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The development over the last twenty years of the theory of solitons and

of completely integrable evolution equations has provided a new perspective

from which to view certain problems in mathematics and in physics. An

integrable problem has a great deal more structure than one ordinarily

expects. This extra structure permits one to solve classes of integrable

nonlinear problems in complete detail, a feat considered virtually Impossible

twenty years ago. The methods developed for integrable problems (inverse

scattering, etc.) apply only to Integrable problems, a fact that emphasizes

the distinction between integrable and nonintegrable problems.

Aside from any question of method, the nature of the solution of an

integrable problem also differs from that of a nonintegrable one. There is no

loss of information as time advances (or recedes) in an Integrable problem, so

no uncertainly is introduced into the problem by the dynamics. In this sense,

an integrable problem differs as much as possible from an ergodic one.

Clearly It is important to be able to identify integrable problems, and to

understand the consequences of a problem's being integrable or not. Most of

tne research done under this contract can be described in terms of two guiding

questions:

(1) Where is the boundary between integrable and nonintegrable problems?

(ii) What are the consequences of a problem's being on one side or the

other of this boundary?

The research under this contract resulted in seven publications, which

are listed in the reference. These papers relate to the two guiding questions

in the following way. (The subsequent discussion refers to those papers by

their numbers In the list).
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u ~ 1. Integrability of Ordinary Differential Equations

Previous work (Ablowitz, Ramani and Segur, 1978, 1980) showed a deep

connection between partial differential equations solvable by some inverse
* scattering transform and ordinary differential equations (ODE':s) with the

Painleve property (that the only movable singularities in the complex plane

are poles). Although it was not stated explicitly in that work, this

connection strongly suggests a related connection between integrable ODE's and

those with the Painlev6 property. In three papers (Refs. 1, 2, 3) it was

*# demonstrated with nontrivial examples that the Painlev6 property is effective

in Identifying Integrable ODE's, i.e., if a system of ODE's has the Painlev&

property, then it is integrable. The examples included both dissipative

(Ref. 1) and Hamiltonian (Refs. 2, 3) systems. Integrability was established

either by producing the extra integrals explicitly, or by demonstrating by

means of numerical integration that the solutions lie on a lower dimensional

manifold.

The objective of these papers was to demonstrate the effectiveness of the

method, by finding new integrable cases In well-known problems. The deeper

question is, Why should the Painlevh property imply integrability? This

question remains open, and work on It continues.

2. Inverse Scattering in Higher Dimensions

The inverse scattering transform (IST) has been developed since 1967 to

solve certain nonlinear problems that are Integrable. For the most part, the

problems are partial differential equations In one spatial and one temporal

(1.1) dimensions. The basic mathematical theory in (1.1) dimension Is now

reasonably complete, although the discovery of new cases continues. In higher

dimensions, such as (2.1) or (3+1) dimensions, very little is known.

2



.:. The first clear work on IST in higher dimensions was done by Manakov

(1981), who solved one version of the Kadomtsev-Petviashvili equation,

(ut + 6uux + Uxxx)x - 3uyy, (KP)

on the plane (- * < x, y < -). Nanakov's results were formal, but their

validity was established rigorously in Ref. 4 for initial data that are small

enough in a certain morn.

An interesting aspect of (KP1) is that it admits "lumps", exact solutions

that are spatially localized (in (2+1) dimensions, as solitons are not) and

interact like solitons. Lumps are necessarily excluded from any solution

obtained by Kanakov's method, but this restriction (to small initial data) was

removed in Ref. 4 and by Fokas and Ablowitz (1983). The final result is that

for a wide class of initial data on (- * < x, y < a) that decay as

x ya * *, the solution of (KP1) evolves into N lumps plus algebraically

decaying radiation. This is identical with the qualitative picture In (1+1)

dimensions, except that one-dimensional solitons are replaced by two

dimensional lumps for KP1.

The number of higher dimensional problems that are known to be integrable

I surprisingly small. Perhaps the main value of solving (KP1) by IST is that

It provides one concrete example of the structure of an Interable problem in

higher dimensions.

3. Periodic Waves In Shallow Water

The other version of the Kadomtsev-Petviashvili equation is

(ut + 6uux Uxxx)x 3Uy 0. (KP2)

Both equations have physical significance, and both are integrable. KP2

describes the evolution of gravity-induced water waves of moderate amplitude

as they propagate primarily in one direction in shallow water. Its solutions

3
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live in (2+1) dimensions, and therefore it might reasonably describe waves

that propagate on the two-dimensional water surface. In Ref. 6 is described a
preliminary version of an explicit, analytical model of nonlinear, periodic,

two-dimensional waves in shallow water. Preliminary comparisons of the waves
predicted by this model with observed wave patterns in shallow water are very

encouraging. A final version of this model should be completed shortly after

the termination of this contract.

4. Integrability in Physical Models

Some integrable problems model physical phenomena, but the models usually

are approximate, and sometimes they are only qualitatively suggestive. The
physical systems are almost certainly not integrable. How can the knowledge

obtained from a study of integrable systems best be used to interpret physical

phenomena? Three papers (Refs. 5, 6, 7) dealt with aspects of this problem.

(a) Wobbling Kinks in Polyacetylene Molecules

Polyacetylene, (CHlx, is a polymer (i.e., a plastic) made up of very long
molecules, and whose electrical conductivity under light doping is comparable

.to that of a metal. There is widespread and intense interest in the material,

and nearly every issue of Physical Review Letters in the last year has had at

least one article related to polyacetylene.

The best current theory to explain the anomalous conductivity of

polyacetylene is that charge-carrying solitary waves are easily excited on

these long molecules, and that the abnormally large currents observed

macroscopically are made up of many solitary waves, running along many

molecules. (These solitary waves are called "solitons" in the jargon of

solid-state physics, despite the objections of linguistic prints.) One model

represents the waves running along a molecule by solutions of the so-called

*-equat ion,

# - #
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The work in Ref. 5 establishes rigorously a conjecture of Rice (1979) on the

internal structure of these "solitons". Some of the interest from the

perspective described in this report is that the #4- model is not integrable.

The work in Ref. 5 shows how certain concepts from the integrable theory can

be carried over to a nonintegrable problem.

(b) Kinetic Theory of Triads

In many physical systems, the simplest (weakly) nonlinear coupling of

(nearly) linear Fourier modes is through "resonant triads." These problems

M become linear at lowest order in a small-amplitude expansion, with solutions

of the form

- n exp (i'kn  x - I Wnt),

where w. Is related to ;n through the dispersion relation of the linearized

problem,

S- -)(i)

Resonant interactions occur among triads of those linear modes that satisfy

resonance conditions of the form

+ + 01 + 2 0+ 3  0

Resonant triads are particularly Intriguing from the standpoint of

Integrable vs. nonintegrable problems, because triads have been the basis both

of completely Integrable models (Kaup, 1980) and of Irreversible, dissipative

models (Hasselmann, 1966). One possible resolution of this paradox was

developed In Ref. 7, In which an Irreversible kinetic theory for wave packets

is built up from a large collection of uncorrelated triad Interactions, each

of which 1i completely reversible. In this problem the Individual wave

packets, their triad interactions and the dilute gas of packets all live In

(3.1) dimensions, so there Is no artificial restriction on the dimensionality

5
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of the problem.

This completes the summary of the research accomplished under this

contract. It should also be noted that this list of accomplishments does not

coincide with the list of problems posed three years ago. The discrepancies

are because: (a) someone else solved the problem before I got to it;

(b) someone else is working on the problem with a method that I consider

better than mine; (c) some other problem arose during duration of the

contract that appeared more interesting or more important than the one

originally posed.

Here is a list of the problems posed three years ago, and their current

status.

(i) Prove rigorously the connection formulae for the bounded real solutions

of Painlevd's second equation (PII), as given by Segur & Ablowitz (1981).

1Martin Kruskal has developed a method within the last two years that

*seems to be capable of both finding and proving connection formulae for all of

the Painlev6 transcendents. Exploitation of this method will be the PhD

thesis of Nalini Joshi, a student of Kruskal's at Princeton.

(li) Find the location of the right most singularity in a solution of Pi1

that is bounded as Z * I -, in terms of its asymptotic behavior as Z * +.

The Kruskal-Joshi method seems to be the best approach to this problem as

well.

(iii) Study the relation between the methods proposed by Ablowitz, Ramani &

Segur (1978, 1980) and by Zakharov & Shulman (1980) to Identify partial

differential equations that are completely integrable.

The method of Ablowitz, Ramani & Segur was generalized and improved by

Weiss, Tabor & Carnevale (1982). Both methods depend on the Painlev6 property

as a test for Intep'ability, but it is still not clear why the Painlevd

property should be effective. The method of Zakharov and Shulman (1980)

6



itself is a mystery to me, let alone its relation to any other method. It can

honestly be said that no successful research on this particular topic was done
under this contract.

(iv) Find the asymptotic (t * -) behavior of the solution of the Toda
lattice in terms of Its initial data.

This problem was solved by McCoy, Perk & Shrock (1983).

(v) Study the relation between nonlinear ordinary differential equations

that exhibit chaotic behavior and those of P-type.

Refs. 1, 2 and 3 addressed this topic, as discussed above.

7
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