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ABSTRACT

This paper presents the results of an exhaustive search to

find optimal full period multipliers for the multiplicative con-

-31 f" "A. '
gruential random number generator with prime modulus 2 -1.

Here a multiplier is said to be optimal if the distance between

adjacent parallel hyperplanes on which k-tuples lie does not ex-

ceed the minimal achievable distance by more than 25 percent for

k=2, .. ,6. This criterion is considerably more stringent than

prevailing standards of acceptability and leads to a total of

only 414 multipliers among the more than 534 million candidate

multipliers.

Section 1 reviews the basic properties of linear congruential

generators and Section 2 describes worst case performance mea-

sures. These include the maximal distance between adjacent par-

allel hyperplanes, the minimal number of parallel hyperplanes,

the minimal distance between k tuples, the lattice ratio and the

discrepancy. Section 3 presents the five best multipliers and

compares their performances with those of three commonly employed

multipliers for all measures but the lattice test. Comparisons

using packing measures in the space of k-tuples and in the dual

space are also made. Section 4 presents the results of applying
For

a battery of statistical tests to the best five to detect local

departures from randomness. None were found. The Appendix con-

tains a list of all optimal multipliers.

Is. words: Congruential generator, discrepancy, lattice test,

random number generation, spectral test. lty Codes
and/or

.cial i



INTRODUCTION

This paper presents the results of an exhaustive search to

find optimal multipliers A for the multiplicative congruential

random number generator Z i E A Zi 1 (mod M) with prime modulus

M = 2 - I. Since Narsaglia (1968) showed that k-tuples from

this and the more general class of linear congruential generators

lie on sets of parallel hyperplanes it has become common practice

to evaluate multipliers in terms of their induced hyperplane

structures. This study continues the practice and regards a

multiplier as optimal if for k = 2,....6 and each set of parallel

hyperplanes the Euclidean distance between adjacent hyperplanes

does not exceed the minimal achievable distance by more than 25

percent. The concept of using this distance measure to evaluate

multipliers originated in the jpectral test of Coveyou and

MacPherson (1967) and has been used notably by Knuth (1981).

However, the criterion of optimality defined here is considerably

more stringent than the criteria that these writers proposed. In

fact, among the more than 534 million full period multipliers A

examined in this study, our search identified only 414 optimal

multipliers.

First proposed by Lehmer (1951), the multiplicative congruen-

tial random number generator has come to be the most comonly em-

ployed mechanism for generating random numbers. Jannson (1966)

collected the then known properties of these generators. Shortly

thereafter Marsaglia (1968) showed that all such generators share

I
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a common theoretical flaw and Coveyou and MacPherson (1967),

Beyer, Roof and Williamson (1971), Marsaglia (1972) and Smith

(1971) proposed alternative procedures for rating the seriousness

of this flaw for individual multipliers. Later Niederreiter

(1976, 1977, 1978a,b) proposed a rating system based on the con-

cept of discrepancy, a measure of error used in numerical inte-

gration. With regard to empirical evaluation, Fishman and Moore

(1982) described a comprehensive battery of statistical tests and

illustrated how they could be used to detect local departures

from randomness in samples of moderate size taken from these

generators.

Although the theoretical rating procedures have existed for

some time, with the exception of Hoaglin (1976), Ahrens and

Dieter (1977) and Knuth (L981), little use has been made of

them. The present study, by its sheer exhaustiveness, removes

31
this deficiency for generators with N = 2 - 1. Section 1

reviews the basic properties of linear congruential generators.

Then Section 2 describes the worst case performance measures that

have been proposed to rate generators in k dimensions. These

include the maximal distance between adjacent parallel hyper-

planes, the minimal number of parallel hyperplanes, the minimal

distance between k-tuples, the lattice ratio and the discre

pancy. These concepts are described in this study principally in

terms of the space of k-tuples and, where appropriate, in terms

of the dual lattice space. However, in order not to obfuscate

central concepts the exposition relies on a minimal use of formal

lattice theory.II
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Section 3 presents the five best multipliers and compares

their performances with those of three commonly employed multi-

pliers for all these measures but the lattice test. The Appendix

contains a list of all optimal multipliers. Also, lattice pack-

ing measures are presented and again show the dominance of the

five best over the three commonly used multipliers. Packing

measures in the dual space are also computed. This last concept

is identical with Knuth's figure of merit for evaluating

generators. Our results indicate that with regard to this

criterion the five best perform better than all 30 multipliers

listed in Table I of Knuth (1981, pp. 102-103). Bounds on

discrepancy are also computed and discussed.

Section 4 presents the results of a comprehensive empirical

analysis of the local sampling properties of the best five, using

the procedures in Fishman and Moore (1982). No evidence of

departures from randomness was detected.

1. Linear Congruent-ial Generators

A linear congruential generator produces a sequence of non-

negative integers

(ZO , Z i = AZi_ + C (mod M); i=1,2 .. (1)

where the modulus M. and multiplier A are positive integers and

the seed Z and constant C are nonnegative integers. For pur-
0

poses of conducting sampling experiments on a computer, the ele-

ments of the sequence Z are normalized to produce the sequence

U - (Ui = z1 /M; il1,2,...) (2)

.... ....... .... . . .. .... ----- - - ,, : . . ..
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whose elements are treated as if they were sampled independently

from the uniform distribution on the interval [O,1). The objec--

tive in assigning values to M, A, Z0 and C is to make the

errors incurred in this treatment of U tolerable ones. Here

errors are principally of two types, one being the approximation

of a continuous phenomenon on (0,1) by the discrete sequence U

and the other being the distributional distortions in U induced

by the use of the deterministic generator (1). In addition, com-

putational considerations play a role in choosing M, A and C.

One property of the generator (1) is the period

T = min [k~l: Zn+k = Zn for all n > MI. (3)

The larger M is, the larger T can potentially be, and conse-

quently the denser the points of U are in [0,I). The more dense

these points are, the smaller the continuity error is.

Table 1 lists several types of linear congruential generators

that are or have been in common use. Here A, C, Z0 in the table

Insert Table I about here

guarantee maximal period for the corresponding modulus M. Note

that types 1 and 2 give full periods whereas the remaining

generators give only one fourth of the numbers between I and

0
2 . Moreover, types 4a and 4b do not produce equidistributed

sequences. Also, the use of M=2 B enables one to replace divi-

sion and multiplication by less time consuming shift and add

operations. Although M=2 -1 does not allow this substitution
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directly, a procedure due to Payne, Rabung and Bogyo (1969)

enables one to retain part of this improved efficiency. Note

that A is a primitive root of M if A z 1 (mod M) and

AQ 1 (mod M) for O<Q<H-l.

Today only linear congruential generators of types 2 and

3 are commonly used. On IBM computers with a word size of

32 bits and C = 0, the generator called SUPER-DUPER

32(Marsaglia 1972) uses M = 2 , A = 69069 and Z0 = odd

30integer to give a period T = 20. For generators of type

2 with prime number modulus H = 2 - 1, APL (Katzan 1971)

uses A = 16807, the SIMSCRIPT II programming language

(Kiviat, Villanueva and Markowitz 1969) uses A = 630360016,

SAS (1982) uses A - 397204094 and the IHSL Library (1980)

gives the user the choice of A = 16807 or A = 397204094.

iT 231The resulting period is T = 21-2.

2. Theoretical Measures Of Performance

In practice, it is relatively common to use the Pseudorandom

numbers produced by (1) in groups or k-tuples. Consider the

sequence of points

W = (Wi, k =(Z i+l , Z i = 1,2...) (4)

and the normalized sequence

Vk = (Vi,k = (Z i+ .K.... i+k/M); i 1,2,.... (5)

Ideally one wants the sequence of points V k to be equidistri-

buted in the k-dimensional unit hypercube for k = 2,3..... How-

ever, the form of the generator (1) limits the extent to which
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one can achieve this ideal. For example, observe that an ideal

generator of the integers I Ii.... = 1I produces (M-l)k

equidistributed points in k-dimensional space whereas a generator

of type 2 produces only M-1 points in the this space.

Although this constancy of the number of points is itself

sobering, it is one of two important issues. To illustrate the

second issue, Fig. I shows a plot of 2-tuples for the genera-

tors Z. E 7 Zi_ (mod 61) and Zi T, 31 Zi_ 1 (mod 61) where 61

is a prime number and 7 and 31 are primitive roots of 61. Al-

though no one would seriously use either of these generators to

Insert Fig. 1 about here.

produce random 2-tuples, a comparison of Figs. Ia and lb arouses

a concern that holds for more realistic generators as well.

Notice that the distribution of points in Fig. lb is considerably

less uniform than the distribution in Fig. Ia. Since such dif-

ferences in two and higher dimensions are attributable entirely

to the cl f multiplier and since there are an enormous

number of cbndidate multipliers, a deep analysis of k-tuples

generated by (1) across all those multipliers is needed to assess

the extent to which the resulting sequences Vk depart from the

ideal of equidistributedness.

Several theoretical procedures have been proposed to make

this assessment. They include:

1. maximal distance between adjacent parallel hyperplanes

(spectral test)

I
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2. minimal number of parallel hyperplanes

3. minimal distance between points

4. ratio of lengths of longest and shortest minimal basis

vectors (lattice test)

5. discrepancy.

Although diverse in what they measure, the procedures share a

common unifying concept. All follow from recognizing that, with

the exception of generators of types 4a and 4b, the k--tuples Wk

can be regarded as points in a regular lattice. Moreover,

generators of types 4a and 4b lead to k-tuples on two intermeshed

regular lattices. Ahrens and Dieter (1977), Beyer, Roof and

Williamson (1971) and Coveyou (1970) provide detailed descrip-

tions of this relationship with lattice theory. To keep the

focus of attention on the assessment of interest, the present

paper presents only the features of lattice theory that are

essential for describing these procedures. Also, unless

otherwise noted our description applies for generators of type 2.

Comparable analyses can be performed for each other type of

generator.

2.1 Maximal Distance Between Adjacent Parallel Hyperplanes

Observe that Z. can be written in the form
I

Z i ZoA i (mod M)

i-l 
(6)

=ZA - H K i-mA i>l
m=O

7 .. .... .... . . .IIwi II I,~.
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where K. = [AZj i/MJ j=1,2,. Now for k > 1, q (qO,.. 'k-I

and y consider the k-dimensional hyperplane

k-I

Hk(q. y) [(x0 9 ..... xk-l): E qjxj = y)
~ j=O

and in particular the family of parallel hyperplanes

Hk(q) = {Hk(q, y): y B 0 (mod 1)). (7)

Observe that the elements of Vk in (5) lie on hyperplanes in H k(q)

in (7) if

(i) q0 $ ... 'qk-I integer

and

k-l
(ii) q(A) Z q.A3 E 0 (mod M)

j=O i

These restrictions are sufficient since for any Vi, k in V k the

quantity

I 1 qi 0 A q(A) + k.
y.=- Z qZ z xi j i+d M

where

k-i i+j-l
k. = -1 qj E Kij-m Am  (9)

1 j=l m-O

Restriction i) insures that k. is an integer and restriction1

(ii) insures that yi-k. is an integer. These restrictions

hold throughout the remainder of this paper.

For the ensuing analysis it is convenient to extend Vk

modulo one to the set

Vk = V= 0 ...,v k 1) integer) U (V = (v0... ,v k-) 7 V ,k(mod 1);

i=1,...,T}. (10)
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Since (i) and (ii) hold, the points in V* also lie on hyperplanes

in Hk(q). The set of all hyperplanes containing at least one point

of Vk is then

k-1

j=0j
Hkq~= fHk(q): y =j= E qjj v Ck.(

Moreover, one can index these hyperplanes by the set of integers

k-i
Yk(q) (y* = q.v.: Vcvk . (12)

- jO j

We now use these representations to show that for specified

k .1 and q the k-tuples in Vk lie on a set of parallel hyperplanes

for which the Euclidean distance between adjacent hyperplanes is

fixed. The set of hyperplanes is Hk(q) and for y and z in Yk(q) the

k-1

Euclidean distance between Hk(q, y) and Hk(q , z) is Iy-zI/( I q21/2
-~ j = O 3

To prove the result, it suffices to show that the Yk(q) is composed of

all Integer multiples of sime fixed constant Ik(q), for then the

Euclidean distance between adjacent hyperplanes in Hk(q) is

dk(q; A, H) k-i (13)
k ( 1 2 21/2

Iq)
J=OJ

By way of proof, note thUt if V and V are two elements of Vk then

V' = V1 V is also ' therefore for y and z in Yk(q) one has
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y-z in Yk(q). Also, for any integer j and point V in V the point

k k

V= jV is also in Vk so that z=jy, for ytYk(q) , is also in Yk(q).

Therefore, it follows that all elements of Yk(q) are multiples of

I k(q) = min{ly [>0; Y y k(q)),

thus establishing (13). Without loss generality we take

(Mi) I k (q) =I

Since many different vectors q satisfy (i), (ii), and (iii)

for a given multiplier A and induce families of parallel hyper-

planes, additional criteria are needed to enable one to charac-

terize the extent of equidistributedness of the k-tuples Vk in

(5) in the k-dimensional unit bypercube for each possible multi-

plier. One such criterion is the maximal distance between adja-

cent parallel hyperplanes which is a worst case measure for a

particular multiplier A. It is

k-I -1/2
dk (A, 1) max [(I q.) ] (14)k (,M qo9 .... *qk-1 j=0

subject to restrictions (i), (ii) and (iii). In particular, note

that the constraint (ll) eliminates the numerator of (13) from

the maximization (14).

When using (14) to compare k-tuple performance for several

multipliers for a type of generator, one prefers the multiplier



that gives the minimal maximal distance since this implies

smaller empty regions in the k-dimensional unit hypercube for

this multiplier than for the other multipliers. However, there

is a limit to how small this maximal distance can be; in

particular, it is known that (Cassels 1959, p. 332)

(3/4)1/4 k=2

2- 1/6 k=3

Mlk d*(A 'M ) > k 2-1/4 k=4 (15)
2- 3/10 

k=5
1/12

(3/64) k=6.

To illustrate the significance of these bounds, note that

with the modulus M = 2 - 1 one has

.2008 x 10- 4  k=2
-3

.6905 x 10 k=3* 231 -

d (A, 2 - 1) > .3906 x 10- 2  k=4k - =4

.1105 x 10- 1 k=5

.2157 x 10- 1 k=6,

indicating the relative coarseness of the grid of points in as

few as four dimensions.

Using multivariable Fourier analysis, Coveyou and McPherson

(1967) advocated using the minimized "wave number"

k-I 2 1/2

Iqji J=0 J

(s.t. q0 9 ... 'qk-I integer and q(A) E 0 (mod M)) to determine

the relative desirabilities of alternative multipliers, hence the

name spectral test. Shortly thereafter, it became apparent

(Coveyou 1970; Beyer, Roof and Williamson 1971) that one could
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perform equivalent studies using (14) by viewing the k-tuples as

being arranged on parallel hyperplanes and exploiting the mathe-

matical properties of the so induced lattice structure. In fact,

it turns out that the physical interpretation of results can be

more easily understood in the space of Wk whereas the computa

tional procedures are more easily understood by working in

the dual space of q. We return to this issue in Section 3.

2.2 Minimal Number of Parallel Hyperplanes

A second measure of equldistributedness, suggested by

Marsaglia (1968), is the number of parallel hyperplanes

N k(q .... fqk-1; A, M) on which all the k-tuples lie. If

this number is small for a particular multiplier A, then this is

an indication that there exist large regions in the k-dimensional

unit hypercube that contain no k-tuples.

Observe that with restriction (ii) gives the upper bound

k-1
Nk(qO ... 99k-1' A, M) < I lqjI. (16)

j=O

Using the development in Dieter (1975), one also observes that

k-i k-1
j=O < < I j(q 

+

where

0 ifx>0

-x if x < 0

and

x ifx> 0
+I U

o ifx<0.
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Because of the restrictions i) through (iii) the number of dis-

tinct Y' (mod 1) is precisely the number of parallel hyperplanes
i

Nk(qo ... pq k-; A, M), then

k-i k-i k-I
N k(O .... qk-l ; A, M) I (q.) + Z (qJ) = E IqA1 -1. (17)

j=O j=o j=o

The -1 in (17) follows from the observation that Y. takes on1

all integer values 1,....,NR (q0 ..... k-l; A, M).

As before, there exist many vectors q that satisfy restric-

tions (i), (ii), and (iii). A worst case measure here is

Nk(A, M) = min N(q 0 .... k-l; A, M) (18)

subject to the four restrictions. When using this criterion to

choose among several multipliers, one prefers the one that gives

the maximal minimal Nk(gO ... .qk- 1 ; A, M). As in the case

of distance between hyperplanes, an upper bound exists on

Nk(A, M), namely (Marsaglia 1968)

N (A, M) < (ktM)l /k k=l,2 ....
k

In particular, for M = 2 - 1 the bounds are

65536 k=2
2344 k=3

Nk(A, M) < 476 k=4
191 k=5
107 k=6.

Again, these bounds are limiting, and encourage one to search for

multipliers that can come close to the bounds.

Knuth (1981, p. 92) points out that the ordering of several

multiplies Al, ...A according to the maximal distance measure

p

*Jim-
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d (A,M) may differ from the ordering established by the

minimal number of parallel hyperplanes measure Nk(A.M). In

particular, he notes that Nk(A,M) "is biased by how nearly
k

the slope of the lines or hyperplanes matches the coordinate axes

of the cube." That is, Nk(A,M) may be relatively large when

d k(A,M) is also relatively large. Since in this case one

inclines to discount the multiplier because of sparseness indi

cated by dk(A,M), there is some justification for valuing

d k(A,M) more highly than N k(A,M) as a measure of per-

formance. Section 3 takes this into consideration when searching

for optimal multipliers.

Although dk(AM) provides a more definite evaluation of

a multiplier than N k(AM) does, the latter quantity has at

least one readily appealing attribute that justifies its con-

sideration. We illustrate this feature for the type 3 generator

31
with A=65539 and M=2 . This generator is known as RANDU and

was a standard feature of the IBM Scientific Subroutine Library

on 360/370 series computers for many years. Observe that 65539 =

2 16+3 so that

Zi+ 1  (216 + 3)Zi  (mod 231)

16 31
Z (6 x 2 + 9)Zi (mod 2

1+231
Z 6Z - 9Z. (mod 231)
i+2 i+1

Zi+ 2 -6Z 1 + 9Z 1 0 (mod 231,

Moreover,

Ui+ 2 -6Ui+ 1 + 9U1  0 (mod 1)

a * 231)i indicating that N 3(65539. 2 16, a devastating indictment
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of RANDU in three dimensions. Therefore, the valuable feature of

Nk(A,M) is that it can on occasion identify a poor multiplier with

relatively little computational effort.

2.3 Distance Between Points

Smith (1971) has suggested an alternative measure of equidis-

tributedness based on the minimal distance between k-tuples

1 k-l 2 1/2
Ck(A. M) = min [ I (Z i+. - Z (19)

l<i,m<T j=0 m+j

i AM

Since the total number of points is fixed at T, the smaller

ck(A, M) is for a given A. the larger the volume of space is

in the k-dimensional hypercube that is devoid of points. There-

fore, when comparing several multipliers in k dimensions one pre-

,

fers the one that gives the maximal ck(A, M).
,

Whereas d (A,M) measures distance between adjacent
k

parallel hyperplanes, ck(A, M) measures distance between

nearest points. An alternative, but equivalent interpretation is
,

to view 1/c (A. M) as the maximal distance between adjacent
k

parallel hyperplanes in the dual space of S. This observation

,

enables one to establish the upper bounds for c k(A, M)

k=2.3... (Cassels 1959, p. 332):

c (A, M) < 
1 /yk Mllk (20)

where yk I defined in (15). This duality relationship also

facilitates the computation of ck(a, M) using the algorithm

in Dieter (1975).
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2.4 Discrepancy

The concept of discrepancy originated in the study of how

well equidistributed sequences perform in sampling procedures

designed to approximate the volumes of regions in the k-dimen-

sional unit hypercube and in numerical integration. Having

recognized the relationship between this problem and that of

measuring the performance of a random number generator,

Niederreiter (1971) adapted the discrepancy measure to this

latter problem and gave bounds for it.

Consider the sequence of k-tuples [Wi'k; i=1,... ,T) de-

fined in (4). For N=l..... T discrepancy in k dimensions for a

multiplier A and a modulus M is defined as

D(k) (AX = max I number of Wk ... WNk in R volume of R 1 (21)
R N Mk

where R ranges over all sets of points of the form R =

((w 1 .... ,Wk)I*l < wI < s1t .. '$k < wk < Sk. Here a. and

B. are integers in the range 0 < a < B. < M for I < j < k so

that the volume of R is

k
JH (B. aj).

Niederreiter (1977, 1978a) gave upper and lower bounds for

(k)
D (A,M) for generators of types 1, 2 and 3 for arbitrary
N

N < T. In particular, the upper bound for generators of type 2

is
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(k) __ HN1/2)
DN (A,M) < k + min(N. (N-N) . £ 1

M N q (mod m) r(q,)

+ max (O N- (N-N)
1 ) 1 1

N q (mod N) r(q, M)

q(A) 7 0 (mod N)

where the asterisk denotes exclusion of qo= ... qk-1 =0,

k-i

r(q, N) = I r(qj, M),
~ j=0

r(q,N) = 1 if q 0 (mod M)

= M sinVIIq/MII if q/ 0 (mod N)

and

11t = min (t, l-t).

Note that this bound holds for any local sample of N successive k-tuples from

the generator as well as for a global evaluation of performance when N=T.

At present there exists no algorithm, other than total enu-

meration, for computing this upper bound and this situation is

likely to remain so. However, the form of the bound enables one

to establish a valuable relationship between the spectral test

and discrepancy. Note that sinIq/NMj>O in the bound and that

the number of such terms is a function of q(A). Recall that the

quantity

k-1 q2 )1/2

j =0

-o



is minimized, subject to q(A) E 0 (mod M), to find the maximal

distance between adjacent parallel hyperplanes. If this mini-

mized quantity turns out to be small for a multiplier A, then the

congruence occurs frequently for 0 < Jqj-1l < H j=l,.... ,k.

This clearly adds positive terms to the second summation and there-

fore the upper bound is large. if for an alternative multiplier A'

the minimized quantity turns out large, the congruence holds less

frequently and the upper bound is smaller than in the previous case.

Thus the results for the spectral test convey useful information

about the bounds on discrepancy.

For generators of types 1 and 2, Niederreiter (1976, 1978a) also

gave the lower bound

D i/kk p W (A,1) for 2 < k <6 (22)D )(A,M) k - -k)2
T 1/2(21 + 1) kp W(A.M) for k > 7

and the upper bound

D(k)(, <k /4-T 2 7 k
D W(A,) < + min (1, -T )(Z log M + 5)

T )V lo 14 5

+ (log 2)l- k ((2 log M)k + 4 (2 log M) k-)/2p Wk(A,M) (23)
Ic -2 J~k-2 (Ic)

+2k (2 k-2-) (J-I )/p (A,N)
k-i

where

k-i
p Wk(A, H) min [ R max(l, Iq.l1 (24)

q(mod 1) j=0
q A (0,.. ...0)

q(A) - 0 (mod N)

and

J = (log 1)/log 2
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Comparable results exist for generators of type 3.

With the exception of k=2 no algorithm exists for computing

p (k)(,M). Ahrens and Dieter (1917, Theorem 5.17) gave the

stronger lower bound

(k) rk 1
DT (AM) > I/ min (X m H 1qi)] (25)

i=Oq a (0,.... O0) =

q(A) 1 0 mod M

where m denotes the number of non zero qi,

mm if m = 2 or 3
X = (26)
m m m/(m-l) m Hm if m > 4

and

[m/2J +11
H = I (-1) (m)(LM/2 +1-j)-l /(m--m)!m

j=O 3

For k=2 Borosh and Niederreiter (1983) showed that

p(2) (AN) = min (q IItM - qIA ) (27)
0 < Iql 1< M2

for some t satisfying qo = tN - q1A. This result makes the

bounds in (22) and (23) operative for k=2.

Niederreiter (1977, 1978b) provided additional bounds

for k=2. For type 2 generators

(2) p
D T(A,M) < (2 + a )/T (28)DT - =

i=,

and

D2) (A,M) :[2 + C(K) log TIlT (29) It
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where al,.. .,a pare the partial quotients in the continued

fraction expansion of A/M, K = max (a1 ,...,a p) and C(K) =

2/log 2 for 1 < K < 3 and C(K) = (K+1)/log(K+1) for K > 4. Ex-

pressions (28) and (29) also hold for type 3 generators with 2/T

replaced by I/T and with a1 ,... ap being the partial quo--

5- 2
tients of A/2 -

. Earlier, Dieter (1971) derived closely

related results based on continued fractions to nearest integers

rather than regular continued fractions.

Borosh and Niederreiter (1983, Table 2) have carried out a

systematic search for multipliers of type 3 and type 4. In par-

ticular, they gave maximal period multipliers with K < 3 for

B - 6,7,...,35 for each type.

2.5 Lattice Test

Beyer, Roof and Williamson (1971) and Marsaglia (1972) pro-

posed an alternative figure of merit, for evaluating alternative

multipliers, based on the concept of squareness. We use Fig. 1

to illustrate this concept. Clearly one can construct a vast

number of parallelograms of varying areas that include no

interior points. The presumption of the lattice test is that one

prefers multipliers that produce parallelograms of minimal area

whose sides are close, if not equal, in length; hence, the notion

of squareness, where angles are neglected.

Now the minimal volume of a k-dimensional parallelepiped

k-I
generated by k-tuples from (1) subject to (ii) is M -

. In

evaluating a particular multiplier, the objective of the lattice

test is to find the basis vectors al. .... k that come closest

44. .
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in k dimensions to achieving this squareness for parallelepipeds

k-Iof volume H - . To measure the extent of the departure from

equidistributedness in k dimensions Beyer, et al. and Marsaglia

recommended the quantity

max laii
1 < i <k

R k(A) mi' (30)

1 < i<k

that is, the ratio of the lengths of the longest and the shortest

basis vectors. Clearly Rk(A) > I and presumably one prefers

multipliers for which R k(A) is close to unity.

It is worthwhile noting that the basis vectors al,..., k play

an implicit role in the previously mentioned tests as well. For example,

one can show that for k=2 the maximal distance between parallel hyper-

planes is

2 2 22 1/2

d 2 (AX =(1 2 1 - Il • a 12/112)

where we take a2 to be the longer vector.

Although the figure of merit in (30) has intuitive appeal,

there is no universal agreement about its usefulness in identify-

ing good multipliers. Marsaglia (1972, p. 275) suggested a gene-

rator of type 3 called super-duper with M = 32 and A = 69069.

It has R 2(A) = 1.06, R 3(A) = 1.29, R 4(A) = 1.30 and R (A) = 1.25;

an appealing generator as evaluated by the lattice test. For this generator

Niederreiter (1978, pp. 1027-1028) showed that p (2)(A,M) < 69069

(2) -5
so that (22) gives DT (A,_) > 1/(4 x 69069) .3620 x 10 But
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Borosh and Niederreiter gave a multiplier A = 30391)1861 for M = 232

(2)
with p (A,M) - .2517M and X a. 51 for which (28) based on

32 (2) 30 -7M -. 2 gives DT  (A,M) < (I + 51)/230 .4843 x 10 . This result

illustrates that although super duper has the appealing figure of

merit R 2(69069) 1.06, there exist multipliers with A 5

(mod 2 32) that dominate it by a substantial margin in k=2

dimensions with regard to discrepancy.

3. Analysis

This section presents results of an investigation based on

the evaluation of {dk (A,M); k=2,...,61 for all multipliers A

that are primitive roots of M=2 31-, using an algorithm of

Dieter (1975), as described in Knuth (1981, algorithm S). Hardy

and Wright (1960) show that the number of primitive roots for M

prime is O(M-l) where

*(M-I) = number of integers not exceeding and

relatively prime to M-1.

This quantity is called the Euler totient function. Since

31
(M-I)/M-I) L .249 for M=2 -I (Ahrens and Dieter 1977, p. 1,6),

31_
one has 4(2 -2) " 534723428, a not inconsequential number.

To find the primitive roots, one notes that if B is the

smallest primitive root of the prime modulus M, then every

primitive root has the form

A B I (mod M)

[I
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where I is an integer whose largest common factor with M-1 is

unity. Since one also can show that for every such I there exists

1 N-1 I
a pair of multipliers B (mod M) and B (mod M) with identi

cal lattice structures, it suffices to investigate only half of all

the primitive roots. In the present case 7 is the smallest primi-

tiverootof 311
tive root of 2 3- so that only 267361714 multipliers require

examination. Note that the multiplier with exponent M-1-1 produces

the same sequence as the multiplier with exponent 1 does, but in

reverse order.

Clearly one needs to adopt a screening procedure to identify

and collect those multipliers that "perform well". For present

purposes, the multipliers of most interest are those that "perform

well"* in k=2. 6 dimensions relative to the constraints imposed

on all lattices in these dimensions. Consider the ratios

Sl,k(A,M) = Yk/dk(A,M)MI / k  k=2,....,6.

As seen from (15), 0 < Slk(A,M) < 1. Now the closer

SI(AM),...,Sl.6(A,M) are to unity the better the perfor-

mance is of this multiplier with regard to the achievable bounds

in 2,...,6 dimensions. Therefore, one way to perform the screen-

ing is to identify all multipliers for which

min Sl,k(AM) > S 0 < S < 1

2<k<6

where S is specified.

Initially we chose S=.75. Since preliminary computations

indicated that there were an unmanageable number of multipliers

that satisfied this criterion, we changed S to .80. This result-

ed in a total of 207 optimal multipliers, as listed in the



-24-

Appendix. Recall that there are actually twice this number of

optimal multipliers. The abrupt reduction in the number of opti-

mal multipliers when shifting from S=.75 to S=.8 is itself not-

able. Also note that any multiplier for which S ,k(AM) > .8

for k=2,...,6 guarantees that for each k the distance between

adjacent hyperplanes does not exceed the minimal achievable

distance by more than 25 percent.

For each selected multiplier and k=2, .. ,6 we also computed

the ratios

S2 k(AM) Nk(A.M)/(k!M)

and

S (A,M) = ck(AM) /k
3,kk k

again using Dieter's algorithm.

Table 2 presents these ratios for the multipliers with the

five largest min S ,k(A,M). It also presents results for

A=16807 which is in APL and IMSL, for A=397204094 which is in

IMSL and SAS, for A.630360016 which is the SIMSCRIPT 11

multiplier, and for A=7. This last multiplier illustrates the

contrasts that are possible in performance.

Table 2 allows one to make several notable observations:

Insert Table 2 about here.

(a) The first five multipliers perform considerably better

than the remaining multipliers in the table with regard

to the screening measures {Sl,k(A,M)I and with

regard to {S2 ,k(A,M)I and IS3 ,k(AM)).
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(b) For each of these five multipliers S1 ,2 (A,M),...,

S1 .6 (AM) are remarkably close.

(c) The measures S 32(A,M) ... ,S3,6(AM) are also re

markably close and behave essentially as

S1,2 (AM) ... S,6 (AM). As expected, S ,2(AIM) =

S3 2 (AIM).

(d) S 2,(AM),...,S 2,6(AM) show considerably more

variation; no doubt a reflection of the suboptimality of

these multipliers with regard to this criterion.

We now turn to another method of evaluating performance which

derives from the concept of packin a lattice with spheres (see

Cassels 1959). Recall that c k (AM) is the distance between

nearest points in the unit hypercube of k-tuples. Then the

volume of a sphere with this diameter is

k/2 * k
if (ck(A,M)/

2 )

L (A M) = r k/2 +1)

where r(-) denotes the Gamma function. Suppose one packs the

lattice with such spheres centered on each of the M-1 points Vk

in (5) and at the origin. Note that these spheres merely touch

and that since there are only M k-tuples, the proportion of the

unit hypercube packed with these spheres is MLk(A.M).

Let

W k(AM) = 2 kL (AIM).

Using the lattice packing constants in (15) and (20) one has
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3.63 k=2
5.92 k=3

wk(A,M) < 9.87 k=4

14.89 k=5
23.87 k=6

Table 3 lists w k(A,M) for the five best and the three

other commonly employed multipliers. The benefits of the five

multipliers is again apparent since their packings are consider-

ably better across dimensions than those for the more commonly

used multipliers.

Knuth (1981, p. 102) has also used this concept of packing to

rate multipliers. However, his approach relates to packing

spheres in the dual space of qo/M0...,qk._I/M. This is done

by noting that in addition to d k (A,M) being the maximal

distance between neighboring parallel hyperplanes in the space of

V k the quantity I/Md k(A,M) is the minimal distance

between points in the dual space of q0 /M,..., q k-/M.

Therefore, the volume of a sphere with radius /2d k(AX) in

the dual space is

k/ 2

W k(AX) = k
r(k/2+l) (2Mdk (A,M)]

Now observe that restrictions (i) and (ii) determine that the

hypercube [-1,1) k contains exactly 2 kM k- k-dimensional

points q/M. In particular, the exponent k-1 instead of k on M is

due to restriction (ii). Therefore, the proportion of this unit

hypercube packed with spheres is
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P k =
2kMk-W k(AM)

k/2

r(k2 + Il)Mdk(A,M)lk

which is the measure of packing in the dual space. This quantity

is identical with the figure of merit suggested by Knuth (1981,

p. 101). Note that because of the lattice structure in the dual

space every other unit hypercube in this space would lead to the

same Wk(A,M) and pk(AM).

Table 4 lists Vk(AX for the multipliers of interest.

Again note the better performance of the top five. Knuth remarks

that one might say that any multiplier for which pk (A,M) > .1

k=2,... ,6 passes the spectral test and any multiplier for which

) k (AX > 1 1k=2. ..,6 passes the test with flying colors. By

this standard the top five multipliers are untouchable. In fact,

since S 1k(A,M) , .8 k=2,...,6 for all multipliers in the

Appendix, those multipliers have

2.32 k=2

3.03 k=3
k(AM) > 4.04 k=4

4.88 k=5
6.26 k 6

indicating that all meet the Knuth criterion and dominate all

multipliers listed in Table 1 of Knuth (1981, pp. 102-103).

Table 5 presents bounds on discrepancy computed from (25) and

(28) and reveals several interesting results. First, note that

the intervals for k=2 can in no way be regarded as narrow.
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Second, the top five multipliers do not dominate A=397204094 and

630360016 unambiguously, as in the earlier tables. This lack of

discrimination on the part of the lower bounds on discrepancy may

be due to the fact that discrepancy is not a rotation invariant

measure. That is, it is developed along the lines of the

classical serial test in Statistics in which the sides of the

cells are parallel to the coordinate axes and hence discrepancy

detects the worst case with regard to this orientation only. By

contrast, dk(AM) measures the worst case with regard to all

possible orientations. Although one can argue that many statis-

tical testing procedures rely exclusively on this cartesian pro-

duct space specification, the fact that our study reveals so many

multipliers that perform well on the more stringent measure

d k(A,M) encourages us to recommend this criterion for

general use.

As mentioned earlier the Appendix contains a list of all

multipliers for which min S Ik(A,M) > .80. A perusal
2<k<6

of this list reveals six multipliers for which S3,k(AX) > .80.

While these multipliers do not rank as high as the five best with

regard to min S ,k(A,M), their relatively good bivariate

2-k<6

behavior with regard to S (AX) and S (AM) encourages us
l,k 3,k

to examine them more closely. Table 6 shows how these multi-

pliers perform with regard to lattice packing in the sample space

*
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and in the dual space. A comparison of these results with those

in Tables 2 and 3 makes clear that these multipliers are equally

acceptable with regard to lattice packing considerations.

Whether or not some other justifiable basis exists for choosing

these multipliers over the best five is not apparent at present.

4. Empirical Evaluations

In addition to evaluating the global properties of a multi-

plier, one needs to consider the local randomness properties of

subsequences of moderate length that a generator with this multi-

plier produces. This evaluation is usually performed by statis-

tically testing these subsequences to detect departures from ran-

domness. Fishman and Moore (1982) described a comprehensive

battery of tests for this purpose, and we apply the same battery

here to test the five best multipliers.

Recall from (2) that U1 , U 2, ... are the random numbers

normalized to (0,1). Hypotheses to be tested include:

HO: Ni; i=l, ... n} is a sequence of i.i.d. random
variables.

Hl: Ni; i~l,....nJ have a uniform distribution on
(0,1).

H2 : (U2 i.1 , U2i) i=l,...,n/2 have a uniform
distribution on the unit square.

H3 : (U3 i_2, U3 i_1 , U3j) i=l, ...,(n-2)/3 have a
uniform distribution on the unit cube.

H4: Ho, H1 , H2 and H3 hold simultaneously.



-30-

For each multiplier we collected 100 consecutive subsequences

of n=200,000 numbers. For each subsequence i and each hypothesis

j a test statistic T i was computed. Then for hypothesis j,

Tij .... ,TIO, j were subjected to the battery of tests. Let

T.. have continuous cumulative distribution function (c.d.f.),3

G. under hypothesis j. Then G.(T..) and P. .=1-G.(T. .) are
J J 1j 1,J 3 1j

distributed uniformly on (0,I) and for O<t<l

n

F A(t) =~ i I I (P )
n,J n t=l (0,tl J

where IB denotes the indicator function on the set B, is an

empirical c.d.f. If H. is true3

D . sup I F .(t)-t I
t

has the Kolmogonov-Smirnov (K-S) distribution,

V n,j = n 1 1 (F .(t))dt
0 n,j

has the uniform distribution on (0,1) (Dwass 1958) and for large n

A2 1 2/
n,A [F (t)-t] /t(l-t)}dt

has a distribution given by Anderson and Darling (1952, 1954) and

is denoted by A-D. The quantity D nj measures the absolute

deviation between the empirical and the hypothesized c.d.f.;

V . measures the proportioon of F . that lies below the
n'j n,j

2
hypothesized c.d.f.; and An. is a weighted measure of then,J

extent of deviation, principally in the tails, of the empirical

c.d.f.

k ".

, I
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Since Fishman and Moore (1982) provided complete descriptions

of the testing of HO,.. .,H4, here we merely review the most

essential details. In particular each test statistic T. . was13

chosen as follows. To test H0 we relied on a comprehensive

analysis of runs--up and runs-down statistics. For HI we chose

12
a chi-squared goodness-of-fit statistic with 212 =4096 cells.

For H2 the serial test statistic was used for nonoverlapping

2-tuples with a total of 4096 cells in the unit square. For

H3, a serial test statistic was used for nonoverlapping

3-tuples and 4096 cells in the unit cube.

The hypothesis H4 is omnibus in character. Recall that

Pij = I-G.(Tii ) i=l,... ,100 j=0,1,....3 and set

X..j = 4!-1(P..j)
13 13

where - 1 is the inverse of the unit normal distribution.

Under H., X.i. has the unit normal distribtuion and Xio,

...,Xi3 have a multinormal distribution function *. Let

X .i =i m in (X i 9 . ... X i 3 )  and X i =a m ax (X . .9... X i 3 .i,,n3, 'i,max 1,0 i,3

Then under H4

T, = 1-*(-Xi,min' - Ximin - Xi,min' - Xi,min

and

Ti,4 l-*(Xi,max , Xi,max X i,maxw Xi,max

each have the unit nbrmal distribution. Since T, and T measure
i,4 i,4

how likely one is to encounter values as extreme as X i,min and

max they provide valuable information about the truth of

7I
A.,--%
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H0 ,... H3. Accordingly we used T i,4; i=l, ..., 00} and

IT. i,4 i=,....,1001 to test H . As an interim result a

test of the multinormality of Xi, 0 .... Xi. 3 was also

performed.

Table 7 presents the P values for H0* ... ,H4 and the

multinormality test for the five best multipliers. Although

several multipliers show some small P values, no systematic

rejection occurs across the K-S, V and A-D tests and across

hypotheses. If one feels compelled to rank the multipliers, one

might regard A=950706376 as first and A=1343714438 as last.

However, we emphasize that in a table with so many entries some

low values are to be expected when all hypotheses are true. In

summary we conclude that, in addition to having optimal global

properties, the five multipliers show no empirical aberrations.
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Table 1

Linear Congruential Generators: Zi - AZI 1 4 C(mod M)

Generated Sequence

Type M C A Z0  is a Permutation of T

1 28 odd 1 mod 4 20,I... ,M-1} {0,I .. - 11 28

2 prime 0 primitive [I... ,--If I .... . I M-1
root of M

3a 28 0 5 (mod 8) 1 (mod 4) {4j+l; j=0,1, ...,28-2-11 2 8 2

3b 2B  0 5 (mod 8) 3 (mod 4) {4j43; j=O,l,. ,2 B-2-I} 2B 2

4a 2B  0 3 (mod 8) 1 or 3 (mod 8) {8j+l and 8j43; j=0,1,...28-3.11 21 2

0 2B  0 3 (mod 8) 5 or 7 (mod 8) {8j45 and 8j47; j=0,1,...,28-3-1} ?B 2

Source: Jannson (1966); A, C and Z0 guarantee maximal period for the modulus M=2 B with 3

> 3.

I
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Table 2

Performance Measures for Selected Multipliers in Zi  AZi_ 1 (mod M)a

(M = 2 31-1 )

Dimension (k)
Multiplier 2 3 4 5 6

A

742938285 S1  .8673 .8607 .8627 .8320 .8342

S2 .8362 .6613 .6618 .6021 .6075

S3  .8673 .8751 .8507 .7838 .7983

950706376 Sl .8574 .8985 .8692 .8337 .8274

S2  .9211 .8183 .6555 .6806 .6822

S3  .8574 .9093 .8412 .7565 .7646

1226874159 Sl .8411 .3787 .8255 .8378 .8441

S2  .8273 .7240 .7815 .6492 .6822

S3  .8411 .8877 .8468 .7107 .1743

62089911 Sl .8930 .8903 .8575 .8630 .8249

S2  .7169 .7537 .7430 .7153 .6603

S3  .8930 .8286 .7712 .8150 .7385

1343714438 S1  .8237 .8324 .8245 .8262 .8255

S2  .8676 .6404 .6492 .6702 .7103

S3  .8237 .7785 .7906 .7874 .7747

16807 Sl .3375 .4412 .5752 .7361 .6454

S2  .2565 .3264 .5714 .6754 .5888

S3  .3375 .5404 .6162 .6187 .5889

397204094 Sl .5564 .5748 .6674 .7678 .5947

S2  .5966 .5038 .6239 .6597 .4206

S3  .5564 .5543 .7302 .7849 .6417

630360016 Sl .8212 .4317 .7832 .8021 .5100

S2  .8823 .4373 .6534 .7173 .5047

S3  .8212 .6354 .6441 .7983 .5510

7 1000 S1  .1420 4.882 27.62 78.13 152.6

1000 S2 .1221 3.413 16.81 41.19 74.71

1000 S3  .1420 .02650 .02921 .06746 .2201

Sad *lk M l/k and S * (AIM) y MI/k

1 2 k 3 k k
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Table 3

Packing Measures in the Sample Space

Wk (A,M) = vk/2 Mc k (A,M)k /r(k/2 + 1)k k

(M = 2 31-)

Dimension (k)

Multiplier 2 3 4 5 6
A

742938285 2.13 3.97 5.17 4.40 6.17

950706376 2.67 4.45 4.94 3.69 4.77

1226874159 2.57 4.14 5.07 2.70 5.14

62089911 2.89 3.37 5.17 5.36 3.87

1343714438 2.46 2.80 3.86 4.51 5.16

16807 .41 .93 00 1.35 1.00

397204094 1.12 1.01 2.80 4.44 1.67

630360016 2.45 1.52 1.70 4.83 .67

Upper
Bound 3.63 5.92 9.87 14.89 23.87
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Table 4

Parking Measures in the Dual Space

k/2
P k (A . ) =  

-
R(k/241) M[dk(AI)]k

31
(M=2 -1)

Dimension (k)

Multiplier 2 3 4 5 6
A

742938285 2.73 3.78 5.47 5.94 8.04

950706376 2.67 4.30 5.63 6.00 7.66

1226874159 2.57 4.02 4.58 6.15 8.63

62089911 2.14 4.34 4.23 4.77 7.99

1343714438 2.46 3.42 4.56 5.73 7.55

16807 .41 .51 1.08 3.22 1.73

397204094 1.12 1.13 1.96 3.97 1.06

630360016 2.45 .48 3.71 4.94 .82

Upper
Bound 3.63 5.92 9.87 14.89 23.87

. .



-40-

Table 5

Bounds on Discrepancy

Dimension (k)

Multiplier 2 3 4 5 6

742938285 Lowera .1492 .5970 42.89 42.89 42.89
Upperb 3.446

950706376 Lower .2680 1.072 9.607 10.08 10.08
Upper 3.725

1226874159 Lower 1.967 7.869 7.869 7.869 14.86
Upper 10.52

62089911 Lower .4236 1.694 1.694 1.694 4.328
Upper 6.333

1343714438 Lower .2541 1.016 1.016 1.016 7.045
Upper 3.772

16807 Lower 1488 5950 5950 5950 5950
Upper 5952

397204094 Lower .4256 1.702 1.702 1.702 28.61
Upper 4.517

630360016 Lower .1502 .6008 1.546 1.546 4.057
Upper 2.980

7 Lower 3571400 14286000 14286000 14286000 14286000
Upper 14286000

SLok-1
aLower Bound = 108 x 1/min (k m I

b 8 p
bUpper Bound = 108 x (2 + I a1 )/T.

1=1

t1
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Table 6

Packing Measures for Multipliers with

Slk(A,M) .8 and S3,k(A,M)>.8 k=2....,6

Multiplier Dimension (k)

A 2 3 4 5 6

809609776 wk(A,M) 3.17 3.76 4.51 4.51 8.26
Pk(A,M) 3.17 4.23 4.55 5.07 6.71

1567699476 wk(A,M) 2.88 3.66 4.98 6.55 9.96

Pk(A,M) 2.88 3.15 4.37 5.72 6.71

1294711786 wk(A,M) 3.08 2.72 4.95 5.44 9.85
Pk(AM) 3.08 4.73 4.73 4.17 5.65

1554283637 wk(A,M) 2.56 3.71 4.71 6.08 7.79
Pk(A,M) 2.56 4.15 4.27 5.74 6.38

857010188 wk(A,M) 2.39 4.16 5.97 5.21 7.74
pk(A,M) 2.39 4.20 6.39 5.95 5.08

1582405117 wk(A,M) 3.09 3.13 4.02 4.85 8.02

WAX 3.09 4.25 5.24 4.88 5.78

Upper Bound 3.63 5.92 9.87 14.89 23.87
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Table 7

P Values for Testing Hypotheses

Multi _ _H 4 -
Multiplier Test HO HI H2  H3  normality min max

A (1) (2) (3) (4) (5) (6) (7) (8)

742938285 K--S .735 .499 .306 .633 .922 .776 .802
V .853 .0 12b .971 .491 .463 .278 .353

A-D .408 .231 .406 .796 .990 .545 .810

950706376 K-S .361 .304 .636 .766 .163 .244 .529
V .974 .827 .616 .493 .443 .401 .322

A-D .269 .254 .497 .629 .173 .279 .417

1226874159 K--S .738 .115 .08 1a .903 .151 .220 .532
V .378 .468 .646 .395 .183 .425 .749

A-D .442 .083a .172 .914 .166 .420 .802

62089911 K--S .232 .506 .493 .073a .578 .121 .132
V .618 .923 .773 .193 .160 .305 .345

A-D .328 .457 .539 .139 .377 .151 .144

1343714438 K-S .771 .068d .024b  .845 .635 .904 .230
V .849 .440 .158 .781 ,577 .365 .404

A-D .806 .099a  .0 4 1b .863 .542 .903 .195

a.05 < P Value < 0.1.
b.0 1 < P Value < .05.
Cp Value < .01.

.*
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Appendix

A min S1 k min S3 ,k A ni Ik ain S 3 k
.... .k. k lS1 k

7..293h20') U.d l' J. 76.o 1 A,0Ut24d WJ 0.8112 .7943
5U70t371 0.o 14 C.7 5t-5 1 44223;54 0.8111 J.7110

122u874159 u., o2') 0.7107 9593874 18 0.8110 U.77;
t, 20895 11 u . 82') O0. 7.3 15 1113111/t,4 U.81 0b 0.772u

1343714438J6 . . J b 0.7747 144hzd jWU 0.8107 0.7677
2049513912 u. ts.',j2 0.b5L4 231,4H7.J3b U. d107 0.7820

/*81 1, -I L'7 U 0.611 J 2314,s7JJt, 0.81Q7 0.7820
,02 LJ 80 J.o04 J.74d9 4U3b R26 J 0.6102 0. '19b

lO 10 1 (1 9 () u. ?i I 0.7',2 36. j70474 U. 8096 0.7375
AU23 Ui' i1 .,: ' 0.6930 1bu3 3Th964 0.8098 ).7113
44,U2t3Jj U.o191 0.7.iuv 5 9.3 0.i0095 0.7021

I14nO J,1946f. C.4 lit) 0.7 li143 5 1'1 p',3u 0.d095 0.7495
329 4 J i 1 ,4 . 1Q 4 0.7271 621 19t0OJ 0.6093 0.7b7b

1 , 3C2 1322 .1 -, 0 .71,9 I6973 4u722 U.8092 0.7b1
6002 16:5 1 6. 162 j.73U0 20972J443 J.8092 3.7582

1')19t4- H3 U. , I 1 v. 7242 Io51 1324b' u.809.) .7805II C 4 4L1 J.(3170 li.( ,S ~ 103t,469797 . 0 .7 1

1,472749479 u. is I J. 7124 1094o,)..A 15 u.608L 0.7044
v 292 d 0.6lfb 0. 7) 94 958373200 0.b0d3 0.7173

19C i4j,5529 u.tsluu J.7j77 1 ei 2,u4 216 0. 8081 0. 795b
16 i21 '39 4, u .t .4 J.7470 1901 -) 1b323 J.8087 0.75o6
11_.u:u41,; u.::15 . 74 j 14H'2dJU9.4 t.o004 0.77bj
156 Ccjb0j6 ,. .,1 , . 7712 j 1t)92du() 51 ,;.607P' U. 74JO
If 22t) 2 u. 1Y, 0.7076 187 J4L+6 U 1 0.805 0. u72,

.360 lOHU I o. -)I2 0. 744 1 1.J943Jb. 40 0.o(07 '(.7039
1 j d4t453 U.A 1 )0 U. 7.12 1u9, 1 Vi z ,0 U. ui) 75 3.7119
S 17, 2z '  d.o 14 0 .7 1i' 155, i 0.e075 U.t7It

140 1 .. 14 o. 1i47 0.7277 1 4"p: 'ju,7 0.s6)l 0.7992
c 7 7) 7 0. 1 # 0. 7,t,'/ 2 117 0u 721 i .. j0 73 J.7198
t ,4 j31 1u u. ,144 ( . 754 13372 3j 139 u.o072 .7897

1434'12.,1 u 142 0.7f11 125 171V 1 0 07-,' 0.7358
154 1, i 1 1 2.14 J. 7936 h ( 1U237 ,i U.bu/2 0.7087

2 0.51h) W .oI, 1I 0. 7 V) 13 6,99 20 (.8071 0.6689
4 7 9 1 1.17 6 J. 1 i' 0. 7544 1 472,o0 7,,u 0.8 71 0.7432

21163 c, ' 2 b U. 13) 0.7183 I7Po' 1-)4-t2 0. a o0 0-7457
1"uo 311 0 u . 0 1.4d 0.7012 14J/ 5521. O. 3009 0.7240
1 1 tuj44ei U.olJ 0.7140 111. I 5i07 0.80t, 9 0.1122
11,.'5uC53 j.(s1J33 0.75uH it)13'5u o O11 . b0t,h 0.7029

17ouc ,j0394 U. sJO 0.7509 13,232364, %. U06h 0. 613 j 9
' I 1 h2 1f)7 U.o1J 0. 78uJ I J;26h1JJC, 52 u. dot) 6 0.17 i8
:j 1 .3 c i,7 U.b127 0.7t O.i ou4,4, 1,4 ,7 0. 80bi 0. 785b

1u24o0O0.4 0.,u127 0. 73U i 16,40U 11I. 1 , . 80t3 u.7232
2J094(7'P4 1.127 0. 141, .'.2b721 I17u U.bu2 0.7171
Iu.i4 13d(1 .9312/ 0. t, 2) 80juo0j77u 0.800 1 0.tU222
334,.i I 1 id u. cI 125 0.6d4) 21 i97d7h u.8061 0. 7322
404,,- U 7, 0.w124 U.7204, 1U22 1)410 u.8J#, I 0.7509
i 72(C 39 U.,1-.. 0. 73ut, 1b 2j u242 82 0. d061 3.7595

1,60u00 7-*3 6.,6121 0.776 0 672, 3t)717 U. (1,0 -).7532
1 J42 7 51 J.t,1!1 0.7461, 12J ,,u.,. O. 0j 9  0. 1ju73

M4t) 4 286 U.1,1 15 0.7029) k,7 141.4 0.4 U. 60Y)i 0. 1546

tThe remaining 207 multipliers can be computed as follows: Set B = 7;
for each multiplier A find the smallest integer I such that A B1 (mod M).
Then the multiplier A* H BM-l-(mod M) has the same properties as A.
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Appendix (continued)

A mi S1 ,k min S A min S1  min S )
S 3k k ,k k ,k

14j3834CU1 ;. do ,,9 0. 6 90,) 1 114)4,1/ 1 .UO3 U.7564
1jllhu9UC) l otJjd 0. 74,9 76 4 hU& J t. 8023 0. bB 1

7437 2:4 it) . ',m, 0. 7o9 10 7410Y 1 0 .: I 023 U. 7944
1 U I J .J 7 0.7-o4 1 U3921 ,-'7 0.3023 0.6029
I 5t) )o ) S117t) , 6 f l! 17 0 34 2 0 4.2o0.4 1 s4 4 0.8~022 J. fj70o
I'A"73UuoiA7 o. j 3 0. 7u, -1 jt,Udt, 0.8022 0 763 ,

10 It32C9I 1.JJ2 0. 7UJ C1IY. 11.. 8020 0.7589
19 )i 11 17.2 1 . 0 . t0{3 1, buU5ti / 27 0.80114 U. 72 ,5

b 2 64 P) 114 J . ou, 1 U. 7 54 0 1 W f,, 491 0. 0 1 e 0.7391
10 4J (t -, 3 J U.,W,49 0. 722.: 5.T , 7o , u.6U 17 U. 72(4t

1 b e 2,4 4 j -,4 0 . 79(; 15 j! .42 ,3l .oO17 0. 6094
L, ; , 7.7-,)J 1 155 t/ 79 0.8017 0.7911

79 12J .,; 1 O.7,1uZ (A i) Vk;lb 160 .b~l ) .6 5 75

1,5b713q31 .j ., I U. 90o. 1, 0. 7 9,.:,07 0.3016 0.7204
3d d 7 7, '5 , . U) ).79u b 14 / /. u5 J. dO . 0.729

15 5)73 1L 5 2 u. iU4o U.75 3Jl d4!49t 0.8015 U. 7255
9)3C .' ,3 1 J ,4 J. 7 P) GI i.C OLU 0 3I0 0.8015 0.74 u

15f, Kk 13 46 J. U 4 .7850 / 11 7t,25 I 0.b014 0.6802
1035152 1' u. 343 J. 75'j0 I o,01 3'1 63 0.8014 0.7729
3 -94. -4 2- 4 . . 0.()932 1 Y2,)j )/ I88 0.8014 U .t..6 1

18,131'bu 73 J. Nkq3 0.7058 1993,495d 0.8014 0. 1026
19'lJ4]292 , .13043 0.7112 t,11ri 0u8i3 0.8014 0.oIU0

5,4ucU)39 U. )J43 0.7447 979 1 u,787 0.8014 0. IUbO
j 7 1204812 J.J 43 0.7753 19566Ci0422 0.8012 0.7521

lwbsf *-/7,9 ,. c:4 O .t u8 12)6 )0U 70d 0.8011 J.b4 10
1 171b41C j34 0. 1 ),# ) 0.7,44 t) i146titb 2 0.801) U. .t ,, 5
1117,-4 355, --) 4 0. 0 J .7243 i34z5b5d1 U.801 I U.7065
swil 70&tt2 U.f J4i1 J.-7292 0 8 5 6 U4 78 U. t3U1 1 U. 75b1i

2 -42],C72V),' ,.o+ju .714 9 534097944 0.4011 0. 1808
1-49UJ,90.O I U. I,) 39 6.725% ,A 34u 0 J. 0 001 0. u4 1

J,71t71 t .S 17 0.7313 1 W51 u ?,2d U.8009 0.7125
14 2dSE,!'I) J.t)3? 0 .702t 2 10 1t )-23 4 0.80o'l 0.1710

10 t, u t, 12 9 ,u. 7t351 14 1.1 L U51 U. 80Ut 0.1819
I T ) 7 J. o,) .t )i327 79t)3J : 4 I U. 8o08 0.7611

2-'. 6 , C I.! ) .0J 3 )./ , 1'#6)9 101),34b 0. 6 -Oil 0 .754 3

707t 5,27,1 1 1 J .7117 154421'J 4 5 O 0.dO 0 -7187
I dt)9, 74 .rJ 17 0.0/ 1 4 8-57.vIu 16 6 . 6 U 0.8001
,J95jiuC4u4 0 .(3. 1 1.7182 lk60,..d20 I U.o0 U 0. /639
5 3) 1,4 L2L ,i . o3 7 0. 750 5 $!' ,-0' 1 05 0. HU008 0.6b47
It,041c7179 o.,. 3 nj] 0.7013 1 7/U ,4 J9. 0.H007 U. 7 l4 1
20 IZ 1 .0220 u.d33, . /t,:. Ists z.4,) 1 17 O.CO,07 0.817b

.i/U:,'4724 U. dki'r 0. 731, 5 S",4 11 0. J U" 0.1233 I
U 49,:4 SJ I i. dJ.jj 0. t, 91) 8, 1 41 u 17 0.800 0.ub7t!
91,1 C 7o7 J..)t)., L)o. 6 D 9 12 1,'5 (. bOuL, 0.7507

Iu) 174 1 ., ., ., 0. 76ti 3 1,k 264I 7d O.dO05 u.7199
I 33. 1 .214 10 o(. 4333 0. 7240 7; o Uob3 0.8005 0.7903
I ,,, i1 i ,4u4 o 3 1 O .1 A.2 2 I1-4 C." 0 1,. 41 7 U. dOOS 0.f782
1o0ju14 709 U.,ok.:') U. , 1u 1U9H 11330 0.8005 U. 731,
125)421 711 J.iu : . 'It)7t., I 704illO,20O .8J U , .732 b
,. , 1741:bS7 W 9 u.t, 0 27 0:,9J 7 36 0. 8004 0.,510
7.i7U0' U Ij ,.ql 7 13"r, 4 )8 9 1 , 11 0.8003 J . 7I b II
-#0 H 4 3 2 740 ). 0,0-4 0.7514 3231 Z018 0.8003 U.7395

,u3 55L4.4u o.coi- 0. 731o 3( 10 7, 90 0.8000 0.7293
1 j ~4 7117 tit) bu 6z4 U.d(Ji40

. --- 4. .... " .. ....4-p|
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