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TIME DEVELOPMENT OF CERENKOV RADIATION

Fred R. Buskirk

John R. Neighbours

Physics Department
Naval Postgraduate School
Monterey, California 93943

ABSTRACT

(

Fourier components of the fields and power emitted by a single

Most developments of Cerenkov Radiation are in terms of the

electron. When many electrons in a compact bunch are emitted from
an accelerator, the bunch radiates coherently and at a lower
frequency than for a single electron. The theory for the time
structure of the fields arising from a charge bunch is developed,
and it is shown that the source of the radiation is di/at.

Present detector technology should be able to resolve these

fields.fi__
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TIMF DEVELOPMENT OF CERENXOV RADIATION

INTRODUCTION

Cerenkov radiation, produced by a charge or group of charqges,
moving faster than the speed of electromagnetic radiation in a
medium, has been investigated, startina with the exveriments of
Cerenkov1 in 1934 and the exvlanation by Frank and Tamm2 in 1937.
Since power radiated by a single charaed varticle is prooortional
to the freauencv, most of the research effort has been devoted to
the relatively infense optical radiation which is favored over the
microwave region by a factor of about 10“. The ontical results3’4
are given in terms of the Fourier components of the fields and the
radiated vower.

In our previous works’6 it was noted that microwave radiation
can be significant hecause all the electrons in an accelerator
bunch (abou: 10°%) radiate coherently; an effect which more than
offsets the single particle increase in radiated power with
frequency. For an electron beam aenerated by a traveling wave
Linac and passing through air, it was shown that the various
harmonics of the basic frequency up to ahbout the tenth are emitted.
(In the case of an L or S band Linac, these corre§oond to 10 GHz
and 30 GHz respectivelv.)

The time structure of Cerenkov radiation fields in the ootical

and even in the higher frequency microwave regions is difficult to

observe because the detectors register power. One of the few

atsistsmintuiaionintinndeinteesnsing : ettt i i
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treatments of the time dependence, by Tamm7 in 1939, showed that
the optical radiation by an electron is singular on the Cerenkov
front. Here we consider the time structure of fields generated
when electron bunches radiate coherently:; in a development which
complements the frequency domain analysis of our earlier work 5'6.
The fields should be observable for beams from induction

accelerators which produce bunches much longer than those produced

by S or L band Linacs.
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' MAGNETIC RADIATION FIELD

The purpose of this paper is to oresent a development of the
time devendence of the electric field generated by the Cerenkov
mechanism. The method is first to Aetermine the potentials from
the moving charge distribution, and subsequently to obtain the

fields (in cgs units) from the potentials by

B =v9vx A (1)

(2)

We assume a charge density function oy and a current density
. . . > . - k3
iv = pvs/co with the velocity v in the plus z direction. The
charge and current are assumed to be concentrated along the z axis

such that

>

pv(r, t) = olz,t) &8(x) 6&(y) (3)

and the charge is assumed to move with no change in shape so that

the z and t dependence of the charge is
olz,t) = p (z-vt) (4)

Note that Py and Ev represent the usual charge and current
densities, while o and % throughout this paper are charge per

unit lengéh. The velocity of light is ¢ and <, in the medium and

free space, respectively.




The potentials are found by taking the usual retarded
solutions to the wave equations; which become under the

assumption of a line distribution of charge (3),

where R = r - ;' and t' is the retarded time

t' =t - Ir ~zt'l/e

Now (4), the assumption of rigid motion of the charge

!
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(5)

(6)

distribution, can be incorporated into the potentials, and a new

variable u(z') = z' - vt' can be introduced so that the potentials

(5) and (6) become
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Also, since the charge is confined to the z' axis, the new

variable u(z') can be written more explicitly.

172
u(z') = z' - vt + % [x2 + y2 + (z - 2')2]

(8)

(9) ' j

(10) -
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The magnetic field B may be calculated from (1) and since R
has only a z-component, B has only the x and y components,

3 3 . . . '
= e = = e . f
Bx 3 Az and B = Az Carrying out the differentiation

for the x component gives

= v 3 g '
Bx = - f 5y R po(u)dz
(11)
c y °o

For radiation, the first integral, falling off as R™Z at large
distances, will be neglected and only the second term will be
considered further. From (10), it is seen that u is a function

of x and y so that the second integral can be written

B, = /

= oo'(u)dz' (12)
ce R

where po'(u) is the derivative of o, with respect to its
argument u. The corresponding expression for By has y replaced
by (-x). These two components can be combined to give the
total magnetic radiation field 8. In the cylindrical
coordinates, (s, 9, z) where s is the radius Vvector

172,

s = (x2 + y?) ., B is tangential (i.e. in the 9 direction)

with a magnitude given by

v?2 s
B= —— [— 5 ‘(u)dz’ (13)
cc I R2 °

0




TIME DEVELOPMENT

In order to evaluate (13) for B, it is necessary to consider
the devendence of u on z' as aiven in (10). In the u-z' plane,

the first two terms are a straight line with unit slope and an

interceot which chanaes with time, while the third term is a |

hyperpbola openina in the +u direction with asvmptotic slopes of

k4 %. The sum of these two curves is u(z'). In the Cerenkov J
q

case with v > ¢, the result is a curve whose ends both opoint

upward as shown in Fig. 1. As time increases, the entire curve

will translate downward to smaller u values as a result of the
negative second term in (10).

Only chanaing currents {(those with a non zero po' will
contribute to the magnetic radiation field (13). To oroceed
and demonstrate the method, a ramo~-front current puolse is
chosen as a simple example. Assuming that the front end of a

current pulse increases linearly up to a constant value, the

derivative po'(u) will be a constant valued square pulse of
magnitude om' as is also shown in Fig. 1. The corresponding
negative po'(u) pulse occurrinag at the tail of a current opulse
is not shown and its effect is considered sevparately. i 1
For large negative times, the u(z') curve (a) is completely
above the opulse-like non zero portion of the po'(u) curve so *
that the contribution in (13) to B from po'(u) is zero and )
therefore, B is zero. As time increases, the u(z') curve

moves downward until the B opulse begins when u(z') is tangent

'
s e o MR

(curve b) to the upper portion of the po'(u) pulse. The value




of the integral in (13) increases as u(z) continues its
constant downward motion with increasing time until u(z')
becomes tangent (curve 3) with the lower part of the po'(u)
pulse. At this time the non zero part of the integral has the
largest extent -from z; to z,. At later times, the integral
breaks into two regions of the z' axis and if po'(u) is
constant, t e value of the integral decreases with increasing
time because the extent of the integral in the two regions
continues to decrease as a result of the upward turn of u(z').
This calculation may be carried further to determine the
time structure (shape) of the resulting B pulse. Although the
expression (13) for B can be integrated directly in t! case
where the slope po'(u) is constant, it is instructive o carry
out the calculation by developing u in a power series
Denoting zo‘ as the value of z' at which u(z') has zero slope,

the values of zo', u(zo') and the second derivative are

v?2 -172
z ' = =g — - 1) (14
v?2 -1/2
u(z ') = s ( - 1) -t (15)
o 2
c
azu 1 C2 VZ 372
== — [ — -1 =2A (16)
z'? Iz s v? c?
7




so that u can be expressed as a power series about the minimum

u = u(zo') + A(z' - zo')2 (17)

The limits zl' and zz' can be written in terms of the

minimum value as z', = z ' + Az and z,' =2z ' - az' where az'

is the value of z‘-zo' such that the difference

u(z') - u(zo') = a, the width of the current derivative pulse
»,'+ Then from (17), a = A(az')? or
az' = (a/Aa)1l/2 (18)

Using this value, the maximum magnetic radiation field for the
rising front of the magnetic field pulse is easily evaluated
from (13) under the assumption that s and R are slowly

varying to give

max o, pm. 2 (—) (19)

Values of B for the rise up to the peak value given above
are found by the same process but using appropriately smaller
values of Az'. The result is that the integral (and therefore

B) increases as t1/2 after the onset of the pulse. After the

maximum magnetic field is reached, the integral splits into two

parts. If the expression on the right side of (19) is called

I(a), the value of B at later times becomes

i o [P Ny

sl
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B=1I(a'+ a) -1I(a') . (20)

where a; is the distance by which the minimum in u(z') is below _
the lower step of the po' pulse in Fig. 1. The first ﬁerm in
(20) increases slowly with a', but the second term decreases as
(a')1/2 1eading to the sharp fall off of the magnetic field -
after the maximum as shown in Fig. 2.
A complete current pulse may be considered as a linear
rise, followed by a constant current, and then a linear
decrease. The latter part gives rise to a negative p’'(u) and a
reversed magnetic field pulse so that the magnetic field for a

complete current pulse has the double peaked structure shown in

Fig. 2.
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ELECTRIC RADIATION FIELD

In a manner similar to the derivation 6f (13), the electric
radiation field may be found from (2), (8), and (9). The

details are omitted, but the result is

_ v R ¢ - E_ 1 ! '
f—-—c:j(—R——c—o co) R °o (u)dz (21)

The direction of E may be determined from the following
considerations. If R is assumed approximately constant and
denoted by ﬁm in the region which contrihutes most strongly to

the integral, then

R
= B . ﬁﬁ =71 (1 - gcosa) (22)

where 1 represents the integral in (21) without the factor in
parenthesis and 9 is the angle between ﬁm and the z axis.

But the value of Rm in the region which contributes to the
integral is found by evaluating the general expression (21) at
z' =z '. To simplify the expression, let the’observer be at

o
z = o0 and also assume that the po' pulse is centered near

u =o0. Then R = (s2 + 2'2)1/2 may be evaluated using (14) to
give
c2y -1/2
Rm= S(l - —2~) (23)
v
10




If the usual Cerenkov angle is defined as cossc =

<la
=<

can be written as

= s
Rm sinec (24)

From (22) it is apparent that £ is perpendicular to ﬁm when
9 = 8, and (24) shows that ﬁm is the value of R at the Cerenkov
angle ec. Thus, the electric field from the front of the pulse

(i.e., 2' = zm) is transverse to ﬁm.

The situation is clarified in Fig. 3. The charge,
traveling from left to right, emits a signal from A, which
travels to the the observer at 0, traversing a distance Rm.

The observer is at z = o and a distance s from the path. The
field £ is perpendicular to ﬁm' The signal was emitted from A
at an earlier time t' in order to arrive at O at the time t,
with c(t-t') = Rm. By the time the signal reaches O, the
particle is at B, with D = v(t-t'). Then Rm/D = ¢/v = cos9, as
expected. D is the path length from A to B.

From Fig. 3, one should also note that the field is
transverse to §m, which points from the earlier (retarded time)
position of the particle, and is radial relatiye to the present
position of the particle. The former condition holds for
typical dipole radiation, while the latter condition holds for
the Lienard-Wiechart field for a particle moving with v < c.
The Lienard-Wiechart fields fall off as the inverse square of

the distance, and do not represent radiation. 1In contrast, the

11




fields discussed here fall off more slowly than R-! and
represent radiation; and the total radiated power is discussed

in the next section.

12




m

—

LM

RADIATED POWER

The eneray radiated may bhe found bv calculatina the
Povnting vector and inteaqratina over a surface. If the surface
is a cvlinder centered on the z axis, the fields at a aiven
time have a pattern independent of angle and a z dependence as
shown in the top curve of Fig. 2. The Poynting vector is, of
course, along ﬁm' and the outward comoonent may be integrated
over the cvlinder to give the total power radiated. As a crude
estimate for the inteqral, reovlace the field bv the veak field
{19) and let the spatial width of the pulse be a. The radiated

power is then

P(approx) = — vIozsinzec (25)

in cgs units. In the mks system, the sauare bracket is
replaced by 2up/ .

In the earlier calculations,'6 the fields and power were
exoressed in terms of Fourier amplitudes. If the same current
pulse is assumed, P, has frequency components up to the value
of w such that the wave lenath of the radiation is eaual to the
pulse length, 1If it is assumed that Pm rises linearlv up to
this frequency and suddenly drops, the total power radiated

becomes (in Mks units)

13
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f

= 1 2 : 2
ZPm 7 M, VY Io sin?9, (26)

Equations (25) and (26) are both rough estimates and the
point is that the similarity of the results is asserted to be
confirmation that the calculations in this paper represent the

Cerenkov radiation, here expressed in terms of time dependence

of the fields.

14
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DISCUSSION

In preceding sections, the time structure of the electric
and maanetic radiation fields was developed. Only the far
fields were retained and in the developmen:t leadina to the B
field (13), and the E field (21), only the assumption of a

rigid charge confined to a line was introduced. 1t is seen

from these equations’ that the time derivative of the current is

the source function.

The simple model chosen to demonstrate the method of
developing the time structures was that of a uniform charage
distribution with uniformly varying front and rear sections.
This model qives the square pulse charge derivative of height
p'm shown in Fig. 1 which is easy to use in evaluatinag the
intearal (13). Similar remarks hold for the power series
expansion of u(z') which is an increasingly bhetter

approximation as the time durina which the current is changina,

decreases. Current variations other than linear may be readilv

incorovorated within the framework aiven. Also it should be
noted that in all cases the variation of R-2 in (1) which was
assumed constant in the example will tend to sharpen both the
leadinag and trailing edqes of a field pulse,.

In the evaluation of the time structure of the fields, the
peak field arose when the intearal (13) had the most widely
spaced limits; a situation which occurs because u(z') has a

negative slove for sufficientlv negqative values of (z' - 2z) as

15
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shown at the left side of Fig. 1. 1In the non-Cerenkov case

(% < 1) ;his situation does not arise since then the slope of
the u(z') function always hag the same sign. In this case
(i.e. v < ¢) the u(z') curve bends downward instead of upward
for large negative values of (z' -~ z) and the only contribution
to the integral (13) is from small regions of z'.

These results show how the time structure of Cerenkov
radiation arises from the time rate of change of the charge
distribution in an electron bunch., Present technology is such
that this structure is not observable in the Cerenkov radiation
from S or L band Linacs because of their relatively high
fundamental frequency. However, induction accelerators with
their longer electron bunch structure should produce Cerenkov
signals in air for energies greater than about 25 Mev, which
should be observable.

The extension of this method of calculation of the fields
for both Cerenkov and sub-Cerenkov charge velocities is easily
made for cases for which the charge derivative p'(u) is not
constant. A detailed report is under preparation.

Finally, we note that although the results of other
workers4'7 often have singularities in the radiated power at
the Cerenkov angle, the present results and our previous
oness'6 show that the radiated power is finite whether
calculated in the frequency or time domain. Also it should be
noted that causality is satisfied because the fields are zero
at times earlier than the leading edge of the pulse shown in

Fig. 2.

16
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Figure 1.

Figure 2.

Figure 3.

FIGURE CAPTIONS

The function u = z' - vt', defined in the text is
plotted for increasing times t,;, t,, t3; at the point
of observation. The corresponding current derivative
profile, on the right, is a function of u only and
remains fixed in time. The field signal pulse starts

at tz' and reaches a maximum at t3.

The electric field pulse generated by the beam
current profile, shown in the lower curve.
Geometrical relations for the Cerenkov pulse. The
source (po') at A emits a signal at an early time
giving the E field at the observer 5; when the field

reaches the observer, the particle is at B.
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