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ABSTRACT

Two new classes of tests for regression models, likelihood ratio type
tests and tests based on quadratic forms of robust estimators, are introduced.
Both can be viewed as generalizations of the classical F-test. By means of
the influence function their robustness properties are investigated and opti-
mally robust tests that maximize the asymptotic power within each class,
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1. INTRODUCTION.

In this paper we consider the following regression model. Let

{(xiy i) : i=1,...,n} be a sequence of independent identical distributed

random variables such that

Yi =xT + ei i=l,...,n

where yi is the ith observation, xie P is the ith row (written as

column vector) of the design matrix, ec e C RP a p-vector of unknown •

parameters and eicJ] the ith error. Suppose that ei is independent of

2xi and is distributed according to a normal N(O,a ) . Moreover, denote

by K(x) the distribution of the x's and by FB(x,y) the joint distribu-

tion of (xi,yi)

Classical estimation and test procedures in regression models are based

on the well known method of least squares (LS). This is mostly justified by •

the Gauss-Markov theorem that states the optimality property of the LS estima-

tor within the class of all linear unbiased estimators. Linearity is a

drastic restriction; many maximum likelihood estimators (for example assuming 0

a Cauchy distribution for the errors) are not linear. On the other hand,

it is known that the LS estimator is optimal in the class of all unbiased

estimators if we assume that the errors are normally distributed. Therefore

the restriction to linear estimators can be justified only by normality

(or-simplicity). But the normal model is never exactly true and in the

presence of small departures from the normality assumption on the errors, 5

the LS procedures (estimators and tests) lose efficiency drastically; see

Huber (1973), Hampel (1973a, 1978a), Schrader and Hettmansperger (1980),
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Ronchetti (1982a,b). Thus, one would prefer to have procedures which are only

nearly optimal at the normal model but which behave well in a certain neighbor-

hood of it.

Many robust regression estimators have been proposed in the last years.

In section 2 we shall review an importnat class of such estimators, namely

the class of M-estimators. Whereas robust estimation theory in regression

models has recently received more and more attention (see for instance,

Huber (1973), Bickel (1975), Holland and Welsch (1977), Hampel (1978b),

Ruppert and Carroll (1980), Krasker and Welsch (1982), Ronchetti and Rousseeuw

(1983), Samarov (1983)), the test problem has been somewhat neglected.

From a robustness point of view the classical test procedures based

on the LS estimators suffer similar problems as the LS estimators themselves.

Although the F-test is moderately robust with respect to the level, it does

lose power rapidly in the presence of small departures from the normality

assumption on the errors. Recently Schrader and McKean (1977) and Schrader

and Hettmansperger (1980) proposed a new class of tests for linear models

based on Huber estimates in the full and reduced model, and Sen (1982) found

an asymptotic equivalent version of them. Nevertheless, this is only the

first step for finding a robust version of the F-test. Like Huber estimators,

these tests do not overcome problems caused by situations where the fit is

mostly determined by outlying points in the factor space.

The purpose of this paper is twofold. On one side, we introduce new

classes of tests that generalize the classical asymptotically equivalent

tests, likelihood ratio tests and Wald tests. (The generalization of a third

class, C(a) tests, is the subject of a separate paper.) On the other hand,



-3-

we propose a solution for the inference problem in regression presenting

optimally robust tests that are the natural counterpart of optimally robust

estimators and that can be used to construct robust confidence intervals

for the parameters.

The paper is organized as follows. Section 2 gives a short overview

on bounded-influence estimation in linear models and section 3 presents

the approach to robust testing we use to construct a robust version of the

F-test. In'section 4 and 5 we introduce two new classes of tests, likelihood

ratio type tests and tests based on quadratic forms of robust estimators, and

%ediscuss their asymptotic distribution. Each class can be viewed as the

natural generalization of a corresponding classical test. In each case the

robustness requirement as specified in section 3 leads to an optimally

robust test procedure which is a valuable robust alternative to the classical

one. Finally, in section 6 we illustrate the excellent performance of

optimally robust tests by means of an example based on real data.
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2. BOUNDED-INFLUENCE ESTIMATORS

In this section we summarize briefly the results on bounded-influence

estimation in regression models. Consider the model (1.1).

One way to cope with the problem of nonrobustness of least squares

estimators is to study a large class of estimators generalizing LS, and to

select more robust procedures in that class. It appears that M-estimators

are most appropriate for this purpose. Suppose for simplicity a=1 . An

N-estimator Tn for the parameter e is defined as the solution of the

implicit equation

n
£ Y(x1,yiTn) ' 0 9 (2.1)

I=

for a suitable class of vectorvalued functions T : P x R x P - RP.

Because of the invariance properties of the regression model, an important

role is played by the following special class

Y(x,y;e) - n(xy-xTe)x , (2.2)

where n : IPx M Rt

There have been several proposals for choosing n • For a stimulating

discussion we refer to the papers by Krasker and Welsch (1982) and Huber (1983).

Some choices of in are of the form

n(x,r) - w(x).*(r.v(x)) , (2.3)
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where * : R - P., and w : P -R , v : R+ (weight functions).

Huber (1973) uses w(x) 1,v(x)=l , and Mallows' and Andrews' proposals set

v(x) 1 and w(x)al, respectively. Hill and Ryan proposed v(x)=w(x) and finally,

Schweppe suggested choosing v(x) = 1/w(x) ; see Hill (1977), Krasker and

Welsch (1982).

Two tools have been used successfully to study the robustness properties

of estimators. The first one, the influence function, was introduced by

Hampel (1974) and is essentially the first derivative of an estimator viewed

as functional. It describes the normalized influence of an infinitesimal

observation on the estimator. The formal definition is the following.

Suppose the estimator Tn can be expressed as functional T of the empirical

distribution function F(n) , T = T(F(n )) . Then the influence function
n

of T at F is given by

IF(x,y;T,F) = lim,+o[T((1-c)F+c6(x,y))- T(F)/ , (2.4)

0

where 6x,y) is the distribution that puts mass 1 at the point (x,y)

The sencond tool is the change-of-variance function; see Hampel,

Rousseeuw, Ronchetti (1981), Ronchetti and Rousseeuw (1983). It can be

viewed as the derivative of the asymptotic covariance matrix of the

estimator, and describes its infinitesimal stability. From a robustness

point of view, a desirable property of these functions is boundedness

(in some norm). This means that any (infinitesimal) observation (and

therefore any outlier) has a bounded influence on the estimator and on

its asymptotic covariance matrix, respectively. Existence conditions and

mathematical properties of derivatives of functionals including the influence

function are discussed extensively in Clarke (1983) and Fernholz (1983).
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The influence function of an estimator defined by (2.2) is given by

(see Theorem 4.1 below

IF(x,y;n,F.) = n(x,y-xTe)M'lx , (2.5)

where M = Jn'(x,r)xxTdo(r)dK(x) . By suitable choice of n we can force

m IF(xy;n,F)1 < - , for all x and y . Note that nLS(xr) = r defines

the LS estimator and

IF(xy;nLsFe) = (y-xT6) . (JuuTdK(u)1 lx

is unbounded in x and y

Hampel's optimality criterion is to put a bound on the IF (measured in

some norm) and, under this condition, to minimize the trace of the asymptotic

covariance matrix of the estimator at the model. The first condition ensures

robustness to the estimator, while the second one is an efficiency condition.

If the IF is measured by the Euclidean norm, it turns out that the optimally

robust estimator within the class (2.2) is the Hampel-Krasker estimator which

is defined by a n-function of Schweppe's form

THK(xr) = lAx -1. (r'IAxI) , (2.6)

where * c(t) = mln(c,max(t,-c)) rst the Huber V-function, the matrix A is

defined implicitly by

A-1 = EE20(c/IAxI)-1)xxT3 (2.7)
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and c is a positive constant depending on the bound on I IF ; see Hampel

(1978b), Krasker (1980).

For an approach to robust statistics using influence functions, we refer

to Hampel, Ronchetti, Rousseeuw, Stahel (1984). A critical discussion of

bounded-influence estimation in regression can be found in Huber (1983).

Iq
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3. THE INFINITESIMAL APPROACH TO TESTING

The infinitesimal approach to testing is based on the central notion

of influence function. The extension of this concept to tests has been

studied by Rousseeuw and the author; see, Ronchetti (1979, 1982a,b),

Rousseeuw and Ronchetti (1979, 1981). It turns out that the influence function

defined on the test statistic (that is using (2.4) with T=test statistic) is

proportional to the influence of an infinitesimal observation on the level

and on the power of the test. Therefore, a test statistic with a ' nded

influence function ensures stability of the level and of the power the

test and guarantees robustness of validity and robustness of effic

Independently, Lambert (1981) introduced in 1979 an influence function

for the P-value of a test. For an unconditional test this function is

proportional to the influence function of the test statistic. Therefore

both functions have the same qualitative behaviour, as far as boundedness

and continuity properties are concerned; cf. Lambert (1981).

Hampel's optimality criterion can be extended to tests as follows.

Find a test which maximizes the asymptotic power within a
certain class, under the side condition of a bound on the
influence function of the test statistic.

As in the case of estimators, the first condition guarantees robustness

and the second one efficiency of the test. We shall use this criterion to

select the optimally robust test procedure within the classes of tests

defined in the next sections.

For a comparison between different influence functions for tests, see

Ronchetti (1982), Field and Ronchetti (1983). The infinitesimal approach

is also discussed extensively In Hampel, Ronchetti, Rousseeuw, Stahel (1984).
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4. LIKELIHOOD RATIO-TYPE TESTS

Consider the linear model (1.1) and suppose we want to test the linear

hypothesis

ti(6) 0 , j = q+1,...,p , (4.1)

where 4q+l "" * p are independent and 0 < q < p . Through a transforma-

tion of the parameter space we can reduce this hypothesis to

H0  6 (q+
l) =... =e (p ) = 0 , (4.2)

where e(j) denotes the jth component of the vector 6 . Let O be the

subspace of E obtained imposing the condition H0 * The classical test

for testing H0  is the F-test which is equivalent to the likelihood ratio

test, It rejects H0  for "large" values of the test statistic

nT2 T /23F n E [((Yi-xi T(T) n)/) ((yi-xi (T)n)/)2 /(p-q) ,(4.3)Fn 1=1

where (T )n  and (T)n  are the LS estimates of 0 in the full ( O) and

reduced model (eu) , respectively, and

nn
2 =

i=)

~~is the IS (unbiased) estimate of 0
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The aim of this section is to define a class of tests that can be

viewed as an extension of the log-likelihood ratio test and therefore of

the F-test for linear models.

Let us first introduce the class of functions

T : Rp XP] , (xr) - T(x,r)

with the following properties:

(4. TAU) (x,r) j 0 , T(x,r) > 0 for all x c ]Rp , r c ]R and T(x,O) 0

for all x Rp . T(x,') is differentiable for all x c ]Rp

Let n(x,r) := (O/ar)tr(x,r)

(4. ETAI) Assume:

(i) n(x,') is continuous and odd for all x c ]Rp

(ii) n(x,r) > 0 for all x £ RP and r c

(4. ETA2) n(x,') is differentiable on ]R\P(x;n) for all x c RP where

V(x;n) is a finite set.

Let n'(x,r) := (a/ar)n(x,r) if x c RP, r c ]R\V(x;n)

0 otherwise, and assume

SuPrln'(x,r)i < - for all x E IRp .

We shall also assume the following regularity conditions:

(4. ETA3) (I) M := En'(x,r)xxT exists and is nonsingular
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and

(ii) Q En2 (x,r)xxT evists and is nonsingular.

Definition 4.1 The class of tests {T} is given by test statistics of

the form

2
S nx I , , xn ; Y1 " Yn)

(4.4)
2"(pq)'l "I E (T(xi~r i)-T(xi,rSji)),

i=1

where T satisfies the conditions (4.TAU), (4.ETA1), (4.ETA2), (4.ETA3),

an (T)xT( ) ,(T i: (iXT

and (TW n , (Tna)n are the M-estimators in the reduced and full model,

that is

r((TW)n) = min{r(6)leseO} (4.5)

=((T.)d - min{r()lece} (4.6)

with

nT
r(e) := E T(xi.(Yl-X)/a) . (4.7)

1=1

"Large" values of S2are significant.



-12-

(In order to give a critical region we shall give the asymptotic distribution -
2

of Sn under H0 , see below.)

(Tw) n and (Tg)n fulfil the equations

n
z n(xi,ri) i = 0 (4.8)

n
E n(xi,ri)x i = 0 . (4.9)i=1 r

Note that := (x( ) ,..., x (q) ,0,..., 0)T and

((Tw)1),..., (T )(q) ,0 ,..., 0)T (under H0 the last (p-q)

components of e equal 0 !).

Examples. Define the following functions

w: IRP - IR+

p :; p : +R*R , r - V(r) := (8/8r)p(r)

Some choices of T are of the form T(x,r) = ;(x)p(r.v(x)) for certain

functions ;(x) and v(x) . They correspond to the estimators given in

section 2.

r (x~r) n(x r) estimator corres. to n

r 2/2 r least squares

p(r) *(r) Huber

w(x)*p(r) w(x)• (r) Mallows

w(x)•p(r/w(x)) 4 (r/w (x)) Andrews

p(r.w(x)) w (x) (r.w (x)) Hill and Ryan

w (x) P (r/w (x)) w (x)(r/w (x)) Schweppe
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Remark 1 In practice, one usually has to estimate the scale parameter a .

A suitable way is to estimate a in the full model, taking the median

absolute deviation or the Proposal 2 estimate of Huber; see Hampel (1974),

Huber (1981), p. 137. More precisely, for a given real function X one

has to solve (4.8), (4.9) and

n

Z X(r ) = 0 (4.10)
i=1

with respect to (Tn)n , (T )n and a Since we are interested in the

robustness properties of these tests, let us compute the influence function

of the test statistic S

From now on we put for simplicity a = 1

Let S , T and T, be the functionals corresponding to Sn , (T)n

and (T )n (see Definition 4.1), that is

S(F) = {2(p-q)-lfE (u,v-uTT(F))-t(u,v.uTTQ(F))3dF(u,v)} (4.11)

where F is an arbitrary distribution function on RP x R and T , TQ

fulfil the system of equations

frn(uv-u T (F)) OdF(u,v) = 0

fn(u,v-u T(F)) udF(uv) = 0

(Note that T(j)(F) - 0 , for j = q+1 ,..., p and for all F , andW
Sn a S(Fn) (T )n Tw(Fn) , (Tn)n = T2(Fn) , where Fn is the empirical

distribution function of (xiyi) i=1 ,..., n .) The next proposition
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gives the influence functions of T , TC and S at the null hypothesis.

(Note that, under the null hypothesis, 0 = e = (e( 1) e(q),o o)T

so Fi is the model distribution under the null hypothesis.)

Theorem 4.1 Assume (4.TAU), (4.ETA1), (4.ETA2) and the following conditions

(4.IF1) h(a) := fn(x,y-xTc)xdF6(x,y) exists for all a c e c P

(a/aa)h() exists and is continuous,

(4.IF2) h(i) = 0 .

Then, the influence functions of T , TQ and S exist and equal

(i) IF(xy;T ,F%) = n(x,y-x Te)(M)+x

(ii) IF(x,y;T,,Fi) = n(x,y-xT6) M-1 x

(iii) IF(X,y;S,Fg) = IrI(x,y-x T)I.{ExT(M-(M)+)xJ/(p'q) ,

where

M : 4(11) 0 and (M)+ denotes the pseudoinverse of M

[4oi 0]

Proof. Assertions (1) and (ii) follow from Theorem G11.1 of Stahel (1981,

p. 116), with P = Fi . His conditions "a", "b", "C" follow from (4.IF1),

(4.IF2) and condition "d" from (4.ETA3) (). Finally, condition "e" follows

from (4.ETA2), since {(x,y) I Y-xT6e V (x;n)} is a regular hyperplane in

his sense (Stahel, 1981, p. 12). To show (iii), denote by 6(x,y) the

distribution on RP x R that puts mass 1 at (x,y) and define the following

c-contaminated distribution
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Fe;C.(X.y) (1-c)Fj + £t(xy)

After a straightforward computation we get

S 2(F6) = 0 (by (4.IF2))

[(a/ac)S 2(Fi;c,(x~y) )Je= 0

and

((a2/ac2)S 2(F-
6;c,(X,y) C-0

+ nXDY-xTOxT.IF(x,Y;T~,~ 0
-1. 2 T-1T-

2(p-q) nr Cxty-x 0).(X N x-x C ) x

Using LIHO~pital's rule twice, we obtain

IF(XY;S,F~) - limc~ (S (F~~cxy

(lmc..0S (~I .x~) ) /c 2)/

)2 21/2

This completes the proof.
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As we can see from Theorem 4.1, the influence function corresponding

to the F-statistic (n(x,r)=r) is unbounded in x and r = y-xTe . Our

goal is to select in the class {T} a test with a bounded influence function

and as efficient as possible; cf. section 3. To accomplish this we need the

distribution of the test statistic defining a r-test.

Denote by ((Tn)n)(2) the (p-q) vector of the last (p-q) components
of (T.)n and let M22.1 := M(22) - M(21)M(11)M(12) . where M(ij) are the

submatrices of M corresponding to a q x (p-q) partition of M. Moreover,

define Vn(8) n" n(xY1 i-xi T)xi . Then under the given conditions

it is possible to show (see Ronchetti (1982a,b)) that the statistics

nS n (4.12)

(P-q)- 1V()(M'I-(M)+)Vn () and (4.13)

W2 := (P-q)- 1n((T)T) M2(( T )n)(2) (4.14)
n fln (2) 22.1 (2

have the same asymptotic distribution. More precisely, under the sequence

of alternatives

Hn : n'I&Ai) , j = q+1 ,.., p , (4.15)

these statistics are asymptotically distributed as

E ( + (CTA (j))2 (4.16)
juq+l 2J )

• . . . . L L._ -
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where A = (A(1) ,..., AMp)) , Nq+ 1 ,..., Np are independent unlvariate

standard normal variables, q+1 > ... > X p > 0 are the (p-q) positive

elgenvalues of Q(M-I-(A)+ ) and C is the Choleski root of M22.1 defined by

ccT = M22 .1  (4.17)

cT(M-IQM-1)(22 )C = A(22) = diag(Xq+I ,.. Xp). (4.18)

Remark 2. A related result on the distribution of the likelihood ratio test

statistic when the data do not come from the parametric model under considera-

tion was obtained by Kent (1982); cf. also Foutz and Srivastava (1975).

P 2

Remark 3. Under the null hypothesis, (4.16) becomes I X (X )j , where
j =q+ 1

(Xi)j are independent X2- random variables with 1 degree of freedom.

We are now ready to solve the optimality problem for infinitesimal

robustness of tests (see section 3). We find a T-test which maximizes the

asymptotic power, subject to a bound on the influence function of the test

statistic at the null hypothesis. We give the solution to this problem

for Huber's regression (that is assuming T(x,r) = p(r)) and in the general case.

Theorem 4.2 Assume: T(x,r)ip(r) . Then the test that maximizes the asymptotic S

power, under the side condition of a bounded influence of the residual

SuPrIR(r;SO) ' b ,

is given by Huber's p-function p c(r) = r2/2 if Irl 0 

M cIrl- c2/2 otherwise
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Proof. Under the assumption, nS2 is asymptotically distributed as

X-X (62) , where X E2 /EV (r) dp/dr and

62 . [(E00') 2/E A (2 )(ExxT)( 22 .1)A(2)

Therefore the asymptotic power is a monotone increasing function of 62

Moreover, the influence function can be factorized in two components, the

first one depending only on r = y-xTe (influence of the residual) and

the second one depending only in x (influence of position in factor

space). Since the first factor equals IV(r)I/E,' , the problem we have

to solve is equivalent to minimize EiI2/(E*') 2 , under a bound on j (r)J/E*'

But then, using Hampel's Lemma 5 (see Hampel, 1974) we find the solution

-c(r) - r if Irl 4 c

- c-sign(r) otherwise,

and this proves the theorem.

This class of tests was proposed by Schrader and McKean (1977) and

Schrader and Hettmansperger (1980) and carries out in a natural way M-estimation.

However, if we look at the influence function of the Pc-test, we see that

while the factor depending on r is bounded, the second factor depending on x

tends to - as xi - - . Therefore, the total influence is unbounded and

this test suffers the same problems as Huber's estimator when there are out-

liers in the factor space. This justifies the consideration of the more

general class of T-tests.

The pc-test can be viewed as a likelihood ratio test when the error

distribution has a density proportional to exp(-Pc(r)) . This distribution

minimizes the Fisher-information within the gross-error model ("least

favorable distribution"). Note that a test of the same type (a likelihood



-19-

ratio test under a least favorable distribution) is used by Carroll (1980)

who proposes a robust method for testing transformations to achieve approximate

normality.

Note that the Pc-test is asymptotically equivalent to a test proposed

by Bickel (1976) who applies the classical F-test to transformed observations;

see Schrader and Hettmansperger (1980) and Huber (1981), p. 197.

In order to state the general optimality result, we first need the

following Lemma.

Lemma. Let c > 0 . If ExxT is nonsingular, then

() for sufficiently large c > 0 there exists a symmetric and

positive definite (pxp) matrix Ms(c,p-q) which satisfies the

equation

E((20(c'(p-q)h/Ix T (M'1-(M),)xl )-1)xxT) = M ; (4.19)

(ii) MS  converges to ExxT , when c - ;

(iii) Denote by Us  the lower traingular matrix with positive diagonal

Telements such that Us*Us = Ms  and define

nS(x,r) : lz(2)11/(p-qI1/2l-1"*clrIIz(2 ) 11/ ( p - q ) 1/ 2 ,

with SX

Then, MS - ETn(x,r)xxT
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Proof. Assertions (i) and (ii) can be shown using the same techniques

as in Krasker (1981, Proposition 1), noting that

JAI -IMI ,where IMI :=£ i2

' ,j ii

(iii) follows using the Choleski decomposition of M and (4.19).

Remark 4. The subscript S for MS indicates that Ms  is the matrix

M corresponding to ns(x,r) ; this function is of the Schweppe form

(see section 2).

Theorem 4.3. Assume either (I) q=p-1 or (ii) the density of x is
spherically symmetric with respect to x(2) = (xq+) x(P)

Then, the test that solves the optimality problem for infinitesimal

robustness within the class of T-tests, is defined by a function of

the form

s(xr) = ( Iz( 2 )I /(p-q) )-2 . c(rlz( 2 )R/(pq) )

= PE(x)(r)

where E(x) :- c'(p-q)"/z(2)I , z = U5 x and US  is the lower

triangular matrix (which exists because of the Lemma)

E((2$(c'(p-q) /Iz(2)I )-l)zzT) = I . (4.20)
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Proof. We show the assertion under condition (i). The proof is similar

under (ii). Put

M(n) = En'(xr)xxT , Q(n) = En2(x,r)xxT

and let Xp(n) be the positive eigenvalue of

Q(n)'(M - (M)())

Moreover, denote by U(n) the Choleski decomposition of M(n) =U(n) (n)

here U(n) is a lower traingular matrix with positive diagonal elements.

We have to solve the following problem. For a given b > 0 * find a test

which maximizes M(22.1)/Ap , under the side condition

suPx,r(ln(xr)l/upp)-(x T(M--(M)+)x) 4 b (4.21)

Since UT(M'I-(M)+)U = I-I we obtain

Ap(n) = (U1Q u'T)pp = En(xr)I(u'lx)(P)I2 , (4.22)

=(22.1)(n) = (U pp())2 (4.23)

Moreover, (4.21) becomes

supx,r(In*(x,r)l/upp)'I(U'tx)(P)1 4 b . (4.24)

.. .. ... . -. ... . .. ... . .. b m .. .. . . . . .... .. . ... ... .. . . . . . . . iml . . .
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Choose c > 0 such that b = c/(US)pp , where U is defined by Lemma (iii),

(this c exists because c2 /Us)p p c2/tr M c c2/E xII2 when c )

and assume, without loss of generality,

upp(n) = (Us)pp (4.25)

(The multiplication of the test statistic by a positive constant does not

change the test!) Combining (4.22), (4.23), (4.24) and (4.25), the

original problem reduces to minimize En2(x,r).I(U'lx)(P)12 , under the

conditions (4.25) and

supx,rln(xr)l'I(U-lx)(P)I < c . (4.26)

Iq

Now,

En2 (x,r)'I(U'1 x)(P)j2 = -E r2.1(u Slx)(P)12 + 2
+ E(n(x,r).(u'lx)(P)-r.(U S x)(P) )2

since

E(n(x,r)-r.(u-lx)(P)-(u Slx) (p ))

-(u-1 .E(n(xr).r-xxT ).U-1)p ,

S p-
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and integrating by parts,

= (u'l.E(n'(xr)xxT ).u)pp = ()P1 M us)pp

= (U-1U UTus1 ) pp = (UTUs1)pp = Upp/(Us)pp = 1

where in the last equalities we have used (4.25) and U(12) = 0 . Thus,

minimizing En2 (x,r)'(u-lx)(P)I2 , under the conditions (4.25) and (4.26)

is equivalent to minimizing

E{(n(x~r).(U-Ix) (p ) - r.(US x)(P))2}

subject to (4.26). Clearly, the optimal n* must satisfy

n*(xr).((U 1 (n*)x)(P)) = c(r(U x)(P)

Therefore,

nS(x,r) = Iz(2)1-l*c(rlz(2)I)

where z = Us1x , solves this extremal problem. Any other solution

defines a test which has the same influence function and the same asymptotic

power and in this sense is equivalent to nS . This completes the proof.

Note that the n-functions defining optimally bounded influence tests

and optimally bounded influence estimators are of the same form (see



l-..1
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Theorem 4.3 and (2.6)), namely of Schweppe's form. There is a difference

only in the weights: the optimal weights for the test take into account

that (after standardization) only the last (p-q) components are of

interest for the testing problem.

From these optimally robust tests one can derive robust confidence

regions for the parameters and a robust version of stepwise regression.

These procedures can be easily implemented in a package for robust

regression. Especially, it is planed to integrate them in ROBETH, a

package of robust linear regression programs which have been written

at the ETH Zurich and is still under development; see Marazzi (1980).

* -1
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5. TESTS BASED ON QUADRATIC FORMS OF ROBUST ESTIMATORS

Let Tn be a general M-estimator defined by (2.1). Huber (1967)

shows that nh(T n-e) is asymptotically normal with mean 0 and asymptotic

covariance matrix

V = B 1 A B-  (5.1)

T
where B = -E@f/a , A = E T  . Partition the matrix V in qxq , qx(p-q) ,

(p-q)xq , (p-q)x(p-q) blocks and denote them by V(11) -V(12 ) V(2 1) - V(22)

respectively. Moreover denote by (Tn)(1) and (Tn)(2 ) the vectors with

the first q components and the last (p-q) components of Tn , respectively.

Definition 5.1 Let Tn  be a general M-estimator defined by (2.1). Then

the test statistic

R2  n(Tn)T ( -1

n (22) n)(2)/(P-q)

defines a class of tests for testing the hypothesis H0 (see (4.2)).

"Large" values of R2  are significant.
n

From Definition 5.1 we see that R is a quadratic form of the
n

estimator (Tn)(2) with respect to its asymptotic covariance matrix.

Therefore, under the conditions of Huber (1967) and (4.15), (p-q)nR2 2
n

has asymptotically a x2 -distribution with p-q degrees of freedom and

noncentral ity parameter

"(2)(V( 22)) A(2) " (5.2)
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Under the conditions of Theorems 4.2 and 4.3 and in view of (4.12) and

(4.14), it follows easily that likelihood ratio-type tests and tests

based on Ft are asymptotically equivalent. However, at least in some

situations, the latter seem to have a more liberal small sample behaviour;

cf. Schrader and Hettmansperger (1980).

Remark 1. A class of tests based on quadratic forms of robust estimators

was proposed by Stahel (1981) and Samarov and Welsch (1982) in the case

q=p-1 and for M-estimators of the form (2.2). Schrader and Hettmusperger

(1980) consider the same class of tests in the special case n(x,r) = g(r)

Let us now compute the influence function of this new class of tests.

Since the computations are similar to those in Theorem 4.1, we drop them.

Note only that we compute the influence function of R and not of R,2

the latter being identical to zero. This does not affect the test since

R and R2 define the same test. The influence function of R at the model

F s given by

IF(x,y;R,Fi) = (zT (V(22) )zl(p-q)), (5.3)

where z = IF(x,y;T(2 ),F) is the influence function of the estimator

T(2) at the model F.

Thus we have

SUp ,yIIF(x,y;R,Fi)j = (p-q)'y(T(2),Fg) , (5.4)
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where y* is the self-standardized sensitivity of the estimator T(2) ;

c.f. Krasker and Welsch (1982).

Note again that the Wald test, which is defined through the test

statistic R2 when Tn  is the LS estimator, has an unbounded influence

function. Therefore our goal is to find a test based on R2  that
n

maximizes the asymptotic power under a bound on the influence function

(5.3). In view of (5.2) and (5.4), this problem is equivalent to the

following estimation problem

Find a function T defining an M-estimator T that minimizes

the asymptotic covariance matrix V(22) of T(2) , under a

bound on the self-standardized sensitivity of T(2 )

It turns out that it is impossible to find an M-estimator that minimizes

in the strong sense the asymptotic covariance matrix, subject to a bound

on the self-standardized sensitivity. A counterexample can be found in

Stahel (1981). However, the following admissibility result can be shown.

Definition 5.2 A test defined by Y* dominates a test defined by T

if as.power ; as.power A , and there is a A(2 ) such that

as.powerA ( > as.power (2 )TI as'p~~~wer (2)* > asper()"

Definition 5.3 A test defined by T is called admissible if there is

no test that dominates it.

Theorem 5.1 For a given c > 1 , let Cc(T) be the class of tests

given in Definition 5.1 and such that suPx,yIIF(xY;R*F )I C c . Then,

the test defined by the following function T* is admissible within Cc(T)
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1) =e ,r - z( 1 )

yt2)(x,y;e) = (z(2 )/1z( 2)") - *c(r1z( 2 ))

where 'q1) and Tt2) denote the first q and last (p-q) components

of Vy* respectively, r = y-xTe . z = Dx , and D is defined implicitly

by the matrix equation

EY(x,y;e)rxT = I

Proof. In veiw of (5.2) and (5.4) the testing problem is equivalent to

that of finding an M-estimator T which is admissible with respect to

the asymptotic covariance matrix V(22) , subject to the condition

(p-q)-''y*(T(,F;) < c . This estimation problem is a special case of

the problem solved in Stahel (1981, p. 40) (cf. also Hampel, Ronchetti,

Rousseeuw, Stahel (1984), Theorem 1, section 4.4) and the result follows.

If we restrict ourselves to the class (2.2), either under the

conditions of Theorem 4.2 or Theorem 4.3, it is easy to see that the

test defined by V* is asymptotically equivalent (that is, it has the

same asymptotic power and the same influence function) to the corresponding

optimally robust tests given in those theorems. Therefore, under those

conditions, Y* is in fact storng optimal.
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6. EXAMPLE

The following example based on a real data set should give an idea

of the small sample behaviourof our optimally robust tests. The data are

taken from Draper and Smith (1966, p. 104 ff.). We have the following

variables:

Y = response or number of pounds of steam used per month,

X8 = average atmospheric temperature in the month (in OF)

X6 = number of operating days in the month.

Table 1 shows the data.

We consider the linear model

Y = + B8X 8 + B6X6 + e

and we want to test the hypothesis

H0 : B6 = 0

The factor space is given by Figure 1 and the observations are plotted

in Figure 2a.

From Figure I we see that there exist two outliers in the

factor space. We want to study the behaviour of the

log 1OP-values of the F- , p- and optimal T-test when the

observation (y7) corresponding to the point (X8 - 74.4 ,

X6 a 11) varies between 0 and 20. (Its actual value is 6.36)
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The tests under study are defined by the following functions

test T(x,r)

F r2/2

P Pc(r) (see Theorem 4.2)
(r 1z2 = U1 )()

optimal T P (r2 z(2) (X= (Usx)(2)  (see Theorem 3)
c2/Ijz( I

The scale parameter a was estimated in the full model using Huber's

Proposal 2. Note that in this case the optimal T-test is equivalent to

the corresponding test based on quadratic forms given in section 5. The

constants c and c2 were chosen such that the corresponding tests

have a given efficiency, say .95, at the normal model (that is, when

xi and ej are normally distributed). We obtained the following values:

Cl = 1.345 c2 = 2.67.

Figure 2b shows the overall excellent behaviour of the T-test

(strongly significant for all y!), the good behaviour of the

PC-test (at least for y > 8) which is still significant (at

the 5% level) in the region y > 8 and the bad behaviour of

the F-test which becomes even not significant for 8.7 4 y 4 18.7 1
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6. FURTHER RESEARCH DIRECTIONS

Approximate critical regions for optimally robust tests derived

in this paper can be obtained using the asymptotic distribution of the

test statistic, see (4.16) and (5.2). This approximation can be

improved in two ways.
S2  R2 dfndi eto

The first possibility is to use Sn or Rn defined in section 4

and 5 respectively, as test statistic for a permutation test. This would

guarantee, on one side an exact level a-test (a property of permutation,

tests) and on the other side a high robustness of efficiency (a property

of S2 and R2) This idea has been applied for constructing a con-o Sn  n

firmatory test in connection with a Swiss hail experiment; see Hampel,

Schweingruber, Stahel (1982). Some work is needed to justify this

combined procedure from a theoretical point of view; cf. Lambert (1982).

The second way is to find better approximations to the distribution

of Sn and R n . A promising approach is small sample asymptotics that

has been used successfully in the location case; see Hampel (1973b),

Field and Hampel.(1982). This is subject of ongoing research.
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Table 1

x Y
8 6

35.3 20 10.98
29.7 20 11.13
30.8 23 12.51
58.8 20 8.40
61.4 21 9.27
71.3 22 8.73
74.4 11 6.36
76.7 23 8.50
70.7 21 7.82
57.5 20 9.14
46.4 20 8.24
28.9 21 12.19
28.1 21 11.88
39.1 19 9.57
46.8 23 10.94
48.5 20 9.58
59.3 22 10.09
70.0 22 8.11
70.0 11 6.83
74.5 23 8.88
72.1 20 7.68
58.1 21 8.47
44.6 20 8.86
33.4 20 10.36
28.6 22 11.08

Figure 1: The variables X6 ,X 8

Iq

24

x 203

X6 10- •o 0

Is-

16-

It
13,

x 80 s

x 8



09-

/ "1?-

/

-. - ----

/ "

A I

-'--

4.0

Jx

o r.

S

v IL

e4 4 40

' - *.w
o

in-



0k 4

IrI

IN,

"ItI

40 f

A !t


