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ABSTRACT

-

This paper presents the results of an exhaustive search to
find optimal full period multipliers for the multiplicativz}g&tT
gruential random number generator with prime modulus falml.
Here a multiplier is said to be optimal if the distance between
adjacent parallel hyperplanes on which k-tuples lie does not ex-
ceed the minimal achievable distance by more than 25 percent for
k=2,...,6. This criterion is considerably more stringent than
prevailing standards of acceptability and leads to a total of
only 414 multipliers among the more than 534 million candidate
multipliers.

Section 1 reviews the basic properties of linear congruential
generators and Section 2 describes worst case performance mea-

.

sures. These include the maximal distance between adjacent par-
allel hyperplanes, the minimal number of parallel hyperplanes,
the minimal distance between k- tuples, the lattice ratio and the
discrepancy. Section 3 presents the five best multipliers and
compares their performances with those of three commonly employed
multipliers for sll measures but the lattice test. Comparisons
using packing measures in the space of k-tuples and in the dual
space are also made. Section 4 presents the results of applying
s battery of statistical tests to the best five to detect local
None were found.

departures from rendomness. The Appendix con-

tains a list of all optimal multipliers. - e
Key words:

Congruential generator, discrepancy, lattice test,

random number generation, spectral test.
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INTRODUCTION

This paper presents the results of an exhaustive search to
find optimal multipliers A for the multiplicative congruential

random number generator zi ZAZ, (mod M) with prime modulus

i-1
M =2" - 1. Since Marsaglia (1968) showed that k-tuples from
this and the more general class of linear congruential generators
lie on sets of parallel hyperplanes it has become common practice
to evaluate multipliers in terms of their induced hyperplane
structures. This study continues the practice and regards a
multiplier as optimal if for k = 2,...,6 and each set of parallel
hyperplanes the Euclidean distance between adjacent hyperplanes
does not exceed the minimal achievable distance by more than 25
percent. The concept of using this distance measure to evaluate
multipliers originated in the spectral test of Coveyou and
MacPherson (1967) and has been used notably by Knuth (1981).
However, the criterion of optimality defined here is considerably
more stringent than the criteria that these writers proposed. 1In
fact, among the more than 534 million full period multipliers A
examined in this study, our search identified only 414 optimal
multipliers.

First proposed by Lehmer (1951), the multiplicative congruen-
tial random number generator has come to be the most commonly em-
ployed mechanism for generating random numbers. Jannson (1966)

collected the then known properties of these generators. Shortly

thereafter Marsaglia (1968) showed that all such generators share

em e e




a common theoretical flaw and Coveyou and MacPherson (1967),
Beyer, Roof and Williamson (1971), Marsaglia (1972) and Smith
(1971) proposed alternative procedures for rating the seriousness
of this flaw for individual multipliers. Later Niederreiter
(1976, 1977, 1978a,b) proposed a rating system based on the con-
cept of discrepancy, a measure of error used in numecrical inte-
gration. With regard to empirical evaluation, Fishman and Moore
(1982) described a comprehensive battery of statistical tests and
illustrated how they could be used to detect local departures
from randomness in samples of moderate size taken from these
generators.

Although the theoretical rating procedures have existed for
some time, with the exception of Hoaglin (1976), Ahrens and
Dieter (1977) and Knuth (1981), little use has been made of
them. The present study, by its sheer exhaustiveness, removes
this deficiency for generators with M = 231 ~ 1. Section 1
reviews the basic properties of linear congruential generators.

Then Section 2 describes the worst case performance measures that

have been proposed to rate generators in k dimensions. These
include the maximal distance between adjacent parallel hyper-
planes, the minimal number of parallel hyperplanes, the minimal
distance between k-tuples, the lattice ratio and the discre-
pancy. These concepts are described in this study principally in
terms of the space of k-tuples and, where appropriate, in terms
of the dual lattice space. However, in order not to obfuscate

central concepts the exposition relies on a minimal use of formal

lattice theory.
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Section 3 presents the five best multipliers and compares
their performances with those of three commonly employed multi-
pliers for all these measures but the lattice test. The Appendix

contains a list of all optimal multipliers. Also, lattice pack-

ing measures are presented and again show the dominance of the
five best over the three commonly used multipliers. Packing
measures in the dual space are slso computed. This last concept
is identical with Knuth's figure of merit for evaluating
generators. Our results indicate that with regard to this
criterion the five best perform better than all 30 multipliers

listed in Table 1 of Knuth (1981, pp. 102-103). Bounds on

discrepancy are algso computed and discussed.
Section 4 presents the results of a comprehensive empirical
~ analysis of the local sampling properties of the best five, using
the procedures in Fishman and Moore (1982). No evidence of

departures from randomness was detected.

1. Linear Congruential Generators

A linear congruential generator produces a sequence of non-

negative integers

- e -

{2, 2, S Az, | + C (mod M); i=1,2,...} (n

where the modulus M, and multiplier A are positive integers and

- e A

the seed zo and constant C are nonnegative integers. For pur-

poses of conducting sampling experiments on a computer, the ele-
ments of the sequence Z are normalized to produce the sequence

U= (U =z, ie1,2,...} (2)

i
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whose elements are treated as if they were sampled independently
from the uniform distribution on the interval {0,1). The objec-
tive in assigning values to M, A, Zo and C is to make the
errors incurred in this treatment of U tolerable ones. Here
errors are principally of two types, one being the approximation
of a continuous phenomenon on (0,1) by the discrete sequence U
and the other being the distributional distortions in U induced
by the use of the deterministic generator (1). 1In addition, com-
putational considerations play a role in choosing M, A and C.

One property of the generator (1) is the period

T = min {k>1: 2 = Z_ for all n > M}. (3)
n+ n

k
The larger M is, the larger T can potentially be, and conse-
quently the denser the points of U are in {0,1). The more dense
these points are, the smaller the continuity error is.

Table 1 lists several types of linear congruential generators

that are or have been in common use. Here A, C, Zo in the table

Insert Table 1 about here

guarantee maximal period for the corresponding modulus M. Note
that types 1 and 2 give full periods whereas the remaining
generators give only one fourth of the numbers between 1 and
ZB. Moreover, types 4a and 4b do not produce equidistributed
sequences. Also, the use of H=2B enables one to replace divi-

sion and multiplication by less time consuming shift and add

operations. Although H:ZB—I does not allow this substitution




directly, a procedure due to Payne, Rabung and Bogyo (1969)

enables one to retain part of this improved efficiency. Note
that A is a primitive root of M if A" =1 (mod W) and
AQ i 1 (mod M) for 0<Q<M-1.

Today only linear congruential generators of types 2 and

3 are commonly used. On 1IBM computers with a word size of i

32 bits and C = 0, the generator called SUPER-DUPER

(Marsaglia 1972) uses M = 232. A = 69069 and Zo = odd
integer to give a period T = 230. For generators of type
2 with prime number modulus M = 231 -~ 1, APL (Katzan 1971)

uses A = 16807, the SIMSCRIPT II programming language
(Kiviat, Villanueva and Markowitz 1969) uses A = 630360016,
SAS (1982) uses A - 397204094 and the IMSL Library (1980)
gives the user the choice of A = 16807 or A = 397204094.

The resulting period is T = 231—2.

2. Theoretical Measures Of Performence |

In practice, it is relatively common to use the pseudorandom
numbers produced by (1) in groups or k~tuples. Consider the

sequence of points

wk = {wi’k = (2i+1""'zi+k); i=1,2,...) (4)
and the normalized sequence .
v, = (vi.k = (zidm.....z“k/u); i=1,2,...). (s)

Ideally one wants the sequence of points Vk to be equidistri-
buted in the k-dimensional unit hypercube for k = 2,3,.... How-

ever, the form of the generator (1) limits the extent to which 3




one can achieve this ideal. For example, observe that an ideal

generator of the integers 1 = {1,...,M 1} produces (H-l)k

equidistributed points in k-dimensional space whereas a generator

of type 2 produces only M-1 points in the this space.

Although this constancy of the number of points is itself
sobering, it is one of two important issues. To illustrate the
second issue, Fig. 1 shows a plot of 2-tuples for the genera-
tors 2, = 7 2, (mod 61) and Z, = 31 Z, {mod 61) where 61

1 i-1 1 i-1
is a prime number and 7 and 31 are primitive roots of 61. Al-

though no one would seriously use either of these generators to

Insert Fig. 1 about here.

produce random 2-tuples, 8 comparison of Figs: la and 1b arouses
a concern that holds for more realistic generators as well.
Notice that the distribution of points in Fig. 1b is considerably
less uniform than the distribution in Fig. la. Since such dif-
ferences in two and higher dimensions are attributable entirely
to the c! of multiplier and since there are an enormous
number of candidate multipliers, a deep analysis of k-tuples
generated by (1) across all those multipliers is needed to assess
the extent to which the resulting sequences Vk depart from the
ideal of equidistributedness.

Several theoretical procedures have been proposed to make
this assessment. They include:

1. maximal distance between adjacent parallel hyperplanes

(spectral test)




g‘ 2. minimal number of parallel hyperplanes

3. minimal distance between points

prmt——

4. ratio of lengths of longest and shortest minimal basis
vectors (lattice test)
5. discrepancy.
Although diverse in what they measure, the procedures share a

common unifying concept. All follow from recognizing that, with

Yy Y=y

: the exception of generators of types 4a and 4b, the k-tuples Hk

can be regarded as points in a regular lattice. Moreover,

generators of types 4a and 4b lead to k-tuples on two intermeshed
regular lattices. Ahrens and Dieter (1977), Beyer, Roof and
Williamson (1971) and Coveyou (1970) provide detailed descrip-
tions of this relationship with lattice theory. To keep the
focus of attention on the assessment of interest, the present
paper presents only the features of lattice theory that are
essential for describing these procedures. Also, unless
otherwise noted our description applies for generators of type 2.
Comperable analyses can be performed for each other type of
generator.

2.1 Maximal Distance Between Adjacent Parallel Hyperplanes

Observe that zi can be written in the form

i

Z, = 2 A (mod M)
i 0
; i-1 . (6) g
=2A -MJ KA izl i
m=0 {

g FYCPP




where K, = [AZ, /HJ j=1,2,... . N for k 1, = . ,
3 i1 i ow 2 q (q, 91’
and y consider the k-dimensional hyperplane
k-1
Hk(g. y) = {(xo,...,xk_l): on qjxj = y)

and in particular the family of parallel hyperplanes

H (q) = {Hk(q. y): y = 0 (mod 1)}. n
Observe that the elements of Vk in (5) lie on hyperplanes in Hk(q)
in (7) if
ey {1) qo.....qk_1 integer
and
k-1 .
(ii) q(A) = I q.A7 2 0 (mod M)
j=0
These restrictions are sufficient since for any Vi K in Vk the
’
quantity
k-1 Z Ai
y. =L 5 qz, =29+ (8)
i M 5=0 j i+d M
where
k-1 i+j-1 o
k, = - g I K, . A (9)
i=1 ¥ m=0 J

Restriction (i) insures that ki is an integer and restriction
(ii) insures that yi-ki is an integer. These restrictions
hold throughout the remainder of this paper.

For the ensuing analysis it is convenient to extend Vk

modulo one to the set

x

x x
"vk-l) integer} U {V = (v k-1

oV

o' ) = Vi’k(mod 1),

i=1,...,1}. (10)
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Since (i) and (ii) hold, the points in v; also lie on hyperplanes
in Hk(q). The set of all hyperplanes containing at least one point

%
of Vk is then

x k-1 % x X
H(q) = {H (q): y =L q.v,, v eV ]}. (11)
| A k'’ 5=0 3 k

Moreover, one can index these hyperplanes by the set of integers
k-1

- * %
I q.uv,: V chT . (12)

Y*() {*
AR A o 373

3
We now use these representations to show that for specified

k > 1 and q the k-tuples in Vk lie on a set of parallel hyperplanes
for which the Euclidean distance between adjacent hyperplanes is

x x
fixed. The set of hyperplanes is Hk(q) and for y and z in Yk(q) the

k-1
. . . 2.1/2
Euclidean distance between Hk(q, y) and Hk(q. z) is ly-zi/C £ q0) .

j=0

x
To prove the result, it suffices to show that the Yk(q) is composed of

all integer multiples of some fixed constant I (q), for then the

~

k

x
Buclidean distance between adjacent hyperplanes in Hk(q) is

Ik(g)
dk(q; A, M) = i (13)
2,172
~ (2 qj)
§=0

x
By way of proof, note that if V and V' are two elements of Vk then

x x
V'* = V' - V is also ‘. '+ therefore for y and z in Yk(q) one has

~
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x

. x x
y-z in Yk(q). Also, for any integer j and point V in Vk

the point

b

x x x
V' = jV is also in Vk so that z:=jy, for chk(q), is also in Yk(q).

x

Therefore, it follows that all elements of Yk

(q) are multiples of

% x x
Ik(q) = min{ly 1>0; y cYk(q)].

thus establishing (13). Without loss generality we take

(1i1) Ik (q) = 1.

-~

Since many different vectors q satisfy (i), (ii), and (iii)

~

for a given multiplier A and induce families of parallel hyper-
planes, additional criteria are needed to enable one to charac-
terize the extent of equidistributedness of the k-tuples Vk in

(5) in the k-dimensional unit hypercube for each possible multi-
plier. One such criterioﬁ is the maximal distance betwecen adja-

cent parallel hyperplanes which is a worst case measure for a

particular multiplier A. It is

k-1 2 -1/2
d: (A, M) = max (T q9) 1 (14)

Qg0+ jao I

subject to restrictions (i), (ii) and (iii). 1In particular, note
that the constraint (iii) eliminates the numerator of (13) from
the maximization (14).

when using (14) to compare k-tuple performance for several

multipliers for a type of generator, one prefers the multiplier
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that gives the minimal maximal distance since this implies
smaller empty regions in the k-dimensional unit hypercube for
this multiplier than for the other multipliers. However, there
is a limit to how small this maximal distance can be; in

particular, it is known that (Cassels 1959, p. 332)

(
(3s4) /4 k=2
,-1/6 o
x -
% aw >y, =4 2714 k=4
k k ~3/10
2 k=5
(3766012 .
"

To illustrate the significance of these bounds, note that

31

with the modulus M = 2 - 1 one has
4
-4
.2008 x 10 k=2
6905 x 107> k=3
* 31 J -2
(A, 277 - 1) > .3906 x 10 k=4
1105 x 107} k=5
2157 x 107 k=6,
.

indicating the relative coarseness of the grid of points in as
few as four dimensions.
Using multivarisble Fourier analysis, Coveyou and McPherson

(1967) advocated using the minimized "wave number"

(s.t.  IERERET Y integer and q(A) = 0 (mod M)) to determine

(15)

the relative desirabilities of alternative multipliers, hence the

name spectral test. Shortly thereafter, it became apparent

(Coveyou 1970; Beyer, Roof and Williamson 1971) that one could




perform equivalent studies using (14) by viewing the k-tuples as

being arranged on parallel hyperplanes and exploiting the mathe:

matical properties of the so induced lattice structure. 1In fact,

it turns out that the physical interpretation of results can be
more easily understood in the space of Ut whereas the computa

tional procedures are more easily understood by working in

the dual space of q. We return to this issue in Section 3.

2.2 Minimal Number of Parallel Hyperplanes
A second measure of equidistributedness, suggested by

Marsaglia (1968), is the number of parallel hyperplanes

Nk(qo....,qk_l; A, M) on which all the k-tuples lie. 1If
this number is small for a particular multiplier A, then this is
an indication that there exist large regions in the k-dimensional
unit hypercube that contain no k-tuples.
Observe that with restriction (iii) gives the upper bound
k-1
N (Qp0- -9y 10 A W) sjzolq I (16)

Using the development in Dieter (1975), one also observes that :

k-1 k-1 )
- 3@ <Y <% (q))
j=o 3 Poge 3

+ i=1,...,T
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Because of the restrictions (i) through (iii) the number of dis-
tinct Yi (mod 1) is precisely the number of parallel hyperplanes

Nk(qo....,qk_l; A, M), then

1 _ k-1 k-1

i A, M) = ¥ (07 + g (qj)* =¥ lqjt -1. (17)

N (q.,...,9
ko k-1 0 j=0 j=0

The -1 in (17) follows from the observation that Yi takes on

all integer values 1,...,NR (90""'9k»1‘ A, M),
As before, there exist many vectors q that satisfy restric-

tions (i), (ii), and (iii). A worst case measure here is

x
Nk(A. M) = mén Nk(qo,...,qk_l; A, M) (18)

-~

subject to the four restrictions. When using this criterion to
choose among several multipliers, one prefers the one that gives
the maximal minimal Nk(qo.....qk_l; A, M). As in the case
of distance between hyperplanes, an upper bound exists on

*
Nk(A. M), namely (Marsaglia 1968)

*

Ny

(A, W < (xn’E k=1,2,....

In particular, for M = 231 - 1 the bounds are

65536

. 2344
N (A, M) < 476
191

107

o wv e WwN

Lol o o o o
oo

u

Agein, these bounds are limiting, and encourage one to search for
multipliers that can come close to the bounds.

Knuth (1981, p. 92) points out that the ordering of several

multiplies Al""Ap according to the maximal distance measure
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x
dk(A.H) may differ from the ordering established by the

x
minimal number of parallel hyperplanes measure Nk(A.H). In

particular, he notes that N:(A,H) "is biased by how nearly

the slope of the lines or hyperplanes matches the coordinate axes
of the cube."” That is, N:(A,H) may be relatively large when
d:(A,H) is also relatively large. Since in this case one 4

inclines to discount the multiplier because of sparseness indi

cated by d:(A,H), there is some justification for valuing

d:(A,H) more highly than N:(A,H) as a measure of per-

formance. Section 3 takes this into consideration when searching

for optimal multipliers. .
Although d:(A,H) provides a more definite evaluation of

a multiplier than N:(A,H) does, the latter gquantity has at

least one readily appealing attribute that justifies its con-

sideration. We illustrate this feature for the type 3 generator

with A=65539 and H=231. This generator is known as RANDU and

was a standard feature of the IBM Scientific Subroutine Library

on 360/370 series computers for many years. Observe that 65539 = ,

21843 50 that |

Zi+1 = (216 + 3)2i (mod 231)
Zi+2 = (6 x 216 + 9)2i (mod 231) {%
Z,,, 62, - 92, (mod 2°%) -
Zi+2 ~6Zi+1 + 9Zi = 0 (mod ?31). j
Moreover, |
. Ui+2 - 6Ui+1 + 9Ui = 0 (mod 1)

%
" indicating that N3(6SS39. 231) < 16, a devastating indictment t




of RANDU in three dimensions. Therefore, the valuable feature of

x
Nk(A,H) is that it can on occasion identify a poor multiplier with

relatively little computational effort.

2.3 Distance Between Points
Smith (1971) has suggested an alternative measure of equidis-

tributedness based on the minimal distance between k- tuples

k-1
x
c (A ) = min i !—1( £z, . - zm.f")”2 . (19)
1<i,m<T j=0 ] )
i#m

Since the total number of points is fixed at T, the smaller
c:(A. M) is for a given A, the larger the volume of space is
in the k-dimensional hypercube that is devoid of points. There-
fore, when comparing several multipliers in k dimensions one pre-
fers the one that gives the maximal c:(A, M).

Whereas d:(A,H) measures distance between adjacent
parallel hyperplanes, c:(A, M) measures distance between

nearest points. An alternative, but equivalent interpretation is
X
k

parallel hyperplanes in the dual space of g. This observation

to view 1/c, (A, M) as the maximal distance between adjacent

X
enables one to establish the upper bounds for ck(A. M)
k=2,3... (Cassels 1959, p. 332):

o 1/k
Cy (A, M) ¢ 1/Yk M (20)

where Yk is defined in (15). This duality relationship also

x
facilitates the computation of ck(a. M) using the algorithm

in Dieter (1975).




2.4 Discrepancy

The concept of discrepancy originated in the study of how
well equidistributed sequences perform in sampling procedures
designed to approximate the volumes of regions in the k-dimen-
sional unit hypercube and in numerical integration. Having
recognized the relationship between this problem and that of
measuring the performance of & random number generator,
Niederreiter (197/) adapted the discrepancy measure to this
latter problem and gave bounds for it.

Consider the sequence of k-tuples {wi i=1,...,T} de-

K

fined in (4). For N=1,...,T discrepancy in k dimensions for a

multiplier A and a modulus M is defined as

o‘(‘k)u,m - max | Pumber of W, ..., Wy iR R tume of R ] (21)

R N Hk

where R ranges over all sets of points of the form R = .

[(wl,....wk)m1 < W, < Bl.....a < w < Bk}' Here cj and

1 k

Bj are integers in the range 0 < aj <B,<Mforlc<ijc<kso

]
that the volume of R is

Niederreiter (1977, 1978a) gave upper and lower bounds for

D;k)(A,H) for generators of types 1, 2 and 3 for arbitrary |

N < T. 1In particular, the upper bound for generators of type 2

is




(k) 1/2 x

Dy (AM) < k + min(N, (M-N ) ) 1
M N q (mod m) "2'"’
+ max (0, N- $H~N)1/2) 2* 1
N q (mod M) r(g. M)

q(A) = 0 (mod M)

where the asterisk denotes exclusion of q°= ...=qk 1 =0,
k-1
riq, M) = ) l'(qj- M),
~ j=o
r{(q,M) =1 if q =0 (mod M)
= M sinvliq/Mil if /= 0 (mod M)
and
lell = min (t, 1-t).

Note that this bound holds for any local sample of N successive k- tuples from
the generator as well as for a global evaluation of performance when N=T.

At present there exists no algorithm, other than total enu-
meration, for computing this upper bound and this situation is '
likely to remain so. However, the form of the bound enables one
to establish a valuable relationship between the spectral test
and discrepancy. Note that sinlig/Mli>0 in the bound end that .

the number of such terms is a function of gq(A). Recall that the !

quantity !




is minimized, subject to q(A) = O (mod M), to find the maximal

distance between adjacent parallel hyperplanes. If this mini-
mized quantity turns out to be small for a multiplier A, then the
congruence occurs frequently for 0 < lqj_ll <M j=1,...,k.
This clearly adds positive terms to the second summation and there-
fore the upper bound is large. 1If for an alternative multiplier A’
the minimized quantity turns out large, the congruence holds less
frequently and the upper bound is smaller than in the previous case.
Thus the results for the spectral test convey useful information
about the bounds on discrepancy.

For generators of types 1 and 2, Niederreiter (1976, 1978a) also
gave the lower bound

k (k)

D;k)(A.H) N 1/k p (Aéuzk) for 2 < k <6 (22)
¥/2(2% + 1) p (A M) for k > 7
and the upper bound
(k) k. VM-T . 2 7.k
| DT (A, M) < Mt min (1, T )(ﬂ log M + S)
? + (log ¥ F (2 log wE a2 log H)k—l)/Zp(k)(A.H) (23)
t
« 2 @2 DM am
; where
(k) k1
P U(A, M) = min (N max(1, iq.D)) . (24)
| q{mod M) j=0 J
q #(0,...,0)
q(A) = O (mod M)
end

J = (log M)/log 2
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Comparable results exist for generators of type 3.

With the exception of k=2 no algorithm exists for computing

(k)

p (A,M). Ahrens and Dieter (1977, Theorem 5.17) gave the

stronger lower bound

(k) k-1
Dy " (AM) > 1/[ min o, n Iqil)]
q # (0,...,0) 1=0
q(A) = O mod M

where m denotes the number of non zero gj,

o if m=2o0r3
Ma = m m
m /(m-1) Hy ifm> 4
and
[mr2) +1 o O o1 m
Hyp= (3 D3 Gqaz) +1-p" 7 menn™
m 320 j

For k=2 Borosh and Niederreiter (1983) showed that

p(Z)(A.H) = min (|q1|'|tH - q1A|)

0 < lg,l < M/2

for some t satisfying q0 = tM - qlA. This result makes the

bounds in (22) and (23) operative for k=2.

Niederreiter (1977, 1978b) provided additional bounds

for k=2. For type 2 generators

p
(A < (24 I a1
T 2t

and

o{.z’u,m < [2 + C(K) log TI/T

(25)

(26)

2n

(28)

(29)
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where al.....apare the partial quotients in the continued
fraction expansion of A/M, K = max (al.....ap) and C(K) =

2/log 2 for 1 < K < 3 and C(K) = (K+1)/log(K+1) for K > 4. Ex-
pressions (28) and (29) also hold for type 3 generators with 2/T

replaced by 1/T and with a ap being the partial quo-

10
tients of A/ZB—Z. Earlier, Dieter (1971) derived closely
related results based on continued fractions to nearest integers
rather than regular continued fractions.

Borosh and Niederreiter (1983, Table 2) have carried out a
systematic search for multipliers of type 3 and type 4. 1In par-

ticular, they gave maximal period multipliers with K < 3 for

8 -6,7,...,35 for each type.

2.5 Lattice Test

Beyer, Roof and Williamson (1971) and Marsaglia (1972) pro-
posed an alternative figure of merit, for evaluating alternative
multipliers, based on the concept of squareness. We use Fig. 1
to illustrate this concept. Clearly one can construct a vast
number of parallelograms of varying areas that include no
interior points. The presumption of the lattice test is that one
prefers multipliers that produce parallelograms of minimal area
whose sides are close, if not equal, in length; hence, the notion
of squareness, where angles are neglected.

Now the minimal volume of a k-dimensional parallelepiped
generated by k-tuples from (1) subject to (ii) is Hk—l. in
evaluating a particular multiplier, the objective of the lattice

test is to find the basis vectors al.....ak that come closest

It AP b 17 e U o Ay £ €T g
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in k dimensions to achieving this squareness for parallelepipeds
k-1
of volume M . To measure the extent of the departure from

equidistributedness in k dimensions Beyer, et al. and Marsaglia

recommended the quantity

Rk(A) = ’ (30)

that is, the ratio of the lengths of the longest and the shortest
basis vectors. Clearly Rk(A) > 1 and presumably one prefers
multipliers for which Rk(A) is close to unity.

It is worthwhile noting that the basis vectors LRERREL play
an implicit role in the previously mentioned tests as well. For example,
one can show that for k=2 the maximal distance between parallel hyper-
planes is

1/2

* 2 2 2
d, (A,M) = (la2| - o, uzl /lc1| )

1
where we take a2 to be the longer vector.
Although the figure of merit in (30) has intuitive appeal,
there is no universal agreement about its usefulness in identify-
ing good multipliers. Marsaglia (1972, p. 275) suggested a gene-
rator of type 3 called super-duper with M = ?32 and A = 69069.
It has RZ(A) = 1.06, R3(A) = 1.29, R“(A) = 1.30 and RS(A) = 1.25;
an appealing generator as evaluated by the lattice test. For this generator

Niederreiter (1978, pp. 1027-1028) showed that p(Z)(A.H) < 69069

(2)
T

8o that (22) gives D (A,M) > 1/(4 x 69069) = .3620 x 10_S . But 1




Borosh and Niederreiter gave a multiplier A = 30391//861 for M = 232
| o

with p(2)(A,H) = .2517M and } a8, = 51 for which (28) based on

i=1
M= 232 gives D;z)(A,H) < (1 4+ 5137230 - 4843 x 1077 . This result

illustrates that although super duper has the appealing figure of
merit R2(69069) 1.06, there exist multipliers with A = 5

32 . . . ..
(mod 2~ ) that dominate it by a substantial margin in k=2

dimensions with regard to discrepancy.

3. Analysis

This section presents results of an investigation based on
the evaluation of {d: (A,M); k=2,...,6} for all multipliers A
that are primitive roots of H=231»1, using an algorithm of
Dieter (1975), as described in Knuth (1981, slgorithm S). Hardy
and Wright (1960) show that the number of primitive roots for M
prime is ¢(M-1) where

¢(M-1) = number of integers not exceeding and
relatively prime to M-1.

This quantity is called the Euler totient function. Since

¢(M-1)/(M-1) = .249 for H=231—1 (Ahrens and Dieter 1977, p. 7,6),

3 .
one has ¢(2 1—2) = 534723428, a not inconsequential number.
To find the primitive roots, one notes that if B is the
smallest primitive root of the prime modulus M, then every

primitive root has the form

Az B' (mod M)




s i - <A 2% L )

J T~

.73

where I is an integer whose largest common factor with M-1 is
unity. Since one also can show that for every such I there exists
a pair of multipliers Bl(mod M) and BM_1 1(mod M) with identi

cal lattice structures, it suffices to investigate only half of all
the primitive roots. 1In the present case 7 is the smallest primi-
tive root of 231—1 so that only 267361714 multipliers require
examination. Note that the multiplier with exponent M-1-1 produces
the same sequence as the multiplier with exponent 1 does, but in
reverse order.

Clearly one needs to adopt a screening procedure to identify
and collect those multipliers that "perform well"™. For present
purposes, the multipliers of most interest are those that "perform
well” in k=2,...,6 dimensions relative to the constraints imposed
on all lattices in these dimensions. Consider the ratios

Sy, k(AM) = Y/dk(A,MML/K k=2,...,6.
As seen from (15), O < Sy (A,M) < 1. Now the closer
$1,1(AM),...,87 g(A,M) are to unity the better the perfor-
mance is of this multiplier with regard to the achievable bounds
in 2,...,6 dimensions. Therefore, one way to perform the screen-
ing is to identify all multipliers for which

min Sy (AM) > S 0<S«<1
2<k<6

where S is specified.

Initially we chose S=.75. Since preliminary computations
indicated that there were an unmanageable number of multipliers
that satisfied this criterion, we changed S to .80. This result-

ed in a total of 207 optimal multipliers, as listed in the

.l
!
!
:(
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Appendix. Recall that there are actually twice this number of
optimal multipliers. The abrupt reduction in the number of opti-
mal multipliers when shifting from S=.75 to S=.8 is itself not-
able. Also note that any multiplier for which sl,k(A’H) > .8

for k=2,...,6 guarantees that for each k the distance between
adjacent hyperplanes does not exceed the minimal achievable

distance by more than 25 percent.

For each selected multiplier and k=2,...,6 we also computed

the ratios

% k
" '
52,k(A.H) = Nk(A.H)/(k.H)

and

® 1/k
S3'k(A.H) = ck(A,H)/YkH v
again using Dieter’'s algorithm.

Table 2 presents these ratios for the multipliers with the

five largest min S (A,M). It also presents results for

1,k
A=16807 which is in APL and IMSL, for A=397204094 which is in
IMSL and SAS, for A-:630360016 which is the SIMSCRIPT 11

multiplier, and for A=7. This last multiplier illustrates the

contrasts that are possible in performance.

Table 2 allows one to make several notable observations:

Insert Table 2 about here.

(a) The first five multipliers perform considerably better
than the remaining multipliers in the table with regard

to the screening measures {S1 k(A.H)} and with
’

regard to {Sz'k(A.H)} and {83'k(A.H)).
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(b) For each of these five multipliers S 2(A,H).....

1

S1 6(A,H) are remarkably close.

(c) The measures S (A M), ..

3,2 (A,M) are also re-

"83,6

markably close and behave essentially as

SI.Z(A'H>""SI,6(A'H)' As expected, Sl.Z(A'H) =
i
83'2(A.H). .
(d) 82 ?(A.H),...,Sz 6(A.H) show considerably more

variation; no doubt a reflection of the suboptimality of
these multipliers with regard to this criterion.

We now turn to another method of evaluating performance which
derives from the concept of packing a lattice with spheres (see
Cassels 1959). Recall that c:(A.H) is the distance between
nearest points in the unit hypercube of k-tuples. Then the
volume of a sphere with this diameter is

X
"k/Z (ck(A.H)/Z)k

Ltam) = Tk/2 + 1)

where I'(*) denotes the Gamma function. Suppose one packs the
lattice with such spheres centered on each of the M-1 points Vk
in (5) and at the origin. Note that these spheres merely touch
and that since there are only M k- tuples, the proportion of the
unit hypercube packed with these spheres is HLk(A.H).

Let

k
wk(A.H) = 2? HLk(A,H).

Using the lattice packing constants in (15) and (20) one has
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3.63 k=2
5.92 k=3
W (A, M) < 9.87 k=4
14.89 k=5
23.87 k=6

Table 3 lists wk(A,H) for the five best and the three
other commonly employed multipliers. The benefits of the five
multipliers is again apparent since their packings are consider- :
ably better across dimensions than those for the more commonly
used multipliers.

Knuth (1981, p. 102) has also used this concept of packing to
rate multipliers. However, his approach relates to packing
spheres in the dual space of qo/“""'qk»1’"' This is done
by noting that in addition to d:(A.H) being the maximal
distance between neighboring parallel hyperplanes in the space of
Vk. the quantity 1/Hd:(A.H) is the minimal distance
between points in the duasl space of qo/H...., qk_I/H.
Therefore, the volume of a sphere with radius 1/2d:(A,H) in
the dual space is

k/2

w

I(k/2+1) [2Hd:(A.H)]k

Wk(A.H) =

Now observe that restrictions (i) and (ii) determine that the
k . k k-1 . . 3
hypercube [-1,1) contains exactly 2 M k-dimensional

points q/M. 1In particular, the exponent k-1 instead of k on M is

due to restriction (ii). Therefore, the proportion of this unit

hypercube packed with spheres is
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= 2kuk’lwk(A,u)

b=
[/

k/2
.4

x k
T(k72 « l)Hldk(A.H)]

which is the measure of packing in the dual space. This guantity
is identical with the figure of merit suggested by Knuth (1981,
p. 101). Note that because of the lattice structure in the dual
space every other unit hypercube in this space would lead to the
same wk(A,H) and vk(A.H).

Table 4 lists uk(A.H) for the multipliers of interest.
Again note the better performance of the top five. Xnuth remarks
that one might say that any multiplier for which uk(A.H) > .1
k=2,...,6 passes the spectral test and any multiplier for which
uk(A,M) > 1 k=2,...,6 passes the test with flying colors. By
this standard the top five multipliers are untouchable. 1In fact,
since Sl'k(A.H) > .8 k=2,...,6 for all multipliers in the

Appendix, those multipliers have

2.32 k=2
3.03 k=3
up(AM) > 4.04 k=4
4.88 k=5
6.26 k=6

indicating that all meet the Knuth criterion and dominate all
multipliers listed in Table 1 of Knuth (1981, pp. 102-103).
Table 5 preseats bounds on discrepancy computed from (25) and

(28) and reveals several interesting results. Ficst, note that

the intervals for k=2 can in no way be regarded as narcow.




Second, the top five multipliers do not dominate A=397204094 and

630360016 unambiguously, as in the earlier tables. This lack of
discrimination on the part of the lower bounds on discrepancy may
be due to the fact that discrepancy is not a rotation invariant
measure. That is, it is developed along the lines of the
classical serial test in Statistics in which the sides of the ;
cells are parallel to the coordinate axes and hence discrepancy
detects the worst case with regard to this orientation only. By
contrast, d:(A.H) measures the worst case with regard to all
possible orientations. Although one can argue that many statis-
tical testing procedures rely exclusively on this cartesian pro-
duct space specification, the fact that our study reveals so many
multipliers that perform well on the more stringent measure
d:(A,H) encourages us to recommend this criterion for

general use.

As mentioned earlier the Appendix contains a list of all

multipliers for which min § (A,M) > .80. A perusal
1,k
2<k<6
of this list reveals six multipliers for which 83 k(A.H) > .80,
*
1
While these multipliers do not rank as high as the five best with i

(A,M), their relatively good bivariate

regard to min sl.k .

2<k<6

behavior with regard to S1 k(A.H) and S (A,M) encourages us

3.k

to examine them more closely. Table 6 shows how these multi-

pliers perform with regard to lattice packing in the sample space
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and in the dual space. A comparison of these results with those
in Tebles 2 and 3 makes clear that these multipliers are equally
acceptable with regard to lattice packing considerations.
Whether or not some other justifiable basis exists for choosing

these multipliers over the best five is not apparent at present.

4. Empirical Evaluations

In addition to evaluating the global properties of a multi-
plier, one needs to consider the local randomness properties of
subsequences of moderate length that a generator with this multi-
plier produces. This evaluation is usually performed by statis-
tically testing these subsequences to detect departures from ran-
domness. Fishman and Moore (1982) described a comprehensive
battery of tests for this purpose, and we apply the same battery
here to test the five best multipliers.

Recall from (2) that U are the random numbers

1’ U2""
normalized to (0,1). Hypotheses to be tested include:

Ho: {u;; i=1,...,n} is @ sequence of i.i.d. random
variables.

Hy: {u;; i=1,...,n} have a uniform distribution on
(0,1).

Hy: (Uz5.1s Upyp) i=1,...,n/2 have a uniform
distribution on the unit square.

Hjy: (Uzj_2, Usj-1, Usy) i=1,...,(n-2)/3 have a
uniform distribution on the unit cube.

Hy:  Hg, Hy, Hy and H3 hold simultaneously.
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For each multiplier we collected 100 consecutive subsequences
of n=200,000 numbers. F¥For each subsequence i and each hypothesis
J a test statistic Tij was computed. Then for hypothesis j,

Tij""'Tloo,j were subjected to the battery of tests. Let
Tij have continuous cumulative distribution function (c.d.f.)

G. under hypothesis j. Then G,(T..,) and P, .=1-G.(T,.,) sre 4‘
J J 1] 1,] J 1)

distributed uniformly on (0,1) and for O<t<l

Fo.(t) =+ Y,
3 n

n
L1
n, -

(P, .
1 (0,t]" 1ij

t
where IB denotes the indicator function on the set B, is an
empirical c.d.f. 1If Hj is true

D ., =sup | F_ ,(t)-t |
n,J t n,J

has the Kolmogonov-Smirnov (K-S) distribution,

1
vn.j =n é I[O,t] (F“’j(t))dt

has the uniform distribution on (0,1) (Dwass 1958) and for large n

1 2
An,j =n é {[Fn'j(t)—t] /t(1-t) }dt

has a distribution given by Anderson and Darling (1952, 1954) and

is denoted by A-D. The quantity Dn j measures the absolute
deviation between the empirical and the hypothesized c.d.f.;

Vn j measures the proportioon of Fn ; that lies below the
1] : ’

,f hypothesized c.d.f.; and A: j is a weighted measure of the

extent of deviation, principally in the tails, of the empirical

c.d.f.

Xy 2o




Since Fishman and Moore (1982) provided complete descriptions

of the testing of Ho,....Hb, here we merely review the most

essential details. 1In particular each test statistic Ti' was

chosen as follows. To test Ho we relied on a comprehensive

analysis of runs-up and runs-down statistics. For H1 we chose
a chi-squared goodness-of-fit statistic with 212=0096 cells.

For H2 the serial test statistic was used for nonoverlapping

2-tuples with a total of 4096 cells in the unit square. For
H3. a serial test statistic was used for nonoverlapping

3-tuples and 4096 cells in the unit cube.

The hypothesis H, is omnibus in character. Recall that

4

P.. = 1-G.(T,.) i=1,...,100 j=0,1,...,3 and set
1) J 1]

X.. = Q‘l(P..)
ij ij

where 6—1 is the inverse of the unit normal distribution.

Under Hj' xij has the unit normal distribtuion and Xio.

xil.....xi3 have a multinormal distribution function ¥. ULet

xi,min = min (xi,o""'xi.S) and xi = max (xi.o""’xi.3)’

Then under H4

-3
h

1,6 = YEX nint T Ximint T XiLmin' T X, min’

and

T 1-¥(X, X. )

. X, X,
i,4 i,max’ "i,max’' "i,max’ "i,max

each have the unit rbrmal distribution. Since Ti and 'J.'.1 measute

4 4

how likely one is to encounter values as extreme as Xi min and
’

xi max’ they provide valuable information about the truth of
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Ho,...,H3. Accordingly we used {Ti 4+ i=1,...,100} and

{Ti.a; i=1,...,100} to test H,- As an interim result a
test of the multinormality of xi'o....,xi‘3 was also
performed.

Table 7 presents the P values for Ho""'Hb and the

multinormality test for the five best multipliers. Although
several multipliers show some small P values, no systematic
rejection occurs across the K-S, V and A-D tests and across
hypotheses. If one feels compelled to rank the multipliers, one
might regard A=950706376 as first and A=1343714438 as last.
However, we emphasize that in a table with so many entries some
low values are to be expected when all hypotheses are true. 1In
summary we conclude that, in addition to having optimal global

properties, the five multipliers show no empirical aberrations.

it e
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Table 1

Linear Congruential Cenerators: 2; = AZj 1 + C{mod M)

Generated Sequence

Type M c A Zg is a Permutation of T
1 28 0dd 1 mod 4 {0,1,...,4-1} {0,1,...,M - 1} 28
2 prime 0 primitive {1,...,M-1} {1, ..., M} M1
root of M
3a 28 0 S (mod 8) 1 (mod 4) {4j+1; j=0,1,...,2B-2.1} 28 2
3b 28 0 5 (mod 8) 3 (mod 4) {4j+3; j=0,1,...,28-2.1} 2B 2
4a 28 0 3 (mod 8) 1 or 3 (mod 8) {8j+1 and 8j+3; j=0,1,...28-3.1} 28 2
4b 28 0 3 (mod 8 5 or 7 (mod 8) {8545 and 8j47; j:0,1,...,28 3.1} »8 2

Source: Jannson (1966); A, C and Zp puarantee maximal period for the modulus M=2B with 8
> 3.




Table 2

Pecformance Measures for Selected Multipliers in Z; = AZj_; (mod M)8

(M = 2311

Dimension (k)

' Multiplier 2 3 4 5 6
X A -
: 742938285 S .8673 .8607 .8627 .8320 .8342
i Sy .8362 .6613 .6618 .6021 .6075
; S3 .8673 .8751 .8507 .7838 .7983
950706376 Sy .8574 .8985 .8692 .8337 .8274
Sy .9211 .8183 .6555 .6806 .6822
S3 .8574 .9093 .8412 L7565 . 1646
! 1226874159 Sy .8411 .8787 .8255 .8378 .8441
S7 .82173 .7240 . 7815 .6492 .6822
S3 .8411 .8877 .8468 .1107 L1743
62089911 8, .8930 .8903 .8575 .8630 .8249
Sy .7169 L1537 .7430 L7153 .6603
Sy .8930 .8286 L7712 .8150 .7385
1343714438 Sl .8237 .8324 .8245 .8262 .8255
Sy .8676 .6404 .6492 .6702 .7103
S3 .8237 .1785 . 7906 .7874 L1747
16807 Sy .3375 L4412 .5752 L7361 .6454
Sy .2565 .3264 .5714 L6754 .5888
S3 .3375 .5404 .6162 .6187 .5889
397204094 S .5564 L5748 .6674 .7678 .5947
S? .5966 .5038 .6239 .6597 .42006
S, .5564 .5543 .7302 . 7849 .6417
630360016 Sy .8212 .4317 .7832 .8021 .5700
S2 .8823 .4373 .6534 L7173 .5047
83 .8212 .6354 .6441 .7983 .5510
7 1000 83 .1420 4,882 27.62 78.13 152.6
1000 S, .1221 3.413 16.81 41.19 74.27
1000 83 .1420 .02650 .02921 .06746 .2201
[} ® 1/k * 1/k ® 1/k
Sl = Ykl dk (AM) W ' 82 = Nk(A.H)/(k! M) and 83 = ck(A.H) Yy M .
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Table 3

Packing Measures in the Sample Space

x
v, (AW = «“’2n[ck A 1% /T2 + 1

(M = 231—1)

Dimension (k)

Multiplier 3 4 5 6
A
742938285 2.13 3.97 5.17 4.40 6.17
950706376 2.67 4.45 4.94 3.69 4.177
1226874159 2.57 4.14 5.07 2.70 5.14
62089911 2.89 3.37 5.17 5.36 3.87
1343714438 2.46 2.80 3.86 4.51 5.16
16807 WAl .93 .00 1.35 1.00
397204094 1.12 1.01 2.80 4,44 1.67
630360016 2.45 1.52 1.70 4.83 67
Upper
Bound 3.63 5.92 9.87 14.89 23.87




Table 4

Parking Measures in the Dual Space

1rk/2
vk(A.H)= * K
(krs241) H{dk(A.H)I
(H=231-1)
Dimension (k)
Multiplier 2 3 4
A
742938285 2.73 3.78 5.47 5.94 8.04
950706376 2.67 4.30 5.63 6.00 7.66
1226874159 2.57 4.02 4.58 6.15 8.63
62089911 2.14 4.34 4.23 4.717 7.99
1343714438 2.46 3.42 4.56 5.73 7.55
16807 .41 .51 1.08 3.22 1.73
397204094 1.12 1.13 1.96 3.97 1.06
630360016 2.45 .48 3.71 4.94 .82
Upper
Bound 3.63 5.92 9.87 14.89 23.87
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Table 5

Bounds on Discrepancy

Dimension (k)

Multiplier 2 3 S
A

742938285 Lower? .1492 .5970 42.89 42.89 42.89
Upperb 3.446

950706376 Lower .2680 1.072 9.607 10.08 10.08
Upper 3.725

1226874159 Lower 1.967 7.869 7.869 7.869 14.86

Upper 10.52

62089911 Lower .4236 1.694 1.694 1.694 4.328
Upper 6.333

1343714438 Lower .2541 1.016 1.016 1.016 7.045
Upper 3.772
16807 Lower 1488 5950 5950 5950 5950

Upper 5952

397204094 Lower .4256 1.702 1.702 1.702 28.61
Upper 4.517

630360016 Lower .1502 .6008 1.546 1.546 4.057
Upper 2.980 }

7 Lower 3571400 14286000 14286000 14286000 14286000
Upper 14286000 1
8 8 k-1
Lower Bound = 10  x 1/min (A_ ¥ |q.]).
™0 i

bUpper Bound

= 10

P
x (2 4+ li)/T.
i=1
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Table 6

Packing Measures for Multipliers with

Sl.k(A,H)g.S and S3,g(A,M)>.8 k=2,...,6

Multiplier Dimension (k)
A 2 3 4 5 6
809609776 wy (A, M) 3.17 3.76 4.51 4.51 8.26 !
Hg (A, M) 3.17 4,23 4.55 5.07 6.71
1567699476 wy (A, M) 2.88 3.66 4.98 6.55 9.96
Wi (A, M) 2.88 3.15 4.37 5.72 6.71
1294711786 wp (A, M) 3.08 2.72 4.95 S.44 9.85
P (A, M) 3.08 4.73 4.13 4.17 5.65
1554283637 wp (A, M) 2.56 3.71 4,71 6.08 1.7
Mg (A,M) 2.56 4.15 4.27 5.74 6.38
857010188 wy (A, M) 2.39 4.16 5.97 5.21 7.74
up (A, M) 2.39 4.20 6.39 5.95 5.08
1582405117 wi (A, M) 3.09 3.13 4.02 4.85 8.02
ug (A, M) 3.09 4.25 5.24 4.88 5.78

Upper Bound 3.63 5.92 9.87 14.89 23.87
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Table 7

P Values for Testing Hypotheses

_Hg

Multi-
Multiplier Test Ho Hy Hy Hj normality min
A 1) (2) (3) (4) (S) (6) (1)
742938285 K-8 .735 .499 .306 .633 .922 L7176
v .853 .012b .971 .491 .463 .278
A-D .408 .231 .406 .796 .990 .545
950706376 K-S .361 .304 .636 .766 .163 244
v .974 .827 .616 .493 . 443 .401
A-D .269 .254 .497 .629 .173 .279
1226874159 K-8 .738 .115 .0818 .903 .151 .220
v ,378 .668 .646 .395 .183 425
A-D .442 .0838 172 .914 .166 .420
62089911 K-S .232 .506 .493 .073a .578 .121
v .618 .923 .7173 .193 .160 .305
A-D .328 457 .539 .139 .377 151
1343714438 K-S .17 .0688 .0240 .845 .635 .904
v .849 440 .158 .781 .577 ,365
A-D .806 .0998 .041b .863 .542 .903

max

8)

.802
353
.870

.529
.322
.417

.532
.749

.802

.132
.345
. 144

. 230
. 404
.195

.05 < P Value
boi1<pP Value
P Value < .0l.

IA A
(=4
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Appendix
A min S min S A min $ min S
SRR T S R SENLLL S S 1
742636285 V.06319 O.7330 1760624889 0.8112 0.7943
$50720€6370 V.uzlu  Ca7505 14422735504 UVeB8T11T D.7110
1226874159 wv.025%5 V7107 959347418 0.8110 UVa7795
0 089511 vanley 0o T73IHS 1113127704d V8106 0.7720
1343714438 Vavcdb  0.7767 1446 2do0uy 0.8107 0.7677
20499513912 voulid 0.6545 231487336 Ued107 0.7820
T81259587  Ueoddle Jalbul 23%4457336 V.8149y7 0U.7820
402920380 Uanlud U 7udy 4U3b3ul6s 0.8102 (e7946
i 1510831690 Va1 Vo765 365470474 U.B0YE 0.7375
’ S020U5T51 vlclye  0.6930 16033un964  0.8U98 J.7113
wbadlltss Ueoulyl D.73vb SoenyYn3d 0.8095 0.7021
i 1980 10Y8e8 Cauln 0.7345 391539930 04095 U. 7495 !
3294«0474 vonlow 0.7271 62149603 0.5093 0.7676
i 1430241322 vet: Tl GaT1vy 1697330722 08092 0.761¢
i pUO2IEHI5Y Uen102 Uea7300 209720443 Ua80Y92 J.7582
i 197590 SHE3 voas1B8t Ul 7242 1051132469 V.8U090  J.7805
! 11GCs s840T  U.s170  J.68Z2b 1036469797 U.5090 U.T7381
16472744979 veolud V7124 109400855 Y.808c J3.70u44
PR PELT! ve$lbb Ja 1294 958373200 Qab0sB 0.7173
: 19C45H L5529 vonlue WG TH77 Ts824dus218 0.8087T 0.795¢0
i 1032193%us vonlos Yo 7470 1901416329 Ja8I87 V.7586
! 1704050060 u.e1bh  JaT4b0 Te82890906  U.od¥s 0.77463
15%0Cevi06lds  gontouw 047723 16092d0051  Q.807% 027430
l. Thziloui3zl Ueti1huy 0.7076 1873440001 DoBul1% Vatb724
: 310801 Uaelod Ol 7441 13%004384Y Qaa0T7H  0.7039
Tle7ddbd53 ot Ula7312 Toy 151w, u1 UeolT9% J.7119
53179922 veulad Ja7V74 1550795 cs 08079 UauTT¢E
; TaU 231t yadlal 0,721 1489853007 Q.80 GaT7992
i yerT8¢757 Ceoluy Co7567 211740072 veddUT3 0.7198
! TunluusY iy uvenliaw ULT540 1337039138 v.0072  J.7897
T3us725491  U.g142 02751/ 12577C1541 0.807: Ja13L8
15428673571 Detilul Je 79318 1061023798 UebUT.2 Ue7087
L215065 30 Ve lul Ua 7158 6LY9Y4d7.240 U.80UT71 Ve 668 Y
73911476 Y133 VaT543 1472080 Toe Q8971 Qo Tu32
21103 cs%0b w139 0.7185 1709354402 08009 027457
1%vou30b4u L.ol3d  0.T7012 1437555212 0.3069 0V.7240
13110y844d  U.01306 V7740 ZY12159807 Ve80L9 0.7122
J114450053  v.s133  U.75u8 1b1035% 818 Jab0bl  0.7029
1758050394 V.30 V.7509 136325646 0.800L  Uab3uY
13402567 Vanlll V. 7803 15206100052 VeBOLY VL1778
SideeloeT VL0127 0.78U3 vl 1,347 Q.8007 0.7850
Tuzo2u004Y . 127  0.7308 160001131, UeaBO63 vaT232
2049445754 V.0l127  0.l403 12067201170 QeBULZ2 VL7771
Toble 13818 U121 0.0d94 BUYLOI770 Ua8B0GLT Uau222
: 33ui Vg vl 125 U.6849 290397876 vaBULY  VaT322
i qUu2eEToY U124 Vo T200 1022131410 VaBUKT 0.7509
b L720C339  Venlle 007300 1o3bu24282  0.d061 J.7595
: 16006097403 L.3121  0.77489 672530717 GaHULO  D.7532
v . 1395492757 v.utll 0,7484 1292 undudy 023059 Jdobbl3
-k 104C0..¢08b V.011Y 007029 FLHTdLude P.8USY 007546
+The remaining 207 multipliers can be computed as follows: Set B = 7; !
for cach multiplier A find the smallest integer 1 such that A B! (mod M). ;
Then the multiplier A* = BM~1-I(qmod M) has the same properties as A. ]
1
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Appendix (continued)

1493834607
103175008500
Tu372:6486
1H04900844937
190 J0tsu7n
1967300437
Tulet32eyd
1957411721
boUun ] Ty
IV B R P
15uc24 430
5509 30b 04
)y 1290
157913431
3897147454
150731842
93Cyu<3ul
1568813405
10359516219
3oYaae2ab
189y 13964973
1o 71412292
1540 (739
1971204812
Tub B8 .7 790
12071040434
11174 3555y
5091710002
G2T74CT7204
1eQue90lol
«3571¢S77
19928C€2H
1()(:\1'.!](1 1.).9
117460 17
12:045681C12
T07¢ 5627y
Tdo9U457 34
Y95,50600ud
539140208
Tet81¢? 17y
20062158220
RY XV W AN
JUduY e 591
41,108 7067
(VERERLR PR
Ya3e 1,204 10
TSl jddue
Twulduu 209
125142187y
201744067
737004774
«UH432740
HIu3UuSueo
P2947 11 150

m;n S],k m;n S3,k
Ve 3UDHY Ve YU H
d.twud UL THLY
JerUhr  UeT0HY
Je0d97 0704
vetivn ]l J.84l0o
Vetusd O 71U
Jeirdd 0.7503
Velde Goabid3Yy
Josud1l  U.T7540
Jeduu9 U720
Ve dus S U;]‘JU"
Velds 4 d JaT309
Deodad  J.TWul
Veodwl UolY0u
Ve DU Ve 759y
U.iddo Ul TH0O
Jendua b Je 7790
Jeouudid Ve 7850
veddd3 V. THYV
J.gused  J.0Y32
Jenud3d Ll 7058
Je 443 047112
Vaosded  0.7447
Jeod4d VaT7753
JeJdd  Uebudd
Ve tt I l) Ve 74345
Jedu e T 240
Jettdui  Ja 7292
J.tadu  D.T149
Vet 339  CaT1250
UedUus4 U.T313
Ja.ti)3e Ve TU20
el 3D Ve 71851
Jun)sd  D.6327
Jettd sl ).l lub
\J.b\)" {)-7(“7
NINAVEY) J. 07114
Gedusl? Ja7182
vetity37 0a75u05
Veasddn  0.TU13
Vatid3dh . ]bcwu
UadUsh  Ua7370
JeBUd s  Ul.bY88
Jasah VaLJTY
Ve (31U 3D Ua. 7860
Dao 33 Val240
Jaend3l 0O.b2b2
Ve ' Ve i1y
Jatved Jelolo
et vet (3
Jedudts ver 139
DelWll 07914
Veblciw Ue 7390
UellU 2 Ued0d40

A m;n S],k m;n S3,k
T3/7154917 0.8023 0.7504
Tou s Tl V8023 00981

1076104959y 0.4023  0.T7944
TU3921524T  Vad023 Jl602Y
Wl2obwludld 0.8022 V.6700
15224500080 08022 V67635
T319%05« 114 Ua.8020 0.758Y
BOLS T2 V8019 U. 7295
T1oHhu9v491 0.8018  0.7391
DHhsaudTn  UL.BUYTT Y. T72UH
1054 03637 Ulau017  0.8094
115566579 08917 0.7911
c44367b0 Uabdlt D.575u
1509507 00,3016 0.7204
bl4/ 75085 UadU1E 027329
331d4.49n 08015 V.725%
JB00u310  0.868015 U.T745¢0
<V117049251 0.b014 Q.bBUZ
1563139263 0.8014 0.772Y
19293 31/u88  0.8014 0U.0861
199341.4954 (8014 0.17026
H1TsdoBZ3 0.8014 V.0 100
Y79 107397 0.8014 0.75060
1956500022 vaB012 Q0.7521
1256904704 V.8011 J.6610
S81e68082 08011 ULbLu65
334258581 08011 0L.T7065
uodSnsue 78 0.3011 0.7%048
534097944 V.8011 047608
£c0TeTu340  J.800Y Deodl8
1TubTu?eu2a  G.800% 00,7125
2101055234 0.8009 Q. T1710
Tai3usasUh ] deBUULE J.781y
796320341 Va0 03 u.76 11
oYU 10vdutb D8V 0.7543
1504249450 C.d008  Ja7187
8570lulbs Va6 0.8001
16604332017 J,8008 Ue /039
$553497105  0.HOUO08  0.0647
1770726809, 08UUT  UL7413
1HoeduL 117 0.6C07 008170
Sdueslal 0.,8907 0.7233
14110 (77v?  0V.800t J.ubTo
1430 WWevud  GablGut 0.7507
302671478 0.8005 v.7199
Tiobostbbd  0.8005 0a7902
14050 Tew 1T 0.0009 QabTb2
TW9u 71330 U.B0UH V.731%1.
1706310220 VoHUOE L7320
270093738 0.8004 v.0510
433389111 0.8003 Ja7821
32318013 0.8003 ©.7399
361070090 0.8000 0V.7293
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