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ABSTRACT

This thesis uses renewal theory to investigate the

Lanchester-type combat attrition process. The attrition
process is analysed in detail and modelled as a so-called
renewal process in which times between casualties are
considered to be independently and identically distributed

random variables. Other random variables that can be

considered in the renewal process are examined, and the
distributions of these random variables are determined in

order to study the behaviour of attrition process. Examples

with specific distribution functions are given for better

understanding. Computer simulation is generated aid compared
with the attrition model developed. The total casualty
occurence by total force is also discussed, through pooling
of the single renewal processes. The total casualty occu-

rence is shown to be a Poisson process and times between
casualties to be approximately exponentially distributed for
large numbers of combatants.
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I X -10. 2 i DUCTI 2 11

Today, deterministic-differential-eguation models( that

are commonly called Lanchester-type combat models) are

widely used in military operations research for defense

planning purposes, especially as concerns land combat. In

combat analysis, such guestions fre.uently arise as 'Who

will win the battle ?, How long will the battle last ?, How

many survivors will the winner have 7, and How do the force

levels change over time ?',etc. There have been a lot of

studies to estimate attrition in battle to answer such ques-

tions as these.

In 1914,F.W.Lanchester [Ref. 1] first proposed a mathe-

matical model of combat in order to justiiy the principle of

concentration of forces under "modern" conditions. He

believed that in "ancient" times war was a series of*

one-to-one duels between men engaged in nand-to-hand comtat

using sword, axe, lance, etc. So taere would be no advan-

tage gained from concentration of forces. Lanchester

reasoned that modern technology iad changed the nature of

this "ancient" warfare and now there was a decided advantage

to "concentration of forces". ' He hypothized that each

side's casualty rate was proportional to the number of
opposing firers. Implicit( but not yet explicit) in

Lanchester's original work is the concept of an "attrition-

rate coefficient" as the rate at which a single firer kills

a particular enemy target type. Furthermore, Lanchester

I Helabold notes that the analysis of the data from 92
land ccmbat battles suggests that victory in battle is
primarily determined by the factors other than numerical
superiority and challenges the ability of any model of
combat which concentrates almost exclusively on numerical
force size to yield a practically useful predictor of
victory in tattle.
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thought that the number of survivors were the critical

factor deciding the outcome of the battle in "modern"

warfare.

Since Lanchester's original efforts to describe the

dynamics of combat mathematically, many analysts - in an

attempt to add reality to the combat description - have

extended the theory to include additionai factors. Many of

these extentions were described by Dolansky [Ref. 2]. In

his pager, Dolansky pointed out that the Lanchester

attrition-rate coefficients were nard to determine for

particular weapons, and, accordingly, coefficients of known

magnitude had been assumed in most models. Thus, Dolansky

concluded that the use of Lanchester-type models for

prediction of battle results had been hampered by this
inability to predict numerical values for attrition-rate

coefficients. However, even if we may be in doubt as to the

proper form of attrition relations, we may at least be able
to make pragmatic assertions such as, 'If the Lanchester

attrition is ased for predictions, then by measurirg certain

factors and performing certain operations a prediction of

such-and-such an aspect of combat can be obtained.' So,

although there has been a continuing discussion among Tmili-

tary operations analysts about the merits of Lanchester-type

attrition-rate, it is still generally accepted as the basic

founding for all the combat models studies and attrition-

rate coefficient is still a core of these studies.

Bonder/Barfoot [Ref. 3] proposed thatian attrition-rate

coefficient be defined as the reciprocal of the expected

time for an individual firer to kill an enemy target. A
more thorough dicussion, however, of the justification for

Bonder/Barefoot is to be found in Taylor [Ref. 4). Barfoot

[Ref. 5] suggested that t attrition ;rocess be considered

as a _e.j@ai pross. Thus, for a singie Y firer, we will

assume that each individaal Y kills X targets according to

10
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an attrition process in which times to kills are indepen-

dently and identically distributed (i.i.d.) randon variables

(r.v). We will also assume that each firer acts indepen-

dently of any other firer, and similarly for targets. Sucn

an attrition process turns out to be a renewal process in

the theory of stochastic processes.

Once we introduce the theory of renewal process, we can

consider many other random variables such as the time up to

n-th kill, S ; tue number of kills in time t, N1 (t) ; then
expected number of kills in time t, :I(t), etc. Thus this

thesis starts with consideration of 3onder/TaylorIs concept

of attrition-rate coefficient, and then studies the prob-

ability distribution of the time between casualties

according to the theory of renewal process.

In this thesis, we will mainly focus on the fundamental

Lanchester-type attrition paradigm which deals with hcmoge-

neous forces, because understandia; this basic paradigm is

essential for extentions to further complex models.

This thesis is organized iz tie following fashion.

First, we review a few relevant facts about the Lanchester

attrition models. Then we review basic ideas of renewal

process and develop the random variables whose study is of

our concern, followed by the study of these random vari-

ables. Then we will describe the combat attrition process by

comparing the values of different random variarles obtainei

through renewal process. Finally, the conclusion mainly

contributes to the summary of the work and suggests further

studies.
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II. UN&MENTAL LANCHSTER-TYPE ATTRITION PARADIGM

A. THE BASIC PARADIGM

Let us consider combat between two homogeneous forces: a

homogeneous X force opposed by a homogeneous Y force. We

will focus on the force-on-force attrition process in the

combat hetween these two homogeneous forces. The basic

Lanchester-type paradigm for "modern" warfare assumes that

the casuaty rate of sucL. a homogeneous force is dir ectl7

pr2rtoal to the number of eneml fo:ces, e.g. the X force
casualty rate is given by

dx = -ay with x(O) = x ,

dt 0

and the Y force casualty rate is given by

-d = - bx with Y(0) = y ,

at 0

where 'a' denotes the rate at whica a single Y firer kills X

targets and is called a Lanc"ester attrition-rate coeffi-

cient. Here x0 and y0 denote the number of X and Y

comnatants (respectively) at the begining of the battle.

lany factors may affect the value of 'a' and 'b', but for

tne time being it is not essential that we be explicit about

functional dependence of a and b. Let us next address the

problem of computing a reliable numerical values for such

attrition-rate ccefficients.

Two approaches have been developed in the 3nited States

to determine the value of these coefficients as follows:

(1) A statistical estimate based on "combat" data

generated by a detailed Monte Carlo combat simulation.

12
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(2) An analytical submodel oi attrition process for tie

particular combination of firer and target type.

In this thesis we will consiler only the second approach.

S.Bonder [Ref. 6] has called this approach the use of a

2r indendent aatial model. The basic

idea of this approach is to develop an analytical expression
for each reguired kill rate hy considering the single firer
engaging a 'passive' target (i.e. one that doesn't fire
back) and then tie all the attrition rates together in

force-on-force combat with a Lanchester-type model.
Barfoot [Ref. 5] in his study has suggested takinj a

Lanchester attition-rate coefficient as the recirocal of
the exp.ected time for an individual firer to kill an enemy

ltar~.6 Within ccntext of the above homogeneous force

Lanchester-type combat model,this aeans

a
XI

where T denotes a r.v. representing the time for a singieXI
I firer to kill an X target and EZT] denotes expected time

to kill. Taylor also supported Barfoot's idea in his recent

study [Ref. 7) by ccmparing times between kills that were

both exponentially distributed an' non-exponentially

distributed, and using previous eguatio- to determine the
expected time to kill a target.

2 Howeve;, the justification of this approlch is n1t
accepted and is apparently somewhat controver ia. But in
case of exponentially distributed times between kills, a
deterministic Lanchester-type model may indeed be considered
to yield the mean course oZ combat. Anyway, this approach is
accepted ar general guide for further study al attrition-
rate coefficient.

13



B. DETEBMINATION OF EXPECTED TIME TO KILL

Bonder and Farrel fEfef. 8] have developed general meth-

odology for determining the attrition-rate coefficient b'
determining the expected time to kill a target, Z[11, foz a
wide spectrum of weaion system types. Morever, research
since the mid-1960's has led to the development of several

other methods for computing the expected time to kill a

target. For present purposes, two methods will he of our

interest,

(1) Method based on sum of component event times,

and

(2) method based on first-passage time in Semi-larkov

process

If we assume the special case of tactical interest: namely,
tne case of M.arkov-dez.endent fire,Bonder [Ref. 3] has shown
that E[T] turns out to ne as follows:

(t +t ) (t +t .
t m f , I- 2(iI H)J

ELT]=t + t -t +- - - -- + P(HIH) - P1 ]

a 1 h P(KJIT) P(31A) P(KIH)

where all symbols are defined in Table I This expession for

E[T1 holds for the fcllowing assumptions;
(1) Markov-dependent fire with parameter P , P (HIH),
and P (HI.1)
(2) Geometric distribution for tae number of hits

re-uired for a kill with parameter P(KIH)

In assessing the time factor to determine the

attrition-rate coefficient, it turned out that target acqui-
sition process and weapon system capazility were most impor-

tant factor from the formula. However, when we consider the

time factor of the attrition process, target aciuisition
process would be the most important factor to study because

it directly affects the reluired length of time to kill a

target. So we will elaborate on target acquisition process

for further use in attrition analysis.

14



TABLE I
Variables for Expected Time to Kill

time to aciuire a target, t
a

time to fire first round after target aciuired, t

time to fire a round following a tiitt h

time to fire a round following a miss,t
h

time of flight of the projectile, t f
probability of a hit on first round, PI 1

probability of a hit on a round following a hit, P(HI.)

probability of a hit on a round following a miss, P (HI )

probability of destroying a target given hit, P(KIHI

C. TARGET ACQUISITICN PROCESS

Target acquisition is the initial step in engaging a

target and a most deciding factor that affects the time to
kill. An important distinction made in VRI's Lanchester-type

combat models is whether the target aciaisition process of a
single ,,typical" firer type is a serial process or a

parallel press [Ref. 4]. The two modes for the target
acquisition process considered by VRI's models( including
VECTOR-2 ) are as follows:

(1) Serial Acguisition

(2) Parallel Acquisition

15



Here a single firer using serial acquisition does not

acquire targets while engaging another target, say target A.
When such a firer ceases to engage a target A ( due to kill,
lost or any other reason), then he must acquire a new tartet

all the way from the beginning. So it is assumed that he
does not remember any acquisitions made prior to engaging
the target A. On the other hand, a firer using parallel
acquisition searchs for targets continuously, e7en while

engaging target A and remembers those targets that have been

acquired. Thus when such a firer finishes the engagement
with target A, he can immediately snift engagement to the

next target, provided that such a target was acquired and

processed during or before the engagement of target A. For
both methods, the VRI models assume that a firer never

engages a killed target again.

1. Serial gajui sition

Now when we consider the basic Lachester-type

combat model in the previous section, a firer in seriai
process mode of target acluisition starts again from the
beginning in searching a new target whenever the previous
target has teen killed. Thus we assume that target acguisi-

tion time is always needed to acquire a different target for
engagement. Here it is assumed that the total-force kill
rate is just the single-firer-kill-rate times the number of

firers, e.g.

dx- -- = ay,
dt

since each firer is independent from any other firer. Also,

in the case of a serial process for each firer, the expected

time to kill a target is the same as has been shown in the

equaticn for E[T] in section B. A summary of attrition-rate

coefficient results for serial acquisition is given in

Table II

16



TABLE II

Attrition Process Using Serial Acquisition Mode

dx a= - ayI
dt

1Y 1

= time for a Y firer to kill an 
X target

~~~(th+tf) (t +tf) [ -~

(f)= . t h f )( m f 1l-p (HJH)
-t ft -t ------------------ -- -+P(!ilH)-P I

a 1 h P(KIH) P(HI3) P(KIH)

2. Para!jtj jq,:;_ sion

As we menticned earlier, a firer in the parallel

mode of acquisition continues to acl'ire new targets even

while be is engaging a particular target. Once this target
has been killed, then he can immediately shift fire to a new

target which has been acguired already. In this case,

total-force kill rate is given by the product of the kill

rate of single firer against acquired targets and the

expected number of firers who have already acquired one or

more targets.

The summary results for attrition process using

parallel acquisition is given ia table III . Note here that

f 1  is same as the prcbability that a single Y firer using

17



parallel acquisition mode has available one or more acquired
targets at which to fire at time t, because if he is Ziring
we know that he already acquired the targets. Then it should
also be noted that f y represents the expected number o' Y

xy
firers who have already acquired one or more X targets.

TABLE III

Attrition Process Using Parallel Acquisition mode

d- f a'ydt xy

f : Prob(single Y firer using arallel acquisition
xy is firing at X targei at random time t }

f = 1 -e xp{- x a (s) ds}xy I0 xy

1
a' = .f zirer kill rate against acquired target'[ X Y I

T'= Time for a Y firer to kill an acquired X target
XY (conditionai kill time)

F : the rate at which a Y firer acquires X targets
xy at time t when appropriate

(t htf ) (t +tf) [I-P(HIH)
ErTJ= t -t.. + --- P(HIH) j

1 h  P (KIH) P(HIA) P (KI -H)1I18

18



Now we may assume that it wo-uld take longer to kill

a target for a firer using serial aciuisition than a firer

using parallel acquisition because of the time fraction of

acquisition of target. This distinction between these two

acquisition modes may be further studied as the case of a

delayed renewal process. Here we assame that expected time

to kill the first target would be obtained from the serial

acquisition but following time to kill would be from the

parallel acquisition, provided that the targets are acguired

already. But in this thesis, we will only deal with the

firer who uses the same acquisition mode to attrit all

targets.

Before continuing, it is important that the reader

understand both the basic Lanchaster-type attrition model

and also Bonder's approach of the attrition-rate coefficient

as the reciprocal of expected time to xill a target. It must

b recognized that this expected time to kill a target is

primarily dependent cn the acquisition process.

19



III- ANALis ff JH1 gOMBAX 11T 1XO. gl ESS

A. INTRODUCTION

The Lanchester attrition-rate coefficient is the rate at

which a single firer kills a iarticular enemy target type in'

Lanchester-type combat. Development of technically-sound
and scientifically-valid methodology for determining numer-
ical values for Lanchester attrition-rate coefficient is an
essential prerequisite for building a Lanchester-type combat
model. The basic construct cf Bonder/Barfoot methodology was
to take a Lanchester attrition-rate coefficient as the

reciprocal cf the expected time for an individual firer to
kill an enemy target as mentioned in the previous chapter.
Taylor provided justification [Ref. 4] for taking Lanchester

attrition-rate coefficient as the reciprocal of the expected
time to kill. He started frcm the Dasic hypothesis that
combat is a complex random process, but it contains enough

regularity that the appropriate Lanchester-type equations
are a gocd approximation to the mean course of combat. It is
clear that the casualty rate is ejual to the reciprocal of
the expected time for a force to inflict a casualty, when

the times between casualties are exponentially distributed.
However, in case the times between casualties are no longer

exponentially distributed, Taylor used the suggestion made

by Bonder and Barfoot. Bonder (Ref. 3] and Barfoot [Ref. 5]
suggested defining the Lancnester attrition-rate coefficient

as the expected rate which a single firer kills eaemy

targets.

In the spirit of Bonder and Barfoot, Taylor provided
more rigorous justification [Ref. 7] for the Lanchester

attrition-rate coefficient that does not assume an

20
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exponential distribution for times between casualties. He

considered the case where the initial force size of X and Y

is large enough to insure a negligible probability that the

battle is terminated before an attrition pattern coula be

established. He made no specific assumptions azout the

distributior. ,f times between kills, but assumed that each

individual Y force kills X targets according to an attrition

process in which the times between kills are independently

and identically distributed random variables. Thus in the

parlance of the theory of stochastic processes, he said that

such an attrition process is called a renewal process.

Prior to this, attrition prediction has been difficult due

to the inability to iredict casualty patterns. By investi-

gating the distribution of the times between casualties via

renewal theory, combat attrition analysis becomes easier.

Indeed, we know a great deal about the casualty pattern once

we know the distribution of the interarrival time of kills.

As we consider more variables from the renewal process, we

find more information about tile casualty pattern.

Furthermore, we can track the development of the combat

attrition moce precisely by studying the probabilistic

distribution function of those random variables that can be

considered in the renewal process.

We assume here that the reader is aware of the concept

of a counting process. when we think about combat between X

and Y forces, we can assume that time between kills by a

single firer has some distributioL F. Now we are interested

in observing the occurence of casualty and the Lumber of

casualties, N(t), that have happened in time interval (O,t].

Furthermore, when times between kills are i.i.d., we call

this counting process as renewal process.

In this chapter, the study of attrition analysis will

include the following :

21t 9



* The r.v., N (t) , total number o-" casualties by ti:- t,

it's distribution, and properties.

" The expected number of casualties Ly time t.

" Theorems discussing casualty occurence.

" The limiting behavior of the casualty occurence.

" The age and excessive life of the casualty occurence.

" Examples with specific casualty distributions.

" Application of renewal process for casualty estimation.

" Total force attrition by poolina the single firer

renewal processes.

B. REVIEW OF REMEWAI PROCESS

If the sequence of nonnegative random variables {:( 1X2'

, are i.i.d., then the counting process (N(t) , tO I is

sail to te a renewal process (or often called an ordinary

renewal process). Thus, a renewal process is a counting

process such that the time until the first event has scme

distribution F, the time between the first and the second

event has, independently of the time of the first event,

tne same distribution F, and so on. So wien a event occurs,

we say that a renewal has taken place.

An example of a renewal process, let us suppose that we

have an infinite supply of lightbulbs whose lifetimes are

i.i.d.. Suppose also that we use a single lightbulb at a

time and when it fails we immediately replace it with a new

one. Under these conditions, (N(t) , t2>0 ] is a renewal

process when 1(t) represents the numner of lightbulbs that

have failed by time t. Accordingly, if we assume that this
failure is a kill by a single firer - L or Y -, then killing

process also can be considered as a renewal process. Thus,

22
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renewal (or event or arrival) will De synonymous wit':. A_

or casualty occurence in the rest of this thesis. ?C now

assume that casualtl cccarlnce is a kind of renewal croczsz.

If, in particular, the distribution of interarrival time of

kill is exponential with probability distribution function
- x

e , then this renewal process turns out to be a Poisson

2gjss with rate, . [Ref. 9)

Thus we may assume tnat X casualty occurence due to a

single Y firer who uses the same acquisition mode to engage

each X target can be explained by ordinary renewal process

because we assume that times between casualties are all

i.i.d. However, we often consider a counting process for

which the first interarrival time has a different distribu-

tion than the remaining ones. So, we may think of a Y firer
who at first uses serial aciuisition mode to engage an X

target, but once he has finished engaging an X target, then

he may use parallel mode to engage tae rest of the targets.

So, in this case, we cat assume taat iaterarrival time of X

casualty has different distribution between the first and

the rest.

Formally, let [X.,ial) be a seiuence of independent r.v.

with X having distribution G, and (X ,i>2) having distritu-1 2.
tion F which is different from G. Then counting process

IND (t),t>) is said to be a delayed renewal process. So, weD|
can think of using delayed renewal process for different

acquisition mode, but here in this thesis, we will only deal
with the case of ordinary renewal process for simplicity.

le now define for the renewal process a number of asso-

ciated random variables whose study is the objective of this

thesis. 7able IV and Figure 3. 1 give the intuitive interpre-

tation of the random variables obtained in renewal process.

Here we can interpret each random variable as following:

* X is the time between the (n-1)st and n-th X force kill

n
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TIBLE IV
Random Variables in Renewal Process

r.v interpretation

X time between the (n-l) st and n-thi renewal
i.e. n-th interarrival time

S time up to n-th renewaln

N(t) total number of renewals in (3, t]

M(t) expected number of renewals in (0, t]

known as renewal function

Z(t) length of time me'asured from the last

renewal until a given time t , called as

age or backward recurrence time

Y(t) length of time measured from time

t until the next renewal, called as

excess life or forward recurrence time

S(t) length of renewal time at time t,

called as spread

by a single Y firer.

* S is the time up to n-th kill.
n

* N(t) is the total number of kills in (),t).
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- 3(t) --- - ->

time
----'------'---''--"2 ..... x -------------- >-t-e lI

S S S t S (1 2 N(t) "()+

0

Figure 3.1 Renewal Process.

* M(t) is average number of kills in (O,t].

* Z (t) is the time between the last kill and a giver time t.

e Y(t) is tne length of time from time t up to the

next kill.

* S (t) is tae length of lifetime of X force soldier at

time t.

in this thesis, we will only deal with X force casualty

by Y firer to avoid the confusion in notation.

C. DISTBIBUTION OF TOTAL NUSBZR OF CASUALTIES

Suppose that for an ordinary renewal process a single Y

firer uses the parallel acquisition mode to engage passive X

targets from the beginning of combat, when we assume that

targets are already acguired. Then, the distributica of

N(t), the total number of X force casualties by a single Y

firer, can be obtained at least in theory by first noting

the relationship that the number of kills by time t is

11eater than or equ al to n if and only it the n-th kill

occurs before g_ at time t.

Formally
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N(t)_2n <==> S :t (3.1)

From 3.1, wE obtain

P (N (t) =n} = P (N(t) _n) - P (N (t) ?z+ 1)

= P(S St) - P(S st}n n+1

Now, since te random variable X 's, (i1), aze irE znGent
i n

and have a common distribution F, it follows that S = In i=1 i
is distributed as F , which is n-fold coavolution of F with

n
itself [Ref. 10]. Here, F is tne probanility distribution

of time between casualties. lhereloze we obtain

P[N (t) =n = F (t) - F (t) with F (t) = 1n ni1 3
and

P(N (t)_n) = P [S t) = 1 - F (t) (3.2)n n(3 )

Therefore the probability distribution of ; (t), whic:, is

total number of casualties by single Y firer, can be

ottiined explicitly for all n.

The simplest special case of eiuation 3.2 is obtained by
taking the renewal process to be a Poisson process.

Then S has the special Erlang distributioa with n stagesn
because each F is exponentially distribited. Also, it is

known from the previous argament ti.at N (t) has a _oisson

distribution with mean t.

D. EXPECTED NUBBER OF CASUALTIES

1. Renewal Function

Expected number of casualties, E(N(t) 3, which is

defined to be the mean number of casualties in the interval

(O,t], is known as the mea n va 2_q _Lenewa functon, _(t).

From equation 3. 1, the expected number of casualties in time

t can be obtained as following:
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A (t) = E[N(t)] = k P(N(t)=k)iC1

P [I (t)=k)
r= 1 k=n

= Z.P S (t)>n}
n= 1

P :S-t)Z=1 n

2- F t) (3.3)
n=1 n

But here it is generally very difficult to find M1(t)

directiy from the distribution F. Thus, we will employ the

Laplace Stjelzes Transform {L.S.T.) [Ref. 9] to find more

conveniently an expression for a(t). We generally need

three steps to find M(t).

Step 3:

From the definition of L.S.T., we know tnat L.S.T.

of I (t) is
* -St

M (s) = e d.l (t)0

and also
* -st

F (s) e dF (t)0

_tep 2:

Then from equation 3.3

I(S) F (S)
n=1 n

* n
T__ "(s)] for s>0
n=1 -

The atove is a sum of geometric series and can be written as

follows:

* F (s)
-I(s) -

1-F(s) (3.4)
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or equivalently

F (s) 1

1 +IM(s)

Step 3:

Since the L.S.T. of a functian uni.iuely determines

the function, the renewal function determines the distritu-

tion of the kill time and therefore determines the prob-

ability law of the casualty occureace. Specifically there is

a one-to-one correspondence between interarrival time

distribution F, and renewal function, I(t). So if we have

the distribution F, then we can find A(s) from the equation

3.4. But to find M(t),we have to transform M (s) to M (t) by

inverse application of L.S. T.

Let us try the example. Remember that this example

will he applied all the way through this chapter.

Example 3.1

Suppose that each interarrival time to kill X., (i>) has1
exponential distribution with . Then L.S.T. of F is

* ( -st
F (s) e dr (t)

S-st -"t
e i.e dt

' -(;+s) t
= r. dt

-0

,N "" - (,+S) t
+ s) e dt

\4s 0

- .. if s>->;A 
if

Then from equation 3.4

28
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* ' F(s) V/(,+s) "
(S) = A/ ---

A. 1 S)/ ), )) -

1-F(s)

where 1/s was an L.S.I. of F(t), which had value of t.3 So

M(t) = ..t + c (some constant), bat we know that .1(0) = 0,
because there would be no casualty at tize 0. So, finally

(t) = t.

let us be more specific about this example. Suppose

that interarrivai times of casualties are i.i.d. and exjo-

nentially distributed with mean 30 minutes. Then

a) What is the distribution of total X casualties at 5

hours later ?
b) What is the probability that 3rd X kill was occured at

time t = 4 ?

c) What is the prchability that at time t = 2, no X casu-

alty occured ?

To answer these questions we know that (t) = 2t from above

example because = 2, then numiLer of X casualties in time t

has Poisscn distribution with mean 2t.

3 Let F(t) = t for t_3. Then L.S.T. of F(t) is
-O st I C -3_st 1 -st 7 °

F (t) = (etdF (t) = e~S Idt - e i
0 0 s .'0

= 1/s for s>O

29
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Then

-10 n

a) PN(5)n) = e

a1;

3 -8
8e

b) P(N(4)=3) -------- = .0236 and
3 !

0 -4

c) P (N(2) =0) --- = .0183
0!

2- Rean w__.1! Egua~tion

Now an integral equation for I1(t) may be obtained by

conditioning an the time of the first casualty occureace.

Uijon doing so, we obtain

PO
& (t) = 0 Z:N(t) ix = Z' dF(x) (3.5)

0 1

however

0 i Zx>t
E[N(t)IX x] =

1 1 + M(t-%) if xst (3.6)

for if the first casualty occurs at time x, x-t, then from

this point cn the process starts over again, and thus the

expected number of casualties in (o,t] is just 1 plus the

expected number of casualties in time t-x from the beginning

of an eiuivalent renewal process. Putting equation 3.t in

3.5 yields

1(t) = L 1+.1(t-x) JdF(x)0

t
= F(t) + M (t-x) dF(x) (3.7)

0
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where eluation 3.7 is known as the renewai eluation and F is
a known function and M is an unknown function to be deter-
mined as a solution to the integral eguation 3.7. R oss

provide! the solution for eguation 3.7 CRef. 11] as

following and the solution is accepted true for every case.

Xpegted numbe; o casualties M tige t is

(t) -- F(t) + 0 (t-x)dA (x) (3.8)

where =(x -" F ()I n- n

So it allows to find M(t) using only tAe known distribution

function F, which is the distribution of time between casualt-
ies , thus avoiding finding individual F

n

3. Renewal Density

Now let's define the renewal density as m(t) -

i4(t)/dt. Remember tilat d(t) is the expected number of cisu-

alties u, to time t. So 2(t) may be regarded as the expected

number of casualties per unit time; more precisely, the
average number of casualties during the time interval from t

to t+h is

!t+ h
M(t+h) - M(t) m " (x) dx (3.9)

t

Differentiating the renewal equation, we obtain the renewal

equation for the density m(t)

a(t) = f(t) + f(t-x) m(x)dx for t>O (3.10)
0

So, this knowledge of the density f of interarrival time of

casualties is sufficient to determine the density m(x) of

casualty occurence.
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E. LIMIT BEHLVIOUR OF CASUALTY OCCURENCE

ie know that total number of casualties, N (t), go to

infinite as time goes to infinite, when we assume that force

size is infinite. But it would be useful to know at what

rate N(t) approaches infinity. That is, we would like to be

able to say something about limit of N(t)/t as time goes to

infinite.

From the definition of r.v. we know that

S S t< SN(t) N (t) + 1

wnere S must be the time of the casualty after time t.

By refer to [Ref. 10] we know that

N (t) 1
--> -- as t--> (3. 11)

t u

where u = EX. - 1 - F(x)]dx , which is thew0

expected time between casualties.

Here the function 1/u is often called as the rate of the

rene al rroess. Thus the average number of casualties per

unit time converges to 1/u . Then, how anout the expected
average number of casualties per unit time? Is it true that
.(t)/t also converges to 1/u as t -- > 7 I This result, known

as the eleenalK rerewal theore_, will be stated without

proof [Ref. 11].

Elementa l Renewal Theorem

5(t) 1
-- as t--> (3.12)

t u

Thus whatever the distribution F is, theaee number of
gjusu!t 9e ug to tjjm t is approximately (for large t),

32
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t
i(t) --- (3. 13)

Also, She IvaLe nuker 2f q__aalts in the interval

ft, th for h>O is approximated ror large t as following,

5(t+h) - A(t) - --- as t --> ( (3.14)
U

for any distribution F with mean a.

Here eguation (3.14) is known as Biackwell's theorem when F

is not lattice.

From the example 3.1, where casualty occurence time is

exponentially distributed with mean 30 minutes, the average

number of X casualties up to time t is approximated by t/u,

which is 2t. Then after 2 hours of combat, we can assume

that the average number of X casualties by single Y firer

will be 2t, which is 4 casualties.

Another liming result which may prove to be useful in

renewal process also concerns the r.v. N(t). It is shown

(Ref. 12] that _ (t) "s 1 a _s ot.icallj normal distriju-

_ion w~ith mean t/u and variance t f-Lu'. Thus

_., y - t/u
lira P (N (t) <y) =. - t/u.. (3. 15)

t - > CN-12 - 3 (. 5

Suppose of the same example 3.1 that casualty occurence mean

time is 30 minutes. Then u = 0.5 = E[T] = 1/\ . So \ = 2.

Also VartTJ = 1/A = 1/4 = 0.25 hr" , which is 900 mint here.

Let's assume that we had a 10 hours oi combat action. Then

expected nu zber of X casualties is L(1 (13 ] = t/u = 10/0.5 =

20 and var[N(10) ] = tY,/u= lOxO.25/(0.5)3= 20.

Suppose of the guestion that how many X soldiers will be

reguired in order to with probabLlity of 95% that at least

more than one X soldiers will survive after 10 hours of

combat ? This question may he answered as following,
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._ -2zo 'x 20 ,
0.95 PN10)<x) ----

17 4.472

Now from the normal table, 0.95 percentile of normal distri-

bution is 1.645. So 1.6455 (x - 20)/4.472, where the answer

turns out to be x>27.36 . So we can say that X force needs

at least 28 soldiers as an initial force size to te 951 sure

that at least more than one X soldier can survive aiter 10

hours cf combat.

There also exist a alterutive normal apojimation,

when we assume that for integer a,

n
P[N(t)<n] = P(S >t) where S '7-  Xa 'T i

from equation 3. 1.
_ t - nu

Then PS >t = 1 - P(S 5t}= I - - --- (3. 10)
n n n

So now we assume that S has normal distribution with mean
n

nu and variance n-'. I.e we a~ply eiuation 3.16 to previous

example,

/10 - 0.5x
0.95_<P(N(13)<x) = 1 - _,-

-- 10- 0.5x 10 - 0.5x
Then c----- < 0.35 or ----- ----- - - 1.645

0.5 !.Tx 0.5,q x

If we solve for x, it turns out to be x_28.83. So answer is

almost same when we assume some rounding errors.

F. AGE AND EXCESS LIFE DISTRIBUTION OF CASUALTY OCCURENCE

As we mentioned earlier in this chapter, we can also

consider such random variables as Y(t), which is the time

from certain time t until next casualty occurence,
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Il

vich means residual lifetime of a soldier in combat fron

certain time t if he is still alive, and Z(t) , whicL is :aw
time from t since the last casualty occurence (see Figure

3.2).

I S S
~~~~~~~- M--------+-- -----------

Z(t) Y(t)1I

S(t)

Figure 3.2 Age and Excess Life of Casualty Occurence.

This means

Y(t) S - ti I(t) 4 1

Z(t) = t- SN (t)

where Y(t) is called as the excesa life or forward recur-

;ep._ time and Z (t) is called as ae.2L backward recurrence

time. Also

S(t) = z(t) + Y(t)

= -t t- SN~t 1. (t)

N(t) + 1 N(tt

= 1 - t)X
i=1 i i=1 i.
= X

N V t) 1 (3. 17)
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Here S(t) is often called as spre anl S(t) is also r.v.

because X is r.v. too.
N (t) 4 1

Suppose of the Poisscn procass thiat X is expcrentiaj,i
then E[S(t) = EY(t)] + EZ(t)] = / + 1/, = 2/\ = 2EX1.

1

So, S(t) can be assumed as the length of the lifetime oi the

frg soldig_ vhich is in combat at time t.
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IV. THI s gEPosIION CF CASUALTY occu9ENCES

A. INTRCDUCTION

In the previous chapter, we have considered in detail

the theory of casualty occurence through. the ordinary

renewal process of a single Y force soldier. We dJal in this

chapter more briefly with the superposition of several

teaewal ./2cesses, which is total X force casualty occurence

behaviour .  When we assume multiple Y force soldiers who

shoot at X force soldiers independently of each other, we

may assume that all these Y soldiers kill X soldiers by

indapenient casualty processes. So, we can say that there

occur multiple independent ordinary renewal processes,

simultaneous in time.

process 1 ---.. ........- . . . .. . -I

process 1 ...-- ....-- . .---------- ---- --------- --

process 3 ------ - ---
* I I I I I

pooled ' ,
output -- x--X------I--------- --- ---- X-------X--

Figure 4.1 Superposition of Casualty Occurences.
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Sup;cse that we have 'p, independent casaalty nrc:sses
it. operation simultaneously, all wita tae same P.D. . of

casualty occurence time. Coasider tae secuence of casualty

occurences formed by iooling the individual processes. Fig

4.1 illustrates the special case, when p = 3. Formally, we

can say that if [N (t), i>_0], for i = 1,2, ... , k, are
inde-

i k endent renewal
processes and N4 (t)= 3~ (t), then (t tO renewa

i= 1 1. P is
called pooled process which is total X force casualt occu-

rence behaviour by k forcesoldiers.

B. SCME GENERAL PROPERTIES

1. Normal ApDroximation of Pooled Output

From casualty occurence processes in the irevious

chapter, we assumed that there exist a mean casualty occure-

2
nce time. Sc let u and ( be the mean casualty occurence

time and ccrresponding variance by tae i-th Y force soldier
2

and let u(p) nd - (p) be the mean casualty occurence tine

and corresponding variance of the total casualty occurence zy

k of Y force soldiers. Then the guestion is how are these two
values related each other ?

Fro, previous study, we know that 1) N (t) is approxima-
3.

tely normal with mean t/u and variance, 17 t/u . Therefore
1 3 I.

we can say that N (t) is also approximateliy ormal with meanp
k k 2 3

t/ui and variance Z C t/u . 2) Also assume now thati=I i1=I 2.

either the pooled process is a renewal process or at least

the analogous result holds, then approximately N (t) is ncrm-

2 3 p
al with mean t/u(p) and variance T(p)t/ u (p).

So, from 1) and 2), we must have

t k 1
--- = t r -
u(p) i=1 u (4.1)

i
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k 1 -1
then u(p) = -- ) which is the harmonic mean of tne ui.=1 u

2 2

an d 3 t t t
3 i1 3

u (p) ui

2 32
2 3 k i k 1 -3 k ithen u-() = u (p) h - = (-- ) (.2)

1=1 3 i=1 u .=1 3
u. i ui. i

Also if we assume that u = u and = for all i 1,2,..,ki
which means all casualty occurences are independent and identi-

cal, then mean casualty occurence time and corresponding vari-

ance of the total casualty behaviour by k of Y force are as

follows;

' 1 -1 u
u(p) (-k)

u k

2 22 1 -3 - T 2
;(p)= (-k) --- k--- = ( - ) (4.3)

U 3 2
u k

Also total number of expected casualties, E[ N (t) ], can
phe obtained here by rooling individual casualty occurences

as following;

BIN (t) = ZE N (t)] =k C.(t)) = k (t) (4.4)

where M (t) is expected number of casualty from

single firer, which is t/u for large t.
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let's look at an example that deals with joclinl of

individual renewal pzccesses.

Example 4.1

Suppose of Y force artillery shells from several

sources are bombording the same X target. Each source hurls

shells at the target at a rate of 40 saells per hour. Assume

that the interarrival times of sheils from each single

source are uniformly distributed over an interval (0, a].

Then the 3uestion is 1) What is the protaciliry that less

than 825 shells will be nurlel at the target from a single

source during a 20 hour period and 2) If there are 5 sources

from which such attackcs are launcned, what is the prob-

aDility that more than 4125 ( which is 5 times 825 ) she'ls
are hurled at the target in a 20 hour period ?

To answer the first question, let \ = 40 shells/hour

= 2/3 shells/min. lhen u = EX] = 1/-, = 3/2 min, wher. we

assume pcisson process. 3ut interarrival times are unifcrmly

distributed over an inter7al (O,a]. So, u = 'x] +

a)/2= a/2, where a = 3 minutes. Then Var X] (a - 0) /1 =

3/4 mini . Now let h(t) = number of shells hurled in (0, t]
from a single source. Since N(t) as normal with mean t/u an!

variance t7/u3 from eguation 3.15, for t = 20 hours = 1200

minutes, the probability tarns out to be as following;

1200
325---

3/2 '825 - 800
S(N (1200) <325) <-------------=-- - -

1200 - 3/4 16.33

' (3/2)-'

=.-(1.53) = 0.9370

amd fot, second 4uestion,

Let N (t) = number of shells hurled in (0 , tJ by i-th sourcei
where i = 1,2, ... , 5 . and

5
N (t) = .- N it) = total number of shells hurled in (0, t]

p 1=1 4
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by 5 sources.

Thea [N (t) , tO) is the pooled process fur which med,
p

irterarrival time is,

u 3/2 3
u (p) = - = --- = -- minutes.

k 5 10

and corresponding variance is

2 2 3 2
(p k ---- ain

100

Since N (t) is normal with mean t/u (p) and variance (p) t/," (p)

for t= 3200 minutes,

1200
4125r 3/10 \ - 12 5

P[N (1200)< 4125) = 3/10 - =-',125

p ; 1200 3/100 -' 36.51
3

(3/13)

= '(3.42) = .9997

So, PJN (1200)241251 = 0.3003

2. Poisson Process of Pooled 3utpat

Now let's assume that individual casualty processes are

probabilistically identical wita common uaderlying C.D.F. of

casualty occurence time F(x). -at F (x) be the C.D.? of
p

casualty occurence time of pooled process. Tnen the iuestion

is how is F (x) related to F (x) ? This juestion can be

answered by using the idea of excess life. Let Y (t) be the

excess life of an X force soldier and Y (t) be excess life

of total X force. Then we know that Y J[) = mini Y it), Y (t)p

k Y t) j (see Fig 5. 1).

Then
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II
y M

' 3 (t

SI----------------------- ------- -

I I I

' Y (t) ' 'I
Figur 2 S o E

,l ,t>y = Ply (tt,| (4 ,5

p I

Fro prviu stdy we kno tht(t)ofED ridvda

... X-----.X... -- X ....-.....--...---

t Y(t) I

pigure '.s2 Sperposition of Excess Life.

k
P (Y (t)>y) = PY (t)>yF ((t.5)

P

p 1

From previous study, we now that P.D.F of E.D. for indiviual

renewal processes is (1/u)[ 1 - F(x) J ad then we can say that
1
--[1I - F (x) ] is F.D.F of S.D. for the pool.ed casualty

u(p) p

process. Thus,

' 1

P[~t>y - [1- F (x) Jdx then,
y u

P(Y (t))y3 --2 1 - F (x)J]dx
ip ' y u (p) p

=[- \ [ I - F(x) ]di] from epaation '4.5

U y

If we differentiate with respect to y
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1 1 k-1 1
- 1 - F (y)I = k[ - [1 - F(x)]dI ] (- - - (

u(p) P U " u

Here we krow that a(p) = k/u, so a's are all :azceLL.1 cu:.

Then,

C.D.F. of pooled output is

(' ~ k- I
F (y) = 1C- ( - 1 - F(x) ]dxJ I - F(y)] (4.6)

p u y

For example, think of tht exroneatiai distribuition of
-Xx

casualty occurence. Then F(x) = 1 - e , and u =1/,

Then C.D.F of pooled casualty occurerce is

F (y) = 1 - L Ce ]dx] e
p y

-,y k-1 -. y= 1- (e ) e

-',ky
= 1 - e ..or y_>)

which follows that pooled output is a Poisson process with

rate k where k is the number of I force combatants.

Here, probably the most interestiny properties of

the pooled output refer to the 'local' behaviour where k is
large. Khintchine [Ref. 13] has proposed that in the limit

the numbers of renewals in non-overlapping intervals follow

indepenlent Poisson distributions, thus showing that in the

i§! t UkS pooled 22, 2 utP. 1s a P0ig-,. o pRoess. Also his
proof does not reguire each interarriwal time to be identi-

cally distributed. In attrition analysis in combat, it

appears to be the same way, which means that if a large

number of independent (and identical) casualty occurences

are pooled, then the total force casualty occurence is

approximately a Poisson process [Ref. 9] [Ref. 13]. Thus,
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we can say that Pooled ;aslalty occurenc e by total Y c__a-

'LnRts S_42 1I !_P.-xImated b Pois!on process Uf ,e assume
j£i number of Y force.

Thus, finally, from the Dazic theorem of Pcison
process, we know that if (N (t),tO} is Poisson process with
rate >0, then the interarrival times [X ,i>1) are i.i.d.1
exponential random variable with rate J . Thus, from
previous results, total X 2asualty occurenes is a Poisson
process with rate k, where k i is the number of Y force
coabatnts, and interariZaI times of X casualties can be

;o jideX to be ex1onentialiv distributed with parameter k
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V. CGISPRISON OF ENEWAL PROCESS WITH COMPUTER SIMULATION

In this chapter we will loox at the results of scme

typical combat attrition process ( Y firers with different

number of passive X targets) obtained through the theoret-

ical renewal process model which is developed in this thesis

and computer simulation using random numoer generator.

As we mentioned earlier, total number of expected casu-

alties by n Y firers turned out to be n M(t) for large t

from the renewal theory, where we assumed that all casualty

occurences were independent and identical. But it is clear

that these expected casualties can not be bigger than the

number of X targets. Now we will compare this result with

simulated output to see whether we can find any interesting

facts such as how many X targets will be most appropriate to

appiy renewal theory to combat attrition ? or what force

ratio will be most applicable to renewal process ?, etc.

In order to facilitate the simulations, the assumptions

were made that n firers shoot independently at m targets,

and that the times to kill the targets are uniformly

distributed between [0,1]. When a target is killed, all

firers shooting at it are assumed to select a new target at

random from those still surviving.

The procedure of the computer simulation is as follows

(see Appendix A) ;

1. We generate the initial kill time for each firer by

using pseudo random number generator, where we assume

that every firer's kill time is uniformly distributed

between C 0, 1

2. Each target is indexed by integer number.

3. We need to decide which target does the firer snoot

at 7 The target selection rule is such that first we
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generate a random uniform number between 0,11, the:;

we take the integer value of (random number times the

number of targets ) plus one, which designates the

index of target that is assigned to firer 1. Sase

procedures are repeated until all the firers are

assigned a target, with some targets possibly hoving

more than one firer. Thus at first time step random

number for selecting the target is generated n

times, because we have to assign a target to each

firer. These targets are killed eventually as time
proceeds.

Now, the target that will be killed first is the target

which is assigned to the firer who has the miniaum time to

kill( = Tmin) among the firers, where this time to kill was

already generated. So we now know which target is killed.

After the first target is killed, the number of targets

killed is registered as one and the first time step ends.

Now, in the second time step,. tae new kill times between

[0, 1] are generated again for all firers who were shooting
at the first target. The firers who were still in the

process of killing a target at tae end of the first time

step continue to engage the same target in the second time

step, where time to kill in the second step is old kill time

( generated value at first time step ) less Tmin.

Cnce the second target is killed, the second time step

ends and the number of targets killed is now registered as

two. Now we proceed to the third time step, where same

target selection rule and firing rule are applied until all

the targets are killed.

After all the targets are killed, each time step length
( which is the same as the time to kill the target in each

tine step ) is stored, and this is one replication (see

Appendix B). To obtain the expected value, 40 replications

of the simulation were conducted and 6 data sets
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(n=3, m=6), (n=3,m=10), (n=3, m=14), and (n=10, m=o), (n=10,
m=10) , (r=10, m=14) , were examined. After 40 replications ,

the data were evaluated to find the expected number of kills

through order statistics. This expected numner of kills was

plotted against time. The results for n=3 and n=10 are

shown in Fig 5.1.

The theoretical results can be obtained through two

methods, whi:h are discrete approximation and simulation.

In this thesis, we used discrete approximation based on the

renewal function modelled at equation 3.7. It's formula is

as follows;

t
M(t) = L M 4 L (t-j) I P

j=1 j

where P represents the probability distribution

of kill time.

Thus, expected number of kills obtained from the renewal

process model using discrete approximation (see appendix C

for program and data, where left column refers to the kill

time and right column refers to the expected number of kills)

is alsc plotted against time in Fig 5.1.
It was found through both cases that the expected number

of kills by the renewal process model may only be justified

through the assumption of an infinite number of targets
because as m gets bigger, the expected kill value approaches

the theoretical result. Also it was discovered that at the

beginning of combat, the attrition process almost followed

the theoretical renewal process model.
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THEORETICAL VS SIMULATED RESULTS
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Figure 5.1 Expected Kills From Theoretical And Simulated.
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VI. CONCLUSIONS

A. SUBMIAR

Since Lanchester proposed his model, many studies have

tried to model the combat attrition process mathematically.

Recently, the main focus has been on calculation of numer-

ical values for Lanchester attrition-rate coefficient. This

numerical determination stands at tne heart of casualty

assessment in such models. There are three reasons for the

importance of this attrition-rate coefticient methodology.

First, Lanchester-type models are used in various U.S.Army

and D.O.D. planning activities more widely than ever before.
Second, Lancbester attrition-rate coefficient is a basic

element of any Lanchester-type combat model, and that
attrition-rate coefficient reflects the effective applica-

tion of firepower. Finally, significant aew developments

have occured in methodology for developing more tactically

realistic Lanchester attrition-rate coefficient and these

important results have not been accessible to a very wide

audience. In particular, a new approach for developing more

realistic and mathematical Lanchester attrition-rate coeffi-

cient, that of computing Combat attrition by using a renewal

process, was proposed by Taylor recently. This thesis began

with the assumption that the combat attrition process was a

kind of renewal process, and that times between casualties
were i.i.d. Thus, considering the problem from the stand-

point cf renewal theory, many new random variables were

included and various distribution functions studied in order

to understand better this type of casualty occurence

paradigm.
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This thesis only dealt wit" the case of horo r.ecus

forces which were using the same aciuisition mode to attrit

the targets, which were passive X forces. Inus we co1 d se
an ordinary renewal process to study the behaviour of casu-

alty occurences. We emphasized the probabilistic function

of each r.v., so once we found the distribution of interar-

rival times of casualties, casualty analysis could be done

by plugging distribution functions into the egaation devel-

oped. Finding the distribution of interarrival times of

casualties was the critical factor in continuing the casu-

alty analysis.

The final conclusion is that total casualty occurence in

g-njal 2An k L ld !o he Poisson ocs-sa, and thus
tCS S ri bte if we

asa klyl r.J~jt~ 1. ei. I_- __a-s.

We have dealt here only with a passive X force( i.e. one

that does not shoot hack }, perhaps an unrealistic assump-

tion. But still this study permits better undrstanding of

combat attrition, through the use oi irobability theory,

than was previously available.

B. SUGGESTIOVS FOR FURTHER STUDY

In this thesis, we have only dealt with passive

targets. A more complex formulation may be repaired for real

combat, since enemy targets shoot back and cause firer

attrition.

In addition, a delayed renewal process could be applied

for the case where different acquisition modes are used for

the first shooting and for each subseguent shootings. A

reinforcement of the forces could also be included.

Casualty analysis could then be lone using the theory of

alternating renewal processes, once we know the rate of

reinforcement.
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A.ZLENDIX A

FORTRAN PROGRAMMlING FOR SIMULATING THE KILL TIME (N =3)

REAL U1(3 U2 3 3UclIIE3tNlZ(0,114)

DOUBLE P-ECliICN DS E '3:, 5 4
rSED = 123457.Do c
Do 200 K = 1,'40

M=1
N 3
L 1 C
CALL 3GUBS(DSEED,N,Ul) C
DO 100&I==1 N

100 61(I) E

105 CO=I
DSEED = DS.EDl + 23. L) C
CALL 3GUBS(DSEED,.l,U2) C
DO 11011 = 1 N

TGTf I = I T(U2 (1) * FLOA T (1')

T "W1N = 2.
DO 130 1 1,N

I F71:d L E.L.IE (I) Go -10 13)

NKrGT G
FIlNDEXC = I

130 CONIINUE C
INTIiE (iC,L) = T &IN C
Do 125 1J 1,M

IFflRIGTJJ) .NE.KTG'I) GO 20O 125
RTG (JTGT) = RTGT 0~)

125 CONTIN UE Z
~M -
I L + 1 C
DO 135 1 =1, N

IF(KIGT. EQ.'IGT ) GO TO 70
TIEI) = 'IMElB I -IIN

GO 7 135
70 DSEED = DSEED + 12.D3

CALLGGUBS JDSE-DU 1,U3)
TIMIE (I) = 3i
DSZE D= DSZED + 3.DO
CALL GGUBS (DSEED, 1 qJL

133.JI =o1 TG(INt (64*rLOAT( !)) +1)

200I GoH~JE ) GC TO 10

STOP
300 FOE3AT(1,14F5.2)

EN D
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A PENDIX 3
SIMULATED DATA FOR KILL TISE (N = 3, M = 6)

0.2607 0.5056 0.2000 0.4392 0.1057 0.0b49
0.3914 1.3860 0.1659 3.3315 0.0803 0.1646
0.1156 0.2987 0.0187 0.3911 0.0J88 0.4744
0.4545 0.0154 0.1312 0.2935 3.1360 0.3672
0.4138 0.1269 3.0678 0.1305 0.1724 0.0101
0.0884 0.0730 0.2945 0.0234 0.7305 0.0820
0.4117 0.3926 0.3363 0.0 97 3.J277 0.0151
0.0499 0.2410 0.3564 0.0033 0. 1442 0.2979
0.4637 0.2188 0.1503 0.054o J.5555 3.0230
0.7428 C.0736 0.3629 J.0375 0.0319 3.0322
0.2326 0.3066 0.2037 0.2982 0.105J 0.1466
0. 1135 0.5015 0.2316 0.1160 3.2916 0.4032
0.0943 0.1942 0.2346 0.0342 J.2771 0.0218
0.5372 0.0104 0.3658 0.1481 0.0724 0.1435
0.0492 0.0554 0.1336 0.1750 0.5712 0.0609
0.2496 0.0227 0.1102 0.2098 0.2394 0.1294
0.4530 0.0027 0.1524 0.0436 0.0132 0.6276
0.2916 0.2342 0.0265 0.5775 0.3016 0.1875
0.2299 0.0756 0.5040 0.1737 J.3637 0.5797
0.7527 0.0343 0.1628 0.0063 0.3606 3.9877
0.2201 0.3036 0.1323 0.5570 .0236 0.3332
0.6097 0.0538 0.35 16 0.3331 3.1933 0.0139
0.7828 0.0719 0.1470 0.015ob 3..743 0.3118
0. 1133 0.6589 0.0144 0.0712 ).1216 0.2234
0.0035 0.0602 0.4413 0.2291 0.1626 ).26J9
0.0174 0.5669 0.1626 0.2 o2 3.1578 0.0334
0.6032 0. 0OC3 0.2692 0.0024 ).)723 0.2653
0.3186 J.0492 0.3918 0.1633 3.1857 0.539
0.5564 0.0105 0.0674 0.2037 3.3184 0.1233
0.5706 0.3844 0.3504 0.2022 0.0417 3.1048
0.2102 0.4294 0.1155 0.0393 3.1705 0.41o3
0.0191 0.2929 0.4283 0.2152 J.1427 0.4954
0.1570 0.0601 0.3111 0.4439 ).0499 0.0877
0.1931 0.4658 0.0251 J.15o8 3.0375 3.2395
0. 1372 0.4183 0.1055 0.2174 3.0335 0.2340
0.0523 0.2950 0.4356 3.0230 0.1054 0.02o
0.3024 0.5260 0.0669 0.0079 0.1682 0.0748
0.3645 0.1504 0.0088 0.0741 0.5581 0.0228
0.0220 0. 4350 0.2320 0.J207 3.2U34 0.2070
0. 1285 0. 1379 0.1063 0.0095 5.0050 0.5903
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FC

IP PENDIX C

DISCRETE APPROXIMATION FO RENEWAL FUNCTION

$JCB
I REAL O,,k1(401),(41) ,TII!L(41)
2 mI1(1) = 0.
3 PC = 1./100.
4 DO 100 I = 1 400
5 I ;F(I.GT. 100) GO TO 20
6 M11(I+1) = M1(I) + (1. + M 1I( ) * PC
7 GO IO 100
8 200 m 1 1) 0 1 (I+1 + MI(I)) * PO

9 103 CONTINtUE
10 DO 110 J 1 41
11 TIE(J) =6.1 *1(J-1
12 (J) = 11 (1+10*(J-1)
13 WRIkE=6,*) TIIE (J),(J)
14 113 CONTINU
15 STOP
16 END 0 SENTRY

0.0000000 0.0000000
0. 1000030 3. 1046219
0. 2000000 0.2201895
0.3000001 0.3478478
0.4000001 0.4893622
0.5000001 0.6446298
0. 6000801 0.3166943
0.7000002 1.3067590
0.8000002 1.2167340
0.9000002 1.4486160
1. 0000000 1.7347900
1. 0999990 1.878393J
1. 1999990 2.0587170
1. 3000000 2.2452653
1. 3999990 2. 4373700
1. 5300000 2.634151)
1. o000000 2. 8344850
1. 6999990 3.0369570
1.8000000 3.2398290
1. 8999990 3.443961)
2.0000000 3.6377740
2. 1000000 3.8320340
2. 1999990 4. 0261403
2. 3000000 4.225603J
2. 400000 4.423944J
2. 5000000 4.6227140
2. 6O0000 4.8215160
2.6999990 5.023)490
2.8000000 5. 2181320
2.9000000 5.4157760
3.0000000 5.6132290
3. 1000000 5.8109340
3.2000000 o.008j100
3. 3000000 o.2070170
3.4000000 6.4051470
3. 5000000 6.6032300
3.6000000 o. 80 1237,)
3.7000000 6. 999171J
3.8000000 7. 197o000
3. 9000000 7.3949500
4. 0000000 7.5923790
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