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o'

2% ABSTRACT
Ts In this report we detine poly-optimal contidence

¢
QN intervals for a location parameter. The formulas are
A given tor the case ot two shapes, but can easily be
5y, extended to the case ot many shapes.

o,

\d

1 For the case ot two situations, the Gaussian and the
2} slash, the resulting tamily ot contidence interval esti-
/! mators is examined. These interval estimators are com-
. petitors ot existing so-called robust procedures. A com-
o parison to a tew of these is, included.

3
Y

3t 1. Introduction.

This report deals with the issu2z ot robustness in interval

estimation tor a location parameter. We will restrict attention to

Aéé .

' location-and-scale equivariant estimators. This puts us
N automatically into the theory connected with contigurations (see
n y

i ' Morgenthaler (1983)). Ot special relevance to our problem are the

<i
Lﬁ . conditional contidence distributions, which allow us to determine --
- tor the sampling situation(s) under consideration -- the conditional
1A ':3

) .
::j contidence coetticient given the contiguration tor any interval
3
:."
_— Prepared in connection with research at Princeton \University, spon-
~ sored by the Army Research Ottice (Durham). The computing tacilities
5* were provided by the Department ot Energy, Contract DE-ACO2-
b 81ER10841.
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estimator. We will see in the second section how these conditional
contidence distributions can be emﬁloyed to detine “good®™ contidence
limits. These poly-optimal -- or in our case bi-optimal -- interval
procedures a;e then compared to existing robust methods. (Section

3)-

Here we understand the essence ot robustness in a sense similar
to what it means in the point estimation case, i.e. high etticiency
in a variety ot underlying situations. And we will put special
emphasis on small sample results instead of asymptotics. This allows
us on one hand to be a lot more realistic but on the other hand we
can not take an intinity ot situations into simultaneous
consideration. But -- as we will learn -- there is a lot ot

potential in this approach. It can teach us new things.

2. i-optimal contidence intervals tor a location parameter.

We are interested in location-and-scale equivariant contidence

limits. This means that our upper and lower bound statistics will

satisty
U(s(t o+ ?)) = s(t + 0(3)).

where ? € R and f is the vector consisting ot ones. Under
location and scale changes ot the contiguration ?'. the statistic
behaves accordingly. From this equivariant behavior it tollows

immediately that tor samples ot the torm

Fis,.t) = st P + &)
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Jﬁ. the value ot the statistic U is known it the value U(?) alone is
NCAO
l* tixed. Por each two-dimensional set ot samples which only ditter by
o
‘fg location and scale changes we, theretore, select a representing
_$ element 3’ -- contiguration ~- which serves as a base point in
. ’ parametrizing the set of samples by s € R, and t € R (see
‘:\
m: ) Morgenthaler (1983)). The conditional density given the
Y
: ﬂ contiguration & can then be written as a tunction ot s and t,
¢ which turns out to be
3
~ _ n
15 sl M t(s(e ety
o ke(s,tl1d) = i=1 i
— F> o0 o0 . n !
= f s I t(s(c;+t)) dsdt
Ly -00 i+l ’
N
?aﬁ where (cl, Coy eees cn) = ?’ is the contiguration and F( ) and is
L the probability distribution we sample trom (é%?( ) = £()).
o
A
’q} It we are interested in contidence limits, the conditional
W
e contidence distribution which gives us the conditional coverage
. probabilities is important. It has the torm
)3
Cop(U) = PplU(¥) > 0] = Pgls(t+u) > 0]
i 00 00 2
o = I ko(s, tl dsdt .
o I I xptse e1&)
haSy
2 Here we assumed that the distribution F is symmetric with center ot
MYy
:;: symmetry at 0 -- then CoF(u) gives the conditional probability ot
]
e
3§- the upper bound statistic U( ) actually being an upper bound tor
Y
23 the true center ot symmetry it U(S) = u.
b
It U() and L( ) are upper and lower bound statistics with
*‘
5SS U(?) = u and L(?) = 1, the conditional contidence distribution
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tells us the conditional coverage probability it we would sample trom

situation F . It would be

dp(@) = 1-[(1-Cop(u)) + Cop(1)] = Cop(u)-Cog(l)

since l-CoF(u) is the conditional probability ot missing the true
parameter to the left and CoF(l) is the conditional probability ot

missing to the right.

We will now derive interval procedures which are single-
situation optimal. Then we will go on to bi-optimal procedures and
indicate how to proceed to poly-optimal methods. All ot these

methods are optimal in a small sample sense.

2.1. Single-situation-shortest contidence intervals

We might ask tor the contidence interval -- in any given
situation -- which has minimal expected length tor this situation,
and reaches a pre-tixed contidence coetticient. This leads in

situation F to the tollowing problem:
minimize [ Eg(s1@) (0(@)-L(@)) dug(?)
with respect to U(?) and L(?) under the condition that
J (Cop(u(@))-Cop(L(@N} aug(d) =1 - g

We note that duF( ) is the (n-2)-dimensional measure across

contigurations induced by F and that

Egls1?] (@) -L(D)) = Ep(s(U(2)-L(2))12) is the expected lengtn
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conditioned on the contiguration ot the contidence interval induced
by L(?W and U(?). Introducing a Lagrange multiplier \ and assuming
interchangeability ot integration and ditterentiation, the solution

to this proﬁlem is of the torm:

EF[slg] = N\ coF(U(?))
BF[slgﬂ = N coF(L(?))

TCo (U@ - co(L(@N} aug(d) = 1 -4

(where co(u) = é% Co(u)).
In an experimental sampling setup the derivation ot the corresponding
solution is somewhat simpler and we include it here. The problem

consists ot the following:

. N
N | > >
minimize ﬁizlep[slci][U(ci)—L(?i)]

with respect to the numbers U(?i), L(gi)' under the condition that

N . .
1 i i
-ﬁiflICon(?i)) - Cop(L(Z))} = 1-q
In this notation {?1,....3h} denotes the set ot all contigurations
sampled trom situation F -- hence we just replaced du( ) by the

empirical measure which puts a point mass % on each ot the ?i's. The

solution is now straighttorward and gives:

Ep(si@) = N copU(@))  k=l,....N

3

At

Ep(s1@) = N cop(L(@,))  ,k=l,....N

N .
1 i i -
ﬁizllCoF(U(?i)) - Cop(L(Z M) 1

AR

2[R

g} In order to compute the bounds L(?&), U(?‘), k=l,...N, one would tix
X November 30, 1983
N
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\ and tind the inverses

L(?k) = C°F,k 0———;————)

vy = cop i (——x—) (2.1)
and then check the overall coverage probability

N . .
% b {Co;.(U(c':’i)) - Co;.(t.(c‘:)i))}
i=]
it this value is below l-d one has to try with a bigger value ot )\

and vice versa.

1

remark: co { ) is not a well detined function. With L(?k) we

F,k
denote the smallest solution to the equation in x

K BF(sl?k]
COF(X) —r

and with U(?}) the largest.
In order to get a short interval -- short measured by expected

length -- we see trom (2.1) that the coverage densities have to be

cut at equal height adjusted by EF[sl?i], which takes care ot the

scale ditterences between the class-representing contigurations ?&.

@EZ

o In the Gaussian case the interval described above is identical
gﬁ\ with Student's t interval. in the next tew sub-sections We will
3’{1

kﬂ examine what sort ot contidence intervals we get it we choose F =

(]
*
U

slash, i.e. a heavy-tailed symmetric distribution (see Rogers & Tukey

(1972)).

7| SRS
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.. 2.1.1. Samples ot size 2
Leo2 2ampies ot £

= g

The single-situation shortest interval with 95% coverage

>,
b
1 probability has an expected length ot 2.237 in the slash situation.
A
I This will be used throughout as a reference to compute etticiencies.
h The conditional shortest (see Morgenthaler (1983)) has an expected
e
length ot 2.245 (+.02) and its slash "squared mean length
Ad etticiency"”, detined by
i)
K . 2
- (minimum expected length in slash) (2.2)
b (expected length ot interval in slash)z
o (2.237)2 .
3 is =~===——— = 99,.3% (see Horn(1981) on discussion ot criterion tor
2 (2.245)
N contidence intervals!).
LY
‘
s We will often report excesses instead of efticiencies. These two are
A
X linked by
‘.I
S
. 1
‘; l + excess = m (2.3)
‘ The conditional shortest has theretore an excess ot 'é?} -1 = ,7%.
J .
n It is obvious that tor a single situation we can without harm in
gf terms ot expected length, ask tor a tixed conditional contidence
) coetticient.
4
,f The range ot the distribution ot conditional coverage tor the 150
%
. slash- drawn contigurations is trom 91.4% to 97.7% with an estimated
W] standard deviation ot about 1%.
2.1.2. samples ot size 10 and 5
-
Y}
f’ Again we restrict attention to the procedure which will produce
)
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p;:j the shortest expected length in the slash case. In terms ot swapping
WX

!E. coverage probability between contigurations, there is not much change

it we go down the ladder ot sample sizes. The S-number summaries

(see: Tukéy(1977)) tor the conditional coverage distributions across

contigurations are as follows:

size=20 size=10
$150 $#150
M 95.2% M 95.2%
H 94.7% 95.5% H 94.7% 95.5%
91.4% 97.7% 88.3% 96.3%
size=5
$500
M 95.2%
H 94.9% 95.6%
82.8% 97.7%

The three cases are close, the lower extreme is going down with
decreasing sample size.

The minimal expected length tor the slash in samples ot size 10 is
3.604 (+.013) and in samples ot size 5 it is 6.641 (+.025). These
together with the Gaussian expected length ot Student's t will be
usec in the next section as minimum expected length tor the Gaussian
and the slash situation. We should be aware that these contidence
intervals are "single-situation” in their spirit. The slash optimum

will be anticonservative it applied in the Gaussian situation,

&}‘ whereas Student's t will be conservative in the slash situation.
L 2R Y
L

|
ﬁ 2.2. Bi-shortest confidence intervals ‘f
7 |
‘-..) K3 3 1] ] . . .
?@ In this section we will derive contidence intervals which are
iﬁ robust in the sense that they will not be influenced unduly by 5
pagred !
-’\ |
Eﬁ outliers. In contigurations which contain "outlying"™ points
LA
o

Xl: 23
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Student's t-interval will be rather long and we plan to use the slash
situation in order to provide guidance in shorteining Student's t-
interval tor such contigurations. 1In doing this, we will ot course
have to pay a price. The conditional contidence coetticient tor the
Gaussian situation will be rather low and it we still want to reach
100(1-q)% overall contidence level, we will have to enlarge Student's
t-interval in other contigurations in order to have more than
100(1-q)% conditional coverage probability. So shortening contidence
intervals naturally leads to exchange ot coverage probability between
contigurations. Robustness ot validity, i.e. ot coverage probability
and robustness ot etticiency are two concepts which need balancing.
It we understand the validity in an overall manner, we can ask tor
contidence intervals which are "short®, but still reach an overall

contidence coetticient ot 100(1-d)% in both situations.

Let us detine "shortest” in terms of expected length., This is by
no means an obvious choice, since length distributions ot contidence
intervals are skewed and the expected value has no intuitive meaning.
As we will see, this choice makes things simple tor us. But as we
will also learn it might be ot interest to look at alternative
detinitions ot "shortness®". Any criterion which can be written as an
expected value over the sample space can be handled in the same way

as “expected length”.

What can we expect from a contidence interval procedure, it we
look at it trom two sampling situations at the same time? Certainly
there will be no procedure which is simultaneously optihal tor both

situations. It the optimality criterion is "convex"™, however, there

November 30, 1983
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is a one-dimensional tamily ot procedures, any ot which is such that

it cannot be improved in both situations simultaneously.

In a decision theoretic tramework (see Ferguson(1967)) our
*parameter set” consists ot two values {Gaussian, slash} and the risk
ot any interval procedure is detined through what we called a
criterion.
remark: Since we look at equivariant "decisions®™ the risk within the
Gaussian and the slash, i.e. under changes ot the location and scale
parameter, is constant or depends in a simple manner on the scale

parameter.

It we use the expected length ot the contidence interval, the value
ot the scale parameter o will turn up as a multiplier.

Let us look at the “"general picture” it we adopt expected length as
our criterion. In order to avoid the trouble with the scale parameter
o, we will choose a canonical density in each ot the two location-
and-scale tamilies and compute the expected length using these
canonical torms. This results in no loss ot generality. The risk set
is:

R-{(rl,rz):tlscaussian exp. length,rzsslash exp. length}elz

where the expected lengths are taken over the set ot valid contidence
intervals, i.e. intervals which reach overall at least 100(l-d)%
coverage probability in both situations. For the usual reasons this
risk set is convex: it we have two valid contidence interval
procedures I1 and 12 the convex linear combinations XII + (1-))!2

will be valid intervals too and the expected lengths will be convex

November 30, 1983
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linear combinations ot the expected lengths ot I1 and 12 tor both the

Gaussian and the slash.

1t we want to get something which does not depend on the scale
parameter within the Gaussian and the slash, we go to excesses, i.e.
reciprocals ot etticiencies minus 1. Since the Gaussian etticiency is

the ratio

(min. length in Gaussian)2

(Gaussian exp. length ot I)

the scale parameter drops out. If we look at excess sets, they will
be convex tor the same reason.

remark: Furthermore the risks and etticiencies detined through
expected length or through (expected length)2 lead to exactly the
same boundary procedures ("admissible solutions"), since we have

merely performed a monotone transtormation.

This then leads to a one-dimensional tamily ot bi-optimal
procedures. Each of these contidence intervals has a right to be
called optimal, since there is no other interval estimator which
dominates it in the "two-situation world" according to the

chosen criterion.

Any member ot this one~dimensional tamily is characterized by a ratio
ot what economists call "shadow prices". Let pg and Pg denote the.
shadow prices tor the Gaussian and the slash, respectively. The bi-

optimal contidence interval procedure corresponding to the shadow

P
price ratio 35 is then tound as the solution to the tollowing
9
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restrained minimization problem:
minimize pg(Gaussian exp. length) + ps(slash exp. length)

under the condition that the Gaussian and slash coverage 1s greater

than or equal to 100(1-d)%

or

A >
minimize péfBg[slc][U(?) - L(?)ldug(?) +
PJESIsIZ1 (@) - L(@)1du (@)

with respect to U(?ﬁ and L(g) under the condition that

fico (@) - co (L@ hduy (@) 2 1

Tico (@) - co (L(@N1an (@) 2 1-d.
The subscript g reters to the Gaussian situation, the subscript s to
the slash. du( ) denotes the (n-2)-dimensional measure across
contigurations and the other tunctions and symbols are as described

betore.

In order to write down a sampling version ot this minimization

problem, it is essential to realize the tact that any contiguration

could arise trom either the Gaussian or the slash (or actually any

absolutely continuous sampling situation with intinite support). So

LY N S Y NN

it we have a stock of contigurations drawn trom the Gaussian, we can

A

still learn something about the slash pertormance ot any "statisticaH
procedure® by applying a weight appropriate tor the slash to the
“slash answers" ot these contigurations. This kind.ot poly-sampling

and the choice ot reasonable relative weights is discussed in
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s RS




ShiC PR Ae St WL AL ALAL AL AN
i B o
Nav
.._-;. - 13 -
S;i Pregibon and Tukey (1981) and we will not elaborate on it here.
1“:-:
(i‘ Now we are ready to rewrite the minimization problem in sampling
i
b& terms, which will allow us to tind approximate solutions.
NN
\\ . p N . >
, ! Minimize -2 S wlE [s|c.][U(3.)-L(?.)] +
) N i=1 99 1 1 i
%
b Ps ¥ > > >
N s i
) TT.S wsBs[slci][U(ci)°L(ci)] (2.4)
\ i=1
Yol with respect to U(ci) and L{( i) under the condition that
o% 1 N i i
25 wicol(w(@,))-cot(L(@.))1>1-q
O N._1 g g i o] i =
\;'\: IN-
N &5 wilcot(u(@))-col(L(d ) 121d.
" . i s i =
5{._-. i=]
\"‘-

o~

The summation here runs over the whole set of sampled contiguration,

.
4,

53,

P
ok i.e. both Gaussian-drawn and slash-drawn. The relative weights
"' !
.“‘,‘-‘,
Y g and w, are used to correct tor the tact that not all
' contigurations are sampled trom the correct situation -- they
)
e indicate the weight attributed to a certain contiguration in
[+
;:H answering questions about the Gaussian or the slash, respectively.
™ All the other symbols are as above.
n'.-\
o The step trom the “"continuous® tormulation ot the problem to the
hA]
;Q} "sampling” tormulation involves an approximation ot
P
by du_ () |
o w! 5
by putting point mass 1? onto the "point® ¢ ;.
Yo
A
:Q{ What constraints do the solutions ot minimization problem (2.4)
<
e i
. |
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W tultill? The minimum will occur on the “boundaries" where th2 overall
'\':.'
('V Gaussian coverage probability and the overall slash coverage

%

e probability are equal to 100(l1-d)% except in special cases. It both
Eﬁg restraints have to be met we need to introduce two Lagrange
'??' multipliers )g and }s and the solution takes the tollowing torm. 1
2 K. K@ > K. Ko, k > k >

3 .\gwg-og(u(c k) )+.\sws-os(U(c K)) _ pgwng[sl S J+Pgw E [sIC )

" K K k k
: '\gwg+'\sws '\gwg""\sws
A
R k. Kk, ., KeoX (L (2 k > K >

.Y

158 .\gwgcog(L(c k) ) tNgWgCO (L (T ) _ pgngg[slckaswsBs[slck]
AN 3 K - Kk 3

RN }ng+§sws kgwg+>sws
Fos k=1,...,N (2.9)
;j:::j and

ﬁ%
¢ 1S witcol(u(@.))-col(L(@))) = 1-d

50 N. g g i g i

LK) i=1

o N . .

3% § 3 wicolw(@m-col@ 1 = 1

o .

X i=]

. i o . . d .. i

ﬂ% cog(x) denotes the derivative a;Cog(x).

Ny This is a set ot 2N + 2 equations which have to be satistied

a9y

N simultaneously. The lett hand side ot the tirst 2N equations is the
;\q density of a mixture ot the two coverage densities with weights

b

WS Kk K . . .
4:8 >gwg and }sws. If we denote this mixture by hk( ), the solution can
251 be computed by inverting hk( ) as in (2.1) which leads to

n k 3 >

! _y P, w_ E [sl?']+p w_E_[sic 1

3 u(d,) = n 12329 k__SSS K.y k=l,...,N

. k K \ wk+\ Wk

A g'g ''s's

% ke (012 1en oK

. >

o _1 P,w E_[(sl| 1+p_w_E_[slc ]

> (@) = h 1 (=299 k__s8S5S K.)  k=l,...N (2.6)
;4- k k NS

,,; g"g 's’s
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N lg¢ i i P > - 1-
£ Niflwq{Cog(U(?i)) Cog(L(Z )} = 14
R DI IO TR i
| ﬁifl"’s{“s‘“‘ci”'°°s“"gi’” = 1-d.
s

¥ R

.;§ This way we can tind U(ck) and L(?‘), k=1,...,N by an algorithm

2 which adjusts the values ot )g and )\_ atter each iteration so that
if? the overall coverage probability is equal to 100(l1-d)% in both
\-‘.

A\ situations.

%
e The solution is again of an "equal height" torm similar to the single
5}‘ situation shortest contidence intervals. But now a mixture between
v{,\

£§ the Gaussian and the slash "picture” - with the shadow prices

o)
‘ pg and Pg and the Lagrange multipliers }g and )s as weights -- is
.ﬁﬁ characterizing the conditional "knowledge".
X
LAl
:ﬁf The case where the minimum solution to (2.4) occurs on the

. single-boundary, where only the Gaussian coverage is at its lower
-,
’.\ bound, but the slash coverage is bigger than 100(l1-q)%, occurs, in
B particular with pg = ] and Pg = 0, i.e. shadow price ratio 0. This
"% means that we are only concerned about the Gaussian expected length
Yt

xd : ot the procedure and we know trom that Student's t interval minimizes
1o
b this length. However, the slash coverage is then bigger than
Y=z 100(1-q)% at least tor the common values of . It we would torce a
)

:j solution with minimum Gaussian length and exact 100(l-d)% coverage in
,?i both situations, the Gaussian expected length would increase. This
'_' might at tirst sight seem paradoxical: if we want to bring down the
b

;;3 slash contidence coetticient and thus "shorten” the intervals, the
2
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expected length in the Gaussian increases. But the idea that
decreasing the contidence coetticient always results in shortening
contidence intervals is wrong. In the above case we will torce
100(1-d)% slash coverage by introducing asymmetry into Student's t
intervals, which makes them on average longer in the Gaussian
situation. The solution to the one-boundary case, i.e. only the

Gaussian contidence coetticient is tixed, is as in (2.5) with \_ = 0.

In solving the minimization problem (2.4) we will theretore
always have to check whether putting }s equal to zero will improve on
the "objective" tunction. This "paradoxical" behavior only happens it
the shadow price ratio is sutticiently close to 0, i.e. it our
"objective” tunction discounts the slash expected length

sutticiently.

Let us tirst study the contidence interval procedure which
results trom putting pg = 0, i.e. the shadow price ratio equal to
intinity. These are the intervals which have shortest expected length
in the heavy-tailed slash, but are also reaching 100(l-)% coverage
in the Gaussian. As always we will restrict attention to the 95%

contidence level case.

= 0: Shortest in slash (ratio intinity)

2.2.1. p; =1 and pg

These intervals exhibit a considerable amount ot coverage
probability exchanging between contigurations. Figures 2.1 and 2.2
show boxplots (see Tukey(1977)) ot the conditional contidence

coetticients tor samples ot contigqurations drawn from the Gaussian

November 30, 1983
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Figure 2.1: Bi-shortest intervals in the Gaussian situation
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2.2: Bi-shortest intervals in the slash situation
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and the slash, respectively. In order to make these exhibits more
intormative we do not display the raw contidence coetticients but

rather a logistic transtorm

>

c) .05
Log (T ey —s3)

of the conditional contidence level Q(?).

In the Gaussian situation we see that as the sample size
increases, the tail towards very low conditional contidence
coetticients grows and at the same time the bulk ot the distributions
moves closer together. In the slash situation, Figure 2;2, the
changes across sample sizes are more complex. In samples ot size 20
we get a good slash-behavior it we modity tor Gaussian coverage. It
we decrease the sample size to 10, the tail of the distribution
towards "over-~coverage”™ has thickened considerably and as we get to
S, even the median coverage has moved to about 98.6%. The lower

tail, i.e. towards “"under-coverage® also grows with decreasing sample

size.

We can think ot these intervals as moditied "shortest® slash --
moditied to pick up additional Gaussian coverage in the most
economical way, It is not surprising that moditying slash tor
additional Gaussian coverage is asking tor more in smaller sample
sizes (see Morgenthaler (1983)). The values ot the Lagrange
multipliers -- which together with the relative sampling weights are

weighting the coverage densities in (2.5) -- are revealing in this

A
respect. The ratio ‘3 has the values 24.3, 1.8, 0.2 as the sample
[)
9
size goes trom n=20, n=10 to n=5, In the case "n=20" the solution

November 30, 1933
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Pays most attention to the slash whereas in "n=5" the Gaussian has to

account with big weight. So even it we are solely

the slash expected length, the demand tor 95% Gaussian
a lot ot emphasis on the Gaussian. We expect to see
also in the length distribution.

turns out that the ratio of slash expected length to

the single situation shortest has values 100.6%, 104.4% and 129.8%

tor the cases n=20, 10 and 5. So the penalty in terms ot increased

expected length we have to pay in order to get 95% Gaussian coverage

increases with decreasing sample size.

Let us get back now to the slash coverage probability. Figure
2.3 shows the plot ot the conditional probabilities ot missing the
true parameter value to the left vs. to the right. Clearly tor
samples of size 10 the slash contiguration populaetion is split into
two parts -- roughly two halves, One halt of the contigurations gets
long intervals, i.e. over-contidence, whereas the other halt gets too
short intervals. This teature can be understood by looking at
equations (2.5). In a contiguration with relative slash weight W big

compared to w_, the equation approximately reduces to

9

co:(U(?k)) = .Vl; Egs1Z,)  k=l,...,N

which is the same as (2.1) except that the Lagrange multipliers are

possibly difterent. The Lagrange multiplier \ required in (2.1), i.e.

L
- tor the single-situation~shortest slash intervals are 11.3, 20.7 and

L)
i

T
‘l »

213

&
A, A

4 8

41.3 tor the cases n=20, 10 and S. The values tor )\ . in the above

equation on the other hand are 10.7, 14.8 and 10.0, i.e. unitormly

smaller. In a contfiguration with big relative slash weight the

L A

£ Y

i
~
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interval will theretore be smaller -- due to the decreased Lagrange
multiplier -- than tor the singlé situation optimal solution. Figure
2.3 tells us that this happens in roughly halt the slash-drawn
contigurations. Now we understand how the slash optimal intervals

are moditied to yield 95% Gaussian coverage. 1In contigurations where

we strongly "believe” in the slash sampling -- in terms ot relative

weight, i.e. compared to the Gaussian - the intervals are shortened.
In other contigurations the intervals have to be made longer, more
nearly like Student's t. This effect ot shortening seems very
undesirable trom the conditional coverage point of view, but is
needed it we insist on 95% slash coverage. Maybe the more natural
approach would leave these intervals at their single- situation
optimum ~- which would ot course result in a slash overall contidence

coetticient bigger than 95%.

As the comparison of the Lagrange multipliers suggests, this is
not or in a limited way going on in the case "n=20". Indeed the
single-situation-optimal intervals are there nearly the same as the
moditied ones which also guarantee 95% Gaussian coverage. In the case
"n=5" on the other hand, the problem is getting really extreme but
the contigurations with relative slash weight dominating are getting
rarer. But it is obvious that in order to have both the slash and the
Gaussian contidence levels at exactly 95%, we need to make the
intervals very short in contigurations where we strongly "believe"

(ws big!) in slash sampling.

Why does the sample size have such a strong intluence?

In order to answer this question the (n-2)-dimensional measure

November 30, 1983
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dpp(3) which goes across contigurations and only depends on the

shape has to be brought into the discussion. As the sample size
increases the "overlap” between d”slash and d”Gaussian decreases,
i.e. it is gétting easier to discriminate between the two. This is
the reason why the moditication ot the single-situation-optimal slash
interval in order to gain Gaussian coverage does not intluence the
slash behavior very much, since the moditications take place in

contigurations quite tar trom the "core" ot d“slash'

The same plot as Figure 2.3 tor the Gaussian case shows that the
moditied shortest slash intervals are in a tew contigurations very
short and in the majority too long -- even trom the Gaussian point ot
view. This can be explained by the "urge" of this interval estimator
to be short in contigurations which "look slash like" and long in
others.

But over the whole we can certainly say that these moditied
shortest-slash intervals are not what we could call "good", mainly

from the point ot view of the conditional contidence behavior.

2. p. = .1 and p, = 1: "robust”, but short in the Gaussian
s - - —

2.

TN}

(ratio .1)

As we have already discussed, the solution for the case Pg = 0
and pg = ] just leads us to the tamiliar t-intervals. It should,

however, be interesting to see how the interval procedures which
P

solve problem (2.4) with small nonnegative ratio 35 -~ we choose the
g

ratio .1 -- behave. Obviously these will be closer to Student's t
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intervals without losing sight ot the slash "requirements".

It turns out that in the case "n=20" the idea we have in the back ot
our mind - shortening Student's t intervals radically in "extreme"
contigurations while leaving them alone in others -- works. At ratio
.l there is very little variation left ot the conditional contidence
levels in the Gaussian situation. Figures 2.1 and 2.2 allow a
comparison with the ratio = oo intervals. In the Gaussian case, both
tails are moved in, whereas in the slash situation, the tail towards

over-coverage grows.

In samples ot size 10, one can still see the splitting ot the
slash drawn contigurations into subpopulations, but the plot
corresponding to Figure 2.3 has been loosened up.
1t we care more for the Gaussian situation, these are clearly more
sensible contidence intervals and in terms ot expected length they

have to be tavored over Student's t.

2.2.3. The bi-optimal curves

Figures 2.4, 2.5 and 2.6 show the plots of the square mean

length deticiencies, detined by

length in situation F of interval Iy2 _
min. exp. length in situation F

det (1) = (SXE-

tor the two situations Gaussian and slash.

The "*" denote the nonparametric procedures ot discussed in
Morgenthaler (1983), where the labels are "si" tor the sign, "wi" tor
the Wilcoxon, "w#" tor the winsorized Wilcoxon with a bound ot § on

the ranks. The bi-optimal procedures were computed tor the ratio

November 30, 1983
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values oo, 2, .2 and .1l and plotted with an "o". The diagonal --

corresponding to the minimax choice -~ is included.

Clearly we are able to do an excellent job ot compromising in
samples ot size 20. The minimax bi-optimal contidence interval
reaches about 96.5% squared mean length efticiency, so that the
expected length ot this procedure is very close to the single-
situation-optimal intervals. In samples of size 10 the curve moves
towards the right, we have to pay a penalty in terms ot increased
slash expected length due to the tact that we require a contidence
coetticient ot 95% in the Gaussian situation. The minimax choice now
has approximately 87.3% squared mean length etticiency. And a good

compromise as tar as expected length is concerned is still possible,

In samples of size 5 the slash-penalty we have to pay tor
g: .ning 95% Gaussian coverage probability is getting very large. The

tollowing Table gives the numbers:
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' Table 2.1: Estimated expected lengths ot several contidence interval
{ procedures

- method Gaussian slash

size=S size=1l0 size=20 sizes$S size=10 size=20

- Student's t 2.33 1.39 .93 - - -
;j: : opt. slash - - - 6.64 3.60 2.24
o
Ay ratio oo 2.74 1.60 1.05 8.62 3.76 2.25
= ratio 2 2.68 1.52 0.95 8.66 3.76 2.26
\ ratio .2 2.47 1.43 0.95 9.23 3.93 2.34
N ratio .1 2.45 1.42 0.93 10.43% 4.02 2.38
}\ si - 1.64 1.16 - 5.39 2.65
.-‘\ w3 - 1052 1.14 - 4.94 2057
"o w7 - 1.44 1.06 - 5.55 2.55
o wi - 1.46 0.955 - 24.5 3.34
'
;ﬂ hin 4.07 1.73 1.21 11.95 4.65 2.57
33 hub-1.5 3.74 1.63 1.03 l11.88 4,25 2.57
e hub-1.9 3.69 - - 11.78 - -
o bi-11 3.29 - - 11.28 - -
0 tp 2.17 1.35 0.92 11.95 4.14 2.41
ﬂﬁ, wms 3.42 1.62 0.99 9.87 3.96 2.33
s

(the standard errors in this table are between %% and 3% ot the
'ﬁ estimates! The procedures labelled hin, hub-1.5, hub-1.9%, bi-9, bi-
".n
# 11,tp and wms are discussed in section 3.)

)
-

The labels in this table stand ftor the tollowing interval procedures:

\

ratio # = bi-shortest with specitied shadow price ratio, si = sign,

gt v-

Q wi = "winsorized" Wilcoxon score, wi = Wilcoxon, hin = pivot-t, hub = ‘
2 procedure based on Huber's p-tfunction, bi = one-step biweight

352 procedure, tp = three-point procedure aﬁd wms = procedure based on

?;g the weighted conditional mean-square-error curve.

Figures 2.4 and 2.5 also include the nonparametric contidence

intervals discussed in (Morgenthaler (1983)). They too pay a slash

e

Ay
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pPenalty tor reaching 95% Gaussian contidence level as the sample size

decreases. The pictures only include the winsorized Wilcoxons where
one puts a bound on the ranks, the trimmed Wilcoxon's (see
Morgenthaler (1983)) give, however, nearly the same contidence
intervals. The moditied Wilcoxon's smoothly bridge the gap between
the sign and the unmoditied Wilcoxon and -- trom the point ot view ot
expected length -- are a preterable choice. As we have seen in
(Morgenthaler (1983)), this is also true from the point of view ot

conditional contidence coetticients.

2.3. Discussion

We should be caretul in interpreting the deticiency plots.
Untortunately the contidence interval estimation problem is more
complex than the point estimation problem, where a deticiency plot
derived from mean-square-errors, we believe, tells us nearly all.
(However, we have not looked into matters in as much detail tor the
point estimate case!)

Here other aspects have to be taken into account. It we look at the
variation ot the conditional contidence levels across contigurations,

we get the tollowing table.

November 30, 1983




Table 2.2: Hinge-spreads (see Tukey{(1977)) tor conditional coverage
probabilities in %

Gaussian | slash

: |
size=20 4.23% | 0.79%
ratio oo size=l0 3.52% | 4.28%
sizesS 2.51% : 3.33%

- 1
size=20 0.068 | 1.16%
ratio .1 size=10 0.44% | 4.50%
size=5 0.52¢ | 1.91%

It is obvious that the two choices ot ratios have diametrically
opposed consequences -~ and that the small ratio makes more sense
trom the point of view ot stability ot conditional contidence levels.
It is interesting to note that the bi-modal slash conditional
contidence level distribution we get tor samples ot size 10 clearly
stands out. If we compare this to to the numbers in Morgenthaler (1983),
we note that the nonparametric contidence intervals seem to rely on
somewhat more coverage-probability exchange between contigurations.
It we were to measure the variation in these tables by a statistic
which uses more of the tail intormation - like the usual standard
deviation -- we would, however, see that the bi- optimized intervals
grow quite a heavy tail towards low conditional contidence levels.
Trying to make the expected lengths ot the contidence interval
procedure small does ot course have an impact on the distribution ot

the conditiongl coverage-probabilities across contigurations.

3. ROBUST CONFIDENCE INTERVALS
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ol



What should we mean by the term robustness if we use it in
connection with contidence intervals? Most ot the robustness
literature (see Huber(198l)) is concerned with point estimation --
and the simplest case i.e. location parameter estimation with known
scale parameter is certainly best understood.

It we deal with contidence intervals, or with the related tests,
several complications arise. It is my beliet that asymptotic theory
loses some of its appeal when we apply it to contidence intervals. As
the size ot the sample goes to infinity, the problem of setting
contidence limits gradually disappears. It we knew the population,
our interval would be of zero length so that as the sample size gets
big, most ot the contidence interval estimation problem lies in
tinding a "good" center tor it and we are really talking about point
estimation. The usual way to get around this is of course to study
powers of the tests at alternatives which tend towards the null
hypothesis -- that way we can study the asymptotic length ot the
corresponding contidence interval procedure. It seems to me that

interval estimation is inherently a "sample problem®”.

P. Huber derives in his book an approach to get minimax intervals tor
the case ot known scale (Huber(198l1)), but this is too simple a

situation to be helptul in practice.

It we use the center and width (or range) ot the interval as
co-ordinates, it certainly seems necessary for a “robust" interval
estimator to have a robust center and a robust width -- but both
alone do not satisty us, since we also have to keep the validity ot
the procedure under control. This requires that the width gets large

whenever the center is "weak"” and in this sense the two co-ordinates
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center and width have to react in a matched way. Basically this means
that their ratio has a distribution which does not change
catastrophically much in the tails it the underlying situation
changes. Student's t interval does satisty this requirement -- and

is robust in this sense.

In what way are the bi-optimal procedures superior? They
basically try a small sample minimax approach tor two underlying
situations. In contigurations where the two points ot view that our
situations supply are in disagreement, we use relative weights in
compromising the two. This gives us a robust answer in the sense that
tor both "models”™ we do, globally, the best we can. The danger lies
in contiqurations where some other situation -- not included in our
two-situation analysis -- would have a high relative weight it it
were included and would possibly give a very ditterent answer. From
the minimax point ot view -- as advocated by P. Huber -- where in
order to be realistic, one has a “real” neighborhood around the
*model” (and not an intinitesimal "thing”) and plays minimax inside,
our approach of can be criticized. We took only two situations into
account -- which were "tar apart" -- and used essentially a minimax
type ot estimate. We are, however, not sure about the behavior
between -~ or to one side of -- the two chosen situafions.
Heuristically our proposed intervals trom will sateguard us against
many heavy-tailed underlying situations. Since the slash relative
weight would dominate the Gaussian relative weight, we would be
inclined to choose the slash answer in contigurations drawn from any
heavy-tailed situation. In this sense bi-optimal procedures are

robust and sate to use.
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What we have said above points towards the tollowing teatures ot
the contigural approach. The (n-2)-dimensional distributions duF( )

across contigurations are giving "breadth" to our robustness claim.

dv(;aussi:m

dpslash

—» space of configurations

Th2 above picture shows in a schematic way what is going on.
Both situations -- the Gaussian and the slash -- span a certain
region ot contigurations and it we were to include other situations,
we would probably end up spanning more and having a wider basis where
our procedures work reliably. Note also that with increasing sample
sizes the distributions over contigurations get more and more
concentrated -- we noticed tor example how the ovarlap
between the Gaussian and the slash pretty much disappears in samples

ot size 20.

The second important aspect ot the contigural approach is the
conditional distribution given the contiguration under varying
situations. Here we could -- it only we knew how -- use a conditional
minimax approach. By computing the conditional distributions tor
ditterent situations -- which may lead to completely ditterent
answers -- we recognize the need tor compromising and also get
guidance in the direction and amount ot the required adjustments. The
relative weights, however,do seem to be important in order to tind a

working compromise and their practical usetulness depends on the

November 30, 1983




ATETETANAT I

N
~

-,

-‘\

o

situations we take into account.
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There is a view ot robustness as describing the stability ot the

o
- interence process under changes ot the underlying situation. In our
.-,: i
;: setup we have the space of situations, i.e. location and scale
g tamilies indexed by the shape and the space ot contigurations. We are
lﬁ; interested in making interence about the location parameter based on
o
fE the observed contiguration. Asymptotical intluence curves, which
\‘s describe the changes introduced by intinitesimal perturbations near
5: the assumed model, proved usetul in the point estimation case

“
.3 (Hampel (1974)). Similar ideas might work in the contigural setup. We
$f could ask how stable the interence is conditioned on the
e
i contiguration.
ﬁﬁ Figure 3.1 shows tour plots of the coverage density tor a specitic
L contiguration and shapes
v.“-
iy <

\‘
2% 1 - €)d + 8 + 6
N ( ) 3 ( y ‘Y)

1

which leads to a coverage density proportional to

A

q
92 1-< "2 — 1,7,
- ( 1) (n=2) (n=4)...((3)" or 2) (— 2)

- 3 3 (c,-x)
3 (2')2 i=1 !
. 2

' ) n 2 C.=X

) < 1 y n-1

: 3 5 exp(- &5 (=1=) ) — —)
4 =12 254 ©i7% abs(c;-x) ‘abs{c;-x)
J,? where n is the sample size. Note that in this plot we have both
YA
;ﬁn heavy-tailed and light-tailed situations.
N
ﬁs' It is clear trom these pictures that perturbations might very
‘:¢ well teach us some things about the "robustness" ot our interence
4
*i
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conditioned on the given, i.e. observed contigquration. We might tor
example study intluences on the mean aveF(tI?) ot the coverage
density or on the expected length ot contidence interval procedures
which is determined by avep(sl?). The last two can be viewed as
mappings trom the space ot probability measures to the reals and
theretore tit into the usual tramework. Large intluences would mean
that the model is “"dangerous" tor the given c¢ontiguration in the
sense that nearby models would lead to ditterent judgements. Since
the contiguration is a 2-dimensional class, the small sample approach
seems teasible,
3.1. Robust contidence intervals derived from robust location
estimators
The problem of contidence interval estimation in symmetric --
possibly heavy-tailed -- situations has been tackled in two papers by
A. Gross (Gross(1976), Gross(1977)). He used ratios
i
2
n~ (T - u,)
?
where T is a robust location estimate, S an estimate ot its standard
error and n the sample size to get intervals ot the torm
fr - Srite. ;alue S, T + crxt.:alue 5)
3 .z
The hope is ot course that the critical values needed to get
3
§§ 100(1-q)s contidence is stable across situations. His conclusion was
S¢]
gé that a redescending estimate T with estimated asymptotic standard
¢
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error S and the right tuning constant gives good intervals.

In his PhD thesis P. Horn (Horn(l1981)) examined some simple
contidence intervals based on 2 or 4 order statistics. His pivot and

bi-pivot t-intervals are also designed to give a “robust" behavior.

Finally there are the exact finite sample minimax tests and
corresponding intervals together with a somewhat arbitrary auxillary
scale estimate, which were tollowed up by E.

Ronchetti (Ronchetti(1982)) who showed us the right tests and
corresponding intervals in an asymptotic intinitesimal sense tfor
various robust location estimators. Ronchetti's approach carries over

without problems to the more general regression case.

We will now see how well these intervals behave it we look at
them more closely through our contigural glasses, tocusing on the two
situations Gaussian and slash.

There are several ways in which one can specity any of the above
contidence interval estimators. We will restrict attention to the
tollowing.

(A) One-step biweight interval

The center of this interval is a weighted mean ot the observations Yi

with weights

w, = (l-uiz)2 -1 £u; €1 and w, =0, otherwise
< where
R y; - med(y;'s) ‘
s u; = < MAD (c pretixed!).

The haltwidth is determined by an estimate ot the asymptotic standard
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. 2
error sbx' whare

by 2 2
2(y; - med(!j 5))° wi

2 2

X, - Tol
Al _ bi (s v,

(see Mosteller and Tukey (1977), p. 208).

ﬁ: This detines an interval estimator which on the contiguration scale
<.

b has the torm

x 13

X center + Critical value(l-d) Spi

.q' -— 1

A

'b; and which has still one constant (the multiplier of MAD) lett at our
*? disposal.

5; (B) pivot-t

5 W2 take the pivot-intervals as given in P. Horn's thesis (Horn(1981))
s C4+cy

o . -

:: size=5 [ 5 + 2.02075(c4 c2)]

“ €g*c3

o) i = -
;}z size=10 { 5 + 0.6487S(c8 c3)]

e . C16*Cs

e size=20 [-_TT- + 0.39697(c16—c5)].

)

\#‘

N (C) Intervals based on the Huber tunction
N

N

= To apply E. Ronchetti's intervals we choose the Huber -- Pc tunction
*25 (see Huber(1981)). The median absolute deviation MAD multiplied by
‘22 the Gaussian bias correction ot 1.484 will be our estimate & ot o
.t"'
= (see Ronchetti(1982), p. 74). The interval is then tound by using
11: n y;-# y;-Huberestimate
2 {e: 3 (p =) - p( )] < cutott }
) i=] & &

49

i~ Again we have one constant at our disposal. This constant has

.

;: “traditionally” been chosen around the value 1.5 -- one argument
N

T
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being that this way the asymptotic loss in Gaussian etticiency is
kept small, i.e. below 5%. We will concentrate on this choice.

For the one-step biweight procedure it is known that the Gaussian
etticiency is roughly at 95% tor samples of size 20 (see Bell and

Morgenthaler(1981)), it we choose a multiplier ot ¢ = 9.

3.1.1. The behavior of the conditional coverage probabilities

Thas2 three contidence interval procedures are automatically
conservative in the slash case it tuned to reach 95% Gaussian
contidence level. The one exception is the interval procedure bas.d
on the Huber's Pi1.5° which has to be tuned tor slash overall coverage
in samples ot size 20. This might indicate to some that this

contidence interval will not pertorm well tor that sample size.

For the smallest samples, i.e. size 5, none of these “"robust”
procedures does what we would want them to do. Especially the
intervals based on a biweight-t seem to collapse. This tact has
already been noticed in earlier work and is reported tor example in

P. Horn's thesis (Horn(198l1)). The simple pivot-t intervals (B) seem

to be as good as the more elaborate Pi.s ~ intervals. Table 3.1 shows
the hinge-spreads and medians ot the conditional contidence

coetticient distributions.
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Table 3.1: Hinge-spreads (upper number) and medians of conditional
coverage probabilities in %
method Gaussian slash

size=20 size=10 size=5 size=20 size=10 size=S

.68% .90% .23% 2.44% 2.33% .51%

ivot—t 2.73% 4.98% 3.48% 3.79% 2.98% 1.81%
P 97.62% 97.50%  99.34% | 97.14% 96.97%  99.53%
3.29% 3.51% 2.81% 3.43% 2.68% 1.10%

|
|
t
|
biwelght-9 o5 954  96.86%  99.22% : 96.86%  97.25%  99.75%
{
|
|
|
|

Huber-1.5  g¢ 458 97.35%  99.10% | 96.17%  96.98%  99.64%

(For samples of size 20 and 10 these values are based on 150 sampled

contigurations, for samples ot size S on 500 contigurations.)

Note that, in the size=5 columns, all procedures have a median
coverage ot over 99%, while reaching a mean contidence level ot
95% in one ot the two situations. We can conclude from this that
in samples ot size 5 the so called "robust" contidence intervals
are most ot the time overlong -~ at least conditionally -- and
sometime s too short. Also note the small values tor the hinge-

spreads of the biweight-t in this column.

We have ot course already seen in previous sections that in the case
ot really small samples, i.e. size 5, a robust procedure will exhibit

a somewhat unsatisftactory behavior ot the conditional contidence

coetticients. The large sample argument which leads us to the choice

I

|
f

ot tuning constants in both the biweight-t and the Pe ~ tunction is

deceptive. For smaller samples the tuning constant has to be

o
=

| e

increased (Bell & Morgenthaler(1981)). It we compute the biweight
intervals based on 11*MAD and the intervals based on p, 4 tor samples

ot size 5, we naturally get better behavior in the Gaussian

b 2 b
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situation. But somewhat surprisingly we also improve the slash
behavior. This is again an indication that the Gaussian single
situation optimal procedure, i.e. Student’'s-t intervals, are not very

tar from béing a very good robust procedure in small samples.

As the sample size increases, the three procedures under
consideration improve. At the biggest sample size, 20, the biweight-t
is doing best. For the intervals based on the Huber function and an
"imitation ot the classical residual sum of squares" it is probably
quite crucial to use a "matched®” scale estimate, but up to now this
problem has not really been addressed.

In the intermediate sample size, 10, the impressions based on Table
3.1 are somewhat mixed, but even here the biweight-9 seems to be the
method ot choice. It might surprise us that the intervals based on
Huber-1.5 seem to behave better in the extreme slash situation than
in the Gaussian. But remember that, it we want to be prepared against
“heavy-tailed situations, “robustness ot validity" comes basically tor

tree.

Figure 3.2 shows boxplots tor the logistic transtorms (see
section 2) ot the conditional coverage probabilities in samples ot
size 20. These plots can be compared with Fig. 2.1 and 2.2. The
biweight-9 intervals are beﬁter behaved than the other two, but
clearly worse than the bi-shortest intervals, which use intormation

about the conditional coverage density.

In plots -- like Figure 2.3 -- where we plot the lower and upper

conditional missing-probabilities, the robust procedures exhibit a

very typical pattern -- especially in the Gaussian situation. The
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:?Q points lie inside a cone with vertex at (0,0) and symmetric around
ﬁii the diagonal. As the sample size increases, the cone opens up more
235 and at sample size 20 the biweight-t interval does not exhibit this
?;E pattern any more. So a contidence procedure based on a robust center

will at least result in balanced intervals ot some sort. Ot course we
saw that the conditional coverage behavior is still not satisfactory
-- except in samples ot size 20 -- and this is due to the tact that
the width ot the intervals is considerably underestimated in a tew
contigurations. In the majority ot the contigurations this torces us
to mak2 the intervals too long and in a plot of the conditional
missing probabilities most ot the points are near the vertex ot the

cone.

3.1.2. The square mean length etticiencies

Figures 3.3 through 3.5 show the square mean length deticiencies
with the robust contidence intervals added to the procedures already
discussed in section 2 (see: Figures 2.4 through 2.6). The biweight-t

intervals are labeled "bi-#", where the # denotes the multiplier ot

MAD. The interval procedure based on Huber's P1.s tunction is labeled

[

aé? "hub®” and the one based on Pi.a by "hub-1.9". The pivot-t intervals

%ﬁg tinally are labeled by "hin". The method denoted by "tp" will be

iﬁi discussed in the next sub-section. Table 2.1 has the numbers.

e

G'L In samples ot size 5, Figure 3.5, it is obvious that the robust
2 | procedures pay a high price in terms ot Gaussian etticiency in order
%gg to be "acceptable” in the slash., It is also clear trom this picture

%és that the less robust biweight-11 estimator leads to a better

i,

§£§
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Figure 3.4: Plot of deficiencies including nonparametric, robust and bi-shortest interval mx
procedures in samples of size 10 gX
square mean length deficienciee #
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contidence interval. The same ettect can be seen in the Huber
interval, but it is much less obvious. The simple interval based on
the second and tourth order statistic is dominated in terms ot length
etticiency by both hub-1.9 and bi-ll, but -- as we discussed above --
none ot them is satistactory as tar as the conditional coverage
probabilities gqo. The increase in expected length over Student's t in
the Gaussian situation is big, even with such "mildly robust”
estimators as biweight-11l. The bi-shortest intervals are a lot better
than everything else, but again, tor some people, the behavior of
their conditional coverage probabilities will be nonacceptable. In

that sense these are not practical contidence intervals.

When we go to samples ot size 10 the picture gets more

reasonable (note the change ot the scale from Figure 3.5 to 3.3 &

3.4). Most striking is the improvement ot the robust contidence
intervals over the nonparametric ones. The "cloud" ot robust

procedures is moved along the slash axis without losing much in th2

Gaussian case. Again it is not advisable to base contidence intervals
on very stringent robust estimators, bi~-9 improves a lot over bi-§,
which is not on the admissible part ot the biweight curve. The simple
Pivot-t interval has to pay a price tor its simplicity, it roughly

balances its loss in the Gaussian and the slash.

In the largest sample size under consideration, 20, the pivot-t

interval clearly is not competitive, the simple and distribution tree
sign-interval dominates the Pivot-t. The nonparametric intervals are
nNow reasonably "robust" themselves. It we look at the "winsorized"

Wilcoxon scores (see Morgenthaler (1983)) it seems that we ought not

November 30, 1983
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go below the value ot 7. The biweight~-t intervals are superior to the

ones based on Huber's Pe and the admissible part ot the biweight

curve stretches now to lower c-values.

In his thesis P. Horn (Horn(1981)) examines contidence interval

procedures from the point ot view of 90% - ECIL, i.e. the mean length

atter trimming ottt 10% of the upper tail of the length distribution.

This is a natural way to go it we argue that a contidence interval

procedure which most of the time produces reasonable intervals with

just a tew wild -- i.e. overlong -- ones should really be taken more

seriously than its mean length, which ot course is heavily intluenced

by the wild ones, suggests. It is not a trivial matter to compute 90%

- ECIL values tor any given contidence interval estimator.

Conditioned on any contiguratin there will be some (t,s) - points

which are below the 90% point in terms of the length distribution and

we ought to integrate out over these only. An approximation however

is possible. It we take from our sampled contigurations the 90% with

the shortest conditional expected length and average over them, we

will have an even more conservative ettect than computing 90% ~ ECIL.

It we adopt the above loss function and compute etticiencies, the

Plots corresponding to Figures 3.3 through 3.5 do not change

drastically. In samples ot size 20 and 10, the conclusions are

similar to the expected length loss. It is the nonparametric and the

hinge~-t intervals which protit somewhat in the slash etticiency it we

trim the upper 10% ot their lengths. In the case ot small samples,

i.e. 5, the improvements in eftticiency tor Student's t are big.,

Figure 3.6 shows the new situation. Again we conclude that, while

Student's t produces "long" intervals in 10% ot the slash drawn
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contigurations, it is otherwise comparable to the robust procedures.
Ot course it has the ideal Gaussian behavior. On this plot only the

procedures tor shadowprice ratio intinity and 0.1 are included.

3.2. Conditional contidence intervals

We have seen that the bi-optimal intervals trom section 2 are
indeed superior to the existing robust contidence procedures. But
trom an applied point of view we would like to have contidence
intervals which are easily interpreted and understood conditioned on
the observed contiguration. Furthermore we ought to keep the

simplicity of our procedures in mind.

3.2.1. Three-point approximations

We saw in section 2 (equation 2.5) that the weighted combination

ot the contidence densities

he ) = }gchog( )+ \gwgco () (3.1)

where cog( ) and cos( ) are the coverage densities conditioned on the

observed contiguration, g and w, the relative weights and )g and A\

. the Lagrange multipliers in the Gaussian and slash situation, plays

197

HE; an important role in combining the two situations. It seems rather

h s

& natural to use the mixture (3.1) with )g = \g * 1 as a basis tor

A

(Y approximate conditional contidence intervals. It we use the mixture

tf (3.1) and “"count in" 100%% trom each tail, we tind an interval which

M.l

*

Eﬁ we might expect to have approximate level 100(l-d)% tor both

§
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situations under consideration,

To simplity the procedure we will only compute three points on
the conditional coverage distributions tor the Gaussian and the slash
and use linear logistic interpolation to tind the actual contidence
bounds. To get three points on the slash confidence distribution
requires tour numerical integratiohs which also yield the value ot
the relative slash weight. In the Gaussian situation we can rely on
the tabulated t,-1 - Critical values to get a convenient triplet. The
Gaussian relative weight can be computed using the theoretical

tormula.

We can think ot these three-point approximate intervals as using
our two situations Gaussian and slash to correct an initial guess
conditioned on the given contiguration, it we choose the three points
as lower bound, center and upper bound ot a specified contidence

interval.

It turns out that, it we again restrict attention to 95%
contidence levels, the three-point-procedure is anti-conservative tor
the Gaussian and conservative for the slash. The 5-number summaries
(see Tukey(1977)) tor the conditional coverage probability

distributions in the Gaussian situation are:
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size=20 size=10
#150 #150
M 94.8% M 94.9%
H 94.7% 94.8% H 94.0% 95.2%
85.1% 96,2% 33.8% 95.5%

size=5S
$500
M 94.4%
H 92.9% 94.9%
42.9% 95.3%

It is obvious that the conditional Gaussian contidence level hardly
surpasses 95%, this once more demonstrates how -- it we are concerned
about heavy-tailedness -- most ot the contigurations tend to shorten
Student's t interval so that the weighted mixture used to get these
three-point-contidence intervals tend to have shorter tails than
Student's t distribution. Looking across sample sizes we notice how
well behaved the three-point intervals are tor samples ot size 20.
As the sample size decreases the conditional behavior gets worse. The

estimated overall coverage probabilities are:

size = 20 size = 10 size = 5
Gaussian  94.65% 193.78% 93.32%
slash 95.49% 95.12% 97.64%
Clearly tor samples of size 20 we have a relatively cheap and very
good contidence interval procedure. For the smaller sample sizes we
might want to correct tor the anticonservative Gaussian contidence

level by introducing a "blow up" factor (tor samples ot size 5 we

need a factor of 1.112 to reach 95% Gaussian coverage, tor samples oﬁ
size 10 a tactor of 1.067 is sutticient). Figure 3.7 shows the
boxplots tor the logistic transtorms ot the conditional coverage

probabilities in both situations. Using a weighted mixture ot the
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Figure 3.7: Logistic transforms for three-point procedure in three

%j sample sizes
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two conditional contidence distributions is having opposite effects
in the Gaussian and the slash. In the Gaussian we use the "slash
analysis” to shorten, in the slash we use the "Gaussian analysis" to
lengthen the optimistically short slash contidence intervals. Note
the thickening of the tail in these boxplots as the sample size goes
down.

Having conservative slash contidence level eliminates the "split"
behavior we observed for the bi-shortest contidence estimators in the
slash situation (see Figure 2.3). The three-point interval does

instead the natural thing by being somewhat conservative.

In all ot the deticiency plots ot the previous section the
three-point approximate interval is included under the label "tp”
(Figures 3.3 through 3.6). In all ot the cases “tp" is on the average
shorter than Student's t in the Gaussian and has, theretore, a
negative deticiency. In samples ot size 5 it is inside the cloud of
"robust” interval estimators as tar as the slash loss is concerned,
but note how trimming otf 10% of the longest intervals (Figure 3.6)
moves the procedure away trom the robust ones. This indicates that
the "robust” contidence procedures -- in samples ot size 5 -- have
very many contigurations where they are long, whereas both "tp" and
Student's t have a tail towards "long contigurations®”, but are most

ot the time a lot shorter.

On the whole we may say that the contidence procedure discussed
in this section has an appealing behavior. The intervals from such a
computation will be robust and it might be interesting to extend it

to other pairs than Gaussian & slash or maybe even to triplets. This
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‘:3 ought not create any new difticulties.
e d

i
“ 3.2.2. Contidence intervals based on the conditional mean-square-
v:\' !

) error curve )

"y

(\

~
o For the three-point contidence interval we need to calculate
iy
:E tour integrals in each situation -- except in the Gaussian where the
v values are tabulated or tormulas exist, Four integrals also come up
Y

t naturally it we try to estimate the location parameter. 1In our

A A kA

parameter system ftor any given contiguration e it tollows that the

conditional mean-square-error in situation F tor a location estimate

ﬁ Tis

¥ 2,,..2,2

N 2 2 avep(ts Ic)

j mseF(Tl3ﬁ = aveF(t [ I?) —5—

i avep(s l?)

gt

" - >.,2 2

3 + (oo p = T@N2 ave(s%13)

% 2.2 3

~ where topt = -avet(t s I?) and T( ¢ ) denotes the value our
ave (512 )

zﬁ location estimate T takes on the contiguration level. All the
33 expected values needed to get this quadratic curve in T(?) are
LA

5; aveF(tszl?), aveF(tzszl3), aveF(szl3) and the relative weight
.;

?’ These can be calculated again by tour two-dimensional numerical
et integrations. They are somewhat simpler to get than the tour
S

_$ integrals needed tor the three points on the contidence distribution,
34

d since it is possible to economize somewhat. Based on the calculation
ot the four integrals we can compute an excellent robust location

estimate by considering the weighted conditional relative excess
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ﬁ The weighted conditional relative excess curves ftor the Gaussian and
y the slash situation

B e e )
.

The conditional relative excess is detined as

aveF(szl?)
. minimum 1in F

‘ﬂh 4 cond. rel. exc.F(T) = - T(c?))zCoﬁa

topt,F

A where the conditional minimum in F is

A

avepz(tszl?)

aveF(tzszl?)

¥ "-.4?’ 1."5‘:

Aty
*
.

aveF(szl?) )

S

The relative weight wp tor the given contiguration under situation F

fﬂ is used to weight the conditional relative excess for the situation
;?T F. The point marked "x" in Figure 3.8 is a natural choice for the
‘E; .estimate T(?} on the contiguration level and the interval [---]
%T? drawn in seems to be a reasonable choice tor a contidence interval on
t;, the contiguration level based on these curves. The idea is to replace
;ﬁ the two weighted conditional relative excesses by their maximum and
;;: detine the interval bounds by a cutott

maXc.ussian, slash {weighted cond. rel. excess(upper bound)} =
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Logistic trangforms for procedure based on cond. mean-square-
error curves in three sample sizes

cond. coverage of weighted rel. excess procedure
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&? maxGaussian, slash {weighted cond. rel. excess(lower bound)} =
cutoft.

N

Sﬁ This is ot course the same as using

X

; : L = max {Lg, Ls}

Aﬁ U = min (Ug, Us}

hﬁ where Lg & Ug and Ls & Us are derived by the same cutott from the

E: single situation weighted conditional relative excess curve. The

:g’ interval described above seems to rely on just how we represent the

22 contiguration, i.e. the choice ot ?ﬂ However this is not true,

TE, because ot the canonical changes in all the integtals involved under

1§ changes ot the class-representing element ?’.

4' What we propose here is a side product of an analysis whose

'Ef primary purpose is the estimation ot a location parameter. But even

§ it we do have point estimation in mind, it is a small step to try and

B put a contidence interval around it.

rﬂ In the above intervals we include the the parameter values which it

1& chosen as a parameter estimate on the contiguration level would lead

to small maximal mean-square-error relative to the minimum

;: conditioned on the given configuration.

-

N

B Figure 3.8 shows the conditional contidence coetticients tor the
3; weighted mean-square-error interval. In samples ot size 20 this

Y procedure is slightly conservative in the Gaussian situation. A look
19

w at Figure 3.2 shows us that the Gaussian behavior is quite close to
the biweight-t interval with tuning constant 9, but that in the slash

situation it is somewhat better. The main ditterence tor the
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Ef‘ Gaussian seem to be in the direction of the skewness in the bulk ot
i;‘ the distribution. As the sample size decreases the "coverage

;ﬁ pertormance"” ot the weighted mean-square-error interval gets worse.
~

LK - s { i

7 It can certainly not compare itselt to the three-point approximate
)

x.‘-. [} . s '3

o intervals. However, its behavior is better than tor the other robust
o contidence interval estimators. The overall contidence levels are
o

.:A:i

e size = 20 size = 10 size =5

A . Gaussian 95.8% 95.0% 95.0%

o slash 95.0% 95.1% 97.7%

4 _‘4-

i

Table 2.1 gives the expected lengths under the label "wms". In the

J-‘i',

slash situation the numbers are comparable to "ratio 0.2"; in the

.

;g; Gaussian they are more like the other robust procedures. This should
ﬁz give an idea where the "wms” point would tall in the deticiency

4 ots.

ﬂ:% plots |

ig The contidence interval based on a weighted mean-sqQuare-error
ﬁi seems to be doing about what other robust intervals do -- maybe

Eﬁ slightly better. The very good behavior in the slash situation might
i; be unduly intluenced by the tact that the slash is one of the

,:: situations we took into consideration. It is interesting to notice
*Ej that introducing the slash along with the Gaussian in this way --
$£, i.e. by looking at weighted conditional mean-square-errors -- seems
is; to put more emphasis than we would like on the slash.

lﬁg It on the other hand we use the center ot the three-point

'Eg intervals as a "robust” location estimate, it has a high Gaussian
T‘ etticiency, but is rather poor in the slash. Both approaches

&‘ described in sub-section 3.2 have their merits.

%
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4. What have we learned about contidence intervals tor a location

Earameter

In the previous sections we discussed one possible way ot
approaching the problem of robust contidence interval estimators. It
is based on the criterion ot expected length. The ultimate interval
estimator has the required coverage probability and at the same time
is short. We learned that this approach has its drawbacks. The
conditional contidence levels do not behave in a satistactory way tor
samples ot size 5 or 10, though they behave rather well in samples ot
size 20. A possible remedy might be in the choice of criterion. It we
do not consider the expected length, but rather something which
combines the behavior of conditional coverage probabilities and some
aspect ot the length distribution, we might very well improve over
the bi-shortest procedures. However, the bi-shortest contidence
interval procedures are superior to any of the methods proposed so
tar as solutions to the unconditioned contidence problem go.
Relatively simple approximations, the three-point interval and the
interval based on the conditional mean-square-error curve, are
possible. The three-point interval has an excellent Gaussian
behavior, is, however, rather bad in the slash situation. The
opposite is true tor the mean-square-error interval. The search tor
turther simplitications, leading to nonlinear closed torm tormulas
involving the contiguration, might well be worthwile.

The viewpoint ot this exposition is based on the behavior in small
samples and we do not advocate the uncritical use or these ideas tor

larger sample sizes. As the sample size goes up, we learn more about
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jQ the underlying shape trom our data and another "limited situation
[, " o
ol game" involving much more closely spaced situations might be more
W protitable. It remains to be seen, how well the methods proposed in
*
:5: the previous pages pertorm in situations other than the Gaussian and
\ *‘:
Aoy the slash. But we consider the small sample approach as a strength ot
N our methods as opposed to procedures which are asymptotically '
LV justitied.
'
\ It is interesting to note how much the problems we tace change
ffj with changing sample sizes. We learned that in samples ot size 5 a
3%
_23 compromise between the Gaussian and the slash has more severe
AN
o consequences on the conditional properties than when we deal with
5 larger samples.
;% The use ot numerical integration over contigurations to get good
Y
. statistical procedures is certainly worthwile doing and should be
v
53 explored turther. Such procedures are -- once we have a computer --
ﬁ simple and cha2ap to calculate and they are potentially superior to
existing techniques.
‘Q Some more ideas on how to implement all this in the case ot
o
o contidence intervals can be tound in Tukey (1981).
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