

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-A143 171

2

TOTAL AEROSOL VOLUME COMPUTED FROM LASER SPECTROMETER PARTICLE-SIZE DATA FOR COMPARISON WITH FLAME PHOTOMETER TOTAL-MASS DATA

Irwin S. Goldberg, Ph.D.

A. Rachel Laird, Ph.D.

June 1984

Final Report for Period 15 June 1983 - 30 September 1983

Approved for public release; distribution is unlimited.

USAF SCHOOL OF AEROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235

Ε

84 07 12 024

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE	SECURITY CLASSIFICATION OF THIS PAGE							
	REPORT DOCUM	ENTATION PAG	Ε					
1a REPORT SECURITY CLASSIFICATION Unclassified	16 RESTRICTIVE MARKINGS							
28. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION/AVAILABILITY OF REPORT							
25. DECLASSIFICATION/DOWNGRADING SCHE	DULE	Approved for is unlimited	r public re i.	lease; dist	ribution			
4. PERFORMING ORGANIZATION REPORT NUN	IBER(S)	5. MONITORING OR	GANIZATION R	PORT NUMBER(S))			
USAFSAM-TR-84-23								
6. NAME OF PERFORMING ORGANIZATION USAF School of Aerospace	6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONI	78. NAME OF MONITORING ORGANIZATION					
Medicine	USAFSAM/VNC							
6c. ADDRESS (City. State and ZIP Code) Accospace Medical Division		7b. ADDRESS (City, State and ZIP Code)						
Brooks AFB, TX 78235								
8. NAME OF FUNDING/SPONSORING ORGANIZATION USAF School of	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
Aerospace Medicine	USAFSAM/VNC							
be. ADDRESS (City, state and zir code)		PROGRAM	PROJECT	TASK	WORK UNIT			
Brooks AFB, TX 78235		ELEMENT NO. 62202F	<u>NO.</u> 2729	NO . 03	NO . 09			
11 TITLE (Include Security Classification) TOTAL	AEROSOL VOLUME	COMPUTED FROM	LASER SPEC	TROMETER PART	TICLE-SIZE			
12. PERSONAL AUTHOR(S)	E PHOTOMETER TOT	AL-MASS DATA	<u> </u>					
Coldberg, Irwin S., Ph.D., an	d Laird, A. Rac	hel, Ph.D.		Tre avec a				
Final report FROM 6	оченер /15/83 то <u>9/30/83</u>	14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT 1984 June 13			3			
16. SUPPLEMENTARY NOTATION								
17 COSATI CODES	18. SUBJECT TERMS (C	Continue on reverse if ne	ecessary and identi	ify by block number;	,			
06 11 SUB. GR.	Flame photome	ter Respirators						
15 02	Poisson distr	ibution Aerosols						
19. ABSTRACT (Continue on reverse if necessary an	d identify by block numbe	r;						
A computer program that conve	rts laser spectr	ometer (LAS-X)	particle-s	size data to	total			
aerosol volume has been develo	oped. Sources o	f errors and u	ncertaintie	es in LAS-X d	lata have			
been evaluated. Because aeros	sol volume is di	rectly proport	ional to ma	ass, the deri	ved			
photometer.		moride (Maci)	aerosor-ma	iss data iron	la llame			
20. DISTRIBUTION/AVAILABILITY OF ABSTRA	21. ABSTRACT SECURITY CLASSIFICATION							
UNCLASSIFIED/UNLIMITED 🔀 SAME AS RPT.	Unclassified							
224. NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE NI (Include Area Co	UMBER de)	22c. OFFICE SYME	IOL			
A. Rachel Laird, Ph.D.	(512) 536-2	153	USAFSAM/V	NC				
DD FORM 1473, 83 APR	EDITION OF 1 JAN 73	S OBSOLETE.	U	CLASSIFIED				
			SECURI	TY CLASSIFICATIO	N OF THIS PAGE			

CONTENTS

INTRODUCTION 1	l
RATIONALE AND METHODS 2	2
COMPUTER PROGRAM 4	ŧ
DISCUSSION	5
General Assumptions	5
SUMMARY AND CONCLUSION	3
REFERENCES	3

LIST OF TABLES

Table No.

1.	Channel limits					3
2.	Sample output:	minimum,	maximum	and average	volume	5

Page

TOTAL AEROSOL VOLUME COMPUTED FROM LASER SPECTROMETER PARTICLE-SIZE DATA FOR COMPARISON WITH FLAME PHOTOMETER TOTAL-MASS DATA

INTRODUCTION

The Crew Technology Division of the School of Aerospace Medicine (USAFSAM) tests and evaluates chemical warfare defense respirators against the penetration of vapors and aerosol particles. A laser spectrometer (LAS-X) active light-scattering system (manufactured by Particle Measuring Systems, Inc., Boulder, CO) is used to measure aerosol particle-size distributions, and a flame photometer is used to determine the total mass of sodium chloride (NaCl) aerosol particles detected.

Contraction of the local

A computer program has been written to convert the particle size distributions obtained with the LAS-X into a total aerosol-particle volume proportional to the total mass of the detected aerosol particles. This calculated volume can be compared with the aerosol mass measured with the flame photometer. If both measuring systems are working according to their specifications, the total aerosol volume calculated from the LAS-X data should be equal to the mass measured with the flame photometer, within a proportionality constant.

With the LAS-X system, multichannel particle-size distribution data give the number of particles in each of the successive channels, with each channel representing a specific size interval. Since the size of the particles within each channel is unspecified within the size interval of the channel, three estimates of total particle volume are calculated -- upper, lower, and average.

As total particle volume is calculated from the LAS-X data, the overlap of the size intervals between data from different channels must be considered when accumulating data from adjacent size ranges. (This overlap has been deliberately designed into the LAS-X data output system to provide highest resolution within all size ranges.) So that data from channels with overlapping size ranges are not duplicated in the accumulated sum, predetermined channels in each size range are deleted from the sum in the accumulated total volume. Additional calculations are made to determine the logical consistency of data obtained from overlapping size intervals. That is, five numerical checks are performed with the computer to ascertain that, in each case, the larger of the overlapping size intervals contains more particles than the smaller interval.

RATIONALE AND METHODS

Data obtained with the LAS-X system is available as four size ranges, with each range divided into 15 channels corresponding to particle sizes between 0.12 and 7.5 μ m. Particles outside this size range cannot be detected by the LAS-X [3]. The calibration data showing the size interval for each range and channel is shown in Table 1. The channels not counted in the accumulated volume are identified. Channel 14 of range 3 is considered as a special case: All particles in this channel are added to the sum for the maximum estimate of accumulated volume under the assumptions that (1) all particles in this interval have diameters equal to 0.200 μ m, (2) half of that value is added to the sum for the minimum volume estimate.

For a spherical particle of diameter d_p , the volume of the particle is

$$V_{\rm p} = (1/6)\pi d_{\rm p}^3 \tag{1}$$

Multiplying the number, N(n), of particles in each channel (n = 1, 2, 3,...) by the volume obtained from Equation (1) for particles in channel n having an estimated diameter d_p , the total volume of all aerosol particles within channel n can be estimated by

$$V(n) = N(n)V_{D}$$
⁽²⁾

Since particle sizes are determined within discrete size intervals, three estimates of total aerosol volume within each channel are calculated. That is, we may estimate the minimum, maximum, or average volume, corresponding to the assumptions that all particles within channel n are, respectively, of the minimum, maximum, or average size within that channel's size interval. (By average V(n) we mean the volume calculated under the assumption that all particles in channel n have a diameter equal to the diameter at the midpoint of a channel size interval; the average V(n) is not equal to the average volume for particles in channel n.) The total volume of all detectable particles may be calculated by summing the volumes within all nonoverlapping channels as

> $V(Total) = \sum_{n} V(n)$ (3) (nonoverlapping channels)

where three estimated total volumes are calculated corresponding to a minimum, maximum, and average estimate.

2

TABLE 1. CHANNEL LIMITS

	Ch#	Diam. (µm)		Ch#	Diam. (µm)
Range = $0:$			Range = $2:$		
	1	1.500 to 1.900		1a	0.170 to 0.200
	2	1.900 to 2.300		2	0.200 to 0.230
	3	2.300 to 2.700		3	0.230 0.260
	4	2.700 to 3.100		ŭ	0.260 0.290
	5	3.100 to 3.500		5	0.290 0.320
	6	3.500 to 3.900		6	0.320 0.350
	7	3.900 to 4.300		7	0.350 0. 380
	8	4.300 to 4.700		8	0.380 0.410
	9	4.700 to 5.100		9	0.410 0.110
	10	5.100 to 5.500		10	0.440 0.470
	11	5.500 to 5.900		11_	0.470 0.500
	12	5.900 to 6.300		12a	0.500 0.530
	13	6.300 to 6.700		13 ^a	0.530 0.560
	_14	6.700 to 7.100		14a	0.560 0.590
	15	7.100 to 7.500		15ª	0.590 0.620
Range = 1:			Range = 3:		
	1a	0.300 to 0.400		1	0.120 to 0.126
	2a	0.400 to 0.500		2	0.126 to 0.132
	3	0.500 to 0.600		3	0.132 to 0.138
	4	0.600 to 0.700		4	0.138 to 0.144
	5	0.700 to 0.800		5	0.144 to 0.150
	6	0.800 to 0.900		6	0.150 to 0.156
	7	0.900 to 1.000		7	0.156 to 0.162
	8	1.000 to 1.100		8	0.162 to 0.168
	9	1.100 to 1.200		9	0.168 to 0.174
	10	1.200 to 1.300		10	0.174 to 0.180
	11	1.300 to 1.400		11	0.180 to 0.186
	12	1.400 to 1.500		12	0.186 to 0.192
	13a	1.500 to 1.600		13a	0.192 to 0.198
	14a	1.600 to 1.700		140	0.198 to 0.204
	15ª	1.700 to 1.800		15ª	0.204 to 0.210

^aChannel not included in sum

.

^bIncluded in sum of maximum, half included in sum of average estimate, and none included in sum of minimum estimate.

COMPUTER PROGRAM

The computer program was written as a prototype for research use. An operational version, now being written, will be documented in another USAFSAM technical report. Only the main features of the program are outlined below:

1. Program Initiation.

a. The time and date are given.

- b. The user is asked for
 - (1) flow rate
 - (2) run time
 - (3) number of ranges to be included
 - (4) the number of counts in each of the selected ranges.

2. <u>Data Checks</u>. Five checks are calculated to ascertain that overlapping channel intervals include their proper subsets; i.e., that a larger number of particles are contained in the larger of the overlapping intervals.

3. <u>Volume Calculations</u>. Volume of particles in each channel, total volume of all particles in a given range, and total accumulated volume are calculated.

4. <u>Surface Area Calculations</u>. Surface area of particles in each channel, total surface area of all particles in all given ranges, and total accumulated surface area are calculated.

5. <u>Output</u>. An example of output is shown in Table 2. Channels not included in the accumulated volume or surface area are clearly labeled in the printout.

TABLE 2. SAMPLE OUTPUT: MINIMUM, MAXIMUM, AND AVERAGE VOLUME

		HANGE						
CHB	0. M.	(M)LR/	ALLON'S	BULL SE.	MIN VOL/S	MAX VULIS	AVE VOLIS	
1	1.500	70 1. VOL	1	. 100K E+(H)	17+71E+00	54146+00	.23724E+00 (S)	
2	1. YUG	· 16 2.300	نہ ا	. 2000E+00	.71827E+.W	.12741E+01	.96981E+00 (S)	
3	A . 306	10 1.700	,	. (HORNE + (H)	. 000000E+00	. COOODE +00	.000001+00 1 5 /	
4		10 3,100			. 000006 +1-4	OUNDUE+0	. UCICKIU! +00 (S)	
•		TO 3.500			. 0000UE +00	. CODODE +00	. UNA THE + UD I S /	
	• .	TE B. VIN			WOODF . AL	JUNKING ALM	BROOK & FOO & S &	
•	1	10 4. 100		Marif . a.	UDGOUE +O	OCCHALE ***	. HO-600E +960 1 5 1	
÷	4.300	10 4.7.0		40.415.900	10000E+00	UNDOPE+00	000000F+00 + 5 +	
	4. 310.	10.5		14101-1-1	(nata 4)6 +1.0	GANNER TON	0.0015-6+00 + 5 3	
1.	1.100	12 5.500	Ó	A YOF HAD	UNICODE +00	UNKER +00	.00000F+00 (5)	
11	5.500	10 5.900	;	- 00-00E +00	000000000000	. 00000E+00	. GODOOF + 00 (5)	
:2	5.900	10 6.300		.0000E+00	00007+00	.00000E+00	.00000F+00 (5)	
		10 0 200	G	10000E+00	600606+00	000006+00	000006+00 (5)	
14	A. 200	10 7.100	ő	0000000000	000005+00	0000005+00	000005+00 (5)	
15	2 100	70 7 500	ő	(000000000	0000006+000	000005 +00	000005+00 (5)	
•••			v					
	• £ندامية	v 5u8⊺0	TLI MIN A	CCUM VOL/S -	0.895 /	AX ACCUM VOL/S =	1.633 AVE ACCUM VOL/8 *	1.227
		*** RANCE	- 1					
CHAR	DIAM.	(HICR)	OCUUNTS	OCNTS/SEC	MIN VOL/S	MAX VOL/S	AVE VOL/S	
1	0.300	10 0.400	17303	.1730E+04	.24462E+02	.57983E+02	.38844E+02 (* N.S. !! *)	
	0.400	TO 0.500	:449	.1449E+03	.48556E+01	.94837E+01	.69136E+01 (* N.S.'! #)	
3	0.500	10 0.000	35	- 3300E+01	.22907E+00	.39584E+00	.30490E+00 (S)	
4	0.000	10 0.700	9	.9000E+00	.10179E+00	.16163E+00	.12941E+00 (S)	
5	0.700	10 0.900	8	.8000E+00	.14368E+00	.21447E+00	.17671E+00 (S)	
÷	0.800	10 0. 000	:	.1000E+00	- 26808E 01	, 38170E-01	.32155E-01 (S)	
1	0.900	10 1.000	1	.1000E+00	.39170E-01	.52360E-01	.44892E-01 (S)	
8	1.000	10 1.100	1	. 1000E+00	. 52360E-01	.69691E-01	. 60613E-01 (S)	
•	1.100	10 1.200	5	. 000UE+00	.00000E+00	.00000E+00	.00000E+00 (S)	
10	1.200	10 1.300	:	.:000E+00	.90478E-01	,11503E+00	10227E+00 (S)	
11	1.300	TO 1.400	1	. 1000E+00	-11503E+00	-14368E+00	12892E+00 (8)	
12	1.400	TO 1.500	٥	. 0000E+00	.00000E+00	.00000E+00	.00000E+00 (S)	
13	1.500	TG 1,600	ΰ	. 0000E+00	.00000E+00	.00000E+00	.00000E+00 (# N B)! #1	
14	1.600	10 1.700	0	.000UE+00	.00000E+00	.00000E+00	.00000E+00 (* N \$ 1) *1	
15	1.700	TO 1.900	0	.000UE+00	- 00000E+00	.00000E+00	.00000E+00 (+ N.S. !! +)	
• • •			LT MIN AC	CUM VOL/S +	30.115 M	AX ACCUM VOL/S =	68.657 AVE ACCUN VOL/S -	46.737
	ful							
- C (14	2 . 70	TO O WO	PLOUNTS	UNIS/SEC	HIN VOL/S	MAX VOL/S	AVE VUL/S	
•		10 0.200	22703	. 227GE+04	- 38402E+01	.95098E+01	.75266E+01 (* N.S.!! *)	
-	2.200	10 0.230	/	.7448E+04	31196E+02	.47445E+02	-30755E+02 (S)	
Å		10 9.200	40.500	4058E+04	· 25852E+02	.37345E+02	.31247E+02 (S)	
	0.100	10 0.490	22108	- 217E+04	-20401E+02	. 28309E+U2	.24139E+02 (\$)	
ź	1 2 2 2 2	10 0.320	11/32	.11/3E+04	-14982E+02	. 20129E+02	.17429E+02 (S)	
ş	3 350	10 0.330	5907	. 5907E+03	.10135E+02	.13261E+02	.11628E+02 (S)	
		10 0.380	3235	. 32356+03	•72623E+01	.92944E+01	.82367E+01 (\$)	
	0.000	10 0.410	1759	-1759E+03	.50538E+01	. 63477E+01	.56762E+01 (S)	
	2.410	10 0.440	184	.7890E+02	.28473E+01	.351912+01	.31713E+01 (S)	
	0.430	10 0.470	195	. 1950E+02	.86974E+00	. 10601E+01	.96176E+00 (S)	
	0.470	10 0.500	43	.4500E+01	.24463E+00	.29452E+00	.26680E+00 (S)	
15	0.500	10 0.530	26	. 2600E+01	-17017E+00	. 20267E+00	.16595E+OU (* N.S.** *)	
	0.550	10 0.560	0	. 8000E+00	-46771E-01	.55171E-01	.50856E-01 (* N.S.!! *)	
17	0.500	10 0.590		. \$000E+00	.82757E-01	.96782E-01	.89587E-01 (* N.S.!' +)	
•••	0. 340	10 0.620	•	. 4000E+00	.43014E-01	.49915E-01	.46379E-01 (+ N.S. + +)	
**f	Ar+GE =	2 SUBTOT	L: MIN AC	CUM VOL/S =	125.026 MA	X ACCUN VOL/S .	174 919 AVE ACCIM LOL /6 -	149 413
	D 10-	HANGE	3000					
1.748	101 AM, 1	MICR)	PCOLINTS	#CNTS/SEC	BIN VOL/S	MAK VUL/S	AVE VOL/S	
1	0.120	10 0.126	13371	.1337E+04	.12098E+01	.14005E+01	.13028E+01 (S)	
4	0.126	10 0,132	16557	.1656E+04	.17342E+01	.19939E+01	.18610E+01 (8)	
3 (0.132	10 0.138	15620	.1363E+04	.18920E+01	.21505E+01	.20133E+01 (S)	
	0.138	10 0.144	20411	.2041E+04	.28087E+01	.31912E+01	.29958E+01 (S)	
2	144	10 0,150	21145	.2115E+04	.33059E+01	.37366E+U1	.35169E+01 (S)	
6	0.150	10 0.156	20653	. 2065E+04	.36497E+01	.41054E+01	.38731E+U1 (5)	
	0.156	10 0.162	20482	.2048E+04	.40714E+01	.45595E+01	.43108E+01 (S)	
a .	0.162	10 0.168	22338	.2234E+04	.49726E+01	.55459E+01	.52541E+01 (S)	
	0.168	10 0.174	19603	.1980E+04	.49165E+01	.54623E+01	.51846E+01 (S)	
10	0.174	10 0.180	20558	. 2056E+04	. \$6706E+01	. 62776E+01	.59490E+01 (5)	
11	0.180	10 0.186	18263	.1026E+04	. 55768E+01	.61533E+01	-58604E+01 (S)	
12	0.186	10 0.192	20480	. 209BE+04	.70687E+01	.77751E+01	.74163E+01 (8)	
13	0.192	10 0.198	15116	.1312E+04	. 36019E+01	.61437E+01	.58687E+01 (\$)	
14 1	0.198	10 0.204	16440	.1644E+04	- 64818E+01	.73079E+01	. 49902E+0) (\$ P.S. ! . S)	
13 (9.204	10 0.210	14040	.1465E+04	.43104E+01	.71019E+01	.48019E+01 (+ N.S. !! +)	
	94 F -	3 51-6707	1					
			HIN ACC	UN VOL/S	65.661 MA	ACCUM VOL/S =	72.905 AVE ACCUH VOL/8 .	69.219
10.	FAL 4	RANGES	MIN ACCUP	1 VOL/S +	173.004 MAX	ACCUM VOL/S =	228.324 AVE ACCUM VOL/8 .	199.146

DISCUSSION

General criteria for determining aerosol size characteristics have been reviewed by Hinds [3]. Characteristics of laser spectrometers have been discussed in detail by Saltzman et al. [7], Willeke and Liu [9], Schuster and Knollenberg [8], Pinnick and Auvermann [6], and Garvey and Pinnick [2]. Criteria and instrument characteristics that affect this application of laser spectrometer data are discussed briefly below. These characteristics include the acceptance-size range of the detector, sampling losses, and detectability of small signals.

General Assumptions

Commonly, the LAS-X system is calibrated using polystyrene latex spheres. The manufacturer claims that the laser cavity's interferometric properties make the LAS-X insensitive to the refractive index of the scattering particles. However, calculations by Saltzman et al. [7] show that correction factors are required for the scattering intensities when sampling particles other than polystyrene. Fortunately, at the wavelength of the He-Ne laser (λ = 632.8 nm), the index of refraction of the polystyrene latex particles used as a test aerosol is equal to 1.5905-0j which is close to the index of refraction of NaCl, 1.5442-0j. Corrections due to index-ofrefraction differences between polystyrene latex spheres and NaCl are not expected to be large when compared to other sources of errors. The nonspherical symmetry of the NaCl particles may cause a larger difference between the scattering properties of the polystyrene latex spheres and NaCl.

Regardless of the shape of the particles, dimensional analysis arguments [1] can show that the volume of a particle is proportional to a dimension (or diameter) of the particle raised to the third power. Therefore, if we assume that the LAS-X system gives a correct determination of particle size, then results of our calculated volume, assuming spherical particles, differ only by a proportionality factor for nonspherical particles having identical shapes. However, questions remain unanswered as to whether all NaCl particles have identical shapes and what magnitude of discrepancy in LAS-X response for nonidentical particles is introduced.

Sampling Statistics

The statistical probability that no particle (p=0), one particle (p=1), or more than one particle (p=2,3,4,...) is present during a sampling time interval, t, is given by the Poisson distribution

$$P_{p} = \frac{(\mu t)^{p} e^{-\mu t}}{P!}$$
(4)

where $\mu t = average$ number of particles sampled in time t.

A point to remember: The Poisson probability law is related to the statistical nature of random phenomena, not to instrumentation errors or human errors in sampling. (Random emission of electrons from the filament of a photosensitive substance under the influence of light and the spontaneous decomposition of radioactive nuclei are examples of phenomena obeying Poisson's probability law.)

For the Poisson probability distribution given in Equation (4), the mean average number, \bar{n} , of particles sampled during time t is given as

$$\overline{n} = \mu t$$
 (5)

and the standard deviation from the mean, o(t), is given as

$$c(t) = (\mu t)^{1/2}$$
 (6)

That is, if the mean average number of particles \bar{n} is sampled during time t and the sampling is described by a Poisson process, the standard deviation is given as the square root of \bar{n} . Commonly, a signal-to-noise ratio is defined as the ratio of the mean average to the standard deviation of the sample; i.e., the signal-to-noise ratio, SN, is defined as

$$SN = \overline{n}/(\overline{n})^{1/2} = (\overline{n})^{1/2}$$
(7)

As the mean number of counts increases, the signal-to-noise ratio for detection of particles obeying a Poisson distribution improves with the square root of \bar{n} . For large values of \bar{n} , the Poisson distribution function approaches a normal distribution function (a good approximation when n > 50). Under the normal distribution approximation, the number of counts detected has a 68% probability of falling within (±) one standard deviation of the mean and a 96% probability of falling within (±) two standard deviations of the mean [4].

When more than one particle is observed simultaneously in the LAS-X view volume (p > 1), "coincidence" occurs. The signal from two (or more) particles is interpreted as a larger particle, incorrectly weighting the particle size distribution to larger particles and incorrectly reducing the total number of particles counted. Coincidence is a serious problem with the LAS-X when particle number concentration exceeds about 1000 particles per cubic centimeter [3, 4, 9]. Particle number concentrations in respiratorfit-testing challenge atmospheres are usually greater than about 10^6 particles per cubic centimeter; so for size distribution and volume concentration to be valid, the aerosol must be diluted with 1000 ml of clean air for every 1 ml of aerosol.

SUMMARY AND CONCLUSION

A computer program was written to calculate particle volume from particle-size data obtained with the LAS-X active-light scattering system, and the calculated volume was compared with data obtained with the flame photometer. Possible sources of instrumentation errors and sampling statistics have been briefly discussed. We conclude that the LAS-X particle-volume data and the flame photometer aerosol-mass data can be c spared if sources of errors and uncertainty are taken into account. The comparison of LAS-X and flame-photometer data will be reported in a separate technical report.

REFERENCES

- 1. Fuchs, N. A. The mechanics of aerosols, pp 204-20' Exford: Pergamon Press, 1964.
- 2. Garvey, D. M., and R. G. Pinnick. Response chara "istics of the particle measuring systems active scattering a prior "spectrometer probe (ASASP-X). Aerosol Sci Technol 2:477-488 (1983)
- 3. Hinds, W. Aerosol technology--properties, behavior, and measurement of airborne particles. New York: John Wiley and Sons, 1982.
- 4. Laser aerosol spectrometer PMS Model LAS-X operating manual. Particle Measuring Systems, Boulder, Colorado, 1982.
- 5. Parzen, E. Modern probability theory and its applications. New York: John Wiley and Sons, 1960.
- 6. Pinnick, R. G., and J. J. Auvermann. Response characteristics of Knollenberg light scattering aerosol counters. J Aerosol Sci 10:55-74 (1979).
- Saltzman, G., H. Ettinger, M. Tillery, L. Wheat, and W. Grace. Potential applications of a single-particle aerosol spectrometer for monitoring size at the DOE filter test facilities. LA-UR 82-2090, Los Alamos National Laboratory Los Alamos, New Mexico.
- 8. Schuster, B. G., and R. Knollenberg. Detection and sizing of small particles in an open cavity gas laser. Appl Optics 11:1515-1520 (1972).
- 9. Willeke, K., and B. Y. H. Liu. Single-particle optical counter. In B. Y. H. Liu (Ed.). Fine particles: Aerosol generation, measurement, sampling and analysis, pp. 698-729. New York: Academic Press, 1976.

8

