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The use ot double sanpling in studying robustness

Stephan brgenthaler and John W. Tukey

Technical Report Nb. 252, Series 2
Deprtment ot Statistics

Princeton University
Princeton, M7 08544

BT

This report deals with an application ot double sam-
• pling in the area of robustness. Configural polysampling is

a technique which allows a detailed comparison of existing
estimator and helps in finding umall-sample-optimal estima-
tors. The technique involves sampling across contigura-
tions. The associated sapling error can be reduced by
using double sampling. formulas for doing this are given
and demonstrated in an exmple.

.. Introduction.

.Ontgural sampling (D. Frogibon and J. W. 7Ukey (1980)) is a

powrful tool in studying robust estimators. We want to discuss (in this

report) its use in attaining variances and efficiencies (i.e. ratios of

variances) for any given location-nd-scale-equivariant estimator in

various sampling situations. This is obviously an Important task in

wderstanding the behavior of estimators across sampling situations and

hence in studying robustness. it w are interested in the behavior of

any specified location estimator T under any specified sampling

situation V # the contigural approach works as follows. Fbr a set of

cenfigurationh c€V .... c N dram at random trm situation F , tour

vrejro a in an csrwIfion with research at Princeton University
spnored by the Amy esearch Ottice (Durham). The computing facilities
wre povided by the Daprtment of bergy, (bntract M-AC02-81ER1041.
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two-dimensional integrals are calculated (D. Pregibon and J. W. l key

(1980)). These - usually numerical - calculations then allow us to

compute the mean-square-error of the estimator T conditioned on the

configurations. This conditional mean-square-error will have no smpling

error attached to it, its accuracy depends directly on the accuracy ot

the value of the integrals, which will usually be affected by a numerical

error.

The conditional mean-square-errors then have to be averaged across

the sampled configurations to get the overall mean-square-error. For a

polyampling schme, contigurations are randomly drawn tram various

situations F, G ... . Then, for each configuration the tour integrals

are calculated tr each situation. In this way, the conditional mean-

square-error of T can be calculated in all smpling situations under

consideration. Cmputing weighted means of the conditional m-s-els

across all drawn configurations - and not just those drawn tram a

particular situation - then allow a semewhat more stable overall

estimate of the mean-square-errors of T in these situations.

At this second stop of the configural approach, i.e. averaging

across the smpled configurations, to represent (estimate) the result of

averaging ever all configurations, a saplinM error enters.

1 This report addresmes the question of reducing the sapling error by

the methad *f double sampling (see eg. Cochran (1977)). In the next

section w will give the fomulas ard in the last section we will discuss

an Gmagpe.

September 7, 1983
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*2. Double Samplinq formulas.

The cOntigural method naturally gives us, in any situation tor which

we cumpute the integrals, the (minimal) conditional mean-.qu.re-errors

and the conditional excess m _an-quare-error ter any lcation-and-scale-

equivariant estimator T. The formulas are as follows: (see D. Progibon

and J. W. Tukey (1980)).
%22

-F 222
m minimal cond. mse = 2---c-- ) F--- C)

aveF(s 1c)

"F = cond.excess mso,(T) = e,(s (tept,F - T(c)) 2 .

Here c denotes the configuration, F the sampling situation (shape or
m'

contamponent, for example) and (t,s) are ce-ordinates describing the

sample y as

y s(t + c).

(y and c are n-vectors, s is positive real and t is real. In the

last formula it is understood that t is multiplied by an n-vector

consisting of l's).

1he Polysamplinq estimate of the overall minimal mean-square-error

in situation F is

1bF wFF(2)I =i (min. cend. se) I = w (2.1)

where denotes the relative weight of the ith configuration for

5"' F

situation F and m( , as ae, stands for

-4WeO(t5 Ici) 2 2

" (8 + Ieclt a21Y.

'a hpteher 7, 1963
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i.e. the minimum mme conditional on the ith configuration. The sums run

ever the met of all randomly dram configurations.

The polyimpling estimate of the overall excess mean-square-error ot

the estimator T in situation F is

- W (cond.excess m(T)), W " w (2.2)

WF 2 ))2
V- aver(s I) (topq'i-T(ci))

where the s*ubols are as in (2.1).

Double sampling in (2.1) describes the minimal conditional mean-

F Fsquare-errers a by regression estimates i* involving simple

tunctions ot the compnents ot the configuration ci and then gets

- [[jF + i-4i) (2.3)

Wi (ViP + Or, VI

wI(miA)P +~ I4

It we have a regression estimate A which can be applied to any

contiguration, w can randomly draw more configurations from the

situation F and therefore calculate the second am in (2.3) with higher

acuracy. Per theme newly dram contigurations w do not have to do the

integrations which give the (mact) value m. We need only calculate

the regression estimate A # which Is miuch simpler and cheaper to do.

The dmble-sputin estimate Is theretore

1.,..,,,...

^K a 31 uINJIiD) 4-32 6j (2.4)

Bptfer 7j, 1963
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.bre the first sm runs over all configurations where the actual

integrals have been computed and the second sum runs over the N2

configurations drawn for the purpose *t double sampling frv situation

F. In the actual application the number of configurations %here the

Integrals are computed will be mall compared to the number of

configurations drawn tr the purpose of double sampling.*

-' From (2.4) we can see how double sampling by regression estimates

works. The second aum is an estimate of the expected value of the

regression estimate in the sampling situation F. the tirst sum

estimates the bias of the regression estimate.

A similar approach to the estimation of the overall excess mean

square error (2.2) is now straightforwrd. Lt ti, be a regression

estimate for the cond. optimal location estimate. Then

o aveF(s Ici) (topt,i- topt.,.i + toptpi - T(c,)) 2

I~ Wi [Sve.(S Ici) (topte,.i -t opttFi)

2 2
+ I 2iv* (asIci) (tel "FSI - t opFei)d(topt,Fj i - T(Cl))

+ I wi ave,(s2 c) (topt# lp - (ci))

Here double ampling can be applied in the second sra by introducing a

regression estimate for ave(s 2Iontiguration). This leads to

" = O(we(s21Ci) (- 2

Mt's be neted that 0; have eliminated the use ef the relative
wights in the IGeod an by only ampling frem siitation r. This sems
practial md weids the difficulty et getting the relative weights of
nwly dram configurations, which again would inwolve integration - wid
mbe another lwel ot double sampling.

September 7, 1963
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2 A

+ 2eve(s Ic 1)(t oOOA-t otV)(to ,,-T(ci))
+ I W ,1,S2 i) , -a o  o  i l 2 e ,)o-Tc) 2

*pF *pt.Fi ptFi i
F 2 22

1+ I OF 5, (topt,F,i - Tci

In the last an above only regression estimates occur and we can

. therefore get a better estimate of this sun by resampling contigurations

tram situation F, which finally yields

v I Wllaver(S Ic1  (toptp'i - 22io (2.5)

" 2&ve,( Ic 1)(tept,F, - topt'Fi)(tpt ,F -

ia the aetmor2nstti 2

IO

+ i- Ia~e(s Ic 
4

) (top-

* the double-sampling estimate ot the overall excess mean-square-error ot

the estimator T In situation F

-'I 3iuations (2.4) and (2.5) give estimates based on the technique of

double stapling for quantities we are interested in. An estimate ot the

efficiency of the estimator T in situation F can be obtained by

ett, (T)

2 '2

which vill be a more stable estimate than

efttp(T)

fptmber 7, 193
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the increase in stability is, howver, determined by the numer N2 ot

* - configurations in the second sample and - more importantly - by the

quality of the regression estimates for the three quantities

ave F (s2 Icenfiguration)

and

minimal conditional mean-square-error in situaton F

The final section gives an example of the use of this technique and

discusses the problm of getting the regression estimates in a special

case.

3. SEamvle.

-i In order to study robustness properties of various estimators, and

in order to define new - in a uall-sample sense optimal - location

estimators, four Increasingly heavy tailed shapes - joining the Gaussian

to a Cauchy-like - are considered in the following experiment. We will

call these sapes gup-rm (Gaussian-Pareto distributions), where n and

m are integers such that the tail behavior of the corresponding

cmulative distribution function is Paretian with exponent -(n/m). 1hese

distributions are such that the central port is exactlZ Gaussian. The

gupe-m shapes are discussed in Garfinkle (1962). We chose the four

ihapas gups6O (i.e. Gausian) j, gq62. gupe64 and gup@66. The diversity

of the last one has tail behavior like q-
2 , and is therefore like a

Cauchy density in the tails. for each of these four situations w draw

at rands. 200 configurations# i.e. a total of 800 configurations, for the

beptmsber 7, 1963
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case of samples of size 5. This is our primary set of contigurations and

for each we calculate all ef the necessary two-dimensienal integrals tor
5

all of the tour situations. This is a total of 4x4 = 16 integral values

for each configuration. Now we are ready to do the contigural

polysampling. We can estimate for each of the four situations the

Polysampling estimate of the minimal attainable mean-square-error

-- (Pitm (1938)). The results are given in Table 3.1.

Table 3.1

Polysampling and single sampling estimates of the
Pitman variances for samples of size 5

(standard errors in parenthesis)

single sampling polysa pl ing

gupa 66 .3705 (0.1175) .3543 (0.1076)

u.p. a 64 .2744 (0.0465) .2755 (0.0497)

gupa 62 .2033 (0.0393) .2065 (0.0287)

Gaussian .2000 (0.0000) .2000 (0.0000)

The nuwbers in parenthesis are estimates of the standard deviations of

the estimate. Single sampling refers to the estimate one gets by using

only the configurations drawn from the wright" situation. For the

Gaussian case there is no error since the integrations can be done

analytically, and, since all configurations behave exactly the same my,

Nthe sampling error is eliminated. For the gqup66 case we are in slight

trouble and it sems worth ile to apply double sampling. For our

primy set of cenfigurations we have 200 gqp&66 dram ones. These we

plan to use in order to get the necessary regression estimates.

ntigurations are, in the case w discuss here, ordered 5-vectors and we

choose a nomalination such that the second conponent is fixed at -1 and

ptmber 7, 1983
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the fourth component at +1. We therefore only need to consider the

- first, c1, third, C3 , and fifth, c5 , components. We theretore loek

for regression functions

.opt, gUpa66 (c1 1'c 3 1cs)

a"gupa66 (2 Iconfiguration) (c1 ,c3 ,c5)

and

. Codmifleegupa 66 (clc 3 ,c 5 ).

We have 200 sets of (Cl. C3 , c 5 ) - values with the corresponding

(numerically cmputed) responses. his seems a straightforwrd

regression problem. First aid (bsteller and Tukey (1977)) tells us to

use

' '21 - leg1-1-C 1

1 3 - log((l-c3 )/(14c 3)

215 - log(C5-1)

as our carriers, but this, as trial teaches us, would have the effect of

treating the values c1  -1 ,c 3 - ±1 and c 5 -+1 in a too extreme

way. We therefore propose the use of

x - logcI4-cl)

X log (' I...3 (3.1)
-°3

.o." 3  = 141 1.1

X5 a leg(CS-146)

%ere 6 Is a waall value at our disposal. Atter a few trials, tm

doom 6 - 0.1.

-bpteiber 7, 1983
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First aid for the three response variables tells us to use the

loarithm for ave(s 2 'configuration) and min. cond. mean-square-error,

which both only take on positive values. Linear regression can be

applied to these re-expressed variables, which we vrite as

u M log ave(s 2 Iconfiguration)

v a log min.cond. me

At this point we need to consider the behavior of x,, x3 ' x5 and

our 3 response variables under reflection of the configuration. This is

~4 mostly simply put as

XI + x5 -- x + x5  (even)

x1 - x 5  - ( - x1 ) (odd)

-3  -x3 (odd)

- - (odd)

-- > (even)

v -> v(ev, n)

Accordingly we should initially approximate t by a linear combination

of Xl-x 5  and xj, but 2 and 9 by linear functions of x +x5  above.

Ve find the following fitted equations

t.131 (x -x;5 ) +.314 x3  R a.96

G .051 - .29O(x+x 5 ) R2 a .41

o. -. 922 - .131 (i+) R .8

he 72 viaus for u and v ar encouraging, they are, however, not

w lwp = wuehould like.

Sepmber 7, 1983
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We might be able to do better with polynomials in x1+x5, x1-x5, and
x3  of higher order. For 2 we wnt expressions that are odd under

~reflection. Where the simplest possibilities are (a) odd powers of odd

expressions, sach as

xl"x-, x3 , (x1-x5 )3 , and

and (b) products of even expressions and odd ones, such as

(+x5)(x x5) s xl-x5, (xl-x), and (xI-x5) x3

For f' and 0 we want terms that are even in reflection. Here the

simplest possibilities are (a) even expressions and b) squares and

cross-products of odd expressions, such as

.+X5  (x1-x5 )2 ' Xj ,(x-x 5 )x3

as well as products and powers of these quantities, such as

,,, (~xl ) _x+Ix5)2 ,(X'+X5)x 2 (x+ ) x3),and (x,_- )4

Using some of these terms, selected step-by-step on the basis of

examining suitable residual plots, leads to fits with multiple-R2 values

, above 90%. In the example, this process produced:

to - .,33(x,- 1 ) +R , 0.97
2a a -. 3685 - .215(x.,x5 ) + .21023

+ .159 x3(x-ia5)-.038 x(x,+x5)  R a 0.90

S9a -- 91 -. 3 (x+1x5)-,033 X3 (XI -35 ) HR2  0.95

wes ,x23 md are defined in (3.1).

September 7, 1983
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-. 9.-,Remark:

If we could also fit the relative weights wgupa66 (c 1 ,c 3 ,c 5 ), which

would also start as logarithms, we could go ahead and use all the

approximations to get an approximation to the bi-effective Gaussian-

gupa66 location estimate (Bell and Morgenthaler (1981)). This can indeed

be done.

With the above regression estimates we are now ready to compute

double sampling estimates according to (2.4) and (2.5). The following

V. table contains the results.

Table 3.2

Double sampling estimates of the Pitman variance
for saples for size 5 for the gupa66 situation

gupa 66

N 2  2000 .3459

N2 w 2000 .3444

" N2 a 2000 .3472

N2 a2000 .3425

combined .3450

Eac of the above estimates is based on a secondary sample of gupa66

drawn configuratior. of aie N2 a 2000. For each of these configurations

we simply have to calculate the regression function and do not have to

ompte my Integrsls. We therefore can easily afford to choose the

secondary set at least ten times as large as the primary set.

Sm estimte. in table 3.2 are not the more complex ones given in

(2.4). Irstead of =in& a polysempling scheme in the first - bias -

part of (2.4), they simply apply simple Oonfigural sampling throughout

September 7, 1983
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and are therefore of the form

I F F 1 -F1i(i i - 2m (3.2)

Where the notation is as in (2.4), but here the first sum runs only over

the gupa66 - drawn configurations in the primary set. In our example we

have N1 a 200.

Py doing double sampling we got an answer quite close to - and even

below - the polysampling answer. The values in table 3.2 are remarkably

stable, with a standard deviation of 0.002, but these values are of

course correlated. It seems, however, that double sampling gives us an

additional decimal place. The following table shows the standard errors

of the estimate in table 3.2 depending on the population value PF of

the correlation in our regression function. The formula is (see Cochran

(1977), section 12.6, p. 338)

VW4(M)0m(1-p2) vir(single sampling estimate)

+ P2 F vir(single smpling estimate)

0-0- 1 2 vr(single sampling estimate)
-.1:

S((q as in (3.2)).

Septmber 7, 1983
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Table 3.3

Standard errors for the double sampling estimates
in the gapa 66 situation

2 N2
PF 2 :0 N2 8000 N2  0 N2 200 (polysmpling)

0.0 .11M .1175 .115 1175 .1076

0.4 .0910 .0918 .0940 .1175 .1076

0.8 .0525 .0551 .0622 .1175 .1076

0.9 .0372 .0411 .0512 .1175 .1076

0.95 .0263 .0319 .0447 .1175 .1076

0.99 .0118 .0219 .038 .1175 .1076

.992 .0105 .0213 .0385 .11M .1076

.995 .0083 .0203 .0380 .1175 .1076

.999 .007 .0189 .0373 .1175 .076

(1.000) (0) (.0186) (.0372) (.175) (.1076)

(*) This is the contribution from the simple configural
estimate of regression function bias.

The estimates of we get from fitting the equations, i.e. our R2

valug, are somewhat optimastic. We also have to be careful and

transform them to I 2 values for the original - not the re-expressed -

raspca. variables. Jbr the variable exp(v) (a minimal conditional

mern-square-error) the observed value is a2 a 0.95. Table 3.3 indicates

that the double lmpling estimates based on N2 a 2000 have about halved

the tandard error.

It is clear from the table above that, to get a sizable reduction of

the sampling error, we must achieve a high correlation. Doing better

than R2 & .95 ould be quite rewarding,, ptrticularly for appropriately

etember 7, 1983
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"- lage N 2 .

The application of double sampling to the problem of estimating

exces moen-iquare-errors has not yet been undertaken, but we expect

about the same reductions.
!7,

A,

".4.
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