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NOMENCLATURE

a,b,k,h Variables in two-dimensional Taylor series expansion
method

A Amplification factor in linear stability method, A
= modulus; coefficient in QUICK method of Leonard
(1979)

A,B,C1,D,E,F,H Coefficients in implicit, finite-difference methods

C Courant number

CURV Curvature

e A subscript meaning exact equation

GRAD Gradient

H.O.T. Higher order truncation error terms

i Space step index
0

n Imaginary number index

JW One half the base width of the test triangle

K Wave number, 2n/L

K Diffusion (dispersion) coefficient

I Left side wall value as subscript

I. Wave length

n Time step index as superscript; also number of Taylor
series terms

N Total number of grid points in one full wave length

NN Total number of time steps

PA P~clit number

Q Phase ratio

r Right side wall value as subscript

R Exact continuum response functione

RPIS Root-mean-square value

t Time; as subscript means time differentiation

At Time step

ki Velocity

x Space coordinate; as subscript means space
differentiation

Ax Space step

etc. Truncation error terms

5



1-D One-dimensional

2-D Two-dimensional

a Dimensionless wave number

r Dimensionless diffusion coefficient (the diffusion
number)

e Weighting factor, 0 < 0 < 1 in implicit schemes

*Dependent variables
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AN IMPLICIT, WIGGLE-FREE, AND ACCURATE UPSTREAM

FINITE-DIFFERENCE ALGORITHM FOR THE

ONE-DIMENSIONAL TRANSPORT-DIFFUSION EQUATION

PART I: INTRODUCTION

1. Implicit finite-difference algorithms use more than one un-

known variable at the next time level (n+l) in the calculation. They

thereby require the simultaneous solution of many equations at time

(n+l) in order to advance the computation for marching-type, initial

value/boundary value problems.

2. In general, implicit schemes have better stability properties

than explicit schemes. For propagation-dominated problems, this means

running with Courant numbers greater than unity to use more economic

time steps in the computation. In general, the price paid is less accu-

racy and larger Central Processing Unit (CPU) times on the computer. In

addition, implicit schemes require a prescribed order or direction of

the computation in the space of the independent variables. This can be

called the algorithmic structure of the scheme (Abbott 1979). Use of an

inappropriate structure will result in an ill-posed problem and unstable

solution.

3. Enp4 ers require robust schemes in their computational sys-

tems to pr greater flexibility in use, yet maintain acceptable

standards oi -ccuracy over a wide variety of conditions. Properly de-

signed implicit schemes have met these needs in many aspects of Compu-

tational Hydraulics.

4. For transport-diffusion computations, Leonard (1979) has de-

veloped the explicif QUICKEST modeling procedure. It avoids the "wiggle"

instability problem associated with central differencing of the advec-

tion term. It also eliminates the inaccuracies of numerical diffusion

resulting when only first-order, upstream differencing procedures are em-

ployed. The purpose of this research effort was to develop and study

numerical properties of an implicit algorithm consistent with the Leonard

(1979) scheme for the one-dimensional transport-diffusion equation.

7
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5. Part II of this report reviews the explicit scheme of Leonard

(1979) and proves its equivalence to first-order differences with

judicious removal of the truncation error terms. In Part III, two im-

plicit schemes are developed and their characteristics are investigated

using linear stability analysis methods and standard numerical tests.

Both implicit methods are then compared with the explicit Leonard

scheme. Conclusions and recommendations follow in Part IV.

8
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PART II: EXPLICIT LEONARD ALGORITHM (QUICKEST)

6. It is highly instructive to briefly review Leonard's (1979)

explicit scheme for unsteady transport diffusion, which is labeled

QUICKEST (quadratic upstream interpolation for convective kinematics

with estimated streaming terms). Consider the differential equation

0t + Uox = KOxx u,K real constants (1)

together with appropriate initial and boundary conditions.* A scalar

quantity 4 is convected by constant velocity u and diffused by a

constant diffusion coefficient K in one space dimension. A source

term could also be added, if necessary.

7. For the finite-difference grid shown in Figure 1, Leonard

(1979) proposed using a basic, three-point, upstream-weighted, quadratic

interpolation scheme for "wall" values 0 r (right) and 0. (left) of

a control volume when u is positive to the right. For steady-state

conditions, Leonard took

control volume
time(

n+1 _____________

left wall (1)i-[ I-Kright wall (r)

At A

n Ax X -A * - ...- Ax -- A x
i- i+ I space

i+1spci-i- (I) (r) i+1

Figure 1. Schematic of QUICKEST algorithm for flow from
left to right

See "Nomenclature" on page 5 for definitions of symbols and
abbreviations.

9
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r = 0i+1/2 = 1/2(oi+1 + 0i) - A(oi+l - 20, + 0i-, )  (2)

01 = Oi-1/2 = I/
2 (Oi + Oi- ) " A(-oi 20i- I + Oi-2) (3)

with A = 1/8 for steady flows (QUICK algorithm).

8. For unsteady-state conditions, Equations 2 and 3 were incor-

porated in an exact integral formulation where average wall values over

time increment At were employed. Complete details are beyond the

intended scope of this review.

Explicit Operator (QUICKEST)

9. The resultant explicit, finite-difference operator for the

QUICKEST algorithm becomes (Leonard 1979, p. 80, Equation 57)

*+l *-C 1/2(. + C.) - Ax 2 (1- C2
- 3r)cuRvr]

n+1l O+ 1

1~O 1 -CRD 6 - -J (4)

+ AxGRAD - 2 C'CRV - AD- -- C. CURVe)]

where:

C = the Courant NumberAx

r = the dimensionless diffusion coefficient, or the
Ax2  diffusion number

n 0n

GRAD - -
r A

n - 2n +

CURV =i+1 2 i+1

10



n n

GRAD = i - i-1GRD£ Ax

n -2 +1 i- I 1-2

CURV £ = Ax2

for flow from left to right for both walls (r = right; k = left). Note

that for this case, both curvature terms CURV are actually centered

upstream by one-half increment and not at r or £ as indicated. This

is a key aspect of the QUICKEST scheme. In Equation 4, the physical

diffusion is calculated using a standard, centered, second difference

operator at point i . The overall (global) truncation error is third

order in space, and the scheme gives a conservative formulation with no

wiggle instabilities present.

Equivalence to a Higher Order Accuracy Method

10. As shall be demonstrated below, QUICKEST is equivalent to a

forward-time, centered-space (FTCS) scheme in which the truncation

errors resulting from all terms are subtracted out in a prescribed

man er.

H1. From a Taylor's series expansion about point (i,n) in Fig-

ure I, one obtains the finite-difference analog to Equation 1.

o 0 +0 o+n 2+ in + u i+12- ' i 1 = K [i+1 - 2 i_'

At 2 Ax 2

At2  At3  
-

At~ + + + H.O.T.

+ u . xxx + O xxxxx +H.O.T.

11
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G) n

2- + 2Ax4  x + H.O.T. (5)

A forward-time difference (term () and a centered-space difference
(term 03') are employed along with a centered, second difference (term

5) for the diffusion. The bracketed terms 02, , and G are

the truncation errors associated with terms (, @ , and

respectively.

12. To eliminate the time derivatives in , Equation 1 can be

further differentiated in time and space to yield

¢tt= U2Oxx - 2uK xxx (6)

=ttt 
= U3¢xxx (7)

and

Ctx = -U xx + K xxx (a)

(8)

*xtt = U2¢xx (b)'

when 4th de-ivatives are neglected. Equation 8 will be used later in

this report. Substituting Equations 6 and 7 into 5 and grouping like-

ordered differentials gives

n+l n # nn - +
1 i+ i-, +_ 2#i _ #i+l

At + u -- =K A-2

+ t[ ] +(~ -ut2 - .~)[]
22 3+2 n

+ t 2KAx 2  nTJ 9
_4 tttt 41- fxxxx + H.O.T(9

i

The last bracketed term in Equation 9 is the truncation error

12
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O(At3, Ax2 ) and contains fourth-order and higher differentials which

are neglected. Multiplying through by At and clearing all n-level

terms to the right-hand side (RHS) gives

-n+l n C ~)n + ,(,n+l - n_

x- n
+Ax 2 c2 (10)

xx2 6

The bracketed term in Equation 10 is the remaining truncation error

below xxx and the method in which it is finite-differenced is cen-

tral to the equivalency of Equations 4 and 10.

13. Using the terms defined by Leonard (1979) in Equation 4

gives

i+n( n] _ n1 ]

GRAD - GRAD2  _ i -. ?] - _

xx Ax Ax

n - 2n ,n
l €i-I

Ax2

or

AXx)n = GRAD - GR(11)

Thus, for xx ' the centering is precisely at (i,n) as required by

Equation 10. Now, if the centering of xxx is judiciously moved up-

stream to (i - 1/2, n), it is assumed that

n n CURV r - CURV
x:x i-1/2 A

-n n

n 2 + *il] n 20n_ + n]
Oi+1 " i I i-2

Ax

13



n - n n n
*i+ - 34 i +3i-I " i-2

or
nn

Ax (Ixxx) t Ax (x= CURV r CURV, (12)

The identity

n n

*i+1 i 1/2 + 1+1] 1/2 [,n + I-1] (13)

is also required.

14. Putting Equations 11, 12, and 13 into Equation 10 gives

r+1 n C [1/2 (,n + n+l) - 1/2 ( n +

-(xGRAD 2 )]+ C[Ax (GRAD - GRAD,)

+ < (1 _ - 6r) (cuRv - cuv,)] (14)

The final trick to recover the form given by Leonard is to split the

last term in Equation 14 simply by taking

-6r = -3r - 3r

and through some further rearrangement. Equation 4 is thus recovered

and the derivation is complete.

15. For programing purposes, a much simpler version can be ob-

tained by inserting the difference Equations 11 and 12 for *xx and

Oxxx 'respectively. After grouping all like terms, one obtains

14

--- - --- '---'



i 2 2 601 l

[2r1 +~ C + q( 2-6r) (i- 2  +r

2 ~ ]~ iL 2.

+ C (I-c -6) ' -[ (- C - 6r)] -2 i

16. The algorithm for QUICKEST does reduce to that given by

Leonard (1979) for the steady-state algorithm (QUICK) when term Q for

time derivative truncation error is omitted. Thus QUICKEST implicitedly

takes A = 1/6 in Equations 2 and 3. Other reduced forms are

Pure Advection (r o )

0n+1 =0n -C(C 2 3C + 2 )nl + C2 2C 10
i i ~ 'il + 2( 1

C (C 2 _ C-2) 0_n + q C2 1)n_ (16)

Pure Diffusion (C =0)

0n+1 0n + 1r n - n0 (17)
1 1 01+1 1 i+1)

When r = 0 and C = +1 ,Equation 16 reduces to *.n~ = *.n or

point-to-point transport for an exact result.

Linear Stability Analysis

17. As a further review and check of these results, a von Neumann

linear stability analysis was made of Equation 15. This resulted in the

following expression for the amplification factor A

2

A~ci)= 1 2(r + [C(o C2 1

6 ei-c - 6r)(4 cos of - 3 - cos 2a)

sin a + 1(1 _ C2 -6r)(2 sin a -sin 201) (18)

15
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where:

a = KAx = the dimensionless wave number

K = the wave number 2-
2n L

N
N = the number of grid intervals per wave length L
0
n = the imaginary number index

Equation 18 is identical to that derived by Leonard (1979, p. 81,

Equation 59), which gives further confidence in these results.

18. An example amplitude portrait for the pure advection case is

shown in Figure 2 for three values of the Courant number. The modulus

of A versus a plot (Figure 2a) gives more resolution for the higher

wave numbers (a + n) and consequently has been employed for all subse-

quent portraits. No phase errors exist for C = 0.5 and 1.0 (r = o)

19. The complete stability range in the (r,C) plane for the

QUICKEST algorithm as mapped by Leonard (1979) is reproduced in Fig-

ure 3. Lines of constant Piclt number PA defined as

P .. (19)
Sr

are also shown. When r = 0 (P = c) , the QUICKEST scheme is unstable

when 1 < C < 2 and also for C > 2. The scheme is stable for all

other r, C values within the space shown with the PA lines. Al-

though this explicit scheme is stable for a considerable range above

C = 1 , it also is unstable in a "corner" beyond F = 0.5 and below

C = 0.5 . It would be anticipated that an implicit version would elim-

inate this unstable corner.

20. But Figure 3 reveals nothing about the accuracy of the scheme.

For the continuum Equation 1, the exact amplitude response function

Re (a) is given by

Re (o) = exp(-ra2) (20)

since the modulus for pure advection alone is unity over all a . The

exact phase ratio Qe is also unity for all a since pure diffusion has

16
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0.4.

0.2-

0.5 1. 1.

a
(a) When wave number space is defined by a

1.2-

1.0 :C=1.0

JAI

0.601
WI

0.4 QUICKEST (Pure Advection)
0'

0.2-

0.0-- 2 3 4 5 6 7 8 18 11 12 1

N

()When wave number space is defined by N

Figure 2. Amplitude portraits of QUICKEST for C =1.0,
0.9, and 0.5 for pure advection (r o )
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17 10

16

12[

11

10 2

C

S

7

SS

Figure 3. Stability range of QUICKEST method in (r,C)
plane as mapped by Leonard (1979). Note that the scheme
is unstable for 1 < C < 2 and again for C > 2 when

r= o
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no phase properties. Examples of the accuracy characteristics of QUICK-

EST are presented in Figure 4 when C = 0.5 , r = 1.1 and in Figure 5

for C = 0.5 , r = 1.2 . The exact response is both cases is also pre-

sented. For the stable case (1.1, 0.5), large differences occur for

both JAI and Q at higher wave numbers meaning low accuracy for these

short wave components. The unstable case (1.2, 0.5) is clearly re-

vealed by the amplitude portrait in Figure 5.

21. It would be very beneficial to characterize the accuracy of

QUICKEST by one number over the entire (F,C) plane. To do this, the

root-mean-square (RMS) value of the differences between continuum

(exact) and discrete (approximate) responses was computed using 59

values equally spaced in N . Iso-RMS "difference" lines were then con-

structed to give the "contour" type plot for amplitude response pre-

sented in Figure 6. The weighted-average RMS difference value for the

stable area (also traced on Figure 6) is 0.0568. In N-space, this RMS

norm was found dependent on the number of differences employed. Further

research is needed to refine this approach.

Verification

22. A convenient and informative numerical test for verification

of transport-diffusion schemes is the propagation of test triangles with

periodic boundary conditions. Since numerical diffusion and convective

phase errors are of primary concern, these tests are made with no physi-

cal diffusion (r = 0) present. Two examples are shown in Figure 7.

Triangles with peak of 1.0 unit centered at i = 50 on a 100-unit grid

and half-base widths of 20 units (Figure 7a) and 2 units (Figure 7b) are

propagated with C = +0.5 (left to right). With this Courant number

and using periodic boundary conditions, 200 time steps are needed to

return the triangle to its initial position shown.

23. The points shown in Figures 7a and 7b are results using the

QUICKEST algorithm after 200 time steps. No phase errors are indicated,
which confirms the von Neumann analysis. However, numerical amplitude

errors for high wave number components cause the peak to be damped,

19
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N
=060 10 5 2

1.2- C=0.5 r=1.1

1.0 QIKS

0.8-
JAI

0.6-

0.4-UCIT(005

0.2- ea

0.50) 1.0 1.5 2.0 2.5 3. 0 7T

(a) Amplitude portrait.a

1.0

0.0

-2.0 IKS

-3.0-

-4.0L
(b) Phase portrait.

Figure 4. Amplitude and phase portraits of QUICKEST and
QUICKIST (implicit) schemes when C =0.5 , r =1.i
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N
=o60 10 5 2

1.2- C=0.5 r=1.2 USAL

1.0

0.8.

0.6
QUICK/ST (0=0.5)

0.4.

00 0.Ot 7 1. 5 2.- 2" 3t _

a
(a) kirpitude portrait.

1.0

0.0

QUICK/ST (0=0.5)

0-2.0-

-3.0-

-4.0-

-5.
(b) Phase portrait.

Figure 5. Amplitude and phase portraits of QUICKEST and
QUICKIST (implicit) schemes when C = 0.5 , r =1.2

Explicit QUICKEST is unstable
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2.2

2.1

2.0- -

1.9- 
.

1.7

1.6

1.5

1.4 \.

13 0.01

0. 03
1. 2-

C

0.02

1.0.
0 

1

0.80

0.9- .00

0.86- ~

0.5

0.6-

0.5 0

0.3)
0.2

0. 0 0. 1 0. 2 0.3 0:4 0:5 0:6 0.7 0.8 0.9 1.0 1.1 1.2
r

Figure 6. Contour lines of equal RMS difference
values (iso-amplitudes) on the (r, C) plane for

QUICKEST. Stability range also shown
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1.0
QUICKEST

0.8 C=0.5 r=o
NN=200

0.6 JW=20

0.4

0.2

. 10 20 30 40 50 60 70 80 90 100

(a) Wide triangle with half-base width of 20 units.

1.0
QUICKEST

0.8 C=0.5 r=o
NN= 200

0.6 JW=2

0.4

0.2

0 10 20 30 4 50 60 70 80 90 100

(b) Narrow triangle with half-base width of 2 units.

Figure 7. Propagation test results for pure
advection case using periodic boundary condi-
tions and QUICKEST algorithm with C = 0.5

especially for the "spiked" triangle (JW = 2) example. The damping of

the wider triangle (JW = 20) is relatively minor when compared with that

produced by many first-order finite-difference schemes (see, e.g., Reid

and Basco (1981) for other examples).

Wiggles

24. Wiggles as defined by Leonard (1979) are

"...spatially decaying or growing oscillations of
wavelength 2Ax(i.e. a = n, N = 2) - typical of
central difference solutions of the... convective-
diffusion problem for PA > 2

23

Lr

,2



-Interestingly enough, the criterion for the
absence of wiggles, P < 2 , is not a stability
condition in the von Nwmann sense ...." (p. 63)

Roache (1977) discusses this as the "zero-overshoot" requirement while

Abbott (1979) mentions "zig-zagging" of free-surface flow schemes. A

full discussion of the sensitivity of the advection term for various

schemes and sensitivity requirements to prevent wiggles is found in

Leonard (1979). Upstream differencing of the advection term always

prevents wiggles.

25. To further examine the wiggle problem for centered convection

schemes, an implicit FTCS scheme was developed with no attempt to remove

the truncation errors. An implicit scheme is necessary for stability

since the explicit FTCS scheme for pure advection is always unstable.

The advection term is centered in space and weighted between n and

n + 1 time levels by a weighting factor 6(0 < 6 < 1) . The usual

case employed 0 = 1/2 to give the a(At , Ax ) for the truncation

error.

26. A linear stability analysis proved the scheme stable for all

(F, C) values when 0 > 0.5 . Some phase errors existed, but JA 1

for all a when C = 0.5 and 1.0 (0 = 1/2) . Propagation test re-

sults for the wide shape are shown in Figure 8. Clearly, an oscilla-

tion of length 2Ax is present and can only be explained as a "wiggle"

instability of central differencing since PA = a (r = 0) . In Fig-

ure 8b, the Courant number is 1.0 requiring only 100 time steps to com-

plete the propagation cycle. In each case, the wave moves too slow as

predicted by the phase portrait for higher wave numbers. Additional

tests with PA = 2 eliminated the wiggles. When PA = 5 , wiggles

were barely perceptible near the peak as shown in Figure 9, where the

triangles only represent initial conditions since physical diffusion is

now included.
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1.0-
FrCS IMPLICIT

0.8 -C=0.5 r=o P,: oo
e=0.5 NN=200

0.6-

0.4-

0.2-

0.06 0 10- 20%J30 40 50 60 70 80 010

(a) When C=0.5 and after 200 time steps.

1.0-
FTCS IMPLICIT

0.8 .c=1.0 r=o P,=oo

0.-E=0.5 NN= 00

0.6

0.2

0.01 A
0 10 20V30 40 50 60 70 80O 90 100

(b) When C=1.0 and after 100 time steps.

Figure 8. Example of wiggle instability for
implicit, centered advection of test triangle

with periodic boundary conditions
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1.0F Initial Conditions
FTCS IMPLICIT

0.8 C0.5 P=5
r=o.1 and 0.25

0.6 G =0.5 NN=200

0.4-

0.2-

0.c
0 10 20 30 40 50 60 70 80 90 100

(a) When C=0.5 and after 200 time steps.

1.0 PInitial ConditionsFTCS IMPLICIT /\
0.8 C=1.0 Pa-5

r=0.2 and 0.5 %
0.6 ~ NN= 100
0.6- =0.5 N=0

P PA=2
0.4

0.2-

0 10 2 304 50 60 70 80 go 10

(b) When C=1.0 and after 100 time steps.

Figure 9. Suppression of wiggle instability when

P A < 2 for implicit, centered advection of test
triangle. When Pa = 5 , a slight oscillation is

barely visible
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PART III: IMPLICIT ALGORITHMS

27. Many alternative ways exist to formulate implicit, higher

order accurate difference schemes for Equation 1. Two methods are de-

scribed below, both of which utilize elements of the explicit, Leonard

(1979) algorithm.

Implicit Leonard Algorithm for Transport-Diffusion (QUICKIST)

28. In discussions of computational efficiency and expense of the

QUICK (steady-state) method, Leonard (1979, p. 73) states

Implicit, tridiagonal procedures are similarly
economical. In that case, one merely uses (29),*
treating the linear-interpolation term implicitly,
with the curvature evaluated as as explicit
source term.

As derived in the previous chapter, the linear-interpolation term stems

from central differencing the advection term. Consequently, this term

is made implicit through use of a weighting coefficient e such that

0 < 0 < 1 i.e.,

-n (1 -
5!2

(1 - 0)(¢x) = (1- 2Ax [xxx 2 *xxxxx 5!
n

+ H.O.T.] (21)

i

+ ln+1 n+l . 2  4 n+1

O(x) +  = 0 - 0¢x +  x + H.O.T. (22)
xi 2Ax xxx 3! xxxxx i

A similar weighting makes the diffusion implicit (Crank-Nicholson

method) so that, by analogy to Equation 5,

* Equations 2 and 3 in this report.

27

____ ___ ______ ____ ___ ___ ___ ___ I



n]. I', ..,

+ n~ -~+ 0) 2'++ 47+ + -L__ j 2Ax 2uB

ni~ " 2  n  +  i- i+1 #n

1 rK(1 -
1) + .O

Ax 2  
AX 2+

At At2  At3  +n

" , t ) .- 2 ttt +  H.O.T.

4 i-i

" u6 - ) + A + H.O.T.J+ u6 xxx +  1 -- xxxxx +  .OT

-K(O - e) 2Ax x + H.O.T [ 2x x (23)

4! xxIi andH*O**]i

When 0 terms . G, 0 and @ disappear and the explicit

scheme given by Equation 5 is recovered. Again, neglecting all fourth

and higher order derivatives, Equation 23 gives, 
after rearrangement,
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t I
n+l n n+ n+1 2 n+ +  n+l
1i - i + i+1 "i-I 2 u ] - K- l

t + u6 2Ax -u If xxx

n n n - 2 f

-u(1 0) i+1 - *i-1 + - i+1 *i1
= u( - O)2A x A x K 1 - ) x2

0
+ ui ) )x2 n+ ~ 3 u(- ) f[xxx]i

-ii-

[2 (ufxx - 2uxx ] + r\ (- (2xxx)]4)

29. The numbered brackets identify truncation error terms. Trun-

cation error time derivatives are again converted to space derivatives

using Equations 6 and 7 to give terms ( and (B , respectively. All

truncation error derivatives are at time level n except term . A

third spatial derivative requires four grid points, which is incompatible

with a tridiagonal algorithm. Based on the derivation in the previous

chapter and the quote above (Leonard 1979, p. 73), for evaluation of the

curvature as an "explicit source term," term is taken at time level

n . This is a key assumption in this first method. Also, the time

derivative is still centered at grid point (i,n) so that this implicit

method reduces to the explicit method of Leonard (1979) called QUICKEST

when 0 = 0 . Here the underlined E also could stand for the explicit

algorithm. By analogy, for later reference, this implicit algorithm is

labeled QUICKIST.

30. Removing term in Equation 24 to time level n , multiply-

ing through by At , and rearranging by grouping all like terms gives
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re) + (1+ + 2re) '+I -c + r+).n+}

[CU 8) + r(u - e ni + 1 - 2r(1 - e)] i

+ (- 8) + ( - 8 ] -1 +

2 - Cxr - (25)

Note that taking term 0 to level n effectively removes the influence

of e on the truncation errors associated with the convection term.

31. Finally, if again the assumption is made that, inherent

in Equation 12 for upstream differencing of left to right flow,
n n( ) ( il /2 then using Equation 11 plus additional rear-

rangement gives

Dni+ n+1. H+I ninn 2n+ + B + = Dn + E + FC + (26)

Where

W e e A = C- re) 
(a)

B = 1 + 2r8 (b)

ci = - (- ' re) (c)2
D = - (i - e) + r(1 _ o) + --2 + (I -C -6r)] (d)

L 2 C 2

F [= (1 - e) + rCo - 0) + L- + 9 (l - C'- 6nr (f)
C 2

=- C (1 - - 6r) (g)
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When 0 = 0 , Equation 26 reduces to Equation 15, as expected. This

form is convenient for the linear stability analysis and propagation

tests using double-sweep, tridiagonal matrix solution procedures.

Linear stability analysis of QUICKIST

32. Use of the von Neumann method resulted in the following ex-

pression for the amplification factor

0 0 0
A(a) - D exp (Ha) + E + F exp(-Ha) + H exp(-112a) (27)

0 0

A exp(a) + B + C1 exp(-na)

A simple computer program written in complex arithmetic was employed to

find IAI and Q over 30 values of a from Equation 27 without further

simplification.

33. Some results when 0 = 0.5 are shown in Figure 10 for

C = 0.5 and Figure 11 when C = 1.0 . In both instances, the explicit

N 2

1.2 C=0.5 Fo

1.0 Re(a)1.0

0.8- 
UICKEST

0.6-

QUICKIST (0=0.5)
0.4-

0.2-

00.5 1.0 1.5 2.0 2.5 3.0 IT
a

Figure 10. Amplitude portrait for QUICKEST versus QUICKIST schemes
when C = 0.5 , r = 0 . Both have no phase errors for all of a
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QUICKIST
1.2 c=i.o r=o e=o.s
1.0 QUICKEST and R,(a)

0 .8S

0.4

02

00 0.5 1!0 1.5 2!0 2.5 3.0 VT

a

14
14- QLICKIST (6=0.5),

12-

1 0
QUICKEST and Re(a)

0.8
0

0.6

04 QUICKIST
C=1.0 r-o 0 o.5

0.2

0. 0  0.5 1 1.5 2.o 2.5 30
Ia

Figure 11. Amplitude and phase portraits for QUICKEST and
QUICKIST schemes when C = 1.0 , r = o

scheme is more accurate for pure advection. The extent of numerical

damping when C = 1.0 for the QUICKIST algorithm can be considered ex-

cessive. However, as shown in Figure 4 for C = 0.5 , r = 1.1 ,

QUICKIST (6 = 0.5) appears more accurate for all a . Figure 5 also

reveals that when C is again 0.5 but r now 1.2, QUICKIST is stable
whereas the explicit scheme is unstable. The implicit algorithm has

far superior phase response for these latter examples. Finally, Fig-

ure 12 reveals that the explicit scheme is more accurate over all a

for the pure diffusion case when r = 1/6 .

34. The (r,C) plane was mapped for the implicit scheme to
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00 N 2

1.2- C=O
r=o

JAl 0.6- UC (#-o. 5)

0.4- QUICKES T

02 Re(a )

O.2I

00.5 1.0 1.5 2.0 2.5 3.0 I

a
Figure 12. Amplitude response for pure diffusion (C = 0) when

r = 1/6 for both QUICKEST and QUICKIST schemes

determine its stability range* for comparison with Leonard's results

in Figure 3. The results were somewhat disappointing. It was antici-

pated that the implicit QUICKIST algorithm would have a much larger

stable region than shown in Figure 13. However, the unstable corner

below C = 0.5 and beyond r = 0.5 was eliminated. The stable range

of QUICKEST method is also shown in Figure 13 for comparison.

35. The amplitude accuracy of QUICKIST was characterized in the

stable range out to r = 1.3 using the RMS difference norm, as before.

Figure 14 presents the "contour" map of RMS difference values and gives

a weighted-average value in the stable area (arbitrarily, r < 1.3) of

0.0946. As expected, QUICKIST with 6 = 0.5 is less accurate than the

explicit Leonard algorithm.

IAI > 1.001 for any 0 < a < 7r was the criteria employed.
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Figure 14. Iso-amplitude lines of equal RHS difference values in
(r,c) plane for QUICKIST. Stability range also shown
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Propagation tests of QUICKIST

36. The QUICKIST inaccuracies are confirmed by results of the

triangle propagation tests. Excessive numerical damping results to the

extent demonstrated in Figure 15 for C = 0.5 (Fig. 15a) and C = 1.0

(Fig. 15b). When compared with Figure 7 and the fact that C = 1.0

gives an exact result for the explicit scheme, it must be concluded that

the implicit QUICKIST algorithm is too inaccurate to warrant further

study.

1.0
QUICKIST

0.8 C=0.5 r=o
e=0.5 NN=200

0.6-

0.4

0.2-

000

0.01,

0 10 20 30 40 50 60 70 80 90 100

(a) When C--0.5 and after 200 time steps.

1.0
QUICK/ST

0.8 C1.0 I-0 \
e=0.5 NN=100

0.6-

0.4.
"%

0.2-P

0 10 20 30 40 50 60 70 80 90 100

(b) When C=1.0 and after 100 time steps.

Figure 15. Propagation tests for pure advection using
periodic boundary conditions and QUICKIST algorithm.

Large numerical diffusion present
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Fully Centered, Implicit Algorithm (QUICKOST)

37. The inaccuracy of the QUICKIST algorithm can be traced to the

off-centering of the 0t derivative at (i,n). The sole advantage of this

method is that when 6 = 0 , the explicit QUICKEST algorithm is regained.

38. A fully centered, implicit method would utilize grid point

(i,n + 1/2) in the Taylor series expansion so that even the 0t deriva-

tive is effectively weighted by 6 . When 0 = 0 , the explicit QUICK-

EST scheme would no longer be recovered. However, far greater numerical

accuracy is anticipated since all terms and truncation errors are cen-

tered at the same time level by 6 . Consequently, this fully centered

implicit Leonard scheme is given the acronym QUICKOST.

Derivation

39. Consider the schematic grid sketched in Figure 16. A two-

dimensional Taylor expansion of the form

f(a + h, b + k) = f(a,b) +(h + k L f(x,t)

t=b

n

+ - h a- + k q_) f(x,t) + (28)

ax~x aLa

t=b

is utilized where

ai

b = n + 1/2
h = Ax (29)

k = At/2

for the nomenclature in Figure 16. The initial expansion'. about

(i,n + 1/2) yields by analogy with Equation 23

* A coefficient was discovered to be missing in this expansion at a later
date. The complete results for the correct expansion are given in
Appendix A. Surprisingly, the correct expansion (QUICKeST 2 exhibited
little if any improvement over the original explicit scheme QUICKEST.
Therefore, it was dropped in favor of the "chance" algorithm QUICKOST
discussed in detail herein. It was not possible to determine the cause
for this unexpected result within the allotted scope of the study.
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Figure 16. Schematic of operator for QUICKOST

scheme determination

6t -+UO 0 2Ax + ue 2Ax

,n1 ni n) -~ [_l ~

K~l 16) i+ 21 2 i I + e i+1 0 2 - 11

+ 1- At 2  + l.O.T]I n+1/2
ttt i

0)F LAt + ~ A 2  n+1/2

L( 2! 2 Lx AXX + 4t-: + H.O.T~j

t2 n+1/2

Lff2 2xt 3! x xx 24 xtt +...
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K(I - 8) [., Atxt + HO.Tn+1/2

n+/
KOhi}L At. t + H.O.nTl/ (30)

The truncation error terms and are now centered

at (i, n + 1/2) giving different coefficients and incorporating mixed

time/space derivatives. Neglecting all fourth and higher order deriva-
tives; using Equations 6, 7, and 8 to convert all time and mixed-time

derivatives to pure space derivatives; and combining all like deriva-

tives for truncation errors yields

n- -n n n n+l n+l
- i ,- i+l -i-I . i+l i-I

At +u(-) 2Ax +uO 2Ax

n - n n 0n+l - 20n+1 + n+lK(I - 0)% 1 - + *i- + KO *i+1 - i-l

KU - 8) 2 +- 2

EI t()n+1/2
+ [u2 At (1 -28)6 X)

2 5Ku(1 -20)At (31)+ 12 m "__t (Ixxx i

In Equation 31, truncation error from terms@and(Dcontribute to *xx
while all truncation error terms contribute to the Oxxx coefficient.
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40. It is now assumed that:

a. The truncation errors in Equation 31 are evaluated at
time level n .

b. The oxxx term is centered upstream (grid point

(i - 1/2) for left to right flow).

Assumption a is required for 0xxx to retain the tridiagonal structure

of the algorithm as in QUICKIST. Also, it is felt that for consistency,

oxx should also be taken at level n . Assumption b follows from

Part II to produce the quadratic, higher order, accurate, upstream dif-

ference operator for advection. Using these two assumptions and making

the usual rearrangements gives

An+l + Bon+I + =l' o on +H

Ai+I Ci- 1  Doi 1l + F4iI + i-2 (32)

where A = Ce - re 
(a)

2
B = 1 + 2re (b)

Ci=, ( - + ro) (c)2CC

[ = (1 - ) + r( - ) + C (I - 20)
+ 5 - cm( - 20 (d)

6 12

E = - 2r(1 -O) (1 - 20) )+ 2

F = D (1 - e) + r(1 -0) + -e (1 -2)

+ 5 cr(1 - 20)
2 12

H = - 15 cr(1 - 20)] (g)

The coefficients D , E , F , and H in Equation 32 are different

from the first implicit scheme given by Equation 26. As an example,

consider the coefficients when C = 1.0 , = 0, 0 .5

QUICKOST

I n+l n+l 1 n+l 1n 6 n + L n 2  (
i+1 + 0i "4 i- +"2i1 1 Ti 1 i420

40



QUICKIST

1 n+l +n+l 1 n+l 1 n + n
4 +l " 4 i-l = 4 *i+14  i-1 (b) (33)

QUICKEST (0 = 0)
n+l n (c)
i = Oi-I

It appears that QUICKOST retains more of the intended upstream interpo-

lation flavor of the Leonard QUICK method.

Linear stability analysis of QUICK6ST

41. Equation 27 is again employed but with coefficients calcu-

lated from Equation 32. Some results (0 = 0.5) are shown in Figure 17.

This implicit scheme is exact in amplitude response for all a when

C = 1.0 or 0.5 for pure advection. Some phase errors exist for

higher wave numbers as demonstrated in Figure 17(b). Figure 17 when

compared with Figures 10 and 11 reveals that QUICKOST is vastly superior

to QUICKIST and similar to the explicit scheme for these Courant num-

bers. Both implicit schemes reduce to the Crank-Nicholson scheme for

pure diffusion (C = 0, 0 = 0.5).

42. Mapping the stable area of QUICKOST in the (U,C) plane

revealed a much larger and uniformly stable region as shown previously

in Figure 13. QUICKOST is stable for all F below C = 1.5 except

in the small area above C = 1.0 near the ordinate.

43. The amplitude accuracy of QUICKOST is summarized in Figure 18

out to F = 1.3 again using the RMS difference as norm. The weighted-

average value in the enlarged stable area (r < 1.3) is

QUICKOST 0.0890

and, for comparison,

QUICKIST 0.0946

QUICKEST 0.0568

As expected, the QUICKOST algorithm is more accurate in amplitude

response over all wave numbers than QUICKIST. It is generally more

inaccurate than the explicit scheme, but is far more useful due to
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(a) Scheme is exact in amplitude response.
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005.0152.0 2.5 3.0 V

a

(b) Same phase errors present.

Figure 17. Amplitude and phase portraits for QUICKOST scheme and

pure advection cr = 0) case when C = 0.5 and 1.0
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the extended stable region above C = 1.0 for practical values of

r > 0.5 . The phase accuracy for the three schemes generally followed

these same trends.

Propagation tests of QUICKOST

44. The excellent numerical accuracy of the QUICKOST is con-

firmed by the triangle propagation test results depicted in Figure 19.

The discrepancy at the peak is comparable to that produced by the ex-

plicit scheme (Figure 7) and the waviness of the upstream face is due

to phase errors (recall Figure 17). The closeness of numerical results

between the explicit and QUICKOST algorithms is also demonstrated in

Figures 20 and 21 where some physical diffusion (F = 0.1) is now present.

1.0
QUICKEST

0.8 C=0.5 r=o
e=o.5 NN=200

0.6
0

0.4

0.2-

10 20 30 40 50 60 70 80 90 100

(a) When C=0.5 and after 200 time steps.

1.0/
QUICKOST

0.8 c=l.o r=o
0=0.5 NN= 100

0.60

0.4

0.2

0.0 10 20 30 40 50 60 70 80 100

(b) when C-1. and after 100 time steps.

Figure 19. Propagation test results for pure advection
case using periodic boundary conditions and QUICKeST

algorithm
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1.0 Initial Conditions

0.8 C =0.5 r = 0.1 QUICKEST
PA = 5 NN = 200 ,,QUICKOST (0=0.5)

0.6

0.4

0.0
0 10 20 30 40 50 60 70 80 90 100

(a) When C=0.5, r=O.l, PA=5 and after 200 time steps.

1.0 Initial Conditions

0.8 C=1.0 r = 0.1 QUICKEST
PA = 10 NN = 100 " QUICKEST(e=0.5)

0.6

0.4

0.2

000 10 20 30 40 50 60 70 80 90 100

(b) When C=1.0, r=0.1, P,=10 and after 100 time steps.

Figure 20. Propagation test results for example with some physical
diffusion present (r = O.1) comparing explicit (dots) and implicit

(triangles) QUICKOST algorithms

In these examples, only initial conditions are shown.

45. Other propagation tests gave similar results.
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Initial Conditions

0.14

04,

0.12 t
A

• • QUICKEST
QUICKOST (e=0.5)

0.10-
C=0.5 r=o. 1

• • P&=5 NN=200

JW=2
A

0.08 -

A

0.06-A

0.04

0.02 A

a

0.00AA
o 0 10 20 30 40 50 60 70 80 90 100

Figure 21. Propagation test results for narrow triangle (JW = 2) and
physical diffusion (r = 0.1) comparing QUICKEST (dots) and QUICKeST
(triangles) algorithm when C = 0.5 , r = O.1 , P= 5 after 200

time steps
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PART IV: CONCLUSIONS AND RECOHENDATIONS

46. The purpose of this project was to develop and study numeri-

cal properties of an implicit algorithm consistent with the QUICKEST

scheme of Leonard (1979) for the unsteady, one-dimensional transport-

diffusion equation. Based upon the results discussed in this report,

the following conclusions are drawn and recommendations offered.

Conclusions

47. The explicit algorithm labeled QUICKEST is identical to a

forward-time, centered-space scheme with all truncation errors ex-

pressed as spatial derivatives and removed through *xx and 0xxx
terms. The *xxx term is centered upstream and results in a higher

order, accurate, upstream difference method.

48. A fully centered, implicit scheme called QUICKOST, as devel-

oped herein, is of comparable accuracy to the explicit operator yet ex-

tends the stable range in the (F,C) plane to essentially below the

line, C = 1.5 for all F

49. QUICKOST is a stable, accurate, and robust algorithm of con-

siderable engineering usefulness for transport-diffusion computations.

50. Because development of the implicit QUICK6ST algorithm has

proven to be highly successful, further research on the QUICKeST 2

scheme is not warranted except to learn the reasons for its poor

performance.

Recommendations

51. The QUICKOST scheme for one-dimensional flows should be ex-

tended to variable grid spacing. Only nomenclature and programming mod-

ifications are required.

52. A two-dimensional QUICKST algorithm should be developed.

Use of an alternating-direction implicit (ADI) structure should be con-

sidered along with the "double-sweep" solution algorithm.
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53. An experimental test program must be devised to fully verify

the two-dimensional QUICKOST against existing and new data from both

the field and the laboratory.

54. Systems-oriented computer codes and extensive software should

be written for ease in application by computational hydraulic engineers.
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APPENDIX A: DERIVATION OF QUICKOST 2

1. As mentioned in the footnote on page 37, the original expansion

4 to develop the QUICKOST algorithm discussed in this report was found to

be incorrect (Ross Hall, 19 Oct. 1982, personal communication). This

Appendix gives the explanation, all corrected equations, and a linear

stability analysis of the results. This corrected version is dubbed

QUICKOST 2 and is shown to be a far less robust algorithm than the

"chance" algorithm QUICKOST. For this reason, the original report and

all conclusions were felt to still be valid and the corrected algorithm

QUICKOST 2 relegated to this Appendix.

2. Consider the schematic operator shown in Figure 16. The

general two-dimensional Taylor series expansion given in Equation 28 is

correct but the indices should be

b = n+e

h = ±Ax

k = +(1-e)At,-eAt (Al)

This will give, for example, a space difference from n+e to n+l (over

+(1-8)At) and from i to i+l (over +Ax)

n+1 n+e + [AX n+ n+il= i xi + (1~e) t(,t)1 +o

+ . [rx2(@xx.4 + (1_-)2At2( "tt) i+
6 + 2Ax(l-O)t-xti I

+1i 1~3, )fl+ + l

)n+, 
n+O3! [ xxxxi + A2l0A(xxt i

+ _x1-)2At2(0 )f+o U _)Al nA(2+xtt + (l-) 3At (¢ttt)i ]A

Al

---



The coefficients underlined in Equation A2, namely the 2 and 3, were

inadvertantly left out of this and all other expansions in the original

derivation that produced the "chance" algorithm QUICKOST.

3. The correct expansion gives the following equations.

Corrected Equation 30 (pp 38-39)

(1) (3) (7)

0n+l n n n n+1 n+1
- + u(1-) [ i+ i-I I+ U i+ I i-

At 26X 2Ax

(5) (9)
n n n n n +

SK(-e) [I + KO i I -]

AX2  AX2

(2)

+ [(1-2a)At (0 )+ (1-3e+3e 2 )At2  + H.Q. n+
,7! t3! ( Ot t t )  . . .

(4) 1 2n+u

-u(l-e) [O t(Oxt) - -AX 2(xx) - 3r.2At2(¢xtt) + H.O.T.]

1t 3. fl+R Xt

u6 [(l e)At( ,t) + 3TAx ( xxx) + 3(l-e) 2At 2 ( tt) + H.O.T.]

i

(6) (10)6o~t, n+8 +

+K(I-o) [ 6o t " + H.0.T.] - KO[ 6 (1 3 6)At + H.0.T.n (A3)

Corrected Equation 31 (p 39)

n+l nl n nl nl+1 n+
i At i + u(l-e) +-+ i-1 + ue "i-At '2Ax ZAX

n n n+1 +I n+l

= K(l-e)i -i2+ + Oi- 1  + + 2 + i-I

AX2  AX2

(2)

+ [ -U2 t(-2el( ) n+6

A2



(2)+(4)+(6)

[uAx - (1-6e+6e2 )u3At2 - (1-2e)uKAt]( n+e (A)

where Term (8) + Term (10) E 0

Corrected Coefficients in Equation 32 (p 40)

Ce
A = T- re- Re

B = 1 + 2re + 2Re

Cl = -(Ce + re + Re)

Dr(1-e) + R(1-e) + S

E = I - 2r(I-e) - 2R(l-e) - 3S

F = +C(12) + r(1-e) + R(1-6) + 3S

H = -S (AS)

where:

R C2 (1-2e)

S [C (1-6e+6e2) C3 - (1-2e)Cr] (AS)

Corrected Equation 33a (p 40) when C=l.0,=0, e=0.5, QUICKOST 2
1 n+l n+l 1 n+l n +1 n n 1 n
Ai+l + i - 4 Oi-1 0 "i+1 +  i + i-" T i-2 (A6)

4. A linear stability analysis of QUICKOST 2 using Equation 27

was employed but with coefficients calculated from Equation A5 above.

Some results are summarized below for a perfectly centered scheme with

0=0.5.

C r Remarks

1.0 0 Exact for all a
0.75 0 Stable
0.5 0 Stable
1.0 1.0 Stable

A3



C r Remarks

1.01 1.0 Unstable
1.5 0 Unstable
2.0 0.5 Unstable

5. The scheme QUICKOST 2 becomes unstable for all r when the

Courant number exceeds unity which is an unexpected result for an

implicit scheme. Using other values of 6 (0.4, 0.51, 0.75, 1.0)

produced erratic results with a stable region always far smaller than

that given by the QUICKOST scheme. We conclude that this algorithm is

far less robust and inferior to the QUICKeST algorithm discussed in

this report.
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