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ABSTRACT

Two new classes of tests for regression models, 1ikelihood ratio type
tests and tests based on quadratic forms of robust estimators, are introduced.
Both can be viewed as generalizations of the classical F-test. By means of
the influence function their robustness properties are investigated and opti-
mally robust tests that maximize the asymptotic power within each class,
under the side condition of a bounded influence function, are constructed.
Finally, an example based on real data shows that these tests are valuable
robust alternatives to the F-test.
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1. INTRODUCTION

In this paper we consider the following regression model. Let
{(xi.yi) : i=1,...,n} be a sequence of independent identical distributed
random variables such that

T .
Yi = X0 + e i=1,...,n , (1.1)
where Y; is the ith observation, xieRP is the ith row (written as
column vector) of the design matrix, 6c0 C RP a p-vector of unknown

parameters and eiel! the ith error. Suppose that ey is independent of

X4 and is distributed according to a normal N(O,oz) . Moreover, denote
by K(x) the distribution of the x's and by Fe(x,y) the joint distribu-
tion of (xi,yi) .

Classical estimation and test procedures in regression models are based
on the well known method of least squares (LS). This is mostly justified by
the Gauss-Markov theorem that states the optimality property of the LS estima-
tor within the class of all linear unbiased estimators. Linearity is a
drastic restriction; many maximum 1ikelihood estimators (for example assuming
a Cauchy distribution for the errors) are not linear. On the other hand,
it is known that the LS estimator is optimal in the class of all unbiased
estimators if we assume that the errors are normally distributed. Therefore
the restriction to linear estimators can be justified only by normality
(or -simplicity). But the normal model is never exactly true and in the
presence of small departures from the normality assumption on the errors,
the LS procedures (estimators and tests) lose efficiency drastically; seé

Huber (1973), Hampel (1973a, 1978a), Schrader and Hettmansperger (1980),

'@
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I Ronchetti (1982a,b). Thus, one would prefer to have procedures which are only T
nearly optimal at the normal model but which behave well in a certain neighbor-
hood of it.

Il Many robust regression estimators have been proposed in the last years. )
In section 2 we shall review an importnat class of such estimators, namely
the class of M-estimators. Whereas robust estimation theory in regression

Ei models has recently received more and more attention (see for instance,

Huber (1973), Bickel (1975), Holland and Welsch (1977), Hampel (1978b),
Ruppert and Carroll (1980), Krasker and Welsch (1982), Ronchetti and Rousseeuw
(1983), Samarov (1983)), the test problem has been somewhat neglected.

From a robustness point of view the classical test procedures based
on the LS estimators suffer similar problems as the LS estimators themselves.
Although the F-test is moderately robust with respect to the level, it does
lose power rapidly in the presence of small departures from the normality
assumption on the errors. Recently Schrader and McKean (1977) and Schrader
and Hettmansperger (1980) proposed a new class of tests for linear models
based on Huber estimates in the full and reduced model, and Sen (1982) found
an asymptotic equivalent version of them. Nevertheless, this is only the
first step for finding a robust version of the F-test. Like Huber estimators,
these tests do not overcome problems caused by situations where the fit is
mostly determined by outlying points in the factor space.

The purpose of this paper is twofold. On one side, we introduce new
classes of tests that generalize the classical asymptotically equivalent
tests, likelihood ratio tests and Wald tests. (The generalization of a third

class, C{(a) tests, is the subject of a separate paper.) On the other hand,
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| we propose a solution for the inference problem in regression presenting
optimally robust tests that are the natural counterpart of optimally robust
estimators and that can be used to construct robust confidence intervals
i for the parameters.
The paper is organized as follows. Section 2 gives a short overview
on bounded-influence estimation in linear models and section 3 presents

the approach to robust testing we use to construct a robust version of the

]

' F-test. In section 4 and 5 we introduce two new classes of tests, likelihood
ratio type tests and tests based on quadratic forms of robust estimators, and

; wediscuss their asymptotic distribution. Each class can be viewed as the

‘ natural generalization of a corresponding classical test. In each case the
robustness requirement as specified in section 3 leads to an optimally

4 robust test procedure which is a valuable robust alternative to the classical

one. Finally, in section 6 we illustrate the excellent performance of

optimally robust tests by means of an example based on real data.




2. BOUNDED-INFLUENCE ESTIMATORS

In this section we summarize briefly the results on bounded-influence
estimation in regression models. Consider the model (1.1).

One way to cope with the problem of nonrobustness of least squares
estimators is to study a large class of estimators generalizing LS, and to
select more robust procedures in that class. It appears that M-estimators
are most appropriate for this purpose. Suppose for simplicity o=1 . An
M-estimator Tn for the parameter 6 1is defined as the solution of the

implicit equation

n
z "(Xiv.Yi;Tn) =0, (2.1)
i=1
for a suitable class of vectorvalued functions v : RP x R x R? = RP .
Because of the invariance properties of the regression model, an important

role is played by the following special class
¥(x,y38) = n(x,y-x')x , (2.2)
where n:RpxR-vl!.
There have been several proposals for choosing n . For a stimulating

discussion we refer to the papers by Krasker and Welsch (1982) and Huber (1983).

Some choices of n are of the form

n(x,r) = w(x)-¥(r-v(x)) , (2.3)




where ¥ : R >R, and w: RP > R', v: RP » R (weight functions).

Huber (1973) uses w(x) = 1,v(x)=1 , and Mallows' and Andrews' proposals set

v(x) = 1 and w(x)=s1, respectively. Hill and Ryan proposed v(x)=w(x) and finally,
Schweppe suggested choosing v(x) = 1/w(x) ; see Hill (1977), Krasker and

Welsch (1982).

Two tools have been used successfully to study the robustness properties
of estimators. The first one, the influence function, was introduced by
Hampel (1974) and is essentially the first derivative of an estimator viewed
as functional. It describes the normalized influence of an infinitesimal
observation on the estimator. The formal definition is the following.

Suppose the estimator Tn can be expressed as functional T of the empirical
distribution function F(") s Tn = T(F(")) . Then the influence function

of\ T at F 1is given by

IF(%,y3T,F) = Vim oL T((1-e)F+es(, oy) - T(F)I/e , (2.4)

where G(x is the distribution that puts mass 1 at the point (x,y) .

sY)
The se:cond tool is the change-of-variance function; see Hampel,
Rousseeuw, Ronchetti (1981), Ronchetti and Rousseeuw (1983). It can be
viewed as the derivative of the asymptotic covariance matrix of the
estimator, and describes its infinitesimal stability. From a robustness
point of view, a desirable property of these functions is boundedness
(in some norm). This means that any (infinitesimal) observation (and
therefore any outlier) has a bounded influence on the estimator and on
its asymptotic covariance matrix, respectively. Existence conditions and

mathematical properties of derivatives of functionals including the influence

function are discussed extensively in Clarke (1983) and Fernholz (1983).

.l
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The influence function of an estimator defined by (2.2) is given by

(see Theorem 4.1 below
T \u-1
IF(x,y3n,Fg) = n{x,y-x 8)M "x , (2.5)

where M = In'(x,r)xdeQ(r)dK(x) . By suitable choice of n we can force
IIF(x,y;n,Fe)l <o, for all x and y . Note that nLS(x,r) = r defines

the LS estimator and
IF(x,y3my ¢sFg) = (y-xTe) - (quTdK(u))'lx

is unbounded in x and y .

Hampel's optimality criterion is to put a bound on the IF (measured in
some norm) and, under this condition, to minimize the trace of the asymptotic
covariance matrix of the estimator at the model. The first condition ensures
robustness to the estimator, while the second one is an efficiency condition.
If the IF is measured by the Euclidean norm, it turns out that the optimally
robust estimator within the class (2.2) is the HampeT-Kraéker estimator which

is defined by a n-function of Schweppe's form
n0eor) = Lax TH - w(rlax]) (2.6)

where wc(t) = min(c,max(t,-c)) rst the Huber y-function, the matrix A is

defined implicitly by

A1« Er2e(c/lAax])-1)xxT3 (2.7)




and ¢ is a positive constant depending on the bound on | IF| ; see Hampel
(1978b), Krasker (1980).

For an approach to robust statistics using influence functions, we refer
to Hampel, Ronchetti, Rousseeuw, Stahel (1984). A critical discussion of

bounded-influence estimation in regression can be found in Huber (1983).

Lal
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3. THE INFINITESIMAL APPROACH TO TESTING

The infinitesimal approach to testing is based on the central notion
of influence function. The extension of this concept to tests has been
studied by Rousseeuw and the author; see, Ronchetti (1979, 1982a,b),
Rousseeuw and Ronchetti (1979, 1981). It turns out that the influence function
defined on the test statistic (that is using (2.4) with T=test statistic) is
proportional to the influence of an infinitesimal observation on the level
and on the power of the test. Therefore, a test statistic with a ' .nded
influence function ensures stability of the level and of the power ~ the
test and guarantees robustness of validity and robustness of effic o |,
Independently, Lambert (1981) introduced in 1979 an influence function
for the P-value of a test. For an unconditional test this function is
proportional to the influence function of the test statistic. Therefore
both functions have the same qualitative behaviour, as far as boundedness
and continuity properties are concerned; cf. Lambert (1981).
Hampel's optimality criterion can be extended to tests as follows.
Find a test which maximizes the asymptotic power within a
certain class, under the side condition of a bound on the
influence function of the test statistic.
As in the case of estimators, the first condition guarantees robustness

and the second one efficiency of the test. We shall use this criterion to

select the optimally robust test procedure within the classes of tests

defined in the next sections.
For a comparison between different influence functions for tests, see
Ronchetti (1982), Field and Ronchetti (1983). The infinitesimal approach

is also discussed extensively in Hampel, Ronchetti, Rousseeuw, Stahel (1984). 4
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4. LIKELIHOOD RATIO-TYPE TESTS

Consider the linear model (1.1) and suppose we want to test the linear

hypothesis
Lj(e) =0 , J=qtl,...,p, (4.1)

where £q+1 seses zp are independent and 0 < q < p . Through a transforma-

tion of the parameter space we can reduce this hypothesis to

o : olat) o o(P) g, (4.2)

where e(J) denotes the jth

component of the vector 8 . Let e, be the
subspace of @ obtained imposing the condition Hy . The classical test
for testing H0 is the F-test which is equivalent to the likelihood ratio

test. It rejects Ho for "large" values of the test statistic

n
Fo = LU0 () 7807 = (g0 (Tg) )78 (p-a) 4 (4.3)

where (Tn)n and (Tm)n are the LS estimates of 6 1in the full (@) and

reduced model (e(u) , respectively, and i

n
3 - 3 (y4-%;T(To) )%/ (n-p)

is the LS (unbiased) estimate of 02 .




e p————————

h The aim of this section is to define a class of tests that can be
y viewed as an extension of the log-1ikelihood ratio test and therefore of
the F-test for linear models.

_ Let us first introduce the class of functions

T ¢ Rp X R » R+ s (X,r) -+ T(X,r)

with the following properties:

(4. TAU) T(x,r) £0, t(x,r) 20 forall xe R’ , re R and t(x,0) =0
for all x € RP . 1(x,°) is differentiable for all x e RP .
Let n(x,r) := (3/3r) 1 (x,r) .

(4. ETA1) Assume:
(1) n(x,") is continuous and odd for all x ¢ RP ,
(i1) n(x,r) 20 for all x e RP and re R . :

(4. ETA2) n(x,*) is differentiable on R\D(x;n) for all x ¢ RP where
D(x;n) 1is a finite set.

|

Let n'(x,r) := (3/3r)n(x,r) if x ¢ RrP » P £ R\D(x;n)
:= 0 otherwise, and assume
sup,|n'(x,r)| <= for all x e

We shall also assume the following regularity conditions:

(4. ETA3) (i) M := En'(x,r')xxT exists and is nonsingular

DYV VN
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and

(1) Q := Enz(x,r)xxT evists and is nonsingular.

Definition 4.1 The class of tests {1} 1is given by test statistics of
the form

2 . .
Sn(x1 seees Xp 3 Yy seees yn) =
(4.4)

n
2-(p-q) " In"1 3

1=1(1’(x1- ’rw'i)-'r(xl' ’rﬂ‘i)) ’

where Tt satisfies the conditions (4.TAU), (4.ETAl), (4.ETA2), (4.ETA3),

. T - T
roi < (y'i-xi(Tw)n)/c » Ygi = (.Yi‘x.i(TQ)n)/c ’

and (Tw)n , (Tn)n are the M-estimators in the reduced and full model,
that is

r((Tw)n) = min{T(6)[0co,}

(4.5)
r((Tn)n) = min{I(0) |60} (4.6)
with
n T
r(e) := 151 (x4 (y4-x48)/0) . (4.7)

"Large" values of Sﬁ are significant.

e -ﬂ______n—-----—----.-

e e k




(In order to give a critical region we shall give the asymptotic distribution

of Sﬁ under H0 » See below.)

(1))

w'n and (Tn)n fulfil the equations

n
iZln(xi,rmi)xi =0 (4.8)

t
o

“(xi’rm')xi = (4.9)

i=1

Note that X := (x(l) seoes x(Q) ,0,....0)T and
(1), = (8 L (1)89) 0,007 (under M, the Tast (p-q)

components of © equal 0 !).

Examples. Define the following functions
w: RoR
p:R-R" ;¥:R+R, r -+ y(r) = (3/ar)p(r) .
Some choices of T are of the form t(x,r) = w(x)p(r-v(x)) for certain

functions w(x) and v(x) . They correspond to the estimators given in

section 2.
T(x,r) nix,r) estimator corres. to n
t2/2 r least sguares
p(r) v(r) Huber
wix)ep(x) w(x)y(x) Mallows
w(x) *p (x/w(x)) V(r/w(x)) Andrews
p(xew(x)) w(x)y(rew(x)) Hill and Ryan
wz(x)-p(r/w(x)) w(x)¥(x/w(x)) Schweppe

Lo
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Remark 1 In practice, one usually has to estimate the scale parameter o . {
I A suitable way is to estimate o in the full model, taking the median
absolute deviation or the Proposal 2 estimate of Huber; see Hampel (1974),

Huber (1981), p. 137. More precisely, for a given real function Yy , one l

B has to solve (4.8), (4.9) and
n
=z x(rgy) = 0 (4.10)
1=

with respect to (Tn)n s (Tw)n and o . Since we are interested in the
robustness properties of these tests, let us compute the influence function
of the test statistic Sn .

From now on we put for simplicity o =1 .

Let S, TN and To be the functionals corresponding to Sp » (Tw)n

and (TQ)n (see Definition 4.1), that is
S(F) = {?_(p-q)'lfcr(u,v-uTTm(r))-«c(u.v-uTTn(F))mF(u,v)}’5 (4.11)

where F is an arbitrary distribution function on RP x R and T(u s TQ

fulfil the system of equations

fn(u.v-ﬁTTm (F)) UdF(u,v) = 0
fn(u,v-uTTQ(F)) udF(u,v) = 0 .
(Note that Tij)(F) =0, for j=q+l1,...,p and for all F , and

Sp = S(FR) o (Vg = T(FR) & (To)y = To(F,) o where F_ is the empirical
distribution function of (xi,yi) i=1 ,..., n.) The next proposition

l et




gives the influence functions of Tw , T9 and S at the null hypothesis. - -
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(Note that, under the null hypothesis, 6 = & = (9(1) seees e(Q).O seees 0)T s

SO Fa is the model distribution under the null hypothesis.)

Theorem 4.1 Assume (4.TAU), (4.ETA1), (4.ETA2) and the following conditions

(4.1F1) h(a) := fn(x,y-xTa.)xdFé(x,y) exists for all aeo<RP ,

(3/3a)h(a) exists and is continuous,

(4.1F2) h(8) =0 .

Then, the influence functions of Tm s TQ and S exist and equal

(1) IF(x,y3T ,F5) = n(x,y-x"8)-(M)*x ,

(1) IF(xy;To0F5) = n(x,y=x"8) W lx
(1) IF(XysS.F5) = In(x,y=x"8)|-{ExT (W2 () ")x3/ (p-q)}%

where

=?

(M)

+

and (M)* denotes the pseudoinverse of M

Proof. Assertions (i) and (ii) follow from Theorem G11.1 of Stahel (1981,

p. 116), with P = Fg - His conditions "a", "b", "c" follow from (4.1F1),
(4.1F2) and condition "d" from (4.ETA3) (i). Finally, condition "e" follows

from (4.ETA2), since {(x,y) | y-xTe e D(x3n)} 1is a regular hyperplane in

his sense (Stahel, 1981, p. 12). To show (iii), denote by a(x,y) the

distribution on RP x R that puts mass 1 at (x,y) and define the following

e-contaminated distribution
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‘ Fosea(x,y) = (1-e)Fg + e§(y vy

After a straightforward computation we get

s2(Fz) = 0 (by (4.1F2)) ,

F(a/ae)sz(F5;e.(X.y))Je=0 -0

and

2,..2,.2,._
[(3%/3e%)8%(Fg, . (x,y)) Jem0 =

2(p—q)'l[-n(x.y-xTE)ET-IF(x,y;Tw,ra)

+ n(x,y-ng)xT-IF(x,y:TQ,Fg)] =

2(p-q) ~Len? (x,y-x78) « (xTM Lx-xT (M) *x) .

Using L'Hopital's rule twice, we obtain

IF(x,y:S,Fg) = lime*o(s(rgge,(x'y))-S(Fg))/e

- 2
(limE* s

~ 2,172
0 (Fe;e'(x'y))/e ) /

= (3 [(3%/2:%)5% (py

1/2
G:E.(x,y))]e=o) / .

This completes the proof.

-

P
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As we can see from Theorem 4.1, the influence function corresponding
to the F-statistic (n(x,r)=r) is unbounded in x and r = y-xTe . Our
goal is to select in the class {r} a test with a bounded influence function
and as efficient as possible; cf. section 3. To accomplish this we need the
distribution of the test statistic defining a t-test.

Denote by ((Tn)n)(z) the (p-q) vector of the last (p-q) components

.= -1 ‘
of (Tn)n and let M22.1 = M(22) - M(21)M(11)M(12) » where M(ij) are the

submatrices of M corresponding to a q x (p-q) partition of M. Moreover,

n

define Vn(e) 1= n';5 z "(xi’yi'xiTe)xi . Then under the given conditions
i=1

it is possible to show (see Ronchetti (1982a,b)) that the statistics

nsﬁ , (4.12)
(p-a) v (@) (M- (M) )y, (B) and (4.13)
W2 = (p-q) In(T)T) oMoy 1 ((T0) ) (4.14)
n Q'n’(2)"22.1'V'g/n’ (2)

have the same asymptotic distribution. More precisely, under the sequence

of alternatives

H, e(j) = n"’A(j) s J=0qtl ... p (4.15)

these statistics are asymptotically distributed as

P
O, + (cTa,,,) ()2, (4.16

Lad L L
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®
where A = (A(l) sesen A(p)) , Nq+1 sesns Np are independent unjvariate d
standard normal variables, Aq+1 2 ... 2 Ap > 0 are the (p-q) positive
eigenvalues of Q(M'l-(ﬁ)+) and C 1is the Choleski root of M22 1 defined by
-
cc’ = M (4.17)
22.1 :
LIS P | _ Y °
Remark 2. A related result on the distribution of the 1ikelihood ratio test
statistic when the data do not come from the parametric model under considera- f
tion was obtained by Kent (1982); cf. also Foutz and Srivastava (1975).
P 2 °
Remark 3. Under the null hypothesis, (4.16) becomes b xj(xl)j » where "
= j=q+1
(Xi)j are independent x“- random variables with 1 degree of freedom.
We are now ready to solve the optimality problem for infinitesimal ’
robustness of tests (see section 3). We find a t-test which maximizes the
asymptotic power, subject to a bound on the influence function of the test
statistic at the null hypothesis. We give the solution to this problem *
for Huber's regression (that is assuming t(x,r) = p(r)) and in the general tase.
Theorem 4.2 Assume: t(x,r)=p(r). Then the test that maximizes the asymptotic °
power, under the side condition of a bounded influence of the residual
sup,IR(r;S,8) < b , ]
is given by Huber's p-function o (r) = r2l2  if Ir] <0 ’ *
= c|r|- c2/2 otherwise .
LI
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Proof. Under the assumption, nsﬁ is asymptotically distributed as
l-x,z,_q(csz) » where ) = EQwZ/Eow' » %(r) = dp/dr and

6 = L(EW 2/EWP1 81y (ExX") (5 1485 -
Therefore the asymptotic power is a monotone increasing function of 52 .
Moreover, the influence function can be factorized in two components, the
first one depending only on r = y-xTe (influence of the residual) and
the second one depending only in x (influence of position in factor
space). Since the first factor equals Iw(r)|/E¢¢' , the problem we have
to solve is equivalent to minimize EwZ/(Ew')2 » under a bound on |y(r)|/Ey' .
But then, using Hampel's Lemma 5 (see Hampel, 1974) we find the solution )
¥(r) = g (r) =r if |r] <c

= c*sign(r) otherwise,

and this proves the theorem.

This class of tests was proposed by Schrader and McKean (1977) and
Schrader and Hettmansperger (1980) and carries out in a natural way M-estimation.
However, if we look at the influence function of the pc-test, we see that
while the factor depending on r is bounded, the second factor depending on x

tends to » as |x] + » . Therefore, the total influence is unbounded and

this test suffers the same problems as Huber's estimator when there are out-
1iers in the factor space. This justifies the consideration of the more
general class of Tt-tests.

The pc-test can be viewed as a 1ikelihood ratjo test when the error
distribution has a density proportional to exp(-pc(r)) . This distribution
minimizes the Fisher-information within the gross-error model ("least

favorable distribution"). Note that a test of the same type (a likelihood
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ratio test under a least favorable distribution) is used by Carroll (1980)
who proposes a robust method for testing transformations to achieve approximate
normality.

Note that the pc-test is asymptotically equivalent to a test proposed
by Bickel (1976) who applies the classical F-test to transformed observations;
see Schrader and Hettmansperger (1980) and Huber (1981), p. 197.

In order to state the general optimality result, we first need the

following Lemma.

Lenma. Let c>0. If ExxT is nonsingular, then
(i) for sufficiently large ¢ > 0 there exists a symmetric and

positive definite (pxp) matrix Ms(c,p-q) which satisfies the

equation

E((20(c- (p-a)%/|xT (M 1-(M)*)x)®)-1)xxT) = M ; (4.19)
(i1) M; converges to Exx' , when ¢+ ;
(iid) Denote by US the Tower traingular matrix with positive diagonal

elements such that US-UE = MS and define

ng(x,x) e= {1z 5 11/ -0 Y2 ey (x| 12y, 11/ -0 V2,

with 2z = Uglx .

Then, M= Ené(x,r)xxr .

L
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Proof. Assertions (i) and (i1) can be shown using the same techniques

as in Krasker (1981, Proposition 1), noting that

2

M o= L
IMl <M] , where IM] : WUt

(iii) follows using the Choleski decomposition of M and (4.19).

Remark 4. The subscript S for MS indicates that MS is the matrix
M corresponding to ns(x,r) ; this function is of the Schweppe form

(see section 2).

Theorem 4.3. Assume either (i) q=p-1 or (ii) the density of x is
spherically symmetric with respect to x(z) = (x(q+1) seees x(p))..
Then, the test that solves the optimality problem for infinitesimal
robustness within the class of t-tests, is defined by a function of

the form
tg(aur) = (lzg) /(p-0)2 (rlz gyl /(p-a)®)
= Da(x)(r) .

where ¢(x) := c'(p-q)kllz(z)l y 2 = Uglx and Ug 1is the lower

triangular matrix (which exists because of the Lemma)

s((zo(c-(p-q)”/lz(z)l)-1)zzT) =1. (4.20)
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Proof. We show the assertion under condition (i). The proof is similar
under (ii). Put

M(n) = En'(x,r)xxT » Q(n) = Enz(x.r)xxT

and let Ap(n) be the positive eigenvalue of

a(n)- M 1n) - () .

Moreover, denote by U(n) the Choleski decomposition of M(n) = U(n)'UT(n) .
here U(n) is a lower traingular matrix with positive diagonal elements.

We have to solve the following problem. For a given b > 0 , find a test

I which maximizes M(22.1)/Ap ,» under the side condition
sup,,_(In(xur) 1/ugp)- (T E- (@))% < b (4.21)
I -~
Since UT(ME-(M*)U = 1-1 we obtain
] ap(n) = wlou T = efan w2, (4.22)
Mi2.1)(M) = (uo(m)? . (4.23)
' Moreover, (4.21) becomes
Squ.r(|n(x.r)I/upp)-|(U'lx)(p)l <b. (4.28)
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Choose ¢ > 0 such that b = c/(Us)pp » where Ug is defined by Lemma (iii),
(this ¢ exists because c2/U5)§p > c2/tr Mg > c2/E|lxl|2 + o , when ¢ + «)

and assume, without loss of generality,
\ -

(The multiplication of the test statistic by a positive constant does not
change the test!) Combining (4.22), (4.23), (4.24) and (4.25), the
original problem reduces to minimize Enz(x,r)-l(U'lx)(p)l2 , under the

conditions (4.25) and

sup,_pIn(xr) -1 (WP < c (4.26)
Now,
En?(x,r)- [0 ) P2 = W2 (ugt) (P2 4 2 -
+ E(nr) - (0 Pl (it (PHZ
since

E(n(x,r)-r- (U710 (P (i 2e) (P)
= (U'I'E(n(x,r)-r'xxT)-Ug

1
)op

v
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and integrating by parts,

= (u'l-E(n'(x.r)xxT)'Ugl) = (un U§l)pp

pp

S R S DO S SO -
= (U°U U'Ug = (U ) pp = upp/(Ugdpp = 15

1
pp S ‘pp

where in the last equalities we have used (4.25) and U(12) =0 . Thus,
minimizing Enz(x,r)‘l(u'lx)(p)|2 , under the conditions (4.25) and (4.26)

is equivalent to minimizing

EC(n(x,r)- (U P) - re(ugh0 (P2
subject to (4.26). Clearly, the optimal n* must satisfy

(6 - (U m)x) (P)) =y (e (ugto) Py .
Therefore,

ns(xar) = 1z(p) 171w (Fl2( )

gL\ 7s (2) c (2)'7

where 2z = Uglx » solves this extremal problem. Any other solution
defines a test which has the same influence function and the same asymptotic
power and in this sense is equivalent to ng - This completes the proof.

Note that the n-functions defining optimally bounded influence tests

and optimally bounded influence estimators are of the same form (see




Theorem 4.3 and (2.6)), namely of Schweppe's form. There is a difference
only in the weights: the optimal weights for the test take into account
that (after standardization) only the last (p-q) components are of
interest for the testing problem.

From these optimally robust tests one can derive robust confidence
regions for the parameters and a robust version of stepwise regression.
These procedures can be easily implemented in a package for robust
regression. Especially, it is planed to integrate them in ROBETH, a
package of robust linear regression programs which have been written

at the ETH Zurich and is still under development; see Marazzi (1980).

P Vs




-25-

5. TESTS BASED ON QUADRATIC FORMS OF ROBUST ESTIMATORS

Let Tn be a general M-estimator defined by (2.1). Huber (1967)
shows that n*(Tn-e) is asymptotically normal with mean 0 and asymptotic

covariance matrix

v=slag?, (5.1)
where B = -E3¥/36 , A = EWWT . Partition the matrix V in gxq , qx(p-q) »
(p-q)xq , (p-q)x(p-q) blocks and denote them by V(ll) . V(12) s V(21) s V(22) ’
respectively. Moreover denote by (Tn)(l) and (Tn)(2) the vectors with

the first q components and the last (p-q) components of L respectively.

Definition 5.1 Let Tn be a general M-estimator defined by (2.1). Then
the test statistic

2 T -1
Rn := (Tn)(Z)(v(ZZ)) (Tn)(z)/(P'Q)

defines a class of tests for testing the hypothesis H, (see (4.2)).
"Large" values of Rﬁ are significant.

From Definftion 5.1 we see that Rﬁ is a quadratic form of the
estimator (Tn)(z) with respect to its asymptotic covariance matrix.
Therefore, under the conditions of Huber (1967) and (4.15), (p-q)nRi
has asymptotically a xz-distribution with p-q degrees of freedom and

noncentrality parameter

2 T -1

i X

l."

'®
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Under the conditions of Theorems 4.2 and 4.3 and in view of (4.12) and
(4.14), it follows easily that likelihood ratio-type tests and tests
based on Rﬁ are asymptotically equivalent. However, at least in some
situations, the latter seem to have a more liberal small sample behaviour;

cf. Schrader and Hettménsperger (1980).

Remark 1. A class of tests based on quadratic forms of robust estimators
was proposed by Stahel (1981) and Samarov and Welsch (1982) in the case
g=p-1 and for M-estimators of the form (2.2). Schrader and Hettmusperger
(1980) consider the same class of tests in the special case n(x,r) = ¢(r) .
Let us now compute the influence function of this new class of tests.
Since the computations are similar to those in Theorem 4.1, we drop them.
Note only that we compute the influence function of R and not of R2 .
the latter being identical to zero. This does not affect the test since

R and R2 define the same test. The influence function of R at the model
Fa is given by T

IF(xayiRoFg) = (27(V(55)) 7 2/ (p-))% (5.3)
where z = IF(x.y;T(z).Fg) is the influence function of the estimator

T(z) at the model Fa

Thus we have CoT

sup, I TF(X.¥iR.F3)| = (p-a) "¥3(T(5),F5) (5.4)
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where y; is the self-standardized sensitivity of the estimator T(z) ’
c.f. Krasker and Welsch (1982).

Note again that the Wald test, which is defined through the test

statistic Rﬁ when Tn is the LS estimator, has an unbounded influence
function. Therefore our goal is to find a test based on Rﬁ that

maximizes the asymptotic power under a bound on the influence function
(5.3). In view of (5.2) and (5.4), this problem is equivalent to the
following estimation problem

Find a function ¥ defining an M-estimator T that minimizes

the asymptotic covariance matrix v(zz) of T(z) » under a

bound on the self-standardized sensitivity of T(z) .
It turns out that it is impossible to find an M-estimator that minimizes
in the strong sense the asymptotic covariance matrix, subject to a bound

on the self-standardized sensitivity. A counterexample can be found in

Stahel (1981). However, the following admissibility result can be shown.

Definiiion 5.2 A test defined by ¥* dominates a test defined by V¥

A
as.powerl(z)!* > as.powerE(Z)W .

if as.power y* 2 as.power ¥ , and there is a & such that

(2)

Definition 5.3 A test defined by ¥ 1is called admissible if there is

nc test that dominates it.

Theorem 5.1 For a given c 31, let Cc(v) be the class of tests
given in Definition 5.1 and such that sup, yIIF(x.y;R.Fa)I <c . Then,

the test defined by the following function ¥* {s admissible within CC(V) :




Muybeyed =r - zy) -

V‘(z)(xa.Y;e) = (2(2)/ﬂ2(2)|!) - ch(""l(z)“) ’
where VI1) and VIZ) denote the first q and last (p-q) components
of V¥* respectively, r = y-xTe s 2=Dx , and D is defined implicitly

by the matrix equation -

E\ll(x,y;e)rxT =1.

Proof. In veiw of (5.2) and (5.4) the testing problem is equivalent to

that of finding an M-estimator T which is admissible with respect to

the asymptotic covariance matrix V(zz) s Subject to the condition

(p-q)'%y;(T(z),Fa) € ¢ . This estimation problem is a special case of

the problem solved in Stahel (1981, p. 40) (cf. also Hampel, Ronchetti,

Rousseeuw, Stahel (1984), Theorem 1, section 4.4) and the result follows.
If we restrict ourselves to the class (2.2), either under the

conditions of Theorem 4.2 or Theorem 4.3, it is easy to see that the

test defined by ¥* 1is asymptotically equivalent (that is, it has the

same asymptotic power and the same influence function) to the corresponding

optimally robust tests given in those theorems. Therefore, under those

conditions, ¥* 4{s in fact storng optimal.
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6. EXAMPLE

The following example based on a real data set should give an idea
of the small sample behaviour of our optimally robust tests. The data are

taken from Draper and Smith (1966, p. 104 ff.). We have the following
variables:

Y

response or number of pounds of steam used per month,

Xg = average atmospheric temperature in the month (in OF)
X6 = number of operating days in the month.
Table 1 shows the data.

We consider the linear model

and we want to test the hypothesis

The factor space is given by Figure 1 and the observations are plotted
in Figure 2a.
From Figure 1 we see that there exist two outliers in the
factor space. We want to study the behaviour of the
logloP-values of the F- , p- and optimal t-test when the
observation (y7) corresponding to the point (x8 = 74.4 ,
Xg = 11) varies between 0 and 20. (Its actual value is 6.36)
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The tests under study are defined by the following functions

test t(x,r)

F rz/z

pcl pcl(r) (see Theorem 4.2)

optimal 1 p (2) (r) (2(2) = (Uglx)(z)) (see Theorem 3)
' c2/|z |

The scale parameter o was estimated in the full model using Huber's
Proposal 2. Note that in this case the optimal t-test is equivalent to
the corresponding test based on quadratic forms given in section 5. The
constants S and C, were chosen such that the corresponding tests
have a given efficiency, say .95, at the normal model (that is, when

b &

i and e; are normally distributed). We obtained the following values:

¢, = 1.345 ¢y = 2.67 .

Figure 2b shows the overall excellent behaviour of the t-test
(strongly significant for all y!), the good behaviour of the
p-test (at least for y > 8) which is still significant (at

the 5% level) in the region y » 8 and the bad behaviour of -
the F-test which becomeé even not significant for 8.7 <y < 18.7 |

N
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6. FURTHER RESEARCH DIRECTIONS

Approximate critical regions for optimally robust tests derived
in this paper can be obtained using the asymptotic distribution of the
test statistic, see:(4.16) and (5.2). This approximation can be

jmproved in two ways.

2
n

and 5 respectively, as test statistic for a permutation test. This would

The first possibility is to use S_ or Rﬁ defined in section 4
guarantee, on one side an exact level a-test (a property of permutation,
tests) and on the other side a high robustness of efficiency (a property
of Sﬁ and Rﬁ) . This idea has been applied for constructing a con-
firmatory test in connection with a Swiss hail experiment; see Hahpe],
Schweingruber, Stahel (1982). Some work is needed to justify this
combined procedure from a theoretical point of view; cf. Lambert (1982).

The second way is to find better approximations to the distribution
of Sﬁ and Rﬁ . A promising approach is small sample asymptotics that
has been used successfully in the location case; see Hampel (1973b),

Field and Hampel (1982). This is subject of ongoing research.
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Table 1

Xg Xg Y

35.3 20 10.98
29.7 20 11.13
30.8 23 12.51
58.8 20 8.40
61.4 21 9.27
71.3 22 8.73
74.4 11 6.36
76.7 23 8.50
70.7 21 7.82
57.5 20 9.14
46.4 .20 8.24
28.9 21 12.19
28.1 21 11.88
39.1 19 9.57
46.8 23 10.94
48.5 20 9.58
59.3 22 10.09
70.0 22 8.11
70.0 11 6.83
74.5 23 8.88
72.1 20 7.68
58.1 21 8.47
44.6 20 8.86
33.4 20 10,36
28.6 22 11.08

Figure 1: The variables X6 » X8
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