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ABSTRACT

Statistical models usually involve some degree of approximation and

therefore are nearly always wrong. Because of this inexactness, an assessment
of the influence of minor perturbations of the model is important. We discuss
a method for carrying out such an assessment. The method 1s not restricted to

a particular class of models, and it seems to provide a relatively simple,

unified approach for handling a variety of problems.
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%; SIGNIFICANCE AND FXPLANATION

g ~ The statistical analysis of a collection of data is usually based on a

k ) specified model, a mathematical formula describing the behavior of the data up
] to a few unknown parameters which are to be estimated from the data. The

i1

;Ta specification of a model often involves making assumptions that may have

L5

g; little prior support. 1In such situations it becomes necessary to understand

if important results of an analysis are strongly dependent on the validity of
s assumptions underlying the model. The purpose of this paper is to provide a

% method for assessing the influence of minor model perturbations on the results

: b

of an analysis.
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ASSESSMENT OF LOCAL INFLUENCE
R. Dennisg Cook
1. INTRODUCTION

Statistical models are extremely useful devices for extracting and under-
standing the essential features of a set of data. Models, however, are nearly
always approximate descriptions of more complicated processes and therefore
are nearly always wrong. Because of this inexactness, the study of the varia-
tion in the results of an analysis under modest modifications of the problem
formulation becomes important. If a minor modification of an approximate
description seriously influences the key results of an analysis, there is
surely cause for concern. On the other hand, if such modifications are found
to be unimportant, the sample is robust with respect to the induced
perturbations (Barnard 1980) and our ignorance of the precise model will do no
harm.

Although an assessment of the influence of a model perturbation is
generally considered to be important, few general methods are available for
carrying out such an assessment in contexts other than normal linear
regression, and much of the past work is concerned with only the perturbation
scheme in which the weights attached to individual or groups of cases are
modified. Cook (1977, 1979) and Belsley, Kuh and Welsch (1980) propose
diagnostics for assessing the influence of case weight perturbations in linear
regression. For the most part, the case weights are restricted to be either
0 or 1 so that a case is either deleted or retained at full weight. These
ideas are adapted for use in logistic regression by Pregibon (1981).

Moolgavkar, Lustbader and Venzon (1984) give a number of useful results on

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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case deletion diagnostics for general exponential families, and Lustbader and
Moolgavkar (1984) investigate the change in the score test on deletion of
cases. Oman (1984) develops measures for assessing the influence of
individual cases in calibration problems.

Andrews and Pregibon (1978), Atkinson (1982) and Johnson and Geisser
(1982) also propose diagnostics based on case deletion schemes. For a review
of these works and related literature, see Cook and Weisberg (1982).

Attempts to provide a firm foundation for diagnostics based on case
weight perturbation schemes are described in Cook and Weisberg (1982) and
Welsch (1982). These attempts are based on the influence curve, a
construction that relies on an appropriate functional of the true underlying
distribution function. The influence curve has been of value in the
formulation of robust estimators, but it may be more of a hindrance than a
help in the present context. To employ this idea for the construction of an
influence diagnostic we must construct the influence curve, choose one of the
many sample versions and then select a suitable norm. Even in normal linear
regression this process seems to cbscure rather than illuminate the problem at
hand. The difficulty involved in carrying out the program for more
complicated settings is a further annoyance.

This paper presents a general method for assessing the local influence of
minor perturbations of a statistical model. The method relies on a well-
defined likelihood and certain elementary ideas from differential geometry,
and seems to provide a relatively simple, unified approach for handling a
variety of problems. Barnard (1980) gives a brief general discussion on using
the likelihood to assess the consequences of model perturbations. Although
this paper is concerned primarily with local influence, some discussion of

assessing global influence, which is a significantly more difficult problem,

will be given also.
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In the next section, we introduce the idea of an influence graph, a
quantity which seems fundamental to the study of influence as described
- earlier in this section. In section 3, we discuss numerical summaries of
influence graphs. Several illustrations are given in section 4 and section 5

contains concluding comments.
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2. INFLUENCE GRAPHS
2.1 Motivation

Consider the standard linear regression model

Y=3X8 +¢€ (1)
where the elements ei of the n x 1 vector € are assumed to be
independent normal random variables with mean zero and known variance 02. To
motivate the developments of this section, we use model (1) and the following
form of the influence statistic Dy proposed by Cook (1977),

Dy = 1¥ - ¥, 1%/p0’ (2)
where ! and !(1) are the n X 1 vectors of fitted values based on the
full data and the data without case i, respectively, and p 1is the
dimension of fB. A similar motivation can be constructed by using other case
deletion diagnostics. For example, since 02 is known, pD; = (DPPITS)Z
from Belsley, Kuh and Welsch (1980).

The statistic Dy in (2) can be usefully viewed as a basis for
detecting cases that should be carefully inspecteq for gross errors. The
finding of a gross error must necessarily force the removal or correction of
the corresponding case, and such actions may cause a substantial change in the
results of an analysis if D; 1is large.

Generally, case deletion diagnostics allow for only one of two possibili~
ties: a case is either as specified by the model or totally unreliable
(variance <+ ®»), Other reasonable and equally important concerns are not
reflected by such diagnostics. For example, we might postulate a model with
constant variance but admit that the true variances could range between 02/2

and 202. a level of heteroscedasticity that will often go undetected in

practice. To investigate this specific concern, we use the following slightly

more general version of Di'

.'.".'-“'- 0" f\f\fs$ - f.n
..-.-.‘bf.- -.‘-P “-\.¢-n¢~.
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}'j Di(w) =Y - lel /po (3)

ig? where ;b is the vector of fitted values obtained when the i-th case has

:“. - weight ®w and the remaining cases have weight 1. Of course, as w + 0,

;ﬁ var(ei) +® and Dy = Dy(0). If Di(m) is large then the stipulation that

$;1 : the i-th case has variance az/w rather than 02 will lead to substantial

N changes in the results of the analysis.

5:1 At first glance it might seem that D; and Di(w) would always give

gé; essentially the same information. This does not seem to be the case, however.
s

Figure 1 gives plots of pDi(m) versus o for two possible cases A and

B from model (1). The details behind Figure 1 will be presented later. For
now we note that the analysis is clearly more sensitive to alterations in the
weight attached to case B since Da(m) - DA(w) 2 0 and for some w this
difference is substantial. We must have DA(1) = DB(1)' of course. However,
the fact that DA(O) = DB(O) means that the two cases will be judged to be
equally influential when using Di' It seems clear that case deletion
diagnostics alone are not sufficient to handle concerns other than gross

errors. In particular, for a more complete understanding of the influence of

a single case it is necessary to investigate the behavior of Di(m) at values
of w other than w = 0.

In the next section we extend these ideas to general models in which w

can be used to perturb model components other than case weights. This exten-

é& sion is based on the following relationship between Di(m) and the log like-
x
i 1ihood L(B) for model (1),
— po, (@) = (Y ~ x12 - 1y - m?1/0°
x® - . (4)
= 2{L(B) - L(lw)]

where B = ‘w—1 and ‘w is the maximum likelihood estimator of B8 when the

i-th case has weight ®. This relationship was pointed out in the special

-5=
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Case Weight, w
Figure 1

’ pDi(u_) versus w for two possible cases

A and B from model (1).
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case w = 0 by Cook and Weisberg (1982, Chapter 5).

2.2 Develoggent

For a given statistical problem, let © denote the p x 1 vector of
unknown parameters and let L(0) denote the log likelihood corresponding to
the postulated model. We introduce perturbations into the model through the
g X 1 vector @ which is restricted to some open subgset £ of rd.
Generally, ® can reflect any well-defined perturbation scheme and thus is
not restricted to be a collection of case weights. For example, @ might be
used to induce a minor modification of the explanatory variables in a general-
1£ed linear model, or to perturb the entire covariance matrix of the errors in
a normal linear model. As illustrated in the examples of section 4, ® must
be chosen carefully so that the application is sensible. For now we assume
this choice to have been made.

Let L(0|w) denote the log likelihood corresponding to the perturbed
model for a given ® in Q. We assume that there is a unique 9, in Q
sach that L(0) = L(°|'b) for all 0. Finally, let 3 and ;w denote the
maximum likelihood estimators under L(6) and L(alu), respectively, and
assume that L(8|®w) is continuous and twice differentiable in (OT,IF).

To assess the influence of varying ® throughout £, we initially
consider the likelihood difference

ILD(w) = 2[L(;) - L(;m)] . (5)
In a particular problem, specific characteristics of {;wl. € Q} might be
relevant, but LD(e) is a useful universally applicable feature that can be
interpreted in terms of the large sample confidence region for O (Cox and
Hinkley, 1974, Chapter 9)

{6]2(L(0) - L(8)] < xi(p)} .

v "q-.-. \ v
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izj Here, x:(p) is the upper a probability point of a chi-squared distribution
gj with p degrees of freedom. The motivation for (5) comes largely from (4),
\‘{ but some alternatives will be discussed later. For further discussion see

;: Cook and Weisberg (1982, Chapter 5) and Pregibon (1981).

:;; From this perspective, a graph of LD(w) versus ® contains essential
ot information on the influence of the perturbation scheme in question. It is
é&; useful to view this graph as the geometric surface

S

s ate) = (X209}, (6)

In differential geometry a surface of this form is frequently called a Monge

patch. We will refer to a(®) as an influence graph since it is the graph of

. LD(w) that displays the influence of the perturbation scheme. In retrospect,
Figure 1 displays two possible influence graphs for the scheme in which the

weight attached to a single case in linear regression is varied.

The rationale that led to the influence graph a(®) 1is not the only

e
Ag%g reasonable approach, of course. Suppos2 that we partition OT = (03,02),
nik where 01 is Py x 1, and agree that only .1 if of interest. In this

situation the analog of (6) is

LD'(I)
aw=( _ ) (7)
vhere
7:%2 LD1(O) = 2(L(0) - L(.1m'g(°1u))] ’
a2t q(01) is the function that maximizes L(01,02) for each fixed 01, and

.1u is determined from the partition 0: - ('3;'°:m)' The motivation behind
(7) comes in part from the large sample confidence region for 01, (Cox and

Hinkley, 1974, Chapter 9)

- 2
{e,]21(0) - 1(8,,q(0,))] < x ()} .
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The influence graph defined in (7) reflects a special interest. On the

other hand, a somewhat different but related perspective leads to the

influence graph
a'(w) = (P f:”) (8)

where
LD'(w) = 2[L(0w|u) - L(8|..)] .

In the construction of this graph, the moving frame of reference L(O'U) is

A

used to compare Ow and 0, while o(w) was constructed by using the fixed

frame of reference L(0) for the same comparison. Both a and a' may be

useful for assessing influence.

Ideally, we would like a complete influence graph, such as those
displayed in Figure 1, to assess influence in a particular problem. Clearly,
this is possible in only the simplest situations so that it becomes necessary
to consider other methods for extracting the information contained in an
influence graph. Global measures of influence, which characterize the
behavior of an influence graph over all ® in f, are generally much more
difficult to construct in practice than local measures which characterize

*

behavior in a neighborhood of a selected ®w, say e .

In normal linear regression, the various influence diagnostics that rely
on case deletion (Dyg for example) can be regarded as local measures since

they are designed to measure influence on various "corners" of = (0,1)"

where n is the sample size. However, from Figure 1 and the discussion of

section 2.1, it is clear that the behavior of an influence graph around
*
o = @ =
o 1

In the next section we suggest a local measure of influence for charac-

may be as relevant as the behavior at the corners of .

*

terizing the behavior of an influence graph around w = uo.
-9-
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:'.: 3. LOCAL INFLUENCE
\';\

:,; The behavior of an influence graph around .0 is accurately reflected by
4 the geometric normal curvature at uo. For g = 1 this curvature can be

A

v.I‘
:-:" viewed as the inverse of the radius of the circle which best approximates an
LY
o
:-:: influence graph at .0' or as the rate of change of the angle between the

‘

tangent vector at .0 and the horizontal axis. This curvature easily dis-

L. s

:f: tinguishes between the two influence graphs shown in Fiqure 1: the curvature
R 2
< is 2(.05)2pDi for case A and 2(.99)°pD; for case B.

In this section we use normal curvatures to characterize the behavior of

f; an influence graph around . The normal curvature of a surface (a(w) in
‘:. this application) should be discussed in any first text on differential geome-
. try. Sufficient background information is available in Bates and Watts

:?: (1980). For convenience we use a(®) as defined in (6) to develop normal

3 ;: curvatures. The other types of influence graphs discussed in section 2.2 will

be compared later in this section. Also we will initially develop the normal

-‘ curvatures at an arbitrary u., although our primary interest is in the case

‘§ I* - .0' Curvatures at points ‘:ther than .0 may be of some value in
assessing the global behavior of an influence graph.

3.1 Curvatures for a(e)

®*
For q > 1 consider a straight line in @ passing through @ . Such a

WA line can be represented by

N .

" wa) =® + at (9)
R vhere a € r! and £ is a fixed nonzero vector in R, This line generates

»*
a lifted line on the influence graph a(e) passing through a(® ). Each

S

g
§

R

direction 2 specifies such a lifted line and for each lifted line we can

imagine a normal curvature as discussed in connection with Figure 1. For a

-10-
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*
given direction £, let cz(u ) denote the normal curvature of a(®w) at

. Let V denote the (g+1) x g matrix with elements aai(u)/awj, is=

1,2,000,9+1, 3 = 1,2,...,9. Here ui is the i-th component of a and all

*
derivatives are evaluated at ® . Further, let Yy denote the (q+1) x 1

vector with elements ?2ai(u)/am awk, i=1,2,se.,q+1. Then the velocity and

A 3
Eé acceleration vectors in the direction £ are respectively
s .
e a =Vt (10)
and
» .
S
4o [ w 2R (11)
%%‘ r jk j k
o where £ = (£ ). The normal curvature c, (') can now be written as
bR,
o2 C,(w) = NB'G, 1/1a,1° (12)
] L v | 2
k)
< where !% is the projection operator for the null space of V. Carrying out

3
]

the operations indicated in (12) we find

"Tf‘L (13)
° 2 / XY
(141 )2 9T (err )2

*
Cz(l ) =
where i is the q x 1 vector with elements zan(ow)/amj, = 1,2,i0.,9,

and ¥ is the q x q matrix with elements 32L(0m)/8m 3., 3ok = 1,2,000,q

3

*
Since i =0 at 8 = uo,

(o

Teo
= Cz(uo) = 2 l&_!&l . (14)

. 2T

This simple form appears since ., is a global minimum and thus the velocity

and acceleration vectors are orthogonal; that is, every acceleration vector is

orthogonal to the tangent plane at .0' Unless indicated otherwise, we take

»
®» = '0 in the remainder of this section.
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E For (14) to be useful we should have a straightforward way to evaiuate

'%2 #. Using the chain rule for differentiation, it is not difficult to verify

{' that

;; F=aTL3 (15)
A?; where - L is the observed information for the postulated model (@ = .0)

. and J 1is the p *x q matrix with elements 3aim/3wj, i=1,2,..0,p, 3 =

f ,2,...,9, where aiw is the i-th component of 8@. Next, to evaluate J

f we use the fact that

IL(8)w) - o

3 0, | oug e
i w

{s for j = 1,2,...,p and all ® in f. Differentiating both sides of (16)

with respect to ® and evaluating at ®,, it follows that

:% 0
: oo -1
o Jd==-(L) A (17)
o
ﬁ; where A is the p x g matrix with elements
2

A 1y 39,3u,

> :

$,
Ey, evaluated at 0 =0 and e=e ,1i=1,2,...,p, 3 = 1,2,¢..,9. Substituting

(17) into (15) we obtain
j F=a")a (18)
’; and therefore
c, = 2]27a (%) 'an)/2Te . (19)
The individual components of (19) are usually straightforward to obtain once

the perturbation scheme has been defined.

- There are several obvious ways in which (19) might be used to study

5

bt . - = C

gh a(®) in practice The extremes cmax maxzcz and Cnin minl g are two
}j useful options. Of course, Crax and Cain Correspond to the maximum and

minimum abgolute eigenvalues of F in (18). The eigenvectors associated with

="
ol
b
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e these eigenvalues can be used to set the directions in (9) which can then be
152
:ﬁ: used to construct plots, similar to those in Figure 1, of the lifted line
b
( i a(w(a)). Similarly, the eigenvectors associated with intermediate eigenvalues
.*\
’ﬁ% can be used to investigate the behavior of a(w) in directions corresponding
. ‘.

\
. QQ ' to less extreme curvatures.
WL

Another option is the average curvature C obtained by averaging (19)

~
-dﬁ with respect to a uniform distribution on the surface of the unit sphere in
i
I~ q dimensions: Llet sq denote the surface area of a g-dimensional unit
et
N sphere and assume that ¥ is negative semidefinite. Then
)
'g c=s5"] c, as
X 120=1 "¢
X 4 (20)
oAy =1 2. 222
A = 2(q(q+2)) [tr (F) + 2tr(F)]
s where F is as defined in (18).
A
ALY
,2 Finally, a relationship between the curvature Cl and LD can be
e
‘}3 obtained by expanding LD(®(a)) = LD(.0 + at) as a function of a:
o 2 2

. LD(w, + af) = a C,/2 + of{a )
o 0 12
* where I8! = 1. This representation provides a useful alternative interpreta-
f‘} tion of Cz.

3.2 Other Influence Graghs

In this subsection we investigate the infiuence graphs a1(m) and
a'(w) defined in equations (7) and (8), respectively.
By replacing a with a' in the development that led to (10) and (11)

and using the chain rule for differentiation, it is not difficuit to verify

i:; that the velocity and acceleration vectors at wo for a' are the same as

Luy ‘

Ly

%gn those for a. It follows that a and a' have identical curvatures at “0'
L1

L1

4ﬁ~ . although the two influence graphs can differe considerably in global behavior.

Since we are primarily interested in assessing local influence around .0' a

-13-
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and the analogous graph a for subsets will be used in the remainder of this

1
paper.

To develop the curvatures for a1(u), we first note that the development
leading to (13) is valid with L(B) replaced by L[Y(8. )] where Y =
(0 w9 (. )) and g is defined following (7). It follows that (13) can be

adapted for o, by replacing P and ¥ by G = 29L(Y)/3» and G =

1

32L(Y)/302, respectively. Since G=0 at ® (14) is also valid with P

0’
replaced by G. To find a useful expression for 6, we again use the chain
rule and obtain
é=xirx (21)
where I is as defined following (15) and K i3 the p x g matrix with
elements ayi<31m)/amj, i=1,2,.e0,p, 3= 1,2,...,9, evaluated at .
We next need to find a useful representation for K. Let K; denote

the p, x q matrix 801m/3u and let K, denote the p, X p, matrix

3g(01)/301 evaluated at 61 = 01. Then

x=(I)x, . (22)

!2 1
Note that 3 is just the matrix consisting of the first py rows of J

defined in (17). To evaluate K, we make use of the fact that

)
3;: L[.1,g(.1)] = 0 for all 01 (23)

where 94 is the i-th component of g, and the derivative is evaluated at
g= 9(01), i=12...,pp. Differentiating (23) with respect to 01 and
evaluating at 01 we find

K, = -(Ly,)" 'Ly, (24)

where Lys and L,y are determined from the partition

L =

Ly "12)

(“21 Y

. (25)




»”,
A
'ﬂ

et 0,

Finally, combining (14), (21) and (24) with the form of K, mentioned

hJ

above, we obtain the normal curvature for subsets,

A
'A

- 2|2"aT & - B, 2l/2"2 (26)

-

)

’.

& Ay

vhere

‘.~ l\:.

19

o o
B,, = ( x."') .
22

<
(W

N The techniques discussed at the end of subsection 3.1 are applicable to (26),

of course.
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;ﬁg 4. APPLICATIONS

S0

N In this section we describe several possible applications of the ideas

i‘ described in the previous sections. Our intent is to illustrate the range of
2

M4d possible use rather than to develop any particular application in full detail.
15N

LN

:{ The refinements of the individual applications and adaptations for applica-
150

o

tions not discussed here should be straightforward.

58
'.‘\.
9$§

?gq 4.1 Case Weights in Normal Linear Regression
Brca
. Let ® denote the n x 1 vector of case weights for the regression

4, !
e Ny
Pg model (1) and again assume that 02 is known. The modified log likelihood is
\‘

o 1 T, 2
X L(Blw) = - — Z . (y, - x8) (27)

20" i=1

R

‘§5 where mi and y; are the i-th components of ® and Y, respectively,
*af..“t

‘?S and xf is the i-th row of X. Differentiating (27) with respect to B8 and
“ \: -~

Mo @, and evaluating at B and .0 = 1, we find

; T 2

;{3 A = X D(e)/o (28)
¥ .

Ny
,: y where e = "1’ is the n-vector of ordinary residuals when ® = 1 and
W .- ® T 2
AP De) = diag(ey,...,e ). Since L(8) = -X X/0 ,
Sl

i/ d . =
@Y c, = 2187877 "a 2|/2%s
2 (29)
ey T
) = 2 t'D(e)p D(e)2/2"t o

where P = x(!:TX)"x'T is the projection operator for the column space of X.

When o> is unknown, a similar calculation for 8© = (8 ,02) yields

(x D(O)/G ) (30)

. /2o4

-~

where 02 is the maximum likelihood estimator of 02 and e2 = (ei). Since

T "2
L) = (X ¥° 2
0 n/c
-16-
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we have the analogous result for 0,

..
’.

{E Cz = ZIT[D(Q)P Die) + e eT/Znszll/lTl;Z . (31)
N x 2°2
{‘ . If only 8 1is of interest, the above results in combination with (26)
’£ show that the curvature is given by (29) with 02 replaced with ;2. The
'Si . following three special cases should furnish some insight into the behavior of

the curvature in the situation.
‘éi First, for a simple random sample F has only one nonzero eigenvalue
;? Cpax Vith corresponding eigenvector lhax = e¢/lel. Thus, the local changes :
;j in ; will be zero when uo = 1 is perturbed in any direction 2' that is |
if orthogonal to e. This is easily confirmed by direct calculation: Ew = E
%3 for @ = 1+ af'. 1In this simple situation the maximum curvature is Chax = 2 1
:% which is independent of the data. For this reason a curvature of 2 serves i
E% as a useful general reference. Experience has shown that curvatures smaller :
%g than 2 can generally be neglected while curvatures much larger than 2 i
.lb suggest further investigation. Perturbations of the case weights in a simple
}: random gample can therefore never result in serious local changes, although

-
s s a

) global changes resulting from gross errors can be serious, of course. It is
well-known that a gross error is indicated by a relatively large element of

4 ‘hax' An important general implication of this is that even if Crax 18

£ _R.A 8 % A

g small an inspection of ‘hax may reveal the presence of gross errors. This

idea will be illustrated further in later examples.

¥

,ﬁ Second, the curvature for simple linear regression through the origin
3

! with X = (x;) is

2 2
‘E ) . cmax = 2T(x e ) /o Ix

which occurs in the direction £ = (*iei)' This curvature is bounded above

by 2n and will tend to be large when the residuals attached to remote

- xi" are relatively large.
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Finally, the curvature for the influence graph obtained by modifying the

weight attached to a single case, say the i-th, is
c, = 22’n /o% = 2p(1-n, ) %p, (32)

where hij is the (i,j)-th element of P,. Form (32) was used to construct
Pigure 1. Por case A, h11 = ,95 and for case B hii = ,01. Thus, case A
corresponds to a high leverage point with a relatively small residual while B
corresponds to a low leverage point with a large residual. 1In this example,
perturbing the weight attached to case B would lead to changes in ; that are
uniformly larger than those obtained when the weight attached to case A is
similarly modified, although the two cases would appear equally influential
when deleted. Generally, high leverage points with relatively small residuals
are influential only when considering the possibility of a gross error so that
the case contains no relevant information about B. 1In the example of Figure
1, the variance of case A might be set at 10 times the variances of the
remaining cases without any serious consequences while a similar modification
of the variance of case B could lead to substantial changes.

We use the Arill data as given in Cook and Weisberg (1982, p. 148) for a
numerical illustration of the use of (29) with 02 = ;2- The data consist
of n = 31 observations on the axial load on a drill bit under condition set
by three design variables. We use the full second-order response surface
model so that there are 10 1location parameters.

The maximum curvature Crax = 7.42 occurs in approximately the direction

- -015' l = 021

= 038, L 31

A= (li) with ':5 = 061, L = “'016, £ = _1p L

6 9 26 28

and li = 0 otherwise. Five of the six cases with nonnegligible li's

correspond to the cases with the five largest ordinary residuals. Using &
*

as given here and (9) with @ = 1, we have displayed 1LD(e(a)) 1in the

direction of the maximum curvature in Figure 2. Clearly, appropriately
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Figure 2
Plot of the likelihood difference LD in the
< direction of maximum curvature for the drill data.
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5 a
uj modifying a few selected weights can substantially change B as measured
o
&4
}:: using L. For example, at a = .9 the approximate weights are wg = 1.55,
d
{ 0 =, w = 1, = = .1 a = -
{ w6 = .86, w9 1, 26 34, w28 86, m31 1.19, an mi 1 other
:g wise. PFor these weights 1L1D(e) = 18.7 8o that Bw will lie on the edge of a
g_}z 96% confidence for 8.
N
3 Further information on a(ew) could be obtained by looking in directions
‘O(‘d .o
:ﬁ: that correspond to smaller nonzero eigenvalues of P. Since P, has rank
N
*S% p there will be at most p such directions. This serves as a reminder that
' the sengitivity of an analysis to case weight perturbations can be expected to
Xy
‘3}? increase with p for fixed n.
.
f;_f‘-

4.2 Correlations in Normal Linear Regression

In linear regression the assumption of uncorrelated errors is often

difficult to justify. In such situations it may be important to ask if the

analysis is sensitive to deviations from this assumption.
Let ® now denote an n(n-1)/2 x 1 vector of error correlations indexed
;ﬁ i by (1,3), 1 < j, and let tm = var(e). The (i,j)-th element of I is

» 02 for 1 < j and 02 for i = j. For convenience we assume 02 to be

5 known.
o2
! ;y The log likelihood for the perturbed model can now be written as

. 1 1 Ty
e L(Blw) = - 3 log|E | - 5 (v-xB)'F (v-m8) . (33)
Etﬁ Differentiating (33) with respect to f and 'ij' and evaluating at B8 and
S;%i .b = 0, it is not difficult to verify that the (i,j)-th column of A is
; T

- (= ej + ’331)/0 where xi is the i-th row of X. It follows that the

((1,%4),(kx,m))-th element of F is

hyieney * hpiexey + hyjene; + hpjyeyey (34)
wvhere hij is defined following (32).
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f} In this application F is an n(n-1)/2 x n(n-1)/2 matrix. The eigen-

& . -
- values of P can be determined by replacing (iTx) 1

-,

with
: T~ ’/2 T T
\ . (X X) (X X) and using the fact that the eigenvalues of A"A are the
same as those of AA? which will be a manageable p x p matrix in this
sg ) case. The eigenvectors of ¥ may be more of a problem but we expect that by
H
!
using the structure of the experiment & can be restricted to a subspace in
Y many applications.

When only a single correlation is considered, F becomes a scalar and

the corresponding curvature is

ki
A sl ]

2
2(hy 05 + yyeie, + hjjei)/o (35)

vhere (i,j) indexes the perturbed correlation.

A b wd
-

S

4.3 Explanatory Variables in Normal Linear Regression

It is well known that perturbations, within the limits of measurement

error, of the explanatory variables in linear regression can seriously
influence the results of a least squares analysis, particularly when

collinearity is present. To handle this situation in the present context,

X
2
X

let aj denote the standard deviation of the measurement error associated

with the j=-th explanatory variable. For convenience we again assume that o

is known. The following results can be easily adapted for the situation in

r which az is unknown and only 8 4is of interest by replacing 02 with ;2. i
f? The perturbed log likelihood L(B8|w) is constructed from (1) with X '
? replaced by :
;; ' ' X =x+ws (36)
§g vhere W = (wij) is an n x p matrix of perturbations and § =

. diag(.1,...,s ) Next partition the p x np matrix A as 4 = (A1,...,Ap)
- where the elements of the p x n matrix A  are ] L(G]u)/ae Wy i=

1,2,..0'9' j = 1,2,e00,N0 Then
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Ak sk(bke Bk! )/0 (37)

where b, 1is the k-th standard basis vector for RP.

In this application, F is a potentially large np x np matrix and

ity Ve W L an
‘V._‘:‘i o l' "
. PR

determining the eigenvalues of F may be an unpleasant task. However, using

A
PRy

.
‘lll'l

:
.

the method described following (34), it can be shown that the nonzero eigen-

values of F are

S T 2 ~2.2, 2

A¢§ eel /o + % Bjsj/o (38)
g& where 61 is the i-th eigenvalue of 8&(X°X)"'S, i = 1,2,...,p. Thus,

.‘ Couy = 2008 /7 + 2% 3; ; o . (39)
ii When only the k-th column of X 1is perturbed, 8y = 0 for j # k and
%’ (39) can be written as

-

43 Crax ™ 28:(0?0/Rssk + ai)/oz (40)

where RSS, is the residual sum of squares from the regression of the k~th

RO

column of X on the remaining columns. )

FPor a first numerical illustration we use the perturbation scheme for the

Gt A o

B e

longley data that is described in Weisberg (1980, p. 70-72). For this setup,

which consists essentially of using the s,'s to represent round-off errors

i ‘ in the last digit of the explanatory variables, evaluating (39) with 02 - ;2
Z%f gives Cnax = ,18. Weisberg found that only one significant digit in the

yi' E's would be stable under his perturbation scheme. However, the small

;%5 maximum curvature indicates that such variation does not reflect important
i* changes in the estimates when judged against the log likelihood.

0

For a second numerical illustration we use the rat data from Weisberg

(1980, p. 110-113). This data set congists of 19 cases and 4 explanatory

A
O variables, X, = constant, X; = body weight, X, = liver weight and X, =

relative dose. The perturbation schemes we consider are characterized by 8 =

-22-
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diag(so,s1,82,s3) = diag(0,1,0,s3). For s, = 01(.01).04 the maximum
curvatures obtained by setting 02 = 02 in (39), are Chax = 2.8, 9.4, 20.5
and 36.0, respectively. The curvature for 83 = .01 is relatively small

while the curvatures for the remaining s3's indicate that a minor perturba-

tion within the limits of these measurement errors may lead to drastic
changes in ;. At the very least, further investigation is indicated.

For example, a plot of LD(w(a)) in the direction of the eigenvector
corresponding to Cp.. is given in Figure 3 for 8y = .03. Interestingly,
the largest element in the eigenvector for Cmax always corresponds to the l
relative dose for case 3 which is the anomolous care identified by Weisberg

(1980). The scale on the x-axis in Figure 3 is the amount that the relative

dose for case 3 is perturbed in units of sj3. Thus, for example,

a = .5 indicates as3 = .015 was added to the relative dose for case 3.
Clearly, the influence of perturbations for 83 = .03 1is very strong. In
particular, the value of LD at a = -.5 shows that aw will be moved
outside of a 95% confidence region for ; when perturbing each element of

X by an amount that is no greater than 1/2 of the respective standard
deviations 8y- The nonmonotonic behavior in Figure 3 arises since globally
the lifted line a(w(a)) need not correspond to a path of monotonic descent.

Kelly (1984) investigates various extensions of D; for use in the

errors in variables problems.

4.4 Case Weights in Curved Exponential Families

In this and the following subsection, we indicate how previous results
can be extended beyond normal linear models.

Let y; denote an obgervation from a regular curved exponential family

with minimal representation

£(y|0) = exp{yn (8) - v (n (8))} .
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Pigure 3
Plot of the likelihood difference LD in the direction
of maximum curvature for the rat data.
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For a series Yqrees ¥y of independent observations the log likelihood is

therefore

v L(0) = ) (yjn, =¥, (n) . (41)
iy i
N
t ] Next, the log likelihood obtained by attaching a weight o i to the i-th case

\
h ! case be written as simply
§§5 L(0]w) = % w (yn, =¥, () . (42)
KN
ﬁ$ Pregibon (1981) used a likelihood of the form to derive various diagnostics
: for logistic regression.

£
" Let n = (ni) ’
%, .
bl n = 3n/o0 (n x p)

n =2%n,(0/20°  (pxp)

and

grames |

¢ = alagd®y,/an) (0 x n)

where all derivatives are evaluated at €, the maximum likelihood estimator

of 0. Using the results of section 3.1 it is not difficult to verify that
=1eT

r-nn[)_rii-ntn] "D (43)
¥
,;:E where D, is an n x n diagonal matrix with the score residuals
’\ r, = (y, - 3y,/n,) (44)

as the diagonal entries.

‘5 Many generalized linear models are special cases of (41) with

} ni(O) = x(x':O) where KX is the link function. Further,

_,- . L] ,
— ns= diag(xi)x

3

‘ and

¢

: oo - pid T

. NERHE .

- where ii and x.i are the first and second derivatives of K evaluated at
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N 490 respectively. In particular, N = 0 when the cononical link is used.

4.5 Explanatory Variables in Generalized Linear Models

Consider the log likelihood (41) with n, = K(QSO). The log likelihood

i
L(olu) obtained after the explanatory variables have been perturbed by an

amount ® can be constructed by replacing xr with x:;, the i-th row of

lb defined in (36). From this it can be verified that A has the same
structure as described in section 4.3 and that

T . . e e 2
Ak - sk{bkr diag(K, ) + ekx diag(rixi - wixi)} (45)

where b, is defined following (37) and r = (ri)- Further, the observed
information matrix is

o9 T o0 e .2
L = -X diag(rixi - wixi)x . (46)

For a concrete illustration we use the leukemia data as reported in Cook

and Weisberqg (1982, p. 179). Here, a patients survival time in weeks yyo i =
12,044,17, 1is assumed to follows a one parameter exponential distribution

with mean exp{e1 + Ozxil where x; = 1log,o(WBC;) and WBC; is the white

Pl %,

AL RS
Lt Il

blood cell count for the i-th patient.

o

The log likelihood for the original data is of the form given in (41)

with n, = K(6, + 9 , ) = -exp(~(6, + 8 o% )] and ¥ .(n ) = -log(-n ). From
this it follows that

° " ~ -~ -1

Ki - exp[-(ﬁ1 + szi)] = (EYi)

%, =X

. o= » ~ [T |

’i = n1 - exp[O1 + 9 xil = Ki
1 y, - ﬁ;z - exp[2[0 + e )] = ar(y,)
-, =y, - cxp[O + e 2% ]

and thus that
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These calculations along with (45) and (46) can now be used to construct r
as given in (18).

To assess the influence of measurement errors associated with WBC we
perturb x = log1°(WBC) rather than WBC itself. This implies that the
measurement errors associated with WBC are multiplicative rather than
additive and that the standard deviation of WBC; is proportional to
E(WBC;). Both implications seem reasonable.

The maximum curvature for this perturbation scheme is Cpax ™ 17.014-3
where s, is the standard deviation of the measurement error associated
with x = log1°wac. Clearly, the measurement error must be substantial for
the local influence to be large. The eigenvector associated with .. lies
substantially in the direction of case 17: The largest element of this vector
corresponds to case 17 and is about 7 times larger than the second largest
element. Thus, although the local curvature is small, an inspection of the
direction of maximum curvature does direct attention to case 17 which is the
case that Cook and Weisberg (1982, p. 185) identified as influential by using

case deletion diagnostics.
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3 S. DISCUSSION

a For a complete understanding of the influence of a particular perturba-
~

i tion scheme it is probably necessary to know the full behavior of the selected
,ﬁ influence graph. We have found the central methodology discussed in this

&

paper to be a ugseful and relatively simple way of characterizing the local

behavior of an influence graph around uo. The maximum curvature C,.  seems

to be a reliable indicator of extreme local behavior, and the plot of the

.
a8, B,

corresponding lifted line provides a reasonably easy way to confine such

o

2

indications. Also, the methodology can be easily adapted to handle loss

SO

functions other than LD or LDy. In a Bayesian analysis, for example, LD

might be replaced with a loss function that reflects the sensitivity of the

LA
!

analysis to perturbations in the prior parameters.
As demonstrated in Figure 1, gross errors can have a substantial

influence on an analysis even when the curvatures are small. To understand

LIS

the consequences of gross errors it is necessary to characterize the behavior

»

of an influence graph near the boundaries of 1, as in case deletion diag-

nostics attempt to do. Generally, this might be done by simply evaluating an

. L2
LML L e

influence graph at various points near the boundary of . However, our

experience has shown that a plot of the lifted line associated with Cnax Day

indicate the sericusness of gross errors, even when Cp,, is small. This

PG & A A
»

L d

happens, for example, in the numerical illustrations of sections 4.3 and 4.5,

: and may be expected whenever the influence graph is strongly quadratic.
s ol
)
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