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1. DITRODUCTION
R-estimators, that is estimators derived from rank tests, have become popular mostly

because they require fewer distributional assumptions than do more clasical procedures, In
particular, R-estimators inherit some robustness properties from the rank tests frm which
they are derived. However, the degree of robustness varies among those estimators anddepends on the prti e one is interested in.

In this paper we are primarily concerned with the stability aspects of the (asymptotic)
variance of R-estimatrs. Clearly this is an important aspect from a robustness point of view
because it is strongly connected with the stability of confidence intervals.

In Section 2 we review the concepts of influence function and change-of-variance func-
tion. The latter is usea in Section 3 to investigate the robustness properties of the asymptotic
variance of R-estimators, and to approximate the asymptotic variance over neighborhoods of
the assumed central model. Moreover, a connection between the change-of-variance function
and an influence function for two-sample rank tests due to Eplett (1980) is established.
Finally in Section 4 we End the optimal V-robust R-estimator, that is, an R-estimator that
satisfies the first order necessary conditions for being a minimum of the asymptotic variance at
the model, subject to a bound on the change-of-variance function.
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2. THE INFLUENCE FUNCTION AND THE CHANGE-OF-VARIANCE FUNCTION
In this section we reView briefly two basic tools that have been used successfully to

study the robustness properties of estimators.

The first one, the influence function, was introduced by Hampel (1968, 1974) and is
essentially the first derivative of an estimator viewed as functional. It describes the normal-
ized influence of an infinitesimal observation on the estimator. Formally, suppose the estima-
tor T, can be expressed as a function T of the empirical distribution function
F. , T. =T (F,,). Then the influence function of T at F is given by

IF (x TF lim T ((l-e)F +e8 2 )-T (F )/e, (2.1)

where 6, is the distribution that puts mass I at the point x. From a robustness point of view,
a desirable property of this function is boundednes&.

Under suitable regularity conditions, we can approximate T(G) for G close to F (in some
metric) by

T (G) -T (F)+fIF (x , )d (G -F Xx)

T (F) + fIF (x ;T.F )dG (x). (2.2)

The two terms on the right hand side of (2.2) are the first two components of the von Mises
expansion of T; cf. von Mises (1947). Moreover, the asymptotic variance of T can be computed
as (Hampel 1968, 1974)

V (T ) fIF 2(x;T ,F )W (2.3)

From (2.2) we can also derive an approximation for the maximum asymptotic bias over a
"neighborhood" P,(F) G I F =(l--e)F +61 , H arbitrary I caused by the contamination,
namely

sup{ I T (G )-T" (F ) I : G E P (F A)} -- y' (T Fr) (2.4)

where -/ (T ,F ) - sup I IF (x ;T F ) I is the so-called gross-error sensitivity.
a s

The second too] is the change-of-variance function. It can be viewed as the derivative
of the asymptotic variance V(TF), and therefore describes its infinitesimal stability. Formally,

CVF (x T ,F ) = lim1V (T ,(I-)F +e8, )-V (T ,F )]/ 6 (2.5)

and

K (TF) sup CVF (x"",F )/V (TF) (2.6)

cf. Hampel (1973), Hampel, Roumeeuw, Ronchetti (1981), Roumeeuw (1981) and, without the
standardization on the right hand side of (2.6), Ronchetti (1979). K" is called change-of-
variance sensitivity. Note that dividing the CVF by V(TF) in (2.6) amounts to measuring the
influence on the asymptotic variance in the logarithmic scale which is natural when working
with variances; cf. Wegman and Carroll (1977) and Hampel, Rouseeuw, Ronchetti (1981).

Using an expansion similar to (2.2) we can obtain an approximation to the maximum
variance over P ,(F ), namely (Hampel 1983)

sup1V (T ,G ):G EP,(F ) -V (T ,F )expe 'K' (T ,F ). (2.7)

We call an estimator T B-robust iff y* (T ,F ) < = and V-robust iff K' (T ,F) < 00.

Special attention will be given to V-robustness in later sections of this paper.
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The change-of-variance function has a strong connection with an influence curve for
two-sample rank tests introduced by Eplett (1980). We investigate this relationship in Section
3.

Existence conditions and mathematical properties oi" derivatives of functionals including
the influence function are discussed extensively in Fernholz (1983). For a complete account
of the approach to robust statistics using influence functions, we refer to Hampel, Ronchetti,
Rousseeuw, Stahel (1984).
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3. ROBUS7hE PROPERTIES OF R-ESTIMATORS
Let x t ..... x. be n independent identically distributed observations and condeTr the

location model F (* -0). We shall be concerned with the robustness properties of R-
estimators T, of 0 which are derived from two-sample rank tests with some score generating
function J. To compute T, we first construct a mirror image of 2T, -x F... 2T, -x, of
the original sample and then find T, such that the rank test is least able to detect a difference
in location; cf. Huber (1981).

We assume the following conditions on the model distribution F and o the score gen-
erating function J:
(F) F has an absolutely continuous symmetric density f. Denote by f' its derivative.
() J : 10,11 -R is continuous, non-decreasing and square integrable. Moreover, J(1-u)

-J(u) for all u 9 [0,11
(IF) F = J "F is diferentiab'e on R \ D (O'F ,F ). where D is a finite set, and the derivative

Of° is bounded.

Conditions (F) and () are standard conditions when dealing with R-estimators; cf. for
instance, lHijek and Si'dik (1967). In addition we require (JF) to ensure the existence of the
chan ge-of-variance function (see below cf. also Jaecke] (1 971 ).

Under the given conditions, the R-estimator T, derived from a two-sample rank test
'ith score generating function J, converges in probability to T(F), where T(F) is the solution

of the equation (Huber 1981)

fJ (F (x )+]-F (2T (F )-x )]/ 2) dF (x ) = 0. (3.1)

From (3.1) by replacing F with (-)F +e8, , and taking the derivative with respect to e
at e - 0. one can easily compute the influence function of the R-esimator T defined by J

IF (x :J XF OF = (x )/ B (OF F ),(31)

where OF (x ) = J (F (x)) and B (F ,F ) = f (x )dF (x). Moreover, from (2.3) with
A (Oy .F )= f Of 2(x ) dF (x ), we obtain

V (U F )=A (Of ,F V/B 2(OF F ) (3.3)

and from (2.5)
CVF (z W., X 2V (U F D [ +(hF (x ,4F )-Of ))/B (F .F (3.4)

for alix E R% D ( ,F ) where

hF (xj (=f + f) ,F "u X-f-u )/ (u )]-F (u )dau ; (3.5)

cf. Ronchetti (1979), Hampel (1983).

Rtmarks
1) Eplert (1980) defines an inluence curve for two-sample rank tests with score generating
function I by taking their asymptotic power 0(JF) and computing an influence function on A.
Since 1(J.F) - (V (J ,F ))-, where V is the asymptotic variance of the corresponding R-
estimators the change-of-variance function given by (3.4) is proportional to Eplett's influence
curve.
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2) Denote by T"' the R-estimator defined by J, and by T(M) the M-estimator of location
defined by #F , ie. T.RM ' is the solution of the implicit equation

14F (x-T.'M) = 0.

From (3.2) it follows that T (" 'and T (m) have the same influence function and therefore the
same asymptotic variance at F. However, the change-of-variance functions are different and
the following holds:

CVF (x ;T ',F ) CVF (x M ',F ) +

V (J ,F X +2hF (x ,'iF )/ B (4,' .F )- (x )/ A (4 ,F ).

It turns out (see examples below) that in general the change-of-variance sensitivity of R-
estimators is smaller than that of the corresponding M-estimators.

Let us now investigate the V-robustness of some R-estimators at the normal model. We
denote by 4' and 0 the distribution function and the density of the standard normal distribu-
tion, respectively.

The Bodges-Lehmann estimator is defined by JBL (u) - u-1/2. Therefore,
CVF (x Jnj ,-4)/ V (UHL A) = 4-80(x )/.v and K' (JH ,4) = 4. So the Hodges-Lehmann
estimator is V-robust.

The normal scores estimator is defined by Js (u) 4- '(u ) and is the most efficient R-
estimator at the normal model (F-G), cf. Hijek and Srdik (1967).
However, CVF (x bJjs :0) = x 2- and K'x s ,) = cc. This shows the lack of stability in
the asymptotic variance of this estimator.

The bounded normal scores estimator is defined by

S u) if I 0'(u ) c
J, (u ) = c sign 4V-(u ) otherwise (3.6)

for some positive constant c. It is the most efficient R-estimator at the normal model with a
bounded influence function; cf. Roueuw and Ronchetti (1979), Hampel (1983). Its change-
of-variance function is a truncated (from above) parabola and its change-of-variance sensi-
tivity is given by

" (U, 4) = I+c 2+2c O(c )/ 12,0(c )-1]. (3.7)
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4. MOST V-ROBUST AND OPTIMAL V-ROBUST i-ESTIMATORS
From Section 3 we know that the normal scores estimator is the most efficient R-

estimator at the normal model but, unfortunately, has an unbounded change-of-variance func-
tion. This section will be devoted to finding an R-estimator that compromises in an optimal
way elficiency at the model and V-robustness. We shall show that the bounded normal scores
estimator (see Section 3) satisfes the irst order necessary conditions for being a minimum of
the asymptotic variance at the normal model, subject to the condition of a bounded change-of-
variance function.

We prove the results of the section for the normal model (F- 4'), but everything goes
through for model distributions F which are "similar" to the normal, i.e. for F that satisfy (F)
and d 2(-log fix ))/ dx 2 > 0 for all x E R. To simplify notation we drop the subscript F
and write 0 for 00 , B (0) for B (''4), etc.

The first theorem establishes a lower bound for the change-of-variance sensitivity of an
R-estimator.

Theorem I
Assume conditions (J) and (IF). Then K' (J 0) > 2 , and the median reaches this lower
bound and is therefore the most V-robust R-estimator.

Proof. By (3.4) we have to prove that

sup {h (x ,*)-Ax ):x ER\D(*))>O, (4.1)

where

h (X NO) = (f + f ) %V(u )u 4(u )du.
-. 0 -CO

Because of () and (F), 0 is odd and monotone non-decreasing (*'(x)> 0). Therefore, h
is symmetric and monotone non-decreasing on [O,oo) (h' (x ,i) = *'(x )" x > 0 for all x > 0).
Since by (3.4) fh (x ,O)d O(x ) = 0, there exist x 0 > 0 such that h (x ) 4 0 on 0,x oJ and
h(x)> 0 on (x 0,). Let us consider two cases.

Case 1. Suppose there exists x I >xo such that Ox 1)0. Then,
h (x 1.) - b'x 1) h (x I)> 0 and therefore (4.1) holds.
Case 2. Suppose that x ) > 0 for all x > x 0 . This implies that h(x,) is strictly positive
and monotone increasing on (x ,o). Since 0' is bounded, by (IF), there exists M such that
OU ) 4M for allx.

Case 2.1. h(x*) tends to cc as x--,o . Then there exists X 2 >X0  such that
h (X 24) > Ml ;X 2), and (4.1) holds.

Case 2.2. (xo)does not tend to cas x--m. Since h'(x,0) >0, h (x,)must approach a
bound asymptotically. Therefore, h' (x ,4)-* 0 as x--o and, since h(x,*) is strictly positive on
(x 0,0), (4.1) follows.

From Rousmeuw (1981) we know that the change-of-variance sensitivity of the median
(which is as well an R-eatimator) equals 2 at the normal model. Therefore, the median
reaches the lower bound in the class of R-estimators as well. This completes the proof.

MOM/
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Theorem 1 states that the median is the best R-estimator in terms of V-robustness.
Unfortunately, its efficiency at the normal model is quite low ( - 2/ir -64q). Therefore, a
better compromise between V-robustness and efficiency is needed.

The following Lemma will be used in the proof of the optimality result given in
Theorem 3.

Lemma

Let 71(c ) = K" (U ,4) be the change-of-variance sensitivity of the bounded normal scores esti-
mator. Then 7 is a bijection from (0,,a) onto (2,co).

Proof. From (3.7) we have: r(c ) " 1+c 2+2C O(C )/ [24(c )-I]. Taking the derivative, we

obtain

c c c )/ [24)(c )--1) 2,

where ck(c ) = 2c [20(c )-112+20(c X(-c 2X2V(c )-1)-2c 0(c )I An easy calculation shows
that crc ) > 0 for all c > 0 ), and &(0) = &(0) = 0. Therefore, G(c) > 0 for all c > 0, and
this implies that 7) is monotone increasing on (O,co). Moreover, from the definition of -, it is
clear that 7)(c)-, 2 as c -0 O, and -q(c) - o as c - co. This completes the proof.

Our optimality result is based on a theorem that can be found in Hestenes (1966), p. 265.
For the sake of completeness, we rewrite it in our notation. (Note the obvious misprint in for-
mula (5.7), p. 263)

Theorem 2

Let C be the class of piecewise continuous differentiable vector functions with I components
and defined on some interval (ab). Denote by f the derivative of any E C. Suppose
eo~x )= (,'(x )..ox )) minimie

I (j) = fL (U ,J(x )tx )) dx (4.2)
a

among all j in C satisfying the constraints

-YA (X 'J) 9 o, 14 <k 4 ' (4.3)

7k (X -,f-C) = 0, m' <k 4m , (4.4)

the fixed endpoint conditions
J, (a )= X."' , Ji (b )= Xt," ',  1 4 i Ku (4.5)

and the isoperimetric conditions
A

Ii = fL( ,jx& ),"x ))dx= -0, 1 4 j . (4.6)

Then there exist multipliers
A0 >'0, A,, AA(), 4j 4<p, k 4 m, a 4<x4b

not vanishing simultaneously on (ab) and a function
p 9"

G( ,C ) = XoL + I X L u + Z k (4.7)

such that
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(i) The multipliers , x) are continuous between corners of to';

(ii) The functions GL, G - Z G,. with u = U (x), are continuous along (o, and

satisfy the relations

dd
'C G I zi Gl 7 (-e .) G, (4.8)dx GC dx i=|

between corners of eo;

(i) The inequality

£ (x X,°x ),°()x ),u u(x)) / ( -Y U ) X (O',u) (4.9)
k =1

holds for all u such that

Uv (xo°x ),U) , 0, 1 4<k <m , (4.10)

vyx,°ox )u) 0, m' 4<k < , (4.11)

where E is the Weierstrass E-function
I

£ C u m j) G Ux J~u ,ui)-G Ux JX',uL)-, 1 (U, -6, )G (X 4e,U). (4.12)

In addition. A, (x) 0 ( -<k ?n' ) with M4 C )-o whenever 'k (x , 0 '(x ),( ° ( )) <0.

Now we are ready to prove our optimality result.

Theorem 3

For every b > 2, there exists a positive c such that K' (J ,0) = b, and the bounded normal
scores estimator J, satisfies the first order necessary conditions for being a minimum of V(J,0),
subject to K' (J ,4) < b.

Proof. The existence of J, (given b > 2) follows directly from the previous lemma. Since
J is determined up to a multiplicative positive constant and V (J ,A) = A ()/ B 2( ), we have
to show that

OC (x)= X 'if I X 14 (4.13)

satisfies the first order necessary conditions for being a minimum of A(O), subject to

B (0) = f x )#x )dx = B (Vc) (4.14)

and

2[1 +(h x ,b>-%x ))/B ( )4 <b. (4.15)
We shall now apply Theorem 2. Define

f1(x ) = *(x )

GX ) = f fis )s 4(s )ds.

14 ) = feils )s Vs )ds,
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1 =3, m'-=2, m---4, pff=1, a =-co b b=o,

L (x 2. = O. ,

L )(x t,) = 1 x )-B ('t'),
.(x 40C) = 2+£ 1,- ,

y3(x x~C' O 21X [ (x )

where K, = (1/b -I)B (41)- An easy calculation shows that

E(x J~ ,u ) -0 for all (x, C,u u). (4.16)

Moreover, from (4.8) we obtain

(2X '+(- 1- 3+A14 )x I(x ) - -L'-2'-.I "x -1 3-(-A 3+A)4(X), for all x (4.17)

A3' = A4'  Al,(

v1(x , o ],) '(x ) = A' s 2 x ). (4.19)

Finally, from (4.9), using (4.16), we get

A,(x )" ,(x ,r° O ),X0'x ))-is2(x )" 0 (x) <0. (4.20)

First consider the x's for which v1(x o <0.
In this region we choose

5,(x )-0. ,x )c 2 > 0, j=-2k, Xo > 0.

Then from (4.18)

(x)-c 3 . ,M4(X)-C--,

and from (4.17)

C3= -C 4 0 ,
COkx X .

Therefore, fo',(x ) = * (x) for all x's for which the change-of-variance function is strictly
less than b.

Secondly, consider the x's for which v1(x X°o 0 1) = 0.
In this region we choose

ju (x )c, > 0, ju x )*0.

Then

flo = 0, Le. 0 (okx )-c
and

513(X ) AJ C sj)=cX

A&(x ) = -2Xo4(x )-X1 I(x )--c -X 2

Therefore, f °(x ) --b. (x ) where the change-of-variance function equals the bound b.
This completes the proof.
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Table I gives some numerical values for the bounded normal scores estimator. In partic-
ular. for a given c one can read the change-of-variance sensitivity, the efficiency at the nor-
mal model and an approximation (using (2.7)) of the maximum asymptotic variance over a
neighborhood of the normal compared to the asymptotic variance at the normal model. From
this table one can clearly see the trade-off between robustness and efciency. (Note that c-0
corresponds to the median, and c-oo corresponds to the normal scores estimator.)
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