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XN The use of double sampling in studying robustness
b )

:{.E' Stephan Morgenthaler and John W. Tukey

Technical Report No. 252, Series 2
- Department ot Statistics
b Princeton University
} Princeton, NJ 08544

.*
% ABSTRACT
:'.3': This report deals with an application ot double sam-
,.;:; pling in the area of robustness. Configural polysampling is
A a technique which allows a detailed comparison of existing
e estimator and helps in finding small-sample-optimal estima-
e tors. The technique involves sampling across contigura-
P tions. The associated sampling error can be reduced by
._" using double sampling. Formulas for doing this are given
100 and demonstrated in an example.
2
N
1. Introduction.
Cu”
58 Contigural sampling (D. Pregibon and J. W. Tukey (1980)) is a
"~'?
o powerful tool in studying robust estimators. We want to discuss (in this
5 report) its use in attaining variances and efticiencies (i.e. ratios ot
o
R variances) for any given location-and-scale-equivariant estimator in
various sampling situations. This is obviously an important task in
i" understanding the behavior of estimators across sampling situations and
A N
':i hence in studying robustness. If we are interested in the behavior of
o8
; any specitied lecation estimator T under any specified sampling
54 situation P, the contigural approach works as tollows. For a set of

' contigurations c,, ..., ¢, drawn at random from situatien F, four

- PIUBETET IR PErC IR Cofihdttion with research at Princeton University
A sponsored by the Army Research Oftfice (Durham). The computing facilities
h, were provided by the Department of Energy, Contract DE-AC02-81ER10841.
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two-dimensional integrals are calculated (D. Pregibon and J. W. Tukey
(1980)). These — usually numerical —- calculations then allow us te
compute the mean-square-error of the estimator T conditioned on the
configurations. This conditional mean-square-error will have no sampling
error attached to it, its accuracy depends directly on the accuracy ot
the value of the integrals, which will usually be atfected by a numerical

error.

The conditional mean-square-errors then have to be averaged across
the sampled contigurations to get the everall mean-square-error. For a
polysampling scheme, configurations are randemly drawn from various
situations F, G ... . Then, for each cenfiguration the four integrals
are calculated fer each situation. In this way, the conditional mean-
square-error of T can be calculated in all sampling situations under
consideration. Cemputing weighted means of the conditienal m-s-e’s
across all drawn cenfigurations -- and not just those drawn frem a
particular situation — then allows a semevhat more stable overall

estimate of the mean-square-errors of T in these situations.

At this second step of the configural approach, i.e. averaging
across the sampled configurations, to represent (estimate) the result of

averaging ever all configurations, a sampling error enters.

This repert addresses the question ot reducing the sampling errer by
the method of dewble sampling (see e.g. Cochran (1977)). In the next
section we will give the formulas and in the last section we will discuss

an example.
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2. Double sampling formulas.

The centigural method naturally gives us, in any situation for which

we cempute the integrals, the (minimal) conditional mean-square-errers

and the conditienal excess mean-square-error fer any lecation-and-scale-

equivariant estimator T. The formulas are as follows: (see D. Pregibon
and J. W. Tukey (1980)).
-aveg(tszlc)

mf = minimal cond. mse, = e + avep(tzszlc)
avep(s Ic)

F

ei = cond .excess msep('r) = aveF(szlc) (t. - 'r(c))z.

pt,F

Here c denotes the configuration, F the sampling situation (shape or
contamponent, for example) and (t,s) are ce-ordinates describing the

sample y as
Yy=s(t+c).

( y and ¢ are n-vectors, 8 is positive real and t is real. In the
last formula it is understeed that t is multiplied by an n-vecter

consisting of 1's).

The polysampling estimate ot the everall minimal mean-square-error

in situation F is

;'; = Svj (min. cend. mse,), = 5 winl (2.1)

vhere \{ denotes the relative weight ot the ith contiguration ter

situation F and nf , 88 above, stands fer

-ln,(uzlc‘)
avo,(t’lci)

+ wc’(tzszlci) .
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K i.e. the minimun mse conditienal on the ith centiguration. The sums run
‘-' over the set of all randomly drawn contiguratiens.
\
.\' The polysampling estimate of the overall excess mean-square-error of
N
-"-Z}; the estimator T in situstion F is
.r":

3 F F

2 !; =3 w; (cend.excess msey(T)); = 2 wie; (2.2)
s .sof 2 - 2
:,: 3 w; avey(s©ic,) “’opt,!,i T(cy))
4
o
vwhere the symbols are as in (2.1).
2;.1
A Double sampling in (2.1) describes the minimal conditional mean-
st square-errors -; by regression estimates ﬂf invelving simple
P

:: tunctions of the cemponents ef the contiguration ¢4 and then gets

"y

R

L Y ~

n; =Swi (0 + (ni-8D)) (2.3)
"
3 oS oFfaf F ,F
i 3 v (n‘-ﬁi) +3 w; &
8!

R If we have a regression estimate a¥ which can be applied to any
v
,; contiguration, we can randomly draw more cenfiguratiens from the

<N
'7 situation P and therefore calculate the second sum in (2.3) with higher
' accuracy. Por these newly drawn contigurations we de not have to do the
.':5 integratiens which give the (exact) value n’. We need only calculate

v ot

‘“ the regression estimate o' » vhich is much simpler and cheaper to do.
The dowdle-sampl ing estimate is therefore

i

2 < P P 1

3s: W = 3, vimi-ah g~ (2.4)
L.’i:,i
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Here the first sum runs over all configurations where the actual
integrals have been computed and the second sum runs over the N,
configurations drawn tor the purpose et douwble sampling frem situatien
F. In the actual applicatien the nunber of contigurations where the

integrals are camputed will be amall cempared to the number of

configurations drawn fer the purpose of double sampling.*

From (2.4) we can see how double sampling by regression estimates
works. The secend sum is an estimate ot the expected value of the
regression estimate in the sampling situation F. The tirst sum

estimates the bias of the regression estimate.

A similar approach to the estimation of the overall excess mean

square error (2.2) is new straightforward. Let ;'opt,i‘ be a regression
estimate for the cond. optimal location estimate. Then

~ P 2 2
": = 3 vy avep(slc;) (tope p5 ~ Yope,r,i * topt,r,i ~ T1))

r 2 2
= 3wy [avep(sTlc;) (Yope,p,1 ~ topt,F,1!

2 .Y a
+ 3 2ave(s lci) (topt,!-‘,i - topt,l",i) (topt,l?,i = T(cy))

+ 3 wf avo'(szlci) (topt,l",i - ‘l‘(ci))2 .

Here double sampling can be applied in the second sum by introducing a
regression estimate for m(szleontlguntion) . This leads to

~ 2 " 2
g; -3 'f(un(s fep) (tope, 2,1 topt,F, 1

It sheuld be netad that we have eliminated the use of the relative
weights in the second sum by only sampling frem situation F. This seems
practical and aveids the difticulty et getting the relative weights of

nevly drawn configurations, which again would irwolve integratien — and
maybe anether level of dewble sampling.

September 7, 1983




2 ~ -~
+ 2ave(s |C‘) (t.Pt'F'i‘t.pt'F'i) (t.Pt,F,‘.T(ci))]

+3 wf (woF(szlci)-aOeF(szlci)) (.topt,,..i

+3 wf aoer(sz'ci) (tom'p'i = T(c‘))z o

T(c;)?

In the last sum above enly regression estimates occur and we can
therefore get a better estimate of this sum by resampling contiguratiens
frem situation P, which tinally yields

- - r 2 -~ 2
E; 3 vy laveg(s®lc;) (tooe p 5 = Topt,F,s) 2.5)

2 ~
+ 2avep(s”icy) (tyry p,i ~ topt,F,i) tept,p,i = T(€3))

~

+ i (aveg(s%ic)) - dvep(s?ic))) (ty, Bii- Tie;n?)
1 2 ” - 2
the double-sampling estimate of the overall excess mean-square-error ot

the estimater T in situation F .

Bjuations (2.4) and (2.5) give estimates based on the technique of
douwble sampling for quantities we are interested in. An estimate of the
efficiency of the estimator T in situation F can be obtained by

i
o

oty (T) =

%

which will be a more stable estimate than

ctt’('r) = —
F,

'
r
P

September 7, 1983
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the increase in stability is, however, determined by the number N, of
contigurations in the second sample and -- more importantly — by the

Quality ef the regression estimates tor the three quantities
topt:.!‘

aver(szleontiguration)
,:'{'i and

minimal conditional mean-square-error in situaton F .

The final section gives an example of the use of this technique and
discusses the problem of getting the regression estimates in a special

" case.

3. Example.

In order to study robustness properties ot various estimators, and

: ;’ in order to define new — in a small-sample sense optimal -- location

| estimators, four increasingly heavy tailed shapes -—- joining the Gaussian
to a Cauchy-like —- are considered in the following experiment. We will
call these shapes gupa-rm (Gaussian-Pareto distributions), where n and
m are integers such that the tail bshavior of the cerresponding
cunulative distribution function is Paretian with exponent -(n/m). These
distributions are such that the central part is exactly Gaussian. ‘'The
gupa-rm shapes are discussed in Gartinkle (1982). We chose the four
shapes gupa60 (i.e. Gaussian), gupa62, gupa64 and gupa66. ‘The diversity
of the last one has tail behavior like (-'-?'g)'2 , and is therefore like a
Cauchy density in the tails. PFor each of these four situations we draw
at randem 200 contigurations, i.e. a total ot 800 contigurations, for the

September 7, 1983
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o
o0
A ~.‘ -8 -
A
:J_:-
:-',’:'j case of samples of size S. This is our primary set ot centigurations and
2N
';f-';: fo: sach we calculate all ef the necessary tw-dimensienal integrals tor
L") '
S all ot the four situations. This is a total of 4xd4 = 16 integral values
:‘«::1 tor each contiguration. Now we are ready to do the centigural
!\.'
AND polysampling. We can estimate for each of the four situations the
N polysampl ing estimate !{ot the minimal attainable mean-square-error
X0 (Pitman (1938)). The results are given in Table 3.1.
- Table 3.1
H5%] Polysampling and single sampling estimates of the
F.,', Pitman variances for samples of size 5
o (standard errors in parenthesis)
z - single sampling polysampling
o
SR gupa 66 .3705 (0.1175) .3543 (0.1076)
o
o gupa 64  .2744 (0.0465) .2755 (0.0497)
" \ gupa 62 «2033 (0.0393) «2065 (0.0287)
D
A Gaussian  .2000 (0.0000) «2000 (0.0000)
A%
b
o The nunbers in parenthesis are estimates of the standard deviations ot
,._-;, the estimate. Single sampling reters to the estimate one gets by using
L)
"I only the configurations drawn from the "right® situation. For the
0
A Gaussian case there is no error since the integrations can be done
\ J,:"} analytically, and, since all configurations behave exactly the same way,
)
‘ ::‘. the sampling error is eliminated. For the gupa66 case we are in slight
v
trowble and it seems worthwhile to apply double sampling. For our

primary set of centigurations we have 200 gupa66 drawn ones. These we

g 4 '.-)r“.
NN

plan to use in erder te get the necessary regression estimates.

X

Contigurations are, in the case we discuss here, ordered 5-vectors and we

:\; choose a normalization such that the second cemponent is tixed at -1 and
RS

::‘_v'"'

. September 7, 1983
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the fourth cemponent at +1. We therefore only need to consider the

tirst, ) third, C3» and fifth, Cgr camponents. We theretore look
for regression functions

~

topt, gupaés (€17S3+Cs)

lvegm“ (szlcontigwation) (c) /€3/Cg)

ccmcl.min.m.’.egw366 (cl,c3,c5) .

We have 200 sets of (cl, C3s cs) - values with the correspending
(numerically computed) responses. This seems a straighttorward

regression probleam. First aid (Mosteller and Tukey (1977)) tells us to

21 = log(-l-cl)
R3 = log((i-c3)/(14c,)

as our carriers, but this, as trial teaches us, would have the eftect of
treating the values ¢ = -1l , cy = 4l and Cg =+]1 in a teo extreme

way. We therefore propose the use ot

X, = 109(1-6—«:1)
X, 1og(1-°3*6) (3.1)
3 I+c33

Xg = log (c5-106)

vhere § is a small value at our disposal. After a tew trials, we
choese § = 0.1.

September 7, 1983
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First aid for the three response variables tells us to use the
logarithm for ave(szlconﬁguration) and min. cond. mean-square-error,
which both only take on positive values. Linear regression can be
applied to these re-expressed variables, vhich we write as

u = log ave(s“|configuration)

Vv = log min.cond. mse .

At this point we need to consider the behavior of Xy x.5. xs and
our 3 response variables under reflection of the configuration. This is

mostly simply put as

X) + Xg -—> X) + Xg (even)
X, = X5 =—> -(x; = X5)  (odd)
X, —> -Xq (odd)
t --=> -t (0dd)

] _—> u (even)

v —> v (ev )

Accordingly we should initially approximate t by a linear combination
of x)-xg and xs.but i and ¥ by linear functions of X\ +Xg above.

We find the following fitted equations

€- 431 (x1-x5) + J314 X5 R« 96
@ e .051 - .280(x,+x;) R = .41
¢ o -a522 - 131 (xy4x) R = .86

The 32 valuee for u and v are encoursging, they are, however, not
a8 large ss we should like.

Septeader 7, 1983
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] Ve might be able to do better with polynomials in x,+Xg, X,-Xg, end
_:_.?, Xs of higher order. For 1; we want expressions that are odd under
‘? ” reflection. Where the simplest possibilities are (a) odd powers of odd
::'.E:;Z expressions, such as
o - (x,-%;)°, and x%
| X17%5, X3 X707
$)
.;23 : and (b) products of even expreasions and odd ones, such as
S 2 2 2 2
. (x1+xs)(x1'x5) b 11"151 13(11“%), and (x1'xs) x3
s
-ﬁ:-f For i and V we want terms that are even in reflection. Here the
o
] simplest possibilities are (a) even expressions and b) squares and
cross-products of odd expressions, such as
\' X+ (%= )2’ 2 (x,= )
o
) - a8 well as products and powers of these quantities, such as
I
s,
N 2 2 2 4
4 (xy#%5)% o (% 4%5) (%) =X5)E 5 (x,4%5)x5, (%4+%5) (x)~Xg )x5,8nd (x,-x;)
! Using some of these terms, selected step-by-step on the basis of
hY
.\-;2 examining suitable residual plots, leads to fits with multiple—R2 values
)
NN above 90%. In the example, this process produced:
e t & A33(xxg) + .308x,-.0182 R « 0.97
ks 2
E‘:’. i = -.3685 .215(x1+x5) + .210:3
+ 2159 xy(x,~x5)-.038 B(x;+x;) K = 0.90
A - - - -
A ¥ = =91 =13 (xy4x)-.033 x; (x,%) K =0.%

vhere X sX; and x5 are defined in (3.1).




If we could also fit the relative weights ¥ gupas6 (c:1 .c3.c5), which

would also start as logarithms, we could go ahead and use all the
approximations to get an approximation to the bi-effective Gaussian-
gupabb location estimate (Bell and Morgenthaler (1981)). This can indeed
be done.

With the above regression estimates we are now ready to compute
double sampling estimates according to (2.4) and (2.5). The following
table contains the results.

Table 3.2

Double sampling estimates of the Pitman variance
for samples for size 5 for the gupabb situation

gupa 66
N, = 2000 +3459
N, = 2000 .3444
X, = 2000 3472
N, = 2000 3425
combined +3450

BEach of the above estimates is based on a secondary sample of gupabb
drawn configurations of size N, = 2000. For each of these configurations
ve simply have to calculate the regression function and do not have to
compute any integrals. We therefore can easily afford to choose the
secondary set at least ten times as large as the primary set.

The estimates in table 3.2 are not the more complex ones given in
(2.4). Instead of using a polyssmpling scheme in the first — bias —
part of (2.4), they simply apply simple configural sampling throughout

Septeaber 7, 1983
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:-:: ‘ and are therefore of the form

’ % -y ) (m8)) + 1}5 3, 8 , (3.2)
v

0] Where the notation is as in (2.4), but here the first sum runs only over

the gupab6 - drawn configurations in the primary set. In our example we
o
50 have N, = 200.
5

By doing double sampling we got an answer quite close to — and even
below — the polysampling answer. The values in table 3.2 are remarkably

¥
’ d
N stable, wvith a standard deviation of 0.002, but these values are of
o
~ course correlated. It seems, however, that double sampling gives us an
-
*:; additional decimal place. The following table shows the standard errors
&
x4 of the estimate in table 3.2 depending on the population value Pp of
| X the correlation in our regression function. The formula is (see Cochran
i\
(1977), section 12.6, p. 338)
&
b vir(M) = (1-3) vir(single sampling estimate)
3 2N
4 + pp - Vir(single sampling estimate)
% >
s\f‘
¢ N1 2
= s (1-(1- g=-)pp) vir(single sampling estimate)
b 2
-_4
Y (O s in (3.2))
:3 L] *
@
"
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2

= Table 3.3

, Standard errors for the double sampling estimates

' in the gupa 66 situation

- 2 Np= 0
: PF N, =00 N, =800 N, «2000 N,=200 (polysampling)
eX 0.0 M5 NT5 TS TS 1076
0.4 0910  .0918 -0340 ANT5 1076
- 0.8 0525 0551 062 TS 1076
X 0.9 0372 0411 .0512 M5 1076
; 3 0.% 0263  .0319 .0447 AMT5 1076

: i; 0.99 0118  .0219 .0388 AMT5 .1076
i 992 0105 0213 0385 2175 .1076
e .99 0083 0203 0380 TS5 1076
% 999 0037  .0189 0373 M5 1076
‘ ' (1.000) (0) (.0186) (.0372) (.1175) (.1076)
- (*) ™is is the contribution from the simple configural

W estimate of regression function bias.

o

. The estimates of plz, we get from fitting the equations, i.e. our R2
% values, are somevhat optimietic. We also have to be careful and

i transfors them to R° values for the original — not the re-expressed —
response variables. For the variable exp(v) (= minimal conditional

J.‘\

o mean-equare-error) the cbeerved value is RZ = 0.95. Teble 3.3 indicates
n,

2 that the doudble sampling estimates based on uz-zooo have about halved

Y the standard error.

,?

i. It is clear from the tadble above that, to get a sizable reduction of

: the sampling error, we must achieve a high correlation. Doing better

; than R2 = .95 could be quite revarding, particularly for appropriately
(]
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" The application of double sampling to the problem of estimating

excess mean-square-errors has not yet been undertaken, but we expect

UL

about the same reductions.
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