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TIME DEVELOPMENT OF CERENKOV RADIATION

Fred R. Buskirk

John R. Neighbours

Physics Department
Naval Postgraduate School
Monterey, California 93943

ABSTRACT

Most developments of Cerenkov Radiation are in terms of the

Fourier components of the fields and power emitted by a single

electron. When many electrons in a compact bunch are emitted from

an accelerator, the bunch radiates coherently and at a lower

frequency than for a single electron. The theory for the time

structure of the fields arising from a charge bunch is developed,

and it is shown that the source of the radiation is di/dt.

Present detector technology should be able to resolve these

fields. _ _
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TIME DEVELOPMENT OF CERENO1 RADIATION

INTRODUCTION

Cerenkov radiation, produced by a charqe or qroup of charges,

movinq faster than the speed of electromagnetic radiation in a

medium, has been investigated, startina with the experiments of

Cerenkov1 in 1934 and the explanation by Frank and Tamm2 in 1937.

Since power radiated by a single charoed particle is proportional

to the freauencv, most of the research effort has been devoted to

the relatively intense optical radiation which is favored over the

microwave region by a factor of about 104 The otical results 3'4

are qiven in terms of the Fourier components of the fields and the

radiated power.

In our previous work 5 '6 it was noted that microwave radiation

can be significant because all the electrons in an accelerator

bunch (about 109 ) radiate coherently; an effect which more than

offsets the single oarticle increase in radiated oower with

frequency. For an electron beam aenerated by a traveling wave

Linac and passing throuqh air, it was shown that the various

harmonics of the basic frequency up to about the tenth are emitted.

(In the case of an L or S band Linac, these correspond to 10 GHz

and 30 GHz respectively.)

The time structure of Cerenkov radiation fields in the ootical

and even in the higher frequency microwave regions is difficult to

observe because the detectors recister power. One of the few



treatments of the time dependence, by Tamm 7 in 1939, showed that

the optical radiation by an electron is singular on the Cerenkov

front. Here we consider the time structure of fields generated

when electron bunches radiate coherently; in a development which

5,6complements the frequency domain analysis of our earlier work

The fields should be observable for beams from induction

accelerators which produce bunches much longer than those produced

by S or L band Linacs.

i2
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MAGNETIC RADIATION FIELD

The purpose of this paper is to oresent a development of the

time dependence of the electric field generated by the Cerenkov

mechanism. The method is first to determine the potentials from

the moving charge distribution, and subsequently to obtain the

fields (in cgs units) from the potentials by

1 a (2)E -7t c at
0

We assume a charge density function pv and a current density

3v= PvV/c 0 with the velocity v in the plus z direction. The

charge and current are assumed to be concentrated along the z axis

such that

Pv( . t) = p(Z't) S(x) 5(y) (3)

and the charge is assumed to move with no change in shape so that

the z and t dependence of the charge is

p(z,t) = p 0(z-vt) (4)

t

Note that p v and 3v represent the usual charge and current

densities, while p and p0 throughout this paper are ch.rge per

unit length. The velocity of light is c and c in the medium and0

free space, respectively.

3
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The potentials are found by taking the usual retarded

solutions to the wave equations; which become under the

assumption of a line distribution of charge (3),

o(r, t) = C- 1 f R-lp( ' , t') dz' (5)

4wv (6)

= 2L- f R-lp(r',t') dz(
C

0

where R = r - r' and t' is the retarded time

t' = t -Ir - N'I/c

Now (4), the assumption of rigid motion of the charge

distribution, can be incorporated into the potentials, and a new

variable u(z') = z' - vt' can be introduced so that the potentials

(5) and (6) become

!(r, t) = -1 f R-Ip(u) dz' (8)

(r+,t) = 1 3 R 1 0(u) dz: (9)
00
0

Also, since the charge is confined to the z' axis, the new

variable u(z') can be written more explicitly.

u(z') Z' - vt + v_ [X2 + y 2 + (z - zI)2]1/ 2  (10)

c

4
I



The magnetic field B may be calculated from (1) and since A

has only a z-component, B has only the x and y components,

B= A and B = - A . Carrying out the differentiationx y z y 3'x z

for the x component gives

B= - f p (u)dz'x c 0 a -0

(11)

+ c f R- p P(u) dz'
0

For radiation, the first integral, falling off as R- 2 at large

distances, will be neglected and only the second term will be

considered further. From (10), it is seen that u is a function

of x and y so that the second integral can be written

V 2  y
B R - f - p '(u)dz' (12)

cc R
0

where p (u) is the derivative of p with respect to its00

argument u. The corresponding expression for R has y replacedy

by (-x). These two components can be combined to give the

total magnetic radiation field 9. In the cylindrical

coordinates, (s, 9, z) where s is the radius Vector
1/2

s = (x 2 + y 2 ) , B is tangential (i.e. in the 8 direction)

with a magnitude given by

v 2  s
B = - p o (u)dz' (13)

cc R2  0
0

5



TIME DEVELOPMENT

In order to evaluate (13) for B, it is necessary to consider

the dependence of u on z' as given in (in). In the u-z' plane,

the first two terms are a straiqht line with unit slope and an

intercept which chances with time, while the third term is a

hyperoola ooenina in the +u direction with asvmptotic slopes of

t v The sum of these two curves is u(z'). In the Cerenkov
c

case with v > c, the result is a curve whose ends both point

upward as shown in Fig. 1. As time increases, the entire curve

will translate downward to smaller u values as a result of the

neqative second term in (10).

Only chanainq currents (those with a non zero p 0' will

contribute to the magnetic radiation field (13). To proceed

and demonstrate the method, a ramo-front current Pulse is

chosen as a simple example. Assuminq that the front end of a

current pulse increases linearly up to a constant value, the

derivative p '(u) will be a constant valued square pulse of0

magnitude P as is also shown in Fiq. 1. The corresponding

neqative p '(u) pulse occurrino at the tail of a current pulse

is not shown and its effect is considered separately.

For larqe neqative times, the u(z') curve (a) is completely

above the oulse-like non zero portion of the p0 '(u) curve so

that the contribution in (13) to B from p '(u) is zero and

therefore, B is zero. As time increases, the u(z') curve

moves downward until the B pulse beqins when u(z') is tangent

(curve b) to the upper portion of the p 0'(u) pulse. The value

6



of the inteqral in (13) increases as u(z) continues its

constant downward motion with increasing time until u(z')

becomes tangent (curve 3) with the lower part of the p 0 (u)

pulse. At this time the non zero part of the integral has the

largest extent -from z, to z 2. At later times, the integral

breaks into two regions of the z' axis and if p 1(u) is

constant, t e value of the integral decreases with increasing

time because the extent of the integral in the two regions

continues to decrease as a result of the upward turn of u(z').

This calculation may be carried further to determine the

time structure (shape) of the resulting B pulse. Although the

expression (13) for B can be integrated directly in tI case

where the slope p (u) is constant, it is instructive o carry

out the calculation by developing u in a power series

Denoting z ' as the value of z' at which u(z') has zero slope,
0

the values of z ', u(z ) and the second derivative are
0 0

Cv2z o =-s --c l- (14)

a 2 v 2  3/2

c = . = 2 A (16)

0 v 2  c 2

7



so that u can be exoressed as a power series about the minimum

u = u(z ') + A(z' - z ,)2 (17)

The limits z i and z ' can be written in terms of the

minimum value as z' 2 = zo ' + Az and z,' = zo  - Az where &z'

is the value of z'-z such that the difference
0

u(z') - u(zo') = a, the width of the current derivative pulse

. Then from (17), a = A(Az') 2 or0

LZ' = (a/A) 1/2 (18)

Using this value, the maximum magnetic radiation field for the

rising front of the magnetic field pulse is easily evaluated

from (13) under the assumption that s and R are slowly

varying to give

v 2  s a 1/2

Bmax cc R l2  m () (19)

0

Values of B for the rise up to the peak value given above

are found by the same process but using appropriately smaller

values of Az'. The result is that the integral (and therefore

B) increases as t1 / 2 after the onset of the pulse. After the

maximum magnetic field is reached, the integral splits into two

parts. If the expression on the right side of (19) is called

I(a), the value of B at later times becomes

8



B = I(a' + a) - I(a') (20)

where a' is the distance by which the minimum in u(z') is below

the lower step of the po' pulse in Fig. 1. The first term in

(20) increases slowly with a', but the second term decreases as

(a')1' 2 leading to the sharp fall off of the magnetic field

after the maximum as shown in Fig. 2.

A complete current pulse may be considered as a linear

rise, followed by a constant current, and then a linear

decrease. The latter part gives rise to a negative p'(u) and a

reversed magnetic field pulse so that the magnetic field for a

complete current pulse has the double peaked structure shown in

Fig. 2.

9
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ELECTRIC RADIATION FIELD

In a: manner similar to the derivation of (13), the electric

radiation field may be found from (2), (8), and (9). The

details are omitted, but the result is

v R c v p 'p(u)dz' (21)

The direction of may be determined from the following

considerations. If is assumed approximately constant and

denoted by Am in the region which contributes most strongly to

the integral, then

- • = I (1 - -cosq) (22)
R R c

m

where I represents the integral in (21) without the factor in

parenthesis and 9 is the angle between Am and the z axis.

But the value of R in the region which contributes to them

integral is found by evaluating the general expression (21) at

Z'= z To simplify the expression, let the'observer be at

z = o and also assume that the pof pulse is centered near

u = o. Then R = (s2 + z' 2 )11 2 may be evaluated using (14) tom

give

S _C
2 ) -1/2

R sl(23)

10



If the usual Cerenkov angle is defined as cos9 =c Rv m

can be written as

R = (24)m sin9
c

From (22) it is apparent that E is perpendicular to R whenm

a = a and (24) shows that A is the value of A at the Cerenkovc m

angle 9c . Thus, the electric field from the front of the pulse

(i.e., z' = zm) is transverse to A

The situation is clarified in Fig. 3. The charge,

traveling from left to right, emits a signal from A, which

travels to the the observer at 0, traversing a distance Rm

The observer is at z = o and a distance s from the path. The

field 9 is perpendicular to %. The signal was emitted from A

at an earlier time t' in order to arrive at 0 at the time t,

with c(t-t') = Rm . By the time the signal reaches 0, the

particle is at B, with D = v(t-t'). Then Rm/D = c/v = cosSc as

expected. D is the path length from A to B.

From Fig. 3, one should also note that the field is

transverse to Rin, which points from the earlier (retarded time)

position of the particle, and is radial relative to the present

position of the particle. The former condition holds for

typical dipole radiation, while the latter condition holds for

the Lienard-Wiechart field for a particle moving with v < c.

The Lienard-Wiechart fields fall off as the inverse square of

the distance, and do not represent radiation. In contrast, the

11



fields discussed here fall off more slowly than R
- I and

represent radiation; and the total radiated power is discussed

in the next section.

I
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RADIATED POWER

The enerqv radiated may be found by calculatina the

Povntinq vector and inteqratina over a surface. If the surface

is a cylinder centered on the z axis, the fields at a aiven

time have a pattern independent of anqle and a z dependence as

shown in the top curve of riq. 2. The Povntinq vector is, of

course, alonq RM , and the outward comoonent may be inteqrated

over the cylinder to aive the total oower radiated. As a crude

estimate for the integral, replace the field bv the peak field

(19) and let the spatial width of the oulse be a. The radiated

power is then

P(aporox) = vi 2sin 28 (25)
c2  a c

in cqs units. In the mks system, the sauare bracket is

replaced by 2,a 0/i.

In the earlier calculations, ' the fields and power were

exoressed in terms of Fourier amolitudes. If the same current

pulse is assumed, P has frequency components up to the value

of w such that the wave lenath of the radiation is eaual to the

pulse lenqth. If it is assumed that P rises linearly uo to

this frequency and suddenly drops, the total nower radiated

becomes (in Mks units)

13



I = VI o2 sin 2 9 (26)

Equations (25) and (26) are both rough estimates and the

point is that the similarity of the results is asserted to be

confirmation that the calculations in this paper represent the

Cerenkov radiation, here expressed in terms of time dependence

of the fields.

14
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DISCUSSION

In precedinq sections, the time structure of the electric

and maqnetic radiation fields was developed. Only the far

fields were retained and in the development leadina to the B

field (13), and the E field (21), only the assumption of a

rigid charqe confined to a line was introduced. It is seen

from these equations' that the time derivative of the current is

the source function.

The simple model chosen to demonstrate the method of

developinq the time structures was that of a uniform charqe

distribution with uniformly varying front and rear sections.

This model gives the sauare pulse charqe derivative of height

PI shown in Fiq. 1 which is easy to use in evaluatinq the

inteqral (13). Similar remarks hold for the power series

expansion of u(z') which is an increasingly better

approximation as the time durinq which the current is changing,

decreases. Current variations other than linear may be readily

incorporated within the framework aiven. Also it should be

noted that in all cases the variation of R- 2 in (11) which was

assumed constant in the example will tend to sharpen both the

leadina and trailing edges of a field pulse.

In the evaluation of the time structure of the fields, the

peak field arose when the intearal (1') had the most widely

spaced limits; a situation which occurs because u(z') has a

neqative slope for sufficiently neqative values of (z' - z) as

15
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shown at the left side of Fig. 1. In the non-Cerenkov case

(I < 1) this situation does not arise since then the slope of

the u(z') function always hao the same sign. In this case

(i.e. v < c) the u(z') curve bends downward instead of upward

for large negative values of (z' - z) and the only contribution

to the integral (13) is from small regions of z'.

These results show how the time structure of Cerenkov

radiation arises from the time rate of change of the charge

distribution in an electron bunch. Present technology is such

that this structure is not observable in the Cerenkov radiation

from S or L band Linacs because of their relatively high

fundamental frequency. However, induction accelerators with

their longer electron bunch structure should produce Cerenkov

signals in air for energies greater than about 25 Mev, which

should be observable.

The extension of this method of calculation of the fields

for both Cerenkov and sub-Cerenkov charge velocities is easily

made for cases for which the charge derivative p'(u) is not

constant. A detailed report is under preparation.

Finally, we note that although the results of other

workers4 ,7 often have singularities in the radiated power at

the Cerenkov angle, the present results and our previous

ones 5 ,6 show that the radiated power is finite whether

calculated in the frequency or time domain. Also it should be

noted that causality is satisfied because the fields are zero

at times earlier than the leading edge of the pulse shown in

Fig. 2.

16
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FIGURE CAPTIONS

Figure 1. The function u = z' - vt', defined in the text is

plotted for increasing times tj, t 2, t 3 at the point

of observation. The corresponding current derivative

profile, on the right, is a function of u only and

remains fixed in time. The field signal pulse starts

at t , and reaches a maximum at t3.
2

Figure 2. The electric field pulse generated by the beam

current profile, shown in the lower curve.

Figure 3. Geometrical relations for the Cerenkov pulse. The

source (P0 ) at A emits a signal at an early time

giving the field at the observer 9; when the field

reaches the observer, the particle is at B.

19
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