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ABSTRACT

This thesis uses renewal theory to investigate the
lanchester-type combat attrition process. The attrition
process is analysed in detail and modelled as a so-called
renewal process in which times between <casualties are
considered to be independently and identically distributed
randoa variables. Other randoam variables that c¢am be
considered in the remeval process are examined, and the
distributions of these random variables are determined in
order to study the behaviour of attrition process. Exzamples
with specific distribution functions are given <£for better
understanding. Computer simulation is generated ard compared
vith the attrition model developed. The total <casualty
occurence by total force is also discussed, througkt pooling
of the single renewal processes. The total casualty occu-
rence is shown to be a Poisson process and times ketween

casualties to be approxinmately exponeantially distributed for
large numbers of comkatants.
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I. INI30DUCTION

Today, deteraministic-differential-egquation modelis( that
are commronly called Lanchester-type combat =models) are
widely wused in military operations research for defense
planniang purposes, e€specially as concerns lard coxzkat. In
conbat analysis, such questions frejuently arise as 'Who
will wirn the battle ?, How long will tae battle last 2, How
many survivers will the winner have 2?2, and How do the force
levels change over time ?',etc. There have been a lot of
studies to estimate attrition in battle to answer such ques-
tions as these.

In 1914,F.7.lanchester [Ref. 1] first proposed a mathe-
matical model of coakat in order to justiiy the principle of
concentraticn of forces under "modern' conditions. de
telieved that in T"ancient" times war was a series of*
one-to-one duels betweer men engaged in nand-to-hand comtat
using sword, axe, larce, etc. So tnere would be no advan-
tage gained from concentration of forces. Lanchester
reasoned that modern technology aad changed the nature of
this "ancient" warfare and now there was a decided advantage
to "concentration of forces"W.! He hypothized that each
side's casualty rate was proportional to the number of
opposing firers. Implicit( but not yet explicit) in
Lanchester's original work is the c¢oncegt of an "™attrition-
rate coefficient™ as the rate at which a single firer kills
a particular enemy target type. Furthermore, Lanchester

1 Helatold notes that the analysis of the data from 92
{

land ccmbat battles sugjests tha victory in opattle 1is
primarily deteramined by "the factors  otaer’ than nuamerical
superiority and challefges _the ability of any model of
combat whiCh concentratés almost excluSively ob _numerical
force size to_ yield a practically useful predictor of
victory in tattle.
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thought that the number of survivors were the «critical

factor deciding the outcome of the battle in ‘*"modern®
warfare.

Since Llanchester's original efforts to describe the
dynamics of combat mathematically, many analysts - in an
attempt to add reality to tiane combat description - have
extended the theory to include additional factors. Many of
these extentions were described by dolansky ([Ref. 2]. In
his rpager, Dolansky pointed out that the Lanchester
attrition-rate <coefficients were aard to determiae for
particular weapons, and, accordingly, coefficients of known
magnitude had been assumed in aost zmodels. Thus, Dolansxy
concluded that the use of Lanchester-type models for
prediction of battle results aad been zampered Ly tiis
inability to predict rmumerical values for attrition-rate
coefficients. However, even if we may be in doubt as to the
proper torm of attrition relatioms, we Day at least ke atle
to make fragaatic assertions such as, 'If tke Lanchester
attrition is used for predictions, then by measurirng certain
factors arnd perforaing certain operations a prediction of
such-and-such an aspect of combat can ke obtained.' So,
althougn there has been a continuizg discussiorn amonyg mili-
tary operations analysts about the merits of lanchester-type
attrition-rate, it is still generally accepted as the tasic
founding for all the combat wmodels studies and attrition-
rate coefficient is still a core of these studies. ,

3onder/Barfoot [ Ref. 3] proposed thatran attrition-rate
coefficient be defined as the reciprocal oI the expected
time for an individuval firer to kill an enemy target. A
more thorough dicussion, novever, of the justirfication for
Bonder/Barefoot is to be found in Taylor [Ref. 4]. Barioot
(Ref. 5] suggested that the attrition grocess be considered
as a repeval process. Thus, for a singie Y firer, we will
assume that each individual Y kilis X targets according to

19
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an attrition process in whichk times to kills are inie

dently and identically distributed (i.i.d.) randor varicakles
(r.v). He will also assume taat each firer acts indepen-
dently of any other firer, and similarly for targets. Suca
an attrition process turns out to e a renewal frocess i:
the theory of stochastic processes.

Once we introduce the theory of rerpewal process, we can
consider macy other random variables such as tiae time up to
n-th kill, S ; the onumser of kills in tizme t, N (t): the
expected numger of kills in time t, 1(t), etc. 7Zhus tiis
thesis starts with consideration of 3onder/Taylor's corcept
of attrition-rate coefficient, aad then studies tke prob-
ability distribution of the time between casualties
according to the theory of renewal process.

In this thesis, we will mainly focus on the rfundanental
Lanchester-type attrition paradigaz waich deals with aczoge-
neous forces, because understandia; this basic paradigja is
essential fcr extentions to further coaplex mcdels.

This thesis is organized iz tae <following <fashion.
rirst, ve review a few relevant facts aLbout the Lanchester
attrition modeils. Then we review oasic 1ideas of rerewval
process and develop the random variables whose study is of
our concern, followed by the study of these randoz vari-
aples. Then we will describe the coabat attrition process by
coaparing the values of different random variacles obtairei
througa renewal process. Firally, tae conciusion maialy
contributes to the summary of the work and suggests further
studies.

iR
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II. FUNDAMENTAL LANCHESTER-TYPE ATTRITION PARADIGY

A. TBE EASIC PARADIGH

Let us consider combat between two homogeneous forces: a
homogeneous X force opposed by a homogeneous Y force. We
will focus on the force-on-force attrition process 1ir the
compat retween these two homogeneous iIorces. The lasic
Lanchester-type paradigm for "modern” warfare assumes that
the casualty rate of such 2a homogeneous force is directly
Braportional to the pumber of enemy forces, e.g. the X force
casualty rate is given by

dx .

E; = - ay With x(J) = xo ’
aad the Y force casualty rate is given by

91 = - bx with ¥ =y .

dt 0

wahere 'a‘' denotes the rate at which a single Y firer kxills X

targets and is called a lLanciester attrition-rate cceffi-

compatants (respectively) at the begiaairg of the battle.
Many factors amay affect the value of *a' and 'L', but for
the time beiny it is not essential that We be explicit about
functional dependence of a and t. Let us next address the
problem of computing a reliakle numerical values for such
attrition-rate ccefficieats.

cient. Here xo aad yo deaote tae nuaker of X aad Y

Two approaches have been developed in the Jnited States
to determine the value of these coefricieats as follows:

(1) A statistical estimate based on "combat"™ data
generatel by a detailed Monte Carlo combat simulation.

[ U —
—mtin.
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(2) An analytical sutmodel orf attrition process Ior ti=
particular combination or firer and target type.
In this thesis we will consider onliy tne second approach.
S.Bonder [Ref. 6) has called this approach the use 0f 2
ree-standing or ipdependent analytical model. The lLasic
idea of this approach is to develop an analytical expression
for each reguired kill rate Ly considering the single firer
engaging a ‘passive' target (i.e. one that doesa't <fire
back) and then tie ali the attrition rates together in
force-on-force combat with a Lanchester-type aoiel.
BarZoot [Ref. 5) in his study has sugjested taki

P 2
|

Cition-rate cgoefficient as tke reciprocal of
i a

=]
o
Ith

or an individual firer to kill an epeny

‘target.'2 dithin ccntext oi the above homogeneous force
Lanchester~-type combat model,this aeaas
1
TUHT
S i
xx° '

where T denotes a r.v. representing the tize for a single
¥ firerxgo kill an X target and £ T] denotes expected tine
to kill. Taylor also supported Barfoot's idea in his recent
study [Ref. 7] bLy ccmparing times between Xxills that were
Eoth exponentially distributed and non-expotrentially
distributed, aad usiag previous eguatioz to determine the
expected time to kill a target.

2Howeve5, . the Jjustification of this a g:oich is not
accepted an is ;pi rently somewhat controversial. __3ut 2an
case of exponentially distributed times between klllg, a
detegnxnlstfc Lanches er-tgpe model may indeed be coansidered
to yield the 2ean course of combat. Aayway, this approach is
accepted as general guide for <furthelr study of attrition-
rate coefficient.

13




B DETEBRMINATION OF EXPECTED TIME TO KILL

Bonder and Farrel [Kef. 8] bnave developed jererai meta-
oéology for 1leternining the attrition-rate coelficient by
determining the expected time to kill a target, 2[I], <foz a
wide spectrum of weapon systeam types. Morever, research
since the mid-1960's has led to the development of several
other methods for ccmputing the expected time to kill a
target. For present purposes, two methods will Le of our
interest,

{1) Method based on suz of coaponent event tinmes,
and
{(2) Method based on first-passage time in Semi-darkov
process
I we assume the special case of tactical interest: nanmely,
the case of Markov-derendent fire,Bonder [Ref. 3] bas shown
that E[T] turns out to be as follows:
(t ¢+t ) (t +t )
h £ m £ [1-2(41d) ]

E[T]st + t =t $==m=mm=mpommeolo{iaaclolll ¢ P{H{H) =~ P
(7] a 1 h P(K1H) P34’ P(KIE) (A1) t

where all symbols are defined in Table I This expession for.

E{T] bolds for the fcllowing assuiptions;
(1) Markov-dependent fire with parameter 2 , P (HiH).,
and 2 (H|1)
(2) Geometric distribution for tae nuaber of hits
rejuired for a kill with parameter P (K|d)

In assessing the time <factor to determine the
attrition-rate coefficieat, it turned out that target acgui-
sition process and weapon system capaosility were most impor-~
tant factor from the foraula. However, when we consider the
tiae facter of the attrition process, target acguisition
process would be the most important factor to study because
it directly affects the required leangth of tine to kill a
target. So we will elaborate on target acquisition process
for further use in attrition analysis.

14




TABLE I
Variables for Zzpected Time to Kill

time to acjuire a target, ta

time to fire first round after target acguired, t1
time to fire a round following a hit,th

time to fire a round followirg a aiss,t

o
time of flight of the projectile, tF

probatility of a Ltit orn first round, P1
probakility of a hit on a round following a hit, P(H|E)

probability of a kit on a round following a aiss, P (H|Y)

probability of destroying a target given hait, P (X|H)

C. TARGET ACQUISITICN PROCESS

Target acyuisiticn is the initial step in engaginy a
target and a nost deciding factor that affects the time to
kill. An important distinction made in VEI's Lanchester-type
combat models is whether the target acjuisition process of a
single "typical" firer type is a gserial process or a
parallel process [Ref. 4]. The two @modes for the target
acquisition process considered by VRI's models( including
VECTOR=-2 ) are as follows:

(1) Serial Acguisition

(2) Parallel Acguisitioa

15




Here a single Zfirer using serial acguisition does rot
acquire targets while engaging another targjet, say tacjet i.

Khen such a firer ceases to engage a target Ao ( due to kill,
lost or any other reason), then he must acguire a rnew target
all the wvay from the beginninge. So it is assuaed tkat he
does not remember any acqguisitions aade prior to ergaging
the target A. On the other bhand, a firer using parallel
acquisition searchks for targets continuously, even while 1
engaging target A and remembers those tarjets that have been
acguired. Thus when such a firer finishes the engagement
with target A, he can imnmediately sanift engagement to the

next target, provided that such a target #was acgjuired and
processed during or tkefore the engageament of target A. For
both methods, the VRI models assume that a firer never
engages a killed target again.

1. Serial Acjuisition

Now when we consider the basic Llacchester-type .
comkat aodel in the G[previous section, a firer in seriai
process mode of target acgjuisition starts again £roa the

beginning in searching a new target waenever the frevious
tarjet nas keen killed. Thus we assume that target acguisi-
tion tize is always needed to acguire a diiferent target for
engagement. Here it is assumed that the total-force kill
rate is just the single-firer-kill-rate times the nuaber of
firers, e.ge.

dx

---,—.y

dt

’

since each firer is independent from any other firer. Also,
in the case of a serial process for each firer, the expected
time to kill a target is the same as has Leen shown irn the
equaticn for E[{T] in section B. A summary of attrition-rate
coefficient results for serial acjuisition is givea in
Table II .

16
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TABLE II
Attrition Process Using Serial Acgquisition HMode

A = emecsew

E[IXY]

TXY = time for a Y firer to kill an X target

(t +t ) (t +t )

h £ p £ [1-p(HIER) ]
E[T] = Lt ¢t =t $tommcmcpocccmene (Caana- ~=== +P (H5]H)=~P }
a 1 h P(KIH) P(HIN) 2 (K| H) 1

2. Earallel Acgjuisition

As we menticned earlier, a firer in the paralilel
mode of acquisition continues to acgjuire pnew tarjets even
while be is engaging a particular target. Once this target
has been killed, then he cap immediately shift fire to a new
target which has been acgjuired aiready. In this case,
total-force xill rate is given by the product of the xill
rate of single firer against acgquiraead targets and the
expected numker of firers who have already acguired one or
more targets.

The sumamary results for attrition process using
parallel acgyuisition is given ia table III . Note here that

fxy is same as the prcbability that a single Y firer using

17




parallel

targets a
ve know t
also be n

firers wh

acquisition mode has available one or more acjuired
t wkich to fire at time t, because if he is firing
hat he already acquired the targets. Ther it should

oted that £ y represents the expected numker ol Y
Xy

o have already acgquired one or more X targets.

T
XY

R
Xy

E{T']

Attrition Process Using Parallel Acgquisition Mode

TABLE III

Prob{single Y firer using

Y arallel acguisition
is"firing at Z targe

€ at randoz " time t }

-

R

(s)as}
Y

Y firer kill rate against acguired tar jet

Time for a Y firer to kill an acquired X target
{conditiofai killi timée)

the rate at which a Y firer acgjuires X targets
at time t waer appropriate

(t +t ) (t ¢t )
h £ m £ [1-P(H|H)]
= t =t # mmmmeee b cmmmeme (femecaacl 4P (H|H) =P}
1 h P (K| H) P(H|1) P (K] H) 1
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Now we may assume that it would take longer to xill
a target for a firer usinj serial acguisition than a firer
using parallel acquisition because of the time fractioa of
acquisition of target. This distinction between these two
acquisition modes may be further studied as the case of a
delayed renewal process. Here we assume that expected time
to kill the £first target wouid be obtained froz the serial
acqguisition but followiny tize to kill would be £from the
parallel acquasition, provided that the targets are acgquired
already. But in this thesis, we will only deal with the
firer who uses the same acjuisition 1mode to attrit all
targets.

Before continuing, it is iamportant that the reader
understand btoth the basic Lanchester-type attrition Gzodel
and also Bomnder's approach of the attrition-rate coefficient
as the recigrocal of expected time to xill a target. It aust
te recognized that this expected time to kill a target is
primarily dependent c¢a the accuisition process.




III. ANALYSIS OF THE COMBAT ATTRITION PROCESS

A. INTRODUCTION

The lanchester attrition-rate coefficient is the rate at
which a single firer kills a ;articular enemy target type in
Lanchester-type combat. Development of technically-sound
and scientifically-valid methodology <for deteramining nuzer-
ical values for Lanchester attrition-rate coefficient is an
essential preregquisite for building a Lanchester-type comkat
model. The kasic coastruct c¢i Bonder/3arfoot methodology was
to take a Lanchester attrition-rate coefficient as the
reciprocal c¢f the expected time for an inéiviiual firer to
kill an enemy target as mentioned in the previous charter.
Taylor provided justification [Ref. 4] for taking lanchester
attrition-rate coefficient as the reciprocal of the expected
time to kill. He started frca the npasic hypothesis trnat
combat is a complex random process, but it contains enouga
rejularity that the appropriate Lanchester~type eguations
are a jocd approximation to the mean course of combat. It is
clear that the <casualty rate is egjual to the reciprocal of
the expected time for a force to ianflict a casualty, wkern
the times betweern casualties are exponentially distributed.
However, in case the times between casualties are no longer
exponentially distrikuted, Taylor used the suggestion nade
by Bonder and Barfoot. Bonder [Ref. 3] and Barfoot [Ref. 5]
suggested defining the Lancnester attrition-rate coefficient
as the expected rate which a single firer xills eaeay
targets.

In the spirit of Bonder and Barrfoot, Taylor provided
more rigorous justilication [Ref. 7] for the Lanchester
attrition-rate coefficient that does not assume an




ey

exponential distribution for times between casualties. e
considered the case where the initial force size of i and Y
is large enough to insure a neglijible probability tzat the
battle is terminated before an attritioan pattern coulc be
established. He made no specific assumptions acout the
distributior >f times between kills, but assumed that each
irdividual Y force kills X targets according to ar attritior
process in which the times betweea kills are indegendently
and identically distrituted random variables. Thus in the
parlance of the theory of stochastic processes, he said tiat
such an attrition process is called a rezewval r[process.
Prior to this, attrition prediction nas been difficult due
to the ipability to gredict casualty patterns. By investi-
gating the distribution of the times betweea casualties via
renewvwal thecry, comktat attrition analysis Lecomes easier.
Indeed, we know a great deal about the casualty pattern once
we know the distribution of the interarrival time of kills.
4s we consider more variables Iroa the renewal process, we
find aore inforaation about tre casualty pattern.
Furthermore, we can track the developaent of tne coatat
attrition wmore preciseiy by studying the probabilistic
distritutioan function of those ranjom variables that can be
considered in the renewal process.

We assume here that the reader is aware of the concept
of a couanting process. lanen we think about combat between X
and Y forces, we can assume that time between kKills by a
single firer has some distributior F. Now we are interested
in observing the occurence of casualty and the rLnudber of
casualties, N(t), that have pappened ia time interval (0,t].
Furtheraore, when times ketween kills are i.i.d., we call
this counting process as renewal process.

In this chapter, the study of attritior arnalysis will
include the foilowing :
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¢ The rev., N(t), total runmber oI casualties by ti-ze ¢,
it's distribution, and gproperties.

¢ The expected nuaser of casualties vy time t.

e Theorems discussing casuaity occurence.

e The limiting behavior of the casualty occureace.

e The age and excessive life of the casualty occurence.

e Exaaples with specific casualty distributions.

e Application of rerewal process for casualty estimation.

e Total force attrition by pooliny the single firer
repewal processes.

B. REVIEW OF RENEWAL PROCESS

If the segquence of nonnegative raadcm variables {11,x2,
eess} are i.i.d., then the countinyg process {N(t), t20 } is
said to ke a remewal process (or oftea called an ordirary

renaval process). Thus, a renewal process 1is a counting
;;;;;;;-;;E;.-;;ac the time until the first event has scme
distribution F, the time between the first and the second
event has, independecrtly of the tize of the first event,
tne same distribution F, and so on. So waen a event occurs,
we say that a renewal has taken place.

An example of a renewal process, let us suppose that we
have an infinite supply of 1lightbulbs whose 1lifetiazes are
ieci.d.. Suppose also that we use a single lighthulb at a
tine and when it fails ve immediately replace it with a new
one. Under these conditions, ({N(t), t20 } is a renewal
process when N(t) represents the number of lightbulbs that
have failed by time t. Accordingly, if we assume that tais
failure is a kill by a single firer ~ { or ¥ -, then killing
process also can be cecnsidered as a renewal process. Thus,
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reneval (or eveat or arrival) will be synonymous witi <l1ii
or casualty occurence 1in the rest of this thesis. Je now
assume that casualty cccurence is a xind of reresal trscsss.

If, in particular, the distribution of interarrival time of
kill is exponential with proltability distribution fuactiou

ef x' then this rerewal process turns out to ove a Poisson
pProgcess witk rate, . [Ref. 9] T

Thus we nay assume tpat X casualty occurence due tg a
single Y firer who uses the same acguisitior mode to erngajge
each X target can be explained by ordinary reneval process
because we assume that times between casualties are all
i.i.d. However, we often consider a counting process for
which the first interarrival time bhas a difrerent distrilku-
tion than the rexzaining ores. So, we may think of a Y firer
vho at first uses serial acjuisition mode to ergage an X
target, tut once he has finished engaginy an X tarjet, then
he may use parallel mcde to engage tae rest of the targets.
So, in this case, we can assuze taat interarrival tine of X
casualty has different distribution Dbetween the first and
the rest.

Foraally, let {X ,i21} be a sejueace of independent r.v.
with 11 kaviry distribution G, and {Ki,iEZ} having distriku-
tion F which is different from G. Then countirng process
(N, ()2} is said to be a delayed renswal process.  So, we
can thiak of using delayed remewal process for different
acquisiticn mode, but here in this thesis, we will only deal
with the case of ordinary renewal process for simplicity.

%e now define for the renewal fprocess a nuaber of asso-
ciated random variables whose study is tae objective of this
thesis. 7Table 1V and Ffigure 3.1 give the intuitive interpre-
tation of the random variables obtained in renewal process.

Here we can interpret each random variable as following:

e« X is the time between the (n~1)st and n-th X force kill
o
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TABLE IV
Random Variables in Renewal Process

= - - D D R - B TP D D . - — - - P = DD NS D ———— -

r.v interpretation

X time between the (a=-1)st and n-tha renewval
i.e. n-th interarrival tinme

n

time up to n-th renewal

n

N(t) total number of rerewals in (J, t]

M(t) expected number of renewals in (0, %]
known as reneua function

Z(t) length of time measured from the last
renewal until a given time t , called as
age or backward recurrcence time

Y (t) length of time measured from tiae
t until the next rerewal, called as
excess life or :ocwara recurrence tiae

S(t) length of recpewai time at tine t,

called as spread

by a single Y firer.
e S is the tipe up to n-th kili.
D

e N(t) is the total number of kills irn (J,t)]
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(oK m=> Ko m> Ko e <22 (8 = Y () =D

time
------.--x ------ x--. L ] ‘.x--------- ’-- ---—---x----
S S S t S
0 1 2 y(t) ¥(t) +1
Figure 3.1 Renewal Process.

e M(t) is average rnumper oZ kills ia (0,t].
e Z(t) is the time ftetween the last kill and a giverL tize t.
o Y(t) is the length of tize froa tiae t up to tiae
next kill.
¢ S(t) is tae length of lifetime of £ force soldier at
time t.

In this thesis, we will oniy deali with { force casualty

by ¥ firer to avoid the confusion in notation.

C. DISTRIBUTION OF TOTAL NUMBER OF CASUALTIES

Suppose tnat for an ordinary renewal process a siagle Y
firer uses the parallel acguisition mode to engage passive X
targets froa tae beginning of coabat, when we assume tlhat
targets are alrsady acguired. Taen, the distributica of
N(t), the total nuaker of X force casuaities by a single Y
firer, can be obtained at least in taeory by first noting

the relationship that the cumber of kills by time t is
greater than or egual to p if acd only 4if the p-th kill
occurs pbefore or at time t.

Formally
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N(t)2n <==> S <t (3.1)
n

froa 3.1, %e 2btain

P{N(t)=n} = P{N(t)2n} - P {N(t)2a+1}

P{S st} - P(S st
(s st} - 2(5__ st]

1]

Now, since tie random variable X 's,(i21), are irnderendent

d have a conmaon distribution Ff it follows that § = __1K,
is distributed as F , which is n-Zold coavolutiox o% Flzlti
itself [Ref. 10]. nEere, F is tne probanility distributioxn

of time rLetwesen casualties. Therciore we olbtain

P{N(t)=n} = F (t) - F (t) witn 7 (t) = 1
n n+1 J
and
P{N(t)sn} = 2{S 2t} = 1 - F (t) .
n n (3.2)
Therefore the probability distribution of 3(t), wihich is
total number oI casvaltias by sirngle Y firer, can be

obtained expiicitly fer alil a.

The sinmplest special case of ejuation 3.2 is obtaired bv
takirg the renewai prccess to be a Poisson process.
Then S bas the special Erlang distributioa wWwith n stages
becausg €ach F 1is exponentially distributed. Also, it is
known frem the previous argumeant tanat N(t) has a Pojisson
distribution with mean t.

D. EXPECTED HUMBER OF CASUALTIES

1. Renewal Function

Expected numker of casualties, E[N(t)], which is
defined to be the mean number of casualties in the interval
(0,t], is known as the gean value or remewal function, M(t).

From equation 3.1, the 2xpected nuaber of casualties in tinme
t can te oktained as following:
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A(t) = E[N(E) ] =2 k 2(N(t)=k]
Ny D
=3 2. pi(t)=k
2 Zo RON()=K)

IS

:iP{N (t)2n}

[}
?b

M RN
L ¢}

. {anst}

F (t) (3.3)
1rn

=}
[}

But here it is generally very difficult to find M (%)
dicrectly frcom the distributior F. Thus, we will employ the

Laplace Stieltzes Transform (L.S.TI.) (Ref. 9] to £ind amore
conveniently an expression for #(t). We Jenerally need

three steps to find M(t).

Step 1:
From the definition of L.S.T., we know taat L.S.T.
of 1(t) is

;™

! -

* st
M(s) =;0 e di(t)

arnd also

* -0 -st
F (s) =‘0 e 5% ar ()
Step 2:

Then from equation 3.3
23
* *
4(s) = _F (s)
n=1 n

=2 "F(s)] for s>0
n=1
The atove is a sum of geometric series and can be written as

£ollowus:

1=F(s) (3. 4)
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or egquivalently

x
* 5)
F({s) = -“:--

1+M(s)

Since the L.S5.I. of a function uniyuely Jdeterai:zes
the function, the renewal function deteraines the distriku-
tion of the kill time and therefore Jeteraines tke prob-
ability law of the casualty occureance. Specifically there is
a8 one-to-one correspondence between interarrival tine
distribution F, and rernewal function, A(t). So if we have
the distribution P, then we can find 4(s) from tne egquation
3.4. But to f£ind M(t),we have to traasform ¥ (s) to M(t) by
inverse application of L.S5. T,

let us try the exanple. Reaeaber that this examngle
will ke aprplied all the way through this chapter.

Example 3.1
Suppose that each interarrival tize to kill X ,(i21) has
i
exporential distribution wita . Taen L.S.7. of F is
5

* 4 -s

t
F(s) dF (t)

[}
1)

NI - (\+s)t
(Ats)e dt

= wm——— if s>=-'N
N +s

Then from eguation 3.4
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where 1/s was an L.S.T. of F(t), which had value of t.3 So
M(t) =)t + ¢ (some constant), bLut we know that 4(0) = 0,
because there would be Lo casuaity at tiae 0. So, <£finaily
M(t) = At.
let us be more specific about this example. Surpose
that interarrival times of casualties are i.i.d. and exgo-
nentially distributed with mean 30 minutes. Thex
a) What 1s the distribution of totai X casualties at 5
hours later ?
b) HWhat is tke probability that 3rd X kill was occured at
tine t =4 2
c) What is the prcrability that at tize t = 2, no X casu-
alty occured ?

To answer these guestions we kxnow tnat ¥(t) = 2t from above

exanple because = 2, then nudber of X casualties in tize t

has Poisscn distributiorn with mean 2t.

3let F(t) = t for t20. Thea L.S.T. of F(t) is

* Do -3st /oo -st 1 -st S
F(t) = (e ar(t) =\ e "'1dt = = === e o0 |
-0 0 s )
= 1/s for s>0
29




Then

-10 n
€ (19)
a) P{N(5) =n} = =w=—====--
n !
3 -8
8 e
k) p{N(4) =3} = -~—3-I-- = ,0230 ang
0 -u
4 e
c) P{N(2) =0} = ---5-7-- = ,0183

2. pRenewal Ejuation

Now an integral eguation for M(t) may Le obtained by
conditioning on the tize of the first casualty occureace.
Upon doing so, we obtair

x
M(t)= 0 E;N(t)|x1= x] dF(x) (3.5)
however
N () 13X .0 i x>t
=i ) = x = |
ELNIX = X3 = 0 et if x<t (3.6)

for if the £irst casualty occurs at time x, x=t, then £from
this point cn the process starts over again, and thus the
expected number of casualties in (o,t] 1is just 1 plus the
expected nunber of casualties in time t-x from the beginning

of an eguivaleat rerewal process. Puttirng equation 3.0 in
3.5 yields

A(t)

“t
L (1+4(t-x) 1R (x)

F(t) ¢ .; M(t-x)dF(x) (3.7
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where eyuation 3.7 is known as the repewai ejuation and 7 is
a known function and M is ap unknowr function to bpe deter-
ained as a solution to the integral ejuation 3.7. foss
provided ttle solution for -eguation 3.7 [Ref. 11] =as
following and the solution is accepted true for every case.

Expected nusber of casualties up to time t is
H(t) = F(t) ¢+ {; F(t-x)d N8 (x) (3. 8)

;
™D

oo |
where M(x) = > F (x) |
n=1 n

So it allows to find M{t) using oniy the kXnown distribution |
function F, which is the uistribution of time between casualt-
ies , thus avoiding fianding individual F .

n

3.

L2y

enewal Density

Now let's define the remewal density as n(t) =
1i1(t),sdt. Remember t#at #(t) is thLe expected number of cdsu-
alties up to time t. So a(t) aay be regarded as the expected
number of casualties per unit time; @nore precisely, the |
average numker of casualties during the time interval froa t
to t+h is

7t+h
M(t+h) - H(t) = "t n(x)dx (3.9)

Differentiating the renewil equation, we obtain the rerewal

egquation for the density m{t)
t
m(t) = £(t) + SO f(t-x)m (x)dx <for t>0 (3.10)

S0, tais knowledge of the density £ of interarrival time of

- 4

casualties is sufficient to deternine tae deasity am(x) of
casualty occuresnce. |

A BB Il © o
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E. LIMIT BEHAVIOUR OF CASUALTY OCCURENCE

We know that total nuaber of casualties, N(t), go to
infinite as tiame goes to infinite, when we assume thnat force
size is infinite. But it would be useful to know at what
rate N(t) approaches infinity. That is, we would like to be
able to say something about limit of N(t)/t as time goes to
infinite.

From the definition of r.v. we know that

S £ts<s

N (t) N (t) +1
woere S must be the time of the casualty after time t.
By refeg(t%’gaef. 10) we know that

N (t) 1
-e== ==> ===  as t -=> % (3.11)
t u

o
K
o

¢1 - F(x)]dx , which is the
expected time petween casualties.

Here the function 1/u is often called as the rate of tne
renewal process. Thus the averagje ruaber of casualties per
unit time ccrverges to 1/u . Then, how about the expected
average numker of casualties per unit time? Is it true that
M(t)y/t also converges to 1/u as t =-=->7% ? This result, kaown
as the elementary crerewal theorem, will be stated witaout
proof [Ref. 11].

Elementary Reneval Theorem

1
...... —==> —- as t --> Du (3.12)
t a

Thus whatever the distribution F is, the average pumber of
casualties up to time t is approximately (for large t),

e+ o - e
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t
H(t) = === (3. 13)
Q

Rlso, the average puzber of casualties in the interval |
(t, t*h) for h>0 1s approximated ror large t as followicg,
h
M(teh) - M(t) = -5 as t -=> I (3. 14) 1

for any distributiocn F with ameaa ui. ,

Bere eguation (3.14) is known as 3lackwell's theorem when F )

is pot lattice. ’
Fron the example 3.1, where casualty occureace time is
exponentially distributed with mean 30 minutes, the average

nuaber of X casualties up to time t is approximated tky t/u,
which is 2t. Then after 2 hours of combat, we can assume
that the average nuaber of X casualties by single Y firer

will be 2t, which is 4 casualties,

Apother limiting result which may prove to be useful in
rerewal fprocess also concerns tae r.v. N (t). It is shown
(Ref. 12] that N(t) bas ap asymptotically pormal distribu-
tion with mean tsu and variance t T/u’. Thus

. _—t Y - t/u \
lim P{N(t)<y} =T ==me-=a= | (3.15)
t=>n —. 2 3
jJ t/u

Suppcse of tha same example 3.1 that casualty occurence Ie€an
time is 30 minutes. Then u = 0.5 = ET] =1/ . So \ = 2.
Also Var[T] = 1/3* = 14 = 0.25 hr', which is 900 min. here.
Let's assume that we had a 10 hours of combat actioa. Then
expected number of X casualties is E(d(13) ] = t/u = 10/0.5 =
20 and var[N(10) ] = t5>/u>= 10x%0.25/(0.5)= 20.

Suppose of the guestion that how many X soldiers will be
required in order toc with probability of 95% that at least
more than cpe X soldiers will survive after 10 hours of
compbat ? This Juesticn may te answered as following,
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—

w—j X = 20 % - 20
0.95 < P(N(10)<x} *iE{ ------- be Tl ateaaio -

Now from the normal table, 0.95 percentile of normal distri-
bution is 1.645. So 1.645¢ (x - 20)/4.472, where the answer
turns out to be x227.36 . So we can say that X force needs
at least 28 soldiers as an initial force size to Le 95% sure
that at least more than one X sollier can survive after 10
hours cf combat.

There also exist a alternative normal approximation,

when we assume that for integer n,

n
P{N(t)<n} = P(S >t} wbhere S = T «
n o} i=1 1
from equation 3. 1.
- t - aa . - .
Then P{S >t} = 1 = P{S £t} = 1 = & 'eceeme==’ (3. o)
n n - =y I

So now we assune that S has norzal distribution with zean
n
nu and variance atv". I we apuly eguation 3.16 to frevious

example,

— 10 = 0.5x
0.95SP{N(10)<Kx} = 1 = D ==-====c—n=’

v 0.5 TX
— 10 - 0.5x . 10 - 0.5x
Then & wm===aewe==i€ 0.5 Or =-=vce=z=-- < - 1.645
0.5 x i 0.5y x

If we solve for x, it turns out to be x228.83. S0 answer is
alaost same when we assume some rounding erLLOCS.
F. AGE AND EXCESS LIFE DISTRIBUTION OF CASUALTY OCCURENCE

As we mentioned eariier im this chapter, we cam also
consider such random variables as Y(t), which is the time
from certain time t untii next casualty occurence,
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wnich means residual lifetime of a soldier in conkat froz
certain time t if he is still alive, aad Z2(t) , whics is tae
tine from +t since thke 1last casualty occurence (see Fijure
3.2).

S
N(t) N(t)+1

--—---—-x—------—---{---—---------x------—---—--—--

Z2(t) T(t)

S(t)

Figure 3.2 Age and Excess Life of Casualty Occurence.

This means

Y(t) =S -
(t) N(t) +1
Z(t) = -3
N (t)
where Y(t) is «called as the excess life or forward recur-
fence time and 2(t) is called as age 2r packward recarrence

tize. Also

S(t) = 2Z(t) + Y (%)

= S - t+t =-S5
N(t) +1 N (t)

= 5 - §
N(t)+1 N(t)

N{(t)+1 N(t

® X - .Z‘-')X.
i=1 i =1 i

) Y(t) +1
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Here 5(t) is often called as spread and S(t) is also r.v.

because X is r.v. too.
N(t)+1

Suppose of the Poisscn process taat X, is exgchential,

i

then E[S(t) ] = E[(¥Y(t)]) + E[2(t)] = 1A + 1/ =2/ = 23(X 1.
. . i

So, S(t) can be assuBmed as the lenjth orf the lifetime of tae

X force soldier waich is in cogbat at time t.

e




IV. IHE SUPEBPOSITION OF CASUALIY OCCORENCES

A. INTRCDUCTION

In the previous chapter, we have considered in detail
toe theory of <casualty occurence through the ordinary
renewal process of a single Y force soldier. ¥e deal in tais
chapter more briefly with the superposition of several
Leneval rrocesses, uwhich is total X force casualty occurence
behaviour. When we assume dpultiple Y force soldiers who
shoot at X force soldiers indeperndently of each other, we
may assume that all these Y soldiers kill X soldiers by
ind2penlent casualty fprocesses. So, we can say that there
cccur multiple independent ordinary renewal r[processes,
simultaneous in time.

PrOCess 1 l--..---—--—-x—-—------—_--—x----—-—------—x-—

i
‘
i
i
i
i
i
1A
'

process A e I T

' ' ' U

¢ ) ' '

¢ ' . ' ' U
PLOCeSS 3 |=~Xo='wocoeel el e el e m eV e

' ' ' U ' ' ¢ ' '

' U J . [ v ' '

pooled L ' ' ' ' v 1 '
Outp ut | - x--x--————x-—-x ------ PRI L ES € LT LS Glald s

Figure 4.1 Superposition of Casualty Occurences.
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Supzcse that we have *'p' independent casualty zrc:esses

in operation siacultaneously, all wita tane same P.D.7. of
casualty occurence time. Coasider tae sequence of casualty
occurences iformed by pooling the iadividual processes. Fig
4.1 illustrates the special case, when p = 3. Formally, e

¢an say that if (v (t), 120}, for i = 1,2, ... , k, are
inde-

i k gendent renewal

Frocesses and N (t)= i (t), then {N_(%),t_O} .
i=1 1 is

called pooled process which is total X force casualt ogcu-
—==e===s--=--—- rence behaviour by k force

solliers.

B. SCME GENERAL PROPERTIES

1. Normal Approximation of Pooled Output

From casualty occurence processes Lin the frevious

chapter, we assumed that there exist a ae€an casualty ocCccure-
. 2

nce time. Sc let u, and . be the nmean casualty occurence
time and ccrrespoéding tariance by tae i-ta Y force scidier
arnd let u(p) arnd T%P) be the mean <casualty occurence tize
and corresponding variance of the total casualty occurence Iy
k of Y force soldjiers. Then the guestioa is hgz_fxe these two
values relatel each otaer 2 T TTTTTTTTTC

Froa previous study, we know taat 1) N (t) is apgroxiza-

< 3
tely norral with mean t/u  and variance, ¥ tsu . Thereiore

i 1 i
we can say that N (t) is also approximately anormal with xzean

k 3
Z.. tsui and variance . 7T tsu. . 2) Also assume now that
i=1 i=1 i i

either tne pooled process is a renewal process or at lsast
the analogous result holds, then approximnately ¥ (t) is ncra-

2 3
al with mean t/u (p) and variance T (p)t/ u (p).
So, from 1) and 2), we must have

t X 1

-—— = > .

u(p) i=1 g, (4.1)




k 1 - .
then u(p) = (511-— ) which is the harmonic mean of tae u ,
i=1 u i \
i 1
2 ) 2 I
i
and ---d8) t=t P -=mm--t
i=1
u (p) u,
1
_ .2 — 2
s 2( 3)\5 Ti k 1 -3 kx Ci s
en i =u (p L me=—= = o ——— === (4.
At (B 159 7773 e N e -4
u, i a,
i i
Also if we assume that u = u and 7 = for ali 1 = 1,2,..,k
i

which means all casualtyloccurences are independent and identa-
cal, taen mean casualty occurence time and correspording vari-
ance of the total casualty bebkaviour by k of ¥ force are as
follows;

( ) 1 " -1 u
u 3 - - -
E) ( ) X
2 2
2() 1}()-3? ‘ T o2 .
A = - - X T ee= = - 4. 2
u X

Also total number of expected casualties, E[N (t) ], can

-—— et > wy - - —an - - w - - -

Le obtained here by fpooliny individual casualty occurences

as following;
E[(N (t)] = —{ E[N _(t)] =% E[(N _(t)] = k M(t) (4. 4)
p i=1 i i

where ¥ (t) is expected nuaber of casualty frcnm

single firer, which is t/u for large t.
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let's loock at an example that deals with pgoclinjy ol

iniividual renewal gIccesses.

Exaaple 4.1

Suppose of Y rorce artillery shells froz several

sources are bombording the same X target. Each source Lurls

shells at the target at a rate of 40 saells per Lour. Assule

that the interarrival tinzes of sheils from each single

source are uniformly distrikuted over aa interval (0, aj.

Then the guestion 1is 1) What is the ©probacility that less

than 825 shells will be nurled at the target <froa a siugle

source during a 20 hour perioa and 2) If therz are 5 sources

froa which

such attacks are launcned, what 1s the prob-

apility that more than 4125 ( which 1s 5 times 825 ) shells

are nurled at the target in a 20 Lour period ?

To answer the first quesction, let Y=oy shells/hour
= 2/3 shells/zin. Thea uw = E[(X]= 1/~ = 3/2 ain, when we
assume pcisscn process. 3ut lnteracrival times are urniferoly

distriktuted over an interval (0,a]. So, u= E/X] = (2 +

a)/2= a/2,
3/4 mirn* .

where a = 2 ninutes. Thnen Var{X] = (a - Of'/1£

fl

Now let N(t) = number 2I saells hurled in (0, t]

from a single source. Since ¥(t) 1s normal with mean t/u anl

variance tT/¢ from eguation 3,15, <for t = 20 hours = 1200

minutes, the probability tarns out to be as following;

1200
825 = mmm=w=- ,
) o 372 0 ~= ' 825 - 890
P {N(1400)<325} 2 mmmressccce——- D e eewccccccwe-
. 71200 - 3/4 — 16.33
oo(dzey

=>(1.53) = 0.9370

acd for second guestion,

Let N (t)
1

N (t)
P

number of shells Lurled in (0 , t] by i-th source
where i = 1,2, <o« , 5 « and

5
,Z% N (t) = total mnumber of shells hurled in (0, t)
i= i

ol AL e dmrwdietas . an. Tt



by 5 sources.

Then {N (t), t20} is the pooleld process for wiick meau
irterarrival tize is,

u 372 3 .
a = - = -== = == J1autes.
(p) k 5 10

and corresponliiny variance is

2 Tk 2 3 o2

<) = = ==== 11D

g (P) (°/k) 195

Since N (t) is normal with meanm t/u(p) and variazce Tﬂp)t/tf(p)
for t= 3200 minuytes,

1200
4125 = ======
o 3/10 \ — 125 -
2{N (1200)<4125} = ’;tf.:_ Emmememeeeee—— ! St e oee——
p 1200 3,100 =~ 36.51
----------- -
VU (371

= §(3,42) = .,9997
So, P{NP(1ZOO)24’25} = 3.,2003

2. Poisson Process of PEooled Jutpat

Now let's assume that individual casualty processes are
probabilistically identicai wita common uaderlying C.D.f. of
casualty occurence time F(x). Let F (x) ke the C.D.F of
casualty cccurence time of pooled procgss. Then the Juestiorn
is how 1is F“(x) related to *(x) ? This 7Juestior can be
answered by’using the idea of excess life. Let Y (t) Le the
excess life of an X force soldier and Y (t) be lexcess life
of total X force. Then we know that Y (g) = aiaf ¥ {t), T (t)

cene . 1 (t) ] (Zee Fig 5.1) .
Then

41




- =P - = - - - - - - -

X

]

‘l L

] ] 1 ]

- o - l----_x--_--_-_- lav—ew | coccacaee- b Eapnteda e L LT P Vo=
t ] ) L [}
ro : O :

cma=yea- | [P ] -- - Y- | N e L | P X - — | P

] \J 1] L] L} 1 L] 1]

] L] ] ] ] Y (t) ] ]

] 1 L L} ¢ 3 ] 1

! L [ ] L ] ] ] e
—---x---x—.---x-—--——x—— x—---— ---------- x ...... x-——.—x—-

Y (t)
Pigure 4.2 Superposition of Excess Life.
k

?{Yp(t)>Y} = P{Yi(t)>Y} (4.5)

From previous study, we know that

grocess. Thus,

;0O
pLY(t)>y) = | = [1 - P (x) Jax
y u

I)j 1
PLY (B)>7) = | ——1-7
P 'Yy u(p) P
:'w

Pedef 0f EeD. for individual

then,

(x) Jax

F (x) ] is P«D.F of Z.D. for tae pooied casualty
P

renewal processes is (1/u){ 1 - F(x) ] acd then we can say that

1 K
= = \ [1 - F(x) Jdx] £from eguation 4.5
u Y
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1. I k=1 1 o

= ===={1=-F ()] =k{ = [V -3F(x)]Jdx] (== )1 - (N ]
u(p) P v Y u

Here we krow that 4(p) = k/u, soO a's are all cawceilcl cucs.

Then,

C.D.F. of pooled output is

e
\

1 i k-1
F(y) =1~ - (V- F(x)ldx] [tV - F(y)] (4.6)
P u Y

Por exapple, taink of tae ex;oneag&al distribution ot
-/ x
casualty occurence. Then F(x) = 1 - e e acd u = 1/, .
Then C.D.F of pooled casuaity occurecce is

F () =1-[ 1\ [e Jdx] e
P Y

= 1- e for y29

which follows that pcoled output is a Poisson process with

D - P = D D - D D = - —— A -

rate k where k is the number of Y force combatants.

. D D D D D D - D D - - P D Y D D W D DD W Ay - -

Here, probably the 1210st interestiny properties of
the pooled ocutput refer to the 'local' tehaviour wkere k is
large. Khintchine [Ref. 13 ] has proposec that in the linit
tae numbers of reaewals in non-overlapping intervals follow
indepenient Poisson distributions, thus showing that ip the
iimit the rpooled output is a Poisson progess. Also ais
proof does not rejuire each interarrival time to be identi-
cally distributed. In attrition analysis in combat, it
appears to Fke the same way, which @aeans that if a large
nunkber of independent (and identical) casualty occurences
are pooled, then the total £force casualty occurence is
approximately a Poisson process [Ref. 9] [Ref. 13). Thus,

43




we can say that pooled casualty ocgurence by total I coata-
€ 32pproximated by Poisson process if ue
£ of Y forces.

Thus, finally, from the basic theorem of ?cisson
process, we know that if (N (t),t20} is Poisson process with
rate >0, then the interarrival tinmes [xi,iZI} are i.i.d.
exponential random variable with rate A . Thus, froa
previocus results, total X gggual_y_ occurences is a Poisson
process with rate k),
combatants, and interarrival tla.g of
considered to be exponentia '
A\
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V. CGMPARISON QF RENEWAL PROCESS WITH COMPUTIER SIMULATION

In this chapter we will look at the results of scme
typical comtat attrition process ( Y firers with diZferent
ruanber of passive X targets) obtained through the theoret-
ical renewal process model which is developed in this thesis
and coaputer simulaticn using random number generator.

As we mentioned earlier, total number oi expected casu-
alties by n Y firers turned out to be n HM(t) for large t
from the remewal theory, where we assumed that all casualty
occurences were independent and identical. But it is clear
that these exzpected casuwalties can not be bigger than the
nubber of X targets. Now we will compare this result with
simulated output to see whether we can find any interesting
facts such as how many X targets will be most appropriate to
appiy renmewal theory to combat attrition ? or what force
ratio will ke most agprlicable to renewal process ?, etc.

In order to facilitate the siaulations, the assuaptions
were made that n firers shoot independently at 1 targets,
and that the times to kill tie targets are uniforualy
distributed between [0,1]. When a target is killed, alil
firers shooting at it are assumed to select a new target at
random from those still surviving.

The procedure of the computer siaulation is as follows
(see Appendix i) ;

1. We generate the initial kill time for each firer by
using pseudo random nurber gJenerator, wvhere we assuae
that every firer's kill tiae is uniforamly distrituted
between [0,1].

2. Each target is indexed by integer number.

3. We need to decide which target does the firer snoot
at ? The target selection rule is such that first we
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jenerate a randoz unifora numcer between [0,1], tlern
we take the integer value of (randoz number tinzes the
number of targets ) pius orne, which designatss the
index of target that is assigned to firer 1. Same
procedures are repeated until all the firers are
assigned a target, with some targets possibly hcving
more than one firer. Thus at first tipme step random
nunber for selecting the target is generated n
times, because we have to assign a target to eaca
firer. These targets are «kiiled eventually as time
proceeds.
Now, the target that will be killed first is the tarjet
which is assigned to the firer who has thne ainiaum time to
kill( = Toin) among the firers, where this time to kill was
already generated. So we now know whica target is killed.

After the first targjet is killed, the number of targets
killed is rejistered as one and the first time step ends.
Now, in the second time step,. the new kill times between
{0,1] are generated agaia for all firers who were shooting
at the first target. The firers who were still in the
process of killing a target at tae end of the <first tinme
step continue to engage the same target in the second tiae
step, where time to kill in the second step is old kiil tiaze
{ generated value at first time step ) less Imin.

Cnce the second target is killed, the second time step
ends and the nuaber of targets kilied is now registered as
two. Now e proceed to tine third time step, Where same
target selection rule and firing rule are applied until all
the targets are killed.

After all the targets are killed, each time step length
({ which is the same as the time to kill the target in each
tize ster ) is stored, and +this is one replication (see
Appendix B). To oktain the expected value, 40 replications

,

of the simulation were conducted and 6 data sets
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(n=3, m=6), (B=3,8=10), (p=3, m=14), ani (n=19, a=o), (=19,
n=10), (z=10, m=14), were examined. Arter 40 replicaticns ,
the data were evaluated to find thes expected numher of kills
through order statistics. This expected numcer of kills was
plotted against tinme. The results for n=3 and n=10 are
shown in Fig 5.1.

The theoretical results can be obtained through two
methods, which are discrete approximation and sirulation.
In this thesis, we used discrete approximation based on the
reneval function modelled at eguation 3.7. 1It's formula is
as follows;

M(t) =

t
j=

{1+ 8(-5) ]P,
1 B
where P rerresents the probability distritution

of killJtime.

Thus, expected nuaker of kills obtained from the renewal
process model using discrete approxiazation (see appendix C
for program and data, where left coluan refers to the kill
time and right columa refers to the expected nuaber of kills)
is alsc plotted against time in 7ig 5.1,

It was found through both cases taat the expected number
of kills ky the renewal process aodel may only be justified
througk the assumption of an infirnite nuamber of tarjets
because as m gets bigger, the expected kill value approacaes
tae theoretical result. Also it was discovered that at the
begianning of comkat, the attrition process alaost followed
the theoretical renewal process model.
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Figure 5.1

EXPECTED NUMBER OF KILLS

EXPECTED NUMBER OF KILLS

THEORETICAL VS SIMULATED RESULTS

3 FRERS

10

Expected Kills From Theoretical And Simulated.




VI. CONCLUSION

A. SUMMARY

Since Lacchester proposed his @odel, wmany studies have
tried to model the «ccmbat attrition process mathematically.
Recently, the main focus has been on calculation of numer-
ical values for lanchester attrition-rate coefficient. This
numerical determination stands at tse Leart of casualty
assessment in such nodels. There are three reasons for the
inmportance of this attrition-rate «coefricient methodology.
First, Llanchester-type models are used in various U.S.Army
and D.0.C. planning activities more widely than ever tefore.
Second, Lancaester attrition-rate coefficient is a tLasic
element of any Laanchester-type coabat model, and that
attrition-rate coefficient reflects tne effective aprlica-
tion of <firepover. Finally, significant aew developments
have occured in methcdology for developing more tacticaily
realistic Lanchester attrition-rate coefficiert and these
important results have not been accessible to a very wide
audience. In particular, a new approach for developing more
realistic and mathematical Lanchester attrition-rate coeifi-
cient, that of computing combat attritioan by using a renewal
process, was proposed by Taylor receatly. This thesis regan
with the assumption that the comtat attrition process was a
kind of renewal process, and that times between casualties
were i.i.d. Thus, <considering the problem from the stand-

point ¢£ renewal theory, many new random variables were
included and various distribution fuactions studied ia order
to understand better this type of casualty occurence
paradiga.




This thesis only dealt vith the <case of honoj:recus
forces which were using the same acjuisitior mode to attrit
the targets, which were passive X forces. Iaus we Ccouall use
an ordinary reaewal rrocess to study the behaviour ol casu-
alty occurences. We emphasized the probabilistic function
of eack r.v., so orce we found the distributior of interar-
rival tizes of casualties, casualty analysis could be dcne
ty plugging distribuation functions into the eguation devel-~-
oped. Finding tae distribatioa of interarrival tines of
casualties was the «critical factor 15 contiauing the casu-
alty analysis.

- e ——

assume a large puaber of cosbatants.
We have dealt here only wita a passive X force{ i.e. onme

that does not shoot rack ), perhaps an unrealistic assuap-
tioa. But still this study permits ketter understacding of
combat attrition, tarough the wuse or crooability theory,
than was previously available.

B. SUGGESTIONS FOR FURTHER STUDY

In this thesis, we have only deait with passaive
targets. A more complex formulation may be rezuired for real
coabat, since enemy targets shoot back and cause ficer
attrition.

In addition, a delayed remewal process could ke applied
for the case where different acguisition modes are used for
the first shooting and for each subseguent saocotings. A
reinforcement of the forces could also be included.
Casualty analysis could then be Jone usiny the theory of
alternating recewal frocesses, once we Kknow the rate of
reinforcement.
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DISCRETE APPROXIMATION FO RENEWAL FUNCTION
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