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SUMMARY

By means of the concept of change-of-variance function we investigate the stability properties
of the asymptotic variance of R-estimators. This allows us to construct the optimal V-robust
R-estimator that minimizes the asymptotic variance at the model, under the gide condition of a
bounded change-of-variance function. Finally, we discuss the connection between this func-
tion and an influence function for two-sample rank tests introduced by Eplett (1980).
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1. INTRODUCTION

R-estimators, that is estimators derived from rank tests, have become popular mostly
because they require fewer distributional assumptions than do more classical procedures. In
particular, R-estimators inherit some robustness properties from the rank tests from which
they are derived. However, the degree of robustness varies among those estimators and
depends on the properties one is interested in. g

In this paper we are primarily concerned with the stability aspects of the (asymptotic) ;
variance of R-estimators. Clearly this is an important aspect from a robustness point of view \
because it is strongly connected with the stability of confidence intervals. |

In Section 2 we review the concepts of infiuence function and change-of-variance func-
tion. The latter is used in Section 3 to investigate the robustness properties of the asymptotic 3
variance of R-estimators, and to approximate the asymptotic variance over neighborhoods of )
the assumed central model. Moreover, a connection between the change-of-variance function
and an influence function for two-sample rank tests due 1o Eplett (1980) is established.
Finally in Section 4 we find the optimal V-robust R-estimator, that is, an R-estimator that
satisfies the first order necessary conditions for being a minimum of the asymptotic variance at l

the model, subject 10 a bound on the change-of-variance function.
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2. THE INFLUENCE FUNCTION AND THE CHANGE-OF-VARIANCE FUNCTION

In this section we review briefly two basic tools that have been used successfully to
study the robustness properties of estimators.

The first one, the influence function, was introduced by Hampel (1968, 1974) and is
essentially the first derivative of an estimator viewed as fuactional. It describes the normal-
ized influence of an infinitesimal observation on the estimator. Formally, suppose the estima-
tor T, can be expressed as a function T of the empirical distribution function
F, , T, =T (F, ). Then the influence function of T at F is given by

IF(xT ,F)= {i_%IT ((1—€)F +€8, T (F )V €, 1

where 8, is the distribution that puts mass 1 at the point x. From a robustness point of view,
a desirable property of this function is boundedness.

Under suitable regularity conditions, we can approximate T(G) for G close to F {in some
metric) by

T(G)ET (F )+ [IF (x:T F)d (G —F Xx)
=T(F)+ [IF (xT F )G (x). 22

The two terms on the right hand side of (2.2) are the first two components of the von Mises
expansion of T; cf. von Mises (1947). Moreover, the asymptotic variance of T can be computed
as (Hampe] 1968, 1974)

V(T F)= [IF%x T F)F (x). (2.3)

From (2.2) we can also derive an approximation for the maximum asymptotic bias over a
"neighborhood” P (F ) = {G | F =(1—€)F +€H , H arbitrary } caused by the contamination,
namely

sup{ IT(G»T(F)! :G €P(F )} =ey (T ,F), (2.4
where ¥ (T ,F )= sup | IF (x T ,F )| is the so-called gross-error sensitivity.

The second tool is the change-of-variance function. It can be viewed as the derivative
of the asymptotic variance V(TJF), and therefore describes its infinitesimal stability. Formally,

CVF(xT F)= {ig,l" (T (1—€)F +€8, V(T .F)) € (2.5)
and
(T F)=supCVF (xT F) V(T ,F) (2.6)

cf. Hampel (1973); Hampel, Rousseeuw, Ronchetti (1981); Rousseeuw (1981) and, without the
standardization on the right hand side of (2.6), Ronchetti (1979). «" is called change-of-
variance sensitivity. Note that dividing the CVF by V(TF) in (2.6) amounts 1o measuring the
influence on the asymptotic variance in the logarithmic scale which is natural when working
with variances; cf. Wegman and Carroll (1977) and Hampel, Rousseeuw, Ronchetti (1981).

Using an expansion similar to (2.2) we can obtain an approximation to the maximum
variance over P (F ), namely (Hampel 1983)

suplV(T G):G €P (F)} SV (T ,F)-exple «" (T ,F)}. Q2.7

We call an estimator T B-robust iff y' (T ,F ) <ec and V-robust iff ' (T F ) <oco.
Special attention will be given to V-robustness in later sections of this paper.
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The change-of-variance function has a strong connection with an influence curve for
two-sample rank tests introduced by Eplett (1980). We investigate this relationship in Section
3.

Existence conditions and mathematical properties o' derivatives of functionals including
the influence function are discussed extensively in Fernholz (1983). For a complete account
of the approach to robust statistics using influence functions, we refer to Hampel, Ronchetti,
Rousseeuw, Stahe! (1984).

e oo e < oo i
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3. ROBUSTNESS PROPERTIES OF R-ESTIMATORS

Let x,,...,x, be n independent identically distributed observations and consider the
location model F (*—6). We shall be concerned with the robustness properties of R-
estimators 7', of 6 which are derived from two-sample rank tests with some score generating
function J. To compute 7, , we first construct a mirror image of 27, —=x;,...,2T, =x, of
the original sample and then find 7', such that the rank test is Jeast able to detect a difference
in location; cf. Huber (1981).

We assume the following conditions on the model distribution F and on the score gen-
erating function J:

(F) F has an absolutely continuous symmetric density f. Denote by f ' its derivative.

(J) 1 :[01) =R is continuous, non-decreasing and square integrable. Moreover, J(1-u) =
-J(u) for all u € [0,1}.

(JF) ¢y = J°F isdifferentiable on R\ D (¢ F ), where D is a finite set, and the derivative
Yr ' is bounded.

Conditions (F) and (J) are standard conditions when dealing with R-estimators; cf. for
instance, Hajek and Sidak (1967). In addition we require (JF) 10 ensure the existence of the
change-of -variance function (see below); cf. also Jaeckel (1971).

Under the given conditions, the R-estimator T, derived from a two-sample rank test
with score generating function J, converges in probability w T(F), where T(F) is the solution
of the equation (Huber 1981)

JIAF (x)+1=F QT (F >~x ) 2)dF (x ) = 0. (3.1)

From (3.1) by replacing F with (1—€)F +€8, , and taking the derivative with respect to €
at € = O, one can easily compute the influence function of the R-estimator T defined by J

IF(xJ F)=vys(x) BYs .F), (32)

where ¥y (x)=J(F(x)) and By ,F) = fw; {x MdF (x ). Moreover, from (2.3) with
AlYs F)= fw; Xx )dF (x ), we obtain

V(I JF)=AWs F) BXys .F), (3.3)
and from (2.5)
CVF(xJ F)=2V({J FY1+lhs (x s Vs (x))/ BWf F)) (3.4)
for all x € R\ D (¢ ,F ), where
hexe)=(f + [DvruX=7"G) f @IF @l ; (35)

cf. Ronchetti (1979), Hampel (1983).

Remarks
1) Eplett (1980) defines an influence curve for two-sample rank tests with score generating

function J by taking their asymptotic power B()F) and computing an influence function on 8.

Since BUF) = (V (J ,F ))™, where V is the asymptotic variance of the corresponding R-
estimators, the change-of-variance function given by (3.4) is proportional to Eplett’s influence
curve.
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2) Denote by T'®' the R-estimator defined by J, and by T ‘¥’ the M-estimator of location
defined by ¥ 5 , ie. T,'M ' is the solution of the implicit equation

,"Elﬂl; (x, -T,,w)) =0

From (32) it follows that 7** ' and T M’ have the same influence function and therefore the
same asymptotic variance at F. However, the change-of-variance functions are different and
the following holds:

CVF(xT® F)=CVF(x M F)+
VI FN+42he xjr Y Bp FI¥F(x) A(s F))
Jt turns out (see examples below) that in general the change-of-variance sensitivity of R-
estimators is smaller than that of the corresponding M-estimators.

Let us now investigate the V-robustness of some R-estimators at the normal model. We
denote by & and ¢ the distribution function and the density of the standard normal distribu-
tion, respectively.

The Hodges-Lehmann estimator is defined by Jgz;(u) = u-2  Therefore,
CVF(xJy; &)/ V(g @) =4~8p(x W7 and « (Jy, .®) = 4. So the Hodges-Lehmann
estimator is V-robust.

The normal scores estimator is defined by J g (u ) = &}u ) and is the most efficient R-
estimator at the normal model (F=®); cf. Hajek and Sidak (1967).

However, CVF (x i/ ys :®) = x°~1 and «" (/ y5 @) = co. This shows the lack of stability in
the asymptotic variance of this estimator.

The bounded normal scores estimator is defined by

e u) if 167 Mu)l K¢
c'sign @ Wu) otherwise

for some positive constant c. It is the most efficient R-estimator at the normal mode! with a
bounded in fluence function; cf. Rousseeuw and Ronchetti (1979), Hampe] (1983). lts change-

of-variance function is a truncated (from above) parabola and its change-of-variance sensi-
tivity is given by

J. )= (3.6)

x" (J. @) = 14c >+ 2¢c ¢lc )/ {28c }-1]. 3.7
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4. MOST V-ROBUST AND OPTIMAL V-ROBUST R-ESTIMATORS

From Section 3 we know that the normal scores estimator is the most efficient R-
estimator at the normal model but, unfortunately, has an unbounded change-of-variance func-
tion. This section will be devoted to finding an R-estimator that compromises in an optimal
way efficiency at the model and V-robustness. We shall show that the bounded normal scores
estimator (see Section 3) satisfies the first order necessary conditions for being a minimum of
the asympictic variance at the normal model, subject to the condition of a bounded change-of-
variance function.

We prove the results of the section for the normal model (F= @), but everything goes
through for model distributions F which are "similar” to the normal, i.. for F that satisfy (F)
and dX—log f(x))/ dx? >0 for all x €R. To simplify notation we drop the subscript F
and write ¥ for Yo , B(Y) for B (Yo.®), etc.

The first theorem establishes a lower bound for the change-of-variance sensitivity of an
R-estimator.

Theorem 1

Assume conditions (J) and (JF). Then « (J ,®) 22, and the median reaches this lower
bound and is therefore the most V-robust R-estimator.

Proof. By (3.4) we have to prove that
sup {h (x W)¥{x):x ER\DW¥)} 20, 4.1)

where
hGxa)=(f+[) ¢l u @uddu

Because of (J) and (JF), ¢ is odd and monotone non-decreasing (¢'(x )2 0). Therefore, h
is symmetric and monotone non-decreasing on [0,00) (k' (x ) = y{x )  x 20 for all x 20).
Since by (3.4) fh (x 3)d ®(x ) = O, there exist x>0 such that h (x )€0 on [0x ) and
h(x)> 0 on (x (,00). Let us consider two cases.

Case 1.  Suppose there exists x,>x, such that ¢x,)=0. Then,
h(x,¥) =~ ¥(x ) = h(x,)>0and therefore (4.1) holds.

Case 2. Suppose that ¥'(x ) >0 for all x > x,. This implies that h(x;¥) is strictly positive
and monotone increasing on (x o). Since ' is bounded, by (JF), there exists M such that
Vix) €M forallx.

Case 21. h(xy) tends to oo as x—o . Then there exists x,>x, such that
h(x3¥) >M 2'(x ;) , and (4.1) holds.

Case 2.2. h(x:y) does not tend to co as x—co. Since ' (x %) >0, h (x ;) must approach a
bound asymptotically. Therefore, h' (x ;p)= 0 as x—+o and, since h(x;y) is strictly positive on
(x o0, (4.1) follows.

From Rousseeuw (1981) we know that the change-of-variance sensitivity of the median
(which is as well an R-estimator) equals 2 at the mormal model. Therefore, the median
reaches the lower bound in the class of R-estimators as well. This completes the proof.
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Theorem 1 states that the median is the best R-estimator in terms of V-robustness.
Unfortunately, its efficiency at the normal model is quite low ( = 2/7 =64%). Therefore, a
better compromise between V-robustness and efficiency is needed.

The following Lemma will be used in the proof of the optimality result given in
Theorem 3.

Lemma

Let n(c ) = x" (J. .®) be the change-of-variance sensitivity of the bounded normal scores esti-
mator. Then 7 is a bijection from (0,00) onto (2,00).

Proof. From (3.7) we have: 7{c ) = 14c *+2c ¢(c )/ [2&(c }-1]. Taking the derivative, we
obtain

n{c) = alc )/ [2¢&c »-1)?,

where alc ) = 2c [2&c )=1]2+2¢(c N(1—c 2X28c )=1)-2c ¢{c ). An easy calculation shows
that o'(c ) >0 for ali ¢ >0 ), and o{0) = a(0) = 0. Therefore, afc) > O for all ¢ > 0, and
this implies that 7 is monotone increasing on (0,00). Moreover, from the definition of 7, it is
clear that n(c)=2 asc — 0, and n{c) = o asc — co. This completes the proof.

Our optimality result is based on a theorem that can be found in Hestenes (1966), p. 265.
For the sake of completeness, we rewrite it in our notation. (Note the obvious misprint in for-
mula (5.7), p. 263)

Theorem 2 f
Let C be the class of piecewise continuous differentiable vector functions with { components ‘

and defined on some interval (ab). Denote by £ the derivative of any § € C. Suppose ;
E%x )= (£]%x ), ..., £°(x)) minimizes

1= j L (x f(x )£(x D dx (42) I
' among all £ in C satisfying the constraints L
v (x £.6) €0, 1€k < m, (4.3) f

v: (x ££) =0, m <k €m , 4.4)

the fixed endpoint conditions
L@)=Xx,"", &B)=X,"", 1<i €1, _ (4.5)

and the isoperimetric conditions
]
1,0= [L,(x £x)fx)dx =0, 1€ €p . (4.6)

Then there exist multipliers
Ao 20, A, n, (x) 1€j €p,1€k€<m, a$x <

not vanishing simultaneously on (a,b) and a function

P m
Gxhfw) =l + ZA L,+ Ly (4.1)

such that
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(i) The multipliers u, (x ) are continuous between corners of £
{
(ii) The functions G;, G —}:lf,. ‘G-, With g, = u, (x), are continuous along £ and
satisfy the relations
d . d L

FI—G£',=G“ , 1€i €1, -d_z-(G_.'Elf'G‘:')=G’ (4.8)
between corners of £,
(iii) The inequality

E (x £ £ 0w la ) 2 T oy () 3, (2 %) (49)

bolds for all u such that
v (x £% ))u) <0, 1<k €m', (4.10)
v (x £ )u)=0, m €k €m, (411)

where E is the Weierstrass E-function
I'4
E(x £ u)=GC(x fu uG(x £Eu) E’(u, =€ G ¢ (x ££.1). (4.12)

In addstion, u, (x ) 20 (1 £k <m') with u, (x )=0 whenever y, (x ,£°(x )¢%x)) <0.

Now we are ready to prove our optimality result.

Theorem 3

For every b > 2, there exists a positive ¢ such that x" (J.,®) = b, and the bounded normal
scores estimator J, satisfies the first order necessary conditions for being a minimum of V({J,®),
subject tox (J @) <b.

Proof. The existence of J. (given b > 2) follows directly from the previous lemma. Since
J is determined up to a multiplicative positive constant and V (J ,®) = A (¢)/ B X¥), we have
to show that

x if lx | €c

csign (x ), otherwise (4.13)

v (x) =

satisfies the first order necessary conditions for being a minimum of A(y), subject w0
B(W= [¥x)xMdx =BW,) (4.14)
and
A1+(h (x )>~¥(x)) By )} €b. (4.15)
We shall now apply Theorem 2. Define
Ex)=y(x)

Efx )= -jf,'(s )s &s Mds ,

E£x)= [£0)s &s Ms,
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1=3, m=2 m=4, p=1, a ===, b=,
L(x ££)=§¢2 ¢x ),
Lx£8)=¢"&x)BW, )
ilx ££) = £2+€5-€-K. ,
yAx ££) = —€/,
yix £8) = €€ x [1-8x )]

vdx ££) = €€ x "¥x ),

where X, = (¥2b —1)B (y. ). An easy calculation shows that
E(x £fu u)=0 for all (x £€u ). (4.16)

Moreover, from (4.8) we obtain

[2Af )%+ N\ )=t udx W(x ) = —py'—p—p,  x —py—(—p+u JWx ), forall x (417)

My = pa = gy, (4.18)
yix £OLC) wy(x ) = €% potx ) (4.19)

Finally, from (4.9), using (4.16), we get
wix ) yylx £ )8 x D—ufx ) £%x) S0 (4.20)

First consider the x's for which y(x £°,£%) <0.

In this region we choose
#,(I )EO, [.l.z(x )EC) >O, A]=_2XO, Xo >0.

Then from (4.18)
ux)=c;, udx)=cy,
and from (4.17)
c3=—c,=0,
€% x) =x.

Therefore, £,%(x ) = ¢ (x) for all x's for which the change-of-variance function is strictly
less than b.

Secondly, consider the x's for which y,(x £°£°") = 0.
In this region we choose

ulx)=c, >0, ufx)=o0.
Then

EMx)=0,ie. ¢ )=c ,
and

plx)=pdx)=c, x
udx )= =208x A, x )¢, x2
Therefore, £,%x ) sy, (x ) where the change-of-variance function equals the bound b.
This completes the proof.
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Table 1 gives some numerical values for the bounded normal scores estimator. lp partic-
ular, for a given ¢ one can read the change-of-variance sensitivity, the efficiency at the nor-
mal mode] and an approximation (using (2.7)) of the maximum asympiotic variance over a
neighborhood of the normal compared to the asymptotic variance at the normal model. From , ;
this table one can clearly see the trade-off between robustness and efficiency. (Note that c=0 '
corresponds to the median, and c=so corresponds to the normal scores estimator.)

D ——
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