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ABSTRACT

Statistical models usually involve some degree of approximation and

therefore are nearly always wrong. Because of this inexactness, an assessment

of the influence of minor perturbations of the model is important. We discuss

a method for carrying out such an assessment. The method Is not restricted to

a particular class of models, and it seems to provide a relatively simple, h.

unified approach for handling a variety of problems.
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SIGNIFICANCE AND EXPLANATION

The statistical analysis of a collection of data is usually based on a

specified model, a mathematical formula describing the behavior of the data up

to a few unknown parameters which are to be estimated from the data. The

specification of a model often involves making assumptions that may have

little prior support. In such situations it becomes necessary to understand

if important results of an analysis are strongly dependent on the validity of

assumptions underlying the model. The purpose of this paper is to provide a

method for assessing the influence of minor model perturbations on the results

of an analysis.
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ASSESSMENT OF LOCAL INFLUENCE

R. Dennis Cook

1. INTRODUCTION

Statistical models are extremely useful devices for extracting and under-

standing the essential features of a set of data. Models, however, are nearly

always approximate descriptions of more complicated processes and therefore

are nearly always wrong. Because of this inexactness, the study of the varia-

tion in the results of an analysis under modest modifications of the problem

formulation becomes important. If a minor modification of an approximate

description seriously influences the key results of an analysis, there is

surely cause for concern. On the other hand, if such modifications are found

to be unimportant, the sample is robust with respect to the induced

perturbations (Barnard 1980) and our ignorance of the precise model will do no

harm.

Although an assessment of the influence of a model perturbation is

generally considered to be important, few general methods are available for

carrying out such an assessment in contexts other than normal linear

regression, and much of the pest work is concerned with only the perturbation

scheme in which the weights attached to individual or groups of cases are

modified, Cook (1977, 1979) and Belsley, Kuh and Welsch (1980) propose

diagnostics for assessing the influence of case weight perturbations in linear

regression. For the most part, the case weights are restricted to be either

0 or I so that a case is either deleted or retained at full weight. These

ideas are adapted for use in logistic regression by Pregibon (1981).

Moolgavkar, Lustbader and Venzon (1984) give a number of useful results on

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



case deletion diagnostics for general exponential families, and Lustbader and

Noolgavkar (1984) investigate the change in the score test on deletion of

cases. Oman (1984) develops measures for assessing the influence of

individual cases in calibration problems.

Andrews and Pregibon (1978), Atkinson (1982) and Johnson and Geisser

(1982) also propose diagnostics based on case deletion schemes. For a review

of these works and related literature, see Cook and Weisberg (1982).

Attempts to provide a firm foundation for diagnostics based on case

weight perturbation schemes are described in Cook and Weisberg (1982) and

Welsch (1982). These attempts are based on the influence curve, a

construction that relies on an appropriate functional of the true underlying

distribution function. The influence curve has been of value in the

formulation of robust estimators, but it may be more of a hindrance than a

help in the present context. To employ this idea for the construction of an

influence diagnostic we must construct the influence curve, choose one of the

many sample versions and then select a suitable norm. Even in normal linear

regression this process seems to obscure rather than illuminate the problem at

hand. The difficulty involved in carrying out the program for more

complicated settings is a further annoyance.

This paper presents a general method for assessing the local influence of

minor perturbations of a statistical model. The method relies on a well-

defined likelihood and certain elementary ideas from differential geometry,

and seems to provide a relatively simple, unified approach for handling a

variety of problems. Barnard (1980) gives a brief general discussion on using

the likelihood to assess the consequences of model perturbations. Although

this paper is concerned primarily with local influence, some discussion of

assessing global influence, which is a significantly more difficult problem,

will be given also.

-2-
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In the next section, we introduce the idea of an influence graph, a

quantity which seems fundamental to the study of influence as described

earlier in this section. In section 3, we discuss numerical summaries of

influence graphs. Several illustrations are given in section 4 and section 5

contains concluding comments.

-3-
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2. ITFLUENCE GRAPHS

2.1 Motivation

Consider the standard linear regression model

T - ]I + 6 (1)

where the elementse i of the n x 1 vector c are assumed to be

2
independent normal random variables with mean zero and known variance o . To

motivate the developments of this section, we use model (1) and the following

form of the influence statistic Di proposed by Cook (1977),

-2 2Di - IT-T(i)I1 (2)

where ; and T(i) are the n x I vectors of fitted values based on the

full data and the data without case i, respectively, and p is the

dimension of 0. A similar motivation can be constructed by using other case

deletion diagnostics. For example, since a2  is known, pD i - (DFFIT) 2

from Delsley, Kuh and Welsch (1980).

The statistic D, in (2) can be usefully viewed as a basis for

detecting cases that should be carefully inspected for gross errors. The

finding of a gross error must necessarily force the removal or correction of

the corresponding case, and such actions may cause a substantial change in the

results of an analysis if Di is large.

Generally, case deletion diagnostics allow for only one of two possibili-

ties aa case is either as specified by the model or totally unreliable

(variance + -). Other reasonable and equally important concerns are not

reflected by such diagnostics. For example, we might postulate a model with

2
constant variance but admit that the true variances could range between 0 /2

and 20 2, a level of heteroscedasticity that will often go undetected in

practice. ?o investigate this specific concern, we use the following slightly

more general version of Di,

-4-
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A A2 2
D i(W) - IT - Y I p (3)

where Y is the vector of fitted values obtained when the i-th case has
W

weight w and the remaining cases have weight 1. Of course, as w + 0,

var(Ci ) + + and Di - Di(o). If Di (W) is large then the stipulation that

2 2the i-th case has variance a w rather than a will lead to substantial

changes in the results of the analysis.

At first glance it might seem that Di and Di (w) would always give

essentially the same information. This does not seem to be the case, however.

Figure 1 gives plots of pDi( ) versus w for two possible cases A and

B from model (1). The details behind Figure 1 will be presented later. For

now we note that the analysis is clearly more sensitive to alterations in the

weight attached to case B since DB(W) - DA(w) 0 and for some w this

difference is substantial. We must have DAI) - DB(l), of course. However,

the fact that DA(O) - Dp(0) means that the two cases will be judged to be

equally influential when using Di. It seems clear that case deletion

diagnostics alone are not sufficient to handle concerns other than gross

errors. In particular, for a more complete understanding of the influence of

a single case it is necessary to investigate the behavior of D (w) at values

of w other than w- 0.

In the next section we extend these ideas to general models in which w

can be used to perturb model components other than case weights. This exten-

sion is based on the following relationship between D (w) and the log like-

lihood L(O) for model (1),

A2 Ay 2 2
PDi(wi) - [IT T TI Y1 I /0

A A (4)
- 2[L(B) - L( )]4

where 0 - 0 - and 0 is the maximum likelihood estimator of B when the

i-th case has weight w. This relationship was pointed out in the special

-5-
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Case Weight, w

Figure 1

pD1 (w) versus w for two possible cases

A and B from model (1).
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case w = 0 by Cook and Weisberg (1982, Chapter 5).

2.2 Development

For a given statistical problem, let 0 denote the p x 1 vector of

unknown parameters and let L(O) denote the log likelihood corresponding to

the postulated model. We introduce perturbations into the model through the

q x I vector v which is restricted to some open subset SI of Rq .

Generally, v can reflect any well-defined perturbation scheme and thus is

not restricted to be a collection of case weights. For example, a might be

used to induce a minor modification of the explanatory variables in a general-

ized linear model, or to perturb the entire covariance matrix of the errors in

a normal linear model. As illustrated in the examples of section 4, a must

be chosen carefully so that the application is sensible. For now we assume

this choice to have been made.

Let L(OSI) denote the log likelihood corresponding to the perturbed

model for a given m in A. We assume that there is a unique a0  in A

sich that L(S) - L(016.) for all 0. Finally, let 0 and denote the

maximum likelihood estimators under L(O) and L(lsu), respectively, and

assume that L(0 1) is continuous and twice differentiable in (T aT ).

To assess the influence of varying a throughout fl, we initially

consider the likelihood difference

LD(m) - 2[L(S) - L(S (a (5)

in a particular problem, specific characteristics of (0 fl ) ea might be

relevant, but LD(u) is a useful universally applicable feature that can be

interpreted in terns of the large sample confidence region for S (Cox and

Hinkley, 1974, Chapter 9)
2

{012[L(S) - L(O)] ( xa(p)

-7-
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Here, x2 (p) is the upper a probability point of a chi-squared distribution

with p degrees of freedom. The motivation for (5) comes largely from (4),

but some alternatives will be discussed later. For further discussion see

Cook and Weisberg (1982, Chapter 5) and Pregibon (1981).

From this perspective, a graph of LD(u) versus w contains essential

information on the influence of the perturbation scheme in question. It is

useful to view this graph as the geometric surface

U(N) -. (S - (6)

In differential geometry a surface of this form is frequently called a Monge

patch. We will refer to a(a) as an influence graph since it is the graph of

LD(s) that displays the influence of the perturbation scheme. In retrospect,

Figure I displays two possible influence graphs for the scheme in which the

weight attached to a single case in linear regression is varied.

The rationale that led to the Influence graph a(*) is not the only

T T Treasonable approach, of course. 8uppobfs that we partition S T (0 ,1, 

where Si  is P, x 1, and agree that only 0, if of interest. In this

situation the analog of (6) is

LI() 7)

whereSA A A

LD1(a) - 2(L(;) - L( 1w,g( 1))] 

g(0I) is the function that maximizes L(O 1,02) for each fixed 0,, and

A T (AT AT
O is determined from the partition S - ( ). The motivation behind

(7) comes in part from the large sample confidence region for 01, (Cox and

Hinkley, 1974, Chapter 9)

{S1 12[L(S) " L(0 1 1 g(6I)] ' X (P) •
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The influence graph defined in (7) reflects a special interest. On the

other hand, a somewhat different but related perspective leads to the

influence graph

c,(u) = (LD'(a)) (8)

-

where

LD'(u) = 2[L( u - •IN)

In the construction of this graph, the moving frame of reference L(Stu) is

used to compare 0 and 0, while a(m) was constructed by using the fixed

frame of reference L(O) for the same comparison. Both a and a' may be

useful for assessing influence.

Ideally, we would like a complete influence graph, such as those

displayed in Figure 1, to assess influence in a particular problem. Clearly,

this is possible in only the simplest situations so that it becomes necessary

to consider other methods for extracting the information contained in an

influence graph. Global measures of influence, which characterize the

behavior of an influence graph over all a in n, are generally much more

difficult to construct in practice than local measures which characterize

behavior in a neighborhood of a selected w, say a

In normal linear regression, the various influence diagnostics that rely

on case deletion (Di for example) can be regarded as local measures since

they are designed to measure influence on various "corners" of n = (0,1) n ,

where n is the sample size. However, from Figure I and the discussion of

section 2.1, it is clear that the behavior of an influence graph around

48 - 00 M I may be as relevant as the behavior at the corners of Q.

In the next section we suggest a local measure of influence for charac-

terizing the behavior of an influence graph around w = u0"

-9-
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a. 3. LOCAL INFLUENCE

4 The behavior of an influence graph around a0 is accurately reflected by

the geometric normal curvature at w0 * For q - 1 this curvature can be

viewed as the inverse of the radius of the circle which best approximates an

influence graph at aO , or as the rate of change of the angle between the

tangent vector at 0 and the horizontal axis. This curvature easily dis-

tinguishes between the two influence graphs shown in Figure 1: the curvature

is 2(.05)2pD for case A and 2(.99)2pD for case B.

In this section we use normal curvatures to characterize the behavior of

an influence graph around a0 . The normal curvature of a surface (a(*) in

this application) should be discussed in any first text on differential geome-

try. Sufficient background information is available in Bates and Watts

(1980). For convenience we use alm) as defined in (6) to develop normal

a curvatures. The other types of influence graphs discussed in section 2.2 will

be compared later in this section. Also we will initially develop the normal

curvatures at an arbitrary 0 , although our primary interest is in the case

m u0. Curvatures at points -ther than a. may be of some value in

assessing the global behavior of an influence graph.

3.1 Curvatures for a(*)

For q > I consider a straight line in 0 passing through a * Such a

line can be represented by

w(a) - a + a (9)

where a e R and A is a fixed nonzero vector in Rq , This line generates

a lifted line on the influence graph a(*) passing through ali ). Each

direction I specifies such a lifted line and for each lifted line we can

imagine a normal curvature as discussed in connection with Figure 1. For a

-10-
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given direction 1, let C (u) denote the normal curvature of a(*) at

Let V denote the (q+1) x q matrix with elements 3a (W)/A j, i -

1,2,...,q+1, j - 1,2,...,q. Here ai  is the i-th component of a and all

derivatives are evaluated at a . Further, let wjk denote the (q+l) x I

vector with elements 2 ai(u)/3wjk, i - 1,2,...,q+l. Then the velocity and

acceleration vectors in the direction I are respectively

- VI (10)

and

" v' I iJk (11)
j k k

where £ (k ). The normal curvature Ct(u ) can now be written as

C(u) - 1 2/ 12 (12)

where PI is the projection operator for the null space of V. Carrying out

the operations indicated in (12) we find

-W 21 ill (13)(21+,2, 2 -T

where i is the q x 1 vector with elements 23L( W)/awj, J - 1,2,...,q,

and 7 is the q x q matrix with elements 32L(O)/ Wjk - 1,2,...,q.

Since -O at 0 1

C t  (a 2 zLt (14)

This simple form appears since 10 is a global minimum and thus the velocity

and acceleration vectors are orthogonal; that is, every acceleration vector is

orthogonal to the tangent plane at a Unless indicated otherwise, we take00

a -s in the remainder of this section.

-11-
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For (14) to be useful we should have a straightforward way to evaiuate

P. Using the chain rule for differentiation, it is not difficult to verify

that

*~~ M J L J15

where - L is the observed information for the postulated model (a = a0 )

and J is the p x q matrix with elements 3e /wi, i 1,2,....p, j

1,2,...,q, where eiW is the i-th component of e ( Next, to evaluate J

we use the fact that
aL(9) = o(

j 0-s(a)

for j m 1,2,...,p and all a in n. Differentiating both sides of (16)

with respect to a and evaluating at wO , it follows that

- - (1.) - Ia (17)

where A is the p x q matrix with elements

Aij - e e1 30

evaluated at 0 and w s o0, i 1 l,2,...,p, j - 1,2,...,q. Substituting

(17) into (15) we obtain

and therefore

T.0 -1 T
C1  217A (L.) A/AZ (19)

The individual components of (19) are usually straightforward to obtain once

the perturbation scheme has been defined.

There are several obvious ways in which (19) might be used to study

a(*) in practice. The extremes Cmax - maxI C and Cmin - minI C are two

useful options. Of course, Cmax and Cain correspond to the maximum and

minimum absolute eigenvalues of F in (18). The elgenvectors associated with

-12-
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these eigenvalues can be used to set the directions in (9) which can then be

used to construct plots, similar to those in Figure 1, of the lifted line

W(u(a)). Similarly, the eigenvectors associated with intermediate eigenvalues

can be used to investigate the behavior of a(m) in directions corresponding

to less extreme curvatures.

Another option is the average curvature E obtained by averaging (19)

with respect to a uniform distribution on the surface of the unit sphere in

q dimensions: Let Sq denote the surface area of a q-dimensional unit

sphere and assume that F is negative semidefinite. Then

F = S "  C dS(
q 1 (20)

= 2(q(q+2))-1 tr2 () + 2tr(F 2)]

where V is as defined in (18).

Finally, a relationship between the curvature C and LD can be

obtained by expanding LD(N(a)) = LD( 0 + at) as a function of a:
22

LD(w0 + at) = a C,/2 + o(a
2)

where 111 - 1. This representation provides a useful alternative interpreta-

tion of C.

3.2 Other Influence Graphs

In this subsection we investigate the influence graphs a 1(w) and

at(*) defined in equations (7) and (8), respectively.

By replacing a with a' in the development that led to (10) and (11)

and using the chain rule for differentiation, it is not difficult to verify

that the velocity and acceleration vectors at w0 for a' are the same as

those for a. It follows that a and a' have identical curvatures at A0'

although the two influence graphs can differe considerably in global behavior.

Since we are primarily interested in assessing local influence around mot a

-13-
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and the analogous graph a for subsets will be used in the remainder of this

paper.

To develop the curvatures for c1(t), we first note that the development

Tleading to (13) in valid with L(6 ) replaced by L[y(O )J where y =

aT T
(@1W,g ( W)) and g is defined following (7). It follows that (13) can be

adapted for aI by replacing F and F by G 23L(y)/ai and

a2L(Y)/3U2, respectively. Since G = 0 at woo (14) is also valid with F

replaced by G. To find a useful expression for G, we again use the chain

rule and obtain

G=T r (21)

where L is as defined following (15) and K ia the p x q matrix with

elements BYi(0 1w)/awj, i = 1,2,...,p, j w 12,...,q, evaluated at *0

We next need to find a useful representation for K. Let 91 denote

the p1 x q matrix a; 1./B and let 12 denote the p2 x p 1 matrix

ag( 1/301 evaluated at 0 - 0 Then

-(22)

Note that K1 is just the matrix consisting of the first p1  rows of J

defined in (17). To evaluate 12 we make use of the fact that

a- LC( 1 ,g(81)] - 0 for all 0, (23)

where gi is the i-th component of g, and the derivative is evaluated at

g - g(91 ), I - 1,2,...,p 2. Differentiating (23) with respect to 01 and

evaluating at 6 we find

12 - -IN22 - l (24)

where '22 and L2, are determined from the partition

"L .L 11  L 12 )
L 21 2 (25)

-14-
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Finally, combining (14), (21) and (24) with the form of 1 mentioned

above, we obtain the normal curvature for subsets,

c -211TAT(L -  -22)A (l/1 (26)

vwhere

~22 0 L
0 22

The techniques discussed at the end of subsection 3.1 are applicable to (26),

of course.

A

-15-
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4. APPLICATIONS

In this section we describe several possible applications of the ideas

described in the previous sections. Our intent is to illustrate the ranqe of

possible use rather than to develop any particular application in full detail.

The refinements of the individual applications and adaptations for applica-

tions not discussed here should be straightforward.

4.1 Case Weights in Normal Linear Regression

Let w denote the n x I vector of case weights for the regression
2

model (1) and again assume that a is known. The modified log likelihood is

=- 1- n T 2 (7

2a2  i 1 i 
Yi - x 1 2

where W and y1  are the i-th components of 0 and Y, respectively,

and 4 is the i-th row of X. Differentiating (27) with respect to and

a, and evaluating at S and - 1, we find

T 2
& X" D(e)/a 2  (28)

where e - (ei) is the n-vector of ordinary residuals when a - I and
D(e) -diag(e 1 ,...,en). Since TX 2/ ,

C£- 21tT(S I-IA tK/

T T 21 (29)

- 2 t De P Dle)/tT I a
2

where P. X( 1T)-1XT is the projection operator for the column space of 1.

2 T T 2When a is unknown, a similar calculation for 0 - (STa 2 ) yields

D(e)/a (30)
T _4

"2 2 2
where a is the maximum likelihood estimator of a and e2 = (e 1. Since

aT ^2

0 n/A

-16-
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we have the analogous result for 0,

T T ^2 T 2
C 21T[D(*)P D(O) + e2 2 /2n ]1/1 (31)

If only 0 is of interest, the above results in combination with (26)
2 2

show that the curvature is given by (29) with a replaced with a • The

following three special cases should furnish some insight into the behavior of

the curvature in the situation.

First, for a simple random sample V has only one nonzero eigenvalue

with corresponding eigenvector m - e/1 e. Thus, the local changesCmax max

in 0 will be zero when w0 - I is perturbed in any direction ' that is

orthogonal to e. This is easily confirmed by direct calculation: OW - B

for a - 1 + al'. In this simple situation the maximum curvature is Cmax - 2

which is independent of the data. For this reason a curvature of 2 serves

as a useful general reference. Experience has shown that curvatures smaller

than 2 can generally be neglected while curvatures much larger than 2

suggest further investigation. Perturbations of the case weights in a simple

random sample can therefore never result in serious local changes, although

global changes resulting from gross errors can be serious, of course. It is

well-known that a gross error is indicated by a relatively large element of

S. An important general implication of this is that even if Cmax ismax

small an inspection of A may reveal the presence of gross errors. Thismax

idea will be illustrated further in later examples.

Second, the curvature for simple linear regression through the origin

with I - (xi) is
2 ̂ 2 2

Cmax M 2 i(xiei) /a Exi

which occurs in the direction I - (xiei). This curvature is bounded above

by 2n and will tend to be large when the residuals attached to remote

xi's are relatively large.

-17-
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Finally, the curvature for the influence graph obtained by modifying the

weight attached to a single case, say the i-th, is

2 -2 2
C 2e ihii /a - 2p(I-hii) .D (32)

where hij is the (i,j)-th element of Px" Form (32) was used to construct

Figure I. For case A, hii M .95 and for case B hii = .01. Thus, case A

corresponds to a high leverage point with a relatively small residual while B

corresponds to a low leverage point with a large residual. In this example,

perturbing the weight attached to case B would lead to changes in 0 that are

uniformly larger than those obtained when the weight attached to case A is

similarly modified, although the two cases would appear equally influential

when deleted. Generally, high leverage points with relatively small residuals

are influential only when considering the possibility of a gross error so that

the case contains no relevant information about B. In the example of Figure

1, the variance of case A might be set at 10 times the variances of the

rmaining cases without any serious consequences while a similar modification

of the variance of case B could lead to substantial changes.

We use the drill data as given in Cook and Weisberg (1982, p. 148) for a

2 ^2
numerical illustration of the use of (29) with a C a • The data consist

of n - 31 observations on the axial load on a drill bit under condition set

by three design variables. We use the full second-order response surface

model so that there are 10 location parameters.

The maximum curvature Cmax - 7.42 occurs in approximately the direction

£m(I ) with 15 .61, 1 6 w-.16, 19 =-1, z26 = .38, £28 -15, £ 31 .21

and 0 otherwise. Five of the six cases with nonnegligible o's

correspond to the cases with the five largest ordinary residuals. Using I

as given here and (9) with a - 1, we have displayed LD(w(a)) in the

direction of the maximum curvature in Figure 2. Clearly, appropriately

N% -18 -
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Figure 2

Plot of the likelihood difference WD in the
direction of maim curvature for the drill data.
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modifying a few selected weights can substantially change B as measured

using L. For example, at a - .9 the approximate weights are w. = 1.55,

W 6 = , 1.34, w = .86, w = 1.19, and wi = 1 other-

wise. For these weights LD(40) = 18.7 so that W will lie on the edge of a

96% confidence for 6.

Further information on a(m) could be obtained by looking in directions

4that correspond to smaller nonzero eigenvalues of F. Since Px has rank

p there will be at most p such directions. This serves as a reminder that

the sensitivity of an analysis to case weight perturbations can be expected to

increase with p for fixed n.

4.2 Correlations in Normal Linear Regression

In linear regression the assumption of uncorrelated errors is often

difficult to justify. In such situations it may be important to ask if the

analysis is sensitive to deviations from this assumption.

Zet a now denote an n(n-1)/2 x I vector of error correlations indexed

by (i,j), i < J, and let E - var(g). The (i,j)-th element of E is

MiU 2 for i < j and 02 for i - J. For convenience we assume 0 2 to be

known.

The log likelihood for the perturbed model can now be written as
L(OI)' 1 log-- I _,I (y 2 5 )Tl Q) ( (33)

2 og 2 W(

Differentiating (33) with respect to 0 and Oia, and evaluating at S and

a0 - 0, it is not difficult to verify that the (i,j)-th column of A is

2 T
-(Xe + xje I ) /

2 where x i  is the i-th row of X. It follows that the

((ij),(k m))-th element of F is

hkiemej + hmiekej + hkjemei + hmjekei (34)

where hij is defined following (32).

-20-
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In this application F is an n(n-1)/2 x n(n-1)/2 matrix. The eigen-

values of P can be determined by replacing (ZTZ)-1 with

(•T•)-1/2 (TX)- 1/2 and using the fact that the eigenvalues of ATA are the

same as those of AAT which will be a manageable p x p matrix in this

case. The eigenvectors of F may be more of a problem but we expect that by

using the structure of the experiment w can be restricted to a subspace in

many applications.

When only a single correlation is considered, F becomes a scalar and

the corresponding curvature is

2(hile + 2hijeiej + h e2)/a 2  (35)

where Ci,J) indexes the perturbed correlation.

4.3 Explanatory Variables in Normal Linear Regression

It is well known that perturbations, within the limits of measurement

error, of the explanatory variables in linear regression can seriously

influence the results of a least squares analysis, particularly when

collinearity is present. To handle this situation in the present context,

let si denote the standard deviation of the measurement error associated
2

with the J-th explanatory variable. For convenience we again assume that a

is known. The following results can be easily adapted for the situation in

2 2 2
which a is unknown and only 0 is of interest by replacing o with a

The perturbed log likelihood L(Pju) is constructed from (1) with z

replaced by

I = X+Wa (36)

where W - (w(o) is an n x p matrix of perturbations and S -

diag(sl,...,sp). Next partition the p x np matrix A as A - (A ,...,A )

where the elements of the p x n matrix A are a L(OIU)/aei Wjk, i 
Ak i k

1,2,..o,p, j m 1,2,o..,n. Then

-21-
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A~~b T - T 2
ik 8k kX )/a (37)

where bk  is the k-th standard basis vector for RP .

In this application, r is a potentially large np x np matrix and

Si.determining the eigenvalues of F may be an unpleasant task. However, using

the method described following (34), it can be shown that the nonzero eigen-

values of i are

T 2 2 2 2
e.06 1/a + 8 1 /a (38)

where 5 is the i-th eigenvalue of S(Txrs, i m 1,2,...,p. Thus,

C = 2eTe /02 + 21 02s 2cla . (39)
max max J

When only the k-th column of I is perturbed, sj = 0 for j # k and

(39) can be written as

C MaX - 2s k(a, eSS k + 0k)/a (40)

where RSSk  is the residual sum of squares from the regression of the k-th

column of I on the remaining columns.

For a first numerical illustration we use the perturbation scheme for the

Longley data that is described in Weisberg (1980, p. 70-72). For this setup,

which consists essentially of using the sk's to represent round-off errors

2 ^2in the last digit of the explanatory variables, evaluating (39) with as - a

gives Cmax - .18. Weisberg found that only one significant digit in the

O's would be stable under his perturbation scheme. However, the small

maximum curvature indicates that such variation does not reflect important

changes in the estimates when judged against the log likelihood.

For a second numerical illustration we use the rat data from Weisberg

(1980, p. 110-113). This data set consists of 19 cases and 4 explanatory

variables, X0 - constant, X, - body weight, X2 - liver weight and X3 -

relative dose. The perturbation schemes we consider are characterized by S -

-22-
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diag(s0 ,s1 ,s2 ,s3 } = diag(0,1,0,s 3 1  For 53 .01(.01).04 the maximum

2 ^2
curvatures obtained by setting a = a in (39), are Cmax = 2.8, 9.4, 20.5

and 36.0, respectively. The curvature for s3 = .01 is relatively small

while the curvatures for the remaining s3's indicate that a minor perturba-

tion within the limits of these measurement errors may lead to drastic

changes in B. At the very least, further investigation is indicated.

For example, a plot of LD(w(a)) in the direction of the eigenvector

.4 corresponding to Cmax is given in Figure 3 for s3 = .03. Interestingly,

the largest element in the eigenvector for Cmax always corresponds to the

relative dose for case 3 which is the anomolous care identified by Weisberg

(1980). The scale on the x-axis in Figure 3 is the amount that the relative

dose for case 3 is perturbed in units of S3. Thus, for example,

a - .5 indicates as3 - .015 was added to the relative dose for case 3.

Clearly, the influence of perturbations for s3 - .03 is very strong. In

particular, the value of LD at a = -.5 shows that 0W will be moved
Aw

outside of a 95% confidence region for P when perturbing each element of

X by an amount that is no greater than 1/2 of the respective standard

deviations oi. The nonmonotonic behavior in Figure 3 arises since globally

the lifted line a(w(a)) need not correspond to a path of monotonic descent.

Kelly (1984) investigates various extensions of Di for use in the

errors in variables problems.

4.4 Case Weights in Curved Exponential Families

In this and the following subsection, we indicate how previous results

can be extended beyond normal linear models.

Let Yi denote an observation from a regular curved exponential family

with minimal representation

f(yIO) - exp{yi(a) - (n (0)))
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For a series yl,**" of independent observations the log likelihood is

therefore

L (ib* i

Next, the log likelihood obtained by attaching a weight wi  to the i-th case

case be written as simply

L(OSm) )* wi(Ygni - ni(nl)) . (42)
i

Pregibon (1981) used a likelihood of the form to derive various diagnostics

for logistic regression.

Let R - (n i ) ,

= -i/wS (n x p)

ni -92ni(g)/02 (p X p)

and

- diag(a)2 *1/3 T) (n x n)

where all derivatives are evaluated at 0, the. maximum likelihood estimator

of 8. Using the results of section 3.1 it is not difficult to verify that

I D- i - ; )-1.1R (43)
r r

where Dr is an n x n diagonal matrix with the score residuals

r - -(Y L i/an )  (44)

as the diagonal entries.

Many generalized linear models are special cases of (41) with

- K(x0) where K is the link function. Further,

Ti-diag(ii)X

and

T
r ziiniZ,

where K and are the first and second derivatives of K evaluated at
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T
z 0, respectively. in particular, WI-0 when the cononical link is used.

4.5 Rxplanatory Variables in Generalized Linear Models

Consider the log likelihood (41) with ni= K(x T0). The log likelihood
i

L(Olu) obtained after the explanatory variables have been perturbed by an

amount a can be constructed by replacing x T with xT, the i-th row of

X defined in (36). From this it can be verified that A has the same

structure as described in section 4.3 and that

k r diag(Ki) 0kI diag(r K -'K) (45)

information matrix is

T 2.
-L . _I diag(r1  ~ - KimI (46)

For a concrete illustration we use the leukemia data as reported in Cook

and Wleisberg (1982, p. 179). Here, a patients survival time in weeks yi i

1,2,9..,17l is assumed to follow a one parameter exponential distribution

with mean elp{I + 0 21 1 where xi - 1oq10 (WBC1 ) and WBC1  is the white

blood cell count for the i-th patient.

The. log likelihood for the original data is of the form given in (41)

with ini - K(O 8 Oxi) - -exp(-(e + 9) 2x ) and * (n) - -log(-n). From

this it follows that

K1 Oxp[-(0 + A 1 By-

'-Ki

0-A A -

; -2-A A

i. e xp[2(1  + 0 2xi )3 - var(Y1 )

r-y - expl(0I +0 2x:L

and thus that

ri Ki i l- yi
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These calculations along with (45) and (46) can now be used to construct F

as given in (18).

To assess the influence of measurement errors associated with WBC we

perturb x - 1oqj0 (WBC) rather than WBC itself. This implies that the

measurement errors associated with WBC are multiplicative rather than

additive and that the standard deviation of WBCi is proportional to

ZE(WBCi). Both implications seem reasonable.

The maximum curvature for this perturbation scheme is Cmax - 17.014s2

where sx  is the standard deviation of the measurement error associated

with x - logI0 WBC, Clearly, the measurement error must be substantial for

the local influence to be large. The oigenvector associated with Coax  lies

substantially in the direction of case 17: The largest element of this vector

corresponds to case 17 and is about 7 times larger than the second largest

element. Thus, although the local curvature is small, an inspection of the

direction of maximum curvature does direct attention to case 17 which is the

case that Cook and Weisberg (1982, p. 185) identified as influential by using

case deletion diagnostics.
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5. DISCUSSION

For a complete understanding of the influence of a particular perturba-

tion scheme it is probably necessary to know the full behavior of the selected

influence graph. We have found the central methodology discussed in this

paper to be a useful and relatively simple way of characterizing the local

behavior of an influence graph around t0 • The maximum curvature Cmax seems

to be a reliable indicator of extreme local behavior, and the plot of the

corresponding lifted line provides a reasonably easy way to confine such

indications. Also, the methodology can be easily adapted to handle loss

functions other than LD or LD1 . In a Bayesian analysis, for example, LD

might be replaced with a loss function that reflects the sensitivity of the

analysis to perturbations in the prior parameters.

As demonstrated in Figure 1, gross errors can have a substantial

influence on an analysis even when the curvatures are small. To understand

the consequences of gross errors it is necessary to characterize the behavior

of an influence graph near the boundaries of 0, as in case deletion diag-

nostics attempt to do. Generally, this might be done by simply evaluating an

influence graph at various points near the boundary of %1. However, our

experience has shown that a plot of the lifted line associated with Cmax may

indicate the seriousness of gross errors, even when Cmax  is mall. This

happens, for example, in the numerical illustrations of sections 4.3 and 4.5,

and may be expected whenever the influence graph is strongly quadratic.
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