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TOTAL AEROSOL VOLUME COMPUTED FROM LASER
SPECTROMETER PARTICLE-SIZE DATA FOR COMPARISON

WITH FLAME PHOTOMETER TOTAL-MASS DATA

INTRODUCTION

The Crew Technology Division of the School of Aerospace Medicine
(USAFSAM) tests and evaluates chemical warfare defense respirators against
the penetration of vapors and aerosol particles. A laser spectrometer
(LAS-X) active light-scattering system (manufactured by Particle Measuring
Systems, Inc., Boulder, CO) is used to measure aerosol particle-size
distributions, and a flame photometer is used to determine the total mass of
sodium chloride (NaCl) aerosol particles detected.

A computer program has been written to convert the particle size distri-
butions obtained with the LAS-X into a total aerosol-particle volume propor-
tional to the total mass of the detected aerosol particles. This calculated
volume can be compared with the aerosol mass measured with the flame
photometer. If both measuring systems are working according to their speci-
fications, the total aerosol volume calculated from the LAS-X data should be
equal to the mass measured with the flame photometer, within a
proportionality constant.

With the LAS-X system, multichannel particle-size distribution data give
the number of particles in each of the successive channels, with each channel
representing a specific size interval. Since the size of the particles
within each channel is unspecified within the size interval of the channel,
three estimates of total particle volume are calculated -- upper, lower, and
average.

As total particle volume is calculated from the LAS-X data, the overlap
of the size intervals between data from different channels must be considered
when accumulating data from adjacent size ranges. (This overlap has been
deliberately designed into the LAS-X data output system to provide highest
resolution within all size ranges.) So that data from channels with
overlapping size ranges are not duplicated in the accumulated sum,
predetermined channels in each size range are deleted from the sum in the
accumulated total volume. Additional calculations are made to determine the
logical consistency of data obtained from overlapping size intervals. That
is, five numerical checks are performed with the computer to ascertain that,
in each case, the larger of the overlapping size intervals contains more
particles than the smaller interval.
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RATIONALE AND METHODS

Data obtained with the LAS-X system is available as four size ranges,
with each range divided into 15 channels corresponding to particle sizes
between 0.12 and 7.5 pm. Particles outside this size range cannot be
detected by the LAS-X [3]. The calibration data showing the size interval
for each range and channel is shown in Table 1. The channels not counted in
the accumulated volume are identified. Channel 14 of range 3 is zonsidered
as a special case: All particles in this channel are added to the sum for
the maximum estimate of accumulated volume under the assumptions that (1) all
particles in this interval have diameters equal to 0.200 pm, (2) half of that
value is added to the sum for the average estimate, and (3) that value is
deleted from the sum for the minimum volume estimate.

For a spherical particle of diameter dp, the volume of the particle is

VP - (1/6)wdp3  ()

Multiplying the number, N(n), of particles in each channel (n - 1, 2,
3 .... ) by the volume obtained from Equation (1) for particles in channel n
having an estimated diameter dp, the total volume of all aerosol particles
within channel n can be estimated by

V(n) = N(n)Vp (2)

Since particle sizes are determined within discrete size intervals,
three estimates of total aerosol volume within each channel are calculated.
That is, we may estimate the minimum, maximum, or average volume,
corresponding to the assumptions that all particles within channel n are,
respectively, of the minimum, maximum, or average size within that channel's
size interval. (By average V(n) we mean the volume calculated under the as-
sumption that all particles in channel n have a diameter equal to the
diameter at the midpoint of a channel size interval; the average V(n) is not
equal to the average volume for particles in channel n.) The total volume of
all detectable particles may be calculated by summing the volumes within all
nonoverlapping channels as

V(Total) - Z V(n) (3)
n

(nonoverlapping channels)

where three estimated total volumes are calculated corresponding to a
minimum, maximum, and average estimate.
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TABLE 1. CHANNEL LIMITS

Ch# Diam. (pm) Ch# Diam. (pm)
Range = 0: Range 2:

1 1.500 to 1.900 1a 0.170 to 0.200
2 1.900 to 2.300 2 0.200 to 0.230
3 2.300 to 2.700 3 0.230 0.260
4 2.700 to 3.100 4 0.260 0.290

5 3.100 to 3.500 5 0.290 0.320
6 3.500 to 3.900 6 0.320 0.350
7 3.900 to 4.300 7 0.350 0.380
8 4.300 to 4.700 8 0.380 0.410
9 4.700 to 5.100 9 0.410 0.110

10 5.100 to 5.500 10 0.440 0.470
11 5.500 to 5.900 11 0.470 0.500
12 5.900 to 6.300 12a 0.500 0.530
13 6.300 to 6.700 13a 0.530 0.560
14 6.700 to 7.100 14

a 0.560 0.590
15 7.100 to 7.500 15a 0.590 0.620

Range =1: Range =3:

1a 0.300 to 0.400 1 0.120 to 0.126

2a 0.400 to 0.500 2 0.126 to 0.132
3 0.500 to 0.600 3 0.132 to 0.138
4 0.600 to 0.700 4 0.138 to 0.144
5 0.700 to 0.800 5 0.144 to 0.150
6 0.800 to 0.900 6 0.150 to 0.156

7 0.900 to 1.000 7 0.156 to 0.162
8 1.000 to 1.100 8 0.162 to 0.168
9 1.100 to 1.200 9 0.168 to 0.174

10 1.200 to 1.300 10 0.174 to 0.180
11 1.300 to 1.400 11 0.180 to 0.186
12 1.400 to 1.500 12 0.186 to 0.192

13 a 1.500 to 1.600 13a 0.192 to 0.198
14a  1.600 to 1.700 14b 0.198 to 0.204
15a 1.700 to 1.800 15 a 0.204 to 0.210

aChannel not included in sum
bIncluded in sum of maximum, half included in sum of average estimate, and

none included in sum of minimum estimate.
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COMPUTER PROGRAM

The computer program was written as a prot typ" for rro'sr-ch use. An

operational version, now being written, will be documented in another USAFSAM
technical report. Only the main features of the program are outlined below:

1. Program Initiation.

a. The time and date are given.
b. The user is asked for

(1) flow rate
(2) run time
(3) number of ranges to be included
(4) the number of counts in each of the selected ranges.

2. Data Checks. Five checks are calculated to ascertain that overlap-
ping channel intervals include their proper subsets; i.e., that a larger
number of particles are contained in the larger of the overlapping intervals.

3. Volume Calculations. Volume of particles in each channel, total
volume of all particles in a given range, and total accumulated volume are
calculated.

4. Surface Area Calculations. Surface area of particles in each
channel, total surface area of all particles in all given ranges, and total
accumulated surface area are calculated.

5. Output. An example of output is shown in Table 2. Channels not
included in the accumulated volume or surface area are clearly labeled in the
printout.



TABLE 2. SAMPLE OUTPUT: MINIMUM, MAXIMUM, AND AVERAGE
VOLUME
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DISCUSSION

General criteria for determining aerosol size characteristics have been
reviewed by Hinds [3]. Characteristics of laser spectrometers have been
discussed in detail by Saltzman et al. [7], Willeke and Liu [9], Schuster and
Knollenberg [8], Pinnick and Auvermann [6],and Garvey and Pinnick [2].
Criteria and instrument characteristics that affect this application of laser
spectrometer data are discussed briefly below. These characteristics include
the acceptance-size range of the detector, sampling losses, and detectability
of small signals.

General Assumptions

Commonly, the LAS-X system is calibrated using polystyrene latex
spheres. The manufacturer claims that the laser cavity's interferometric
properties make the LAS-X insensitive to the refractive index of the
scattering particles. However, calculations by Saltzman et al. [7] show that
correction factors are required for the scattering intensities when sampling
particles other than polystyrene. Fortunately, at the wavelength of the
He-Ne laser (X- 632.8 nm), the index of refraction of the poljstyrene latex
particles used as a test aerosol is equal to 1.5905-Oj which is close to the
index of refraction of NaCl, 1.5442-0j. Corrections due to index-of-
refraction differences between polystyrene latex spheres and NaCl are not
expected to be large when compared to other sources of errors. The
nonspherical symmetry of the NaCI particles may cause a larger difference
between the scattering properties of the polystyrene latex spheres and NaCI.

Regardless of the shape of the particles, dimensional analysis
arguments [] can show that the volume of a particle is proportional to a
dimension (or diameter) of the particle raibed to the third power.
Therefore, if we assume that the LAS-X system give- a correct determination
of particle size, then results of our calculated volume, assuming spherical
particles, differ only by a proportionality factor for nonspherical parti-
cles having identical shapes. However, questions remain unanswered as to
whether all NaCl particles have identical shapes and what magnitude of
discrepancy in LAS-X response for nonidentical particles is introduced.

Sampling Statistics

The statistical probability that no particle (p-O), one particle (p-i),
or more than one particle (p-2,3,4,....) is present during a sampling time
Interval, t, is given by the Poisson distribution

Pp = (pt)P e- Pt (4)Pp - p

where pt average number of particles sampled in time t.
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A point to remember: The Poisson probability law is related to the
statistical nature of random phenomena, not to instrumentation errors or
human errors in sampling. (Random emission of electrons from the filament of
a photosensitive substance under the influence of light and the spontaneous
decomoosition of radioactive nuclei are examples of phenomena obeying
Poisson's probability law.)

For the Poisson probability distribution given in Equation (4), the
mean average number, Fi, of particles sampled during time t is given as

n = it (5)

and the standard deviation from .he mean, o(t), is given as

c~t) = (Itl 1 2  (6)

That is, if the mean average number of particles f is sampled during time t
and the sampling is described by a Poisson process, the standard deviation is
given as the square root of fE. Commonly, a signal-to-noise ratio is defined
as the ratio of the mean average to the standard deviation of the sample;
i.e., the signal-to-noise ratio, SN, is defined as

1/2 1/2 (7)SN : i/(W) = (niO

As the mean number of counts increases, the signal-to-noise ratio for
detection of particles obeying a Poisson distribution improves with te
square root of fi. For large values of 5, the Poisson distribution function
approaches a normal distribution function (a good approximation when n > 50).
Under the normal distribution approximation, the number of counts detected
has a 68% probability of falling within (±) one standard deviation of the
mean and a 96% probability of falling within (±) two standard deviations of
the mean [4].

When more than one particle is observed simultaneously in the LAS-X
view volume (p > 1), "coincidence" occurs. The signal from two (or more)
particles is interpreted as a larger particle, incorrectly weighting the
particle size distribution to larger particles and incorrectly reducing the
total number of particles counted. Coincidence is a serious problem with the
LAS-X when particle number concentration exceeds about 1000 particles per
cubic centimeter [3, 4, 9]. Particle number concentrations in respirator-
fit-testing challenge atmospheres are usually greater than about 106
particles per cubic centimeter; so for size distribution and volume
concentration to be valid, the aerosol must be diluted with 1000 ml of clean
air for every 1 ml of aerosol.

A7



SUMMARY AND CONCLUSION

A computer program was written to calculate particle volume from
particle-size data obtained with the LAS-X active-light scattering system,
and the calculated volume was compared with data obtained with the flame
photometer. Possible sources of instrumentation errors and sampling
statistics have been briefly discussed. We conclude that the LAS-X
particle-volume data and the flame photometer aarosol-mass data can be
c ipared if sources of errors and uncertainty are taken into account. The
comparison of LAS-X and flame-photometer tata will be reported in a separate
technical report.
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