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Abstract

Over the past few years passive, ground-based, angles-only initial orbit

determination has had a thorou(h analytical, numerical, experimental, and

creative re-examination. This -ýport presents the numerical culmination of

this effort and contains spec, ,."c recommendations for which of several techni-

ques one should use on the d fierent subsets of high altitude artificial satel-

lites and minor planets.
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I. HISTORY AND TEST SET-UP

The long held view in astronomical circles is that Gauss solved the

angles-only initial orbit determination problem when he enabled von Zach to

recover Ceres from Piazzi's observations of it (made a year earlier). While

Ceres was recovered by von Zach (and independently by Olbers the next night)

"Gauss's" method of orbit determination had nothing to do with it (see the

Introduction to Gauss 180v,. About 80 years later Gibbs refined the Gaussian

"technique but didn't extend its range of applicability to more than nearly

circular orbits. In general that is all the Gauss-Gibbs method is appro-

K- priate for. See Taff (1979b) or Moulton (1903) for a discussion of this point.

The failure of the Gauss-Gibbs technique was brought home quite force-

fully during the proof of concept tests for the GEODSS (Ground-Based Electro-

Optical Deep Space Surveillance) network. These were directed by the prin-

cipal author (Taff 1979a). During these successful tests near-stationary

artificial satellites were handled separately (Taff and Sorvari 1979ab, 1982)

and only high inclination, high eccentricity, or high mean motion (1 1 rev/day)

discoveries were dealt with by the traditional Gauss-Gibbs procedure. Since

these three aspects go together for deep space satellites, that meanm. all of

the other discoveries. It failed catastrophically because we misused it.

We misused it because you need to know half of the orbital element set to use

it properly (if particular the semi-major axis a, the eccentricity e, and the

mean anomaly at epoch M0 or, equivalently, the time of perigee passage). But

if you knew this much you are not exactly engaged in initial orbit determina-

tion, are you?
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Laplace, in 1780, invented an initial orbit determination technique. It

has had a very poor reputation in astronomical circles. The reasons for this

are clear to us: (1) It requires a second order numerical aifferentiation of

the observations; (2) Especially in the olden days the observations weren't

very good because the observing was visual (as opposed to photographic) and

neither accurate clocks nor accurate star catalogs existed yet. It wasn't

until the 1930's that all of these problems were overcome but by then Gauss-

Gibbs had "won" the race; and (3) In the astronomical context the method was

¶ used on slowly moving objects, certainly < 0?25/day. When all of this is

coupled with a mirimilast's approach (e.g., three sets of angles-only data),

Laplace s method ought to produce very poor results.

Observational techniques and objects of interest have changed. The pril,-

cipal author reformulated and refined Laplace's method in the modern, high

quality, data rich, fast moving object scenario (Taff 1983). Even earlier

Dave Hall and he (Taff and Hall 1977, 1980) had invented a totally new initial

orbit determination technique based upon "two" observations but including the

angular velocities. (There's even a radar version of it in which exact initial

orbit determination is reduced to the solution of a single quadratic equation.)

Since one can't "observe" the angular velocity directly, the Taff-Hall method

also numerically differentiates the data. But, unlike the Laplacian technique,

it need do so only once and not twice. Finally, neither the resurrected

Laplacian method (referred to hereinafter as the Laplace-Taff method) nor the

Taff-Hall method is analytically restricted to nearly circular orbits (as the

Gauss-Gibbs method is). There is no similar restriction--just questions about

the accuracy (or advisability) of numerical differentiation.
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Which technique should you use? Tell us what you're going to use it on

first. This Report deals with the deep space population of artificial satel-

lites (P > 4 hours) observed passively from the ground, without the use of

parallax techniques. Let us address this issue a bit more.

The direction of technological change--electro-optical cameras, laser

radars, anti-satellite satellites, space borne surveillance systems, high

value and maneuverable military satellites, coherent radars, and the decreas-

ing time of flight of submarine launched ballistic missiles--all portend an

increasing emphasis upon rapid and accurate initial orbit determination.

There is no method that will suffice for all orbits, over all data sets, in

all observing scenarios. Thus it becomes ever more important to search for

new techniques, to delve into the physics and mathematics of old ones, and to

understand all of their limitations. Note though that one can never prove

the superiority of onc technique over another by a finite set of numerical

experiments. The best that one can do is to partition orbital element space,

or the space of observables, into discrete portions wherein the competing

(and hopefully supplementary if not complementary) methods of initial orbit

determination can be ranked on the basis of performance.

How can one accomplish even this limited goal? Considering the multi-

plicity of potential information available a complete examination would

involve a very large amount of computer time. Hence we shall separate the

(laser) radar problem(s) from the angles-only case. The reason is simple--

radars give distance and distance estimation is what initial orbit determina-

tion is all about. We shall also confine ourselves to the high angular speed

"range of the spectrum thereby eliminating natural bodies from consideration.
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Thus, and not totally accidentally, the objects of interest are deep space or

high altitude artificial satellites. Furthermore, we restrict this discussion

to the non-parallax type of data acquisition.

In such circumstances, for such objects, three initial orbit determination

procedures merit consideration. One is the Gauss-Gibbs method. It is included

because of its reputation, not because we are promoting it. The principal

method we now use on the faster moving subset of the deep space artificial

satellite population is Taff's modification of Laplace's method. The third

technique considered here is the Taff-Hall angular velocity method. Now, the

latter two schemes presume the observational capability to rapidly acquire

large amounts of high quality data. This information will then be smoothed in

~.i• some fashion and ultimately differentiated. Because of this, and the fact

that the Gauss-Gibbs method is per force restricted to three sets of angles-

only data, a way has to be found to try to balance the scales. We have done

this as follows: We have selected a subset of orbital element sets from the

deep space population (as it existed on a certain date in mid-1982). We have

used this subset of the actual population's element sets to generate topo-

centric position vectors for a particular geographical location (the CONUS

observatory of the GEODSS network but that's not relev, 4it). The time spacing

betwean position vectors is two minutes--the baseline specification for the

GEODSS prunram. From this set of passes from the subset of elements we chose,

we th-n selected 96 passes of 25 different satellites. For the midpoint of

each pass we computed the radius of convergence and of the f and g series.

(See Taff 1979b.) In each case this figure was then reduced by 20% and eight-

tenths of the radius of convergence, rounded down to the nearest whole two
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minutes, defined the total time span of the data. For the tests of the Gauss-

Gibbs method the input data are topocentric r*ght ascension, decliration, and

time at the beginning, middle, and end of the time interval just defined. Por

the tests of the other two methods the input data consisted of all of the

(A,A,t) triplets within the time interval unless there were more than ", 12-lb

of them. In tie case of the larger radii of convergence only every other (or

every third, etc. [if need be]) position vecto;l was regarded as known. In

this fashion, while denying the Laplace-Taff and Taff-Hall techniques data

that would be available in practice, we've tried not to tip the scales too

much in their favor.

The above mentioned passes and orbital element sets are weighted towards

the stressing cases, i.e., the high eccentricity, fast moving portion of the

hundreds of passes originally generated. This, however, merely reflects the

actual state of affairs. Also the number of data points reduction scheme

outlined above kept the total number of assumed data points to be at most 15.

All of the data had the same number of significant decimal digits-•namely

right ascensions to the nearest tenth of a second of time and declinations

to the nearest whole second of arc. In order to complete the analysis the

entire test should be redone at at least one, and preferably at two other

levels of precision. This would provide sorely needed information about Lherobustness of the three procedures. A part of this has been completed andis discussed below.
Now that we've oUtlined the ground rules wof t criteria should be used

to measure the efficacy of the three competiog .hniques? We could define

some six dimensional norm in o,'bita1 eispae,! sez space and compare each
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initial orbital element set to the real one (e.g., the one used to generate

the pseudo-observational data). !f we knew what metric to use to define a

meaningful norm, and if we knew how large "bad" was or how small "good" was,

then we wuuld consider this alternative. Not being in possession of such

knowledge we prefer to test the generated orbital element sets in their

natural mode of utilization (in the angles-only context--a nice touch of self-

consistency); pointing a telescope. Therefore, the measure that we have used

is angular error, on the topoc. itric celestial sphere, between the position

from the computed orbital element set and the position from the real orbital

element set. More than this, such pointing predictions ("look angles" if you

must) have been generated at intervals of 0.5, 1, and 2 hours into the future

(sometimes in the past; Newton's equations of motion are time reversible).

Therefore, for each pass of each satellite we could have nine angular errors

as measured on the topocentric sky--an error from each of three initial orbit

determination schemes at three different prediction intervals (not all passes

of all satellites were run each time). This information has been reproduced

in Table I. The units are minutes of arc.
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II. SOFTWARE AND PROCEDURES

The Gauss-Gibbs software used is the standard GEODSS ETS code (Taylor

1978). We have no doubts about this. The Laplace-Taff and Taff-Hall software

were designed, debugged, and tested by us for this Report. There exists a

heliocentric version of the Laplace-Taff code which is used in our Earth-

approaching asteroid search work (Taff 1981). In the Gauss-Gibbs case the

flexibility within the interactive part of the program was circumvented

because only three observations were entered. In the Laplace-Taff case there

are two other degrees of freedom. Since the topocentric right ascensions and

declinations are independently least squares fit to quadratic, . . ., quintic

polynomials one can choose (say) the cubic right ascension fit as the best one

for that variable and (say) the quartic declination fit as the best one for

that variable. "Best" is difficult, if not impossible to define since the

addition of another free parameter necessarily reduces the sum of the squares

of the residuals. We adoped a rule of one-third; if increasing the degree of

the polynomial to which the data were fit did n~t decrease the sum of the

squares of the residuals by at least a factor of three, then the previous,

lower degree fit was "best". We never tested polynomials of degree six or

higher.

In the Taff-Hall case the problem is more complicated. The results of

the aforementioned least squares fits for A (it's identical for the declina-

tion) are coeval values for A, A, and A. This is the "raw" data one needs

for Laplace's method. Their simultaneous epoch is the average observationU time. For the Taff-Hdll case one needs two sets of A, A, A, and A with

L the epochs of all the variables in each separate set the same (say tI and t 2 ).
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Now, the behavior of the expectation of the variance of the rates depends upon

the degrees of the polynomial fits (see Taff 1983 and the Appendix). Optimally,

since t and t are at our disposal, one would use those values for which the

expected variances of A, A, A, and A were minima (if such existed--in general

one doesn't; again see the lengthy discussion in Taff 1983). These optimal

times were co juted for the cubic, quartic, and quintic fits for both the

iýdi positions aij their rates in the simplified case of equally weighted data,

symmetrically observed about the midpoint, and as the number of observations

approaches infinity. We did keep the leading terms in the latter quantity for

low order fits. These results are in the Appendix to this Report and show

that one can retain the element of freedom of choosing different polynomial

fits for the declination and right ascension, without excessive loss of pre-

cision, if one does it carefully. Clearly without this analysis one would be

shooting in the dark. The bottom line here is that if the data extend

(uniformly) from t = -T to t = +T then tI can be at -T/6 and t 2 can be at +T/6.

This choice is a combination of this rather involved expected variance analysis

and simplicity, but mostly the former. (The rigorous results for the cubic

fit are + T//7 : + 0.38T, for the quartic fit + T/V3 : + 0.58T, and for the

quintic fit + 0.25T. The expected variances for the positions are relatively

9 flat out to ru + T/2. See the figures in the Appendix). Hence, utilizing the

same residual "significance" scheme mentioned above, the Taff-Hall case was

treated in a fashion very similar to the Laplace-Taff case.
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So far we've explained the data reduction. Next we need to treat the

construction of the orbital element set. For the Gauss-Gibbs method this is

a classic problem. If the solution is not in Taylor (1978) then see any

celestial mechanics book. For the Laplace-Taff case one winds up with

A, Aý, A A, A, A as input and R, R (topocentric distance and radial velocity)

as output. Knowing the observer's geocentric location and velocity one uses

R,A,A and R,A, and A to obtain a geocentric location and velocity (at t 0

in the above scenario). Now it's a straightforward algebra problem to go

from r and r to an orbital element set. See, for instance, Brouwer and

Clemence (1961).

Once again the Taff-Hall method is different. The output are two sets

of R and R and hence two orbital element sets can be computed. We only used

one: tI if we were predicting the past for the satellite, t 2 if we were pre-

dicting the future. (Some of our 96 passes are for satellites in the act of

setting relative to the observatory and our pointing program, which generated

the pseudo-observational data, stopped producing at the instant of setting.

In these geometrically interesting passes we predicted the past.)

Finally we did not run every pass of every satellite through each initial

orbit determination procedure. It would be a total waste of time to have done

so for the near-stationary artificial satellitis because they don't move

rapidly enough m3 maz:'ingfully smooth observations thereof and neither of

these three techniquu is the optimal one for this class of artificial satel-

lite. The optimal technique for near-stationary artificial satellites is NSDC

(for Near-Stationary Differential Corrector) alluded to above (Taff and Sorvari

1979a, 1982). Keeping to the high angular speed range of the passes we

9



selected, the Laplace-Taff procedure was executed on 29 passes of 14 different

satellites. The Taff-Hall method was run on a larger set -- 30 passes of

Z .11 different satellites.

A. Low Precision Data Tests

All of the above discussion, and most of Table I below, refers to

high quality data. This means positions good to 1". This is much better than

I the GEODSS network can provide. We added enough random noise to the "data"

to increase the precision to 5" and redid 26 passes on 14 different satellites

for both the Gauss-Gibbs technique and the Laplace-Taff technique (no low

precision Taff-Hall runs were performed). In general the Gauss-Gibbs technique

"degraded only slightly in performance while the Laplace-Taff did so by factors

of two to three (or larger) relative to its high precision data performance.

This should not surprise you and would be partly compensated for by having a

higher data rate. Presumably the Taff-Hall technique would be worse too, but

not fall off as rapidly as the Laplace-Taff method did as it only involves a

single numerical differentiation of the data.

Let us forcefully reiterate that the correct conclusion from this subset

of tests is not that the Gauss-Gibbs method is the algorithm of choice. This

Report uniformly rejects the Gauss-Gibbs technique except as the method of

last resort.

51
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TABLE I

PREDICTION RESULTS

Satellite Information Time High Precision Low Precision Angular

Spans Gauss- Laplace- Gauss- Laplace- Speed
Gibbs Taff Gibbs Taff ("/sec)

SDC # 11926

n 1.02 On5 014 0!03 co 0!2

e 0.331 1.0 0.46 0.04 c 0.7 32.10

i 10.44 2.0 0.58 0.13 co 2.0

SDC # 12137

n 2.37 0.5 5.25 0.76 18.7 15.5

e 0.724 1.0 4.50 1.20 4.0 1.6 66.66

i 46.73 2.0 4.20 2.05 3.0 2.8

SDC # 12679

n 3.49 0.5 4.94 0.07 5.7 4.0

e 0.626 1.0 4.15 0.03 3.3 3.9 32.00

i 89.94 2.0 2.34 0.21 8.2 8.4

SDC # 12679

n 3.49 0.5 6.02 0.78 6.4 2.3

e 0.626 1.0 5.70 3.85 7.4 11.4 68.20

i 89?94 1.5 5.06 8.72 8.6 26.1

SDC # 83781

n 2.01 0.5 9.41

e 0.735 1.0 9.94 Co 112.80
i 64?55 2.0 13.47 00

SDC # 83871

n 2.01 0.0 10.69 0.07 co 1.1
e 0.735 1.0 8.74 8.33 0o 4.9 136.73

i 64?55 2.0 9.79 21.57 14.2

7,•.
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TABLE I (Continued)

Satellite Information Time High Precision Low Precision Angular
Spans Gauss- Laplace- Gauss- Laplace- Speed

Gibbs Taff Gibbs Taff ("/sec)

SDC # 83878

Sh1.99 5 3!68 3!34 3!5 6!8
e 0.740 1.0 4.72 6.30 4.4 11.0 113.89
i 62.087 2.0 7.44 9.21 6.7 17.2

SDC # 83878
n 1.99 0.5 6.75 6.75 7.1 15.5
e 0.740 1.0 2.02 1.34 2.3 2.2 54.42

62.87 2.0 2.85 1.77 3.5 4.5

SDC # 83878
ln 1.99 0.5 5.87 15.58 5.7 16.8

e 0.740 1.0 2.74 4.63 2.7 5.0 35.50
i 62?87 1.5 4.59 8.98 4.5 9.7

SDV # 83878
1.99 0.5 2.59 0.42 2.5 0.6

e 0.740 1.0 1.36 0.51 1.0 0.8 164.60
"i 62?87 2.0 0.66 1.39 1.6 0.8

SDC # 83878

n 1.99 0.25 3.22 0.52 8.0 9.3
e 0.740 1.0 4.18 0.63 1.7 3.0 68.97
i 62.87 2.0 18.71 1.96 1.3 10.4

SDC # 10167
Sn 1.99 0.5 1.98 0.58 2.0 2.8

e 0.652 1.0 2.96 1.86 3.7 5.7 73.74
i 64?28 1.5 3.88 2.83 4.1 8.9
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TABLE I (continued)

Satellite Information Time High Precision Low Precision Angular
Spans Gauss- Laplace- Gauss- Laplace- Speed

Gibb3 Taff Gibbs Taff ("/sec)

SDC # 10167

n 1.99 O"5 2'.17 0'.62 2'.4 0'.5
e 0.652 1.0 1.28 0.57 0.2 0.9 42.10

V. i 64?28 2.0 3.44 3.22 2.8 4.2

SDC # 12996

n 2.04 0.5 2.68 3.74 2.7 3.1
e 0.685 1.0 1.86 4.49 1.9 8.8 59.40
i 61735 2.0 0.44 4.88 0.8 31.0

SDC # 83746

n 2.01 0.5 5.77 NO
e 0.660 1.0 7.80 NO 132.92
i 71711 2.0 18.27 NO

SDC # 83601

n 2.13 0.5 9.20 17.29 NO 23.9
e 0.710 1.0 10.34 47.50 NO 74.0 130.20
i 64W16 2.0 13.92 0 NO 00

V_- SDC # 83744

n 2.46 0.5 3.20 0.66 1.4 3.4
e 0,715 1.0 7.83 1.88 6.2 17.2 8.10

1,i 1032 2.0 0 6.83 C 0

SDC 83744
N '. n 2,46 0.5 0.71 7.97 0.9 8.4

e 0.715 1.0 1.05 11.69 1.5 17.3 158.51PSI
i 10732 2.0 1.83 16.65 13.3 38.6
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TABLE I (continued)

Satellite Information Time High Precision Low Precision Angular
Spans Gauss- Laplace- Gauss- Laplace- Speed

Gibbs Taff Gibbs Taff ("/sec)

SDC # 83885

n 2.27 0"5 3!86 0!80 25 2!2

1.1 e 0.732 1.0 11.19 3.40 6.8 10.1 22.91
i 27?40 2.0 39.30 13.83 26.4 43.6

,, SDC # 83885

n 2.27 0.5 2.03 0.70 2.2 0.4
e 0.732 1.0 25.37 5.84 1.5 8.2 10.08
i 27?40 2.0 Co 63.72 27.6 Co

SDC # 898

n 2.01 0.5 5.94 NO

e 0.643 1.0 6.22 C 174.00
i 71.28 2.0 7.73

SDC # 898
n 2.01 0.5 1.63 0.35 2.0 0.3
e 0.643 1.0 3.12 2.11 3.5 0.9 8.50
i 71.28 2.0 13.66 15.61 12.3 4.7

Ilk SDC # 898
n 2.01 0.5 4.54 0.11 4.4 1.2
"e 0.643 1.0 5,44 0.42 3.6 19.83
i 71.28 2.0 14.31 1.56 6.3

SDC # 83750

n 4.22 0.5 2.84 0.65 2.8 1.8
* e 0.593 1.0 3.91 1.81 4.0 4.8 34.42

i 27.14 2.0 10.63 4.19 11.3 11.2

7.41
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TABLE I (continued)

ISatellite Information Time High Precision Low Precision Angular
Spans Gauss- Laplace- Gauss- Laplace- Speed

4 Gibbs Taff Gibbs Taff ("/sec)

SDC # 83750
n 4.22 0.5 3.74 2.08 5.0 5.1
e 0.593 1.0 4.49 6.61 6.8 30.3 22.43
i 27.14 2.0 78.31 42.26 87.5 00

SDC # 83750
n 4.22 0.5 1.38 2.98 5.5 5.8
e 0.593 1.0 10.99 11.24 14.6 12.4 59.63
i 27.14 2.0 29.94 52.46 53.6 44.4
SDC # 83887

n 2.29 0.5 1.36 1.23 3.5 4.3

',4 e 0.723 1.0 1.66 3.65 6.3 13.5 66.80
i 47.039 2.0 3.89 9.88 14.6 37.3

SDC # 83887
n 2.29 0.5 0.50 0.69 NO NO
e 0.723 1.0 4.02 2.67 NO NO 146.29
i 47.39 2.0 13.05 7.89 NO NO

SDC # 83887
n 2.29 0.5 - 38 0.25 NO 1.6
e 0.723 1.0 3.80 1.25 NO 6.5 8.91
i 47.39 2.0 16.90 9.28 NO 51.8

15



III. RESULTS

"The Table contains the detailed results of the 1/2, 1, and 2 hour pre-

diction: for the 29 passes of the 14 different artificial satellites seen

through the Laplace-Taff algorithm. Results are given, for each pass, for

the Gauss-Gibbs method and the Laplace-Taff method. On the right hand side

of the Table the low precision data results are presented. The listed topo-

centric units are minutes of arc. No entry means no computation. An entry

of NO means a successful run but no physical orbital element set was produced.

Errors in excess of 100' are considered to be infinite and are listed as •.

We believe that the worst one was 9494'.

A. Gauss-Gibbs

This test is not designed to highlight Gaussian orbit determination.

Rather it was designed to see if the Gauss-Gibbs method could ever work well

on fast moving artificial satellites in eccentric orbits. (It should work

on objects in nearly circular orbits.) However, for the first time proper

cognizance of the essential restrictions that are part and parcel of Gaussian

initial orbit determination have been included. We shall let the numbers

speak for themselves. We do not recommend the use of the Gauss-Gibbs angles-

only method. For the 29 passes detailed in the Table the average positional

errors at 0.5, 1, and 2 hours (and the standard deviation about their means)

were 3!95 + 2!70, 5!58 + 4!91, and 12!56 + 16!01. For the other passes in

the original sample the same quantities are 1!83 + 2!34, 2!23 + 4!03, and

*• 6!25 + 16!05. For the low precision data the 29 pass Gauss-Gibbs set results

are 4!52 + 380, 4!16 + 3!17, and 14!40 + 2133. Invisible in these statistics

16



is the failure rate of the Gauss-Gibbs technique even though we've observed

all of the analytically necessary restrictions. This rate was negligible for

the high precision data runs (both groups) but approached 1/3 for the low

precision runs.

B. Lapiace-Taff

Ne have computed, for the half hour, the hour, and the two hour

prediction intervals, the ratio of the positional error of the Gauss-Gibbs

method to that obtained from the Laplace-Taff method. The larger this

number is, the worse Gaussian initial orbit determination fares relative to

Laplacian initial orbit determination. The three averages, and their standard

deviations about their means, are 8.0 + 27, 13.2 + 32, and 2.4 + 3.2. The

accuracy of the Laplacian data alone, in the same format as given for the

Gauss-Gibbs technique is 2!65 + 4!53, 5:15 + 9!22, and 12!44 + 16!48. For

the low precision data Laplace-Taff runs the appropriate numbers are 5!48 +

623, 7!85 + 6!92, and 18!98 + 16!93. The Laplace-Taff method failure rate

on the poorer data is about half that of the Gaussian.

Frorm our point of view the ratio numbers tell the real story. Laplace-

Taff is an order of magnitude better than is Gauss-Gibbs without having to

know half of the orbital element set before starting the computation. Higher

data rates will improve its performance.

C. Taff-Hall

The Taff-Hall technique rests on the fact that the topocentric

expression of angular momentum conservation and energy conservation is a

quartet of equations involving the position £(A,A), the angular velocity

"i(A,A,A,A), the topocentric distance R, and the topocentric radial velocity R.

17
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The key is to use the fact that these are constants of the motion and write

Li = LE2 1  2

at two times tl, t 2 . There are now 12 unknowns in these four equations. In

the radar case eight quantities (A,A,R, and R at both times) are measured so

that the problem is well posed. In the high angular speed case eight quanti-

ties are known too (A,A,A, and A at both times).

The early (Taff and Hall 1977) solution method was a 4 dimensional

Newton-Raphson technique. This procedure was not robust, didn't exploit the

analytical simplicity of Eqs. (1), and didn't work well. When we started this

work we switched to a steepest descent method which was not robust, did exploit

some of the analytical simplicity of Eqs. (1), and didn't work well. Finally

we have fully exploited the analytical simplicity of Eqs. (1) to reduce the

problem to a 1 dimensional one. In particular we have reformulated the system

so as to (appear) to be a single equation (for EI-E 2 ) in one unknown (R2).

From an assumed R we compute R1 (by explicit algebra) and then and A2

(similarly). This requires the use of three equations and the angular

momentum conservation equations were utilized. Next we use all of this to

compute EI-E 2 (which should vanish). If EI-E 2 'O then we increment R2 and

repeat until E1-E2 changes sign. We then home in on the root by decreasing

the R2 step size by a factor of ten and changing direction. We use AR2 = 0.01

Earth radii, start at R 1 and go out to R 1 0 (we know we're doing high

altitude satellite initial orbit determination) before declaring a failure.

Of the 30 passes of 15 different artificial satellites we tried no

root was found in 14 casesin 10 cases a root was found but no physical

18
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orbital element set was generatedand in 6 cases both a root was found and

a physically sensible orbital element set was produced. The reason for the

.2 first group appears to be the extraordinarily large slooe in the f l-E2 vs.

SR2 relationship. An e;:planation for the middle group is the existence of mul-

tiple roots and our a priori inability to guess the correct one (for if we knew

•!ii 2 then . . .). The last groUp represents the "successes" but the orbital

element sets are so poor that we've not formally computed the pointing errors.

Without a clearer and deeper understanding of the sensitivities of this method

we must regard it as a failure. We suspect that it will do much better with a

higher data rate than one observation per two minutes or that it is appropriate

for use on moderate (as opposed to high) angular speed artificial satellites.

As supporting evidence, the average angular speeds for the three Taff-Hall sub-

groups are 94"/sec, 85"/sec, and 40"/sec.

*1
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IV. RECOMMENDATIONS

A. Artificial Satellites

While we have tested the three different methods of initial orbit

determination in an objective, unbiased fashion, we have used a priori infor-

mation concerning the orbital element sets in constructing the tests. This

has biased the results towards the Gauss-Gibbs technique. Even so, when com-

pared to the Laplace-Taff algorithm (for this sample of this subset of the

deep space artificial satellite population with a one per two minute data rate

of arc second precision data), it fares poorly--by a factot of nu 10. The

Taff-Hall technique must be regarded as a failure too. However we do not

* recommend the Laplace-Taff method to the exclusion of all others exactly

because--for the existing deep space population--one can tell almost certainly

what type of satellite one is observing.

The deep space catalog on the day we began this work had 540 entries in

it. Of these 16% were Cape Canaveral rocket bodies (nz2 rev/day, i=291, e=O.7),

31% were near-stationary satellites (O.9,I,.Il-l rev/day, e•,O.15, i<15'), and

40% were Molniya-type (n=2 rev/day, i=63', e=O.7, w=2850). These three types

are easily discernable at the telescope and comprise 87% of the catalog.

Therefore if one is willing to take the (small) risk of making a mistake, one

can pick and choose the technique (amongst Laplace-Taff, NSDC, or Gauss-Gibbs)

in an appropriate fashion. This is our first recommendation.

We suspect that it can be made much more robust and demonstrated successfully

on moderate (20-50"/sec) angular speed artificial satellites. Since this
endeavor has dragged on for two years we thought that publishing ti.is now was
the prudent thing to do.
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A step back from these strong assumptions is the less restrictive divi-

sion of deep space artificial satellites into 3 angular speed ranges.

I. topocentric angular speed >50"/sec:

* I. use Laplace-Taff;

II. topocentric angular speed E (,',.'"l. /sec, 50"/sec)

if near equator use Laplace-Taff, ,f nearer the

poles (say above or below 200) use Gauss-Gibbs;

IliA. topocentric angular speed < 20"/sec and not near-

stationary: use Gauss-Gibbs;

IIIB. topocentric angular speed < 20"/sec and near-

stationary: use NSDC.

This is our second level recommendation. We hope to be able to replace tile

recommendations for the moderately moving objects with an improved Taff-Hall

algorithm.

B. Asteroids

From our perspective there are three types of asteroids. The huge

majority (99%) are main-belt minor planets. They are in nearly circular orbits

of slight inclination with a period ,, 4.5 yr. Their excursions through orbital

element space (the argument of perihelion values are uniformly' distributed on

[0,3600] while their longitudes of the ascending nodes cluster near LXipiter's)

and through the solar system are minimal. The ones we have actively searched

for (Taff 1981) are in high eccentricity, high inclination orbits and traverse

large parts of the inner solar system. About 60 of these have been found in

the last two decades. The last group is the nu 50 .ther high eccentricity or

high inclination objects that have longer periods. (The Trojans are a special
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case and Chiron is unique). As initial orbit determination is interesting

only for thp latter two groups, and their eccentricities are neither so high

nor their periods so short as to preclude a Gaussian type technique, one may

as well use the Gauss-Gibbs method. Of far more importance is the independent

acquisition of precise data.

C. Characteristics of the Orbital Element Sets

The uses to which one might put an orbital set are myriad. Foremost

amongst them are pointing a telescope, pointing a radar, preventing surveil-

lance, or planning a rendezvous. In all these and many other instances, the

accuracy of the individual components of the element sets is not at issue.

The techniques discussed above have certain characteristic systematic correla-

tions amongst the osculating elements generated by their use. Typically they

all determine the orbital plane (i.e., the direction of L) very well and this

aspect will not be discussed further.

When Laplace's method is utilized in a data-rich scenario, so that smooth-

ing and analytical differentiation of the interpolating polynomial can be per-

formed, the orbital element sets that it produces are unbiased. They are

frequently amazingly good, each element separately within 0.01% of its true

value. The method is not robust to decreasing the precision of the observa-

tional data but this can be somewhat comipensated for by decreasing the time

intervals between the observations and increasing the number of them. This is

the best of the techniques we've used.

Gauss's method typically involves a mean motion/eccentricity swap that

reproduces the interpolating arc well but is not capable of accurate extra-

polation. Corollary effects are usually seen in the argument of periastron

22
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and in the time of periastron passage. The method is relatively robust to

the degradation of the data. Of course, all of these statements presume that

the radius of convergence stricture is being observed a priori.

When a physically meaningful (a > 0, e e [0,1]) orbital element set is

computed by the Taff-Hall technique, it typically is a biased one, although

not as severely as one produced by Gauss's method (for the same data). The
method is not robust and frequently does not yield a physically meaningful

element set at all. Neither this nor Gauss's method can be recommended for

use.

The most extensively used partial knowledge method is the one developed

in Taff and Sorvari (1982) for near-stationary artificial satellites. Within

its constraints it works without bias and is extremely robust. We conjecture

that the more assumed a priori about the orbital element set, and the more

accurate these assumptions, the better the performance of the technique. The

Minor Planet Center uses a comparable approach for main-belt asteroid initial

orbit determination.
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APPENDIX

In Taff (1983) a detailed analysis of constant, linear, quadratic, and

cubic least squares fitting was provided. In particular, the estimated vari-

ances of the first and second derivatives of the observed quantity were

evaluated. As the order of the fit becomes higher, the algebra necessary to

complete the analysis becomes increasingly involved and tedious to carry

through. Three simplifying assumptions greatly speed this process. They are

1. That the data are acquired symmetrically (in time) about

some central epoch t0 . Then the use of T = t - to is

preferred. The observations of x at t = tn (r T n ) are

labeled as xn. The data are also presumed to have equal

weight w.

2. The more restrictive assumption that the time spacing between

the observations are all equal (to T). Then

• {T n } n T -N' ... ' To = 0, TI ' " 9 T N

"for the total of 2N + 1 data points are just given by

Tn = (n - N - I)T n = -N, -N+l, ... , 0, ... , N

3. That the asymptotic limit as N ÷ c is taken and only the

leading terms are kept in all pertinent expressions.

The necessity of two epochs for the Taff-Hall method caused a reevaluation

of the results in Taff (1983) and two extensions of it. Within the above

*By L. G. Taff
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assumptions the analysis was extended to include quartic and quintic fits.

In addition, the last assumption was relaxed for the cubic and quartic fit

analysis so that the next leading terms (e.g., order 1/N terms) could be

included. Doing so provides a more realistic guide when choosing the optimum

time intervals, epochs, and orders of fit for real data. This Appendix sum-

marizes these extensions of Taff (1983), mostly in graphical form.

A. Cubic Model

See Taff (1983) for the analytical preliminaries and presentation

format. The estimate of the variance of the observed quantity x, say

var[x(t)], has a local minimum at T = 0, local maxima at T = + T_, and local

minima at T = + T+. The values of these quantities (to order 1/N) are

2 N2 T2  3N2 T2
=-N--(I + I/N), 5N (1 + 1/N)

The 1/N terms are illustrated in Fig. 1. This shows the normalized expected

variance of x(t) as a function of ITI/NT (it's an even function of T) for

1/N = 1, 1/10, and 1/5.

The situation for var[x(t)] is simpler. It has a local maximum at T = 0

and local minima at +_,

NT (I + 1/2N)Svi-

The 1/N variation is illustrated in Fig. 2 in the same format as in Fig. 1.

Figure 3 shows both var[x(t)] and var[W(t)] (N = on the same page. Note

that the expected variance of x(t) is fairly flat out to n 0.7NT, rising

steeply thereafter. The fluctuations in the expected variance of x(t) are

larger and its takeoff is much more rapid.
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Fig. 1. Normalized variation of the expected value of x for a cubic
polynomial fit. The full curve is the N = - case, the dotted curve
is the N = 10 case, and the dashed curve is the N = 5 case.
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B. Quartic Model

The model is

x(t) = a + bT + CT2 + dT3 + eT T t t

The normal equations, MA = D, are, with the assumption of time symmetry,

so 0 S2  0 S4  a .Xn

nn0 S2  0 S4  0 A= c D= n

0 S4  0 S6  0 d xnT
S 0 S 0 S e X T 4
4 6 S4 nSn

Here S2k n=N T2k n 2wN2k+l T2k/(2k+l) as N-co. Define m and m' via
n=-N

4,'
M = SO S2 S4  m= S2 S4

S2 S4  S6 S4  S6

54 6 8

Then IMI = mm' and

(S4S8-S2)m' 0 (S S -S S)m 0 (S S6-S2)m'

0 S6m 0 -S4m 0

M1 IM-I (S4S6-S2S8)m' 0 (S0S8-S4)m 0 (S2S 4-SoS 6 )m'

0 -S4m 0 S2m 0

(S2S6-S4)m' 0 (S2S4 -S0 S6 )m' 0 (SoS 4-S2)m2

400

¶4. 30



One can compute that

21 IMI var[x(t)] : (S4 S8 -S2)m1 + [S6m + 2(S4 S6-S2 S8 )m']r2 +
22 4 6

[(S0 S8 -3S2+2S 2 S6 )m' - 2S4m]T4 + [2(S 2 S4 -S0 S6 )m, + S2m]T6

+ (S0S4 -S2)m'T 8

IMI var[x(t)] = S6m + 2[2(SS 8 -S )m' -2 + [9S2m +

16 (S2S4 -S0 S6 Im']T4 + 16 (S0 S4-S2)m'T 6

Keeping the leading terms one discovers that
A 2

var[x(t)] - 25(1-1/N) [9-36(1-1/N)(r/NT) 2 + 294(1-2/N)(T/NT) 4

27wN

- 644(1-3/N)(T/NT) 6 + 441(1-4/N)(T/NT) 8 ]

A

var[x(t)] ÷ 25(1-3/2N) [I+21(1-I/N)(T/NT) 105(1-2/N)(T/NT; 4

4wT 2N3

+ 147(_-3/N)(T/NT) 6 ]

It is straightforward, but laborious, to explicitly demonstrate thatA 
A

Dvar[x(t)]/DT=0 has three real roots. One finds, explicitly, that var[M(t)]

has a relative minimum at T=O, relative maxima at + NT(I+I/2N)/v'7, and

relative minima at + NT(1+1/2N)//3. Figure 4 illustrates the i/N dependence

of var[x(t)], Fig. 5 that of var[x(t)], and Fig. 6 the N=- versions of both.

(As in Figs. I and 2, the curves are drawn for 1/N 1 /, 1/0, 1/5.)
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The general characteristics of the curves for the quartic polynomial fit

are similar to those of the cubic polynomial fit. The expected variance of

x(t) curves are relatively flat out to ", O.8T and then rise rapidly; those

for the expected variance of dx/dt oscillate much more frequently and with

greater amplitude before undergoing an extremely abrupt rise.

C. Quintic Model

The model is

x(t) = a + bT + c-2 + dT,3 + eT4 + fT5 T t -<t>

The normal equations take the form MA = D where

S0  0 S2  0 S4 0 a x n

0 S2 0 S4  0 S b Xn n

M S 0 S4 0 S6  0 ,A c D w X T 2

0 So 4 0 0 S8 d x nTn

S4 0 0 S 0 e TXn'5

S6 0 S8 l0I f x nTn

Keep m as before, but define m" as an augmented m',

S2 S4 S6

mil S4 S6 S8

S6 S8  Slo

Then IMI : mm" and the inverse of M is given by
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From these formulas and the usual expressions the N o o results for the

expected variances are

var[x(t)] ÷ 3?5?22 [1 + 7 (T/NT) 2 - 70 (T/NT) + 260.4 (T/NT) 6
wN

- 382M2 (T/NT)8 + 194.04 (T/NT) 10]

var[x(t)] + 3.52722-7 [1 - 12 (T/NT)2 + 126 (T/NT) 4 - 348 (T/NT)6
wT2N3

+ 297 (T/NT)8]

The N = • curves for each of these are shown in Fig. 7. Their behavior

* presents no new features.
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. Note Added In Proof (February, 1984)

While this Report was being typed we more fully investigated the Taff-Hall

method, especially with respect to a lower angular speed range. The problem

is what is has always been, this approach is extremely sensitive to angular

velocity errors. Within the context of the numerical experiments described

herein the only available method of further improving the deduced angular

velocities is to alter the nature of the numerical smoothing. We did this by

splitting the total time span of the data in half and then separately perform-

ing the polynomial least squares fits (as outlined in the text). Now we

return to the Taff (1983) methods and tl,t 2 are the central epochs of the

different time spans. The improvement in the element sets was dramatic.

The matrix below shows what happened to the three groups of results

(NR = no root, NEL = root but no element set, EL = element set) after parti-

tioning the observation span and then separately fitting the observations.

One fit: NR NEL EL

Two fits: NR 6 0 0

NEL 0 0 0

EL 8 10 6

Totals 14 10 6

The 14 original "no root" cases are now 6 no root and 8 successfully deter-

mined, physically meaningful element sets. The 10 original "root but no

0 element set" instances are all successful now too. More than this, the element

sets themselves are materially better than before. Almost all of the system-

atic correlations are gone and the pointing errors are in the Gauss-Gibbs range.
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Therefore, this method can be recommended if the data rate is very high (say

I per 30 seconds) and precise ('ul").
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