importance in mental test theory and likely in 

most other settings too is the test of unidimensionality: 

(3.1)    H:d«l   vs   A:d>l. 

Our hypothesis testing procedure to investigate (3.1)  is now broken into 

stept..     By "score" is always meant proportion correct. 

Steps of the procedure; 

Step 1;     Split the    N    test items into a long subtest of length    n    and a 

short subtest of length    M.    These two subtests are called respectively: 

the partitioning subtest  (length n) and the assessment subtest  (length M). 

Observations taken;    {U  .   :  i = l,2,...,n+M; j = 1,2,...,J}. 

(Typical values in mental test .applications;    J = 1000, N = 75). 

Step 2;    Partition the unit interval    [0,1]    into subintervals    (A ^ ,  1 <. k <_ K } 

of equal length.    E.g., typical interval:     [O.AS, 0.52), in which case there 

are 25 intervals. 

Step 3;    Assign examinees to partition subintervals according to their 

scores on the partitioning subtest.    E.g., if an examinee's partitioning 

subtest score is 0.51 and if 0.04 is the interval length then the examinee 

Is assigned to the interval    [0.48,  0.52).    Let    J .       be the number of 

examinees assigned to the   kth    interval of the    nth    partition,  the    "nth 



partition"  being the partition associated with a partitioning  subtest  of 

length    n. 

Step A:     (Construction of the test  statistic).    Resubscript the    U..     for 

n+1 <  i < n+M    such that    IK,, SU...      indicates the correctness of the 
-     — ijk      ijk 

response of examinee   j    of subinterval    k    of partition    n (1 £ j £ J.     ) 
Kn      (n) 

k 

to item i.     Note that    J =  ^, _.  J.      .     In each subinterval of 

the partition that contains enough examinees   (according to some convention 

set by  the statistical user),  the difference of two variance estimates  is 

computed.     From this point on,    K      will denote the number of  such intervals 

rather  than the number of  intervals of  the partition and    A       ,... ,AK        will 
n 

denote the subintervals containing enough examinees.    Computation of 

0Y . ,     the first variance estimate for interval    k:    Let 
,>k.   . -. ■  

(k) =    n+m M 

j i=n+l    i j k* 

the assessment    subtest  score of the    j th    examinee of interval    k    on the 

assessment subtest.    (E.g.,    j * 2    denotes the second examinee among the 

J^        examinees assigned to interval    k    of the   nth    partition.)    Let 

J(n) 

(3.2) Y<k)  - Z^ Y<k)/J<n), 

the average of examinee assessment subtest scores for interval k. Let 

J(n) 

(3.3) 3^-2^       (Y*10  -Y(k))2/J<n). 
. 

2 
Computation of    a« . ,    the second variance estimate for  interval    k: 

Let 

jCn) 

C3.3)    s^-cr^  a-plk))/H2: 



The test  procedure is then to reject    H     if 

K 

Iw'V-'W- 
appropriately normalized,   is sufficiently large- 

Normalization:    Let 

(3.6) 

,(n) 

MA(V)  " l^    ^ 
(k) Y^V/jOO 

[\* 
M V" n(k)     M 
k'l pi    (1 

-(k).   n       o^(k)v2 
Pi    )   (1 - 2p.    ) 

Finally,   let 

(3.7)*        T = T 
^1  (0Ytk - ^ 

n K 
yn (yA(Y) - 5Y>k) - 6 4tk /J 

(n) 1/2 

Then,  the procedure is to reject the null hypothesis of  (A.l) provided 

(3.8) T > Za, 

where Z  is the upper lOO(l-a) percentile value for a standard normal 

distribution. 

Remark, The selection of which items are assigned to the partitioning sub- 

test and which items will be assigned to the assessment subtest is related 

to the power of the test and will be discussed in Section 8. 

*See page 30 for a modification of T  that may have better small sample 
properties. 



It  seems useful to have an intuitive understanding of the procedure 

given by (3.8).     For  this purpose let    K    =  1    and  ißnore the scaling  provided 

by the denominator in  (3.7).     That  is,   think of  the statistical procedure as 

^2 ^2 rejecting the hypothesis of unidimensionality when    öv .  - 0-  .     is "large"     (k=l] 

Recall from classical  test theory that for  a test of length    M    with    Y 

denoting proportion right and    a      denoting  the probability  that   a randomly- 

selected examinee gets item    m    right,   that  the Kuder-Kichardson formula-20 

coefficient     p?0    is defined by  (e.g.,   sec Lord  (19bO),  p.   8) 

M 
20      M 

f1 .   a  (1 - a )/M2 
t
m« 1    m m 

2 
0Y 

2 
(the division by    M      occurs because    Y    denotes proportion correct  rather 

than number correct).    Note that 

(3.9) p20 - 0    if and only if    0^ - ^^d " «J/M2 = 0. 

Of course    P--. =  0    is to be psychometrically Interpreted  (up to an approximation) 

as the fact that    Y    has no reliability at all.    Although unrelated to  the 

author's process of discovery of his unidimensionality test,   (3.9) can be 

nicely used  to give a simple psychometric  interpretation and justification 

^2 ^2 
for the test procedure (3.8):    In the present test setting,    oY k ~ ap  ».    is 

an estimate of    o„ - V    ,a (1 - a )/M , m    indexing the   M    items of  the Y      Tn^l mm 
2 

assessment subtest.    Here   a      and    oY    are computed for the "population" 

of examinees assigned  to subinterval    1    by the assessment subtest.     Thus 

«2    ^2 0v i " öD i  "large" is evidence that p„f  is greater than 0. Thus, 

the procedure rejects the hypothesis H- of unidimensionality if and only if 

the assessment subtest for subinterval 1  examinees shows statistical evidence 
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of having some reliability. That is, H- is rejected if and only if there 

is statistical evidence that the assessment subtcst provider information 

about examinee "true score" (or latent ability from the item response 

theory viewpoint) beyond that provided by the knowledge of which partitioning 

subinterval an examinee is assigned to by the. parLiLioning subtcst. And, the 

assessment subtcst can only provide such information (except for negligible 

finite sample error) provided there JLs fore than one dimension being measured. 
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A. The large sample theory when d = 1 . 

In this section the classical conception of dimensionality described 

at the end of Section 2 will be used. The main purpose of this section is 

to present the precise conditions under which T, as defined by (3.7), can 

be shown to have asymptotically a standard normal (i.e., N(0,1)) distribution. 

It is hovjver easy to see several reasons why one might also wish 

2      2 
to have the large sample distribution of the °Y k " ^p k' suitably stan- 

dardized, for each subinterval k.  First, In some applications K , the 

number of subintervals used in the construction of the test statistic may be 

rather small and hence the large sample theory for T fail to provide a 

good approximation for the actual distribution of T. In this case, having 

A2    ^2 
the large sample distribution for each OL. . - Op .  in T then, using the 

Independence of the 9« u ~ ^D L- » yields a large sample theory for T 
¥, K   r, k t 

when K  is small. Second, one may wish to construct a new test statistic n 

for unidlmensionality still based on the summands of T, but with the new 

test statistic having a different formula from that of T. Finally, and 

perhaps most important, one may be interested in assessing the contribution 

to lack of dimensionality resulting from only a portion of the latent ability spac 

That is, one may wish to construct a test statistic based upon only certain 

subintervals of the partition, indeed possibly even using only one subinter- 

val. Because of the above, it is desirable to obtain the large sample 

2      2 
distribution of each 0

Y k " 0P k as t^e num^er 0^ test items and examinees 

each become suitably large. Convergence in law (i.e., in distribution) 

L       2 
will be denoted throughout by —>-, N(vi,o ) denotes a normal distribution 

2 
with mean p and variance 0 . Z always denotes a N(0,1) XMndom variable. 

For example, the statement that X  converges in law to a standard normal 

random variable would be denoted by 
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X -^ Z. 
n 

The two basic large sample theorems of this section are based on a set 

of assumptions, which are now stated, together with a brief description 

of the practical interpretation and reasonableness of each assumption. 

First it is assumed that 

(4.1) d = 1 

in the classical sense of dimensionality.    That  is,  the large sample distrl- 

^2 ^2 butions of the    a., ,   - ö„ .     and    T    are stated  in this section under  the 
Y,k.        P,k 

assumption that the hypothesis    U :  d = 1    is true,  true in the classical 

sense of dimensionality. 

It  is assumed that 

(4.2) min     J^-    •* ^   as   n-^ 00. 
l<k<K     .  n 

This simply amounts to excluding ps^tii-lon subintervals that contain too few 

examinees.  In practice, some suitable convention would be used, such as 

j(n) > 20 £or each i < k < K # 
k  - — — n 

The number of items M on the assessment subtest is assumed to 

be fixed as n, the number of items on the partitioning subtest, approaches 

*, This means, in effect, that the number of items on the partitioning 

subtest must be small compared to the number of items on the assessment 

subtest. This amoi nts to a genuine restriction in the design of the 

statistical test in that our theory simply does not support taking M = n = 38 

when N ■ 76 for example. However, if M = 5, n = 71 produces good results 

In terms of attaining a reasonably powerful test with the actual level of 

significance being close to the nominal level of significance, then the 
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restriction becomes non-essential.  And, indeed, preliminary Monte Carlo 

studies support the preceding statement.  (Sec Section 7.) 

It is assumed that the M assessment items are the same for every 

n.  This is merely a virtual restriction, having no "real world" content 

since in fact in practice one applies the procedure for a particular set 

of M items and only one choice of  n.  Although a double subscript nota- 

tion would avoid notatlonal inconsistency, we nonetheless denote the item 

characteristic curves (ICC's) of these fixed M items by 

(4.3) Pn+1(e).Pn+2(ö).....VM(0)'-OÜ<e<00- 

Now, the ICC's for the items of the partitioning subtest are denoted by 

(4.4) P1(e),P2(0),...,Pn(e), 

with the understanding that P. (0) does not necessarily denote the same 

ICC on the n'th partitioning subtest as it does on the nth partitioning 

subtest for n ^ n*. Although assuming that P. (0) is the same for all 

choices of partition subtest length n >^ 1 would only be a virtual rather 

than a practical restriction, nonetheless we do not need to make this 

restriction. 

Certain assumptions are made about the form of the ICC's. First each 

ICC is assumed to be continuous and differentiable in 9 and strictly increasing ir 

Clearly this entirely reasonable restriction needs no explanation nor 

• defense. 

It is assumed that there exists an interval (a,b) such that for 

some likely small number e satisfying ^ > £ > 0 that 

. 
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(A.5)    P'O) ^ e   for a < 0 < b,  1 £ i 1 N, 

(4.6) P!(0) £ C   for all 6,  1 £ 1 1 N,  some (possibly large) C,  and 

(4.7) e < Pi(8)(l - P^ö)) < 1 - e for a < G < b, 1 < i < N. 

Here (4.5) merely states that there is some ability range over which 

items are uniformly (both as 0 varies and items change) sensitive to ability 

differences. This merely amounts to discarding items, as test constructors 

do, that are not sufficiently discriminating or are too easy or too difficult. 

This practice of discarding overly easy and difficult items also justifies 

(4,7), which amounts to not allowing items that are too easy or too difficult. 

(4.6) of course states that, even locally in 0, none of the items are 

allowed to be too discriminating. It is of course impossible in virtually 

all test settings to constrict highly discriminating items, even if sometimes 

desirable to do so. As Lord and Novick (1968, p. 379) state, "We might note 

that it is rare to find values of ai (slope) as large as 2 in aptitude 

and achievement testing." 

Let P. (-00) « 11m P.(0). Then let r\ *  sup P. (-00). It is assumed 

that each subinterval of the partition included in the construction of T 

lies in the interval  (0,1]. This is merely a technical restriction that 

will cause no trouble in practice; and indeed, if needed, this restriction 

could be weakened. Typically, n ^ 0,  1/4, or 1/5 is assumed, based upon 

various assumptions about "guessing." 

It is required that 
> 

(4.8) jin)K < Cn2 
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for all k, n for some C in order to obtain the distribution of T. 

If one is merely interested in the distribution of each of the ov . - a 

separately then (4,8) is weakened to 

(4.9)   J^n) < Cn2 

* 

for all k, n for some C. These two assumptions restrict the number of 

examinees per subinterval and in the case of the distribution of T, (4.8) restr 

the total number of intervals contributing to T. This is a genuine 

restriction, but, fortunately, allowing J.  K  to be the order of n seems 
K  n 

reasonable for most applications. E.g., if the partitioning subtest of a test consis 

of 100 items, then J(k) = 30 for each k, K =30 is suchthat J, ^ K  is n n k       n 

"small" compared to    n    = 10 .    Preliminary Monte Carlo studies again seem 

; to support the accuracy of the large sample approximation of    T    for reason- 

* ^        ( \ 
able choices of n and £, , J^ , the number of test examinees (ignoring 

discarded Intervals here). 

The following assumption is needed for highly technical reasons. 

It could undoubtedly be removed, at the expense of a rather complicated 

answer for the large sample distributions of 0L, . - a_ . and T. It is 

assumed that there exists some (possibly small) c > 0 such that for all k, n, 

and each of the M assessment Items (indexed by 1), 

(n). 
(4.10)   |P1(e^) - Js| > e 

where    G. is defined by, letting    Y    denote proportion correct on the 

partitioning subtest, 

E[Y | 0 = e^n)]  «= midpoint of    A^n). 
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Here    E[X | A]    denotes the expectation of a  random variable    X,    ßlven 

that event    A    has occurred,     (4.10)  requires that  partitioning intervals 

corresponding to examinees  expected  to get  "approximately" half right on 

any item of  the assessment   test sbould be removed.     Since the    M    items 

are fixed and    e    in  (4.10)  can be as small as desired,   (4.10) will always 

be true  in practice.     But  nonetheless some Monte  Carlo  analysis here 

should help support   the author's intuition that   the practical impact of 

Ignoring  (4.10)   in practice should be minimal.     Alternatively one could 

merely throw out  those intervals    A, producing    p,     's    exceedingly 

close to    ^    for any     1 = n+1 n+M.    The mathematically interested 

reader is Invited to consult p.  119 Serfling  (1980)  for the need of an 

assumption such as  (4.10). 

This completes  the list and discussion of the assumptions required 

to obtain the large sample theory when    d = 1.     In summary, all the assump- 

tions either seem quite reasonable or at  least,   in some cases,  not unduly 

restrictive.    Of course, Monte .Carlo studies and  the use of the procedure in 

actual mental test data   are needed to verify  this opinion   (see Section 7). 

Now the two basic large sample results when    d = 1    are stated. 

Theorem A.l.    Suppose  (4.1),   (4.2),    M    fixed assessment  items,  continuous 

and differentiable ICC's,   (4.5),   (4.6),   (4.7),  all included subintervals 

in    (n»!].   (4.9), and  (4.10),    Then (see (3.7)), for any choice of integers 

k = k n 

(4.U)        Zn .    !>" I -^X—r ^ Z    as    n - ». 
[V

Y)
 - v - ä4ir 

M4" 
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where the rate of convergence of the distribution function of Z  to a 

N(0,1) distribution function does not depend en the sequence {k }, 

Theorem A.2.  Suppose  (4.1), (A.2), M fixed assessment items, continuous 

and differentiable TCC's, (4.5), (4.6), (4.7), all included subtntervais 

In (n.l], (4.8), and (4.10). Then (see 3.7), 

(4.12)  T L as n -♦■ o». 

Remark. The denominator of (4.11) has a rather tidy matrix representation; 

Let, suppressing k,  and writing p  for ?./    of  (3.4) for convenience, 
i     i+n 

(2p1-l,2p2-l,...,2pH-l,l) 

and 

A       A 

0 

0 

P2(1-P2) 

0 

0 

0 

0 

...pMa-pM) 
A       A 
p^l-p^ (l-2p1)  p2(l-p2) (1-2P2)... PM(1-PM) (l-2pM) 

p^l-p^d^p^ 

J2(l-?2)(l-2p2) 

PM
(
HM)(I-2PM) 

M^(PA(Y) - oJJ) 

Then, it Is trivial to see that 

(4.13) (M%A(Y) - o^k) - 6^k)ä = (DZD')2. 

This may be useful both for interpretation and computer programming purposes. 
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Proofs. The proofs of these two results arc lengthy, delicate, and 

make use of sophisticated results from mathematical probability theory. 

Their presentation here seems inappropriate. The interested reader is 

referred to Appendix I for a complete presentation of the proofs. However, 

a brief sketch of the highlights of the proofs seems appropriate. We 

will consider Theorem A.l's proof only, since that, of Theorem 4.2 is 

rather similar. 

Basically, the proof is based upon the central limit theorem 

holding for sums of independent finite variance random variables, the 

summands suitably similar in magnitude (see e.g., the Lindeberg-Feller 

theorem as stated for triangular arrays of random variables in Chung (1974), 

p. 205). It is also based on a multivariate version of the "6 method", 

the local linearization technique based on multivariate Taylor series 

expansion that is so useful in large sample theory (see Serfling (1980), 

p. 122). Further, the random denominator in (4.11) is permitted by an 

application of a Slutsky type argument (see Serfling (1980), p. 19). 

Finally, a very delicate question about the asymptotic expectation of 

öv . - Op .  is dealt with by means of a conditional tail probability 

qatimate for the random ability Ö, given that Y (the partitioning 

score) G A^ . This conditional probability estimate follows in a manner 

similar to the classical exponential probability bounds for sums of independent 

random variables (see, e.g., Stout (1974), Section 5.2) and is the most 

delicate aspect of the proof. 
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5. Thü concept of latent trait dimensionality 

The purpose of this section is to propose a concept of dimen- 

sionality distinct from the classical item response theory definition. 

Recall that the classical definition amounts to stating that k is the correct 

dimensionality provided the joint distribution of the observed random 

variables {U , 1 £ i £ N, 1 _< j £ J} is representablc in terms of a 

k dimensional distribution of iid 0. and identical (in j) conditional 

distributions of U., given 0., with local independence and (3.4) 

assumed, and moreover that such a representation is impossible for 

k' < k. 

Although mathematically appealing, this definition is rather 

inappropriate for assessing the power of tests of dimensionality in the 

case of mental test theory. This is because in mental testing. Individual 

test items clearly have multiple determinants of their respective prob- 

abilities of correct response, thus necessitating that Q_    in the P. (OVs 

be multidimensional. This position is perhaps most clearly and vigorously 

pursued by Humphreys (see Humphreys, 198A). Humphreys states: 

"The related problems of dlmensionality and bias of Items are 
being approached in an arbitrary and over-simplified fashion. 
It should be obvious that unidimensionality can only be approxi- 
mated. Even in highly homogeneous tests the mean correlation 
between paired items is quite small. The lar^e amount of unique 
variance in items is not random error, although it can be called 
error from the point of view of the attribute that one is attemp- 
ting to measure. Test theory must cope with these small correla- 
tions. We start with the assumption that responses to items have 
many causes or determinants." 

Humphreys (198A) presents the viewpoint that dominant attributes (dimensions) 

result from overlapping attributes common to many items. Attributes unique 

to individual items or common to relatively few items are unavoidable and 

indeed are not detrimental to the measurement of dominant dimensions. But 
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the number of  these attributes   should  not  be counted   in assessing  the 

"dimensionality" of  the  test.     Humphreys'  writings  stress   that  the  observed 

low  item intercorrelations  compel one  to accept  the viewpoint  of multiply 

determined   items.     Unfortunately,   the  classical definition   takes as  test 

dimensionality the  total number     k    of all  item dimensions,   each  item 

requiring  in general several   (possibly many)  dimensions   to  describe  its 

P.(0).     As  follows  from  the  above discussion of lliimpbreys'   viewpoint,   this 

fact  is  true even  in situations  where both  from a  psychometric  and a data 

analytic viewpoint,  one would  want   to  eatagorize testa  as  unidimensional. 

Thus the classical definition assigns dimensionality   d = k > 1   (k   thus assigned possi 

quite  large  in  fact)   in  settings  where one would want   to assign    d = 1, 

The  following hypothetical example  is intended  to make concrete the multi- 

dimensional  nature of  items   in   tests  that  should be considered unidimensional, 

Example  5.1.    Consider a "probability"  test whore Item 1 measures ability  in 

probability but is  influenced by many other idiosyncratic   factors contribu- 

ting to "non-error noise",   e.g.,   a knowledge of  the rules of  bridge. 

Item 2 measures ability  in probability but  is  influenced  among other things 

by  the examinees'  understanding of elementary physics. 

Item 3 measures, ability  in probabil ity but is influenced among other  things 

by a  knowledge of MendelIan  genetics. 

One clearly  is  forced  to label such a test as multidimensional 

according to the classical   psychometric conceptualization  of dimensionality 

described above  (indeed,   clearly    d  >  ^    will  be assigned  with  the dimen- 

sions  including ability  in probability,   bridge knowledge,   elementary physics 

knowledge,  and knowledge of  genetics). 
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Clearly one wants a conceptualization of test   dimensJunality    d 

such  that   tests such as  that  of   Example  3.1 would  be  considered  one dimen- 

sional    (i.e.,    d « 1).     What   is  needed  is a conceptualIzntion of dimension- 

ality  that  does not  yield  an   inflated    d    as a  result  of   the   inherent 

multid iniensionality of   items. 

To  tills end,   the   following  conceptualization of  dimensionality  is 

proposed.     Consider a test  of  length    nd + H   administered  to one randomly 

selected  examinee yielding   random variables    {U,,   1 £ i  <^ nd  + M},     where 

n     is to be    thought of as  possibly  large compared  to    M.     Let    f")    have a 

k    dimensional  density.     (Here     k    will   likely  in applications  be quite 

large because of multiply determined  items.)    Let 

zn    i) j:*n     u z u 
/" t  i 'i v    -    i=l    1 v ^=n-H     i v    _   Ji=n(d-1)-H     i 

d+1 

nd+M 
^l=m!+l Ui 
 M 

define a splitting .of tiie test   into    d    "partitioning" subtest  scores 

and  "assessment" subtest score    Y.,,.    Let,   for    0 < y <   1, d+1 — J ~. 

(5.2)  A    i A^ v    =  {G   :   ELYj   0=  0]  = y    K(y   |   0=0] = y     .... 
y      "i,"",^d 

E[Yd|   9=0]=  yd). 

Let 

el tl   r00 

(5.3)   s = •••   I     | 
0   J-a) 

(LIY0 I (-) =  0] JUYJQ £ A  ])Zf(ü|@€A )d0d2. 

d integrals     kintegrals 
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where     f(ii|HGA  )    denotefi  the  conditional  dj'nsjLtj   of    B,     givni    O G  ,\   . 

Relative to  the particular  splitting  that  produced    Y. ,Y7, ...,Y .   .,     s    slumld 

be viewed as an index measuring  the   lack of  fit of the assumption  that   Liu' 

dimensionality  is    d.    Let    S    denote the  set of the 

nd + M 

n  n  ...  n M 

d n's 

possible such spHttin^.s.     Let 

(5.4) S.  = sup s  . 
ü      sGS 

Definition 5.1. A test is said to be of dimension d provided S = 0, 

Sd-1 > 0- 

In actual applications,   taking  into account  the  inherent 

multidimensionality of  individual   items,   it  seems reasonable,   indeed necessary 

to assign dimensionality   d    provided   S      is "small"(but nut necessarily   0)    and   S 

is  "not  small",   the quantification of "small" and "not  small"  varying 

from application to application.     When this  last remark is  taken into 

account,  Definition 5.1 is much  in  the spirit of  the factor analytic 

conceptualisation of dimensionality and  is precisely in the spirit of  the 

Humphreys'viewpoint  of  dimensionaliLy.     That  is,   the dimensionality   is 

taken  to be the number of common factors   (dominant attributes)  with specific 

factors  (attributes common to relatively few items)  not contributing to 

the  dimensionality.     The simple  hypothetical  example below   is 

intended  to  illustrate this admittedly mathematically complex but actually 

rather  intuitive definition. 



23 

Example 5.2. Definition 5.1 will be applied with d = 1. That is, the 

question whether d = 1 in the sense of Definition 5.1 will be addressed. 

Case 1. Suppose that two types of examinees, "rural" and "urban", take 

a "reading test". Let the classical dimensionality k ■ 2 wich Ö. 

denoting the level of reading ability and 9. denoting familiarity with 

urban culture.  Suppose, for simplicity, that 

P[e- (-1,1)] = P[0» (1,-1)] - k . 

defines the latent ability space.    Here 

(ö-.ö ) • (-1,1)    denotes  low reading ability, high familiarity 

'with urban culture 

and 

(Q.,Q2)  « (1,-1) denotes high reading ability, low familiarity 

with urban culture. 

Consider the computation of S. when d > 1 in Definition 5.1. I.e., 

consider the question of unidimensionality in the sense of Definition 5.1. 

Suppose 

ElY1 | 0 - (-1,1)] « E[yiI 0 - (1,-1)] - k 

for a particular splitting to obtain subtest scores Y-.Y«. That is, both types of 

examinees  ((-1,1) and (1,-1)) can be expected to on the average get 

k   of the items on the partitioning subtest right. Thus 

A. - {(-1,1),(1,-1)}. 
'i 

Suppose that the assessment score    Y7    has been formed from    M    items with 

Identical item characteristic curves,  each item dependent on    0.     only 

(i.e.  the items upon which    Y      is based really are pure "reading"  items. 
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In particular, suppose 

Pi(-1) = 1/4.   Pi(i) - 3/A 

for i= n+1 n + M defines P.CO ).  (The range of 0,  is {-1,1}). 

Since this reading test is clearly contaminated by a second dimension, 

d - 2 should clearly be concluded.  Replacing the integrals by sums in 

(r 4) because of the artificial discrete nature of this model, one obtains 

(5.5) S1 > s - (EIY2|Ö = (-1,1)1 - h)1 h + (E[Y2 1 B = (1,-1)1 - ^\ *  1/16. 

Thus Sl >  0, reflecting the fact that d > 1 (in fact d = 2)  in this 

case. 

Case 2.  Now by contrast, consider a case where reading ability is uncon- 

tamlnated by a second dimension. Suppose in fact that all n + M items 

satisfy for 1 ^ 1 ^ n + M, 

Pi(-1) "hit    Pi(0) = 'i, 1^(1) = 1 

Where the latent ability space (reading ability here denoted by 0,) is 

{-1,0,1}. Here k = 1. Clearly A, = {-1}, A, = {0}, and A. = {1} 

and 

S ■ sup s = 0, 
S 

leading one  to conclude that    d = 1,   as  is desired in  this situation. 

The above example did  not  have the classical dimensionality   k 

large as the result of multiply determined items.   However, it is intuitively clear 

that for each test splitting,    s   as defined by (5.3) should be small in Example 5.1 

since there is only one dominant attribute there.    Tor,  conditioning on 

06 A      Intuitively amounts to conditioning on a subpopulation of  examinees 
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of roughly the same probability ability (indexed by 0, .say) but with 

possibly widely differing abilities on the other k - 1 components of 

0. Thus for "typical" G's, given ©G A , (EtYJß-O] - E(Y2 \&G A   ])2 

should be small since E[Y |0=OJ should be mainly Influenced by 0.  with 

the effect of 0-,...,ö on E[Y [0 = £] being small. Hence, as suggested, 

S  should be small for situations like Example 5.1. One can construct 

examples showing that this is indeed the case.  The following example 

is such an example.  That is, the classical dimensionality greatly exceeds 

1 because of multiple determinants and yet the dimensionality according 

to Definition 5.1 is 1.  This example is highly artifical and is merely 

intended to make concrete the above conunents. 

Example 5.3.  Suppose the N ICC's are given by 

P.CO) " Q
1 

+ ^A    where f 1 ex 1 f 

and ~ T <  0J < T for i = 2,...,N.     Suppose each 0.  is uniformly 

distributed over its range. Fix M. Split the test into subtests of 

size M, N - M = n. Note that 

Ki1i2\Q= o] = 61, EiYje - e] - e1 

Hence 

E[Y2l0e A ] = E[Y2|01 = Q1    and (02 0N+1) unrestricted] 

= o1. 

Thus recalling (5.2), (5.3), (5.A), S1 = s = 0. Hence d » I, even 

though k ■ N + 1, 
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Some final remarks in aiding the reader in Interpreting (5.2) - 

(5,A) seem in order. One should consider d = 1  for ease of understanding 

and k small as in Example 5.2. Moreover, one should realize that 

(taking d = 1)  the integration over y IF.  m^r^ly an averaging process 

over y of the contribution to multidimensionality resulting from each 

choice of y such that EiY. | 0 = ej = y. 

Put qualitatively, s measures, among examinees that are expected 

to have the same score on the partitioning subtest, the amount of variation 

there is in their expected scores on the assessment subtest. 

" 
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6. A discussion of power.  The prc;ceeding section suggests that If S.. 

(see (5.A)) Is sufficiently large, then one would like to reject the hypothesis 

of unldlmenslonallty with high probability.  The following result Cütablishca 

•ch a property for long tests and large examinee samples. 

Theorem 6.1.  Let d = 1  In (5.3).  Suppose, for latent ability 

0 * (ei,02,...,0k)  that 

(6.1) the density f(O^)  is a continuous function of J3, 

(6.2) each ICC P^O)  is continuous in £, 

(6.3) there exists c > 0, M _^ 1, and some test splitting into subsets 

for each n such that 

s > —-—  for each n > 1. 
M — 

Then, for fixed level of significance a, and prescribed power 3, 0 < 3 < 1, 

(6.A)      P[reject H] - P[T > Z " ] > ß 

for n sufficiently large. 

Proof.  See Appendix II for the proof. 

The following corollary is useful in interpreting psychometrically 

(k) 
the meaning of (6.1).  Let Y. - Y    be the partitioning subtest score of the 

J J»* 

jth    examinee of the partitioning  interval    A. 

Corollary 6.1.    Assume all the hypotheses of Theorem 6.1,  except for  (6.8). 

Suppose for a particular  test splitting that  for all    n    and some    f;  > 0 



2y 

• 

MM 

(6.5)       ~-^- >c 

'•'hen (6.3) holds and hence (6.4) holds for n sufficiently large. 

Proof. See Appendix II for the proof. 

The interpretation of the corollary is that if the average of the item 

intercovariances on the nsHessment subteat is bounded away from 0, then the power 

can be made arbitrarily close to 1 for large n. Here the averaging is 

over both subintervals of the partition and over item pairs of the assessment 

test. The idea is that if conditioning still leaves a significant amount of 

interitem covariance on the average, then one would want to reject with 

reasonable power. Corollary 6.1 guarantees this. 

i 
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7.     Prcllmlnnry Monte  Carlo sfiulios!    As  ot   the writing of   this  report, 

an extensive Monte Carlo study has been begun.     Its purpose   is to a.stieas 

the  performance of the proposed star latical test of un idiincnslonal ity for  values 

.-•f  test  length,  examinee  sample  size and  subtest  splitting  sizes  typically 

encountered  in actual test settings where dimensionality   is  an issue.    A 

part  of this  study will   consist  of the  consideration of minor modifications 

of  the proposed procedure   in  order to  improve  its  performance  for small  test 

length    N    (and,  as  turns out  to be potentially useful,   "Inrge"    M/N). 

Preliminary Monte Carlo studies clearly suggest the feasibility of the 

test procedure and/or minor modifications of it for actual mental test 

applications.    The purpose of this section is to summarize these preliminary 

findings.   A Fortran program to do Monte Carlo simulation of  the performance 

of the test procedure  (given by  (3.8)) both when    d = 1    and when    d = 2 

has been written.    Further,  a method of introducing multiply determined items 

has been programmed,  thus handling the    d = 2    case when the classical 

dimensionality   k > 2,    as well as handling the   k ■ d ■ 2    case. 

Briefly,   in  the    d " 1  case,   the standard  three  parametric logistic 

model is used witli    c,   =  1/5     for all    i    and parameters     (a., b.)     randomly 
i • i       1 

generated to simulate values  typically occurring in applications.    Two 

results obtained were  that  the  procedure showed good adherence to the 

prescribed level of significance when 

(7.1) J  -  1UÜÜ,    N  =  200,    M =  10 

and when 

(7.2) J = 1000,     N =  75,    M = 5. 

Using a bivariate  logistic model for the    d = 2    case,   the procedure 

displayed excellent  power  for the   (7.1)   and  (7.2)   cases. 
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The introduction of multiply determined items produced only insignificant 

loss of power and a modest increase in the actual level of  significance    a    for 

both the  (7.1)  and  (7.2)   cases. 

Further,  as a result of the preliminary Monte Carlo studies,  there is 

evidence that a minor modification of the denominator of  (3.7),  namely replacing 

a/2 
(n) 

by 

K r n 

K 
lr n 
1^=1 

\^-^--^r 

I 

AJ 

(iUY)  " S^ J +-^ + 2/u/.(Y)  - 9^ jl  ,/M4 
'Y.k' 

M Y.k'  4,k' /J 
(n) 

1/2 

v 

may considerably improve the performance of the procedure for small test 

length    N,    that is, produce good adherance to the prescribed level of 

significance with good power performance still preserved.    Use of this 

denominator    is suggested by the well known Cauchy-Schwarz  inequality from 

mathematics.    This and other modifications of the proposed procedure are 

presently being considered. 

As the theory suggests, preliminary Monte Carlo studies indicate the 

accuracy of the large sample approximation begins to break down when    M/N 

becomes too large.    E.g.,    N « 100,    M » 10,    J =• 1000    seemed to noticeably 

inflate the actual level of significance.    Various possible modifications of 

the  procedure may largely eliminate this breakdown. 

The Fortran coding,  together with instructions,   is obtainable from 

the  author.    Again,   the preliminary nature of  these Monte Carlo findings 

is  to be emphasized. 
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8.     The  choice  of  assi-ssiufnt   EegjE   UTU'UI and  asst-ssnirnt:   test i terns;       Consider 

a mental  test setting consisting of an    N    item test.     The  choice of    M    should 

be   "small"  compared   Co  lost   length     N;   the   preliminary  Monte   Carlo studies 

reported on in Section  7  tentatively  suggest   taking    M/N  <  1/10.     On the 

' other hand,  It  is  also  clear  that   in a  reasonably  long test   (e.g.,    N >^ 100), 

the  larger that  one  can safely   take    M,   and thus the greater statistical power one 

attains.     In a particular  test   application with  known    N     and     J,   it would 

be   feasible for an applicator to  conduct a Monte  Carlo simulation  for various 

choices of    M    in order to select  an    M    that  is  large  enough  to provide good 

power,  yet not so large  that  the   actual level of  significance  deviates  too 

much  from the prescribed level    u. 

An even more  critical  issue   is  the  assignment  of  test   items   to the 

assessment subtest,  once    M    has  been determined.     If done  improperly,  the 

statistical test may have little  or no statistical power.    The  problem is 

essentially that, even though  it  may be true  that    d >  1    in  the sense of 

Definition 5.1,  nonetheless,   the  assignment of assessment  items may be such 

that   the  two subtests are "parallel"  in a certain sense.    That   is,letting 

Y1     and    Y?    denote  the proportions  correct on the partitioning and assessment 

subtests  respectively, 

(8.1)       EY2 = h(EY1) 

may  be  the case   for each  examinee,  when    h    is  a strictly  increasing function 

that   is   the same  for each examinee.     Then  in  fact   the  statistical  test will 
hi 

have no power. Indeed, if the two subtests are roughly parallel in the 

sense that (8.1) holds approximately then there will be little or no statistical 

*      power.  Hence, in order that Che statistical test luive reasonable power, the 

items must be assigned to the two subtests in sucli a way that if indeed 
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d >  1    is  the  case then there  should be  little probability  that  the  two 

subtests will be approximately  parallel. 

The  procedure  for assigning items   to  the assessmen'"  subto.st  should be 

such that, when there are other dominant  dimensions present,   then the  items 

that are more heavily influenced by  these other dimensions,  should   (ideally) 

all be assigned to one subtest.     And hrnce the items assigned  to  the 

other  subtest  should be less heavily  influenced by these other 

dimensions. 

For the  assignment of items  to the  assessment  subtest,   three methods 

that could be used are: 

(a) Expert judgment;    One or more experts on mental  testing could select a 

set of    M    items that seem to display a common bias or seem to be 

significantly influenced by a second dimension.    This choice could be 

made on the basis of item content, method of item administration,  item   . 

format,  past experience from previous  test administration,  subjective 

impressions, etc. 

(b) Factor analytic or other multivariate analyses:     Split  the  text examinee 

population  (randomly)   into two subpopulations.    Use some multivariate 

technique on the first examinee subpopulation to select those  Items that 

seem to most represent other unified dimensions  than the dominant test 

dimension.    For example, using the sample tetrachoric correlation matrix, 

one  could perform the usual  factor analysis of the  test.    Then  those    M 

items with the largest estimated positive loadings  (one could use largest 

negative loadings just as well)  on other dimensions of the factor analysis 

relative to the dominant  dimension should be assigned to the  assessment 

subtest.    Then carry out  the statistical test of Section  3 on the second 

examinee subpopulation. 
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The point  to  realize  here   is   that  even  though  there   is not   an 

adequate  theoretical or empirical basis to justify  the  use of   factor 

analysis  to assess   the  dimensionality  of dichotoraously   scored  items; 

nonetheless,   factor analysis  can  be  used as  an atheoretical data- 

analytic tool in conjunction with  the  theoretically grounded procedure 

presented in this paper.     Since  often  test population size  is  quite large 

in  test  applications,   there  seems   to be much  to recommend  this   approach. 

(c)     Random assignment of   Items  to subtests, subject  to user specification 

of   the.  magnitude  of    M,n.     The  hope  here  is   that   the   diversity   of 

item dependence  on  the  various  dimensions  in  the    d >   1     case  would wilb  high 

probability bring about   the selection of sufficiently  non-parallel sub- 

tests  that the statistical  test will display  reasonable power.     At 

present, no theoretical nor Monte  Carlo work has been curried out to 

defend this hope.     Indeed,   the  author is skeptical of   the effectiveness 

of this method of assigning items  to subtests, but will,  of course 

investigate it. 

One lias  to choose  the  partition subintervals.    These  intervals 

should  clearly be of equal width.     Hence,  the user  is  really  only 

•selecting the number of subintervals    K .     Roughly,   these  intervals 

should be as narrow as  possible   subject  to  the  requirements that a reasonable 

number of intervals (e.g., at least 10) have a reasonable number of examinees (say 

at least 25) assigned to them and that not too many examinee scores art' discarded. 

One final minor matter  is   thai   a  convention  for excluding  intervals with too 

examinees assigned to them must be selected.    E.g.,  one might   require 

at  least 25 examinees/interval. 
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After the completion of  the extensive Monte  Carlo study  referred 

to at the beginning of Section 7,  the  author should be able to provide 

clearer guidelines on the user specified options discussed here   in 

Section 8 that are required  to conduct  the statistical test. 
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9,    Extension to t«sts of higher dimensionality.    The procedure  can be 

modified to test 

H:     d < d0  vs    A:   d > d0 

for any    d    >_ 2,     One merely uses    d,     partitioning subtests and one 

assessment subtest and then partitions examinees on the basis of what 

partltionery subset of the    d      dimensional  unit cube their partitioning score 

Yj, Y»,..., Y. falls into.    The author expects to do some  theoretical  and i      / a0 

Monte Carlo work on the    d    >  2    case  in the  future. 

* 
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10,     Concluding remarks.    It should be stressed  that the main advantage  of 

the proposed procedure of  this paper  is  that  it has a rigorous asymptotic 

theory backing it up.    As a result,   it  should display good power against 

those  alternatives  for which one  really does wish to reject  the hypothesis 

of unidimensionality and it should not  spuriously reject unidimensionality 

in situations where one does not wich  to  reject,  as has  sometimes been 

the case with other procedures.     Further,   the assumptions  required  for  the 

asymptotic theory are rather unrestrlctive and are totally non-parametric. 

That  is,  no particular form,  such as multivariate logistic or multivariate 

normal  is assumed for the  item response  theory model. 
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Appendix  I.     Proofs of Theorems 4.1  and 4.2, 

Let    s.        denote the radius of    Ar1 .    Let   "/V        denote 

the midpoint of    A^n).    Let    6^n)    be defined by, writing    e^n) 

Instead of   0.  ■ 6. for the conditioning event, 

(i.i) E[Yjk)|e[n)] -*ln\ 

noting that    e^n'    is well defined for all    1 £ k £ K , n > 1    by the 

continuity and strict increase of the    P.(ö)    and the definition of 

ri    in Section A.    Suppose,  for the    e    of  (4.5). and  (4.7),  that 



f 

1.,! 

(1.2) e^n) £ (a + e, b - c)    for all    k,n    . 

Recall that  the density of    0   is denoted by    f(n).    The conditional pro- 

bability estimate given in Proposition 4.1 hnlow is central  to the derivati 

of the asymptotic theory.     It  is based on the Berry-Esseen theorem,  which is 

now stated  for completeness.     Let    V(W)    denote the variance of a random 

variable and    <Kz)    denote the distribution function of a    N(0,1)     random 

variable throughout. 

Lemma 1.1. Fix n.    If    {w.,1 £ 1 £ n}    are independent mean    0    random vari- 

ables with 

in
iml VWJ > 0 

then, letting S ■ I.,  W , T ■ Z" ElwJ  , there exists a universal 

constant C such that 

sn cr3 
sup|p[ J»    < x] . $(x)| < —S— 
x   v(s i1'* -   v(s )J^ 

n x n 

Proposition 1.1. Fix k,n and denote sn = sk ,9   = \    '    SuPPose 

(1.3) an"1 < s < C n"1/2 . — n ~ 

Then, letting YsYp denote the proportion correct on the partitioning 

subtest for a randomly chosen examinee, 

(1.4) Ptje- 9(n)| >-f I Y e A<n)l <^£S x2-M) 1/2- 
sn(n  sn - n   ) 

for all s < x < (log n) '  and e of (4.5) and (1.2). n —  - 

Proof. Clearly 

,  ,       „ , x Pl|ö- 0(n)!   >-^,|Y-V(n)|< s   ] 
(1.5) P[|0.e<">|>f|Y     A<n>]—!-- i^J -^. 

e k P(  Y - <p{n)\   < s  ] 1   —     n n 



. 

. 

1.3 

The denominator is estimated first.  For any y > 0  , 

(1.6)     P[|Y -*(n)| 1 sn] 1P[|Y - /
n)| < sn ,|0- Ö

(n)| < y] 

6(n)+y 

e(n)-y 

fe
(n)

+y 

I P[|Y - VVn;|   < sn|Ö   = 0]f(ö)d9 

r0     + y / \ 
> j P[l Y - E[Y|0] I  +   |/n;  - E[Y|0l |  < s   |Ö - 6]f (9)d0 

J6^.y 

say.     Now for    8 G [e(n) - y,e(n)+y]   , 

|^(n) - E[Y|0]|  =   |E[YlO(n)]  - E[Y|0]| 

E"      {P.(9(n)) - P.(9)) M 
=  jJU i _ i  |< clü(n) - 9| 

by the mean value theorem and (4.6)  Thus, continuing (1.6), 

re(n)
+y 

(1.7) Y>1 P[|Y - E[Yi0]|  < sn - Cy|9]f(0)d9 

~Vn>.y 
•       fO(n)+y 

> P[|Y - E[Y|9]|  < sn/2|0]f(9)d9    , 

"Je<n>-y      •• 

choosing 

8 

(1.8) yl   2C    • 

Now,  trivially, writing   U.  = U..k 

(1.9) V(Y|9) in"1  , l"sslE|Ui - ElU^]]3 <n  . 

Further, by  (4.7),  (1.8),   (1.2),   (1.3)       it follows that 

(1.10) V(nY|0) « Ej^ Pi(9)(l - P1(9))  > en    for some    e > 0. 

Hence, by the Bc.rry-Esseen Theorem (Lemma X.l),      noting  (1.9),   (1.10)    and 



1.^. 

(1.3), it follows that 

1/2 
n  s 

P[|Y - E(y|9)| < -?  19] > p^y^lll)! <--A |0] 
/" V(Y Ü) 

> -44r + * 
n 
.1/2 

s n 
n 
.1/2 

- * 

1/2. 
-s n 

n C  , r       1/2 
—J --"172 + Csnn 

Hence, using (1.6) and (1.7), 

(1.11)    PMY - ^(n)| < s 1 > Cs (s n1/2 - n"1/2) . 
'       ' — n —   n n 

Now, let  x' = 2x/e and consider the numerator of the right hand sido of 

(1.5) : 

(1.12) P[|Y - *(n)|  < sn.|Ö- 0(n)|   > x'] 

"I      (^       P[|Y - ^(n)| < s^ie« ö]f(e)de . —   n' 

Assume 

(1.13) e - e(n)| > x'.a < e <b   . 

*'■ 

Now 

(1.14) 6 = P[|Y - E[Y|0(n)]|   < sn|0]   < P[|Y - E[Y|0(n)]|   < x|0] 

<  P[iY -  E[Y|9]| _>   |E[Y|e]   -  E[Y|0(n)]| -x 

since, on [|Y - E[Y|ö(n)]|  < x]   , 

.(n) (n) x >   |Y - E[YlOVn;J|   >   |E[Y|0]  - E[Yl0vn;]|  -   |Y - E[Y|0]|   . 

Now,  using   (4.5) and   (1.2). it  follows that 

|E[Y|e] - E[Y|0(n)]|   > e!0 - 0(n)| ^cx' = 2x 
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Hence, using (1.12) and (1.14) 

(1.15)    6 < P[|Y - E(Y|e]| > x|e] = P 

Now, 

Let 

FiVEt"ilQil   : 

lVEluil6]l 
,1/2- „,rn „ |QNl/2 v(nY|e) ^ v(Lj=1ui|e)- 

= c» 

nx 

V^UjO)172 

Note that 

(1.16)    e'c »«• nx 

vo^uje) 
•♦■0  as n ->«> 

k-l/2 by (4.7) and the hypothesis that x £ (log n)    . But, this means that 

conditional on © = 9 , the U. satisfy the conditions of the classical 

Kolmogorov exponential bounds (see, e.g.. Stout (1974), p.262). That Is, 

2 
6 < exp [-^p- (1 - e'c')] 

from which It follows by (1.16) and (1.9)  for n large that for 6 such 

that  |6 - e(n)| > xf, 8e (a,b) , 

^n) 
2 

,-x n. 
(1.17)    P[|Y - E[Y|0W]| < sn|e= 6] < expp^) . 

Now assume Instead that 6 satisfies 

(1.18)    |e - e(n)| > x' , 0 ^ (a,b). 

Then, for 6 > b , using the mean value theorem and (4.5), 
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E[Y|e] - E(Y|ö(n)] > E(y|b] - E[Y|e(n)] > e2 . 

Thus, using a similar argument for 6 < a , 

E[Y|e] - E[Y|0(n)]| > e2 . 

Hence, reasoning as in (1.14), it follows, for n large that 

6 < P[|Y - E[Y|9]| > e2/2|0= Ö] . 

Hence, for any e -► 0 , for n large 

(1.19)    6 < P[lY - E[Y|Ö]| > £ 10» el. 
— —• n 

Now, it is straightforward to verify (see Lamperti (1966), p. A4)) for 

0 < t < 2 that 

Z"    P  (0)(1 - P  (6)) 
_LJ_i 1  t^(1 + t) (1.20) E[exp(t n(Y - E[Y|9])|0]   < exp 

Then, by Markov's inequality,  for    0 < t _< 2 , 

(1.21) P[n|Y - E[Y|e]| > n e  |e]  £2exp(-ne   t)exp 

There are two cases to consider.    First,   suppose that    n    is such that 

r-n 
ri=l

Pl((Kl-Pie))    2 
■■ V' '■ ■  t   \ 

(1.22) Ej .P,(e)(l - P,(9))  > 2n/log n . 

Then (see (7), p.44 of Lamperti    (1966))  choosing 

2 e n 
t  e_ " 

EJ |p,(0)(i - p.(0)) s   n    l0B n 

yields 

(1.23) 6 < P[n|Y- E[Y|e]|  >i^l 0112 exp^—^^     ' 
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Suppose,  instead of   (1.22)  that 

■.n 2n ri=1P1(e)Ci-Pi(o))<—;   . 

Then,  letting    t = g    and using  (1.21)  yields 

(1.24)    6 < P[n|Y - ElYleii  > ^ |0)   < 2 exp(8 log n 
-n 

)exp 
q=1Pi(0)(i-Pi( 

64 

< 2 exp( 
-n 

16 log n ) . 

Combining (1.21) and (1.24) yields, recalling (1.14), 

(1.25)    6 E P[|Y - E(Y|9(n))| < sJO] < 2 exp(Ir^-^) 

for 0 satisfying (1.18). Recalling (1.17), it follows that 

f    x2 n   1 
6 < max exp(^),2exp(16-^n) 

2 
< 2  exp(—^—) 

for 9 satisfying |e - 6W|-^x1 by the assumption that x < (log n)" 

Hence, uälng (1.12), 

P[|Y-V(n)| <sn.|0- 0
(n)| >x'l < 2exp(^). 

Thus, recalling (1.11) and (1.5) , the desired result follows. 

Let k s k  denote a sequence of positive integers throughout the 

remainder of Section 4. Recall that 

(1.26)   Y<" = C+lUiJk/M 

defines the assessment subtest score for examinee .1 of the partitioning 

interval V  .  It can easily be shown (and is intuitlvelv clear) that 

(1.27)   {Y^ }  is Identically distributed in j for fixed k and independent 

in j,k . 
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The proof, which follows from (2.3) and (2.4), is omitted. Let 

Y    be the partitioning subtest score of the jth examinee of the 

partitioning interval A.  . Recalling the notation of (2.1), let 

(1.28)       .j S D<^ - lYjiP 6 A<"'l.c,i = a^> - Ptu1+njlk - HBjl 

and 

(I •29)        C -= Cn  5 Cn,k = tl ai(1 " ai)/M2 

(k) 
Denote the density of   0,    given    B.      by    f  (•)  ^ f      (•).    Let 

i       i.  i   n      n 

J = J^   throughout. 

In order to verify that the asymptotic distribution of 
A2  "2  A2    ^2 
0Y ~ ÖP " 0Y k ~ aP k ^as mean ^»  ^t ^s necessary to consider the pre- 

asymptotic centering: . 

Proposition 1.2.  Suppose (1.3) and that uniformly in k(l £ k £ K ) n 

(1.30)        J(lofi2
n)    "0    as    n-co. 

n 

2 _    2 _ ,„v(k) Then,  letting    o,. = a        .   ■ V(YJ "'jß.),     it follows uniformly in    k    that 

(1.31)        J1/2(aY
2   -c)-»-0asn-><». 

Suppose (1.3) and, letting K = K ,  that uniformly in k. 

4 
/, ^«\   JK(log n)  „ ,. 
(1.32)   —s—2—      as n ■> <» 

n 

Then, uniformly in k , 

(1.33)   (JK)1/2(0Y
2 - c ) -^ 0 as n-^-» . 

Proof. Only the proof of (1.33) will be given, since the proof of (1.31) is vir- 

tually identical. First, .0* • E(V(Y|e)) + V(E(Y |6)) . Thus   denoting 

oY
2 - J^+1 jpi(0)(i - Pi(a))f

(n)(0)dö/M2- 
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^n+M 
E^H «! J™+l^V\ ¥ 

1 
M 

rrn+M 
^=n+l

Pi(0)       ^l^n+l "l 
M M f(n)(ö)du 

Now, 

rn+M 
\rn Pi(6)   I 

l=n+l 

n+M 

l=n+l 
ai 

M M 

rn+M 
liZiV1» 

M 

2   vn+M n+M 
" "2 U=n+lPi(0)  k^l al + 

rn+M 
k^n+1 ai 

M M 

CH-IW     .  ,1l,,i^'<:n+HPl(0>,,i'(tJ) 
2   rn+M •n+M 

.2 ' J. -'2  ^=n+lPl(0)^^+l ai 

rn+M        2 ' I 
+ ^i=n+l ai      n+Ul^i'ln+M    1 if 

M M 

Thus, 

aY
2  - c    -I 

E[P1(01)Pil(01)|B1] 

n+Kl^i^n+M M 

9 
1    frn+M 1     ,1   rn+M      ^2 

■TLi<iwWEi"i<8i)pi'<ei'iBii - vr' • M 

Thus, it suffices   to   show that, uniformly in    n + l^i^i' _<n + M, 

.1/2 (JK)
X
^ cov(P1(ei),ril(01)|B1) -O 

.Hence, it suffices to show 

(JK)1/2V(P.i(01)|B1)  ■> 0 

as n->■ « , uniformly in n + 1 £ i £ n + M. 

Now, letting x1 = 2x/c 
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(1.34) I2f(n)(Ö)dO V(Pi(01)|B1)   = J[Pi(0) - jpi(9,)f(n)(0,)d8' 

"     1      +X, [P4(6) -   fp.(e,)£(n)(0,)d0,12f(n)(O)dO 
V^-x- Li J  ' J 

+   i fp.(6) - fp (G^f^^e^den f(n 

o(n) „,   nCn^McL1 J J [ev,,'-x,,ev"/+x,] 

= R + S   , say 

Now, by Proposition 1.1,   for any    s   £ x £ (log n) 

(e)dö 

-1/2 

(I 

2 
o ^ c exp(-nx /4)    _ _ 

.35)    S 1-71^2 ^r72=Qn>Say ' 
s (n  s - n   ) 
n     n 

Consider R. Then, using the mean value theorem, there exist 6- satisfying 

|en-e(n)| < x»    such that 

pi(0) - ^(e'yf^o^de'l - 

p.(0) - f8    +x, p^e'Of^o^de1- 
1        Jfl(n) „•  1 

o 

(1.36) 

'0'  '-x r0(n)-x'.0(n)-fx'JC 

V^B^t^i 

\f N        P.  0,)f<n)(0,)d0•       , , 
Je^-x«   1 fe^+x'   (n)   . P (0) -  p   / ^  u    +x  fw(e' 

1 f^'    (n) V^-x« Jefn)-xt f(n)(8')d8. 

V^-VVj^^^'^'l^n' 

)d9, 
+ Q, n 

(n' /'A»^Jfi^ Me) fe    +x,f(n)(0')d0' + [ fw(e')d0' 
[e^'-x'.e^'+x'] 

-pi(0o)|e(n))^,f(n)(6,)de, 

<  |P1(e)  - Pi(0o)|f
ö
(n)

+X,f(n)(0)d6 + 2 Qn < Cx'  + 2 Qn    , 

+ Q, 
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by the mean value theorem and (1.34), Thus," by (I.3A); (1.35), and (1.36) 

(1.37)    (JK)1/2V(P.(0 )|B1)<[(Cx' + Q)2 + Q](JK)1/2 . 

Thus, it suffices to obtain 

(x')2^)172 -^ 0  . Qn(JK)
1/2 •»- 0 . 

1/2 
Recall that    x'  = 2y./z.     Taking    x'  =  (log n)/n        works  for example,  ostab- 

1 ishinR the result. 

Next,   the asymptotic distribution of    o      -  op  ,  suitably nor- 

malized,  is obtained. 

Proposition  1.3.     Suppose   (1.3).     Suppose for some   c>0     and all 

n + l<i<n + M,  n^l       that (recalling that    0(n)   =  0^    ) 

(1.38) IP^O00)  - 1/2|   > e  . 

Suppose  (1.30).    Let 

/n)  _ 
(1.39) D = Dk      "  (2al " 1'  2a2 ' 1'*,,'2oiM " 1'1) 

and,  denoting    E(Y - E(Y))4    by    y4(Y), 

« 

(1.40)      E = L 
(n) 

^(1-^) 

a2(l-cx2) 

0 

0 

^(1-^(1-2^) 

a2(l-ü2)(l-2a2 

0 0 ...       ^(1-a ) c^d-cyd^Oj, 

4f 4l 
a^l-a^d-Za^     a2(l-a2)(l-2a2)---aliU-aM)(l-2aM)    M [M4(Y)-aY 
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Then, letting 1    denote a N(0,1) • random variable , 

A2       A2 

2 Y P L 
(1.41) M    7i     TT? *~*'    z    as    n■,'00  »uniformly   in    k  . 

(DED1)1' 

Proof.  Since writing "o - Op  presupposes the assignment of examinees 

by the partitioning subtest, it is implicit in the statement of Propositior 
J 

1.3 that the conclusion of (1.41) is conditional on  n B . 
j-l J 

Let, writing Y. = ^\  U^ ~ V^.^  ,and EY. = EtY.^]. 

.     ^ = (uij'u2r-'uMj 'M2(VEYJ)2) 

Note that 

(1.42) EtW'jlBj] = (2a1-l,2a2-l,"»,2aM-l M
2aY

2) . 

We next compute the asymptotic behavior of the covariance matrix E  of W 

given B.. Note that, by conditioning on 0 , 

(1.43) ^ « E(Uil|B1) = E[Pn+i(0;l)|B1] 

and for 1^1' 

(1.44)' E(uil.Ui.1|B1)=E[Pn+1(01)Pn+il(01)|B1] . 

Recalling the proof of Proposition 1.2, for 1 ?* i1 , it follows that 

(1.45) J1/2 cov(Pn+i(01),Pn+i,(01)lB1) - 0 

and 

J1/2 V(Pn+i(01) !B1) -^0  as n->" . 

Thus, combining (1.43), (1.44), and (1.45), it follows that 

(1.46) J1/2 cov(Uil,Uill|B1) -> 0  as n-►» . 

Now, by (4.7) and (1.2), for some e > 0 and all i,k,n 
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•• 

(1.47) 1 - e» P^e^Xl - ?iiO(n))) > c . 

Now,  for    x    =  (log n)     ,  using  (4.4) , 

|a. - p^e^^i = if (p^e) - Pi(0(n)))f(u)(rj)do! 

< p[|e - o(n)| > x IBJ + Cx     . 
— 1 ' n'  1 n 

Hence,  applying Proposition 1.1,  it follows that 

(1.48) ai - P1(0(n))  -> 0        as    n->oo 

uniforndy in    i   .    Thus,  combining  (1.47) and  (1.48),  and   recalling  (1.29), 

(1.49) inf c    > 0 ,  1 - e > a (1-a ) > e    for all 1 . 
n>l    n 

Note that 

(1.50) V^ülV = ^i - ai    • 

Further, using (1.46) and elementary calculation,   denoting    an/b -> 1    by    a    ~ 

(1.51) cov(Uil,M2(Y1-EY1)2|B1)- E[ (U^^)3^^] = ^(1-0^(1-20^^8 n-> 

Thus, recalling (1.40) and  (1.46),   (1.50), and  (1.51),   It has been establish( 

that,  termwise, as    n-»-00  , 

(1.52) £w~ I . 

Also, note by (1.38) and   (1.48),  it follows that,  for some    e > 0 

(1*53) |2a1 - ll > e ,    |ai(l-ai)(l-2a1) | > e 

uniformly in    i  . 
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Now, armed with the above computations, the proof proceeds 

essentially by a multivariate version of the " 5 method" (see p. 1.22, 

Serfling (1980)).    Let 

M (1.54) 8(x1,x2...%Vl)  = xm - ^=1 x.d-x^ 

Thus 

■2xi-l i  < M 

-8&-.. 
8K, 

1 i = M+l 

Let,   recalling   (1.42), 

*J " Zj-l-VJ *    -J = E[-Jl * Bj1 = E[-llBl]  • 

Xhe main thrust of the proof is the establishment of the asymptotic normality 

of    gUj)   . 

Let 

fg(x) - g(H.T) " 8(HT ; £ " MT)     if   x ^ Hi 
h(x) lx - H,! 

0 if   x « Jtij 

where 

(1.55) g(ii,t)-|f- 3x, 1 3XM+1 
UM+1  * 

the differential of    g   at    (y,t)    and    Hxll2 = ^+1xJ .    Let 

b^^DZD')1^ 

Now, 

g(xT) - g(MT) ix. - jjJ    gdi, ; Xj -üT) 
(1.56) J

b,       J    - MX^-V^- + -    J        ^      J 
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By (1.55), letting \i        denote the ith " component of uTt 

(1.57)   ig(u ;x - y ) ^ JM+1(x.T - u T)-|iL- 

J1/2(D Z  D')172  1=1 

J1/2(D Z  D')1/2 ^ 

(U^ -ai)(2ai-l) + MCY.-EYj)
2- a^) 

5:ll<Ul -0^(20^1) + M
2((Y -EY )2- oY

2) 

Let 

= R!k> = ^ (U  -ai)(2a -1) + M
2((Y<kW(k))  - a2 ). 

Now, usinp, (1.52), 

(1.58)   V(R | O B,,) = V(R,|B.) - (D Z D1). 
Jj..lj j' J 

Moreover, by (2.3) and (2.4), It is easy to show that the {R } are, for 

each n , l.i.d.  By the Berry Esseen theorem, it suffices to show that 

2 
Inf 0R > 0, 
n   1 

which will follow from 

** 

(1.59) inf   (D I D')1^ > 0 
n 

Since    D    is  asymptotically bounded away  from the    M + l    dimensional vecto 

0   ,   it  suffices  to verify that asympLotlcally   Z    is bounded away  from  the 

collection of     (M+1)*(M+1)    singular matrices.    To this end,  it is neces-- 

sary  to obtain an asymptotic  expression  for    Vi/(Y)  - aY   .     Computation sho 

that 
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AM 2 3 4 
V^) - aY   ~ Ei-l<ai"4ai + 6ai" 3V 

+21        a.(l-a )a ,(l-a ,) 
l^l^i^M 1  1 *   1 

ZM   2,,       v 2 
i-l "id"«!)   • 

Then, although mildly tedious, using |a (l-a.)| > e  for all i , some 

e > 0 , it can be shown that I is Indeed bounded away from the collec- 

tion of singular matrices. Thus, noting (1.57) and applying the Lindebcrg- 
J 

Feller theorem, conditional on  .Q. BJ» 

(1.60)   f 8%^ - Pj) -^ Z , 
M 

where Z is a N(0,1) random variable. Now, since the elements of 

1/2 ^ 
Z/J    approach 0 as n-*00  , it follows that, conditional on JQIBJ » 

Xj - ji —> 0 as n ->» . 

Hence, conditional on      .^B. , 

P- 
hQCj) - h^ij) -^0    as    n -^00 

by the continuity of h at Ji, . But, since M^J ) = 0 , It follows that, 
J 

conditional on AQI^A    » 

h(X ) -*♦ 0  as n-K» . 

Hence, referring to (1.56), to obtain asymptotic normality, it suffices to 

show that 

,XJ " ^ 
>  x 

J 

J-l j 
-►0  as x-»-», 
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uniformly In n . Hence, by Chebychev's inequalit  it suffices that 

DID*  is bounded below, which is known from (1.59), Thus, conditional 

J 
on JQTBJ  » letting Z denote a N(0,1) random variable, 

(1.61) 
8gj) - g%) J, 

Z  as n ■*■<*> 

Note that 

(1.62) 
.1/2-2   2.   .1/2 

^ y " Y ^ J       Y 
- J1/2(Y - EY^2 

Recall (1.49) and (1.31). Hence inf a  > 0. Thus 
- n 

n E(|Y1-EY1 

.3/2  2 - 1/2  ' 
n 

Hence by the Berry-Esseen theorem (Lemma 1.1) it follows that, conditional 

on  ^Bj . 

(1.63)   ^^(Y-EY ) -^ Z , a N(0,1) random variable. 

J 
By Chebychev's inequality,- conditional on  JQI^ 

(1.64)   Y - EY1 -^ 0 . 

Thus, (1-63) and (1.64) together imply that, conditional on .tQjB. 

J1/2(Y - EY1)
2 -^ 0 . 

Thus,referring  to (1.62) and  (1.54),  it follows that replacing    E      (Y -EY ) 
2 

by    Oy      In (1.61) leaves the conclusion of  (1.61) unchanged.    Applying 

(1.31) of Proposition 1.2 to (1.61) and recalling (1.54) then yields the 

desired conclusion for each fixed    k = k    sequence.    Although not explicitly n 
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stated, all arguments in the above segment of the proof hold uniformly 

in k, thus establishing the desired conclusion. 

Now the proof of Theorem 4.1 can be completed. 

Proof of Theorem A.l.  Trivially follows from Proposition 1.3 and the facts that 
J 

conditional on  ^ B., 
j-1 J 

-2 
(1.65) 6^ - o^ ^ 0, yA(Y) - yA(Y) ^ 0. Sj - c^ *♦ 0 as n - «, 

J 
uniformly in i,k. Also note that conditioning on  0 B  is implicit in 

j=l J 

the statement of Theorem 4.1. 

Remark. Note that, recalling (3.6) and (3.7) 

(1.66) (D£D') - M4(y4(Y) - a^k)) - 6^. 

Now, the proof of Theorem 4.2 can be given. 

K  Jwn) 
Proof of Theorem .4.2. Note that condition on Bv y = n  n B^ '  is implicit 

k-1 j=l    ;,'K 

In the statement of Theorem 4.2. The proof basically consists of a modification 

of the proof of Proposition 1.3. The main steps are presented, with the details 

left to the Interested reader:    Refer to the proof of Proposition 1.3.    Let 

^j        "  (Un+l,jk'Un+2,Jk Un+M,jk'(Yj      " EYj     ))- 

As in the derivation of (1.52), it follows that termwise, as n ■> », 

(1.67) 1^ - I? 

uniformly on k. Define g^) by (1.54). Let 

jdi) 
k  W(k)/J(n) K 

'■3s1 "J   k „ = pry l«(n)i » V n Fru<k)| n R(k) 
X 
-n 

K  r k  w(k) .jtn) K        Kn 

n k=l 
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Note that 

g(x ) 

,(n) 

K n 

K y n yk   (Y( 
z
J=l ui ̂

 ~  EY<
kV 

r(n) 
VM  ;(k)   -(k) 
lk=1 Pi (1 - Pi 

Define 8(Mj.t) and h(x) as In the proof of Proposition 1.3, Let 

K n An)An)An)* .An) 
K ' k~l \    lk    Dk  /Jk 

The rest of the proof proceeds analogously to that of Proposition 1.3,  noting 

that it is necessary to use (1.33;  in place of  (1.31),    One concludes, 

conditional on    IT    ,    that 

(i.68)     *r 

rKn   -2 A2 
Zk*l gY,k " 0P.k 

ll>ta) <"' »P'^1'2 
Z, 

Now, conditional on B (n) 

An) An).An)'n(n) 
Dk     lk     Dk /Jk   P 
(n) „(n)  (n)i/T(n) 

Dk  ^k  Dk  /Jk 

as "  n -♦■ * 

uniformly in k follows from the fact that (1.59) and (1.65) hold uniformly 

in k. Thus, noting again.that (1.59) holds uniformly in k, conditional 

on     B(n) on   ö      , 

(1.69) 

K n    -(n) -(n) -(n)'    (n) 
Ln, K* K' K' /J ^-k«!    k        k        k k        P 

K 1        as n ->■ oo. 
h   „(n),^) n(n)'/t(n) 

^k'l    k        k        k k 

Combining (1.68) and (1.69) yields the desired result. 
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Appendix II.  Proof of Theorem 6.1 and Corollary 6.1. 

Proof of Theorem 6.1. Note that conditioning on B    is implicit on the 

statement of (6.4). Let k denote the classical test dimensionality and 

R  denote k dimensional Euclidean space. It follows trivially from 

Chebychev's inequality that the weak law of large numbers holds for the 

partitioning test score Y., uniformly in J9. That is, 

(II.1) ,  Y1 - E[Y1 |G = 9] -^ 0 as n -> % 

where the convergence in probability ia uniform in 6^ R,V
, it thus follows, 

denoting the distribution function of a random variable W by F  and 

using (6.2), uniformly in 0^ and y that 

(II.2)   Fy (y | © - 6) - FE[Y | 0] (y | 0 = 6) - 0 as   n -♦• w 

for each    0 £ y £ 1.    Then,  for fixed    y,    it is easy to show, using (6.2) 

and denoting the conditional density of    0,    given    Y ■ y,    by    f(» | y)    and 

the conditional density of   0,    given   E(Y | 0]  - y    by    g(» | y)    that 

V 

'M 
Ii-i PI<°) 

M ■I. k M 

•»2 

f (O'l y)de, f(o| y)de 

•(, 

12 

d Pi^      f    ^=1 Pj^j   g(e'|y)de' 
M "    Lk M 

g(e l y)d6 + 0 

as    n •»• a»,    uniformly in    y.    Thus,  integrating over    y,    it follows that 

(11,3)        Um 
n-H» 

2llPl<i>      f      li-lPi^') 
-12 

fM    ^i Pj^    f 
io JRkL        M ' Ja M £(8' | y^e' £(6 | y)d8    dy 

" Jo I1 
?n IU p^) 

M R 

Ii-1 Pi(i'> 
k      M .    8(0' I y)di 

-|2 

M 8(11 y)di dy -► 0 

as    n -♦• «. 
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Similarly, 

n 'R 

f 

M      - L -1ATr—f ^ I Yie Ak Vi' 
• K 

r1 f lot 
iiPiCo.)    r    lliPi^') 

f(i| Y^ A^n))dO 

l2 

M .k M 
fCG' | y)ctf' f(0.| y)di dy -♦ 0 

as    n •* 00, 

Combining  (II.3;,   (II.4), and using  (6.3),   It  thus follows chat 

(II.5) lim P    > 1 * C/2     • ~—   n w trtoo 

It is easy to see that, recalling (1.28) and (1.29), 

(II.6) KCS?>k|B<n>) E(SP,k.lB(n)) 
4n) - 1 k  

Y,k       n,k 

Arguing as in the proof of Proposition 1.2, 

K 
(II.7)      i  TA <ay

2
>k - cnjk) - jij   l^   flml Vlpt® I h e AC»)) + Pn 

KnM 

Using (II.5), it thus follows that 

— n  M 

1 v n    ,2 (11.8)   Um ^ ^(o^-c^)^. 
n^<»  n 
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Thus,  using  (II.6)  and  (II.7),   for alJ    n    sufficiently  large, comlii lonnl on 

B(n),     it follows  that 

'n    „rJ     i o<n)x  _ „,-2     , „(nK .   e (II.9,        ^    C1E^k|B^)-E(^k Bx"')   > 
2M    ' 

Now, 

(11.10) P|T    > Z      b(n)]  -  P 
i»       a 

1     rKn    (%1 -2    . 

.f(E(^klB^)-E^k|B<"))) 
n 

n \ n 

-E(Sjk|.(»))||B<n>! 

But, trivially 

■^ ß(n)g(n)^)VJ(n)/ 
\l/2 

K n 
< C -»• 0 —   n 

as    n •*•«.    Thus, using this and (11.9) and applying Chebychev's inequality, 

for large   n 

P[Tn > Zj B(n)l-> 1 - —- 1        as        n 

Thus, the result is proved. 



ILA 

Proof of Corollary 6.1.     Note that  conditioning on    Ye A^     is 

Implicit In the statement of Corollary 6.1.    It is easy to show that 

(n), 

2 o„ ,   - c 

I cov(U  .U   , |Y       € A>n;) 
l<l<i'<M * K 

Y,k        n.k M2 

(n), 
ff-iVCPigl Yi.Pe4   > 

v 

Hence,   (6.5 )  implies that 

K 2 

,,    ^k«l  (qY.k " cn>k
) s e 11m * '— > -x , K - 2 

n-»«» n 

a  rt>sult analogous to  (11,8) •     '1'he nst of  the proof proceeds  identically to 

that: of Theorem 6.1 and is omitted. 
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1 DR. JAKES S. GREENO 
LRDC 
UNIVERSITY CF PITTSBURSH 
3939 O'HARA STREET 
PITTSBURGH, PA 15213 

1 Dr. Ron Harilstcn 
School of Education 
University cf flassachusetts 
Asherst, KA 01002 

1 Dr. Paul Horst 
677 G Street. *184 
Chula Vista, CA 90010 

1 Dr. Lloyd HusDhre/s 
DeparUent of Psychology 
University of Illinois 
603 East Daniel Street 
Chaipaign, IL 61320 

1 Dr. Steven Hunka 
Department of Education 
University of filberts 
Edmonton, Alberta 
CANADA . 

I Dr. Huynh Huynh 
Ccllegs cf Education 
University of South Carolina 
Columbia, SC 29208 

1 Dr. Douglas H. Jones 
Advanced Statistical Technologies 
Corporation 
10 Trafalgar Court 
Lawrenceville, NJ 08143 

1 Dr. Karcel Just 
Department of Psychology 
Carntgifi-Hellon University 
Pittsburgh, PA 15213 

1 Dr. Deäetrios Karis 
Dspartnent of Psychology 
University of Illinois 
603 E. Daniel Street 
Chaapaign, lu 61820 

1 Professor John A. Keats 
Department cf Psychology 
The University of Newcastle 
N.S.K., 2308 
AUSTRALIA 

1 Dr. Dilllaa Konh 
University of Texas-Austin 
Measurement and Evaluation Center 
Austin, TX 7B703 

1 Dr. Alan Lesgold 
Learning F;!<D Center 
University of Pittsburgh 
3939 C'Hara Street 
Pittsburgh, FA 15260 

i Dr. tUcnasi Levine 
Cepartsent of Educational Psychology 
210 Education Bldg. 
University of Illinois 
Chaipaign, IL 61801 
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Privets r -tor Private Sector 

1 Dr. Charles Lewis 
Faculteit Sociale »stmchacpen 
Rljkiunlveniteit Sron.ingen 
Dude Boteringestrwt 23 
97!23C ironinaen 
Netherhnda 

J 1 Dr. Rcbert Linn 
•   College ot Education 

UM varsity of Illinois 
Urbana, IL 61801 

1 Mr. Phillip Livingston 
Systeas and ftppliad Sciences Corporatio 
6811 Ktnilworth ftvenua 
Riverdale, HO 20840 

1 Dr. Robert Lockwn 
Center for Niaval Analysis 
200 North Beauregard St. 
Alexandria, VA 22311 

I Dr, Frederic H. Lord 
Educational Testing Service 

1     Princeton, NJ C8541 

1 Lf, uaü.ei Luiiutn 

Departient cf Psychology 
University of '«lestern Australia- 
Nedlands H.A. 600? 
AUSTRALIA 

1 Dr. Don Lycn- 
P. Ü. Eo* 44 
H'igley        , AI 85236 

1 Dr. Scott Maxell 
Departdient of Psychology 
university of Nctre Dase 
Notre Bane, IN 46556 

1 Dr. larbara Means 
Hunan Resources Research Drganizaticn 
300 North Kashington 
Alexandria, VA 22314 

1 Dr. Robert «islevy 
711 Illinois Strset 
E. .leva, II. 60134 

1 Dr. H. Alan Nicewander 
University of Cklahciia 
Departoar.t of Psychology 
Oklahosa City, 3K 73069 

1 Dr. Donald A Norsan 
Cognitive S^snes, C"01J 

Univ. of California, San Diegc 
La Jolia, CA 92093 

1 Dr. Jaites Olsen 
H1CAT, Inc. 
187S Scuth State street 
Ore», UT 84057 

1 Kayne M. Patience 
American Council on Education 
i-rn   T-.l---   Ce^'firo      B.li ♦■a   Ift 

One Dupont Cirle, Nül 
Kashington, DC 2Ö036 

1 Dr. Jajtes A. Paulson 
Portland State University 
P.O. Bex 751 
Fort land, DR 97207 

1 Dr. lases K. Pailegrino 
University of California, 
Santa Barbara 
Dept. of Psychology 
Santa Barabara , CA 93106 

1 Dr. Saauel T. Have 
Loyola University of Chicago 
829 North Michigan Avenue 
Chicago, IL 60611 

1 Dr. Steven E. Poitrock 
Ball Laboratories 2r"444 
600 fountain Ave. 
Hurray hili, NJ Ö7974 

"^ 1 Hr. Robert McKinley 
Aierican College Testing Prograns 

u    P.O. Box 168 
Iowa City, IA 52243 

1 Dr. Hark D. Rsckase 
ACT 
P. 0. Box 168 
Iowa City, IA 52243 
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Private Sector 

1 Dr. ThoMS Reynolds 
University of Te;;a5-Säll33 
Marketing Department 
P. 0. Bo* i8S 
Richirdson. TX 73000 

1 Dr. Lwrencg fhidner 
403 Ein ftvenue 
Tikcaa Park, HD 20012 

1 Dr. J. Ryan 
Department of Education 
University of South Carolina 
Ccluabia, SC 29203 

t PROF. FUNIK0 SflHEJIHA 
D£?T. OF P3YCHDLG]Y 
UNIVERSITY GF TENNESSEE 
KNOXVILIE, TN 37916 

1 Dr. «älter Schneider 
Psychology Departsenl 
603 E. Daniel 
Chanpaign, IL 61520 

1 Lcivell Schoer 
?S"cHolooical I. ?ü;ntitifive 

* Foundations 
*•     College of Education 

University of Iowa 
Iowa City, IA 52242 

P -''. Kasus buigeütaeu 
7-9-24 KugenuH-Kiiu« 
Fujusawa 251 
JAPAN 

1 Dr. Hilliaa Siss 
Center for Naval Analysis 
200 North EBauregard Street 
Alexandria, 7A 22311 

1 Dr. H. Uallace Sinaiko 
Pr05ra.ii Director 
HanpüHgr Research ana Aavisor.y Services 
Seithsonian Institution 
801 North Pitt Street 

■"     Alexandria, VA 22314 
■ 

• 1 Martha Stocking 
Educatjorial Testing Service 
Princeton, Hi 0E541 

■ ■ 

Fats   B 

Private ?ictcr 

1 Dr. Peter Stoiotf 
Center for Naval Anaiysis 
200 North Izissiiri Street 
Alexandria. VA 22311 

! Jr. Hariharan SwsJiinathan 
LaliiratDry of PsycncEBtric ars 
Evaluation R=:3srcr! 
School of Education 
university of HässachiJäBtts 
Aaherst, f;A 01003 

1 Dr. Ki';usi Tatsucka 
Cofflputer Based Education Research Lab 
252 Engineering Research Laboratory 
Ürtanal IL 61801 

1 Dr. Maurice Tatsuoka 
220 Education Bldg 
1310 S, Sixth St. 
Chaspaign, IL 61820 

1 Dr. David Thissen 
Departnent of Psychology 
University of Kansas 
Lawrence, K£ 66044 

1 Dr. Douglas Towne 
Univ. of So. California 
Behavioral Technology Labs 
1845 S. Elena Ave. 
RldondQ Beach, CA 90277 

1 Dr. Robert Tsutakana 
Departiusnt of Statistics 
University of Missouri 
Coluabia, KD 65201 

1 Dr. Ledyard Tucker 
university of Illinois 
Bepartaent of Psychology 
603 E. Daniel Street 
Chaepaign, IL 61620 

I Dr. V. R, R. li;;a!uri 
Union Carbide Corporation 
Nuclear Division 
P. 0. Box Y 
Oak Ridge, TN 37330 
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Prlvita SBttor 

1 Dr. David Vile 
ftimsßent Systias Eorporatinn 
2233 Unlvarsity Avenue 
suite 310 
St. Paul, m C.[J1!4 

« 1 Dr. Howard Gainer 
Sivisiori of Psychological it.:.dis£ 

• Educational Testing iirncs 
Princeton, MJ 08540 

1 Dr. Rlchael T. Haller 
Cspartcient o-f Educational Psychology 
university of Hisconsin—Milwaukee 

■Milwaukee, HI 53201 

1 Dr. Brian Katers 
H-jsRRO 
300 North Hashington 
Alexandria, V'A 22314 

1 Dr. David J. Haiss 
N4&0 Elliott Hall 
University of Sinnesota 

• 75 E. River Road 
Hinfieapclis, tiN 55455 

» 1 Dr. Rand R. Hilcox 
University of Southern California 
Departaent cf Psychology 
Los Angeles, CA 90007 

1 Dr.' Srucs ^iuiiris 
Departsisnt of Educational Psychology 
University of Illinois 
Urbana, 1L 61301 

1 Hs, Marilyn Hingersky 
Educational Testing Service 
Princeton, Hi 08541 

1 Dr. to.dy Yen 
CTB/«:SrDr; Hill 
Bel Beftte Rasearch Park 
Monterey, CA 93940 


