
A RAND NOTE

Prepared for

Rand
1700 MAIN STREET

P.O. BOX 2138
SANTA MONICA. CA 90406-2138

DISTRIBUTED PROBLEM SOLVING FOR AIR FLEET
CONTROL: FRAMEWORK AND IMPLEMENTATIONS

R. Steeb, D. McArthur, S. Cammarata,
S. Narain, W. Giarla

April 1984

N-2139-ARPA

The Defense Advanced Research Projects Agency

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under ARPA Order
No. 3460, Contract No. MDA903-82-C-0061, Information Processing
Techniques Office.

The Rand Publications Series: The Report is the principal publication doc
umenting and tr;msmitting Rand's major research findings and final research
results. The Rand Note reports other outputs of sponsored research for
general distribution. Publications of The ftand Corporation do not neces
sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

A RAND NOTE

Prepared for

Rand
1700 MAIN STREET

P.O. BOX 2136
SANTA MONICA. CA 90406-2136

DISTRIBUTED PROBLEM SOLVING FOR AIR FLEET
CONTROL: FRAMEWORK AND IMPLEMENTATIONS

R. Steeb, D. McArthur, S. Cammarata,
S. Narain, W. Giarla

April 1984

N-2139-ARPA

The Defense Advanced Research Projects Agency

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- iii -

PREFACE

This Note reports the interim results of an ongoing investigation

of distributed problem solving for air fleet control, conducted for the

Information Processing Techniques Office, Defense Advanced Research

Projects Agency. The work has focused on the development of

organizational structures for cooperative planning in complex, spatially

distributed systems, using air-traffic control and remotely piloted

vehicle (RPV) fleet control as illustrative contexts. Related research

is reported in the following Rand publications:

Distributed Intelligence for Air Fleet Control, by
R. Steeb, S. Cammarata, F. A. Hayes-Roth, P. W. Thorndyke,
and R. B. Wesson, R-2728-ARPA, October 1981.

The ROSS Language Manual, by D. McArthur and P. Klahr,
N-1854-AF, September 1982.

Swirl: Simulating Warfare in the ROSS Language, by
P. Klahr, D. McArthur, S. Narain, and E. Best, N-1885-AF,
September 1982.

Strategies of Cooperation in Distributed Problem Solving,
by S. Cammarata, D. McArthur, and R. Steeb, N-2031-ARPA,
December 1983.

- v -

SUMMARY

Distributed problem solving, or multiple-agent problem solving,

refers to the process by which several agents interact to achieve goals.

In this Note, we describe the development of a framework for

implementation of multiple cooperative agents. We also describe

experiments and demonstrations with different strategies of cooperation,

using air-traffic control and remotely piloted vehicle (RPV) fleet

coordination as our exemplary task domains.

Multiagent cooperation is discussed first in a domain-independent

fashion, and then in the context of the two task domains. We contrast

the methodologies, difficulties, and opportunities of distributed and

centralized problem solving. From this analysis, we postulate a set of

requirements on the information-gathering and organizational policies of

group problem-solving agents, and we develop a general framework for

implementing such policies. We then discuss a set of distributed

problem solvers that we have developed for air-traffic control and

surveillance RPV fleet control. Finally, we describe some experimental

findings using the cooperative strategies, with particular emphasis on

role assignment within the group and communications between group

members.

- vii -

CONTENTS

PREFACE iii

smmARY v

FIGURES AND TABLE ix

Section

I. INTRODUCTION 1

II. DISTRIBUTED AND SINGLE-AGENT PROBLEH SOLVING 3
Characterization of Distributed Problem Solving 3
Difficulties in Distributed Problem Solving.............. 4

III. STRATEGIES FOR COOPERATION 7
Organizational Policies 8
Information-Distribution Policies 9

IV. A FRAHEWORK FOR DISTRIBUTED PROBLEM SOLVING

v.

Reasoning about Tasks
The Framework: Tenets
The Framework: Implementation

AIR-TRAFFIC CONTROL AS A DISTRIBUTED PROBLEM

VI. FOUR DISTRIBUTED PROBLEM SOLVERS FOR AIR-TRAFFIC CONTROL
Tasks in Air-Traffic Control
Organizational Policies in ATC
Information-Distribution Policies in ATC

VII. EXPERIHENTAL STUDIES IN AIR-TRAFFIC CONTROL

VIII. RE~10TELY PILOTED VEHICLE FLEET CONTROL

IX.

Tasks in RPV Fleet Coordination
Initial RPV Demonstration System: Patterned Flight
Second Demonstration System: Uncertainty Representation
Third Demonstration System: General Surveillance
RPV Fleet-Control Implementation

CONCLUSIONS AND FUTURE WORK

REFERENCES

11
11
12
14

16

19
19
23
27

28

31
31
33
35
40
42

46

49

- ix -

FIGURES

1. Air-traffic control task simulation 16

2. Prototypical task sequence under the shared-convention
policy . 24

3. Prototypical task sequence under the least spatially
constrained policy . 25

4. Prototypical task sequence under the task-sharing policy 26

5. Initial simulation of surveillance RPV coordination 33

6. Second implementation of surveillance RPV task simulation,
with active defenses . 35

7. Event tree for sensing and detection 37

8. Comparison of demand and volunteer protocols
for communication . 41

TABLE

1. Performance measures of three organizational policies 29

- 1 -

I. INTRODUCTION

Distributed problem solving, or multiple-agent problem solving,

refers to the process by which several agents interact to achieve goals.

The intent of a theory of distributed problem solving is to develop an

information processing account of effective group problem-solving

performance. We are attempting to learn how groups can cooperate

effectively by describing in formal, computational terms the actions of

each agent as the group achieves a collective goal.

Previous work in cognitive science helps little in achieving this

understanding. Few studies have focused on group problem solving. Over

the past twenty years, beginning with the pioneering work of Newell and

Simon, cognitive scientists have learned much about the information

processing that underlies the problem solving of individuals. Cognitive

psychologists have, for example, carefully studied the way in which

people play games, solve mathematics problems, and program computers.

In a similar way, workers in artificial intelligence have developed

computational models of how single agents might construct blocks-world

artifacts, do medical diagnosis, and plan genetics experiments, to

mention only a few. These efforts have resulted in the development of a

variety of techniques for modeling the environment, planning under

uncertainty, and executing complex sequences of actions. Unfortunately,

recent work suggests that the representations of knowledge (Konolige,

1981; Appelt, 1982) and planning expertise (McArthur and Klahr, 1982)

required of agents in distributed or group problem-solving situations

are quite different than those required for single-agent problem

solvers. Organizational psychologists have explicitly studied group

performance (Dalkey, 1977), but because of the difficulties of

representing multiple disparate world views and of specifying sequences

of activities within and between agents, their theories are usually

expressed informally. Also, the theories are typically stated in

aggregate terms, not in terms of the information processing of

individual agents. The related area of distributed processing has more

formal underpinnings but is also of limited applicability. In

- 2 -

distributed processing, multiple computers interact in a relatively

simple fashion through the sharing of data. In distributed problem

solving, agents must not only share data, but they must also share the

problem solving.

In this Note, we present a model of distributed problem-solving

processes. Our approach has been to first carefully study the

competences or capabilities of agents in groups, then develop a

computational model of how these capabilities might be achieved. Then

we proceed to implement the computational theory and to develop and test

specific distributed problem-solving systems. Section II discusses the

difficulties and opportunities facing multiple-agent problem solvers in

many domains and contrasts these domains with more frequently studied

single-agent problem-solving environments. Section III uses this

analysis to infer a set of requirements on the cooperative strategies of

group problem-solving agents. In Sec. IV, we discuss the computational

theory that follows from our analysis of competences. The remaining

sections are devoted to descriptions of several specific systems we have

implemented in the domains of distributed air-traffic control and

distributed RPV coordination.

- 3 -

II. DISTRIBUTED AND SINGLE-AGENT PROBLEM SOLVING

To understand the capabilities of agents that solve problems in a

distributed fashion, and to understand how they differ from single

agent problem solvers, we begin by examining some important

characteristics of distributed problems.

CHARACTERIZATION OF DISTRIBUTED PROBLEM SOLVING

Several general characteristics of distributed problem-solving

situations are particularly important for our purposes:

• Most situations consist of a collection of agents, each with

various skills, including sensing, communication (often over

limited-bandwidth channels), planning, and acting.

• The group as a whole has a set of assigned tasks. As in single

agent problem-solving situations, these tasks may need to be

decomposed into subtasks, not all of which may be logically

independent. The group must somehow assign subtasks to

appropriate agents.

• Each agent typically has only limited knowledge. An agent may

be subject to several kinds of limitations: limited knowledge

of the environment (e.g., because of restricted sensing

horizons), limited knowledge of the tasks of the group, or

limited knowledge of the intentions of other agents.

• There are often limited shared resources that each agent can

apply to tasks. For example, if the agents are in a blocks

world environment, the shared resources are the blocks out of

which their constructions must be made.

• Agents typically have differing appropriateness for a given

task. The appropriateness of a particular agent for a task is

a function of how well the agent's skills match the expertise

required to do the task, the extent to which its limited

knowledge is adequate for the task, its current processing

resources, and the quality of its communication links with

other agents.

- 4 -

DIFFICULTIES IN DISTRIBUTED PROBLEM SOLVING

Several difficulties can arise when solving problems in a

distributed fashion that are not significant in most single-agent

problem-solving situations. First, in single-agent problem solving, the

agent is typically given its task as part of the problem definition

(Sacerdoti, 1974; Fahlman, 1974), whereas in distributed situations, the

assignment of tasks to the agents is part of the group problem-solving

activity. This assignment can be challenging. Many mappings of tasks

to agents are possible, but because agents typically have differing

available expertise for a given task, only a few agents will be

acceptable for each task. Thus in many distributed problems, it is

crucial for agents to adopt the right role. It would not be reasonable

to assign the role of inventing a new chip to a lawyer, or the role of

writing the patent to an engineer. In addition to ensuring that each

task is assigned to an acceptable agent, the group has to ensure task

coverage. Specifically, this means that all tasks should be assigned

to some agent (complete role assignment) and that extra or redundant agents

should not be assigned tasks (consistent role assignment). For example, in

air-traffic control, if the task is to solve a possible spatial conflict,

it may be critical to ensure that only one aircraft detours; if two or more

adopt that role, they may possibly create a new collision situation.

Compounding the difficulty of finding an optimal task assignment is

the limited knowledge of the agents. In most single-agent problem

solvers, the agent has a complete world model, which usually remains

complete because (1) all changes in the environment are made by the

agent and thus it can always update its world model, and (2) a single

agent does not have to worry about unknown intentions of other agents.

The incomplete or incorrect world models of distributed agents may

degrade the effectiveness of task assignment, either because agents that

know the breakdown of tasks may not know which agents have the most

appropriate available expertise, or conversely, because the agents with

the best expertise may not know about appropriate tasks for them.

Similarly, the incomplete knowledge of agents may prevent consistent and

complete role assignment because there may be no one agent that has a

- 5 -

global knowledge of all the roles or subtasks that need to be assigned.

In a single-agent problem solving situation, this issue does not arise.

The agent knows how it has decomposed a task into subtasks, and it knows

exactly which subtasks it has to do--all of them.

Once tasks or roles have been assigned, distributed problem solvers

face severe difficulties in coordinating task execution. Like

single-agent tasks or subtasks, group tasks may not be independent.

Temporal or logical dependencies may exist. For example, if the group

problem is to build a new chip, the designer's role must be completed

prior to the initiation of the manufacturer's role. In addition, tasks

that are not logically connected may interact through shared resources.

For example, if two blocks-world agents are each to build towers, one

agent's plan will negatively interact with another's if both intend to

use the same block (Davis, 1981). The interaction is negative because

the first agent is satisfying its task, but at the cost of preventing

the second agent from doing the same. In contrast, the plans might

interact positively, say, if one agent's plan entails using (hence

picking up) a block that currently lies on top of the block another

agent intends to use. The interaction is positive in the sense that the

first agent is not only satisfying its task, it is also helping the

second agent satisfy its task.

Single-agent problem solvers have difficulties in handling

nonindependent tasks or subgoals (Sussman, 1975), but these difficulties

multiply for distributed problem solvers, because of limited knowledge.

If two agents have only local knowledge--e.g., if they know only the

local environment and only their own tasks and intentions--they will not

be able to prevent negative interactions between goals or roles. If the

chip designer does not know about the chip manufacturer, there is no

basis for coordinating their subtasks; if one blocks-world agent doesn't

know the intentions of another, there is no basis for ensuring that

their projected uses of resources will not conflict. Similarly, without

some knowledge of others' tasks and intentions, positive interactions,

the essence of effective group problem solving, cannot be encouraged.

In summary, the main challenge in distributed problem solving is to

make the solutions a distributed agent produces not only locally

acceptable, achieving the assigned tasks, but also interfaced correctly

- 6 -

with the actions of other agents solving dependent tasks. The solutions

must not only be reasonable with respect to the local task, they must be

globally coherent, and this global coherence must be achieved by local

computation alone. Global coherence is less difficult to achieve for a

single-agent problem solver, simply because its computation and

knowledge are themselves as global as the task requires.

- 7 -

Ill. STRATEGIES FOR COOPERATION

How can global coherence be achieved in distributed problem-solving

groups, in the face of limited knowledge and the requirement that all

computation be local? Intuition says that it can be achieved, since

there are cases where groups act synergistically, solving problems

better than any individual could. Broadly, the key for coherent

distributed problem solving lies in the fact that while distributed

agents have greater difficulties in solving a given task, they have

potentially more options as well. A single-agent problem solver must

gather all information itself; distributed agents work singly as well,

but they may also ask others to help. A single-agent problem solver

must perform all planning itself; a distributed agent may plan or act,

but it may also request others to do so, resulting in speed through

parallelism. In short, much of the power of distributed problem solving

comes through cooperation and communication.

We have come to believe that there are no general algorithms to

dictate optimum cooperation. Methods that yield good distributed

performance under one set of conditions fail under others. Although

communication between agents provides the basis for effective

cooperative problem solving, it is just another problem-solving tool

that may be used either poorly or effectively. If the tool is used

poorly, then group problem-solving performance may be worse than

individual problem-solving performance. It requires considerable

expertise to use communication effectively. This expertise seems to

take the form of a broad range of heuristic rules. We refer to such

expertise collectively as cooperative strategies. Our main theoretical

and empirical goals have been to understand such strategies. In a

theoretical vein, we have attempted to analyze the components of

cooperative strategies and the range of alternative strategies that may

be adopted. More empirically, we have attempted to determine the

performance characteristics of such strategies and the conditions under

which each will perform poorly or effectively. We have classified these

heuristic cooperation strategies under two headings: organizational

- 8 -

policies and information distribution policies. In the following

sections, we briefly discuss some theoretical aspects of cooperation.

Subsequently, we present some empirical tests of several specific

policies we have implemented in a distributed problem solver for air

traffic control. We finish by describing some further implementations

in RPV coordination.

ORGANIZATIONAL POLICIES

Organizational policies dictate how a larger task should be

decomposed into smaller (sub)tasks which can be assigned to individual

agents. Typically, a given organizational policy assigns specific roles

to each of the agents in a group. Such a policy is useful if for some

tasks the resulting division of labor enables agents to work

independently. For example, the corporate hierarchy is an

organizational policy that is particularly effective if the corporate

task can be decomposed in such a way that an agent at one level can work

independently of others at that level, reporting results only to its

immediate superior, who takes care of any necessary interfacing.

Organizational policies not only define task decomposition, but

they also prescribe communication paths among agents. They turn a

random collection of agents into a network that is fixed, at least for a

given task. In the corporate hierarchy, again, the arcs between agents

usually indicate which pairs are permitted to talk to one another and,

in addition, they determine the nature of the messages that are allowed.

Such communication restrictions are beneficial if they encourage only

those agents who should communicate to do so--in particular, agents who

have dependent tasks or who may share resources. In general,

organizational policies strongly direct and constrain the behavior of

distributed agents. If those constraints are appropriate to the task at

hand, then the organization is effective; otherwise, its performance may

be suboptimal.

Agents must know not only which policy is appropriate to the

current circumstances, but also the techniques by which a group can

implement the chosen policy in a distributed fashion. How is the

assignment of roles specified by the policy made to agents? How is the

agent that is most appropriate for a given task found?

- 9 -

Briefly, any distributed method of implementing an organizational

policy must answer a variety of questions, including:

•

•

•

Are agents externally directed or data-directed (Lesser, 1981)?

That is, does an agent arrive at its roles by being told them,

or is information relayed, allowing the agent to assign the

roles itself?

When an agent is requested by another agent to conform to a

role or to take on another subtask, does the first agent have

the right to negotiate?

How does an agent weigh the value of competing tasks?

Smith (1978) has proposed the contract net as a formalism for

implementing certain organizational policies in a distributed fashion.

Other possible distributed policies can be derived from the blackboard

scheduling techniques of HEARSAY-III (Erman, 1981) and AGE (Nii, 1979),

and from hierarchical control structures used in production systems

(see, for example, the goal-oriented control in OPS5 (Forgy, 1981)). In

Sec. VI, we discuss a somewhat different organizational policy

implemented using our framework.

INFORMATION-DISTRIBUTION POLICIES

An information-distribution policy addresses the nature of

communication between cooperating agents. Decisions about how agents

communicate with each other are, first of all, constrained by the choice

of organizational policy, since that policy decides the network of

permissible communicators. However, within these constraints, a great

number of lower-level decisions must be made about how and when

communications should occur:

• Broadcast or selective communication. Are agents

discriminating about whom they talk to? If so, what criteria

are used to select recipients?

•

•

•

- 10 -

Unsolicited or on-demand communication. Assuming an agent

knows whom it wants to communicate with, does it do so only if

information is requested, or does it infer the informational

needs of other agents and transmit data accordingly? What form

of information (data, constraints, commands, goals) should it

send?

Acknowledged or unacknowledged communication. Does an agent

indicate that it has received information?

Single-transmission or repeated-transmission communication. Is

a piece of information sent only once, or can it be repeated?

How frequently? Lesser (1981) refers to a repeated

transmission policy as murmuring.

Poor decisions at this level result, at best, in the highly

inefficient use of limited-bandwidth channels. At worst, such choices

endanger global coherence by preventing agents whose tasks may interact

from talking to one another. The goal of information-distribution

policies is to minimize these possibilities. As with organizational

policies, the choice of communication policies depends on current

conditions. These include the bandwidth of the communication channel,

the reliability of the channel, the load of the channel, the maximum

acceptable information turnaround time, and the relative cost (and time)

of computation versus communication. Effective communications

management also requires accurate modeling of other agents' knowledge.

- 11 -

IV. A FRAMEWORK FOR DISTRIBUTED PROBLEM SOLVING

The previous sections gave an analysis of distributed problem

solving situations, as compared with single-agent problem-solving

environments, and informally described the special competences that

multiple-agent problem solvers must possess. In the following sections,

we attempt to develop a computational theory of these cooperative

capabilities. Our goal here is to explain how organizational policies

and information-distribution policies can be computed, and then to

describe specific implementations of such policies.

REASONING ABOUT TASKS

What sorts of computations are involved when groups successfully

employ a cooperative strategy? Abstractly, such successful cooperative

actions require each agent to make decisions about:

•
•
•
•
•
•

Which of planning, execution, evaluation, etc., it should do .

When it should do them .

How it should do them .

Whom it should talk to .

When it should communicate .

What it should say .

In short, each agent needs to make decisions about its preference among

tasks, their timing relative to one another, and their content. It

needs to reason about possible tasks.

Reasoning about possible tasks plays a much less significant role

in single-agent problem-solving situations than in distributed problem

solving. Many theories of individual problem solving (Fahlman, 1974;

Sacerdoti, 1974) suggest that a problem solver's activities are

decomposed into separate, strictly ordered phases of information

gathering, planning, and execution. Because this task ordering is so

trivial, there is little need to reason explicitly about it. Almost all

reasoning goes on within the planning task. Unless the problem solver

- 12 -

must maintain multiple lines of reasoning or deal with time-varying

data, there is little or no meta-level reasoning about planning--whether

it should be done, how it should be done in relation to a variety of

other tasks that comprise the problem-solving process. However, the

competences we described earlier indicate that a simple, fixed ordering

of tasks is not possible for multiple-agent problem solvers. The

ordering of tasks is not simple, because there are many tasks to manage

and they are frequently nonindependent (e.g., the agent must receive and

send communications as well as plan and execute). The ordering of tasks

cannot be fixed but must be dynamically changed, because agents will be

accruing information about the environment and the activities of the

other agents and will need to alter their task preferences on the basis

of this new information.

THE FRAMEWORK: TENETS
To achieve a computational understanding of distributed problem

solving, we therefore need a vocabulary that enables us to formally

represent task entities, and to formally express rules that reason about

the represented tasks. We have developed a framework which meets these

needs. Briefly, the main tenets of the framework are:

1. Each agent has several distinct kinds of generic tasks, such as

information gathering (sensing and input-communication),

information distribution (output-communication), plan

generation, plan evaluation, plan fixing, and plan execution.

2. Each kind of generic task invocation (or task instance) is a

process: It can be suspended and resumed, hence tasks can be

interwoven without losing continuity.

3. Each agent has a knowledge base that represents its beliefs

about other agents and their intentions, as well as information

about the static environment and its own intentions.

4. Within an individual agent, the knowledge base is shared by all

task instances, like a HEARSAY blackboard (Erman, 1981). Any

change in the knowledge base made by a task (e.g., information

gathering) while another task is suspended (e.g., planning)

will be visible to the latter when it resumes. Thus tasks such

- 13 -

as planning exhibit currency as well as continuity; they do not

base computations on an outdated world-model.

5. Task instances are both data-driven and event-driven.

Instances of generic tasks are triggered in two ways: by sets

of well-defined knowledge-base states, or by well-defined

events which result in changes to the knowledge base. Tasks

that are created do not immediately get executed but are

enabled and may compete for processing resources.

6. Each enabled task has a limited amount of self-knowledge,

including explicit intentions and validity conditions. This

information can be used to determine if a task is justified in

continuing as conditions change. Thus tasks will exhibit

relevance.

7. Enabled tasks are not invoked in a fixed order, as in single

agent problem solvers. Rather, the agent acts as a scheduler,

reasoning about the ordering of task instances. More

specifically, the agent uses a set of heuristic reasoning rules

to prioritize processes representing enabled tasks.

8. A task selected by the agent for execution is not necessarily

allowed to run to completion. It is given an upper limit of

processing resources (time). The extent of this limit is also

controlled by the agent.

9. During the execution of a task or process, (a) the task may

complete, in which case it is eliminated from the set competing

for resources; (b) new tasks may be created because of

knowledge-base changes or events effected by the running task;

(c) the changes may cause existing tasks to lose their

justification.

10. After a task has consumed its allocated supply of resources

(i.e., time), the agent reorders the priority of enabled tasks

and selects a new one to run, in light of the conditions in the

altered knowledge base. It also eliminates unjustified tasks

(if the tasks have not eliminated themselves).

11. This procedure iterates until there are no more enabled tasks

worth running.

- 14 -

Generally, then, we view the agent in a group problem-solving situation

as a kind of knowledge-based operating system. The view is not a model

of an agent in a specific distributed domain, but rather represents a

theoretical framework for describing distributed agents or a set of

guidelines for constructing a specific model. The framework is similar

to that used in blackboard systems (Erman, 1981) but is more dynamic,

in that tasks can be interrupted at any point. Adhering to the

framework, the user still needs to provide several sorts of domain

specific expertise, including the procedures that comprise each generic

task, the triggering conditions under which a task instance is to be

created, the validity conditions under which it is permitted to

continue, and the heuristic rules that order the priority of enabled

tasks in light of the current state of knowledge.

THE FRAMEWORK: IMPLEMENTATION

To facilitate the development of our specific distributed problem

solvers, we have implemented the framework in a simple task language.

The task language is a set of INTERLISP functions that provide the user

with a convenient vocabulary stating the required domain-specific

expertise. Once stated, the task language takes care of all the

specifics of task management. It insures that an appropriate task

instance is enabled whenever the triggering conditions of a user-defined

generic task are met. The task language also takes care of the low

level implementation of tasks as resumable coroutines, and it guarantees

that these processes suspend after consuming the appropriate amount of

time. Finally, it handles the details of scheduling the next task to

run; the user needs only to state the reasoning rules of the scheduler

that its application requires. 1 By attending to the details of task

creation and management, the task language frees the user to focus on

the theoretically more interesting issues of designing (and debugging)

rules that achieve the appropriate interweaving of tasks.

1 For more details on the capabilities of the task language, see
McArthur et al., 1982.

- 15 -

Our task language can be compared with the several specialized

artificial intelligence languages built on top of LISP. Such languages

were developed to provide a special set of primitives for building

programs in a limited domain. For example, EMYCIN (van Melle, 1979)

facilitates the development of diagnostic systems like HYCIN

(Shortliffe, 1976) and PUFF (Kunz et al., 1978)--although it may not

help in constructing fundamentally different systems--by providing

"expert-systems" concepts as primitives. To the extent that the

primitives provided actually suit the intended domain of application,

they simplify the programmer's design and implementation problems. In

the next section we test out the primitives of our task language by

employing the language to implement several distributed air-traffic

control problem solvers. Concrete examples will be given of how agents,

tasks, and rules for reasoning about tasks are represented.

- 16 -

V. AIR-TRAFFIC CONTROL AS A DISTRIBUTED PROBLEM

Problem solving in air-traffic control (ATC) may be distributed in

several ways. In Steeb et al. (1981), we discuss a variety of

architectures of distribution. Our present systems are all object

centered, with an agent associated with each aircraft. That is, each

aircraft has its own onboard planning, control, and communication

systems. In our ATC task, aircraft enter a rectangular (14 x 23 mile)

airspace at any time, either at one of 10 infixes (entry points) on the

borders of the airspace or from one of two airports. Figure 1, taken

from our ATC task simulation, shows the airspace in a relatively

congested state. The main goal of an agent is to navigate its

associated aircraft through the airspace to an assigned destination--

7 "'-~ /- -+---"7'
~

3 I
~-

/
~-

5
9

~6

C considers best plan.
Conflicts detKted IIIith (V)

8

+----FLIGHT STRIPS----+

3 Jp 5->2 6 t£ +
3 C 6->X 6 5W * + ~ ~->X 2 N +
IJ .->5 3 S +
VP ,->0 4 l'lol * 0 +
ip .->6 3 tlol +

4 AJ ,->9 3 5W +
Fp ,->2 5 t£ +

- SJ ,->+ 2 N * 4 +
KJ ,->8 5v4 S +
41 4->+ 6 5W * +

+----ERROR REPORTS----+

+TIME+

35
+CMDS+

L.A2
LRW
TRN
'JRKI

C unable to MOdify this plan to auoid conflicts.

Fig. 1 -- Air-traffic control task simulation

- 17 -

either a boundary outfix or an airport. Each aircraft has only a

limited sensory horizon, hence its knowledge of the world is never

complete, and it must continually gather information as it moves through

the airspace. Information may be accumulated either by sensing or by

communication. Agents are allowed to communicate over a limited

bandwidth channel to other aircraft for purposes of exchanging

information and instructions.

Distributed ATC is a group problem not only because agents may help

one another gather information, but also because the goals of one agent

may interact with those of another. Goal interactions come in the form

of shared interaircraft conflicts. A conflict among two or more agents

arises when according to their current plans, the agents will violate

minimum separation requirements at some point in the future. When

shared conflicts arise, agents must negotiate to solve them. In a

crowded airspace, such goal conflicts can become particularly complex

and may involve several aircraft, necessitating a high degree of group

cooperation.

In terms of the vocabulary developed in Sec. II, the detection and

resolution of conflicts are the main distributed problem-solving tasks.

These tasks may be decomposed into several subtasks, or distinct roles.

Agents may gather information about a shared conflict, evaluate or

interpret the information, develop a plan to avoid a projected conflict,

or execute such a plan. Agents may be more or less appropriate for such

roles, depending on their current processing load (Are they currently

involved in helping resolve other conflicts?), their state of knowledge

(Do they know a lot about the intentions of other agents in the

conflict?), and their spatial constraints (Can they locate many nearby

aircraft through sensing and do they have much excess fuel?).

The issue of optimal task assignment arises because a group of

aircraft may fail to assign the most appropriate agent to each role in a

conflict task if some of the aircraft do not know about a shared

conflict. In addition, care must be taken to assign a complete and

consistent set of roles. Some role inconsistencies can be fatal. For

example, two agents would be adopting inconsistent roles if one decided

to move left to avoid a head-on collision with the second, while the

- 18 -

second decided to move in the same direction. Severe task coordination

problems may also arise in distributed ATC. The action of moving to

avoid one conflict may create or worsen other conflicts (negative task

interactions) or it may lessen other conflicts (positive task

interactions). Both forms of interaction are caused by the fact that

while agents may be dealing with different conflict tasks, they are

nevertheless exploiting shared, limited spatial resources.

- 19 -

VI. FOUR DISTRIBUTED PROBLEM SOLVERS
FOR AIR-TRAFFIC CONTROL

We outline in this section the implementation of four distinct ATC

systems, concentrating particularly on the organizational and

information-distribution policies embedded in each. All four systems

are implemented in our framework for constructing distributed agents.

This in turn is implemented in INTERLISP-D, running on Xerox 1100

computers. Before discussing the implementation of cooperative

strategies, we turn first to a general description of the the tasks that

must be reasoned about by a distributed ATC (DATC) agent.

TASKS IN AIR-TRAFFIC CONTROL

To define our system within the framework of the task language, we

must identify the tasks comprising each agent and specify the expertise

associated with each task. The top-level generic tasks of each DATC

agent currently include:

•

•

•

•

Sensing (gathering information about positions and types of

other aircraft).

Input-communication (gathering information about routes, plans,

and requests of other aircraft).

Output-communication (distributing information about the

agent's routes, plans, and requests to others).

Initial plan generation (computing a reasonable path through

the airspace to one's outfix).

• Plan evaluation (finding conflicts between the agent's plan and

•

•

the plans it believes others are following; reviewing new

information for consistency with beliefs about others' plans).

Plan fixing (using existing plans and evaluations to create new

plans that avoid conflicts with others).

Plan execution (performing the time-tagged actions called out

in the plan).

- 20 -

Defining ATC Generic Tasks and Conditions of Invocation

A major part of defining a generic task is stipulating the

conditions under which an instance of that task should be created.

Consider plan evaluation: We want to define the ATC agent so that an

evaluation task is created, when (a) the agent has a plan and, via some

information-gathering task, learns the plan of some other aircraft, (b)

the agent changes its own plan, or (c) the agent believes it knows the

plan of another aircraft and senses a new position for that aircraft

that may not be consistent with what the believed plan predicts. In the

first two cases, the kind of evaluation needed is "conflict detection";

in the third, it is "consistency checking." Using the task language,

the "conflict detection" case is implemented as follows:

(1) (CREATE-SUBTASK-TYPE 'Evaluation 'Scheduler)
(2) (CREATE-SUBTASK-TYPE 'DetectConflict)
(3) (SET-TASK-FUNCALL 'DetectConflict

'(COHPUTE-CONFLICTS Aircraft OtherAircraft))
(4) (DEFINE-TASK-TRIGGER 'DetectConflict 'Evaluation

'(SET-AIRCRAFT-PLAN OtherAircraft y)
'(Check new plan of OtherAircraft for conflicts against yours)
'(AND (AIRCRAFT-PLAN OtherAircraft)

(EQUAL y (AIRCRAFT-PLAN OtherAircraft))))

Line (1) establishes the generic task of plan evaluation. Evaluation

can be thought of as a class object in the SHALLTALK sense (Goldberg and

Kay, 1976). Instances of Evaluation represent specific plan evaluation

tasks that might be created. The second argument in line (1) says that

when a plan evaluation task is created it is to be a subtask of the

current instance of Scheduler, the top-level generic task of the ATC

agent. Only one instance of Scheduler is ever created for each agent,

and its role is to select the next enabled top-level task to execute

(e.g., sensing, planning, input-communication, etc.).

Line (2) establishes a generic subtask of plan evaluation. When

triggering conditions of DetectConflict are met and an instance of it is

created, the instance becomes a subtask of the current Evaluation task

of the agent. Thus while the agent's Scheduler task chooses from among

- 21 -

enabled tasks that are instances of generics such as Evaluation and

Sensing, an Evaluation instance itself is a scheduler that chooses from

among instances of CheckConsistency and DetectConflict.

Line (3) associates a function call with DetectConflict. When an

instance of a generic task becomes enabled, it may be selected to

execute by the Evaluation task. If the task has previously executed and

suspended, Evaluation knows where to resume; if this is the first time

the task has been allocated processing resources, Evaluation needs to

have a way of initiating the task. It does this by evaluating the

function call. Line (3) presupposes that COMPUTE-CONFLICTS has been

defined by the user and encodes the appropriate expertise.

Line (4) stipulates the conditions under which task instances of

DetectConflict will be created and will become a subtask of

Evaluation. The interpretation of DEFINE-TASK-TRIGGER is:

(DEFINE-TASK-TRIGGER
"create an instance of this type of generic task"
"let the scheduler of the new instance be the current instance
of this generic"

"create the instance whenever a form of this type is evaluated"
"let this be the intention of the created task instance"
"this form must always be true for the instance to be justified")

Thus line (4), for example, says, "Any time you believe you know some

other aircraft's plan, it is reasonable to create a DetectConflict task,

as a subtask of the current Evaluation task, to see if your current plan

conflicts with its new one. This task is justified as long as you still

believe you know the aircraft's plan and it is the new one."

Defining Reasoning Rules that Interweave ATC Task Instances

Declarations such as line (4) in the conflict-detection example

show how task creation is data-driven, how tasks ensure that they are

relevant as conditions change, and how tasks may be suspended and

resumed. But to be able to reason about how to intelligently interweave

tasks such as plan evaluation, information gathering, etc., permitting

the DATC agent to perform intelligently, we still need to define

heuristic rules that will reason about the priority of enabled tasks.

Two reasoning rules currently used are:

- 22 -

(1) (DEFINE-SCHEDULING-RULE 'Scheduler
(if (TASK-TYPE Subproc)='PlanFixing

and (SUBTASK-OF-TYPE Process 'Evaluation)
then (SET-TASK-PRIORITY Subproc 0)))

(2) (DEFINE-SCHEDULING-RULE 'Scheduler
(if (TASK-TYPE Subproc)='SendReplanRequest

and (SUBTASK-OF-TYPE Process 'PlanFixing)
and (GREATERP (TASK-TOTAL-TH1E

(SUBTASK-OF-TYPE Process
'PlanFixing))

5000)
and (NOT (IN- H1HINENT-DANGER Aircraft))

then (SET-TASK-PRIORITY (SUBTASK-OF-TYPE Process
'PlanFixing)

0)
(SET-TASK-PRIORITY Subproc 200)))

Rule (1) defines a choice of the DATC agent's scheduler; thus it helps

the agent decide which of the enabled top-level tasks to execute next.

The rule says that if PlanFixing is enabled (because an aircraft's plan

has a conflict in it), then it is a good idea not to allocate further

resources to this task if there is some evidence that the conflict

status of the plan should be reevaluated. The rationale is that the

Evaluation task may have been enabled by receipt of a new plan for the

aircraft causing the conflict, and this plan may avoid the conflict.

Rule (2) also defines a top-level reasoning process for the DATC

agent. Details aside, its role is to decide when a given agent

(aircraft) has tried "hard enough" to solve a conflict shared with

another aircraft. Note that "hard enough" has a natural definition in

terms of the processing resources (time) that have already been devoted

to attempts at PlanFixing. If this criterion is met, the agent will use

its other option in solving a shared conflict: It will ask the other

conflictee to try to resolve it (by invoking the SendReplanRequest task)

instead of expending more effort to try to resolve the conflict itself.

Rules such as (1) and (2) are the key to the DATC agent's ability

to interweave its several enabled tasks in a way that is sensitive to

changing co.nditions. Many of the rules the DATC problem solver

currently employs are devoted to ordering tasks that are purely

"internal" to the agent. These tasks, which include sensing,

- 23 -

evaluation, plan fixing, and plan execution, often must be interwoven

because of the existence of external, unpredictable, agents. The tasks

are affected by and do not directly involve those agents. On the other

hand, rules like (2) reason about tasks that involve interaction

(communication) with others, in the service of either one's own goal or

others' goals. The resulting group interactions tend to be much like

the dynamics of constraint propagation (Stefik, 1981), or least

commitment planning (Sacerdoti, 1977). An agent pursues a planning

option until it is unable to satisfy all constraints or until its

alloted time runs out. It then suspends its planning, requests another

agent to replan, and sends its own partial plan as a constraint. The

process continues without backtracking. In the following section, we

discuss the implementation of such strategies in four different ATC

problem solvers.

ORGANIZATIONAL POLICIES IN ATC

Four organizational policies for dictating task decomposition and

role assignment are discussed below. The organizational policy embedded

in three of the four systems may be characterized as task

centralization; the fourth system adheres to a policy of task sharing.

Under task centralization, the agents involved in any given conflict

task will choose one of their number to play most of the roles. In

effect, one agent will perform the evaluation role (do all the

evaluation of the potential conflicts between aircraft), the plan-fixing

role (attempt to devise a plan-fix to dissolve the entire conflict), and

the actor role (act on the new plan). The selected agent is required to

modify only its plan to resolve the conflict; thus the remaining agents

perform no planning or actions. Instead, having agreed on the choice of

a replanner, they adopt passive information-distribution roles, merely

sending their intentions (plan) to the selected agent. As mentioned

earlier, if the selected agent is unable to resolve the entire conflict,

he requests another agent to replan. This process continues until all

conflicts are resolved or a solution cannot be found. The policy of

task centralization, whatever its shortcomings, is worth considering,

because it has many of the advantages of the centralized, single-agent

problem solving that it is meant to mimic. Specifically, by

- 24 -

centralizing most task roles in a single agent, the group has to worry

less about negative task interactions such as the threat of two aircraft

acting in an inconsistent fashion, noted above.

Although three of our four systems embed a task-centralization

policy, they differ in how they measure and choose the agent that is

most appropriate for the several centralized roles. Also, these schemes

represent forms of distributed problem solving in spite of being termed

centralized, because many conflicts may be resolved simultaneously by

different aircraft over the airspace. The term centralized applies only

within a given instance of a conflict.

Selection by Shared Convention. In selection by shared

convention, each aircraft uses only directly sensed information about

the other aircraft (position, heading, and speed) to decide which should

plan and which should transmit its current route. The aircraft silently

use a common set of conventions for this decision, minimizing

communications. Figure 2 shows a prototypical sequence of tasks,

including communication tasks, between two aircraft, A and B, under

this policy. Each entry in the time line for an aircraft represents the

execution of a task instance, using task triggers and scheduler

reasoning rules such as the ones presented above.

Compute <unrelated Conflict Plan Retransmit Execute
A ----designated----activities>----detection----fixing----plan--------plan---

planner

Compute Send
B ----designated.-------------------plan------------<unrelated activities>-----

planner

Fig. 2 -- Prototypical task sequence under the shared-convention policy
(time lines are for tasks executed by aircraft A and B;

solid lines indicate communications)

Because of the limited criteria used, the aircraft selected as the

replanner is not likely to be the most appropriate. This version mainly

serves as a benchmark against which to judge the utility of more

intelligent methods of selection, which are also more costly in terms of

computation and communication.

- 25 -

Selection of the Least Spatially Constrained Agent. With this

selection method, each aircraft in a potential conflict computes and

transmits its role factor to the other aircraft. The role factor is an

estimate of the appropriateness of an aircraft for the planning role; it

results from the constraints under which an aircraft is operating. It is

an aggregation of such considerations as the number of other nearby air

craft, fuel remaining, distance from destination, and message load. Figure

3 shows the standard sequence of tasks and communications under this policy.

Send <unrelated Conflict Plan Retransmit Execute
A -constraint-activities>--detection-fixing--plan----plan--

factor
.\ tt

Send Send <unrelated
B -constraint--------------plan-----------activities>-------------

factor

Fig. 3 -- Prototypical task sequence under the
least spatially constrained policy

This method of selection maintains that the most appropriate agent is

the one with the most degrees of freedom for modifying its plan. It is

a more complex process than the shared convention and should result in

more effective replanner choices, although at some additional cost in

initial communications.

Selection of the Most Knowledgeable, Least Committed Agent. As

in the above selection scheme, aircraft share role factors, but here

they are computed differently. This method of selection maintains that

the best replanning agent is the one that knows the most about other

agents' intentions, because, in replanning, a well-informed agent can

explicitly take account of possible interactions between its intentions

and those of other agents. More globally coherent plan-fixes should

therefore result. In addition, this method says that agents whose

intentions are known by others should not replan. If such an agent does

modify its plan, it will have violated the expectations of cooperating

agents, making their knowledge incorrect and in turn making cooperation

- 26 -

difficult. Thus, this policy implements a common adage of cooperation:

Don't do the unexpected.

In spite of their simplicity, task-centralization policies are

often ineffective. Although the agent selected to perform the

centralized roles may be the best overall, that agent is rarely the best

for each of the centralized roles. For example, we still might want to

assign the actor role to the agent in a conflict set which is least

constrained in the sense defined above. However, that agent might not

be the best in the set for fixing its plan--for making a modification to

the plan and evaluating the implications of such a change. Presumably

the best agent for this role is the (possibly distinct) member of the

conflict set that knows most about the environment and the intentions of

aircraft near the one whose plan is to be fixed. This aircraft is in

the best position to determine whether any changed plan is not only

locally reasonable, solving the conflict, but also globally reasonable,

not creating new conflicts with other aircraft.

Task Sharing

The task-sharing policy attempts to avoid such problems by

evaluating agents' qualifications with respect to each of the roles

associated with a conflict. Whereas in centralized policies a single

negotiation determines an overall replanner, in the task-sharing policy

two rounds of negotiation are necessary, one to determine the plan

fixer and one to determine the actor. Figure 4 presents a prototypical

sequence of tasks and communications showing how such a policy is

implemented in a distributed fashion.

Send Send <unrelated Conflict Plan Send <unrelated
A -constraint--knowledge--activities>--detection-fixing--plan--activities>-

factor factor

tt tt ~,
Retransmit Execute

B-constraint-knowledge------plan--activities>-----plan,-----plan--
Send Send Send <unrelated

factor factor

Fig. 4 -- Prototypical task sequence under task-sharing policy

- 27 -

The performance of groups working under a task-sharing policy is

potentially superior to that of groups working under a task

centralization policy, because in the former the group attempts to

optimize on each role. However, in practice this policy has several

possible drawbacks. It is communication-intensive and may be

inappropriate when communication channels are unreliable or costly.

Moreover, it risks potential negative interactions, because several

agents have to coordinate intimately to achieve a solution.

INFORMATION-DISTRIBUTION POLICIES IN ATC

Much of the information-distribution behavior in the four systems

is set by the choice of organizational policy (who to contact, what to

send, when to send it). We assume in all cases that information should

be sent to other aircraft selectively (no broadcasting), without waiting

for a request, without expecting an acknowledgment, and without

repeating the information a second time. These choices are reasonable,

since we assume in all systems that communication is error-free. When

we add noise to the communication channel, we envision adopting a policy

that injects some needed redundancy or safety into communication, for

example, a policy that includes murmuring (Lesser, 1981). We also

assume a constant effective communication bandwidth for all four

systems. Each aircraft is allowed to send a maximum of 5 messages per

15 seconds of time.

- 28 -

VII. EXPERIMENTAL STUDIES IN AIR-TRAFFIC CONTROL

We conducted a series of rudimentary experimental studies on the

four policies outlined above. We focus here on results pertaining to

the three task-centralization policies, since our studies on the task

sharing policy were performed later and were limited in scope. The task

centralization variants were tested on eight distributed scenarios.

Each scenario stipulated (1) how many aircraft would enter the airspace

in the session, (2) when and where they would enter, and (3) where they

would exit. This control over the parameters of distributed problem

solving situations allowed us to isolate situation features that

uncovered the strengths and weaknesses in performance of our policies.

We varied the scenarios considerably in task density, time stress, and

task difficulty. The primary factor affecting these conditions was the

number of aircraft in simultaneous conflict.

We examined three performance indices when comparing the systems:

communication load, processing time, and task effectiveness. Task

effectiveness was indicated by two distinct factors: separation errors

(more important) and fuel usage (less important). A summary of the main

results is given in Table 1.

We found that the shared-convention policy, relying on essentially

arbitrary assignment of planning responsibility, performed well only in

low-complexity, low-difficulty tasks. It minimized communications and

response times compared with the other policies but it quickly foundered

in three- and four-body conflicts.

Of the three task-centralization strategies, the least constrained

policy performed best. It did particularly well on high-complexity,

high-difficulty tasks. In such cases, the planning aircraft tended to

be located at the edge of the fray, able to find more viable solutions

than the aircraft in the interior. The policy is time- and

communication-intensive, however, largely because of the high number of

messages needed to cooperatively determine the replanner and to maintain

consistency after replanning. In any of the three task-centralization

systems, when a replanner is successful it must send data retransmission

- 29 -

Table 1

PERFORMANCE HEASURES OF THREE ORGANIZATIONAL POLICIES
(statistics averaged across 8 scenarios)

Shared Least Host
Item Convention Constrained Knowledgeable

Communication loada 10.9 28.6 28.2

P . . b rocess1ng t1me 1265 1726 1651

S
. c eparat1on errors 4.3 1.4 2.3

Fuel usage d
96 108 101

sent per aircraft while flying from infix
a

Mean messages
to outfix.

b
Hean Xerox 1100 cpu seconds per aircraft while flying.

cMean number of near misses or collisions for all aircraft
in a scenario.

d
Mean number of fuel units used for all aircraft.

messages to all aircraft to which it had previously sent its intentions.

The number of data retransmissions was especially high under the least

constrained policy.

The most knowledgeable policy was intermediate in performance. It

performed best in tasks of low complexity and high difficulty, that is,

tasks with primarily two- and three-body interactions and few potential

solutions. In complex multiaircraft situations, if the wrong aircraft was

chosen for planning, the result was often catastrophic, because the

aircraft that then received replan requests tended to have little knowledge

of the routes of other aircraft. By design of the policy, this knowledge

was typically concentrated in the initially selected planner. That planner

normally continued to be the most knowledgeable in later interactions.

When successful, the most knowledgeable policy's performance was in

some ways better than that of the least constrained policy. In

particular, when an agent found a solution to a local conflict task

under the most knowledgeable policy, that solution was likely to be more

globally coherent than solutions found under other policies, since the

- 30 -

replanning agent was selected partially because of its wide knowledge of

the plans of the other aircraft. This knowledge allowed it to more

effectively replan without incurring new conflicts. In addition, a

successful replanning agent under a most knowledgeable policy generally

needed to issue fewer data retransmission messages than under the other

policies, since it was selected partially because its intentions were

known to fewer others (i.e., it was the least committed agent). We had

initially anticipated that minimizing data retransmissions would be very

important for guaranteeing globally coherent performance. We envisioned

situations where one retransmission would cause the receiving agent to

reevaluate, possibly finding new conflicts, causing more replanning,

further data retransmissions, and so on, in a vicious propagation of

changes. This did not happen as often as we had expected under the

least constrained policy, although a few instances were observed.

Another erroneous expectation was that there would be a wide

variation in processing times among the aircraft under the most

knowledgeable policy. This policy should tend to bias replanning in

favor of a few agents. If an agent is the replanner once, it gains new

knowledge of others' plans, making it an even better choice as replanner

for later conflict tasks. We anticipated that this concentration would

skew the processing times, compared to a more uniform distribution of

responsibilities under the other policies. This would have been a

disadvantage in a truly distributed system, as some agents would be

quiescent much of the time. The expected variation in times did not

evidence itself, however, except in the relatively easy scenarios.

While limited in scope, the data collected from our fourth policy,

task sharing, indicated some interesting trends. This policy, a

composite of the best of the least constrained and most knowledgeable

policies, had the advantage of choosing one agent to act, and another

with more knowledge of the situation to compute the first agent's plan.

This policy was often effective in situations where subtasks are easily

separable and an explicit selection of the agent with the best available

expertise could be made for each subtask individually, rather than for

the conflict task as a whole.

- 31 -

VIII. REMOTELY PILOTED VEHICLE FLEET CONTROL

We next moved to a richer and more difficult domain: surveillance

RPV fleet control. Coordination of groups of military RPVs is a much

more demanding application of distributed problem solving than air

traffic control, because of unreliable communications, distinct roles

for each aircraft, needs for coordinated actions, and frequent attrition

from the hostile environment. In this section, we describe a new RPV

fleet-control implementation embodying many of these problem aspects.

We discuss some of our preliminary findings relating to role assignment,

data fusion, communication management, and cooperative planning.

TASKS IN RPV FLEET COORDINATION

One of the principal goals of RPV development today is to realize

greater vehicle autonomy. Current RPV technology--represented by

Israel's Mastiff (Smith, 1983) and the Lockheed Acquila (Hyman,

1981)--relies on the use of close in-the-loop control by skilled remote

human operators. Each operator controls a single RPV through a

continuous and vulnerable communication link. Operations during radio

silence or jamming are usually confined to a few preprogrammed actions

(such as spiraling up to regain contact, continuing on the same path,

and self-destructing). The few attempts at multiple RPV control, such

as IBM's large-scale experimental system (Gray et al., 1982), have

relied entirely on a vulnerable centralized airborne or ground center to

perform all control operations. We hope to extend this technology by

developing techniques for onboard autonomous or semi-autonomous planning

and control. Such capabilities should provide enhanced performance

using only local communication and computation, including:

• Autonomous patterned flight. In many surveillance tasks, the

RPVs must fly in formation to ensure complete coverage,

maintain interaircraft distance, or present minimal radar

return. This involves negotiating over task responsibilities,

establishing communication protocols among the group, and

•

•

- 32 -

defining procedures for transitioning between formations or

flight patterns in response to threats.

Data fusion among vehicles. The different RPVs may be

responsible for different portions of the intelligence

gathering process. This requires some means of representing

hypotheses and confidence estimates, integrating new data, and

deciding what information to send to others. Like Hearsay-II

(Erman et al., 1981), the onboard systems will have to access

multiple knowledge sources and maintain multiple lines of

reasoning.

Cooperative planning and replanning. The RPV fleet must react

to contacts, altering the group's flight path to locate

defenses and targets. The fleet members must also avoid

dangerous terrain and weather and respond to threats. Such

dynamic planning may be performed in a centralized manner by

one member of the group (a leader), or it may be done by

multiple group members, acting asynchronously and

cooperatively. In either case, the planning will require the

generation of maneuver options, simulation of the resulting

trajectories (using whatever data are available), and

evaluation of the projected partial solutions (Stefik et al.,

1983).

• Reconstitution after losses. When RPVs are shot down or

otherwise lost, the surviving vehicles must close ranks and

determine new roles. Also, the vehicles must frequently

reconstitute communication networks disrupted by jamming,

noise, or damage. This requires polling group members,

determining connection tables and capabilities, computing

effective communication routings, and specifying new task

assignments.

We produced a series of demonstration systems, described below,

that exhibited many of the above capabilities. We did not pursue formal

experiments with these systems, but we did examine many implementation

options. In terms of the vocabulary introduced in Sec. II, the main

distributed problem-solving tasks were formation keeping, data fusion,

- 33 -

and communications management. Conflict avoidance, the central task of

ATC, was not of major importance here.

INITIAL RPV DEMONSTRATION SYSTEM: PATTERNED FLIGHT

We began our series of demonstration systems with the simplest

problem: patterned flight over a benign environment. As shown in Fig.

5, this simulation involves three aircraft flying over a region without

hostile defenses. The aircraft change coverage pattern (racetrack or

figure 8), formation geometry (wave, vee, or stream), and spacing (close

or wide) in response to command inputs. The coordination process

involves several steps. The aircraft first determine if a change in

leadership is necessary, and if so, they use a negotiation procedure

much like that in our ATC implementation to select a new leader.

Coordination is achieved by having the lead aircraft determine its own

20

15

5

5
km 5 10 15

IDa A
ROLEI ~
51..0TI L
PU!NI lfl .. IUeNT
C0Mr11 a

T IV I TY I CIUT'PUT C0tet

. t

- OVT
I IN . +

.
-.

RVTO
Mo:INURL
QUIT

L-~-NO

Fig. 5 -- Initial simulation of surveillance RPV coordination

I

- 34 -

trajectory and then send messages detailing its course and desired

spacing to the other aircraft, who plan collision-free, minimum-time paths

to match up with the leader. All messages in this initial system are

error-free and have a free format structure. A typical message might be:

ways:

Message #112
sender: RPV1
recipient: RPV3
content: vee formation, wide spacing
type: point-to-point
time-stamp: 0400

The actual process of formation-keeping can be accomplished in two

(1) by maintaining a physical relationship with respect to the

leader, or (2) by following a trajectory that should maintain group

spacing. The first method requires frequent sensing or communication of

leader position and execution of error-correcting responses. This tracking

approach is appropriate if sensing and communication are reliable, course

changes are frequent, or onboard navigation is difficult. The second

option, relying on accurate trajectory-following, should require only

occasional updates of leader position for confirmation of group spacing.

In fact, if the aircraft can plan and follow their own path trajectories,

they should be able to split off the group in response to threats or

opportunities and rejoin later. This technique appears most appropriate in

wide formations with few course changes or in situations with frequent

threats and jamming. We implemented a combination of the two approaches in

an object-oriented simulation. (The characteristics of the simulation are

described on p. 42.) The follower RPVs used sensing and adjustment

whenever possible but maintained their own trajectory plans.

Overall, this first demonstration system exhibited a rudimentary level

of distribution. The several RPVs negotiated over roles, and each planned

its own trajectory. We focused on leader-based behavior (in which the

follower aircraft reacted to the leader's commands and keyed on his

position), because this structure provided the simplest and most direct

interactions. The alternative, an anarchic structure in which each air

craft can command any other, adds many complications, including deadlock

and looping. In our scheme, a single leader was present, and leadership

- 35 -

changed from aircraft to aircraft according to the circumstances

encountered. The leader assumed the bulk of planning responsibility,

receiving information from and sending commands to the other aircraft.

Eac~ of our succeeding implementations relaxed the degree of

centralization.

SECOND DEMONSTRATION SYSTEM: UNCERTAINTY REPRESENTATION

We next expanded the system to explore the problems of unreliable

sensing and communication. As shown in Fig. 6, the aircraft fly over an

environment with active defenses--command centers, ground control

intercept (GCI) radar installations, and surface-to-air missile (SAM)

sites. When necessary, the RPVs poll each other regarding status,

sensing capabilities, and communication links. Each vehicle builds up

its own uncertain model of the environment and fleet status, taking into

account confidence degradations due to inaccurate sensing, communication

II!ANI)I

60

50

(
•

10 km
Grid 0 10 20 30 40

- -

t••i•i•··· Stat01 ca s 111 I I U I ia1ar.
lDI L...EADCRI (RPV3) ,

ROLE I Fo:~~: CIRCULAR 5LOTI
PIJINI STREAM
COI'II11

jAcTlVlT'YI

L----------- ~- ··--

Fig. 6 -- Second implementation of surveillance RPV
task simulation, with active defenses

- 36 -

noise, and incorrect intelligence. Database entries for defenses take

the form of property lists with confidence factors, such as:

GCI site #4
location: (45,34)
status: active
jammed: no
confidence factor: 0.8

We used the uncertainty representation form of MYCIN (Shortliffe,

1976) to update each RPV's estimates of belief and disbelief in

hypotheses about the defenses. This approach does not require the many

prior and posterior probability estimates required by Bayesian analysis

(Duda et al., 1979) or the many range estimates demanded by the

Dempster-Shafer calculus (Garvey et al., 1981) or Inferno (Quinlin,

1982). Although the MYCIN approach has many limitations, primarily with

respect to independence assumptions, we felt that the simplicity of form

and ease of rule writing outweighed the possible errors. Such errors

should be of minor significance in these early demonstration systems,

because of the low frequency of updating and the coarseness of the

behavioral responses.

The dynamics required for simulating sensing and detection are

relatively straightforward. As shown in Fig. 6, the SAM and GCI sites

have circular regions in which they can detect RPVs, and the RPVs have

somewhat larger regions of defense sensing (they can passively sense

radar emissions and therefore do not require a long reflection path).

Sensing and detection in these regions are probabilistic, representing

the effects of terrain, weather, ECM, and other factors. Updating is a

sequential process--confidence in a hypothesis should increase if

further contacts are made.

We introduced these effects in the simulation by adding false

defenses, incorporating probabilistic sampling in the sensing/detection

process, and corrupting some percentage of the communication messages.

Figure 7 shows the sequence of events possible at each simulation update.

The sensing/detection cycle works in the following manner. At the

beginning of an update, the system checks to see if any real or false

defenses are within an RPV's sensing range. If a defense is within

- 37 -

. [)~!e_!l~e within sensir1~ range of RPV?.

. Yes No-> Stop

P1 \1-P1

Real
Defense

False
Defense

P2

RPV
senses real

defense

1-P2 P3

not RPV
sensed senses false

defense

1-P3

not
sensed

(RPV within defense detection range, otherwise stop]

RPV assumes
detected with

prob. P4

P4 1-P4

RPV no
detected detecticn

by defense ·

no RPV assumes no
assumption . detection with assumption

prob. P4

P4

RPV
detected

by defense

'1-P4

no
detection

Fig. 7 -- Event tree for sensing and detection

- 38 -

range, it has a Pl likelihood of being real, and if real, a P2

likelihood of being sensed. False objects have a P3 chance of being

sensed. If an RPV does sense a defense, the likelihood of that defense

being real is

(Pl ~ P2) I ((Pl ~ P2) + ((1-Pl) * P3)) [1]

The next layer in the event tree assumes the RPV is within detec

tion range of a defensive site. If within range, the RPV believes it has

a P4 probability of being detected. A randomization process uses the

same P4 probability to send a message to the defense, if so indicated.

When an RPV senses a defense, it incorporates that information into

its world-model. The sensing itself results in a measure of belief (MB)

equal to the probability in Eq. [1]. The RPV checks to see if it

already has an entry for the sensed defense type and location. If not,

the RPV enters the MB directly into its database and sets the the

confidence factor (CF) equal to it. If such an entry already exists,

the RPV revises the measure of belief according to the following rule:

MB = MB 1 + ((1-MB 1) .,., MB 2) [2]

where MBl is the original entry and
MB2 results from the current sensing

There also may be disbelief present, represented as MD. Then the

confidence factor CF MB - HD. An HD can arise if a previously sensed

defense is not again sensed (this indicates that the original contact

may have been false). If this occurs, the probability of the defense

being false is roughly

MD = (1-Pl) I ((1-Pl) + (Pl * (l-P2))) [3]

Communications further add to the uncertainty present by

introducing a noise factor. The receiving RPV adjusts the original data

- 39 -

confidence by the probability of message corruption and updates its

database entry in the same manner as in sensing.

With the introduction of degraded communications and unreliable

sensing, we found that the role-negotiation process became more complex

and the maneuver choices more important. The criteria used during

leader negotiation expanded to include task knowledge (environment data

and plans of others), current role, sensing region, communication-link

strengths, and physical position. The RPVs also used these criteria to

negotiate over data-fusion tasks, specifically, responsibility for GCis

and SAMs, for command centers, and for airfields.

The many formation, pattern, and spacing choices open to the group

also had much more influence on task performance in this scenario than

in the earlier perfect sensing and communication scenarios. For

example, the wave formation with wide spacing provides the greatest

coverage area but is most vulnerable to detection. The vee formation

gives the shortest overall communication links but results in some

penalty in coverage. The stream formation provides minimal radar return

and easy following of the leader and, because of its narrow sensing

area, is effective only for avoidance and strong secondary sensing

confirmation. The following two rules illustrate some of the formation

changes invoked by the leader in response to environmental conditions:

If group is in stream or vee formation, and 20 seconds have passed
without a contact or threat, change to wide wave formation

If group is in wave or vee formation, and leader senses a
SAM site with CF > 0.5, designate follower on opposite side
to defense as leader and change to stream formation (this way
the group may vector around the defense)

We also found that as the distributed problem-solving task became

more complex, it became necessary to prioritize the functions of

sensing, communication, planning, and control. We implemented a scheme

similar to that developed in our ATC work. The following list shows the

nomimal ordering of activities:

- 40 -

1. Input user message
2. Input command message
3. Plan trajectory in response to leader command
4. Execute action (if follower)
5. Perform sensing
6. Input data message
7. Announce leader
8. Input role-negotiation message
9. Send role-negotiation message

10. Plan formation change
11. Send commands
12. Send acknowledgment
13. Input acknowledgment

We attempted with this ordering to perform all activities

preparatory to planning. In this way, the time-consuming leader

planning operation would be assured of up-to-date information.

THIRD DEMONSTRATION SYSTEM: GENERAL SURVEILLANCE

Our final implementation, now in process, represents a general

surveillance task in a hostile environment, with the RPVs avoiding

defenses, sustaining losses, and regrouping. Here, communications are

highly constrained because of the likelihood of detection and loss. The

primary problems we encountered involve communication management, the

user interface, and forms of logical inference.

One question that arises in communications management is information

volunteering vs. information demanding. We examined these two options

in the context of leader negotiation and communication-table updating.

Information volunteering (in which the sender transmits data it expects

the recipient needs) appears to result in fewer transmissions than a

demand protocol, provided the sender has an accurate model of the

recipient's needs. A comparison of volunteer and demand messages for a

role-negotiation interaction is summarized in Fig. 8. In this example,

we assume N RPVs are present. The minimum number of messages for each

step is shown in parentheses at the right of the table. The demand form

requires fewer messages (order N) than the volunteer form (order N>'~,·~2)

but tends to be time-consuming (at least one extra stage) and vulnerable

to loss of the central agent.

- 41 -

Demand:

1) Follower encounters problem, messages leader

2) Current leader sends messages to followers
requesting role factors

3) Followers send role factors to leader

4) Leader compares responses (unless incomplete)
and sends messages announcing new leader

Total:
Volunteer:

1) Follower encounters problem, messages others
with own role factor

2) Other send role factors (except to initiator)

3) First to have all role factors announces leader

Messages

(1)

(N-1)

(N-1)

(N-1)

3N-2

(N-1)

(N)(N-1)/2

(N-1)

Total: (N
2
+3N-4)/2

Fig. 8 -- Comparison of demand and volunteer
protocols for communication

Communications management problems also appeared when we changed

from three to five RPVs. In a larger fleet, the aircraft frequently do

not have a direct transmission path to other aircraft. They have to

route messages by the most direct and least loaded path, much like a

packet radio system (Kahn et al., 1978). We considered three methods of

routing: communication tables, route set-up packets, and spreading

activation. Communication tables are built up by each RPV by listing

which aircraft can communicate with which others. This requires the

RPVs to indicate any changes in their links when they send a message,

and to update their tables when they receive such an indication. The

second method uses route set-up packets, special short-length messages

sent prior to a multihop communication. When acknowledged, they provide

a means for comparing the speed and noise of each possible path, but

they tend to burden the channel. The third method, spreading activation,

means that copies of a multihop message are sent along each possible

pathway. This increases redundancy, virtually assures receipt, and

- 42 -

requires no table management overhead, but it can severely tax the channel

capacity. We chose the communication table method in our work, because of

the limited number of available agents and the high costs of communication.

RPV FLEET-CONTROL IMPLEMENTATION

We implemented the RPV simulation routines, the planning and problem

solving procedures, and some of the graphics facilities for the three

demonstration systems in ROSS, an object-oriented programming language

developed at Rand and written in Franz Lisp (HcArthur and Klahr, 1982).

Programs written in object-oriented languages consist of a set of objects

that interact with each other via the transmission of messages. Each

object has a set of attributes describing itself, and a set of message

templates and associated behaviors. A behavior is invoked when an object

receives a message matching the corresponding message template. A behavior

is itself typically a set of message transmissions to other actors. In

this fashion, ROSS and other object-oriented programming languages enforce

a "message-passing" style of programming.

The ROSS programming style is well-suited to simulation in domains

consisting of autonomous interacting objects. The style aids the under

standing and modeling of distributed problem-solving systems, because

objects can control their own activities through individual behaviors and

maintain their own models of the world via their local databases. For

example, data about sensed defenses are represented in the vehicle's

database, and reactions to the defenses result from behaviors triggered by

the receipt of messages. Our distributed fleet-control implementation can

be thought of as consisting of three distinct types of processing:

behaviors for simulating the scenario, behaviors for cooperative planning

and control by the RPVs, and graphics behaviors for user display and

interaction.

The simulation behaviors define aspects of the scenario and

capabilities of the objects. Among these behaviors are defining

trajectories, specifying time increments, calling randomization programs,

sensing objects, and communicating messages. Special objects were defined

for some of these functions. These processes were considered operational

requirements rather than problem-solving activities.

- 43 -

The second type of processing consists of behaviors for distributed

planning, coordination, and problem solving. Most of the activities

described in the three demonstration sections fall into this category.

Reasoning about role assignments, making decisions about coverage

pattern, formation geometry, and vehicle spacing, and performing

trajectory planning are included. Below we show the English and ROSS

versions of a behavior for avoiding a sensed defense:

If the group is in a stream formation, and the leader estimates
its probability of detection by a SAM is greater than .6, then
change to another coverage pattern.

(if (and

then

(eq (~your formation) 'stream)
(~you are leader))
(greaterp (~your probability-of-detection of

(~your sensed >SAM)) .6)

(~you change coverage-pattern))

This example only hints at the fact that code in a ROSS simulation can

be highly intelligible, modular, and modifiable. Most of the actions in

the RPV simulation can be viewed as responses to messages and therefore

are expressed naturally in this paradigm.

The graphics environment for our demonstration systems was

programmed in a combination ROSS and C-based subsystem. Communication

with the simulation objects was performed in ROSS, while device

dependent operations were implemented in C. The graphics subsystem was

responsible for displaying task conditions, individual aircraft views,

and rule firings. We found that these graphics capabilities, which are

substantially more involved than those used in our ATC work, highlighted

the user interface problems of portraying concurrent activities in a

distributed system.

In some ways, the situation dynamics that had to be portrayed were

more similar to those of a Time Warp mechanism (Jefferson and Sowizral,

1982) than those of a conventional distributed simulation, in which all

objects step forward at the same rate. Each RPV tries to plan its route

- 44 -

for some distance into the future, and it is often at a different look

ahead time than its cohorts. If an RPV receives a message describing

another RPV's plan, it checks for conflicts or constraints and, if

necessary, backtracks to an earlier simulation time and replans. (This

goes beyond Time Warps, as some actions are not virtual and cannot be

rescinded.) The RPV then sends messages of its new plan to other

affected RPVs. Tracking down chains of interactions can thus be quite

involved. The user (who is already one frame behind in the animation)

must trace backward and forward through all pertinent messages and

resulting actions until the root cause is located.

The problem of simulating the maintenance and coordination of

several independent databases also led us to consider implementing some

of the functions using logic programming (specifically Prolog). Prolog

can be particularly effective for database management, since it unifies

the notions of data, rules, and queries (Kowalski, 1979). It derives

answers to queries, using a very efficient inference procedure, and its

basis in logic suggests its application for such inferential tasks as

constraint satisfaction and data fusion.

Prolog clauses are of the form 'A if Bland B2 and .. Bk', where

each of 'A', 'Bl' .. 'Bk' are conditions. The rule has an IF-THEN

reading. If the right-hand side of a rule is empty, 'A' may be regarded

as unconditionally true and hence as a piece of data. Thus if RPVl

has the following current state:

position
leader
velocity
detected_by

(30.0 40.0)
rpv2
(600.0 0.0)
radarl

RPVl may represent this information by the following set of

unconditional clauses:

position(rpv1,[30.0,40.0]) if ()
leader(rpvl,rpv3) if ()
velocity(rpv1,[600.0,0.0]) if ()
detected_by(rpvl,radarl) if ()

and RPVl may use the same representation to express what it knows about

its leader (RPV3):

- 45 -

position(rpv3,[20.0,25.0]) if ()
velocity(rpv3,[550.0,100.0]) if ()
detected_by(rpv3, radar3) if ()

Rules are then easily added. If RPV1 is always constrained to keep a

distance greater than 15 units from another RPV, it would have a rule of

the following form:

properly_spaced(Vehicle1,Vehicle2)<-position(Vehicle1,P1) and
position(Vehicle2,P2) and
distance(P1,P2,D) and
D>15.

If RPV1 wishes to determine whether it is properly spaced with respect

to its leader, it would execute the query,

leader(rpv1,L) and properlyspaced(rpv1,L).

In this case, it will execute successfully, since the distance between

RPV1 and RPV3 is approximately 18.

Prolog's inferencing capabilities are expected to be useful for

such query answering, for verifying consequences of actions, and for

reducing communications. Consequence verification may be performed by

checking whether each consequence (desirable or undesirable) is

logically implied by its present model of the world and the

contemplated action. Communications may be reduced in a similar way.

An RPV would attempt to infer whether another RPV knows a certain piece

of information before transmitting it on. Conversely, an RPV would

attempt to infer a piece of information from its own database before

explicitly querying another RPV.

The advantage of using Prolog for database management (and more

generally for inferencing) instead of LISP is that Prolog provides a

simple, unified framework for representing data, rules, and inferencing.

We are in the process of implementing a Prolog based in LISP, so that

any Prolog programs will easily interface with our existing programs.

We anticipate that the existence of logic programming primitives in the

ROSS system will considerably increase ROSS's expressive power.

- 46 -

IX. CONCLUSIONS AND FUTURE WORK

Our approach to distributed problem solving has been primarily an

empirical one, using several forms of simulation to explore key aspects

of agent interaction--task negotiation, communication management,

cooperative planning, and reorganization. Our initial work in air

traffic control, for example, has shown the importance of being able to

interrupt, suspend, and resume activities within each agent. The ATC

work also pointed out the sensitivity of system behavior and performance

to changes in organization and information-distribution policies,

particularly with respect to leadership decisions. Our subsequent

simulation of surveillance RPV fleet control demonstrated the

effectiveness of object-oriented programming for simulating and

displaying behaviors of multiple interacting objects with common goals.

The system was able to illustrate the flow of data and the evolution of

responsibility as conditions changed. The system also lent itself well

to the problem of local uncertainty representation in a highly

probabilistic environment. We are now augmenting the ROSS object

oriented system with activity prioritization and logical-inference

functions.

The ATC and RPV work has concentrated on functions involving

cooperation among autonomous vehicles, principally collision avoidance,

patterned flight, and surveillance of a hostile environment. We plan to

extend these functions in the near future to involve shared control, in

which a human operator acts in a supervisory role or takes over direct

control of one of the aircraft. We also plan to widen the scope of

actions to include defense suppression, decoy operations, special attack

maneuvers, and damage assessment. Invoking these added options, the RPV

fleet would transition frequently between organizational forms, altering

its communication networks and "regrowing" connections following each

operational phase. Protocols for such transitions are expected to be

much more complex than those developed for the basic functions of

formation keeping, data fusion, and avoidance responses.

- 47 -

Another major goal is to demonstrate a fully distributed system in

which the agents take actions in a heterarchic, asynchronous fashion.

Such a cooperative structure might involve frequent negotiation over

tasks, burst communications whenever possible to minimize database

disparities, and plan backtracking in response to commands and

constraints sent by the other group members. We expect that such a

heterarchical organization will primarily be useful in situations of

extreme duress--radio silence, heavy jamming, and high attrition. Our

next step will be to modify the simulation to examine the performance of

such an organization.

One of the more pervasive problems we encountered is that of the

user interface in a distributed system--producing a window on the

workings of the many separate agents. We noted that certain displays

appeared to be essential: textual displays of activities being

performed by each agent, graphic displays of situation assessments (with

interaircraft disparities highlighted), and animated graphic displays

showing how each aircraft's plans and assumptions play out over time and

space. At the same time, the user needs the control over such

conventional functions as pan, zoom, time stepping, and level of detail.

Development of an appropriate user environment for observing or

participating in the distributed problem-solving process should occupy

researchers well after the mechanics of interagent communication and

planning are solved.

- 49 -

REFERENCES

Appelt, D. E., Planning Natural-Language Utterances to Satisfy Nultiple
Goals, Technical Note 259, SRI International, 1982.

Dalkey, N. C., Group Decision Naking, Report UCLA-ENG-7749, School
of Applied Science, University of California, Los Angeles, July 1977.

Davis, R., "A Hodel for Planning in a Hulti-agent Environment: Steps
Toward Principles for Teamwork," Working Paper, HIT Artificial
Intelligence Laboratory, Cambridge, 1981.

Davis, R. and R. G. Smith, "Negotiation as a Hetaphor for Distributed
Problem Solving," Hemo 624, HIT Artificial Intelligence Laboratory,
Cambridge, 1981.

Duda, R. 0., J. G. Gaschnig, and P. E. Hart, "Hodel Design in the
PROSPECTOR Consultant System for Hineral Exploration," in D. Michie
(ed.), Expert Systems in the Nicro-electronic Age, Edinburgh
University Press, Edinburgh, 1979, pp. 153-167.

Erman, L. D., P. E. London, and S. F. Fikas, "The Design and an Example
Use of HEARSAY-III," IJCAI, Vol. 7, 1981, pp. 409-415.

Fahlman, S., "A Planning System for Robot Construction Tasks," Artificial
Intelligence, 5(1), 1974, pp. 1-49.

Fikes, R. E. and N. J. Nilsson, "Strips: A New Approach to the Application
of Theorem Proving to Problem Solving, Artificial Intelligence, 2(2),
1971, pp. 189-208.

Forgy, C. L., "The OPS5 Users Hanual," Technical Rept. CHU-CS-79-132,
Computer Science Dept., Carnegie-Hellon University, Pittsburgh, 1981.

Garvey, T., J. Lowrance, and M. Fischler, "An Inference Technique for
Integrating Knowledge from Disparate Sources," IJCAI, Vol. 7,
1981, pp. 319-325.

Goldberg, A. and A. Kay, "Smalltalk-72 Instruction Hanual," Report
SSL 76-6, Xerox PARC, Palo Alto, 1976.

Gray, C. M., K. D. Rehm, and D. R. Woods, "The Drone Formation Control
System," Nilitary Science, 1982, pp. 11-26.

Hyman, A., "Where are the RPVs?" Aerospace International, 17(3),
July-August 1981, pp. 40-44.

Jefferson, D. and H. Sowizral, Fast Concurrent Simulation Using the
Time Warp Nechanism~ Part I: Local Control, The Rand Corporation,
N-1906-AF, December 1982.

- 50 -

Kahn, R., S. Gronemeyer, J. Burchfiel, and R. Kunzelman, "Advances in
Packet Radio Technology," Proceedings of the IEEE, 66 (11),
November 1978, pp. 1468-1496.

Konolige, K., "A First Order Formalization of Knowledge and Action for a
Nulti-agent Planning System," !1achine Intelligence 10, 1981.

Kowalski, R., "Algorithm= Logic+ Control," Communications of the AC/1,
22(7), July 1979.

Kunz, J. C., R. J. Fallat, D. H. NcClung, J. J. Osborne, R. A. Votteri,
H. P. Nii, J. S. Aikins, L. M. Fagan, and E. A. Feigenbaum, "A
Physiological Rule-based System for Interpreting Pulmonary Function Test
Results," Report HPP-78-19, Heuristic Programming Project, Computer
Science Dept., Stanford University, 1978.

Lesser, V. R., S. Reed, and J. Pavlin, "Quantifying and Simulating the
Behavior of Knowledge-based Interpretation Systems," Proceedings of the
First Annual National Conference on Artificial Intelligence, Stanford
University, 1980, pp. 111-115.

Lesser, V., A High-level Simulation Testbed for Cooperative Problem
Solving, COINS Technical Report 81-16, University of Nassachusetts,
Amherst, 1981.

NcArthur, D. A. and P. Klahr, The ROSS Language l1anual, The Rand
Corporation, N-1854-AF, May 1982.

McArthur, D. A., R. Steeb, and S. Cammarata, "A Framework for Distributed
Problem Solving," Proceedings of the National Conference on Artificial
Intelligence, Pittsburgh, 1982, pp. 181-184.

Newell, A. and H. Simon, "GPS--A Program that Simulates Human Thought," in
E. Feigenbaum and J. Feldman (eds.), Computers and Thought, McGraw
Hill, New York, 1963.

Newell, A. and H. Simon, Human Problem Solving, Prentice-Hall, New
York, 1972.

Nii, H. P. and N. Aiello, "AGE (Attempt to Generalize): A Knowledge-based
Program for Building Knowledge-based Programs," IJCAI, Vol. 6,
1979, pp. 645-655.

Quinlin, R., Inferno: A Cautious Approach to Uncertain Inference,
The Rand Corporation, N-1898-RC, September 1982.

Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces," Artificial
Intelligence, 5(2), 1974, pp. 115-135.

Sacerdoti, E., A Structure for Plans and Behavior, Elsevier North
Holland, New York, 1977.

- 51 -

Shortliffe, E. H., Computer-based l1edical Consultation: l1YCIN, American
Elsevier, New York, 1976.

Smith, B. A., "Israeli Use Bolsters Interest in Hini-RPVs," Aviation Week
and Space Technology~ July 18, 1983, pp. 67-71.

Smith, R. G., "A Framework for Problem Solving in a Distributed Processing
Environment," STAN-CS-78-700, Stanford University, 1978.

Steeb, R., S. Cammarata, F. A. Hayes-Roth, P. W. Thorndyke, and R. B.
Wesson, Distributed Intelligence for Air Fleet Control, The Rand
Corporation, R-2728-ARPA, 1981.

Stefik, H., "Planning with Constraints (HOLGEN: Part 2)," Artificial
Intelligence, Vol. 16, 1981, pp. 141-169.

Stefik, H., J. Aikins, R. Balzer, J. Benoit, 1. Birnbaum, F. Hayes-Roth,
and E. Sacerdoti, "The Architecture of Expert Systems," in F. Hayes-Roth,
D. Waterman, and D. Lenat (eds.), Building Expert Systems, Addison
Wesley, Reading, Pa., 1983.

Sussman, G., A Computational l1odel of Skill Acquisition, American
Elsevier, New York, 1975.

van Helle, W., "A Domain-independent Production-rule System for
Consultation Programs," IJCAI, Vol. 6, 1979, pp. 923-925.

RAND/N-2139-ARPA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

