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ABSTRACT

This paper presents a finite element program, Ultimate Strength of Beam-

Columns (USBC), able to simulate the destructive testing of in-grade lumber

under combined bending and compression. It also presents two kinds of test

data on southern pine 2 x 4's: tests of short members provide an input proper-

ties distribution for USBC, and tests of full-length members in seven groups

of various lengths and grades provide verification data to evaluate the per-

formance of USBC. The simulator USBC reproduced the mean and variance of each

group very well, especially for shorter, lower grade members. It is somewhat

conservative for longer, higher grade members but this is deemed acceptable

because these cases can be designed as homogeneous elastic bodies. The simu-

lator was then employed to study the interaction of bending and compression in

each of the seven groups of full-length members by simulating the testing of

each piece under many combinations of moment and axial load. The results

demonstrate the conservatism of the linear interaction equation used in timber

design, especially at shorter lengths and lower grades. This is important to

the efficient design of wood beam-columns such as wall studs and truss chords.. -

Key Words: Wood, timber, beam-columans, southern pine, interaction equation.
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STRENGTH OF SOUTHERN PINE 2 x 4 BEAM-COLUMNS

BY

JOHN 3. ZAHN, Research General Engineer
Forest Products Laboratory1

INTRODUCTION

New design criteria for roof trusses and stud walls will be based on

whole-system analyses of roofs and walls. Such analyses need an accurate

failure criterion for wood members subjected to combined bending and compres-

sion. This study and an earlier study of western hemlock 2 x 6's (Zahn 1982)

are aimed at meting that need.

The main difficulty in studying the strength of lumber under combined

load is that each member can be tested to destruction only once. Hence to

measure strength at several different load combinations one must replicate

each test many times and examine mean values. If, in addition, one wishes to

study the'effects of other variables such as member length, lumber grade,

cross section size, and species, a purely experimental approach becomes very

costly and time consuming. Therefore a computer simulator was developed in

Zahn 1982 that can simulate the strength of a given member under any combina-

tion of bending and compression. By repeated simulation of the same member

under different load combinations a complete interaction curve can be generated

for each member. If this is done for a representative random sample, the mean

value of the simulated interaction curves can be taken as representative of

that length, grade, size, and species. In this study, size and species were

fixed and length and grade were varied.

1The Laboratory is maintained in cooperation with the University of
Wisconsin.



I had three objectives in this study:

1. to examine the strength of southern pine 2 x 4 lumber

2. to develop and verify an improved finite-element simulator, and

3. to study the interaction of bending and compressive strength at

several lengths and grades.

The new computer simulator is called USBC for Ultimate Strength of

Beam-Columns. USBC is a nonlinear, finite-element program whose input is

a distribution of single-element properties capable of specifying the complete

nonlinear moment-curvature relationship of each element as a function of speci-

fied quality indices and load ratio (ratio of moment M to axial compression P).

The quality indices chosen for this study were edgewise modulus of elasticity

(EMOE) and visual quality rating (VQR). The previous study (Zahn 1982) of

western hemlock used only one quality index, Er, an edgewise modulus of elas-

ticity that included the effects of shear deformations in the two adjoining

elements.

In addition to obtaining single-element data for input to USBC, data were

obtained on seven groups of full length lumber to verify the ability of USBC

to accurately reproduce the effects of length and grade. The previous study

had only one group of 8-foot members as a verification and it was found that

mean strength could be accurately modeled but that variability was seriously

underestimated.
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FINITE ELEMENT SIMULATION

Because a finite-element program can simulate a complete interaction

curve of strength under combined bending and compression, it will yield more

reliable information about the shape of the interaction curve than a purely

experimental study would, provided that the accuracy of the simulator has been

adequately verified. Each member to be simulated is first marked off into

12-inch "elements" and each element is rated for quality. During simulation

the element size must remain fixed. To make the program as accurate as pos-

sible, a nonstandard finite-element method was employed in which the nonlinear

moment-curvature relationship is exactly satisfied within each element and

deflections and slopes are matched at the nodes between elements. The method

has been described in detail (Zahn 1982) and will only be sketched here.

Method

Because failure under combined loading is essentially a bending failure,

the element behavior is modeled as one of bending conditioned by the simul-

taneous presence of axial compression. That is, the basic material properties

are those that describe the moment-curvature relationship of an element, but

these properties are made functionally dependent upon the load ratio M/P

(nominal bending moment over compressive force). Because all of the combined

load tests in this study are eccentric axial load tests, the load ratio is

always equal to the eccentricity of the axial load. That is, in axial load

tests

M Pe()

where M = nominal moment, P = axial force, and e = eccentricity.
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The actual moment-curvature relationship is represented by a Ramberg-

Osgood function (Ramberg and Osgood 1943):

c- + K cn (2)
R il 

(2

where c = half depth = 1.75 inches, EI = flexural rigidity lb/in.2, and K and

n are fitted parameters. To minimize rounding error in the curve fitting com-

putations equation 2 was written in the form

c = X + exp n (y) + n n (3)R I Xu

where X l'c = X at ultimate load, and y C c at ultimate load.El' Au at ulimt load
This form explicitly displays four properties as fitted parameters:

El = stiffness, Xu = strength, yu = ductility, and n = knee shape. These four

parameters provide a four-dimensional material property vector F that com-

pletely specifies the curve of actual moment versus curvature of the element.

JEI(

! n (4)

These single-element data were fitted with a multivariate normal distri-

bution. I tried several data transformations and found that Y is more nearly

normal than F where
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Y = 1(5)
£n y

£n £n n

This has the further advantage of ensuring that F is positive, as it must be

by definition. Thus, given the 4-vector Y for each element, the simulator

constructs the complete moment-curvature relationship of each element. The

solution method employs a linear secant relationship which is iterated until

the exact nonlinear relationship is satisfied. The load is initially small

and is increased by small increments until one element fails.

As the load increases, the deflection of each element increases, thereby

changing the eccentricity of the element. But because Y is a function of

eccentricity, the simulator iterates until that functional relationship is

also exactly satisfied. Figure 1 shows a block diagram of the computing

method.

Specification of Element Properties

Element properties are not directly specified at input. Rather, element

quality X is specified at input and element properties Y are inferred from X.

Element quality is defined by the nondestructive measures:

E= (6)

E"OE
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* because Y correlates better with X than with E. Here the values 7 and 0.45

were chosen to make the mean of X approximately zero. This has advantages

*that will be discussed further in Experimental Results--Single-Element Data.

Given X the simulator infers Y, either deterministically or probabilis-

tically. If probabilistically, Y is randomly selected from a distribution

dependent upon X and the simulation is repeated many times for each member

until an output distribution of failing loads is obtained (Monte Carlo

simulation). If deterministically, Y is a single valued function of X dlid

each member is simulated only once. Three schemes were investigated ill thlis

- study and in Zahn 1982:

1. Input a joint distribution for Y and X. Then given X, form a condi-

tional distribution of Y. This scheme and Monte Carlo simulation

were used in Zahn 1982.

2. Input a linear regression of the mean of Y onto X:

Y AX +B (8)

and also input a covariance matrix of Y assumed to be independent of

X. This scheme with Monte Carlo simulation was originally tried in

this study and rejected.

3. Input a deterministic relationship

Y =A' X + B' (9)

and simulate each member only once. This is the scheme finally

adopted in this study, with A' and B' fitted by orthogonal

least squares.
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* **. In each of these schemes the functional dependence of Y upon eccen-

tricity e can be handled by making each statistic S.i in the relationship

of Y to X a function of e:

S. f.i (e), i = 1, m (10)

where f. a suitably chosen function fitted to data obtained at several

eccentricities and m =the number of statistics needed to specify Y (X). The

dependence of Y upon X and e is discussed further under Experimental Results~-

Single-Element Data.

* EXPERIMENTAL PROCEDURES

Material Selection

Kiln dried southern pine 2 x 4's were purchased in two lots. The first

lot, for single-element tests, was selected with the aid of a portable dynamic

E rating machine to have the widest possible range of quality. Boards 10 or

12 feet long were chosen so that at least one 54-inch-long test specimen could

be cut from each board with a grade-reducing defect in the center 12-inch gage

length. The second lot consisted of representative samples of 40 boards each

in seven groups (table 1).

Single-Element Tests (short members)

Twelve inches was deemed to be the smallest feasible gage length for

measuring curvature in a 2 x 4. To establish the distribution of element

properties, a gage length of 12 inches in the center of a 4.5 foot test member

was subjected to eccentric axial load (fig. 2). Specimens were divided into

-8-



Table I.--Design of verification experiments

Member Gage Grade - Gop
length length 1 2 3

- - - Ft - - - - Number of

specimens

8 5 40 40 5, 6

10 7 40 40 7, 8

12 9 40 9

14 11 40 40 10, 11

1Groups 1 to 4 are in table 2.

P

a b T
P1 HSzP9

H-o -
6.5"54

~Gage
25"1Iugh2

P1 is"

I P

Figure 2. --Diagram of (a) eccentric axial load applied to boots (hollow grips)
with test member inside, and (b) test member showing contact forces exerted
by boots. Distance S (15.5 in.) was large enough to prevent H from causing
shear failure in boot (ML845426).
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four groups and tested at different eccentricities (table 2). One group (pure

bending) was tested under two point loading (fig. 3).

Table 2.--Design of experiments on 54 inch
2 x 4's to establish element
property distribution

Group 1 2 3 4

SIn.----------

Eccentricity 0.65 1.00 2.25 '1

Sample size 135 135 135 135

Net sample size 2  112 128 121 118

'Group 4 tested in pure bending.
2After discarding members that failed in the

grips or outside gage length.

P/2 P/2

Figure 3.--Pure bending test with specimens of group 4. Same test set-up was
used to nondestructively measure edgewise modulus of elasticity (EMOE) of
all specimens in groups 1 to 4 (ML845427).

Quality rating.--Before testing to destruction, each 12 inch gage length

was rated for quality in two ways.

1. The edgewise modulus of elasticity (EMOE) was measured in a non-

destructive bending test (fig. 3). The total load was limited to 135 lb, and

-10-



curvature was measured by setting a 12-inch bridge on top of the specimen with

a linear variable differential transformer (LVDT) at center span (fig. 4).

The curvature is inferred from the LVDT reading by

R 2
a

where R = radius of curvature, y = LVDT reading, and 2a = bridge span (12 in.).

'LVT, y

Figure 4.--Bridge used to measure curvature. Bridge rested on top surface of
test member and detected changes in curvature from changes in linear
variable differential transformer (LVDT) readings (ML845428).

2. A visual quality rating (VQR) was assigned using a scale of I to

10 developed by C. Gerhards (1983).

These indices provide a two-dimensional quality vector E in equation 6

above. So that all four groups would have nearly identical distributions of

quality E, the specimens were first sorted in order of increasing value of Q

where

Q S VQR + EHOE x 10- 7  (12)

This sorted the members into groups by integer value of VQR. Within each

group EMOE increased monotonically. The first four specimens with smallest

values of Q were then randomly assigned to groups I to 4. Then, the next four

-11-
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were randomly assigned, and the next four, etc., until four matched groups

were produced. Resulting histograms of all four groups were nearly identical.

The common histograms of VQR and EMOE are shown in figure 5.

30 30

0L20. 20-

S .8 2.0 3.2 5 9

EMOE (million ) VQR

Figure 5.--Histograms of visual quality rating (VQR) and edgewise modulus of
elasticity (EMOE) for groups I to 4 (NL845429).

Strength tests.--Grips used for western hemlock 2 x 6's (Zahn 1982) were

modified for use with 2 x 4's. The loose bearing pins on each side of the

boots were replaced with self-aligning roller bearings (fig. 6). Maple filler

strips were used to accomodate the smaller member size. A bearing block at

each end of the strip assured constant shear in the member inside the boot

thereby minimizing the maximum shear stress and reducing the likelihood of

a member failing by shear in the boot.

Curvature was measured via a double-arm deflectometer (fig. 7). The two

LVDT readings yI and y2 are related to curvature as

2(y2 - yl)
R = a(29 + y (13)

-12-

tI\ L~. ~ A;. >V~>al "' '.5'V ~



P

Specifmb~cie

Bearing
iI - - Shaft

-Boooot -Yoke

Boot

Fmnt - -- Yoke Side L a e
Lo eLod cell

PP

c d

- - I

Figure 6.--(a) Front and (b) side view diagrams of boot used as grip for
eccentric axial load test. Position of bearings is laterally adjustable.
Filler strip adapted boot to smaller size specimen. (c) Side view of
bottom boot. (d) Oblique view of boot (maple filler strips have been
removed and laid along side) (tL845430, M830384, M830385).
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Arm

LVDT, y, ____--LWT-Y 2 A

ArmY

SW~men

Figure 7.--Deflectometer arrangement used in eccentric axial load test.
Rigid arms were clamped to specimen and linear variable differential
transformers (LVDT's) were mounted between them 6 inches from center
on either side (ML845431).

where R = radius of curvature, A = gage length (12 in.), and a = arm length

(12 in.). A third LVDT y3 measured center deflection relative to the line of

action of axial load (fig. 8). Thus the actual moment was

M = P(e + y3) (14)

A complete curve of actual moment versus curvature was recorded during

each test by an on-line computer and automatically fitted with a Ramberg-

Osgood function as given in equations 2 and 3 above. These four parameters

were recorded for each specimen as the four-vector Y given in equation 5.
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Figure 8. --(a) Fuilview and (b) closeup of axial load test set-up.
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Verification Tests (longer members)

Seven groups of long specimens, groups 5 through 11, were tested to

destruction under eccentric axial load. Several lengths and grades were

included (table 1).

Quality rating.--The gage length of each member was marked off into

12-inch elements and each element was rated for quality by measuring VQR and

ENOE as described above under Single-Element Tests (short members). When

measuring EHOE, the longer overhang was supported by a weight strung over

a pulley (fig. 9). The weight was chosen to reduce the shear stress in the

element being measured to nearly zero. It was found that the moment-curvature

relationship of the element was slightly affected by the presence of an initial

constant shear. This non-elastic effect was unexpected and difficult to

explain. It may be due to some subtle nonlinearity of the test set-up at low

loads. At any rate the pulley system had the effect of producing reasonable

and repeatable results.

I 2 P/2 T Ww91. o

" I46IgI TVI

Figure 9.--Sketch of edgewise modulus of elasticity test used to rate
quality of each element for members in groups 5 to 11. Overhang was
supported by a low-friction pulley. Sketch shows test of second
element of seven-element member (ML845432).

Strength tests.--All groups were tested under eccentric axial load at

an eccentricity of 0.65 inch (fig. 10). Initial center deflection of each

-16-



~uIv

. F

Figure 1O.--Photo of test set-up used in destructive eccentric axial load
tests for members in groups 5 to 11 (N153014-6).

member was measured and recorded before testing. All members were tested with

the initial deflection in the same direction as deflections due to load.
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Lateral supports were provided every 30 inches by plexiglass sheets on rollers

so that deformation was constrained to be in the strong direction. Only

maximum load was recorded.

The top eccentricity of groups 5, 6, and 7 was unintentionally set at

zero instead of 0.65 inches. Therefore, the simulator was modified to permit

different eccentricities at top and bottom so as not to bias the comparison

between simulated and experimental values for these three groups.

EXPERIMENTAL RESULTS

Single-Element Data

The description of these data must be in a form suitable for use as input

to the simulation program USBC. These data provide the properties of indi-

vidual "finite elements," 12 inches long, which are to be assembled into longer

members by USBC in each simulation. The quality X of each element is given

and the properties distribution must provide a corresponding property vector

Y. Following scheme 2 above Y was regressed onto X and a covariance matrix

of Y (assumed independent of X) was calculated. The regression equation is

Y A X+ B (15)

where A is a 4 x 2 matrix and B is a 4-vector. Denote these statistics as

SI S 5  S9

S2 S6  SO
S2 S6 B S 10 (16)

$3 S7 Sll

S 4 S8  S12

and write the diagonally symmetric covariance matrix as

-18-
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Table 3.--Southern pine 2 x 4 single-element statistics by regression
analysis (see equations 5, 7, and 15)

Group
Statistic

43
1 2 3 4

COEFFICIENT OF (VQR - 7)

SI : Pn(EI x 10- ) 0.03267 0.06707 0.08174 0.01628

S2 : In Mn  0.05416 0.08518 0.09794 0.05228

S3 : in y 0 0 0 0

S4 : In In n 0 0 0 0

COEFFICIENT OF (In(EMOE x 106) - 0.45)

S5 : In(EI x I ) 0.77093 0.70513 0.58970 1.05789

S6 : In M 0.43827 0.36576 0.39718 0.85722

S7 : In y 0 0 0 0

S8 : In In n 0 0 0 0

CONSTANT

S9 : In(EI x 10
- 6 ) 2.2077 2.1182 2.0840 2.0836

10 : In Mu 9.6719 9.8192 10.0010 9.9799

S 11 : In y -6.2371 -6.0946 -6.2646 -7.0492

S12 : On In n -0.33278 -0.20361 -0.15208 -0.070745

COVARIANCES (SEE EQUATION 17)

S13 = var (in (EI x 106)) 0.27841 0.30392 0.29891 0.45962

S14 = coy (in (EI x 10-6), In M ) 0.14753 0.19893 0.23692 0.40795

815 = coy (in (EI x 10-6), n yU) 0 0 0 0
816 = cov (in (EI x 10 6), In In n) 0 0 0 0

S 17 = var (in HU) 0.13762 0.16812 0.22132 0.44823

S18 =cov (In Hu, In yU) 0 0 0 0

S19 = coy (in Mu, In In n) 0 0 0 0

S20 = var (in yU) 0.58099 0.44905 0.56996 0.65012

S21 = coy (in yu' in In n) -0.12141 -0.035145 -0.012511 0.05062
S22 = var (in in n) 0.21608 0.15960 0.15123 0.24959

-19-
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ri
S13  S14  S15 16

S S 5$17 S18 S19

18 1 (17)
(SM) S S

(SYM) $20 21

Table 3 shows these statistics S. for each of groups I to 4.1

Note that Y3 (kn yu) and Y4 (kn £n n) did not correlate significantly

with X and hence their regression equations were reduced to simple constants

(mean values). Likewise the covariances between Y3 or Y4 and YI or Y2 were

insignificantly small and were arbitrarily set to zero (lines 15, 16, 18, and

19 of table 3). Thus the quality vector X can only predict stiffness and

strength; ductility and knee shape were independent of the chosen quality

measures.

The dependence of properties upon eccentricity, e, was previously modeled

(Zahn 1982) as a simple parabola fitted by least squares to data at four

values of e. However, a parabola can easily give large errors if extrapolated

too far beyond the range in which it was fitted. In this study, the statistics

S. for each of groups 1 to 4 (table 3) were fitted by the following function

(table 4).

S. = A. + B. + exp f-- ,i 1,22 (18)1 1 1 1 lC

A sketch of this function for S6 shows its behavior (fig. 11). Note from

equations 5, 7, and 15 that S6 is the coefficient relating £nMu to

An[EMOE x 1O6 ] - 0.45.

Constants A. through D. were fitted as follows:
1 1

-20-



Table 4.--Coefficients of fitted equation 18--
dependence of properties on
eccentricity

i A. B. C. D.1 1 1 1

1 0.03367 -0.017389 0.32232 2.2438
2 0.05416 -0.0018801 0.25436 2.0967
3 0 0 0 0
4 0 0 0 0
5 0.77093 0.28696 -2.6475 3.5800

6 0.43827 0.41895 -1.2101 2.3897
7 0 0 0 0
8 0 0 0 0
9 1.6251 -0.13155 -1.5580 1.7498
10 9.0956 0.13260 -0.18801 0.39740

11 -6.2371 -0.81210 1.6885 1.8165
12 -0.33278 0.26204 -0.025667 0.60426
13 0.27841 0.18121 -0.11187 1.0
14 0.14753 0.26042 -0.12070 1.0
15 0 0 0 0

16 0 0 0 0
17 0.13762 0.31061 -0.12293 1.8170
18 0 0 0 0
19 0 0 0 0
20 0.58100 0.069001 -0.42766 1.0

21 -0.12141 0.12141 0.097373 0.93066
22 0.21608 0.033510 -0.41737 1.9164

1. A. = S. at e = 0, but because no data were obtained at e = 0, dataS 1

at e = 0.65 were substituted. The lack of data at e = 0 makes it difficult

to simulate pure compression accurately, about which more will be said under

Simulated Interaction of Bending and Compression below.

2. A. + B. = S. at e = *. Group 4 data provide S. at e =S 1 1 1

3. C and D. were then chosen by trial to fit groups 2 and 3 (e = I and
i

e = 2.25).

-21-
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02 4 6
Eccentricity, i (In.)

Figure 1l.--Graph of equation 18 showing how S6 depends on
eccentricity (ML845433).

Constants A. through D. could have been chosen by trial so that equation 181 1

exactly fit the four data points but then the value at e = 0 would sometimes

be very different from the values obtained in groups 1 to 4. The above scheme

was adopted to ensure numerical stability at e = 0. The penalty for doing

this is that realistic results cannot be obtained at e = 0.

Because the Si do not depend linearly on the constants A. through D i.

I decided to subtract central values from VQR and £n(EMOE x 10-6) as shown in

equation 7 so that the constant B in equation 15 could ensure accurate repre-

sentation of X in the central part of its range. B is, of course, S9 through

S12 (see equation 16).

The single-element data are not representative of southern pine 2 x 4's

but rather were obtained from a sample chosen to cover an extreme range of

quality. Hence these statistics are not very useful for any other purpose

than as input to USBC.

Verification Data

These data were obtained for two main reasons: 1) to verify the accuracy

of USBC and 2) to provide representative samples of quality vector X for use

-22-
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in simulating the interaction of bending and compression strength at several

lengths and grades. These results will be discussed in separate sections.

Here I present the quality data (table 5) and show a typical example of how

X varied along the length of one member (fig. 12).

Table 5.--Summary of quality data, long members

VQRmax ENOE x 1O"6

Table entry = VQR , EMOE x 10-6
avg' avg

VQR min, EMOE x 1O-6min

Gage Grade Ave rage 2

length 1 2 3

Ft

5 9.30, 2.02 8.97, 1.82 9.15, 1.93
8.53, 1.76 7.75, 1.49 8.17, 1.63
7.43, 1.49 5.49, 1.04 6.52, 1.28

7 9.76, 2.46 9.61, 2.07 9.69, 2.27
8.76, 2.08 8.67, 1.64 8.72, 1.87
7.45, 1.73 7.33, 1.20 7.39, 1.47

9 9.38, 1.98 9.38, 1.98
8.32, 1.58 8.32, 1.58
6.46, 1.14 6.46, 1.14

11 9.64, 2.48 9.69, 1.99 9.67, 2.24
8.76, 2.03 8.08, 1.62 8.42, 1.83
7.23, 1.54 5.72, 1.20 6.48, 1.37

Average2  9.69, 2.47 9.50, 1.99 9.25, 1.97 9.53, 2.15
8.76, 2.05 8.26, 1.63 8.29, 1.58 8.43, 1.76
7.31, 1.61 6.33, 1.24 6.58, 1.13 6.71, 1.34

Hax and min are per specimen. Table entry is average
for a group.

2 Averages are weighted by number of elements per table
entry.
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Figure 12.--Variation of quality along length of a typical,
grade 2 southern pine 2 x 4 (ML845434).

Although they were not obtained for this purpose, the failure load data

of groups 5 to 11 exhibit the effects of length and grade at one particular

load ratio (figs 13 and 14). Strength decreases with lower grade or with

greater length, as one would expect. These results are not definitive because

the sample size is small. The longer members could be compared with elastic

theory but no such comparison is presented here because prebuckling displace-

ments have a dominant effect on the failing load and the secant formula does

not accurately model these displacements for nonhomogeneous members.

DEVELOPMENT OF IMPROVED SIMULATOR USBC

One of the objectives of this study was to develop an improved finite-

element simulator capable of reproducing both the mean and the variance of

verification data. The finite element simulator used previously (Zahn 1982),

was modified in the following ways (appendix II):
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length

#1 #2 #3
Grade

Figure 13.--Summary of experimental results for groups 5 to 11. Average
failing load of each group is plotted against grade of lumber. Each
point is the average of all members within a single group not counting
members that failed in the grips. All of these data were obtained at
an eccentricity of 0.65 inch except that groups 5, 6, and 7 were tested
with top eccentricity = 0 and bottom eccentricity = 0.65 inch (ML845435).

W12000-

76a&,6-Group number

La- I e
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3ra" 9 10

P 2Grade

C 9 II

Length (ft)

Figure 14.--Summary of experimental results for groups 5 to 11. Average
failing load of each group is plotted against length of member. Each
point is the average of all members within a single group, not counting
mbers that failed in the grips. All of these data were obtained at
an eccentricity of 0.65 inch except that groups 5, 6, and 7 were tested
with top eccentricity : 0 and bottom eccentricity = 0.65 inch (HL845436).
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Minor Modifications

1. The number of elements was made an input variable.

2. Two quality indices, VQR and EMOE, were input for each element

instead of just E .r

3. Top and bottom eccentricities were made input variables, not

necessarily equal.

4. The initial shape of the member was assumed to be a sine wave rather

than perfectly straight. Initial center deflection A was made an inputo

variable.

Introducing visual quality rating VQR as a second measure of quality did

not contribute much. This can be seen by comparing the regression of

Y' E [W(EI x 10-6) kn M J onto X = [VQR, kn(EMOE x 10"6)] with the regres-
x1 ) i U o1

sion of Y' onto kn(EMOE x 10- 6) alone (table 6). Note that the residual sum

of squares is not improved much by the addition of VQR.

In addition to these minor modifications, the representation of the

element property distribution and its dependence on quality X and eccen-

tricity e were improved in various ways until overall model performance was

deemed to be acceptable. These major changes are discussed next.

Major Modifications

The functional dependence of Y upon eccentricity has already been pre-

sented in equation 18. The other major modification was the change from

scheme 1 (joint Y, X distribution) to scheme 2 (regression analysis) and

ultimately to scheme 3 (deterministic).
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Table 6.--Comparison of regressions with and without VQR1

Regression Regression Regres- Residual

Group Statistic Coefficient Cofficient of sion su of

of VQR gn (EMOE x 10- ) constant squares,
percent

1 in (EI x 10-6) -- 0.868 1.83 68.4
0.0339 0.769 1.63 68.8

in N -- 0.606 9.41 65.6
u 0.0541 0.447 9.09 68.9

2 in (EI x 10-6) -- 0.881 1.74 80.6
0.0671 0.705 1.33 83.1

in N -- 0.589 9.58 64.9
u 0.0852 0.366 9.06 72.4

3 An (EI x 10-6) -- 0.770 1.76 80.9
0.0817 0.590 1.25 85.2

AnN -- 0.613 9.75 69.1
u 0.0979 0.397 9.14 77.6

4 An (EI x 10-6) -- 1.10 1.59 95.7

0.0163 1.06 1.49 95.8

An I -- 0.980 9.55 78.3
0.0523 0.857 9.23 79.3

IFirst line shows regression excluding VQR and second line shows
regression including VQR.

In the previous study of western hemlock, I used a full Monte-Carlo simu-

lation of 8-foot-long members and found after testing the members to failure

that the simulator was able to reproduce the mean of the experimental values

but underestimated their variability (fig. 15). These results were obtained

by the simulator SIHTST of the previous study. The first version of USBC,

call it USBC1, resembled SIITST except that it used the regression equation 15

-27-



to get the mean of Y and then randomly selected from a 4-variate normal dis-

tribution (table 3).

'4

*~.24

:p
EI 16 2 2 4

Figure 15.--Scate iga fotu of simulator SINTST versus corresponding
experimental vleofwsrnhemlock 2 x 6's. Simulated failing load of
each member ianvegeof 30 Monte Carlo simulations. Reproduced from
Zahn (1982) M853)

When I applied this scheme to group 5 (5-ft No. 2 grade southern pine

2 x 4's), I found that it still underestimated variability (fig. 16) just as

SINTST did. To account for this, consider the sources of variation in output

PSim of a simulator program:

1. Variation in input (quality vector X of each element), and

2. Additional variation in mechanical properties (vector Y of each

element) not explained by X.

Thig e sc ste of variation is present in any single simulation of

a Monte Carlo program such as SITST or USBC. However, when each member is

simulated many times and the results are averaged, this variation is averaged

out!
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Figure 16.--Output from first version of simulator USBC versus corresponding
experimental values of southern pine 2 x 4's in group 5. Simulated
failing load of each member is an average of 40 Monte Carlo simulations
(MLs45438).

The obvious solution is to perform a single Monte-Carlo simulation of each

member. However, wood properties vary so greatly that no conclusions could be

drawn from the results of a single random simulation. Therefore the second

version, USBC2, simulated each member only once and used the most likely value

for Y found from the regression equation 8 of Y onto X. The covariance matrix

was not used. The results resemble those obtained by USBC1 (fig 17).

Thus, the result is essentially the same whether one uses maximum likeli-

hood inputs (USBC2) or obtains maximum liklihood outputs (USBC1). Either way

variability will always be underestimated. This is because the random varia-

tion about the most likely value (source 2 above) is being lost. This infor-

mation is present in the covariance matrix of Y but in USBCI it was averaged

out and in USBC2 it was never used.

i Now then can one avoid losing this source of variation? It can be done

by simulating each member only once with Y obtained from X by an orthogonal

least squares analysis in place of the linear regression equation 8. That is
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Figure 17.--Output from second version of simulator USBC versus corresponding
experimental values of southern pine 2 x 4's in group 5. Here each member
was simulated only once using maximum likelihood estimates for each
element's material properties (ML845439).

Y = A' X + B' (19)

where A' and B' are fitted by the orthogonal least squares method

(appendix III). This method uses both the mean vector and the covariance

matrix of Y to construct the matrix A' and the vector B'. The resulting

equation 19 treats X and Y equally (either can be used to predict the other)

and is simply the closest-fitting linear relationship between X and Y. When

used to predict Y from a given X it has the desirable property of preserving

the full variation in Y corresponding to a given variation in X. In this

application that property is more advantageous than the property of maximum

likelihood, which treats the variables unsymmetrically and always understates

the variability of the predicted variable.

However, care must be taken when using orthogonal least squares. The

"perpendicular distance" of a point from a plane in space is meaningful only

if the coordinates of that space are commensurate--that is, if the variables

-30-



plotted along the two coordinate axes are physically the same and expressed

4 in the same units. Obviously that is not the case here where Y consists of

a flexural rigidity and a moment and X consists of a quality rating and an

edgewise modulus of elasticity. However, we have taken natural logarithms

of all dimensional quantities thereby making the choice of unit an additive

constant. Now only the base of the logarithm affects the scale of the

variables and one need only be consistent in this choice for all variables.

Equation 19 was fitted to the data for southern pine 2 x 4's in each of

groups I to 4 (table 7) where

1 5 9'

S2  6 B 10 (20)

SS' - 1
3 7

S4 Si iS,

These statistics were fitted by the function

St~ I
=A' + IB' + -I exp - ,i =1, 12 (21)

1 1 ee

(table 8).

The final version of USBC used orthogonal least squares in place of

regression and simulated each member only once (fig. 18). Note that both mean

and variance of the simulated failure loads now agree well with those of

experimental values.
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Table 7.--Southern pine 2 x 4 single-element statistics
by orthogonal least squares
(see equations 19 and 20)

Group
Statistic

1 2 3 4

COEFFICIENT OF (VQR - 7)

S' : In (EI x 10- 6 ) -0.060649 0.019442 0.051453 0.00243241

S; : In M 0.020103 0.048149 0.068109 0.0083417u

S; : In y 0 0 0 0

S' : In In n 0 0 0 0

COEFFICIENT OF (In (EMOE x 10- 6 - 0.45)

S' : In (EI x 10-6) 1.2539 0.93307 0.72568 1.12115

ES : In u  0.61515 0.54417 0.53183 1.0582

S7  n y 0 0 0 0

S' In In n 0 0 0 0
8

CONSTANT

S In (EI x 106) 2.2297 2. 1322 2.0915 2.0909

S'O : In Ku  9.6799 9.8300 10.008 10.003

S1 : In y -6.2371 -6.0946 -6.2646 -7.0492

5'2 : In In n -0.33278 -0.20361 -0.15208 -0.070745
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Table 8.--Coefficients of fitted equation 21--
dependence of properties on
eccentricity

i A' B# C? D
i D'1 1 1

1 -0.060649 0.063081 0.41725 1.7913
2 0.020103 -0.011761 0.35543 2.5058
3 0 0 0 0
4 0 0 0 0

5 1.2539 -0.13280 -2.9502 2.2628
6 0.61515 0.44305 -1.6597 2.8414
7 0 0 0 0
8 0 0 0 0

9 2.2297 -0.13880 -0.28545 1.4705
10 9.6799 0.32310 1.5275 2.5120
11 -6.2371 -6.0946 -6.2646 -7.0492
12 -0.33278 -0.20361 -0.15208 -0.070745

120

.0I'

1 0 15 2

ExuImuftuI failu 1o0d, Pso (1000 Ib)

Figure 18.--Output from final version of simulator USBC versus corresponding

experimental values of southern pine 2 x 4's in group 5. Here each member
was simulated once using orthogonal least squares estimates for each
element's material properties (KL845440).
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VERIFICATION OF SIMULATOR USBC

USBC allows the material properties of each element to change with

increasing load by making the transformed material property vector Y a func-

tion of element eccentricity. To be conservative, the moment capacity at

a given curvature is only allowed to decrease, not increase, as load is

increased. That is, the properties can only deteriorate, not improve, as

a result of increased load. This may be unduly conservative for long members,

because they experience mostly bending stresses and the material properties

under pure bending are usually better than under combined bending and compres-

Sion. As a result, the model should err on the conservative side with the

error increasing with length.

V The southern pine 2 x 4 data from groups 1 to 4 were represented by an

orthogonal least squares equation dependent upon eccentricity. The quality

measures for each element of a specimen in groups 5 to 11 were input and

a destructive load test was numerically simulated yielding an output failing

load P.Si for each specimen (figs. 18-19). Because these samples are not

large enough to establish behavior in the low tails of the distributions, it

is best to look only at the behavior of the means and variances. Therefore

I also compared simulated and experimental values of the mean plus or minus

one standard deviation for each group (fig. 20).

Note that USBC reproduces both the mean and the variance of each group

quite well. As expected, it becomes progressively more conservative (under-

estimates the mean) as length is increased. Because elastic behavior at great

length is fairly well modeled by elastic theory, some conservatism in this

region is not a drawback. USBC also appears to underestimate the strength
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of grade No. 1. On the whole though, the modeling of length and grade is

extremely good, especially in regions where such modeling is most valuable--

namely lower grades and shorter lengths.

20 Group 6 Group 7

I0

I GroupS8 Group 9
! to

'Group 0p
-01 ,

I

10 20 0 10 20
Experimmntal failure load, PW (O001b)

Figure 19.--USBC output values versus corresponding experimental values for
groups 6 to 11 (ML845445).

SIMULATED INTERACTION OF BENDING

AND COMPRESSION

To simulate the interaction of bending and compression at a given length

and grade one needs a sample of input quality measures for that length and

grade. The quality measures (VQR and EMOE) of groups 5 to 11 can be used for

-35-

- ~ ' ' "" "¥ . .. .".. . """"" " " . ."-•

: , ' ' ' = €$z€ . , : . : ... ? .,..'. ,. .. .: :..:.;,- -:;:. ' '.: , ;':..,'.'



this purpose. Although 40 is a small sample size for a material as variable

as lumber, it is sufficient to establish the mean.

15-
o Experiment
a Simulator USBC

Mean plus or minus
one std dev

CL-

p, 5 67

I I I -L I IL

5 6 V5 8 9 10 Il
Group

Figure 20.--Summary comparison of USBC output and experimental loads. The mean
value plus or minus one standard deviation is shown for groups 5 to 11

(ML845441).

Comparison with Linear
.-. Interaction Equation

The ratio of nominal bendinp moment to axial compression can be changed

by varying the eccentricity (equation 1). Simulator USBC was run at various

eccentricities for groups 5 to 11 and the results show that the linear inter-

action equation used in design is conservative at every length and grade

(fig. 21). It appears to be less conservative at longer lengths and higher

grades, but here the simulator itself is known to be conservative.
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5 10 0 5 10
Compressive force, P (1000 Ib)

Figure 21a.--Simulated interaction of bending and compression for groups 5
through 8. Straight line is design equation. The mean plus or minus
one standard deviation is shown for each eccentricity (ratio of moment
to axial load) (ML845447).
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Figure 21b.--Simulated interaction of bending and compression for groups 9
through 11. Straight line is design equation. The mean plus or minus
one standard deviation is shown for each eccentricity (ratio of moment
to axial load) (ML845446).

Effect of Length and Grade
Upon Interaction

The effects of length and grade upon the interaction curve are of

interest. Therefore I replotted figure 21 with normalized coordinates

-38-

" '. : :. . . ¢ . * F J . : :¢:¢;,. C"€,".. : .- .T #: ".: ... * * ." ",. " '",



-. -. -. . . . .. * .

obtained by dividing moment by moment capacity in pure bending and axial load

by axial load capacity (figs. 22 and 23). Because axial load capacity cannot

be simulated by USBC (no data were taken at zero eccentricity) that value was

estimated by extrapolation on figure 21. No data were taken in pure compres-

sion for two reasons: first, the main interest lay in applications where

bending predominates and second, the simulator USBC models only bending

'behavior with bending properties dependent on superposed compression.

1.0 < adesP3 G rade#3 Grad e !

~ G ra d s ~ G ra de # G r d 12
CL3

050.5 0 0 0.5 1.0 0 0.5 10

Ratio of compressive load to compressive strength

Figure 22. Normalized interaction curves of southern pine
2 x 4's showing effect of grade (ML845449).

Note that normalization via bending and compressive strengths did not

completely remove the effects of length and grade as one might have hoped.

The curves are humped at the pure bending end for shorter members of lower

grade and are humped at the pure compression end of the curves for longer

* members of higher grade. Thus, if a nonlinear interaction equation were to be

used in design, the shape of the curve would have to be dependent upon length

and grade. Otherwise only a slight nonlinearity, conservative for all lengths

and grades, would have to be adopted.
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0 0. 1.0 0 0.5 t1.0 0 0.5 1.0

Ratio of compressive lo to compressive strength

SFigure 23.--Normalized interaction curves of southern pine
2 x 4's showing effect of length (ML845448).

N REANALYSIS OF WESTERN HEMLOCK 2 x 6 DATA

.Interaction of Bending and Compression

The interaction of bending and compression for 8-foot western hemlock

2 x 6's was simulated by Zahn (1982) (fig. 24). In that study the input was

a smaller sample (28) of mixed grades with only a single quality measure, Ero

for each element. Because USBC is superior to the simulator SIMTST used in

that study, I decided to reanalyse the western hemlock data using orthogonal

least squares (tables 9 and 10). USBC was able to closely reproduce both mean

and variance of experimental data (fig. 25).

The interaction curve obtained by USBC (fig. 26) looks more reasonable

than one obtained by SINTST (fig. 24) when one compares them with the western

hemlock single-element data. The single-element data S6 of group 4 in

table 9 shows that SIMTST severely underestimated bending strength. That

error resulted from a poor representation of the dependence of element proper-

ties upon eccentricity. A simple parabola in 1/e is not as well behaved as

the function given in equation 21.
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Figure 24.--Interaction of bending and compression in western hemlock 2 x 6's
as simulated by SIMTST. Reproduced from Zahn (1982) (ML845442).

40 -

20

0 2 40

EperimetM failWe load Poo (1000 Ib)

Figure 25.--Output of simulator USBC versus corresponding experimental values
for western hemlock 2 x 6's of mixed grades. Compare figure 15 (ML845443).
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Table 9.--Western hemlock 2 x 6 data pool statistics by
orthogonal least squares (see equations 19
and 20)

Group
Statistic

1 2 3 4

COEFFICIENT OF VQR

S: In (EI x 10-6) 0 0 0 0

S' In M 0 0 0 0u

S' In y 0 0 0 0

S : In n 0 0 0 0

COEFFICIENT OF (In (Er x 106) - 0.031)

S5 : In (EI x 10 6 ) 2.0071 1.8686 1.5283 1.6835

' : In M 1.4950 1.5456 1.9392 3.5388

S' : In yu 0 0 0 07 u

tS' : In In n 0 0 0 0

CONSTANT

S; : In (EI x 10-6 ) 3.7492 3.6585 3.6371 3.7676

S10 : In Mu  10.482 10.586 10.767 10.66210 uIK 1-

Pso : In yu -6.839 -6.715 -6.772 -7.887

S12 : In In n 0.702 0.758 0.701 0.433
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Table O.--Coefficients of fitted equation 21--
dependence of western hemlock
2 x 6 properties on eccentricity

il A' B1 CO D1 1 1

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

5 2.0071 -0.32360 -4.4836 3.5470
6 1.4950 2.0438 -1.3019 2.6853

7 0 0 0 0
8 0 0 0 0

9 3.7492 0.018400 -0.63083 1.9099
10 10.482 0.18000 2.1475 3.1081
11 -6.8390 -1.0480 2.8537 2.6784
12 0.70200 -0.26900 0.60029 1.7776

IThe values for i = 1 to 4 are zero because VQR
was not measured.

Because only a single sample of mixed grades and one length is available

for western hemlock 2 x 6's, nothing can be concluded about the effects of

length and grade for that material.

Species Effect

It would be fortunate if data for one species could be used to simulate

another species, given that quality measures had been obtained for a particular

length and grade of that other species. Two things characterize the material

properties distribution of a particular species: 1) the dependence of material

properties on quality measures (orthogonal least squares equation relating Y

to X) and 2) the dependence of material properties on eccentricity (how bending
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properties are affected by simultaneous compression). This second character-

istic is expressed by the magnitudes of the constants A' to D'.
1 1

Pure bending

60"

- 68

1. 50-

,30 e 2 1.5"

2E.0"

'20-

E

. I I I

0 10 20
Compressive force, P (1000 ib)

Figure 26.--Interaction of bending and compression in western hemlock 2 x 6's
as simulated by USBC. Compare figure 24 (ML845444).

Unfortunately, the single-element data for western hemlock and southern

pine cannot be directly compared. The difference in cross-section size could

easily be adjusted but the difference in quality measures EIOE and E is pro-r

found. There is no possible way to infer one from the other. Nevertheless it

can be shown that the two species are significantly different. Because

group 4 of each species was tested in pure bending, it follows that El and

EMOE should be related as

-- = EIIOE (22)
I

-44-

IS,_ ih



aV a

Thus we can compare the slope of the orthogonal least squares line relating

2n 11 to 2n(EI/I) for group 4 of each species. If the species are inter-u

changeable, these slopes must be the same. If they are not the same, species

must have a significant effect. For southern pine this slope was calculated

to be 0.986; for western hemlock it is 2.169. Because this slope is indepen-

dent of cross-section size, we conclude that the bending strength of western

hemlock is much more sensitive to EMOE than is southern pine. That is a very

significant species difference. Applying the southern pine single-element

data to the simulation of western hemlock would grossly underestimate

variability in strength.

SUnHARY

Simulator USBC

Given the element property distribution for a given size and species of

lumber, and a sample of input nondestructive quality measures for a given

grade and length, the simulator USBC presented here can accurately simulate

the effects of length and grade upon the strength of lumber under combined

bending and compression. This simulator is an improved version of SIMTST

developed by Zahn (1982). The most significant change was the introduction

of orthogonal least squares analysis and determinate simulation in place of

regression analysis (or the use of a conditional distribution) and

Monte Carlo simulation. This change not only improved the accuracy but also

reduced the cost of running the program by an order of magnitude.
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Input Data for USBC

Future studies of this interaction of bending and compression can use the

element property data presented in this report. Data for 12-inch southern pine

2 x 4 elements are presented in tables 7 and 8. Reanalyzed data for 18-inch

western hemlock 2 x 6 elements is presented in tables 9 and 10. Representa-

tive samples of quality measured nondestructively for seven groups of southern

pine and one of western hemlock are on magnetic tape at Forest Products

Laboratory. The southern pine data are summarized in table 5. These data can

be used to study the interaction of bending and compression strength for the

lengths and grades shown in table 1. If additional samples of element quality

are obtained nondestructively for western hemlock 2 x 6's or southern pine

2 x 4's, the element property data presented here can be used with program

USBC to predict the interaction of bending and compression for those new

samples.

Interaction of Bending and Compression

A plot of bending moment versus axial compressive force at failure under

combined loading exhibits the interaction of bending and compression strength.

The representative samples of quality data gathered here were used as input to

USBC to exhibit this interaction for several lengths and grades of southern

pine 2 x 4's. The results showed that the interaction curve possesses an

upward hump whose shape and location depend on the length and grade of

material (figs. 22 and 23).

Design Implications

Although the exact shape of the interaction equation depends on length

and grade, it may be possible to fit a conservative equation to the simulated
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interaction data (fig. 21). These data show that the linear interaction

equation

M p

U U

used as the basis of the current design code is conservative for all lengths

and grades. Before recommending a less conservative equation for design,

however, three things require further investigation: 1) the interaction of

buckling modes in long members that are not laterally restrained as were the

* members in this study, 2) the effect of different types of loading that could

produce bending, and 3) the strength of in-grade lumiber under pure compression

and lateral restraint.
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APPENDIX I--NOTATION

A, B Regression coefficients. See equation 8.

A', B' Orthogonal least squares coefficients. See equation 9.

A., B., C., D, Coefficients that describe dependence on eccentricity.
See equation 18.

A', B', C , D. Coefficients that describe dependence on eccentricity.
See equation 21.

a Deflectometer span. See equation 11 or equation 13.

c One half of largest dimension of cross section.

E Quality vector. See equation 6.

EI Initial slope of moment-curvature relationship. See
equation 2.

EMOE Edgewise modulus of elasticity, psi.

e Eccentricity of axial load.

F Material property vector. See equation 4.

I Principal moment of inertia.

A Gage length, 12 inches.

M Bending moment.

M Ultimate bending moment.u

M Number of statistics needed to specify Y(X).

n Knee shape parameter. See equation 2.

P Axial compressive force.

P Ultimate axial compressive force.
U

P expt Experimental value of Pu

Pexpt Average of Pexpt"

P aim Simulated value of Pu

R Radius of curvature.
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S. Property distribution statistic. See equations 16 and 17.

St Property distribution statistic. See equation 20.

i

VQR Visual quality rating (Gerhards 1983).

X Transformed quality vector. See equation 7.

Mc
x 

I

Y Transformed material property vector. See equation 5.

c Mc
R I

Y Value of y at ultimate (maximum) load.
u

Y1 9 Y2 9 Y 3  LVDT readings.

A Initial center deflection of long members.
o

_Covariance matrix of Y.

4
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APPENDIX II--SPECIAL FINITE-ELEMENT
ANALYSIS USED IN USBC

4,* Figure Al shows a free body diagram of axially loaded member. Let

initial deflection be

v =e + L x + A sin -X (Al)' 0 L. 0 L

where e = eccentricity at X = 0 eL = eccentricity at X = L; A = initial

center deflection measured relative to ends of member; L = length; and

X = axial coordinate. Let y = deflection due to load. Then total deflection

measured from line of action of axial load P is y + V.

y
':

vs initial value of y

centroidal axis
M= -Ply+v)

L

Figure Al.--Free-body diagram of member under eccentric axial load.

Divide member into m finite elements of length h. The bending of the

n-th element due to load is

(EI)n yn = A P(Yn + v), (n - 1) h < X < nh (A2)
n n51
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where y (x) is y(X) in the n-th element and primes denote differentiation

with respect to X. Let pn denote nodal values of y. Then the boundary values

of y are

=Yn Pn-I at X = (n-i) h (A3)

Yn Pn at X nh (A4)

The solution of equations Al to A4 is

qn cosA (n-1)h q n-1 cos A nh
=n si sin X X

Yn sinAk h n

-qn sin X (n-1)h + q sin A nhn n -
sin h h n

n

//A

e 0 L /e X n 2 A sin L (A5)
""."! /2 _

n L2

where

e L -e 0 2

qj P. + e + e  o jh + n A sin Ljh (A6)
j o L 2 02o L

n L2

and

A = (A7)
n (EI) n
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Match slopes at n-th node:

y1' = ' at X = nh (A8)

Inserting equation AS into equation A8 yields the following system of

equations:

-( A / n cosA h cos A A

sin A h n-1 sin A h + i hn+l q n X hn
n n snn+lh

//nl n]L 2  n Csnnhn 1,m(9

2 ," 2 '\2" 2 A o s = (

n L2/ n+1 L2

System A8 has two more unknowns than equations. However, the overall

boundary conditions are

PO =0 (AlO)

Pm =0 (All)

so that

qo =e 0  (A12)

qm = eL (A13)

and then system A9, A12, A13 has m + I equations in the m + I unknowns

q0 through qm.
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Except for the refinement of initial deflections and the new representa-

tion of the single-element property distribution, the computing method of USBC

is exactly like that of SIMTST described in Zahn (1982).
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APPENDIX III--ORTHOGONAL LEAST SQUARES

The problem of fitting a linear equation to data so as to minimize the

sum of squares of deviates measured perpendicular to the fitted hyper-plane

was first solved by K. Pearson (1901). Only the results are presented here.

For further details see Morrison (1967).

To find matrix A' and vector B' such that

Y = I' X + B' (BI)

where Y is an n-vector and X is an m-vector, proceed as follows:

1. Let

(B2)
X

be an (m + n)-vector for which we possess a sample of size N, namely Zi'

i = 1 to N. Compute the mean vector Z and the sample covariance matrix .

Partition the mean vector as

Y
~ (03)

2. Find the unit eigenvectors and eigenvalues of _ and order them from

smallest to largest:

Xi 1 = A V 3.1 = 1, i = 1, n + m (B4)

< XA < . < (5
1- 2 - - n +m
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3. Form the orthogonal matrix T using the V. as column vectors

V I V 2 .. Yt+. 1 (B6)

and partition it as follows:

T (B7
jjxy x

where I is n x ni, Iis n x m, and I is m x ni and T is m x M.
-yy -x-xy =xx

4. Calculate A' and B' from the formulas

A' Tx x (B8)

B' y A X (B9)
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