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MEASUREMENT OF LINAC BUNCH PARAMETERS USING THE CERENKOV ZFFECT

F. R. Buskirk and J. R. Neighbours

Naval Postgraduate School

Department of Physics

Monterey, CA 93943

ABSTRACT
‘ \

— High energy electrons above about 25 MeV may produce microwave
radiation in air by the Cerenkov mechanism. Electrons accelerated
by a travelling wave accelerator are emitted in bunches. The
radiation produced by such a beam in air should consist of the basic
accelerator frequency and many harmonics. Here it is explored how
the microwave harmonics may be used to determine the spatial
structure of the bunches. .
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INTRODUCTION

In a previous publication, an investigation was made of
radiatic 1 produced by electrons moving at a velocity v faster than
¢, the radiation velocity in a medium (Cerenkov radiation). In ,
particular, the electrons were considered to be emitted in periodic
bunches, as would be found in a linac beam. At microwave
frequencies, the electrons in the bunch radiate coherently, but as
the wave length decreases relative to the bunch size, the intensity
decreases relative to what would he expected for a small bunch

having the same charge. References 1 and 2 contain the basic

equations which are developed further here.
Equations (33) and Al7 from the earlier paper describe the

energy loss per unit path length per bunch, %E_ For periodic
X

bunches:
dE(w) = u ww sina qZFZ(ﬁ) (1)
dx 4T o c

Here, wy is the linac angular frequency, the radiation is

emitted at a harmonic w of “o'-@c is the Cerenkov angle, where

cosf, = %, g is the total charge in the bunch, and F(X) is

the form factor of the charge distribution po'(?) for a bunch.

F(X) = %”‘ eii';ool(r)d% (2)

The vector k is the propagation vector for the emitted wave.

In the case of a single bunch, the frequency distribution is

continuous and we have for the radiation emitted in a range dw

%% = f% w dussinzchze(i) (3)
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It was also noted in the earliér paper that if the emission
region is of finite length, the radiation is emitted in a range of
angle about the Cerenkov angle @c, but in the following
considerations, those effects are neglected.

We consider here a more detailed investigation of the form
factor F(k) and how radiation intensity may be used to infer
properties of the bunch.

The electrons in the accelerator have slightly different
energies, depending on the phase angle ¥ of the electron relative to
the wave traveling down the accelerator. Fig. (1) shows the energy
of representative electrons, and a magnetic deflection and slit
system at the end of the accelerator passes a limited range of
energies AE, so that the phase is limited to + AV about ¥ = 0. See
Appendix A for details. If the electrons were uniformly distributed
in phase, the output pulse charge density would be a series of
square pulses, separated by a distance x = v 27/wgy and of length

x' = x2 AY/27m, as shown in Fig. (2a). Fig. (2b) shows possible

gaussian bunches.
CALCULATIONS FOR SPECIFIC BUNCH DISTRIBUTION

The theory, namely Equations (1) and (2), make it tempting to
attempt measurements to determine the charge distribution function
by means of experimental measurements. In the ideal situation,
sufficient measurements of power at many frequencies would determine
the fourier transform of the charge bunch, which could be inverted

to give the spatial charge density pf r).
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Calculations of P(w), the power radiated (proportional to dE/dx
from Equation (1)) were performed for various assumed charge
distributions. P(w) is plotted for a uniform bunch (Figure 3), a
cosine bunch (Figure 4), a Gaussian bunch (Figure 5) and a rather
artificial hollow spherical shell (Figure 6). All of the P(w)
curves show slight differences:; in particular the Gaussian has no
nulls as expected, and the hollow shell has many nulls and very
strong high frequencies. However, the possibility to distinguish
between charge distributions is very limited. All of the
distributions have a parameter determining the spatial range, the
parameter b in the Gaussian exp(—rzbz), and k in the cosine
function cos kr. The values of such parameters can be suitably

chosen so that the lowest power peak in Figures 3 to 6 are very

similar.
We conclude that experimentally, it would be hard to distinguish
between different functions, but that it would be possible to

determine a range parameter rather accurately.
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Appendix A

TEMPORAL STRUCTURE OF THE ELECTRON PULSE FROM A TRAVELING WAVE
ACCELERATOR.

Assume that the energy of a single electron emerging from a
linac with phase relative to the traveling wave field is

E = Ey Cos ¥ (Al)

This relation is shown on Fig. 3, along with some dots
representing electrons near the maximum energy Eg, with phases
clustered about § = o and ¥ = 27. Two bunches, separated by a phase
difference of 27, are separated by a time T} = 1/ f, where fq
is the accelerator frequency, which is f5 = 2.85 x 102 Hz for a
typical S-band accelerator of the Stanford type.

If a deflection system with enerqy resolution slit passes only
energies E from E5 to E4-E the corresponding range of phase 1y
is

AE = E = E5 = E5 (1 - cosbdy) (A2)

For Ay small, this reduces to

AE _ ()2
7




The temporal pulse length Ty is
Ty = 24¢ Tp/27 (A4)

or
T2 =Ty ° 2A1P/21r

resolution AE/Eg,
T2 =T

(25 V2 2 (5)

For 1% energy resolution, T3/T} is about 1/20. The

If C3 is used to evaluate Ay in terms of the fractional energy

electrons thus emerge in short bunches, and the charge and current,

when expressed in a fourier expansion, should have very strong

harmonic content up to and above the 20th harmonic.
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Appendix B

FORM FACTORS

This section provides details and examples of form factors for
various charge distributions. From the main text, F differs only
fronlgﬂ the fourier transform of 0, by the total charge q of the

+
bunch, so that for k = o, F reduces to unity. Thus we define

_
U[ a3r o (r)eik: T (31)

-

Ky . « . - g
For spherically symmetric charge distributions, let k*r = kru

k) =+
F(k) = 2

-

where u is the cosine of the angle between k and £. In spherical

coordinates, adr = d¢dur2dr. Then we find,

<]

‘éé‘[ dr r 2(r) sin kr (82)
0

F(k) =

Q|-

For k very small, sin x may be replaced by x - x3/6 and we
have

F(k) =

Qi

-]
ﬁz—jﬂdr ro(r)lkr - k3r3/g] (B3)
(o}

Then the two terms in the square bracket lead to separate
integrals, the first term being unity and the second is similar to
the integral used to calculate the mean square radius, <r2>,

except for a factor k2/6. Thus we have

F(k) = 1 - k2<¢r25/¢ (B4)




For a uniform spherical charge distribution of radius R

well as a spherical shell of radius k, the integral of (B2)

per formed easily

3 .
F(k) = T/R)T (sin kR - kR cos kR) (
kR {Solid sphere)
1 .
F(k) = wx— sin(kR) (

(Spherical shell)

For a line charge concentrated on the z axis, we may re

(Bl1) and let p{r) = 8(x) 6(y) o"(z), so that

F(k) = 2 ]’ dz p"(z) eikz (

: (Line charge)
F(K) = = sin (52) (
(Uniform line
charge of length Z)

Distorted sovherical symmetry may be said to occur if th

transformation z' = pz serves to make © spherically symmetri

prime system. Let Fg be the form factor calculated by (B2)

prime frame. It is simple to show that

Flkyg,kyskz) = Fglkg, k3, kz/p) (

10
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FIGURE 2 ., POSSIBLE ELECTRON BUNCH STRUCTURES.

A. Uniform
B. Cosine
C. Gaussian
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