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Bi- and poly- optimal confidence limits tor a

location parameter

Stephan Morgenthaler

Technical Report No. 254, Series 2
:' Department o± Statistics

Princeton University
Princeton, New Jersey 08544

ABSTRACT

In this report we define poly-optimal contidence
intervals tor a location parameter. The formulas are

given tor the case o± two shapes, but can easily be
extended to the case ot many shapes.

For the case ot two situations, the Gaussian and the
slash, the resulting family o± confidence interval esti-
mators is examined. These interval estimators are com-
petitors of existing so-called robust procedures. A com-
parison to a few ot these is, included.

1. Introduction.

This report deals with the issue o± robustness in interval

estimation for a location parameter. We will restrict attention to

location-and-scale equivariant estimators. This puts us

automatically into the theory connected with configurations (see

Morgenthaler (1983)). O special relevance to our problem are the

conditional confidence distributions, which allow us to determine --

tor the sampling situation(s) under consideration -- the conditional

confidence coefficient given the configuration tor any interval

Prepared in connection with research at Princeton University, spon-
sored by the Army Research Office (Durham). The computing tacilities
were provided by the Department o± Energy, Contract DE-ACO2-
81ER10841.
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estimator. We will see in the Second section how these conditional

confidence distributions can be employed to detine *good" contidence

V. limits. These poly-optimal -- or in our case bi-optimal -- interval

procedures are then compared to existing robust methods. (Section

3).

4Here we understand the essence ot robustness in a sense similar

to what it means in the point estimation case, i.e. high etticiency

in a variety ot underlying situations. And we will put special

emphasis on small sample results instead ot asymptotics. This allows

us on one hand to be a lot more realistic but on the other hand we

can not take an intinity ot situations into simultaneous

consideration. But -- as we will learn -- there is a lot of

potential in this approach. It can teach us new things.

2. Bi-optimal confidence intervals tor a location parameter.
.% .

- !. We are interested in location-and-scale equivariant confidence

limits. This means that our upper and lower bound statistics will

satisfy

U(s(t + c)1 s(t + U(C)

where G R and is the vector consisting of ones. Under

location and scale changes of the configuration c , the statistic

behaves accordingly. From this equivariant behavior it follows

immediately that for samples ot the form

a(s=t) s(t +

November 30, 1983
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%- the value ot the statistic U is known it the value U(L) alone is

fixed. For each two-dimensional set of samples which only differ by

location and scale changes we, therefore, select a representing

element -- configuration -- which serves as a base point in

parametrizing the set of samples by s G R, and t G R (see

Morgenthaler (1983)). The conditional density given the

configuration J* can then be written as a function ot s and t,

which turns out to be

n-1 n
5 s -  t(s(ci+t))

k (s'tle) = io on
F00 00 lnI sn-11 t(sl(ci +t)) dsdt

-00 i+l

where (cI, c2  ... # c) c is the configuration and F( ) and is

the probability distribution we sample from ( F() d ±()).

It we are interested in confidence limits, the conditional

confidence distribution which gives us the conditional coverage

probabilities is important. It has the form

CoF(U) PF[U(I) > 01 - PF[S(t+u) > 0]

00 00
I 4 k F(s, tl*) dsdt
-U

Here we assumed that the distribution F is symmetric with center ot

symmetry at 0 -- then CoF(u) gives the conditional probability of

the upper bound statistic U( ) actually being an upper bound tor

the true center of symmetry it U() u.

It U( ) and L( ) are upper and lower bound statistics with

U(O) u and L(*) 1 1, the conditional confidence distribution

November 30, 1983
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tells us the conditional coverage probability it we would sample trom

situation F . It would be

OF (C')  l-[(l-CoF(u)) + CoF(l)) - CoF(u)-CoF(M)

since 1-CoF(u) is the conditional probability ot missing the true

parameter to the left and CoF(1) is the conditional probability ot

missing to the right.

We will now derive interval procedures which are single-

situation optimal. Then we will go on to bi-optimal procedures and

indicate how to proceed to poly-optimal methods. All ot these

methods are optimal in a small sample sense.

2.1. Single-situation-shortest confidence intervals

We might ask tor the contidence interval -- in any given
situation -- which has minimal expected length tor this situation,

and reaches a pre-tixed contidence coetticient. This leads in

situation F to the following problem:

minimize r" E (sId) [UIW)-L(I)] dmFIe )

with respect to U( P ) and L(c) under the condition that

-F e))'oF(L(t) djF(C) 1 -

We note that dMF( ) is the (n-2)-dimensional measure across

configurations induced by F and that

E7 sIti [U(ct)-L(t)] - E[s(U(')-L(d))Ili) is the expected length

November 30, 1983
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conditioned on the configuration ot the contidence interval induced

by L(e) and U(*) Introducing a Lagrange multiplier and assuming

interchangeability ot integration and ditterentiation, the solution

to this problem is of the form:

EpisIC] O\ C°F(UR())

44EF[sic] = *\ CoF (L(C->)

,Y{CoF(U( )) - CoFCL( ))} d JFC" ) - 1 -

d(where co(u) =duCo(u)).

In an experimental sampling setup the derivation of the corresponding

solution is somewhat simpler and we include it here. The problem

consists of the following:

minimize Ni .(slc 1 [U(c i)-L(l

with respect to the numbers Ulei), L( i), under the condition that
J.

N1 i i

In this notation {2 1 I,..,N) denotes the set of all contigurations

sampled from situation F -- hence we just replaced dj( ) by the

empirical measure which puts a point mass on each o the s. The

solution is now straightforward and gives:

E ,siN e ) a O\ co ku(U , ..
(sic k) a O\ co F (-cck)) ,k-1v,... , N

s(COF(U(;i)) - )Co(L(

In order to compute the bounds L(c k), U(k), kl,...N, one would fix

November 30, 1983
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, and tind the inverses

L (i? k~ co CFk' £F(sI k)-1 EF slc k)

UIL k cF,k' (2.1)

and then check the overall coverage probability

N •

it this value is below 1-<c one has to try with a bigger value ot \

and vice versa.

remark: co ( ) is not a well detined tunction. With L( k) we

denote the smallest solution to the equation in x

k-, EF[Sl~k]
',!co kix) = s ,k

and with U(c k) the largest.

In order to get a short interval -- short measured by expected

length -- we see trom (2.1) that the coverage densities have to be

cut at equal height adjusted by EF (sIk 1, which takes care ot the

-scale ditterences between the class-representing contigurations C'k*
*.*

In the Gaussian case the interval described above is identical

with Student's t interval, in the next tew sub-sections We will

examine what sort ot contidence intervals we get it we choose F -

slash, i.e. a heavy-tailed symmetric distribution (see Rogers & Tukey

(1972)).

November 30, 1983
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2.1.1. Samples ot size 20

The single-situation shortest interval with 95% coverage,;

probability has an expected length ot 2.237 in the slash situation.

* This will be used throughout as a reterence to compute etticiencies.

The conditional shortest (see Morgenthaler (1983)) has an expected

length ot 2.245 (+.02) and its slash "squared mean length

etticiency", detined by

(minimum expected length in slash)2

(expected length ot interval in slash)

is (2.237) 2 99.3% (see Horn(1981) on discussion ot criterion tar
(2.245)2

contidence intervals!).

We will otten report excesses instead at etticiencies. These two are

linked by

* 1 + excess = etticiency (2.3)

The conditional shortest has theretore an excess at - 1 =.7%.

It is obvious that tor a single situation we can without harm in

* terms ot expected length, ask tar a tixed conditional contidence

coetticient.

The range ot the distribution ot conditional coverage tar the 150

slash- drawn contigurations is trom 91.4% to 97.7% with an estimated

standard deviation ot about 1%.

2.1.2. Samples at size 10 and 5

Again we restrict attention to the procedure which will produce

November 30, 1983
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the shortest expected length in the slash case. In terms of swapping

coverage probability between configurations, there is not much change

it we go down the ladder of sample sizes. The 5-number summaries

(see: Tukey(1977)) for the conditional coverage distributions across

configurations are as follows:

si zem20 sizel0
- ~#150 #150

M 95.2% M 95.2%
H 94.7% 95.5% H 94.7% 95.5%

91.4% 97.7% 88.3% 96.3%

#500 si ze=5
5 95.2%

* H 94.9% 95.6%
82.8% 97.7%

The three cases are close, the lower extreme is going down with

decreasing sample size.

The minimal expected length for the slash in samples of size 10 is

3.604 (+.013) and in samples of size 5 it is 6.641 (+.025). These

together with the Gaussian expected length of Student's t will be

used in the next section as minimum expected length for the Gaussian

r and the slash situation. We should be aware that these confidence

intervals are "single-situation" in their spirit. The slash optimum

% 4.will be anticonservative it applied in the Gaussian situation,

whereas Student's t will be conservative in the slash situation.

2.2. Bi-shortest confidence intervals

In this section we will derive confidence intervals which are

robust in the sense that they will not be influenced unduly by

outliers. In configurations which contain "outlying" points

November 30, 1983
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Student's t-interval will be rather long and we plan to use the slash

situation in order to provide guidance in shorteining Student's t-

interval tor such configurations. In doing this, we will ot course

have to pay a price. The conditional contidence coetticient tor the

Gaussian situation will be rather low and it we still want to reach

100(1-c)% overall contidence level, we will have to enlarge Student's

t-interval in other configurations in order to have more than

100(1-c)% conditional coverage probability. So shortening contidence

intervals naturally leads to exchange ot coverage probability between

contigurations. Robustness ot validity, i.e. ot coverage probability

and robustness of etticiency are two concepts which need balancing.

It we understand the validity in an overall manner, we can ask tor

contidence intervals which are "short", but still reach an overall

contidence coetticient ot 100(l-X)% in both situations.

Let us detine "shortest" in terms ot expected length. This is by

* no means an obvious choice, since length distributions ot contidence

intervals are skewed and the expected value has no intuitive meaning.

As we will see, this choice makes things simple tor us. But as we

will also learn it might be ot interest to look at alternative

definitions ot "shortness". Any criterion which can be written as an

expected value over the sample space can be handled in the same way

as "expected length".

What can we expect from a confidence interval procedure, it we

look at it from two sampling situations at the same time? Certainly

there will be no procedure which is simultaneously optimal tor both

situations. It the optimality criterion is "convex", however, there

November 30, 1983
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is a one-dimensional family ot procedures, any ot which is such that

it cannot be improved in both situations simultaneously.

In a decision theoretic tramework (see Ferguson(1967)) our

"parameter set' consists o two values (Gaussian, slash} and the risk

of any interval procedure is defined through what we called a

criterion.

remark: Since we look at equivariant "decisions' the risk within the

Gaussian and the slash, i.e. under changes of the location and scale

parameter, is constant or depends in a simple manner on the scale

.1N parameter.

* .. It we use the expected length of the contidence interval, the value

of the scale parameter a will turn up as a multiplier.

- Let us look at the "general picture" it we adopt expected length as

our criterion. In order to avoid the trouble with the scale parameter

a, we will choose a canonical density in each of the two location-

and-scale tamilies and compute the expected length using these

canonical forms. This results in no loss of generality. The risk set

is:

R-f(rl,r 2 ):r1 -Gaussian exp. length,r 2 -slash exp. lengthIGl
2

where the expected lengths are taken over the set ot valid contidence

intervals, i.e. intervals which reach overall at least 100(1-c()%

coverage probability in both situations. For the usual reasons this

risk set is convex: it we have two valid confidence interval

procedures II and 12 the convex linear combinations .\I1 + (1-0)12

will be valid intervals too and the expected lengths will be convex

November 30, 1983
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linear combinations ot the expected lengths of 1 and 12 for both the

Gaussian and the slash.

If we want to get something which does not depend on the scale

parameter within the Gaussian and the slash, we go to excesses, i.e.

reciprocals of efficiencies minus 1. Since the Gaussian efficiency is

the ratio

2
etftG(i) (min. length in Gaussian) 2

(Gaussian exp. length ot 1)

the scale parameter drops out. It we look at excess sets, they will

be convex for the same reason.

remark: Furthermore the risks and efficiencies defined through

expected length or through (expected length) 2 lead to exactly the

same boundary procedures ("admissible solutions"), since we have

merely performed a monotone transformation.

This then leads to a one-dimensional family of bi-optimal

procedures. Each of these confidence intervals has a right to be

called optimal, since there is no other interval estimator which

dominates it in the *two-situation world" according to the

chosen criterion.

Any member of this one-dimensional family is characterized by a ratio

of what economists call "shadow prices". Let Pg and Ps denote the

shadow prices for the Gaussian and the slash, respectively. The bi-

optimal confidence interval procedure corresponding to the shadow

price ratio .s is then found as the solution to the following
pg

November 30, 1983
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restrained minimization problem:

minimize p9 (Gaussian exp. length) + ps(slash exp. length)

under the condition that the Gaussian and slash coverage is greater

than or equal to 100(1-4)%

or

minimize pgBg[Slc I[U( ) - L(*)ldjug(t) +

g +

with respect to U(c) and L(c ) under the condition that

f{CO 9 Mc - Co (L (+)Ido (N) > 1 -4

4r[Cos(U(e)) -Co 5 (L(C) doj5 (e) >_ -((.

The subscript g reters to the Gaussian situation, the subscript s to

the slash. do( ) denotes the (n-2)-dimensional measure across

configurations and the other functions and symbols are as described

before.

In order to write down a sampling version of this minimization

problem, it is essential to realize the tact that any contiguration

could arise from either the Gaussian or the slash (or actually any

absolutely continuous sampling situation with infinite support). So

it we have a stock ot configurations drawn from the Gaussian, we can

still learn something about the slash performance o± any "statistica

procedure" by applying a weight appropriate tor the slash to the

"slash answers" o these configurations. This kind of poly-sampling

and the choice ot reasonable relative weights is discussed in

November 30, 1983
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Pregibon and Tukey (1981) and we will not elaborate on it here.

Now we are ready to rewrite the minimization problem in sampling

terms, which will allow us to tind approximate solutions.

pN
Minimize !2 1 w IE (sec] [U( il-L(i +

':: ":with respect to Ul6? i and L(L i) under the condition that

1 -NN.Y g g 1

l [o.(I" i )C (L ei) )>l-(.
N 

., 

4. 

i'

5 w1E(si .HU c .-L(c )1 (2.4)

! The summation here runs over the whole set ot sampled contiguration,

i.e. both Gaussian-drawn and slash-drawn. The relative weights

w w9 and w s are used to correct tor the tact that not all

conwigurations are sampled rom the correct situation -- they

esindicate the weight attributed to a certain coniguration in

answering questions about the Gaussian or the slash, respectively.

All the other symbols are as above.

The step trom the "continuous" formulation of the problem to the

sampling" formulation involves an approximation ot

4
dpg (c

by putting point mass w onto the *point" i"

Ni

What constraints do the solutions ot minimization problem (2.4)

W

November 30, 1983
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tultill? The minimum will occur on the "boundaries" where the overall

Gaussian coverage probability and the overall slash coverage

probability are equal to 100(l-c)% except in special cases. It both

restraints have to be met we need to introduce two Lagrange

multipliers and Os and the solution takes the tollowing torm.F9
\k k u 4 + k k u 4 k 4 k 49 w -o 9Ulc k) ) +Osws'zosl(, (c k, k) p- -9E sick +P sw s SIC ki

= Pggg[sc. pWE~scK

O\wk +s k O\wk +s k

k k k k k

$\,g wg k ,k+ w s + s t
|=

k=l,... ,N (2.5)

and

1 i. 'I (U( i))-Co(L(c i)) - I-C(

il = s i s 1

coc (x) denotes the derivative doIg(x).

This is a set ot 2N + 2 equations which have to be satistied

simultaneously. The lett hand side ot the tirst 2N equations is the

density ot a mixture ot the two coverage densities with weights

and k It we denote this mixture by h k the solution can

be computed by inverting hk( ) as in (2.1) which leads to

k k gU(e> )  h - (p 9w 9E s I J4k]+P s w sE siSc>k ]

, k~ k ) kl,...,

LE k Eg s sss k 1 k-l,...N (2.6)

November 30, 1983
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(see remark atter (2.1))

and * \ such that

1 N

I WL(CoA(u (L(c .))J = l-c(
i-l g g 1

5 Ws(Cos(U(c i))-C ( i
jS 5 1

This way we can tind U(c k) and L(J4k), k-l,...,N by an algorithm

which adjusts the values ot *\ and *s atter each iteration so that

the overall coverage probability is equal to 100(l-c()% in both

, situations.

The solution is again ot an "equal height" torm similar to the single

- situation shortest contidence intervals. But now a mixture between

the Gaussian and the slash "picture" - with the shadow prices

p and ps and the Lagrange multipliers *\g and s as weights -- is

characterizing the conditional "knowledge".

The case where the minimum solution to (2.4) occurs on the

single-boundary, where only the Gaussian coverage is at its lower

bound, but the slash coverage is bigger than 100(1-4)%, occurs, in

particular with p - 1 and p 5  0, i.e. shadow price ratio 0. This

means that we are only concerned about the Gaussian expected length

ot the procedure and we know trom that Student's t interval minimizes

- this length. However, the slash coverage is then bigger than

100(l-4)t at least tor the common values ot c(. It we would torce a

solution with minimum Gaussian length and exact 100(l-d)% coverage in

both situations, the Gaussian expected length would increase. This

might at tirst sight seem paradoxical: it we want to bring down the

slash contidence coetticient and thus "shorten" the intervals, the

November 30, 1983
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expected length in the Gaussian increases. But the idea that

decreasing the confidence coetticient always results in shortening

contidence intervals is wrong. In the above case we will force

100(1-4)t slash coverage by introducing asymmetry into Student's t

intervals, which makes them on average longer in the Gaussian

situation. The solution to the one-boundary case, i.e. only the

Gaussian contidence coeticient is fixed, is as in (2.5) with s 0.

In solving the minimization problem (2.4) we will therefore

always have to check whether putting f\s equal to zero will improve on

,4 the "objective* function. This "paradoxical" behavior only happens it

the shadow price ratio is sufficiently close to 0, i.e. it our

"objective" function discounts the slash expected length

sufficiently.

Let us first study the confidence interval procedure which

results from putting p - 0, i.e. the shadow price ratio equal to

intinity. These are the intervals which have shortest expected length

in the heavy-tailed slash, but are also reaching 100(l-c)% coverage

in the Gaussian. As always we will restrict attention to the 95%

confidence level case.

2.2.1. ps - 1 and p - 0: Shortest in slash (ratio intinity)

These intervals exhibit a considerable amount ot coverage

probability exchanging between configurations. Figures 2.1 and 2.2

show boxplots (see Tukey(1977)) ot the conditional confidence

coefficients tor samples of configurations drawn from the Gaussian

November 30, 1983
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Figure 2.1: Bi-shortest intervals in thp Gaussian situation
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Figure 2.2: Bi-shortest intervals in the slash situation
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and the slash, respectively. In order to make these exhibits more

- informative we do not display the raw confidence coetticients but

rather a logistic transform

log( C 0

..

o the conditional confidence level c1i1.

In the Gaussian situation we see that as the sample size

increases, the tail towards very low conditional contidence

coefficients grows and at the same time the bulk ot the distributions

moves closer together. In the slash situation, Figure 2.2, the

changes across sample sizes are more complex. In samples of size 20

we get a good slash-behavior it we modify for Gaussian coverage. It

we decrease the sample size to 10, the tail of the distribution

towards "over-coverage" has thickened considerably and as we get to

5, even the median coverage has moved to about 98.6%. The lower

tail, i.e. towards "under-coverage" also grows with decreasing sample

size.

We can think of these intervals as modified "shortest" slash --

modified to pick up additional Gaussian coverage in the most

economical way. It is not surprising that modifying slash for
.9,

additional Gaussian coverage is asking for more in smaller sample

sizes (see Morgenthaler (1983)). The values of the Lagrange

* multipliers -- which together with the relative sampling weights are

.*2weighting the coverage densities in (2.5) -- are revealing in this

respect. The ratio s has the values 24.3, 1.8, 0.2 as the sample

size goes from n-20, n-10 to n-5. In the case "n=20" the solution
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pays most attention to the slash whereas in "n-5w the Gaussian has to

be taken into account with big weight. So even it we are solely

interested in the slash expected length, the demand tor 95% Gaussian

coverage puts a lot ot emphasis on the Gaussian. We expect to see

this behavior also in the length distribution.

, And indeed it turns out that the ratio ot slash expected length to

the single situation shortest has values 100.6%, 104.4% and 129.8%

tar the cases n-20, 10 and 5. So the penalty in terms ot increased

expected length we have to pay in order to get 95% Gaussian coverage

increases with decreasing sample size.

Let us get back now to the slash coverage probability. Figure

5- 2.3 shows the plot ot the conditional probabilities ot missing the

true parameter value to the left vs. to the right. Clearly tor

samples at size 10 the slash contiguration population is split into

two parts -- roughly two halves. One halt ot the configurations gets

long intervals, i.e. over-contidence, whereas the other halt gets too

short intervals. This feature can be understood by looking at

equations (2.5). In a contiguration with relative slash weight ws big

compared to wg, the equation approximately reduces to

co: (U('k)) - I s Es[SICk ]  k-l,...,N
'54

which is the same as (2.1) except that the Lagrange multipliers are

possibly different. The Lagrange multiplier \ required in (2.1), i.e.

tor the single-situation-shortest slash intervals are 11.3, 20.7 and

41.3 for the cases n=20, 10 and 5. The values to rs in the above

equation on the other hand are 10.7, 14.8 and 10.0, i.e. uniformly

smaller. In a configuration with big relative slash weight the
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interval will therefore be smaller -- due to the decreased Lagrange

multiplier -- than tor the single situation optimal solution. Figure

2.3 tells us that this happens in roughly halt the slash-drawn

contigurations. Now we understand how the slash optimal intervals

are moditied to yield 95% Gaussian coverage. In contigurations where

we strongly "believe" in the slash sampling -- in terms ot relative

weight, i.e. compared to the Gaussian - the intervals are shortened.

In other contigurations the intervals have to be made longer, more

nearly like Student's t. This ettect ot shortening seems very

undesirable trom the conditional coverage point of view, but is

needed it we insist on 95% slash coverage. Maybe the more natural

approach would leave these intervals at their single- situation

optimum -- which would ot course result in a slash overall contidence

coefficient bigger than 95%.

As the comparison of the Lagrange multipliers suggests, this is

not or in a limited way going on in the case "n=20". Indeed the

single-situation-optimal intervals are there nearly the same as the

modified ones which also guarantee 95% Gaussian coverage. In the case

"n- 5 " on the other hand, the problem is getting really extreme but

the configurations with relative slash weight dominating are getting

rarer. But it is obvious that in order to have both the slash and the

Gaussian confidence levels at exactly 95%, we need to make the

intervals very short in configurations where we strongly "believe"

Ny,: (w s big!) in slash sampling.

Why does the sample size have such a strong influence?

In order to answer this question the (n-2)-dimensional measure

November 30, 1983
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dJF( ) which goes across configurations and only depends on The

shape has to be brought into the discussion. As the sample size

increases the woverlap" between dp.slas h and d Gaussian decreases,

i.e. it is getting easier to discriminate between the two. This is

the reason why the modification of the single-situation-optimal slash

interval in order to gain Gaussian coverage does not influence the

slash behavior very much, since the modifications take place in

configurations quite tar from the "core" ot d jslash*

The same plot as Figure 2.3 for the Gaussian case shows that the

modified shortest slash intervals are in a few configurations very

short and in the majority too long -- even from the Gaussian point of

. view. This can be explained by the "urge* of this interval estimator

to be short in configurations which "look slash like" and long in

others.

But over the whole we can certainly say that these modified

shortest-slash intervals are not what we could call "good", mainly

from the point of view of the conditional confidence behavior.

2.2.2. p5 = .1 and p = 1: "robust", but short in the Gaussian

(ratio .1)

As we have already discussed, the solution for the case ps = 0

and p - I just leads us to the familiar t-intervals. It should,

however, be interesting to see how the interval procedures which

solve problem (2.4) with small nonnegative ratio Pg we choose the

ratio .1 -- behave. Obviously these will be closer to Student's t
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intervals without losing sight ot the slash "requirements'.

It turns out that in the case "n=20" the idea we have in the back ot

our mind - shortening Student's t intervals radically in "extreme"

configurations while leaving them alone in others -- works. At ratio

.1 there is very little variation left of the conditional contidence

levels in the Gaussian situation. Figures 2.1 and 2.2 allow a

comparison with the ratio = oo intervals. In the Gaussian case, both

tails are moved in, whereas in the slash situation, the tail towards

over-coverage grows.

In samples ot size 10, one can still see the splitting ot the

slash drawn contigurations into subpopulations, but the plot

corresponding to Figure 2.3 has been loosened up.

It we care more tor the Gaussian situation, these are clearly more

sensible contidence intervals and in terms of expected length they

" have to be favored over Student's t.

2.2.3. The bi-optimal curves

Figures 2.4, 2.5 and 2.6 show the plots ot the square mean

length deficiencies, defined by

detF(I) - (exp. length in situation F of interval I 2
min. exp. length in situation F

tor the two situations Gaussian and slash.

The 0*0 denote the nonparametric procedures of discussed inii Morgenthaler (1983), where the labels are "si" tor the sign, "wi" tor

the Wilcoxon, "wf" tor the winsorized Wilcoxon with a bound of # on

the ranks. The bi-optimal procedures were computed tor the ratio
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'

values oo, 2, .2 and .1 and plotted with an "o". The diagonal --

corresponding to the minimax choice -- is included.

a, Clearly. we are able to do an excellent job ot compromising in

samples ot size 20. The minimax bi-optimal confidence interval

reaches about 96.5% squared mean length etticiency, so that the

expected length ot this procedure is very close to the single-

a. situation-optimal intervals. In samples ot size 10 the curve moves

towards the right, we have to pay a penalty in terms ot increased

slash expected length due to the tact that we require a confidence

e. coefticient of 95% in the Gaussian situation. The minimax choice now

has approximately 87.3% squared mean length etticiency. And a good

compromise as tar as expected length is concerned is still possible.

In samples ot size 5 the slash-penalty we have to pay tor

g! ning 95% Gaussian coverage probability is getting very large. The

tollowing Table gives the numbers:

a.

.I.

~November 30, 1983
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Table 2.1: Estimated expected lengths ot several contidence interval
procedures

" .method Gaussian slash

size=5 size=10 size=20 size=5 size=10 size=20

Student's t 2.33 1.39 .93 - - -

opt. slash - - - 6.64 3.60 2.24

ratio oo 2.74 1.60 1.05 8.62 3.76 2.25
ratio 2 2.68 1.52 0.95 8.66 3.76 2.26
ratio .2 2.47 1.43 0.95 9.23 3.93 2.34
ratio .1 2.45 1.42 0.93 10.46 4.02 2.38

si - 1.64 1.16 - 5.39 2.65
w3 - 1.52 1.14 - 4.94 2.57
w7 - 1.44 1.06 - 5.55 2.55
wl0 - - 1.02 - - 2.61
wi - 1.46 0.955 - 24.5 3.34

hin 4.07 1.73 1.21 11.95 4.65 2.57
hub-1.5 3.74 1.63 1.03 11.88 4.25 2.57
hub-1.9 3.69 - - 11.78 - -
bi-9 3.82 1.52 0.97 12.48 4.29 2.68
bi-11 3.29 - - 11.28 - -

tp 2.17 1.35 0.92 11.95 4.14 2.41
wins 3.42 1.62 0.99 9.87 3.96 2.33

(the standard errors in this table are between .1% and 3% ot the

estimates! The procedures labelled hin, hub-1.5, hub-l.9, bi-9, bi-

ll,tp and wins are discussed in section 3.)

The labels in this table stand tor the tollowing interval procedures:

ratio # = bi-shortest with specitied shadow price ratio, si = sign,

w# - Owinsorized" Wilcoxon score, wi - Wilcoxon, hin = pivot-t, hub =

procedure based on Huber's p-tunction, bi - one-step biweight

procedure, tp - three-point procedure and wins - procedure based on

the weighted conditional mean-square-error curve.

Figures 2.4 and 2.5 also include the nonparametric contidence

intervals discussed in (Morgenthaler (1983)). They too pay a slash

November 30, 1983
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penalty tor reaching 95% Gaussian contidence level as the sample size

decreases. The pictures only include the winsorized Wilcoxons where

one puts a bound on the ranks, the trimmed Wilcoxon's (see

Morgenthaler (1983)) give, however, nearly the same confidence

intervals. The moditied Wilcoxon's smoothly bridge the gap between

the sign and the unmodified Wilcoxon and -- trom the point ot view o±

Ip expected length -- are a preterable choice. As we have seen in

(Morgenthaler (1983)), this is also true trom the point of view o±

conditional contidence coetticients.

2.3. Discussion

We should be careful in interpreting the deficiency plots.

Untortunately the contidence interval estimation problem is more

complex than the point estimation problem, where a deficiency plot

derived trom mean-square-errors, we believe, tells us nearly all.

(However, we have not looked into matters in as much detail tor the

point estimate case!)

Here other aspects have to be taken into account. It we look at the

variation o± the conditional confidence levels across contigurations,

we get the tollowing table.

November 30, 1983
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Table 2.2: Hinge-spreads (see Tukey(1977)) tor conditional coverage
probabilities in I

Gaussian slash

size-20 4.23% 0.79%
ratio oo size,,lO 3.527 4.28%

size-5 2.51% 3.33%

size-20 0.06% I 1.16%
ratio .1 size-10 0.44% I 4.50%

size=5 0.52% I 1.91%

It is obvious that the two choices o ratios have diametrically

opposed consequences -- and that the small ratio makes more sense

from the point of view ot stability of conditional confidence levels.

It is interesting to note that the bi-modal slash conditional

confidence level distribution we get for samples ot size 10 clearly

stands out. It we compare this to to the numbers in Morgenthaler (1983),

we note that the nonparametric confidence intervals seem to rely on

somewhat more coverage-probability exchange between configurations.

It we were to measure the variation in these tables by a statistic

which uses more ot the tail information - like the usual standard

deviation -- we would, however, see that the bi- optimized intervals

*grow quite a heavy tail towards low conditional confidence levels.

Trying to make the expected lengths ot the confidence interval

procedure small does ot course have an impact on the distribution ot

the conditional coverage-probabilities across configurations.

3. ROBUST CONFIDENCE INTERVALS

November 30, 1983
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What should we mean by the term robustness it we use it in

connection with confidence intervals? Most of the robustness

literature (see Huber(1981)) is concerned with point estimation --
:-

and the simplest case i.e. location parameter estimation with known

scale parameter is certainly best understood.

It we deal with confidence intervals, or with the related tests,

several complications arise. It is my belief that asymptotic theory

loses some of its appeal when we apply it to confidence intervals. As

the size of the sample goes to infinity, the problem of setting

.,*~ confidence limits gradually disappears. It we knew the population,

our interval would be of zero length so that as the sample size gets

. big, most ot the confidence interval estimation problem lies in

finding a "good" center for it and we are really talking about point

estimation. The usual way to get around this is ot course to study

,A powers of the tests at alternatives which tend towards the null

hypothesis -- that way we can study the asymptotic length of the

corresponding confidence interval procedure. It seems to me that

interval estimation is inherently.! "sample problem'.

P. Huber derives in his book an approach to get minimax intervals for

the case ot known scale (Huber(1981)), but this is too simple a

- situation to be helpful in practice.

It we use the center and width (or range) of the interval as

* co-ordinates, it certainly seems necessary for a "robust" interval

estimator to have a robust center and a robust width -- but both

alone do not satisfy us, since we also have to keep the validity of

the procedure under control. This requires that the width gets large

whenever the center is "weak" and in this sense the two co-ordinates

November 30, 1983
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center and width have to react in a matched way. Basically this means

that their ratio has a distribution which does not change

catastrophically much in the tails it the underlying situation

changes. Student's t interval does satisfy this requirement -- and

is robust in this sense.
• 4

In what way are the bi-optimal procedures superior? They

obasically try a small sample minimax approach tor two underlying

situations. In configurations where the two points of view that our

situations supply are in disagreement, we use relative weights in

compromising the two. This gives us a robust answer in the sense that

for both "models" we do, globally, the best we can. The danger lies

-in configurations where some other situation -- not included in our

two-situation analysis -- would have a high relative weight it it

were included and would possibly give a very different answer. From

the minimax point of view -- as advocated by P. Huber -- where in

order to be realistic, one has a "real" neighborhood around the

amodel" (and not an infinitesimal Othing"). and plays minimax inside,

our approach of can be criticized. We took only two situations into

account -- which were "far apart" -- and used essentially a minimax

type of estimate. We are, however, not sure about the behavior

*. between -- or to one side of -- the two chosen situations.

Heuristically our proposed intervals from will safeguard us against

many heavy-tailed underlying situations. Since the slash relative

weight would dominate the Gaussian relative weight, we would be

inclined to choose the slash answer in configurations drawn from any

heavy-tailed situation. In this sense bi-optimal procedures are

robust and sate to use.

November 30, 1983
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What we have said above points towards the tollowing teatures ot

the contigural approach. The (n-2)-dimensional distributions diuF( )

across contigurations are giving "breadth" to our robustness claim.

-. aussian

Ispace of configurations

The above picture shows in a schematic way what is going on.

Both situations -- the Gaussian and the slash -- span a certain

region ot contigurations and it we were to include other situations,

we would probably end up spanning more and having a wider basis where

our procedures work reliably. Note also that with increasing sample

sizes the distributions over contigurations get more and more

concentrated -- we noticed tor example how the ovprlap

between the Gaussian and the slash pretty much disappears in samples

ot size 20.

The second important aspect o the contigural approach is the

conditional distribution given the contiguration under varying

situations. Here we could -- it only we knew how -- use a conditional

minimax approach. By computing the conditional distributions tor

ditterent situations -- which may lead to completely ditterent

answers -- we recognize the need tor compromising and also get

guidance in the direction and amount ot the required adjustments. The

relative weights,however,do seem to be important in order to tind a

working compromise and their practical usetulness depends on the
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situations we take into account.

There is a view of robustness as describing the stability of the

inference process under changes ot the underlying situation. In our

setup we have the space of situations, i.e. location and scale

,* families indexed by the shape and the space of configurations. We are

interested in making inference about the location parameter based on

the observed configuration. Asymptotical intluence curves, which

describe the changes introduced by infinitesimal perturbations near

the assumed model, proved useful in the point estimation case
'S

(Hampel(1974)). Similar ideas might work in the contigural setup. We

could ask how stable the inference is conditioned on the

configuration.

Figure 3.1 shows tour plots ot the coverage density for a specific

configuration and shapes

(1 - 413 + (y + 6-Y)

which leads to a coverage density proportional to

1 n
(1 ) (n-2) (n-4) ... ((.E) or 2) 112n 2

(2w)2 (c-x)
i=l

n 2 c.-x 2

.2 c x abs(cxC-x) abs(-X) )

Swhere n is the sample size. Note that in this plot we have both

*' heavy-tailed and light-tailed situations.

It is clear from these pictures that perturbations might very

well teach us some things about the "robustness" ot our inference
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conditioned on the given, i.e. observed configuration. We might tor

example study intluences on the mean ave F(tic ) of the coverage

density or on the expected length of confidence interval procedures

which is determined by aveF(slt) . The last two can be viewed as

mappings from the space ot probability measures to the reals and

therefore tit into the usual framework. Large influences would mean

A- that the model is Odangerous" for the given configuration in the

sense that nearby models would lead to different judgements. Since

the configuration is a 2-dimensional class, the small sample approach

seems feasible.

3.1. Robust confidence intervals derived from robust location

estimators

The problem of confidence interval estimation in symmetric --

possibly heavy-tailed -- situations has been tackled in two papers by

A. Gross (Gross(1976), Gross(1977)). He used ratios

n2 (T -0)

S

where T is a robust location estimate, S an estimate of its standard

error and n the sample size to get intervals of the torm

(T crit. value S T + crit.value SI I

The hope is of course that the critical values needed to get

l0(l-()% confidence is stable across situations. His conclusion was

that a redescending estimate T with estimated asymptotic standard

'* November 30, 1983
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error S and the right tuning constant gives good intervals.

In his PhD thesis P. Horn (Horn(1981)) examined some simple

contidence intervals based on 2 or 4 order statistics. His pivot and

bi-pivot t-intervals are also designed to give a "robust" behavior.

Finally there are the exact tinite sample minimax tests and

corresponding intervals together with a somewhat arbitrary auxillary

scale estimate, which were tollowed up by E.

Ronchetti(Ronchetti(1982)) who showed us the right tests and

corresponding intervals in an asymptotic intinitesimal sense tor

various robust location estimators. Ronchetti's approach carries over

without problems to the more general regression case.

We will now see how well these intervals behave it we look at

them more closely through our contigural glasses, tocusing on the two

situations Gaussian and slash.

"There are several ways in which one can specity any ot the above

contidence interval estimators. We will restrict attention to the

tollowing.

(A) One-step biweight interval

The center o this interval is a weighted mean ot the observations yi

with weights

w. (1-u.2 )2  -l < ui < 1 and wi = 0, otherwise

where

Yi -med(yi's)

ui  c MD (c pretixedl).

The haltwidth is determined by an estimate ot the asymptotic standard
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error sbi where

52 - eJY I ,w

bi w. (1-5u 2)H(1 w. (1-5u 2) 11

(see Mosteller and Tukey (1977), p. 208).

* This detines an interval estimator which on the configuration scale

has the form

center + critical value(l-q) sbi

-; and which has still one constant (the multiplier ot MAD) left at our

disposal.

(B) pivot-t

We take the pivot-intervals as given in P. Horn's thesis (Horn(1981))

*c 4 +c 2

size=5 [ - + 2.02075(c4-c 2 ) ]

size=lO [--2 + 0.64875(c 8 -c 3 ) ]

sizez20 [1 2 + 0.39697(c 1 6 -c5 )J.

(C) Intervals based on the Huber tunction

To apply E. Ronchetti's intervals we choose the Huber -- Pc function

(see Huber(1981)). The median absolute deviation MAD multiplied by

the Gaussian bias correction ot 1.484 will be our estimate & ot aY

(see Ronchetti(1982), p. 74). Tne interval is then found by using

n Yi- y1 -Huberestimate
I I : (P(- ) - [( < cutott

i=l a ' " & -

Again we have one constant at our disposal. This constant has

'traditionally" been chosen around the value 1.5 -- one argument
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being that this way the asymptotic loss in Gaussian eticiency is

kept small, i.e. below 5%. We will concentrate on this choice.

For the one-step biweight procedure it is known that the Gaussian

efficiency is roughly at 95% tor samples ot size 20 (see Bell and

Morgenthaler(1981)), it we choose a multiplier ot c = 9.

3.1.1. The behavior ot the conditional coverage probabilii.

r:i.a three contidence interval procedures are automatically

9i conservative in the slash case it tuned to reazh 95% Gaussian

confidence level. The one exception is the interval procedure based

on the Huber's PI.5' which has to be tuned tor slash overall coverage

in samples ot size 20. This might indicate to some that this

confidence interval will not perform well for that sample size.

For the smallest samples, i.e. size 5, none ot these *robust"

.- procedures does what we would want them to do. Especially the

intervals based on a biweight-t seem to collapse. This tact has

). already been noticed in earlier work and is reported tor example in

P. Horn's thesis (Horn(1981)). The simple pivot-t intervals (B) seem

to be as good as the more elaborate P1.5 - intervals. Table 3.1 shows

the hinge-spreads and medians ot the conditional confidence

coeticient distributions.

.%R4
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Table 3.1: Hinge-spreads (upper number) and medians of conditional
coverage probabilities in %

method Gaussian I slash

size=20 size=10 size=5 size=20 size=10 size-5
S,..4

biwi°"- .68% .90% .23% 2.44% 2.33% .51%
biweight-9 95.75% 96.86% 99.22% 95.86% 97.25% 99.75%

" 2.73% 4.98% 3.48% 3.79% 2.98% 1.81%
V. 97.62% 97.50% 99.34% 97.14% 96.97% 99.53%

-,', 3.29% 3.51% 2.81% 3.43% 2.68% 1.10%Hue-. 96.45% 97.35% 99.10% 96.17% 96.98% 99.64%

(For samples ot size 20 and 10 these values are based on 150 sampled

configurations, for samples of size 5 on 500 configurations.)

Note that, in the size=5 columns, all procedures have a median

-. *- coverage of over 99%, while reaching a mean confidence level ot

95% in one of the two situations. We can conclude trom this that

in samples of size 5 the so called "robust" confidence intervals

4' are most of the time overlong -- at least conditionally -- and

sometimis too short. Also note the small values for the hinge-

spreads of the biweight-t in this column.

We have of course already seen in previous sections that in the case

ot really small samples, i.e. size 5, a robust procedure will exhibit

a somewhat unsatisfactory behavior of the conditional confidence

coefficients. The large sample argument which leads us to the choice

ot tuning constants in both the biweight-t and the pc - function is

deceptive. For smaller samples the tuning constant has to be

r% increased (Bell & Morgenthaler(1981)). It we compute the biweight

intervals based on ll*MAD and the intervals based on P1. 9 tor samples

of size 5, we naturally get better behavior in the Gaussian
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situation. But somewhat surprisingly we also improve the slash

behavior. This is again an indication that the Gaussian single

situation optimal procedure, i.e. Student's-t intervals, are not very

tar from being a very good robust procedure in small samples.

As the sample size increases, the three procedures under

consideration improve. At the biggest sample size, 20, the biweight-t

is doing best. For the intervals based on the Huber function and an

"imitation ot the classical residual sum ot squares" it is probably

quite crucial to use a "matched" scale estimate, but up to now this

problem has not really been addressed.

In the intermediate sample size, 10, the impressions based on Table

3.1 are somewhat mixed, but even here the biweight-9 seems to be the

method ot choice. It might surprise us that the intervals based on

Huber-l.5 seem to behave better in the extreme slash situation than

in the Gaussian. But remember that, it we want to be prepared against

heavy-tailed situations, "robustness ok validity" comes basically tor

free.

Figure 3.2 shows boxplots tor the logistic transforms (see

section 2) ot the conditional coverage probabilities in samples ot

size 20. These plots can be compared with Fig. 2.1 and 2.2. The

biweight-9 intervals are better behaved than the other two, but

clearly worse than the bi-shortest intervals, which use information

about the conditional coverage density.

In plots -- like Figure 2.3 -- where we plot the lower and upper

conditional missing-probabilities, the robust procedures exhibit a

&very typical pattern -- especially in the Gaussian situation. The
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U . , ... .. .. .... .. P - - . - . .



77,- *. 4.. -...- zJ-v- J . I -- ; - - - . -J. - - 7.

-43 -

., Figure 3.2: Logistic transforms for 150 sampled configurations for three
' *, robust intervals
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points lie inside a cone with vertex at (0,0) and symmetric around

the diagonal. As the sample size increases, the cone opens up more

and at sample size 20 the biweight-t interval does not exhibit this

pattern any more. So a contidence procedure based on a robust center

will at least result in balanced intervals ot some sort. O course we

saw that the conditional coverage behavior is still not satisfactory

-. except in samples o size 20 -- and this is due to the tact that

the width ot the intervals is considerably underestimated in a few

configurations. In the majority ot the configurations this forces us

to make the intervals too long and in a plot ot the conditional

missing probabilities most o the points are near the vertex ot the

cone.

3.1.2. The square mean length etticiencies

Figures 3.3 through 3.5 show the square mean length deficiencies

with the robust contidence intervals added to the procedures already

discussed in section 2 (see: Figures 2.4 through 2.6). The biweight-t

intervals are labeled "bi-#, where the # denotes the multiplier o

MAD. The interval procedure based on Huber's p 1 . 5 function is labeled

4" hub" and the one based on P 1 .9 by "hub-l.9". The pivot-t intervals

tinally are labeled by "hin". The method denoted by "tp" will be

discussed in the next sub-section. Table 2.1 has the numbers.

In samples of size 5, Figure 3.5, it is obvious that the robust

procedures pay a high price in terms o± Gaussian efficiency in order

to be 'acceptable* in the slash. It is also clear from this picture

that the less robust biweight-ll estimator leads to a better
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confidence interval. The same effect can be seen in the Huber

interval, but it is much less obvious. The simple interval based on

the second and fourth order statistic is dominated in terms ot length

efticiency by both hub-l.9 and bi-li, but -- as we discussed above --

none ot them is satisfactory as tar as the conditional coverage

probabilities go. The increase in expected length over Student's t in

the Gaussian situation is big, even with such "mildly robust"

estimators as biweight-ll. The bi-shortest intervals are a lot better

than everything else, but again, for some people, the behavior ot

their conditional coverage probabilities will be nonacceptable. In

that sense these are not practical confidence intervals.

When we go to samples of size 10 the picture gets more

reasonable (note the change o± the scale from Figure 3.5 to 3.3 &

3.4). Most striking is the improvement ot the robust confidence

intervals over the nonparametric ones. The "cloud" ot robust

procedures is moved along the slash axis without losing much in the

"Gaussian case. Again it is not advisable to base contidence intervals

on very stringent robust estimators, bi-9 improves a lot over bi-6,

which is not on the admissible part o± the biweight curve. The simple

pivot-t interval has to pay a price tor its simplicity, it roughly

balances its loss in the Gaussian and the slash.

In the largest sample size under consideration, 20, the pivot-t

interval clearly is not competitive, the simple and distribution tree

sign-Interval dominates the pivot-t. The nonparametric intervals are

now reasonably "robust" themselves. It we look at the swinsorized"

Wilcoxon scores (see Morgenthaler (1983)) it seems that we ought not

.
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go below the value ot 7. The biweight-t intervals are superior to the

ones based on Huber's Pc and the admissible part of the biweight

curve stretches now to lower c-values.

In his thesis P. Horn (Horn(1981)) examines confidence interval

procedures from the point ot view ot 90% - ECIL, i.e. the mean length

atter trimming oft 10% ot the upper tail o± the length distribution.

This is a natural way to go it we argue that a confidence interval

procedure which most of the time produces reasonable intervals with

just a few wild -- i.e. overlong -- ones should really be taken more

.- seriously than its mean length, which ot course is heavily influenced

by the wild ones, suggests. It is not a trivial matter to compute 90%

- ECIL values tor any given confidence interval estimator.

Conditioned on any contiguratin there will be some (t,s) - points

which are below the 904 point in terms ot the length distribution and

we ought to integrate out over these only. An approximation however

is possible. It we take from our sampled configurations the 90% with

the shortest conditional expected length and average over them, we

will have an even more conservative effect than computing 90% - ECIL.

It we adopt the above loss function and compute etticiencies, the

plots corresponding to Figures 3.3 through 3.5 do not change

drastically. In samples ot size 20 and 10, the conclusions are

similar to the expected length loss. It is the nonparametric and the

hinge-t intervals which protit somewhat in the slash efficiency it we

trim the upper 10% o± their lengths. in the case o± small samples,

i.e. 5, the improvements in etticiency for Student's t are big.

Figure 3.6 shows the new situation. Again we conclude that, while

Student's t produces "long" intervals in 10% o± the slash drawn

November 30, 1983
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contigurations, it is otherwise comparable to the robust procedures.

Ot course it has the ideal Gaussian behavior. On this plot only the

procedures tor shadowprice ratio intinity and 0.1 are included.

3.2. Conditional contidence intervals

We have seen that the bi-optimal intervals trom section 2 are

indeed superior to the existing robust contidence procedures. But

trom an applied point ot view we would like to have contidence

intervals which are easily interpreted and understood conditioned on

the observed contiguration. Furthermore we ought to keep the

simplicity ot our procedures in mind.

3.2.1. Three-point approximations

p., We saw in section 2 (equation 2.5) that the weighted combination

ot the contidence densities

461 9 ~~*w co ( + O\Swcos(31,j h( ) g g g + ss (3.1)

where co ( ) and cos( ) are the coverage densities conditioned on the

observed contiguration, Wg and ws the relative weights and g and

the Lagrange multipliers in the Gaussian and slash situation, plays

an important role in combining the two situations. It seems rather

natural to use the mixture (3.1) with \g a -s - I as a basis tor

approximate conditional contidence intervals. It we use the mixture
(3.1) and "count in" 100% trom each tail, we tind an interval which

we might expect to have approximate level 100(1-4)% tor both

November 30, 1983
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situations under consideration.

To simplify the procedure we will only compute three points on

the conditional coverage distributions for the Gaussian and the slash

and use linear logistic interpolation to find the actual confidence

bounds. To get three points on the slash confidence distribution

requires tour numerical integrations which also yield the value ot

the relative slash weight. In the Gaussian situation we can rely on

the tabulated tnl - critical values to get a convenient triplet. The

Gaussian relative weight can be computed using the theoretical

formula.

We can think ot these three-point approximate intervals as using

our two situations Gaussian and slash to correct an initial guess

conditioned on the given contiguration, it we choose the three points

as lower bound, center and upper bound of a specified confidence

interval.

4 It turns out that, it we again restrict attention to 95%

contidence levels, the three-point-procedure is anti-conservative tor

the Gaussian and conservative tor the slash. The 5-number summaries

(see Tukey(1977)) tor the conditional coverage probability

distributions in the Gaussian situation are:

N

November 30, 193



si ze=20 sizealo
#150 #150

M 94.8% M 94.9%
H 94.7% 94.8% H 94.0% 95.2%

86.1% 96. 2% 33.8% 95. 5%

si ze=5
#500

M 94.4%
H 92.9% 94.9%

42.9% 95.3%

It is obvious that the conditional Gaussian confidence level hardly

4'. surpasses 95%, this once more demonstrates how -- it we are concerned

-' ~ about heavy-tailedness -- most of the configurations tend to shorten

Student's t interval so that the weighted mixture used to get these

three-point-confidence intervals tend to have shorter tails than

Student's t distribution. Looking across sample sizes we notice how

well behaved the three-point intervals are for samples ot size 20.

J. As the sample size decreases the conditional behavior gets worse. The

estimated overall coverage probabilities are:

,. size = 20 size - 10 size = 5

Gaussian 94.65% 93.78% 93.32%
slash 95.49% 96.12% 97.64%

Clearly for samples ot size 20 we have a relatively cheap and very

X". good confidence interval procedure. For the smaller sample sizes we

might want to correct tor the anticonservative Gaussian confidence

level by introducing a "blow up" factor (for samples of size 5 we

need a factor ot 1.112 to reach 95% Gaussian coverage, for samples o

size 10 a factor of 1.067 is sufficient). Figure 3.7 shows the

boxplots for the logistic transforms of the conditional coverage

probabilities in both situations. Using a weighted mixture ot the
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Figure 3.7: Logistic transforms for three-point procedure in three
sample sizes
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two conditional contidence distributions is having opposite ettects

in the Gaussian and the slash. In the Gaussian we use the "slash

analysis" to shorten, in the slash we use the "Gaussian analysis" to

lengthen the optimistically short slash contidence intervals. Note

the thickening o± the tail in these boxplots as the sample size goes

down.

Having conservative slash contidence level eliminates the "split"

behavior we observed for the bi-shortest contidence estimators in the

slash situation (see Figure 2.3). The three-point interval does

instead the natural thing by being somewhat conservative.

In all ot the deficiency plots ot the previous section the

three-point approximate interval is included under the label Wtp"

(Figures 3.3 through 3.6). In all o± the cases "tp" is on the average

shorter than Student's t in the Gaussian and has, therefore, a

negative deficiency. In samples ot size 5 it is inside the cloud ot

"robust" interval estimators as tar as the slash loss is concerned,

but note how trimming ott 10% o± the longest intervals (Figure 3.6)

moves the procedure away from the robust ones. This indicates that

the "robust* contidence procedures -- in samples ot size 5 -- have

very many configurations where they are long, whereas both "tp" and

Student's t have a tail towards "long configurations*, but are most

ot the time a lot shorter.

On the whole we may say that the confidence procedure discussed

in this section has an appealing behavior. The intervals from such a

computation will be robust and it might be interesting to extend it

to other pairs than Gaussian & slash or maybe even to triplets. This
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ought not create any new difficulties.

3.2.2. Confidence intervals based on the conditional mean-square-

error curve

For the three-point confidence interval we need to calculate

tour integrals in each situation -- except in the Gaussian where the

values are tabulated or tormulas exist. Four integrals also come up

naturally it we try to estimate the location parameter. In our

parameter system tor any given contiguration c it follows that the

conditional mean-square-error in situation F tor a location estimate

Tis

mseTI )  aveFlt 2 s 2i) - ave 2 lts 2 12F)

,av e Fl(s2e)

+ (t ptF - T(c)) 2 aveF(S2 1c)

where t - -s21 and T( C ) denotes the value our
ave F(S l )

location estimate T takes on the configuration level. All the

expected values needed to get this quadratic curve in T(e) are

ave F(tsl), aveFl(t2S 2 ), aveF(s 2 1e) and the relative weight

These can be calculated again by tour two-dimensional numerical

* integrations. They are somewhat simpler to get than the tour

integrals needed tor the three points on the confidence distribution,

since it is possible to economize somewhat. Based on the calculation

of the tour integrals we can compute an excellent robust location

estimate by considering the weighted conditional relative excess

November 30, 1983
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curves in the picture below.

slash

4,.

t " ) ?-sca le

The weighted conditional relative excess curves tor the Gaussian and

the slash situation

The conditional relative excess is defined as

'cond. rel. exc. (T) - (topt, T ( 2') )2  ave F(s21 )

d r" - c-ond, minimum in F

where the conditional minimum in F is

2 2
2v 2 ave F (ts I2)

aveF (t s2I.) - _-- 2 .
aveF(s2IC)

The relative weight wF for the given contiguration under situation F

is used to weight the conditional relative excess for the situation

F. The point marked "x" in Figure 3.8 is a natural choice tor the

.estimate T(t) on the configuration level and the interval [---]

drawn in seems to be a reasonable choice for a confidence interval on

the configuration level based on these curves. The idea is to replace

ithe two weighted conditional relative excesses by their maximum and

detine the interval bounds by a cutott

maxGaussian, slash (weighted cond. rel. excess(upper bound)) -
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Figure 3.8: Logistic transforms for procedure based on cond. mean-square-

error curves in three sample sizes
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maxGaussian, slash (weighted cond. rel. excess(lower bound)) -

cutott.

§. This is ot course the same as using

J L = max [Lg, L s

U - min (Ug, Us)

where L & U and Ls & Us are derived by the same cutott trom the

single situation weighted conditional relative excess curve. The

interval described above seems to rely on just how we represent the

*" contiguration, i.e. the choice ot c. However this is not true,

. because ot the canonical changes in all the integrals involved under

changes ot the class-representing element c

What we propose here is a side product ot an analysis whose

primary purpose is the estimation ot a location parameter. But even

it we do have point estimation in mind, it is a small step to try and

put a contidence interval around it.

In the above intervals we include the the parameter valuei which it

chosen as a parameter estimate on the contiguration level would lead

to small maximal mean-square-error relative to the minimum

conditioned on the given configuration.

Figure 3.8 shows the conditional contidence coetticients tor the

weighted mean-square-error interval. In samples ot size 20 this

procedure is slightly conservative in the Gaussian situation. A look

at Figure 3.2 shows us that the Gaussian behavior is quite close to

the biweight-t interval with tuning constant 9, but that in the slash

situation it is somewhat better. The main ditterence tar the
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Gaussian seem to be in the direction ot the skewness in the bulk ot

the distribution. As the sample size decreases the "coverage

performance" ot the weighted mean-square-error interval gets worse.

It can certainly not compare itself to the three-point approximate

intervals. However, its behavior is better than tor the other robust

confidence interval estimators. The overall confidence levels are

size - 20 size a 10 size = 5

Gaussian 95.8% 95.0% 95.0%
slash 95.0% 95.1% 97.7%

Table 2.1 gives the expected lengths under the label "wins". In the

slash situation the numbers are comparable to "ratio 0.2"; in the

Gaussian they are more like the other robust procedures. This should

give an idea where the "wis" point would tall in the deficiency

plots.

5., The confidence interval based on a weighted mean-square-error

seems to be doing about what other robust intervals do -- maybe

slightly better. The very good behavior in the slash situation might

be unduly influenced by the tact that the slash is one ot the

situations we took into consideration. It is interesting to notice

that introducing the slash along with the Gaussian in this way --

i.e. by looking at weighted conditional mean-square-errors -- seems

to put more emphasis than we would like on the slash.

It on the other hand we use the center of the three-point

intervals as a "robust" location estimate, it has a high Gaussian

efficiency, but is rather poor in the slash. Both approaches

N described in sub-section 3.2 have their merits.
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4. What have we learned about contidence intervals tor a location

parameter

In the previous sections we discussed one possible way ot

approaching the problem ot robust contidence interval estimators. It

is based on the criterion ot expected length. The ultimate interval

estimator has the required coverage probability and at the same time

is short. We learned that this approach has its drawbacks. The

conditional confidence levels do not behave in a satistactory way tor

samples o± size 5 or 10, though they behave rather well in samples ot

size 20. A possible remedy might be in the choice o± criterion. It we

do not consider the expected length, but rather something which

combines the behavior o± conditional coverage probabilities and some

aspect o± the length distribution, we might very well improve over

the bi-shortest procedures. However, the bi-shortest contidence

interval procedures are superior to any of the methods proposed so

tar as solutions to the unconditioned contidence problem go.

Relatively simple approximations, the three-point interval and the

interval based on the conditional mean-square-error curve, are

possible. The three-point interval has an excellent Gaussian

behavior, is, however, rather bad in the slash situation. The

opposite is true tor the mean-square-error interval. The search tor

turther simplitications, leading to nonlinear closed torm formulas

involving the contiguration, might well be worthwile.

The viewpoint ot this exposition is based on the behavior in small

samples and we do not advocate the uncritical use or these ideas tor

larger sample sizes. As the sample size goes up, we learn more about
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_ _ . . " ", 4 "',." . , - - -.-', ---. ........-.. . . - - . ...



4::.

- 62 -

the underlying shape trom our data and another "limited situation

game" involving much more closely spaced situations might be more

profitable. It remains to be seen, how well the methods proposed in

the previous pages pertorm in situations other than the Gaussian and

the slash. But we consider the small sample approach as a strength o

our methods as opposed to procedures which are asymptotically

justitied.

It is interesting to note how much the problems we Lace change

with changing sample sizes. We learned that in samples o± size 5 a

compromise between the Gaussian and the slash has more severe

consequences on the conditional properties than when we deal with

larger samples.

The use o± numerical integration over contigurations to get good

statistical procedures is certainly worthwile doing and should be

explored turther. Such procedures are -- once we have a computer --

simple and cheap to calculate and they are potentially superior to

existing techniques.

Some more ideas on how to implement all this in the case ot

contidence intervals can be tound in Tukey (1981).
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