
IIIII

AD-H142 959 PRINCETON VLSI PROJECT(U) PRINCETON UNIV NJ DEPT OF i/i

1984ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
R J LIPTON

UNCLSIFEDG 9/5 N

EEEEEEmohEohhEE

ME inlffflllffflllff

ld

"251 11.4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARS-196

3-A

PRI'NCETON VLSI. PROJECT: Semi-Annual Report p

([PERIOD ENDING: March 26, 1984

Richard J. Lipton - Principal Investigator

EECS Department

PRINCETON UNIVERSITY

-g

FACULTY:

Bruce W. Arden, Chairman

David P. Dobkin

Hector Garcia-Molina

Peter Honeyman

Andrea LaPaugh

Kenneth Steiglitz

J984.

0 A

,.- ,,-..+,,+ ,, .- , .+ 2 ,.+ o *. +.- - . - . . - . , -. -. ,.
4

'.1*

PRINCETON VlSI PROJECT

B. Arden, D. Dobkin, H. Garcia-Molina,

P. Honeyman, A. LaPaugh, R. Lipton, K Steigtitz

1. Introduction

* -- PThere are three major components to r project. The first is in

the area of procedural design of VLSI circuits. The second is in the

area of our census language, and the third is in the area of the

testing of VLSI circuits.

2. Procedural Approach to VlSI Design

2. 1. AU2 [LaPaugh, Mata]

ALI2 has been operational for a number of months now. A

variety of chips have been designed and fabricated using ALJ2; test-

ing of them is now underway.

• Already work is under way to improve AL2 and make it more

powerful. The major new idea here is based on a new algorithm for
solving a more powerful class of constraints that we could handle
before. This new algorithm allows the designer to completely mix

both rigid objects and flexible ones: previously we could only allow

flexible objects. We feel that this algorithm with its excellent run-

ning time may have applications beyond just AL12.

.0.

"'ccdeS

':~ ~~.. ~ ~ ~ ** h ~ . .. %.

-~ -.-.
. . . .:

-2-

2.2. Clay I Upton, North]

Clay our other procedural language is also now operational.

Chips designed with it our now just returning from fabrication and

our being tested. Clay is now at a number of other institutions.

For example, Freeman at Brown has already made extensive use of

Clay and has already added a number of features to Clay such as a

trace package. He is also planning to add a smart leaf cell genera-

tor to Clay as part of his PhD work at Brown.

North has also begun to think about building a better graphics

interface between Clay and a bit map display. Ideally, we would

like to allow the free mixture of pictures and programs: we believe

that such a mixture would be a very powerful way to express com-

plex layouts.

2.3. Applications of Clay

2.3.1. Graphics Engine I Dobkin, Field, Souvaine]

The current goal is to build high performance engines based on

S pseudo-triangles. Various parts of the design have been completed

in Clay and are now in the process of being fabricated.

2.3.2. Recursive Layout [Steiglitz]
A number of recursive layouts have been completed and are

now off to fabrication. Such recursive layouts are especially easy

in a procedural language such as Clay. Recursion is a powerful way

4,- to design regular structures such as those found in digital signal

processing.

4~

* -3-

2.3.3. PRISM[North]

* PRISM is a special purpose processor that is highly optimized

for non-numeric computations. It includes a large address and a

large data stack of 4k words. We are currently designing it as a

bit-sliced set of chips. We feel that this bit-sliced structure is
exactly what is needed to later on put PRISM onto a wafer-scale

structure.

In addition, PRISM includes a yield-enhancement mechanism.

It includes a simple way via settable switches to de-select parts of

its large stack. This will, of course, greatly improve the yield of the

chip. We are about to fabricate the first PRISM chips and will then

be able to determine the exact yield improvement obtained.
0

3. Census

There are two main projects under way here.

3.1. Top/Down [Lopresti. North)

This project is investigating the use of census approach to
parallel computations. We have a four processor system now run-

* ning: each processor is a Motorola 68000 with 256K memory. A

large number of experiments are under way to test out the
top/down approach to parallel computation. So far we have mainly

run "simulated annealing" type computations for problems in PLA
* state assignment, routing, and placement. We plan shortly to

expand the machine to include several more processors.

3.2. MMM [Garcia-Molina, Honeyman, Lipton]

This project is investigating the Massive Memory Machine. We
have begun fairly detailed space simulations of a variety of compu-
tations. These simulations are collecting a variety of statistics

* directly from running programs. For example, the "time" com-

mand has been locally modified at Princeton to return the high

-4-

water mark or maximum space used by the executing process.

4. Testing [LaPaugh, Steiglitz. Vergis]

Work continues on a variety of approaches to VLSI testing. For

instance, Vergis's PhD will contain a powerful set of methods to

allow the efficient testing of certain systolic arrays. These results

greatly generalize old results on the testing of simplier structures.

5. Papers

A Top-down Approach to Parallel Computation

Rtchard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton Uruversity

* Princeton, New Jersey 08540

Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ 07974

* Department of Electrical Engineering and Computer Science
Princeton University

Princeton, New Jersey 08540

*ABSTRACT

We consider a top-down approach to parallel computation by

parallelizing a sequential computation at the highest level possi-

* ble. This approach offers the advantages of simplicity, general-

ity, ease of programming, and tolerance to benign hardware

*failures.

March 21, 1984

0

, --.- - .. -. - *-. 4 • . .-.- -" • .-...' -*4.-* -".."'.4 ,:

N. J...

A Top-down Approach to Parallel Computation

Richard J. Lipt onl

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, New Jersey 05540

Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ 07974

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, New Jersey 08540

1. Introduction

Once a computer program is working the next major concern is that of per-

formance: can we make it go "faster"? There are many approaches to this

important problem. First, we can often achieve tremendous speedup by select-

N ing a new data structure or a better algorithm. For example, a program that

repeatedly searches a set of objects may be vastly improved by using a hash

table instead of linear search. Second, we can often achieve just as substantial

speedups by careful tuning of the chosen data structures and algorithms. Usu-

ally this "hacking" is not done on the whole program, but is applied to the

t "inner-loop" of the program [I]. It is frequently observed that programs spend

most of their execution time in a very small fraction of their code which is

iterated many times. This method of speedup based on hacking the inner-loop

of programs we call the bottom-up approach.

A third way to speed up a program is to map it onto a parallel machine.

Today there is a great deal of research into the exploitation of parallel machines

as a way to speed up computations. This is a desirable goal since advances in
technology have made processors inexpensive. Our central thesis is that most

of this research makes an incorrect assumption:

* -2-

They implicitly assume that the only way to achieve speedup on a parallel

machine is to take the bottom-up approach, iLe. to parallehize the inner-loop

of the given sequential computation.

Our fundamental point is that this is not the only way to achieve great speedups

* with parallel machines.

We propose that an alternative approach, which we call top-dowvi, is often a

more powerful way to achieve speedups. Note that often the inner loop consists

of many independent evaluations of the same function. Since our goal is really

to speed up the execution of the entire program, it is not necessary to speed up

the inner loop itself. Instead, the top-down approach obtains the speedup sim-

ply by running the independent iterations in parallel on many processors. To

0 parallelize the solution of a problem, we partition it into independent subprob-

lems. Each subproblem can be solved by a set of independent executions of the

tiner loop on one of the parallel processors.

* For instance, a Monte Carlo simulation computes the value of some function

at many different random points. These simulations are are usually processor

intensive, and in some cases researchers have resorted to designing special-

purpose hardware to obtain acceptable computational speed [2]. A bottom-up

approach to speeding up this simulation on a parallel computer would focus on

making the evaluation of the function at each individual point faster, by using

parallel processors in some clever way. However, none of the function evalua-

tions depends on any previous one. The top-down approach, then, is to assign

each parallel processor its share of the set of random points and let it compute

the function on this set, independently of the other processors.

Our model for parallel computation is a large number of processors con-

nected by a very general network, such as an Ethernet or high-speed parallel

o bus. This network can be connected to a host mainframe, or one of the proces-

sors can be designated as a coordinator. To parallelize a sequential program, we

break up its set of input data into subproblems of equal size Then the program

wr ,. ' 7-- . ,-

.3-

is broadcast to all the slave processors, and each is also sent its subproblem

The slave processors then run the sequential program on their sets of data, and

send results back to the host. For this approach to be effective, computation

must dominate input/output. Fortunately, this is the nature of the compute-

bound programs we wish to speed up.

More formally, express the function to be computed as:

9(1 (Zi).f (X2), , (ZR1))

The top-down approach is to parallelize the computation of the fby distributing

the zt among the processors. The coordinating processor computes their comn-

position, g. g is usually an easily computed function, such as taking the min.

max, or average of the f.

The top-down approach will not allow us to parallelize all sequential compu-

tations, such as those where each execution of the inner loop depends on the

result of a previous execution, or where a suitable decomposition does nct exist.

Nevertheless, the domain of practical problems which have top-down decomposi-

tions is very large. (Some examples will be considered in section 3.) We feel that

the simplicity of the top-down approach is of great value, and that it has been

overlooked in the past, in favor of trying to solve the interesting problems

t caused in part by the complexity of bottom-up parallel computing.

2. Advantages of Top-Down Parallel Computation

1. Ease of programming. There is already a wealth of experience in

,Im~.sequential programming. Consequently, sequential algorithms are easier to

design and to implement than those with bottom-up parallelism. Using a

bottom-up approach, one must carefully learn the properties of the parallel

computer to exploit it successfully. Compilers to generate good code exploiting

the parallel computer and other important tools may not even be available.

Also, in some cases, an entirely new parallel algorithm must be invented to use

-4-

the parallel computer, which may require radically rethinking the problem By

contrast, with the top-down approach, existing sequential algorithms can be run

almost without change, New algorithms do not have to be invented Also, the

program can be debugged on a single processor before running it in parallel,

which simplifies the debugging task.

2. Fezibilityi and generality. The top-down approach is ideal for many

existing architectures and networks. A machine such as we have described can

be built with off-the-shelf hardware or software, or using a local area network of

personal computers. Since the hardware is not designed around the algorithms,

improvements in the sequential algorithm run by each machine will not make

the hardware obsolete. On the other hand, a bottom-up approach to parallel

0 computing often requires special-purpose processors or an interconnection net-

work that is highly adapted to running a particular class of algorithms, or even

solving a given problem using a given particular algorithm. If a different prob-

* lem is to be solved, or a better algorithm is discovered, the special-purpose

machine may not be able accommodate it. Also, the top-down parallel machine

Is easily expanded by simply adding more processor boards to the network.

Thus the user has great flexibility in choosing the cost and performance of the

parallel computer.

3. Low communtction costs. Most computation is done locally on each

processor, which does not need to communicate with its neighbors. The only

* communication required is for the controlling processor to send the program

and data, and for the slave processors to send results. Therefore, interproces-

sor communication does not become a bottleneck limiting the speed of the com-

putation. No special network topology is needed.

4. Li ear speedup If the parallel computer has p processors, we can

expect an almost p-fold speedup over the execution of the same algorithm on a

single processor, assuming that the costs of computing the f are relatively uni-

form and the costs of f dominate the cost of 9. The improvement in

S , . ,: , * ,

5

performance with the top-down programming technique is both good and

predictable.

5. Faut toleraznce. A top-down design is potentially more fault tolerant

than a bottom up design which needs all its processors to be functional We
assume that hardware failures in the slave processors are benign. that is, they

are detected when they occur by causing an interrupt in the failing processor or

by preventing its operation altogether ("fail-stop"). For some tasks, not all but

* only a large fraction of the f (xi) need to be computed. This is the case with

.4, Monte Carlo simulations. If a slave processor fails, its output is discarded.

Another strategy is to reserve a few slave processors as spares. The coordinator

can periodically poll the slaves to test if they are still functioning. When a

failure is detected, the failing processor's work can be reassigned to a spare.

The time lost because of the failure will depend on the size of the independent

subproblem that must be reassigned. This scheme is not completely immune to

hardware failures, but if properly designed a top-down parallel computation can

be more fault-tolerant than a bottom-up scheme which requires all the proces-

sors to be functioning at once.

B. Kiamples

We wil briefly describe a few possible applications for the top-down

approach to parallel computing.

1. Simulations and Exhaustive Searches. We have already described how

integration by Monte Carlo simulations maps very cleanly onto our model of

parallel computation. This approach will also work when we need many indepen-

dent runs of the same simulation to solve a nonlinear optimization problem For

such problems, we have a set of parameters for a complex model and an objec-

tive function whose value we wish to optimize. To find good though not neces-

sarily optimal solutions to such problems, we can try many randomly chosen

parameter values and compute the resulting value of the objective function We

S '_.. - -- - - - . -

can liken this process to turning the knobs on a black box with a meter on it,

trying to obtain the highest reading. By trying many random values, we hope to

find a good solution. Note again that the random trials are independent So

each f (xt) is a parameterized simulation, and g is an easily computed function,

such as taking the rn or max of the f. Further, such a simulation can be

fault-tolerant, since the failure of any single processor results only in the loss of

a small fraction of the random trials. Similar techniques, such as the use of ran-

dom trials with hillclimbing to find local optima, are valuable for finding approxi-
S

mate solutions to combinatorial problems [3].

Counting problems, such as enumerating graphs with some given property

by generating graphs in a regular pattern and then testing them [4], as well as

*exhaustive searches of other regularly generated combinatorial objects, includ-

ing game trees, can also be solved top-down.

As another example, consider the problem of boolean circuit simulation for

* VLSI fault testing. Given a circuit c, we wish to find a set of test vectors that will

uncover all possible faults under some model. Let E=Jej1 be the set of possible

faults. Let V=JvI be the set of input vectors to c. The set of test data will be

some W=w Jw is an input to c and wi detects a fault in El. Further, we want
to

W to be complete, so that every fault in E is covered, and to be small. To find a

set W, our algorithm will generate candidate input vectors wk and simulate both

c and some ejrE. If they can be distinguished, then wt is added to W and ej is

removed from E.

There are two ways to parallelize this algorithm. First, we can distribute

the set of faults E across processors and let each exhaustively try members of

V until all its members of E are eliminated. The slave processors then report

the set of test vectors they found back to the host. To improve performance we

might have the host keep track of which elements of E are currently "alive,"

and once a minute redistribute E to balance the work load Second, we can par-

tition V and broadcast E to all the processors. Each slave tries its subset of V,

* -. % ;@ " .

-7-

and remembers those which eliminate members of E. Again the host can keep

track of the live elements of E and occasionally broadcast this information, so

* that if one slave finds an inputs that detects a fault, other slaves stop working on

it. In fact, the first strategy is better at the beginning of the simulation when

the set of faults is large and most of them are easily killed off. The second stra-

* tegy is better later in the run, when there are only a few faults left but they are
difficult to detect. Therefore both strategies could be used at different times in

the program execution.

2. Design rule checking of VLSI layouts is another candidate for top-down

decomposition. The input and output for this problem are comparatively small-

the input is usually a description of the polygons composing the layout; the out-

put indicates which (if any) are incorrectly placed. However, a great deal of

computation is required. Design rule checking can be parallelized by decompos-

ing the layout into sections, which are checked independently. A slight overlap

is needed between adjacent layout sections to detect errors at the boundaries.

Tom Lane at Carnegie-Mellon has implemented a portion of this algorithm,

counting intersecting rectangles, on the Cm* parallel computer, and obtained a

15-fold speedup with 20 processors r 5).

3. Animation and image processing. Producing high-quality animation

sequences using ray-tracing requires much computation per frame. However, it

is often the case that once the basic animation sequence is defined, each frame

can be processed independently.

4. "Pipelined" realtime computations. Consider the case where we wish to

process a stream of data in real time, such as digitized images coming in from

an orbiting satellite for image analysis or pattern recognition, or to compute

Reed-Solomon codes for deep space communication. In the latter case, systolic

4: VLSI arrays have been proposed to provide fast enough response to the incoming

stream of data, since conventional microprocessors are too slow. However, if we

only require that the parallel computer keep up with the stream of data, and not

that it provide actual realtune response, then we can send each processor a por-

40 tion of the input as it arrives, and accept the processor's output later when it is

ready. in a round-robin schedule. For instance, if a new image arrives from a

satellite every second, and it takes five minutes for a microprocessor to process

0 an image. then a computer with 300 microprocessors is needed. There will be a

five minute delay for processing of an image, but images will be output every

second.

5. Rule-Based Systems. These artificial intelligence systems consist of a

global state, and a set of rules with predicates. The system searches through

the predicates to find one which is satisfied by the current state, and then

applies the corresponding rule to obtain a new state [6,?]. The expected perf or-

* mance of such a system is from only a few rule firings per minute to upwards of

several thousand per second. This perform ance is still considered inadequate

for many expert system designs. To parallelize searching rules in a production

40 system. we could assign each processor a fraction of the rule base. The coordi-

nating processor broadcasts updates to the current state. Each slave processor

then examines the predicates of its set of rules to determine which can fire,

using the sequential algorithm, and sends the rule back to the coordinator. The

* coordinating processor can arbitrate in the event that multiple rules fire. We

thus obtain a linear speedup in the search.

4 4. Conclusion

The top-down approach we have outlined has important advantages for

speeding up sequential programs. It can be applied to a wide range of multipro-

cessor hardware. Although future research in parallel computing can be

expected to uncover automatic techniques for finding top-down decompositions,

at present many practical problems can easily be parallelized by hand

. % . . °°
LD. 7

5. References

(1] Bentley, J. Writing Eficient Programs. Prentice-Hall, 1982.

[2] Pearson, Robert B., John L. Richardson, and Doug Toussaint. A Fast Proces-

sor for Monte Carlo Simulation. Journal of CbmjoiatioanaI Physics, 51, pp.

241-249 (1983).

[3] Papadimitriou, C. H., and K. Steiglitz. Comirrbnatorial Optimization: Alga-

rithins and Complezit,. pp. 454-486. Prentice-Hall, 1982.
[4] Robinson, RW., and N.C. Wormald. Numbers of Cubic Graphs. Journa

[5] Lane, T. Carnegie-Mellon University. Personal communication, 1/31/84.
[6] Forgy, Charles L. OPS5 User's Manual. Dept. of Computer Science,

Carnegie-Mellon University. of Graph Theory Vol. 7, No. 4, pp. 463-467.

[7] Clocksin, W.F. and C.S. Mellish. Progrzmmtng in Prolog. Springer-Verlag,

198i.

4

4

.9.

-- 4

ii

77r -- 7 a-K a- r 7-Frr

THE CASE FOR MASSVE MEMORY

Hector Garcia-Molina
Richard Ckillingford

ftter RHoeymn
Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University

Princeton. N. J. 08544

ABSTRACT

We argue that for certain important classes of non-

*t numeric computations, memory is more of a critical

resource than computing cycles. Therefore, we postulate

that there is a need for a computer with truly massive

amounts of primary storage, on the order of billions of

41 bytes. We believe that such a machine, even with a relatively

slow processor, can outperform all other supercomputers on

memory bound computations. This machine would be simple

to program. In addition, it could lead to new and highly

efficient programs that trade the available space for running

time.

This work was partially supported by DARPA grant #NO0014-

82-K-0549.

March 2:., 1984

0

V '

,-'i , -, , , - , - , - , " ,,'"., ., '.'. ",'.-.% . , ,--. . .. -',,",. ,"-, " %,%* " ,"%" .,% -" % -, . "-_

THE CASE FOR MASSIVE MEMORY

Hector Garcia-Molina
Richard Ckastmgford

Peter Honeymn

Richard J. Lipton
Department of Electrical Engineering and Computer Science

Princeton University
Princeton, N. J. 08544

1. INTRODUCTION.

In recent years, the quest for so-called supercomputers has

intensified dramatically. Much of the current wave of interest was

sparked by the Japanese Government's fifth generation computer pro-

ject, which promises to deliver extremely powerful computers in the

near future. But of course, the real driving force behind the Japanese

and other supercomputer research efforts is the large collection of very

important problems that cannot be solved efficiently on today's comput-

ers.

Most of the supercomputers that are being developed or investigated

today rely heavily on parallelism for their processing power. They either

have large numbers of processors, capabilities for parallel vector opera-

tions, are highly pipelined, or have combinations of all these features.

In this paper we argue the case for an entirely different type of

supercomputer, one that bases its power not on massive parallelism, but

on massive amounts of primary memory. We do not have a specific tar-

get size for such a massive memory machine (MMM), but for argument's

sake let us say we want on the order of tens of biLlions of bytes of main

physical memory. This size is certainly larger than is offered by any

manufacturer today, or is likely offer in the near future. Our thesis is

that a MMM. is justified, even today, by the importance of certain applica-

tions in which memory bound computations occur naturally. For these

computations, a parallel supercomputer will be severely limited by the

S.

ff:777_7P.-) 071-717- .- -77- 77779-2-7

rate at which it can transfer data in arnd out of its memory. Therefore, a

41 classic von Neumann machine, even with a relatively slow processor, but

with massive amounts of physical memory, would vastly outperform any

parallel supercomputer on these problems and would be, in addition, far

easier to program.

9 In this paper we are not proposing a novel computer architecture,

nor are we claiming to have the ultimate supercomputer. We are simply

putting forth an idea that that appears to have been overlooked: for cer-

tain applications (and several of these will be described shortly),

* memory is a more precious resource than computing cycles, and hence,

there is a need for computers that have an abundance of the former.

In addition to making the case for a MMM, our paper has two related

goals. The first is to convince computer manufacturers that they should

increase the physical memory limits of their processors. It is somewhat

distressing to see that it is currently very difficult to purchase more

than 32 megabytes for a processor, at a cost of about 70,000 dollars, but

* at the same time, one can spend hundreds of thousands of dollars on a

processor. A second goal is to spark interest in large memory comput-

ers, for there are a number of intresting research questions that must

be answered before the truly massive memory machines can be imple-

* mented.

The MIMM we propose has two characteristics that distinguish it from

conventional and super computers and that give it its unique power. The

Ab first is a processor that, given the size of its memory, is relatively slow.

0 In Sections 2 and 3 we argue that such a balance between processor

speed and memory size is advantageous for many important memory

bound computations. The second characteristic is a massive memory,

and in Section 4 we argue that this will fundamentally change the way

certain large problems are solved on a computer, and wIll lead to huge

performance improvements. Finally, in Section 5 we briefly discuss

some of the open research issues.

q-3-

2. HIGH MEMORY SIZE TO PROCESSOR SPEED RATIO.

If we look at the ratio

a= memory size

processor speed

of past and present commercial computers, we find that most are within
an order of magnitude of one megabyte per MIPS. (A MIPS is a processor

execution rate of a million instructions per second.) The value one mega-
byte per MIPS is sometimes called "Amdahl's constant." It is not entirely

clear why commercial machines have stayed close to this value, but

market forces appear to have played an important role.

The supercomputers currently being developed all have a ratios well
below this value, and are targeted for computation intensive problems.

For instance, some proposed supercomputers call for as many as one

* ~**million processors, capable of executing billions of operations per second

and yet have as "little" as sixty four megabytes of physical memory

[Comp80, Comp8, Comp82, Evan82].

On the other hand, the machine we propose here is at the other end

of the spectrum: it has an a ratio orders of magnitude larger than one.

Why are we interested in such a machine?

First of all, it is not because we dislike fast processors. If we could

have large memories ard at the same time fast processors, we would of

course take both. However, given our limited resources, we are investing

a disproportionate amount in memory because this, not processing

speed, is the major bottleneck for many non-numeric computations.

4 To illustrate this point, consider a program which accesses a four

gigabyte (4 X I09 bytes) data structure with an essentially random pat-
tern. Let us compare a supercomputer with one hundred megabytes of

memory and a MMM with four gigabytes of memory. Further, let us

assume that the supercomputer is "infinitely fast" while the MMM runs

at only one MIPS. Of course the supercomputer will vastly outperform

the MMM on compute-bound tasks. However, for the memory-bound

S°

-4-

program we are discussing, assume that the supercomputer creates a

0 page fault every f instructions, and that its disks are capable of servic-
ing 100 requests a second. Then on this task the MMM still computes at
its one MIPS rate while the supercomnputer is reduced to computing at
about 100f instructions a second. Clearly if f is small enough the MMM

* will be faster than the supercomnputer: if f is about 100 then the speed
advantage is 100:1! While not all tasks will cause the supercomputer to
"thrash" in this way, we believe that there are a large collection of
important tasks that will cause such behavior. And on these tasks,

* adding memory to a computer makes much more sense than adding pro-

cessor power.

There is also economic evidence suggesting that high memory size to
processor speed ratios -will be advisable. Over the past few years, the

* price of logic circuits has decreased about 207% per year, but during that
same span, memory prices have decreased at twice that rate: almost
40%. per year [With83]. The main reason is that memories are highly reg-

* uWar integrated circuits, and thus, profit immediately from higher fabri-

cation densities. This indicates that increasing the power of a computer
through additional memory will be more cost effective than through fas-

ter processors.

3. APPLICATIONS.

There are many tasks that reference a large address space in a rela-
* tively random fashion, and for which memory is the critical resource.

Here we review three areas in which such tasks abound, but this list is by

4 no means exhaustive.

(a) Databases. It is well known that in many database applications, user

b requests are computationally very simple, yet require data from
unpredictable locations in the database. Thus, a major portion of the

response time to each user request comes from 1/0 waiting. Clearly,

if the entire database or a substantial fraction could reside in main
* memory, then the 1/0 component would be reduced substantially,

S*.* 0~

-5-

possibly even eliminated.

The improved response time will be most valuable in real-time appli-

cations, but even in cases where users are willing to wait seconds for

their answers, massive memory may have important advantages.

Specifically, it may now be possible to pose interesting new queries
that previously required unreasonable times to answer (e.g., a sta-
tistical query that requires one or two passes over the entire data-

base). Thus, users can get more useful information out of the sys-

tem.

* (Reliability may be a problem in a massive memory database. We

4 return to this and other database issues in Section 4.)

(b) VLI Design. The size of VLSI circuits being designed is growing at a

fast rate. Today there are circuits with a half million transistors,

and predictions of integrated circuits with as many as one hundred

million transistors by the mid 90's. VLSI design tools will perforce

deal with massive amounts of data, notwithstanding much cleverness

in the use of hierarchical design and the encoding of information.

Many of the VLSI design algorithms have good asymptotic running
times, but have very poor locality of reference. Thus, they are

naturally candidates for a high ax machine. For example, a layout

system we have designed [Lipt82] uses topological sorting for placing

objects. The algorithm for sorting requires linear time, but unfor-

tunately also requires linear space and has almost no locality. Thus,

beyond a certain layout size, its actual running time is determined

by the memory available: at a given point, increasing the layout size

by 30% sends our computer into uncontrolled thrashing and

increases the running time ten fold!

(c) Artificial Intelligence. The concept of vast data structures built

mainly by the use of pointers, and hence lacking much locality of

#4 reference when accessed, immediately brings the words "LI-SP" and

artificial intelligence (Al) to mind. Garbage collection [Cohe8l] and

paging contrbute substantial fractions to the total running times of

many Al programs. It seems fair to say that a good fraction of Al
research involves memory-bound computations.

Certain Al programs, such as DENDRAL [Buch78] or MACSYMA
[Mart7l], have succinct inputs and generally produce succinct out-
puts, and yet may build enormous intermediate data structures.

* These programs are even better suited to our machine. They would
not even need to incur the overhead of loading the massive memory
as a database or VLSI program would.

Although there have been numerous studies on the reference pat-
terns of programs [e.g., Frey?5, Siss68, Smit82, Spri72], very few have
actually looked at the data references of the memory intensive pro-

* grams we are interested in. The one exception we found supports our
thesis that memory is a critical resource. This paper, by D. W. Clark
fClar79], analyzes in detail the data references of three "real" LISP pro-
grams: a chemical structure generator, a parser for a speech under-

* standing system, and a program that builds and executes partially
ordered plans of action. In summary, Clark discovered that the pro-
grams do have substantial locality of reference. For example, between
85 and 95 percent of the references fall within the most recently

* accessed page (512 bytes). So even if we only had a single data page at a
time in memory, the miss ratio, i.e., the probability of having to fetch
the referenced data from secondary storage, would be 0. 15 to 0. 05.

However, if we assume, as Clark does, that a reference to secondary
memory takes about 5000 longer than a reference to primary memory,
we clearly see that this "low" miss ratio gives very poor performance.
The solution is, of course, to keep more pages in main memory. Unfor-

* tunately, the miss ratio decreases slowly as more pages are kept in
memory (with a LRU replacement strategy). To obtain a miss ratio of
0.001, 40 percent of the total data space for one program, and 80 per-
cent for another program, must be resident in memory. (The miss ratios

* of the third program are not reported in the paper.) And because these

-77 7'

-7-

programs are memory intensive, even this miss ratio of 0.001 slows down
the programs by roughly a factor of 6, as compared to a program that

had all of its data in memory. This clearly illustrates that for these pro-
grams it is more effective to purchase memory to hold a substantial

fraction of the data space, than it is to purchase a faster processor.

To be fair, we should mention that there is a second way to improve

the performance of memory intensive programs, in addition to simply

obtaining more memory: this involves restructuring the data to improve
locality. However, we do not believe this to be a valuable alternative in
general. In many cases it is simply impossible to get locality. To illus-

trate, consider a database that contains data on departments and the

employees who work in them. If we place the employee records close to

(i.e., on the same disk page) as the record for their department, we get

good locality when we access a department and its employees. However,
if we need a list of all departments, then we have to visit many pages. On

the other hand, if we place all department records close together, we
can fInd all departments quickly, but now finding a department and its

employees takes longer, In other words, unless we expect a single type

of query, it is not possible to improve locality significantly.

Even if it is possible to improve locality, we feel that forcing pro-
grarnmers to analyze the reference patterns of their programs and to

structure their data accordingly it is a step in the wrong direction. A

good analogy can be drawn with virtual memory: it is clear that virtual
memory is not necessary if we ask programmers to overlay their pro-

grams and data (i.e., have the programs explicitly state what resides in

memory when).- Furthermore, using overlays can be more efficient than

using virtual memory (at least from the point of view of the computer).

Yet, since overlays are so painful and difficult to use, we do not see many

people who advocate their return.

Finally, it can be argued that what we really need are tools for

autorratic aLly restructuring data to improve locality. This is certainly a

good direction to pursue, but we do not expect such tools, if they ever

I.T . .

-8-

become available, to be useful for solving general problems Inciden-

46 tally, the paper by Clark describes one effort to automatically improve
locality. The idea is to periodically compact the used data space, moving
all the free space to a single area. Intuitively, it seems that this may
help because it increases the density of data and increases the probabil-

9 ity that a pointer leads to a nearby page. Unfortunately, as Clark
reports, the effort to restructure the data is substantial (it involves
traversing the entire data structure, writing it out to disk, and reading it
all back in), and the improvements in locality are significant, but not

* great. (For example, the program that required 80 percent of its data to
be resident to achieve a 0.001 miss ratio, now only needs 50 percent of

* its data resident; the program that required 40 percent, now only
requires 35 percent.)

4. MASSIVE MEMORY.

* In addition to having a very high memory size to processor speed
ratio (a), the MMM we advocate (as its name indicates) has a massive
memory. Why are we interested in a machine with billions of bytes of
main physical storage?

* The most immediate reason is that a massive memory -will soon be
economically feasible. Even at today's prices, the cost of the integrated
circuits necessary to build a one gigabyte memory is below one mrilion
dollars. A complete computer may cost up to (roughly) 1.5 times this
amount, but this is still not out of proportion with the investment neces-
sary to equip state of the art installations for research or production
work in some of the areas identified earlier. Furthermore, if the price

to trends hold [With83], by the end of the decade the same million dollars
will purchase about 20 gigabytes.

Obviously, large memories are desirable because they increase the
power of our machine; the larger the memory is, the larger the NLSI cir-

* cuit that can be simulated on it, or the faster the LISP program will run

However, there is an even more compelling and exciting reason to go
to massive memories: there are certain very important problems that
have large, but bounded storage requirements. As soon as the main
memory of a computer exceeds these storage requirements, the solution
strategy for the problem changes entirely. With all the necessary data in
memory, very efficient and simple techniques can be utilized, and this

* will lead to dramatic performance improvements, much larger than
those which high speed or parallel processors by themselves could pro-

duce.

To illustrate this, let us first look at an application that does not

require massive memory but that has already benefited from expanding
memory sizes: text editing. In the vast majority of editing sessions, a
user works on a relatively small document, on the order of tens of pages

(e.g., a chapter or a paper). However, a few years ago main memories
were so small that these documents could not fit in memory at once.

Thus, text editors were designed to operate on very small portions of the

document, i.e., a line of text. String searches over the entire document

were avoided.

Now, of course, memories are much larger and can easily hold the
4 text pages that a user is currently accessing. Modern editors utilize this

memory to provide more efficient and easier to use systems. Screen edi-
* tors let a user rapidly move from one page to the next, and may allow

-~ multiple windows for displaying different files. Bit-mapped displays,
something that would have been unthinkable fifteen years ago, store an
image of the screen in memory and make it possible to interactively

change fonts and draw diagrams.

This example shows that having the data required by a program (e.g.,
the active text pages or the bit-map) in main memory can fundamentally

change the way some problems are approached. In text processing this

change has already occurred, but we now discuss some problems where

massive memory is needed to bring about this transformation.

V

-10-

Transaction Processing.]n a transaction processing system for airline
reservations or banking operations, a high number of very simple tran-

sac tions (e.g., to reserve a seat on a flight) must be executed. A typical

transaction in these systems involves very few operations, and not count-

ing system overhead, requires a few thousand instructions. Transactions

are usually pre-compiled, and since there are a small number of transac-

tion types, the code for them is kept in main memory. Yet, even with a

10 MIPS processor, the overall transaction rate will probably be low, on

the order of tens of transactions per second.

* The low throughput is due mainly to the delays encountered by tran-

sactions in reading and writing data from disk. However, there are other

* sources of overhead. Since transactions must wait for data, they are

4 usually interleaved -with other transactions. The concurrency control

0 mechanism ensures that only interleavings that preserve data con-

sistency are run. Not only does concurrency control add overhead, but

the code for it is complex and elaborate. Similarly, data in main

memory must be held in buffers, and managing and copying these

buffers contributes to the overhead.

It is important to note that many of the databases used by transac-

tion processing systems are within the 1 to 20 gigabyte range [Gray79]

*and are not growing nearly as fast as memory densities. For example,

the number of accounts in a bank is usually limited by the number of

residents in a state or country, and this number is not doubling every 2

or 3 years. Thus, it is reasonable to expect that many of these databases

will fit entirely within the physical memory of a MM.M.

Having the database in main memory radically alters the structure

of a transaction processing system [Gray83]. With a main memory data-

base, it is best to execute the transactions serially: all the data needed

by each transaction are already in memory, and since the trarsactions

are short, there is no reason to interleave. The database c~an be

accessed directly, without need for buffers. Thus, in a system where

10 transactions are pre-compiled and pre-loaded, most of the work

40

performed will be useful. If transactions take between 1,000 and 10,000
instructions, and the processor runs at 10 MIPS, we can expect execution
rates between 1,000 and 10,000 transactions per second, several orders

of magnitude higher than what is currently available on any system.

Even larger performance improvements can be obtained if we
replace the database search structures, which are currently optimized
for disk, by clever, new structures that exploit the available memory.

For example, B-trees and indexed sequential files can be replaced with
simpler, more efficient structures like hashing and binary trees.

Updates to these structures will also be more efficient.

(Crash recovery is not simplified by a massive memory. [Garc83]

addresses this problem in some detail, and shows how a massive memory

database system can be made reliable without sacrificing the perfor-

mance gains brought about by massive memory.)
Al Knowledge Bases. Many Al knowledge bases also have bounded size,

and as memories grow, the databases will eventually fit in main memory.
For example, a one gigabyte machine could hold one million "rules" of

1000 bytes each; this seems ample for an expert system in a specific

domain (e.g., infectious diseases). Of course, if the system covers multi-
pie domains, this may no longer be true. But for a single domain, a MMM

can bring about dramatic improvements.

'is As with transaction processing, the improvements come not only

because all the data is rapidly available, but also because new search

techniques can be utilized. For instance, Cullingford and Joseph [Cull83]
have developed a novel tree-like discrimination scheme for speeding up

knowedgebase sacethtworks especially well if all the dataisn
memory. The scheme automatically configures a discrimination tree

that is heuristically arranged for maximum balance and bushiness. The

size of the tree is potentially quite large (if the knowledge base to be
searched is large), so that the scheme works best if all the nodes and

predicates are in main memory.

- 12 -

A portion of the massive memory could also retain the most comn-

0 monly made inferences. The system would consult this data (via fast

hash table lookup) before each required inference. For example, an
academic advisor program could directly tell engineering freshmen to

* enroll in section b of Math 101, without deducing every time that Math
* 101 is a requirement, but Math 101, section a, conflicts with literature

100, another requirement, and section c this semester is for Math
* majors only. We can view this cache of commonly used facts as a very

simple but effective learning mechanism that could bring substantial

performance improvements.

Proram ing Environment. A massive memory could also lead to an
improved programming environment, of the type currently imple-

* mented, with severe limitations, on some LISP, APL, and other systems
[Fras83]. The main idea is that the user is not aware of the storage loca-
tion of his objects, and simply sees a uniform "workspace" with a very

* large address space. All objects (e.g., strings, arrays, etc.) are located in

* this workspace, and can be manipulated with a single programmidng
* language. Thus, there is no need for a command language (e.g., UNIX

Shell or CMS EXEC), and there is no need to save objects in files. (Of
course, objects may still be arranged in hierarchies as in a file system,

* but the concept of "file" is no longer needed.)

The problem with current implementations of these ideas is that the
active workspaces of a small community of users are larger than the few
megabytes available on today's machines. Thus, thrashing occurs as the

system struggles to get from disk the objects accessed by users.

The active workspaces of a small timesharing community are not
growing very fast. For instance, the sizes and numbers of subroutines

to being debugged or of papers being edited are not changing much. Thus,

as in our previous examples, it is reasonable to expect that a MMM will

easily hold the active workspaces, will eliminate most disk accesses, and

%ill make such systems much more usable.
6

.4 74

~ -13-

Code Optimization. Our final example illustrates how massive memory

can be utilized to hold pre-computed values that are likely to be refer-

4 enced in the future, in order to avoid recomputing them. The code
optimizer of a compiler takes sections of a program and produces

optimum, or at least good, code for them. The most common strategy is

to analyze each construct as the program is compiled. However, it is
usually too expensive to compute the true optimal code, so a good
approximation is produced for each construct.

With a MMM, a second strategy becomes feasible. It is now possible

to precompute a large table that directly gives the best known code for

the most common constructs. Since the table is only computed once, it
does pay off to find the best possible code translations. Peter Wien-

berger at Bell Laboratories [Wien83] has experimented with this idea,

and predicts that a few tens of megabytes would be necessary to hold

the most common constructs in the C language, and their corresponding

optimal code. As with our previous examples, the size of the table is not

likely to change.

Thus, with a MMM, the optimization of a construct will in most cases
simply involve a table lookup. Furthermore, the code produced would be

superior to that which a conventional optimizer could produce in reason-

--. 4 able time. Of course, this strategy works best if the table can be kept in

main memory. Since the table only takes a few dozen megabytes, this

seems acceptable for a machine with several gigabytes of main memory.

Our examples have shown that there are a number of important

problems that have large but slow-growing (or fixed) storage require-

mnents. As larger and larger memories become feasible, these problems

will succumb to massive memory solutions; solutions that are much

simpler arnd orders of magnitude faster than what is currently available.

In closing this section, we stress three points:

'4 Memory vs Parallel Processing. First, a massive memory machine and a

V. parallel processing supercomputer address different, but equally

-14-

important problems. A MMM is no match for a supercomputer on Comnpu-

tation intensive problems, and similarly, a supercomputer (without mas-
sive memory) cannot beat a MMM on memory intensive tasks. The follow-
ing very simple example clearly illustrates this last idea. Suppose we

have 107 records, with 100 bytes each, that fit within a MMM. To find a
* record given its key, we can construct a hash table. This memory-

intensive strategy, on the average, would give us a record almost instan-
taneously, say, in the time to execute 5 to 10 instructions. It would be

difficult for a supercomputer to beat this time. If the supercomputer
* does not have 109 bytes of main memory, the search will involve secon-

dary storage arnd will clearly be slower. With enough memory and, say,
17processors (-with one record per processor), the supercomputer may

beat the hashing time, but considering the synchronization overhead,
0 the advantage may be slim. In any case, adding 9,999,999 processors is

not cost effective!

Convention~al Architecture. The second point is that a MIMM, unlike a
* parallel supercomputer, has a conventional von Neumann architecture,

at least from the user's point of view. (As discussed in the next section,

a MMM may have an unconventional implementation that is transparent
a,, to the user.) Ths fact has important ramifications. It will be easy, if not

* trivial, for programmers to learn how to use the MMM. Existing programs
could be run immediately on the MMM, and could profit from its large

memory. (As we discussed earlier, new programming approaches may be
* even more profitable than the conventional ones, but the standard pro-

grams will still run, probably faster than on a conventional machine.)

Just as important, existing support software like compliers and operat-
Ing systems, could be used on the MMM. This again simplifies the user's

learning task, and at the same time, reduces enormously the systems
to effort required to make the MMM operational.

Programming Style. Finally, the existence of massive memory might
also drastically change the style in which large programs are written.

6 Currently, many large systems tend to have a relatively large proportion

of the address space used in program text (i.e., executable code), and

only a relatively small amount in data. For example, typical implemen-
tations of the UINIX operating system have about 70% in text and 30% in

data. Large programs written this way tend to be hard to debug, main-

tain and understand.

An alternative style is a more data-driven or interpretive one. Here

one writes a very simple control or monitor program which uniformly

retrieves data objects which are themselves programs (written in a spe-

cial language) or have program fragments attached to them. The con-

A. troller then has the flavor of a dispaztcher, driven by the data it receives.

Current AI rule-based [Shor76] and production-system [Wate78] tech-

niques are also examples of a data-driven programming style. These

approaches have not been popular heretofore because they tend to be

slow with respect to a monolithic approach. But a large part of the cost

lies in simply accessing, more or less randomly, the required data

objects. This cost is high in a standard virtual memory architecture, but

would be low in MMM.

The advantages of a data-driven style are simplicity of control, clar-

4 ity and ease of incremental extension. One simply codes a new object in

the simple, specialized language (a production-rule format, for example),

and makes it available to the interpreter. Barring unexpected interac-

tions with the other objects (which can be limited by the design metho-

dology), the system simply runs with the new item. From the point of

view of understanding a system designed this way, it is worth noting that

a data-driven system can be made to explaxin its functioning. The data

objects can be thought of as items of knowledge, expressible using any of

a number of natural language generation techniques [e.g., Cull82].

5. OM! QUESTIONS.

We hope the reader is convinced that memory is a critical resource

in certain applications and that having large quantities of it may be use-

ful. But is implementing a MMM simply a matter of purchasing the

required memory and attaching it to a processor in a conventional way?

Are there any problems that must be solved before a MMM can be buijlt"

0 We believe that there are some challenging, but surmountable, problems.
In this section we briefly outline some of them.

Bus Delays. As the number of devices on a bus increases, the memory
access times also increase because of the physical distances and capaci-

* tance effects. Thus, as we go to larger and larger memories, we may lose
part of the advantage of having a massive memory. There are a number
of potential solutions to this problem, ranging from special purpose
hardware (e.g., optical fibers), to sophisticated interconnections (e.g., a

40 hierarchy of buses), to a novel computer architecture called ESP that is
described in detail in [Garc84].

Reliability. There are two types of reliability problems. The first arises

0 in any large computing system: as the number of components increases,
so does the probability of failure. In the case of a MMM, we are fortunate
in that the large number of components are memory cells. Memories
are very regular structures, and it is relatively simple to add redundancy

0 to them (i.e., error detecting or correcting codes [Siew82]) in order to
reduce the probability of an error.

A second problem is that memory, unlike disk storage, is volatile.
Thus, in applications where the data itself are important (e.g., data-

40 bases) we must take additional precautions. To solve this problem we
may have battery or generator power backup systems, or a hardware
logging device that records changes to memory on a non-volatile

40 medium. (One such device is presented in detail in [Garc83].)

Read-Only Memory. Read-Only memory (ROM) is denser and cheaper
than writable memory, and hence is ideally suited for holding the static
parts of a database or knowledge base. Certain types of electrically

40 erasable ROMs that are non-volatile but have substantial write delays
could also be useful in some applications. Managing the different types
of memory and interfacing the static and dynamic parts of the data or
knowledge base present some interesting problems.

:-7-

Input/Output. A MMM may have correspondingly massive I/O needs, so

facilities for moving large amounts of data to and from secondary

storage are clearly desirable. For example, to load a 10 gigabyte data-

base into memory, say after a crash, from a disk with a 2 megabyte per

second transfer rate would take 84 minutes! Obviously, this MMM needs

multiple disk controllers and independent paths into memory. Also

needed are the operating systems facilities to partition files across mul-

tiple devices and to coordinate their transfer.

Acknowledgments. Several useful ideas and suggestions were made by

Bruce Arden, Jim Gray, Andrea LaPaugh, Steve North, Ken Steiglitz,

Jacobo Valdes, Peter Weinberger, and Gio Wiederhold.

REFERENCES.

a,' [Buch78] B. G. Buchanan and E. A. Feigenbaum, "Dendral and Meta-

Dendral: Their Applications Dimension," Artificial Intelligen ee,

Vol. 11, Num. 1-2, 1978, pp. 5-24.

[Clar79] D. W. Clark, "Measurements of Dynamic List Structure Use in

Lisp," IEEE Transactions on Software Engineering, Vol. SE-5,

Num. 1, January 1979, pp. 51-59.

[Cohe8l] J. Cohen, "Garbage Collection of Linked Data Structures," ACM

Computing Surueys, Vol. 13, Num. 3, September 1981, pp.

341-367.

* [Comp8O] Special Issue on Supersystems for the 80's, IEEE Computer,

November 1980.

[Comp8l] Special Issue on Array Processor Architecture, IEEE Com-

puter, September 1981.

[Comp82] Special Issue on Highly Parallel Computing, IEEE Computer,
January 1982.

'i

-|. .. .,**~...* ~~ ' ~ * ~ ~. . a ~* ~

7- 18 -

[Cull82] R. E. Cullingford et al, "Automated Explanations as a Corn-
* ponent of a CAD System," IEEE Tansactions on SMC, Vol.

SMC-12, Num. 2, pp. 168-182, March-April 1982.

[Cull83] R. E. Cullingford and L. J. Joseph, "A Heuristically 'Optimal'

Knowledge Base Organization Technique," IFAC Automatica,

• November-December 1983.

[Evan82] D. J. Evans (Editor), Parallel Processing Systems, Cambridge

University Press, 1982.

* [Fras83] C. W. Fraser and D. H. Hanson, "A High-Level Programming and

Command Language," Proc. SIGPLAN 83 Symposium on Pro-

gramming Language Issues in Software Systems, San Fran-

cisco, June 1983.

* [Frei75] W. F. Freiberger, U. Grenander, P. D. Sampson, "Patterns in

Program References," IBM Journal Research Development,

Vol. 19, No. 3, May, 1975, pp. 230-243.

•1 [Garc83] H. Garcia-Molina, R. J. Lipton, and P. Honeyman, "A Massive

Memory Database System," Technical Report 314, Department
of Electrical Engineering and Computer Science, Princeton

University, September 1983.

* [Garc84] H. Garcia-Molina, R. J. Lipton, and J. Valdes, "A Massive

Memory Machine," IEEE Transactions on Computers, to

appear.

[Gray79] J. N. Gray, "Notes on Database Operating Systems," Advanced
• Course on Operating System Principles, Technical University

Munich, July 1977. (Also in Operating Systems: An Advanced

Course, R. Bayer, R. M. Graham and G. Seegmuller, editors,

Springer-Verlag, 1979, pp. 393-481.)

[Gray83] J. Gray, "What Difficulties Are Left in Implementing Database

Systems," Invited Talk at SIGMOD Conference, San Jose, CA.,

May 1983.

to

-.L e- . - , " . ° B " , - o .., " • • " ° " • " " " " " • " ~ o

-19-

[Lipt82] R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G.
Vijayan, "AlI: A Procedural Language to Describe VLSI Lay-

outs," Proc. Nineteenth ACM-IEEE Design Automation Confer-

-'. ence, Las Vegas, Nevada, June 1982, pp. 467-474.

[Mart7l] W. A. Martin and R. J. Fateman, "The MACSYMA System," Proc.

ACM Second Symposium on Symbolic and Algebraic Manipula-
4 tion, Los Angeles, CA., 1971, pp. 23-25.

[Shor76] E. Shortliffe, Computer-Based Medical Consultations: MYCIN,

American Elsevier, New York, 1976.

[Siew82] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of

Reliable System Design, Digital Press, 1982.

[Siss68] S. S. Sisson, M. J. Flynn, "Addressing patterns and memory

handling algorithms," Proc. AFIPS Fall Joint Computer

Conference, Vol. 33, Part 2, December, 1968, San Francisco,

CA., pp. 957-967.

[Smit82] A. J. Smith, "Cache Memories," ACM Computing Surveys, Vol.
*1 14, No. 3, September, 1982, pp. 473-530.

4 [Spir72] J. R. Spirn, P. J. Denning, "Experiments with program local-

ity," Proc. AFIPS Fall Joint Computer Conference, Vol. 41,

Part , December, 1972, pp. 611-621.

[Wate78] D. Waterman and F. Hayes-Poth (Editors), Pattern Directed

Inference Systems, Academic Press, New York, 1978.

[Wein83] P. Weinberger, Personal Communication.

[With83] F. G. Withington, "Winners and Losers in the Fifth Generation,"

Datamation, December 1983, pp.193-209. (These forecasts

also appear in "Future Information Processing Technology,

1983," Institute for Computer Sciences and Technology of the

National Bureau of Standards, August 1983.)

'4'7

V '° ° °,°%, ° • . o • • 44 9'.. ° °

0

0

A MASSIVE MEMORY MACHNE

H. Garcia-M oha
!. J. Lipton
J. Valdes

0 TF *315

E£ECS Dept.

Princeton Univ.

July, 1983

¢,0 , ,': .. , :;.'.,, '''.'", :.' "..'. '. .'.".'..". ,. -..'..'. ..,., ,.. ,.,.',',,% ,. ,, ' ,

'a

A MASSIVE MEMORY MACHINE

Hector Garcia. Molinj
Richard I. Lipton

Jacobo V'aldea

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, N.J. 08544

ABSTRACT

This paper argues the case for a computer with massive

amounts of primary storage, on the order of tens of billions of

bytes. We argue that such a machine, even with a relatively slow

processor, can outperform all other supercomputers on memory

bound computations. This machine would be simple to program.

In addition, it could leaJ to new and highly efficient programs

which traded the available space for running time. We present a

novel architecture for such a machine, and show how it can lead to

reduced memory access times and higher reliability.

N, I ndex Terms: cache, computer architecture, massive memory.

memory bound computation, reliability, supercomputer.

Current address of Jacobo Valdes: Imagen Corporation, 2660

Marine Way, Mountain View, Ca. 94043.

V. This work was partially supported by DARPA grant #NO0014-82-

K-0519.

December 13, 1983

A MASSIVE MEMORY MACHNE

0 Rector Garcia-Molinsa
Richard J. Lipton
Jacoo Valdes

Department of Electrical Engineering and Computer Science
Princeton University

IT Princeton, N.J. 08544

1. INTRODUCTION.

* This paper argues the case for a computer with a primary memory substan-

tially larger than what is currently (or will be in the near future) available on a

single machine. We do not have a specific target size for such a massitve memory

machine (MNIW), but for arguments sake let us say we want on the order of tens

0 of billions of bytes of main physical memory. This size is certainly larger than

what any manufacturer offers today, or will probably offer in the near future.

Our thesis is that such a MM\ is justified, even today, by the importance of cer-

tain applications in which memory bound computations occur naturally. For

these computations, a classic Von Neumann machine with a relatively slow (1 to

10 N11PS) processor and massive amounts of physical memory, would vastly out-

perform even the "supercomputers" currently being researched and would be. in

* addition, far easier to program.

In Section 2 we present the case for a MMM, including its economic feasibil-

ity. In Sections 3, 4 and 5 we discuss how an efficient and reliable MM. could

be built.

2. THE CASE FOR A MMM.

* Research effortl in the supercomputer field have tended to concentrate at the

computational intensive end of the spectrum, disregarding the memory intensive

applications altogether. The typical supercomputer being investigated today is a

multipro.cssor having up to one million processors, capable of executiu; up to

billion, of operations per se.ond and yet have as "little" as sixty four rnegabytes

q

, of physical memory 13,4,5,7j.

There are many applications for which such a machine (as well as any con-

ventional machine) would be limited by its disk to memory transfer rates. For

example, consider a program which accesses a four gigabyte (4X 10 g bytes) data

structure with an essentially random pattern. A machine with one hundred or

less megabytes of memory can be expected to generate a page fault in just about

every memory access, rendering its potential processing power meaningless as a

measure of its performance.

More precisely, let us compare such a supercomputer with one hundred

megabytes of memory and a UNMM with four gigabytes of memory. Further, let

us assume that the supercomputer is "infinitely fast" while the MMIM runs only

at one MIPS (Million Instructions per Second). Of course the supercomputer will

vastly out perform the MNtM on compute bound tasks. However, for the

memory bound program we are discussing, assume that the supercomputer

creates a page fault every f instructions , and that its disks are capable of servic-

ing 100 requests a second. Then on this task the MIMM still computes at its one

* MIPS rate while the supercomputer is reduced to computing at about 100f

instructions a second. Clearly if f is small enough the MMM will be faster than

the supercomputer: if f is about 100 then the speedup is 100:1! While not all

tasks will cause the supercomputer to "thrash" in this way, we believe that there

are a large collection of important tasks that will cause such behavior.

2.1 Applications.

An MMM will produce significant improvements for any task which refer-

ences, in a relatively random fashion, a large address space. Here we will review

three areas in which such tasks abound, but this list is by no means exhaustive.

(a) Databases [G. 22]. It is well known that many database applications are IO

bound, that is, limited by the speed at which data can be transferred from

disks. Clearly, if the entire database (or a substantial fraction) could re.ide

in main memory, then the 10 bottleneck would be eliminated.

• ,.-~~.*,"- ,:- . .. *..'.. . ,-.-.,'..-'.,,-._,;"......, ".---:-," - *.-,'-. --': . -*",-.,"-. '""""-" ""* """"" '. " - - "". ''' ".

* . .: - -.= . - .' -:.'"V i ,: .,J ,,- €. - ' - --.- u :.-~--~ - '. * -. -. ,. ,. . .-
I

.3.

Not only will existing queries be answered faster, but it will nom, be possible

to pose ne% interesting queries that previously required unreasonable times

to answer. Thus, users can get more useful information out of the system.

(Reliability may be a problem in a massive memory database. We will

return to this and other implementation issues later.)

(b) VLSI Design 115]. The size of VLSI circuits being designed is growing at a

* •fast rate. Today there are circuits with a half million transistors, and pred-

ictions of integrated circuits with as many as one hundred million transistors

by the mid 90's. VLSI design tools will perforce deal with massive amounts

of data, notwithstanding much cleverness in the use of hierarchical design

and the encoding of information.

Man. of the 'LSI design algorithms have good asymptotic running times,

but have very poor locality of reference. Thus, they are naturally candidates

for a MMM. For example, a layout system we have designed 113] use topo-

logical sorting for placing objects. The algorithm for sorting requires linear

time, but unfortunately also requires linear space and has almost no locality.

Thus, beyond a certain layout size, its actual running time is determined by

the memory available: at a given point, increasing the layout size by 30-C

sends our computer into uncontrolled thrashing and increases the running

time ten fold!

O (c) Artificial Intelligence [16, 23]. The concept of vast data structures built

mainly by the use of pointers, and hence lacking much locality of reference

when accessed, brings the words "Lisp" and artificial intelligence (M) to

mind. Garbage collection 12] and paging times contribute substantial frac-

tions to the total running times of many A] programs. It seems fair to say

that a good fraction of Al research involves memory bound computations.

Certain Al programs, such as DENDRAL [1] or MACSYMLA [14], have suc-

cinct inputs and generally produce succinct outputs, and vet may build er-or-

mous intermediate data structures. These programs are even better suited

to a MMM than otherrs. They would not even need to incur the overhead ,f

Io.ding the massive memory s a database or NLSI program would.

t.
"l9

2.2 The economical feasibility of a MMM

Clearly VLSI has made computing in gene-ral cheaper. It is also clear,

although not as well understood by everybody, that VLSI has made certain kinds

of computing cheaper than others. One example of this differential impact

* involves memory and processing power: over the past few years, the price of logic

circuits has decreased about 20% per year; during that same span, memory prices

have decreased at twice that rate: almost 40% per year. Clearly that trend, if

continued, should be very good news indeed for applications that require memory

bound computations.

In fact, there are good reasons to believe that the figures given in the previ-

ous paragraph represent more than a local kink in the prices of these commodi-

ties, brought about by a vicious fight for market share in a particularly impor-

tant market. Memories are the most regular integrated circuits (ICs). and thus

among those which would profit immediately from higher fabrication densities.

We believe that memories will be always the first circuits to profit from progress

in integrated circuit manufacturing technology.

At today's prices, the cost of the ICs necessary to build a one gigabyte

memory is below one million dollars. A complete computer may cost up to

(roughly) 1.5 times this amount, but this is still not out of proportion with the

' investment necessary to equip a state of the art installations for research or pro-

duction work in some of the areas identified earlier. Furthermore, if the price

trends hold, the ICs necessary to build a four gigabyte memory would cost

approximately 200,000 dollars by the end of the present decade.

2.3 New Programming Techniques.

A MMI is straightforward to program. Existing programs can be run on it.

and if they are memory intensive, they will run very fast. However, the impact

of a M.LM may be even more far reaching. A MNSM may alter the ma we pro-

gram. and this in turn may yield even grater improvements 110, 21].

For example. considcr ihe ccincurrency control mechanism of a database svs-

tem. Since user prograrns (called transactions) encounter long delays as they wail

for disk pages to be brought into main memory, the database system executes

several transactions concurrently. Since the transactions are not independent

(they are reading and writing the same database), their actions cannot be inter-

leaved in arbitrary ways. The concurrency control mechanism (typically using

locking) ensures that only interleavings that preserve data consistency are run.

Concurrency control introduces substantial overhead and complexity into the sys-

tern.

When the database system is transferred to a MMM, the disk delays disap-

pear, and concurrency control may no longer be needed. The data required by

each transaction is already in memory, so if transactions are short (as they are in

many commercial systems) they can simply be scheduled sequentially. So in

addition to making data available faster, a MMM may eliminate the overhead

and the complexity of concurrency control.

• In general, having massive amounts of memory will change our programming

techniques. Data structures for secondary storage (e.g., B-trees, extendible bash-

ing) will become obsolete. Table lookup will be practical in many more cases.

For instance, instead of computing trigonometric functions with a series, we may
0 want to have a large table of values and use simple interpolation. Digital search-

ing 112], which improves search times at the expense of memory space, will be

commonplace.

3. ARCHITECTURES FOR A MMM.

We have argued that main memory is a useful resource in many applica-

• tions, and that a supercomputer with massive amounts of memory (e.g., giga-

bytes) is economically feasible.

But are there any technological challenges in building a lIMM? Is it not just

* a matter of connecting all the desired memory to the chosen processor in a con-

ventional way 1171. i.e., with a very long bus? (See Figure 1.)

A conventional architecture is a reasonable one, but as we will discuss

shortly there are other architectures that may be superior. The conventional

architecture has two main %eaknesses: memory access times and reliabilit v .

*oq h -- . t . ** .- 1.7 ". - - -17T - -

'~
%*

EP

Fig. 1: A Conventional Architecture AIMM

* Memory access times. Given current IC densities, a four gigabyte

memory requires about one thousand devices (memory cards) on a single bus.

Even with clever arrangements and higher densities, hundreds of devices per

bus seem unavoidable. Building a special purpose bus to support that ma=.

devices is feasible, although not trivial. However, regardless of how the bus

is implemented, as the size of the memory grows, the access times grow

because of the physical distances and/or capacitance effects. At the same

time, memories are becoming faster, so that the larger access times make us

lose part of the advantage of having a massive memory.

0 Reliability. As the size of the memory grows, the probability that ow oT

its components fails also grows. A conventional architecture has no provi-

sion for graceful degradation, and hence the entire machine would be Una-

vailable %%itb high probability. For database applications, some type xff

memory redundancy is also necessary in order to avoid loss of data.

In the next sub-sections we present a new architecture which addresses the

first of these weaknesses. We return to the reliability issues in Section 4.4

-.. . r _r . ;..,J .~* ., ,, ,, . \ *S . W. 1 ': -. ,U' . . U .. U' -. ,- , -* -. * . -. .

p ~3.1 A Novel Architecture.

Our basic premise is that the time to access memory over a long bus (i.e.,
one that drives hundreds of devices) is substantially larger than the access time

over a short bus (i.e., one driving a single memory board). The meaning of "sub-

stantially" depends on how the buses are implemented, but for the time being let

us assume that access times over a long bus are at least an order of magnitude

larger than over a short bus.

0 A classical solution for improving access times over a long bus is to add a

memory cache [11, 20] to the processor. (See Figure 2.) The idea is that coni-
monly accessed data reside in the cache, and are hence available with smaller

delays (both because the cache bus is shorter and because the cache memory is

generally faster). Unfortunately, caching does not improve access times

significantly for the programs we have in mind. A cache may be useful for hold-

ing some commonly accessed values, but as discussed in Section 2, we are con-

cerned with programs that reference their data structures in essentially random

ways. Thus, for most of the recently referenced data, the probability of being

accessed next is low.

P

Fig. 2: A MMIM with a Cache

If we cannot bring the data to the processor as fast as we would like, we

could instead "take the processor to the data". This is precisely %hat the ESP

MM.%I does. A schematic description of it is shown in Figure 3. (Tbc name. ESP

, , ,. "-.".'-'-0 -'-..,:': '''.: ' r.. '''" '." . .

S,, ,,.

will be explained shortly.)

%!

. . t 5, t ilocal

. blglobal addts space

'I

I .
,,.., p~ esor / o

-L' I

,W *
local bus

A r-

Mahmelocal

ESPS

* local bus
L --

Flg. 3: The ESP ALUM

The ESP MMM consists of a collection of standard Von-Neumann machines,

interconnected by a system-wide (or global) bus that permits the broadcast of

values from one machine to all the others. Each individual machine has its own

*processor and local memory connected via a local (short) bus. The gateway of

each machine to the global bus is an ESP device connected both to the system

I. bus and the local bus. (The number of machines is not critical to the architec-

* ture, but we expect a system with a few gigabytes to have a relaii,,. small

number of machines, possibly up to one hundred. This means thal each indi'i-

'74 dual machine has a substantial amount of memory.)

The individual processors shar, ne same address space. This address space

is distrilbuted arn,,, the i.,,.al address spaces as follows (see Figure 3). A small

fra0;,-s of the global address space is replicated in each local address space; the

NI . ,.~ ¢;.,.v,++,. ;, . .L ,.+, % % . % '.,'-.+% +",+ "% "+ ""- a"% * "-_.,_ _ ',,%,' ,-

remainder of the system address space is co- ered in a non-overlapping manner by

the local address sp3ces. An ESP device connected to each local bus is responsi-

ble for servicing requests that involve non-local addresses.

0 Even though the ESP M.NM has multiple processors, it is a single instruction

stream, single data stream machine (SISD) 18). All processors execute the same

program, which is loaded into the replicated portion of the system address space.

- As long as that program references locations in the shared subspace all processors

will execute in lockstep and no communication through the system bus will take

place. References outside the shared address space are broadcast and received on

the global bus, as is illustrated by the following example.
* Consider a program which references memory words u1i through u-9. Assume

that u', u,6. ui are in machine 2, and the rest of the words in machine 3. Figure

*: 4 shows the time at which each processor receives a referenced word. In this

figure we assume that fetching a word from local memory takes one time unit.,

and that broadcasting a word over the system bus takes two units. (We choose

• two units only to simplify the example. As discussed earlier, we expect the sys-

tem delays to be orders of magnitude larger than the local ones.)

* At time 0, all processors start; since they all run the same program, they all

request word u'1 . Processor 3 has u, locally, so one time unit later it receives it.

From then on, processor 3 works at full speed, accessing words u,. u-3, and u4.

At time 4, processor 3 requests word w.5, but since it is not local, a delay ensues.

In the meantime, the ESP at machine 3 has been broadcasting words ut

through u"4. Word u-1 arrives at processors I and 2 at time 3, and the following

words arrive at one unit intervals. Note that the words are "pipelined" on the
0 bus, so that there is only one system bus end-to-end delay involved. Hence, after

the initial delay, processors I and 2 start receiving and processing the words at

full speed. t

• During this time we say that processor 3 "has the lead", i.e., is ahead of the

others. But when processor 2 references uw, it finds this word in its local memory"

io some cases. the bandwid~b of the system bus may limit the processor speed We return
to this isisie is Section 3.3.

0

4. -10-

and takes the lead. The other processors must now wait until the- ESP at

machine 2 broadcasts u and the following words. In a similar fashion, the lead

changes back to processor 3 when 4 is referenced.

* Loeatioaa: ', ', bfn Mdahie 2; all otm is Machine 3.

liroon

4, 'a 'a I I 'a 'a 'a 'a, ' 'a

34 a at ft

time at which proesasor eeive a word

global bus delay

FIg. 4: Eecution in an ESP MAM

In summary, an ESP examines each word request made by its local proces-

.4 sor. If the address refers to the shared subspace, the ESP does nothing. If it

refers to the local non-replicated memory, then the ESP reads the fetched word

off the local bus and broadcasts it over the system bus. In case of a reference to

remote memory, the ESP waits for the next word broadcast over the system bus.

and then places it on the local bus. (This is why we picked the name "ESP" for

these controllers: the remote words required appear on the system bus without

having been requested, as if the controllers has ExtraSensory Perception.) In any

case, the processor is not aw'are of the ESP controller (except for time delays); it

operates as if it had a long bus linking it to all the memory units. Each local

memory module must know the addresses of the data it holds, honor requests for

its data, and ignore all other requpests. (This is how memory modules in a con-

ventional architecture operate.)

WLile the common program generates requests for data local to machin in,

the processor at vn takes the lead. All other processes continue execution at the

samp rate as m, with their ESPs supplying the data the) need. These "trailing"

processors, will be behind the leader by an amoulit of time equal to the one-%%a)

%

I -11I -

delay time between ESPs through the system bus. When a reference to an

address local to another machine occurs, that machine takes the lead.

Writes to memory can be ignored by the ESPs. When the program calls for

* storing into the replicated address space, all processors will execute the instruc-

tion and will update their copies. When the program modifies non-replicated

storage, the processor with the data will modify it, and the rest need do nothing.

(When we discuss reliability in Section 4, we will see that special precautions
0M must be taken when writing into the non-replicated address space.)

The replicated address space is used to store the program and commonly

accessed values. In addition, each processor may have registers and a cache to

* hold recently accessed data.

Two important things to note about the system bus are that it acts as the

system "clock" and that there is no contention. The data transmitted over the

bus are the timing signals that keep all processors in synchrony. (In the example
0 of figure 4, processor 2 picks up the lead when it receives word wL4 from processor

3.) Since non-replicated data is found only at a single machine, only one ESP will

ever broadcast at a time. This means that the bus protocols will be very simple,

* and hence transmissions can be fast.

The ESP architecture has the following advantages over a conventional one:

(1) The local machines have conventional architectures. They may be used

independently when the MNNI is not needed.

(2) For fully random references, memory access times are cut by roughly a fac-

tor of tu'o. In a conventional machine, the address must be transmitted on

0 the system bus and the referenced datum must be transmitted back. In an

ESP machine, no addresses have to be transmitted on the global bus: each

datum appears on the system bus without having been requested. That is,

since references are random, each memory access will cause a lead change.
But these lead change, onl y involve a one-%,ay broadcast, and thus. half the

delay enco-untered in a conventional architecture.

,%:

*: 2 -

(3) The ESP MMM will reward "locality of reference" by minimizing "lead

changes" in programs that exhibit it. That is, if two or more references fall

within the same memory module, then the access times are reduced to local

bus times. The fewer the lead changes, the faster the ESP MMM will exe-

cute.

Locality in this context, however, has a wider meaning than in a conven-

tional memory cache or virtual storage system. Here, locality of reference

means that two references are local to the lead machine, and this machine

may have a substantial chunk of memory (probably tens of megabytes). In

the next sub-section we will explore these issue in more detail.

What is the price we pay for these advantages? Obviously, we have repli-

. cated processors and some data. Given current pricing trends, the cost of this

extra hardware should be reasonable, at least compared to the cost of the massive

memory. (The processors do not have to be high performance ones. Recall that

'-. for the applications we have in mind, the limiting factor is the speed at which

data can be retrieved from memory, and not the speed at which the processor

manipulates it.)

What we have not sacrificed is simplicity and ease of programming. The

processors and memory modules are conventional. The ESP architecture is tran-

sparent to the user program. The task of distributing the global address space to

the spaces of the individual machines can be relegated to a sophisticated loader.

3.2 Program Locality.

The potential performance improvements of an ESP M.M over one with a

conventional architecture hinge on two main factors:

i) The "locality" exhibited by the program, and

(ii) The memory access times over the system and local busses.

In this sub-section we study the first factor in more detail. The bus times are

discussed in the following sub-section.

The ErSP N 1I utilizes several mechanisms to improve memory access

-I,

'I

.I,,,,,,- . .- e -, --: - t ' '" " < -b " "'' ;; "" "" ' "-", _ , , ,, ...:., . ",',, ?,'" '.".. ..- ,."..... ...

-13-

times: (1) registers and caches at each processor to hold recently accessed values;

(2) a replicated address space to bold the program and commonly accessed values;

and (3) the ESP mechanism, which lets the leading or controlling processor move
0 to the memory module where the data resides. The first two mechanisms can be

easily incorporated into a conventional MMM, so the decisive factor is clearly the

ESP mechanism.

0 What does the ESP mechanism give us that the others do not! In order to

answer this question, let us postulate a simple data reference pattern. (W,'e are

not interested in the instruetion reference pattern, since the entire program is

replicated in all machines.)

I0 Suppose that the M,! memory words of the MMI are divided into blocks of B

words each. A block is the unit of data transfer between the memory and a

cache. We assume that the location of the next referenced block depends only on

the location of the most recently accessed one. Specifically, Figure 5 gives the

probability distribution of the next reference. There is a set of a blocks, centered

on the last referenced block, that have a high probability p of being accessed

next. All other blocks have a much lower probability q. (For simplicity, we

*• assume that when the last reference is within a/2 blocks of the ends of the

memory, the distribution wraps around.) We assume that a is odd.

4

probability
of next beeess -- a blocks--

Im

0 0 memor.

last block referenced I block

Fig. 5: The Probabilitly Distribution.

. .0

14

Our experience tells us that this is, in an idealized may, the way programs
r e e e n e t h e ir d a a (e .g ., s e 1 , 2 0) F o e x m l , c o n s id e r a p o r m t a

simnulates a NLSI chip. When a transistor is referenced, several contiguous words

may be referenced. The next transistor reference is likely to be to a connected

one, and if the circuit is represented in a reasonable way, it will be close to the

previous one. Here "close" may mean within a few thousand bytes, so our high

probability window, a, may be relatively large.

The parameters a and p define the locality of the program. As a shrinks

and/or p grows, the program exhibits more locality, and as a grows and/or p

approaches 9, the references become more random (i.e., the distribution becomes

Blatter).

Note that this distribution ignores other types of data locality that may also

* be exhibited by programs. For instance, programs may have time locality (i.e.,

tend to reference recently accessed data) or may access certain fixed locations

withi high probability. Since these types of localities are exploited by data

caches, the distribution we have selected to study will highlight the strengths of

the ESP mechanism, not of caches. This is precisely what we want to do.

Using this probability distribution, we have analyzed the performance of an

ESP mechanism (where processors have no registers or caches) and of a simple

cache. The analysis is described iv 10]. Figure 6 presents some typical results.

The figure shows the hit ratio for the cache (Ac) and the LSP mechanism (h). a

a function of a, the high probability window. For the cache, the hit ratio is the

probability that the ne-t referenced word is in the cache. For the ESP, it is the

probability that the next word falls in the samt. machine as the previous word.

(in the figure, locality decreases from left to right.)

If on each memury reference the cache can fetch a significant portion of the

"high probability of next access" window, ther, the cache performs very well.

(That is, if a is close to I block.) In this case, either the program has very high

locality or the system bus feeding the cache is very wide. In this case the ESP

does not Lave any advantages over the cache.

At the other extreme (very large a). references are fully random and b-ith

mechanisms have a hit ratio of 0. In this range, the ESP is superior by roughly a

.5.Z

hit ratio M , i06 words = IO blocks

1.0 B 1 0 words
0 ap= 0.8

0.91 size of cache m 106 words
• hEsize or memory module 1 106 words

0.7
0 0.6f

0.5
0.4'

0 0.3, h

:, 0.2t

a (high probability windo%, in blocks)

logaritlic scale

Fig. 6: Hit Ratios for ESP and Cache

factor of two because, as we discussed earlier, addresses need not be broadcast.

* In bhtween is a large range of localities where the ESP performs substan-

tially better than the cache (from a equal to 4 or 5 until a is roughly the number

of blocks in a memory module of the ESP.) In this area, most references using the

ESP mechanism are local. On the other hand, with a cache, most references con-

tinue to rely on the system bus. This is because the cache mechanism retrieves

sdata from memory in very small units, on the order of a few words. The
%

improvement will be, roughly. the ratio of system bus access times to local bus

SOtimes.

The program% that will use a MNM., a.- ive argued in Section 2, are memory

intensive owes, programs that cause a virtual memory system to thrash. Thu5 we

expect the.,e program; to operate in the range of localities mLere tbe E.P

mechani:.m does pay off.

-V

([9] presents more results, and also considers other probability distrilutions.

The trends obtained are similar to what we have presented here.)

3.3 System and Local Bus Access Times.

The performance improvements of an ESP MMka over a conventional archi-

tecture depend on the value of the system bus access time, D, and the local bus

" time, d. So far we have assumed that D is much larger than the cycle time of the

processor(s) and than d. If these assumptions do not hold, then the gains of the

ESP mechanism will be limited. For example, if we can implement a system bus

with D small compared to the cycle time of the processor, then obviously, cuting

the bus access times by half is not important.

We have also assumed that the system bus has sufficient bandwidth to pipe-

line data as fast as it is fetched from a local bus. If this is not the case, the local

bus will have to be slowed down, effectively increasing the value of d.

The values of d and D depend on the hardware used to implement the

hBP1. as well as on the size of the memory, and therefore, it is difficult to reach

any definitive conclusions. For example, the delay D is a function of the bus

physical distance and the number of loads. These parameters are in turn a func-

- tion of the memory size and the packaging density. The bandwidth of the -sys-

tem bus may be limited by skew on its lines, which in turn is a function of the

bus length. Of course, the ban.dwidth will depend on the technology used, e.g..

an optical bus will have much higher bandwidth than a conventional one.

In summary, it is not possible to state whether the ESP mechanism is

advantageous unless most hardware parameters are known. However, we can dis-

cuss two general implementation scenarios where certainly D is significant as

compared to the cycle time, and where d is orders of magnitude less than D. In

botl, of these cases. the ESP .1MM performs very well.

0 Processor and Memory on a Chip. It will soon be possible to build a

reasonable processor with a few megabytes of memory, all on a single \I.SI

chip. These chips will be ideally suited for the constructoi; of an ESP

MM.M. The time to access on-chip memory (d) will be very small. since

4

17

small currents and small distance, are involh ed.

The limiting factor in this implementation will be the rate at which ESPs

can broadcast data out of the chip, into the system bus. However. an opti-

cal bus may provide the necessary throughput.

0 Sharing Memory on Existing Computers. Suppose that we already

have an installation with several computers (maybe 2 or 3, maybe 100 or

* 200) connected via a local area network. The ESP architecture gives us a

way to combine these resources into a single MMMNI, when it is needed.

Clearly, local memory access times are significantly less than transmission

times over the network, so the ESP is a useful idea Each existing machine

would be provided with an ESP controller, and the network protocols (for

XL\1M operation) would be simplified, e.g., there is no contention, no need

for packet headers. (This assumes that while the machines operate as a

• M MM, the network ha, no other users.) A program requiring more memory

than is available at a single machine (even if it only needs the memory of 3

or 4 other machines) can be sped up considerably. There will be improve-

ments even if its references are totally random, since page faults (with s.eA-

-- rotatioD31, and substantial data transfer delays) will be replaced by fas 4ad

probably short) network messages.

For some programs it may be possible to implement the ESP mechanism

fully in software. If a program has a distributiou similar to the one of the

previous sub-section, and if a is less than the memory at each computer.

then lead changes will be infrequent. A lead change can then be inle-

mented by sending a message with the state (e.g., contents of registers) of

the lead machine to the next leader.

4. RELIABILITY ISSUES.

In this section ue briefly outline how a NINIM can be made reliaLle. For

concretenes,. we consider an ESP M.\IM. Some of the techniques we discuss can

also be used on a con entional architecture N\B.I. althougE the ones that exploit

the replicated proes.ors obviouslv cannot.

.- Vs

The first step is to make the individual components of the NMM reliable.

For this, either very reliable hardware can be used, or error detection (and corre,-

tion) code bits can be added to the memory modules, buses, and processor regis-

ters. (Deciding how many bits and where they should be located is not a trivial

. problem, but solutions exist and are well understood [18].) In spite of this protec-

tio, component malfunctions can occur, and the system as a whole must cope

with them. In the rest of this section, we discuss possible strategies for this.

We distinguish two types of undesirable events. Errors are transient mal-

:4 functions of a component. If an error occurs during an operation (e.g., broadcast-

ing a value on the system bus, or reading a value from a memory module), then

the operation can be repeated and with high probability it will be correct. OL

the other hand, failures are longer lived malfunctions that can be remedied only

with outside intervention.

Throughout our discussion, we will assume that errors and failures can be

detected immediately, say by error detecting codes. When a malfunction is

detected, the hardware will automatically retry the operation. After a number of

unsuccessful attempts, the malfunction is declared a failure, and no further

operations are executed by the failed component.

To coordinate recovery actions, we introduce a master processor in tLe ESP

M.M. (See Figure 7.) It is simplest to make this a specialized processor which

does not run user programs (although this is not necessary). The master has two

buses linking it to the other machines. The secondary system bus connects the
master directly to the memory modules (using dual input portst), forming a con-

ventional architecture. This bus is used to access memory in case a local bus or

ESP controller fails. It can also be used to run the system as a conention3l

MMM when the main system bus fails. The control bus links the master to all

other processors. Through this bus the master can observe the status of the pro-

cessors. and can issue recovery commands.

, Dual port memory is currently very expensive, but for no inherent reason NISI should
change this situation.

,.,"-- .

spare
machines

- ,global system bus

P, ESP Pt ESP P, ESP P.,+. ESP

S- I - cntrol
muter bus

Al, AlAl

aecondaq bus

O

Fig. 7: A Reliable MMM

4.1 Coping with Errors.

The tight synchronization of the processors complicates the recovery from

errors. If the leading processor detects an error, then there is no problem. It can

retry the operation, and the rest of the processors will be delayed accordingly.

* However, if a trailing processor detects an error and attempts to repeat the

operation, it will get out of synchrony. If the operation was the reception of a

word from the system bus, then the processor cannot even repeat the operation

since it does not control the bus.

The solution is to simply halt any trailing processor that detects an error.

The rest of the system will continue operating normally until control passes to a

hafted processor. At this point the master detects the problem (e.g., it sees no

*4 activity on the system bus), and directs one of the active processors to broadcast

all of its state information (i.e., contents of registers, cache, and replicated

address space) over the system bus. The halted processor(s) loads the inforzna-

tion and is then ready to go.

in Section 3.1. when we discussed memory write instructions, we stated that

writes could be ignored by the ESP controllers and by the processors that did not

have the data being updated. However, in a reliable system, this is no longer tlhe

C

V

• -€-**p.* * '*p .,&,,i.,,.-. - .. " -* ,Y.. .. ,,- -. ". ". ,, .-. ~ •* *t,', - .,,' • " ,

-20-

case. To illustrate, consider a memory reference string rl , r2, l. r4, s, %here rl.

r2, r4. and rb are read references to data in memory module A, and u3 is a write

into module B. For the first two read references, the processor at A takes the

lead. When this processor encounters u,3, it cannot assume that B will execute

- the write because B could be out-of-synchrony. Thus, A must receive an ack-

nowledgment from B indicating that " was successfully performed before taking

the lead again to perform r4 and rs.

To solve the problem, we handle writes to non-replicated data with the same

protocol that is used in reading. In our example, when A encounters uh, it waits

for an acknowledgment from its ESP, just as it would wait for data had the

instruction been a read. At this point, the lead passes to B which executes ut.

and its ESP broadcasts an acknowledgment, just as data would be broadcast had

u3 been a read. If B is out-of-synchrony, the system halts when the lead passcs

to it fat uh), and the recovery starts.

4.2 Coping with Failures.

Processor, ESP or Local Bus Failures. When a processor, its ESP, or its

local bus fails, we again wait until control is passed to it. The master must then

allocate the functions of the failed machine to a spare machine. For this. it must

be possible to dynamically redefine the address space managed by a machine.

Each memory module and ESP controller would have registers with this informa-

tion, and the registers would be loadable by the master (through the control bus).

* Once the new machine is allocated, the master copies the non-replicated data of

the failed machine into the new machine (using the secondary bus). Finally. the

state information is broadcast (as if an error had occurred), and processing con-

tinue.

Memory Failures. When a memory module fails, we cannot simply allocate a

new machine to replace it. Each module contains data that are not available

elsewhere. One strategy for dealing with these failures is to abort the program.

The failed machine is replaed (as discussed above) and the program is re-started

I9:..;.- -"" "• " '"" " """ "" " " "" "" """ '" " " " """ "

.21-K
from scratch.

If abortion is undesired, then storage must be replicated. Furthermore, for

some applications (e.g., databases) at least one of the copies must be non-volatile.
0 The simplest solution is to fully duplicate each memory module (within each

machine), and to make ore of them non-volatile by supplying backup power from

batteries (and possibly a generator). However, the following solution may be less

expensive.

Notice that (normal) reads can be handled by the primary copy, so only

writes must be performed efficiently by the secondary copy. (A program writing

a word must wait until both copies are safely written out, and hence both writes

•0 must be done fast.) Therefore, when a processor issues a write command, a copy

of the address and new value are stored in a small, temporary buffer. (The buffer

can be made non-volatile with battery backup power.) After this operation (and

the write to the main copy) the processor may proceed with its work.

Meanwhile, a separate controller executes the updates recorded in the buffer onto

a copy kept on a slow, non-volatile device like a disk or a drum. This device can

be shared among several machines to reduce costs.

h When a backup copy is needed, it is loaded up into a functioning primary

memory module. Any unexecuted writes in the buffer are "played back" to

obtain an up-to-date-copy.

The buffer shields the slow device from bursts of write commands, but if the

average rate is too high. the buffer will fill up and the processor will have to wait.

In this case, the copy on the slow device can also be kept in journal form, i.e., as

address, value pairs. In this form the writes can be stored sequentially, avoiding

* seek and rotational delays. Of course, when the secondary copy is needed the

recovery will be slower since the writes must be played back. To decrease these

times, periodic dumps of the primary memory should be taken. With some care,

these dumps can be stored in the same slow device, concurrently with the jour-

naling of the writes, and in the same sequential file.

Power Failures. Loss of power to the entire MMN5 is equivalent to a simul-

* taneour failure of all the machine.s. When power is restored, the content.s of each

22

memory module can be recovered using the techniques described above, but the

state of the processors cannot be restored since it was lost everywhere. Thus, a

power failure affects the MMM5 as it does all other computers. To avoid restart-

ing a task(s) from scratch, each task should periodically save its state in memory

(called checkpointing), and at recovery, a task can be restarted at its latest

checkpoint.

5. EXPLOITING PARALLELISM IN THE MMM.

Although the MMIM with ESP controllers is a single instruction, single data

stream machine (SISD), there is no reason why the multiple processors cannot be

used individually when needed. What is more, with some simple extra hardware,

the N51\ can be made into a reconfigurable massive memory and parallel pro-

'P cessing machine. This machine could switch, on demand, from SISD to SD,\D

(multiple data streams) or MIMD (multiple instruction and data streams), and

back. Clearly, this machine would be harder to program than a plain hL\IM, but

%I' it could yield significant performance gains on programs that could be decom-

posed into parallel components.

There are several strategies for reconfiguring the VL\NM. For example, sup-

pose we want to perform an associative search through a large table, and we

know there is exactly one matching entry. If we split the table across the N.iN1

memory modules, each processor could search in parallel. For this, we can add a

special associative search instruction. When a processor encounters it. it forks

and initiates a local search. Before the search, the processor informb the ESP so

it will not broadcast the data fetched from local memory. When the processor

finds the entry, it notifies the ESP, which in turn broadcasts it, just as if it had

been data fetched from memory. When other ESP controllers receive the broad-

cast, they interrupt their processors (the entry has been found elsewhere). and

hand them the result.

After the associative search, the processors continue (in SISD mode) as they

would after witv other instruction. The result of the search synchronizes the prc-

cessors, just likt. data fetched from memory does for other instructions.

7[~~

L' - 23-

If the search may yield multiple matches, or if we want each processor to

compute a value, we need a different mechanism for joiniug the instruction

streams into one. One alternative is to use a special hardware device to detect

Sthe termination of the forked processes. As each processor finds or finishes com-

puting its value, it stores it into its local, non-replicated address space, notifies

the special device, and waits. When all finish, the device signals the processors to

continue in SISD mode. Note that all the results are available to the SISD
. MM, since they are stored in the memory it can access. A second alternative,

processors could fork for a pre-determined amount of time or number of cycles.

Under normal circumstances, this time should let all processors complete.

10 The fork and join operations we have described are limited. Only the ?\MM

can spawn processors, and it cannot continue until they have all joined back. Of

course, we could debign more general control structures, but as the) become more

flexible, they become harder and harder to program. We feel that the mechan-
0 isms we have described strike a good balance between complexity and the perfor-

mance that might be gained.

6. CONCLUDING REMARKS.

If we look at the ratio of memory size to processor speed of past and present

commercial computers, we find that most are within an order of magnitude of

one megabyte per MIPS. (The value one megabyte per AilPS is called "Amdahl's

0 constant".) All supercomputers in use, and most of those being developed, have

ratios well below this value, and are targeted for computationally intensive prob-

lems. The machine we proposed here, on the other hand, would have a memory

to speed ratio of 100, 1000 or more. We have argued that such a machine would

speed up memory bound programs like no other computer could. We also

asserted that a massive memory machine having unconventional architecture and

features would be more efficient and reliable. Yet, in spite of its novel structure.

*P this machine would be simple to program.

We have only sketched the main features of a massive memory machine and

the ESP architecture, but of course, there are mauny other important issues that

must he resolved before such a machine can become a reality. In co~reluding. %%v

-21

mention some of these issues:

Input/Output. A MMM1% will have massive input/output needs. The multiple pro-
cessors of the ESP MNI.M are helpful here, for each one can have its own secon-

dary storage device. This way, data can be loaded in and out in parallel. As an

alternative, groups of processors can share their 10 devices. Management of files

is complicated, though, since files will be partitioned across several devices.

Virtual Storage. No matter how large the massive physical memory is, there will

always be some programs that require more. A virtual storage system is the

obvious solution, but there are several ways in which the virtual store could be

mapped into the physical memory. The number of processors having virtual
memory facilities can also be varied.

Programing Language. It may be useful to have language constructs for speci-

fying the data to be placed in the replicated address space, and for indicating

what data should be placed in the same memory module of the ESP M.NM. A

smart compiler could also automate some of these decisions.

Special Proceaaors. The ESP]14MM can operate with conventional processors,

but this does not mean that they must be conventional. Some processors could

have extra hardware for complex, less frequent operations (e.g., floating point

arithmetic). The results of these operations would be broadcast to the rest of the

* processors. This strategy would reduce the cost of the majority of processors.

Also, special instructions could be added to improve the efficiency of the ESP

mechanism. For example, using a conventional instruction set, a block data

* transfer between two modules will incur two lead changes for each word

transferred. However, a special block transfer instruction could make the source

processor transmit the entire block (without waiting for acknowledgments for the

writes) and the destination processor store the block. At the end of the transfer,
the destination ESP broadcasts an acknowledgment, and this is interpreted by

the other processors as the end of the special instruction. With this instruction,

the number of lead changes is reduced to two, regardless ot the size of the block.

Additional instructions could improve other operations.

~2...! 4 ...

Acknowledgments. Several useful idEas and suggestions were made by Bruce

Arden, Richard Cullingford Jim Gray, Peter Honeyman, Andrea LaPaugh, Steve

North, Ken Steiglitz, Peter Weinberger, and Gio Wiederbold.

REFERENCES.

[I] B. G. Buchanan and E. A. Feigenbaum, "Dendral and Meta-Dendral:

Their Applications Dimension", Artificial Intelligence, Vol. 11, Num. 1-2,

1978, pp. 5-24.

• 12) J. Cohen, "Garbage Collection of Linked Data Structures", ACM Comput-

ing Surveys, Vol. 13, Num. 3, September 1981, pp. 341-367.

13] Special Issue on Supersystems for the 80's, IEEE Computer, November

40 1980.

14] Special Issue on Array Processor Architecture, IEEE Computer, September

1081.

5] Special Issue on Highly Parallel Computing, IEEE Computer, January

1982.

16] C. J. Date, An Introduction to Datatase Systems, Addison-Weiley, 1981.

17] D. J. Evans (Editor), Parallel Processing S stems, Cambridge University
* Press, 1082.

[8] M. J. Flynn, "Some Computer Organizations and Their Effectiveness",

IEEE Transactions on Computers, September 1972, pp. 948-960.

* 19] H. Garcia-Molina. R. J. Lipton, and J. Valdes, "AnalysLs of the Massive

Memory Architectures", Technical Report 313, Department of Electrical

Engineering aud Compuiter Science, Princeton University, May 1983.

110' J. Gray, "What Difficulties Are left in IlmplementiLg Database Systems",

Invited Talk at SIG'MOD Conference, San Jose, CA., May 19S3.

0

9- -.-- .-7 , F- * -.

*26 -

1111 K. R. Kaplan, R. 0. Winder, "Cache-based Computer System," IEEE

... Computer, March, 1973, pp.30-36.

112] D. E. Knuth, The Art of Computer Programming; Volume 8: Sorting and

Searching, Addison-Wesley, 1073.

113] R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G. Vijayan, "ALl:

A Procedural Language to Describe VLSI Layouts", Proc. Nineteenth

ACM-IEEE Design Automation Conference, Las Vegas, Nevadc, June

1982, pp. 467-474.

114] W. A. Martin and R. J. Fateman, "The MACSYMA System", Proc. ACM
Second Symposium on Symbolic and Algebraic Afanipulation, Los Angeles,

CA., 1071, pp. 23-25.

115] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,

1980.

116] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Coni-

pany, 1980.

117] A. V. Pohm, 0. P. Agrawal, High-Speed Memory Systems, 1983.

(18] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable Sys.
tem Design, Digital Press, 1982.

19] S. S. Sisson, M. J. Flynn, "Addressing patterns and memory handling

algorithms," Proc. AFIPS Fall Joint Consputer Confer.,nce, Vol. 33, Part

2, December, 1968, San Francisco, CA., pp. 957-967.

120] A. J. Smith, "Cache Memories," ACM Computing Surveys, Vol. 14, No. 3,

September,1982, pp. 473-530.

(121 P. Weinberger, Personal Communication.

122] G. \Viederhold. Database Design, McGraw-Hill, 1977.

S123) P. Ii. Winston, .4rlificial Intelligence, Addison-Wesley, 1077.

W

Ru . ' ?;.''';: .)% ,,¢'""- "" -.- "" . " " "" . .-.\ .: %

New approach for a constraint-based layout system

Jfos M. Mat a
Department of Electrical Engineering and Computer Science

Princeton, New Jersey 08544

Procedural languages have beer. used successfully to describe
* VLSI layouts. especially those languages that are constraint-based,

since their user doesn't have to worry about absolute positions in
the layout. Some complaints about these languages are difficulty of
usne, efficiency in handling large layouts, area efficiency, need for

4 design rule checker, and difficulty to implement and modify.
We present a proposal for a simple and powerful constraint-

* based layout system, that can be used as part of a larger CAD sys-
tem for VLSI. Our approach consists basically in a structured way
to describe the layout, use of an intermediate form to represent
the layout (in terms of cells, not boxes), and a hierarchical con-
straint solver that deals with large layouts.

* IL. Introduction
* There are many advantages of using a procedural language to describe a

VLSI layout. Many of the existing languages [2.8,7] are constraint-based, that is.
the program that describes the layout generates a set of linear equations whose
solution gives the final layout.

The main issues addressed by constraint-based layout languages are:
- regarding VLSI design as a programmin~g teask, as opposed to a geometric

editing task. This, among other advantages, makes the design easier. facili-
tates the division of labor, allows parametric design, facilitates the update
of layouts, and gives a good documentation of the design.

- creation of an open-ended tool. Graphics editors tend to be closed tools, in
* the sense that it is hard to automate the process beyond what the original

design of the system allowed. With a procedural language, a program can
have some processing (for the description of a router. for example), or the
program can be generated automatically with other tool; in this case, the
layout system can be part of a more general CAD system.

* creation of tools that are simple to uie. Reducing the number of informa-
* tion that the user has to give in order to describe the layout simplifies the

design. the user should describe the layout conceptually, leaving the deter-
mination of absolute sizes or positions to the system. Also, allowing
hierarchical design makes the design easier. Another aspect is error detec-
tion: the system should help the user to find errors in the design

.7 47. -1. 4.

-2-

_elirninating the need for design rule checking. From the description of the
-d layout components and topology, the system generates constraints taking

No, into account the design rules of the fabrication process.

- efficient node extraction for simulation. The nodes can be extracted from
the program, that describes the circuit conceptually, instead of being
extracted from the final layout.

-Different layout systems address these issues in different ways, each sys-
tern having its drawbacks. In the next session we give an overview of a
constraint-based layout system, A1I2, and then we present our proposal for aU. new system.

. A layout system: Ah2

The AL2 layout system [4,5,7] was developed at Princeton, and has been
used successfully, with many VLSI designs completed and the chips fabricated.

ALI2 is a superset of Pascal. The objects manipulated by an ALI2 program
are cells and wuires, besides the usual Pascal objects, There are statements to
instantiate a cell with a given orientation, and to specify the relative position of
cells.

Basically, in an ALI2 program the user describes the objects (cells and
wires). and their topological relations; no absolute coordinate is ever mentioned.
The execution of the program generates constraints of the form zi = zJ and
z, - zj at d (z and d integer. d> 0), taking into account the design rules of the
fabrication process NMOS). The constraints for the X and Y coordinates are
independent. These constraints are solved in linear time using the union-find
algorithm (linear for pratical purposes) and the topological sort, giving the final
layout in CIF (Caltech Intermediate Form).

conceptual levl AL.2 * objects

design rules

I _ ga-zt E

,t

poercLte qat bouecodwe

An example of an ALI2 program follows, with the corresponding layout.

* chip shiftregister (outpuat);
wiretype

pobywze = we (poly. 20lambda, nullsgnal);
diftwire = wire (diff, 20iazcbda. nuflsial);
metalvire= wire (mealwrlambda. null3ignal),
firewes (1r. layer) = buas

* vi: polywe;
W2. metalvire,
w3: we Or, wmnwidth~r), nullsgnal);
w4. metalwire,
v5. polywire.

virevar fl, rr. fivewireu (PO!lY),
eel] shift (left U:; fivewires, nght rr. fivewres); rigid ('ahft.rci);

* cell sbittegis .er (left imbus. ftivewesI right ciatbus fivewires)
. (ergth- integer),

wire war temp: fivewires (poly);
beg&

if length = I
* then create shift (inbus. outbu)

else begin
create shifat (mibus, temp)
create shiftregisrer (temp, oiatbus) (length - I)

4- end 1
end;

*create abiftreiter U, rr(3)
.4 end.

a~g Z-AUZ pnmm md Iaout

.f0

. - . - .. 7 T L . . 7 7

-4-

A cell in AL12 can be flexible (its size will depend on the context in which it
-. is instantiated), or rigid (fixed size, like pads or other cells generated previously

by AL]2 or by other tools) The complete ALI2 system includes a switch-level
simulator, a PLA generator, and some programs to interface with CIF code.

- -" .-. .

• •, co"paled rigid g I F
cells calls

----- --- ------------

AL 12.I el.4 f cede C1P2V

I- --- -

II

S I I : oluss "

',

3 s- he AUX gm

One of the chips designed using ALI2 was a n-bit parallel adder, taken from
[8]. ni is a parameter in the program. The 8-bit adder was fabricated, and the
chip works according to the specifications.

-Although all the issues mentioned in section 1 are addressed in ALI2, there
are still some minor problems:

Sease of use. The main complaint about A112 is having to name wires;
depending on the regularity of the layout we may have too many wires.
Other problem has to do with rigid cells (fixed size): as they involve a con-
straint of the form z -z 1 = d (d > 0) (that is replaced by z,, -z . at d and
checked after solving), if we don't use rigid cells correctly we may get a

V. system of constraints with no solution.

- hierarchical design. Although the program in AL12 can be hierarchically
structured, the constraint solver is not hierarchical, bringing space prob-
lems when the number of constraints is large. If we create solving hierarchy
by using rigid cells, that brings the problem with rigid cells mentioned
above.

m- ImplementaUa considerauan. Changes in the system are difficult to
make, since everything is related: language aspects, design rules, and con-
straint generation.

- deg rule checking. In an ALI2 program it is possible to leave two cells
without any explicit or implicit topological relationship, thus causing some
design rule violation. So, the layout produced by an ALI program is not
guaranteed to be free of design rule violations.

..

-5-

. Our approach
We would like to have a constraint-based layout system with the following

* features:
- easy to use;
- powerful;
- efficient;
- easy to implement;
- hierarchical;
- guaranteed to produce layouts with no design rule violations;

0 - interface with high-level languages, graphics editors, simulator, and
CIF code.

Our approach consists basically of 3 ideas: imposing a structured way to
describe the layout, use of an intermediate language, and use of a hierarchical
solver.

0 8.1. Structured layout
Our first basic idea is to impose a structured way to describe the layout.

and take advantage of this structure. The basic unit in the layout is still a cell,
that corresponds to a rectangle, and cells are composed using unary operators
that specify orientation (rotation or flipping) or binary operators (left, right,
above, below).

A

c

(A .bat, (Blef C))isfl (votted9OOD)

1 .4 -s 9UMOtd 1 t uiiUm

A cell corresponds to a bounding box (rectangle), possibly with wires on
each side. There are 5 kinds of cells:
- sylstem: transistor and contact;
- named: cell previously defined in the program;
- ezterna: library cell;

41 - rigid: cell with fixed size;
- local: cell created by composition of two other cells.

Now the context where a cell is instantiated is well defined Only for system
cells we have to specify the parameter wires (layer and width); for other cells
the wires are defined implicitly For example, if C and D have the structure
shown below, the composition C left D produces the right constraints relating C

• to D and relating the wires connecting them, and leaves a cell with the structure
shown.

--'+"- -- ". - +""" ." "" -'..0",+-, ' . : ':: ; ' ;+'' ':

ll ll+ l e II , m 1 14 ta l l

I

1 .I +-m~ '•III +. pllWIS , m * -* -' • i ~ +I4,i , m~lPl'l 4 , M R. * * *u *

D

V There are many advantages of using this structured approach:
- no wire naming is necessary; at any point the system knows which wires are

hanging up, and will use the proper wires when instantiating the next cell;

- the layout can be described in a compact way;
- separation is directly obtained, and the layout is guaranteed to be free of

design rule violations;
- since the context in which a cell is instantiated is well known, there is room

for local optimization, like cell separation;
* easy implementation: each cell has some semantic information associated

with it;, composition of cells means combination of this semantic informa-
'V tion. If we use a grammar to describe this layout language, the construc-

tion of the layout can be done when parsing (bottom-up). In fact, this is
similar to the way the system for typesetting mathematics EQ!N 11) was
designed and implemented. In EQN, equations are pictured as a set of$3 "boxes", pieced together in various ways.

- easy error detection: if a cell is instantiated in the wrong context, is is easy
* to point out exactly where the error occurred; the only possible error when
N solving the constraints is when a rigid cell gets stretched, and that is also

easy to point out.
At first, it seems to the user that having to describe the layout in such

structured fashion is a strong restriction, and may cost a lot of chip area. Our
experience shows that this is not the case. First, the ordered structure comes
naturally when we go from the floor plan to the program. Second, our choice of
the floor plan is what is going to affect the cost in area.

&Z. kntemediate Inagjuage
The idea is to separate language aspects from layout aspects, or user

aspects from system aspects. For layout aspects or system aspects we mean
generating cells and wires (that is, constraints), according to the design rules.
For language or user aspects we mean the high level language used to describe
the layout, and its implementation; here, language also applies to graphics
language.

We can define an intermediate language to describe the layout, as explained
in the previous section. Considering that there are no generic cells at this level
(no conditional processing, no recursion, ...), it is possible to have a compact
form for the layout description. This form can be automatically generated from
ahigh level language, from a graphics editor, or even generated by hand.

, Now, the high level language available to the user can be as sophisticated as
4: we want, provided it generates code in this intermediate forr... As it should be

clear now, the implementation of the intermediate language and of the high level
* •language are independent.

- gVaphlt s
". edito-r

-"l htelmadlet

I. 6 -The role d the intmundi. e Uan&g e

S8.8. I erarchical solver
The way to specify large layouts keeping the number of constraints within

limits is to use hierarchy: solve the constraints for subcells and make then rigid
cells (rectangles of fixed size, with the position of the inside elements already
determined). Rigid cells involve constraints of the form zj -z- = d (d> 0). We
developed an algorithm [3] that solves m constraints of the form ;i -zj a d
(d> 0) and n constraints zi - z=- = d (d> 0) with time complexity O(m.n). As n
is usually small, the algorithm is pratically linear on m, and is very efficient. It
is implemented in the new AL2 system, giving excellent results.

" 4. Conclusions
We are now in the process of completing the design of the system. A lot of

experience was gained with the AL1l and ALI2 systems. Only minor details of the
syntax of the intermediate language are left. For the high level language. our
first implementation will be a set of procedures to be used in Pascal or C, that
allows the user to define and instantiate cells. Generic and recursive cells can be
easily defined by using the capabilities of these languages.

0 Our first implementation will be based on the NMOS technology. The other
components of the system, like switch-level simulator, PIA generator, and so on,
can be the same used in the ALI2 system.

. References

* [1] Kernighan. B. and Cherry, L.
-A System for 71ypesetting Mathematics. Communications of the ACY,
March 1975.

[2 Lengauer, T. and Mehlhorn, K
HILL - Hierarchical Lmout Language, A CAD System for VLSI Design TR
A82/10, FB 10, Universitht des Saarlandes, Saarbrilcken, West Germany,
1982.

40

-8- 4

[3] Mata, J.
" Sotin SIstemns of Linear Equalies amd Inequalities Efficienty. Prince-

ton University, November 1983.
[4] Lipton, R.J., North, S.C., Sedgewick, R., Valdes, J., Vijayan, G.

VLSI LayJout as Programmning. ACM Trans. on Programming Languages and
Systems, July 1983.

[5] Upton, R.J.. Sedgewick, R., Valdes, J.
Programming Aspects of VLSI. Proc. 9th Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, January 1982.

[B] Sastry, S. and Klein, S.
PLATES: A Metric-free VLSI Layout Language. Proc. of the 1982 Confer-
ence on Advanced Research in VLSI, MIT, January 1982.

(7] Vijayan, G.
Dsign, Implemenoion. and Theory of a VLSI Layout wuae. Ph.D.
Thesis. Princeton University, August 1983.

[8] Vuillemin, J. and Guibas, L.
AOn Fast Binary Addition i OS Technologies. Proc. of the IEEE Interna-

tional Conference on Circuits and Systems, New York, September 1982.

''V .r .- , #, o ,, " ,. - ,, -,'- , ', . . - -. , . , j ' ' .. . o * . . - . .",- .,- . - , ' , , .

-4 ", , ' . '" , " , , ' , . ._, ' ' ' :' ,".". . . . ".'"'.-,',. ,.. " .,:,:-, ' . . : :'' .'' .

I,

A Feat Tally Structure and ApplicaUons to Sgnal Proceming

Peter R. capsuo

Department of Computer Science
University of California

Santa Barbara. Celifornla 93106

* Department of Electrical Engineering and Computer Science
Prinoeton University

Princeton. New Jersey 08544

ABORACT description. and includes more general structures than
We describe the design, layout, and simulation of a simple linear or two-dimensional arrays of elements.

Srecursively defined VLSI chip, using a constraint-based.
procedural layout language. We wae am an example the The approach lends itself particularly well to the build-
;obem of ounting the number of l's in a set of ing of parameteried Libraries (instead of libraries of

21) input bits, where B is a power of 2. A regular, rigid CIF calls). and ultimately can lead to a high-level
recurive structure. called a unary-to-binary converter language for the design of custom signal processing
(UBC(B)), tally circuit, or parallel counter. is described, chips: a silicon compiler.
based on the original design of Swartslander. Area from The particular computational element that we will
the CIF plots and worst-case delay from simulations are describe is known variously as a taf¥ cirmud. parlstel
given for 5 instantiations of the circuit for gemoir. or wnv-oihiw om'uerter (UBC). and
8 a 4. S. 16. 32. and 64. The results verify the expected appears to have been first described by Swartzlander
asymptotic behavior of the implementation as a func- [IJ. Applications to merged arithmetic and multiplier
tion of B. design are described in [2.3, and asymptotic analysis

The high-level, procedural approach leads to a suc- of the time and space requirements for the tally circuit
einct and parameterized description of the circuit. and various of its applications is described in (4].
Verification and simulation of different versions of the
circuit is much easier than with the conventional. . The Reursve msuetucr
h hand-layout approach. The problem we want to consider is that of count-

ing the number of I's on a set of (B - 1) input Lines.
1.]basdmtion where B is an integer power of 2. We will refer to the

The purpose of this paper is to describe the archi- circuit that performs this task as unarV-to-biar con-
tectural design. layout and simulation of a recursively wetts? uvth poraeter A or USC(B). It has a logiN-bit.
defined VLSI chip. The emphasis will be on the design bit-paraltel output. We wil consider here only an
methodology, which relies on the VLSI layout anguage unclocked. combinational circuit, for minimum latency.
CLAY (and its predecessor AUl) developed at Princeton but internal latching will increase the throughput at the

* [7.3]. We hope to illustrate the following points: expense of latency, area. and circuit complexity. (See.
for example. [5].)

1) VLSI design and layout can be viewed at the highest The basic recursive structure we use for solving
level as a programming task; this problem is shown in Figure 1. Inductively. we

assume that the inputs are applied at the bottom, and
3) The procedural approach leads to parameterized the outputs appear at the right. To construct UBC(B),
designs. and these parameters can be bound late in the we place an instance of UDC(2/2) on the left, another
overall design process; instance on the right (mirror-reversed). and we add the

* two sets of outputs in a spine of one-bit full adders
3) The parameterization of a circuit layout allows a (rAs) that constitutes a (SogB - 1)-bit full adder. The
elear eivaluation of the functional dependence of speed, outputs of the spine adder must be routed over the
area. and power on critical circuit parameters. such as right UBC(B/2). The basis of the recursion is simply
number of bits, wire lengths, and pullup and pulldown UBC(4) a FA. a one-bit full adder (with 3 inputs and 2
sizes, outputs). If N(R) is the number of FA's in UBC(B). then

N(B) a RN(B) + lO5 - 1. with N(4) = 1; which leads to
4) The notion of regularity in chip layout means in Sen- the solution N(B) a B - logB - 1. Similarly. the delay
oral that the circuit has a succinct and hierarchical D(B) of UBC(B) satisfies D(B)s D(B/2)+ 2. with

Tomo WWII was r wd b NIT Oran" KS48003 and IC-UOS5O. U. 3. £rw
Asmah-Dwha O.r DAAGWW-IO.5 .s DARPA Cagmet XWOOO-9144O.

IEEE 1984 International Conference
on Acoustics, Speech, and Signal Processing

San Diego , California
March 19-21, 1984

. :,, .-. ,i ,, .L., . s' ..:J -- -' - ,
-

. - . - " ' " -" - .. - -' - . .

p'p

D(4) I full-adder delay. so D(B) a 2oggD - 3 ful- than this indicates that the long wire routing is slowing
adder delays, down the output stales of some of the full adders. The

The implementation of the circuit is essentlally a C simulation results show this effect clearly. The measure
program of about 300 lines, which specifies the entire delay/D(E). the delay per full-adder stage, is listed
chip down to the level of puliup and pulldown cells. It is below:
translated into linear constraints and then into a CIF
file by the CLAY [7.0] compiler developed at Princeton. B dclefs//D(B). no
About one-third of the description is devoted to the 4 36.2
full-adder cell, which uses the random-logic design 8 35.2
described in Is]. Most of the rest of the code consists of 16 98.1
wire declarations and simple wire-routing cells. The 32 39.3
language itself specifes only relative orientation of 04 45.4
wires and cells (left-to-right, top-to-bottom), and not
absolute spacing. The layout is generated from con- We see that the long-wire loading becomes significant
straints determined by a table of design rules, so that only for B a 64. which is an extreme case -- the last
scale changes and design-rule variations do not ncessi- stage output wires for 8 a 64 are about 5 mm long, and
tate re-design. the entire circuit is too wide to fabricate. UDC(32) has

a worst-case delay (CRYSTAL) of 275.1 ns, has 38 pins,
3. Flve InstantaUous and represents the largest instance of UBC that we plan

At the time this is being written (December 1963). to fabricate and test.

the design has been carried through to the level of CIF The structure has the desirable property that the
plots for N a 4. 6. 16. 32. and 64. Each design has been fanout is constant for all the full-adder cells. This
tested for design-rule violations with the Berkeley tool enables us to keep the delay per full-adder stage almost
LYRA[9]. and each design has bad its worst-case delay constant for B a 32. If the fanout did grow, however, it
path evaluated by the Berkeley tool CRYSTAL (9]. In would be easy to make the driver sizes a function of the
addition, the smaller designs have been verified at the recursion level.
gate-logic level with a switch-level simulator. We plan to
submit the chips for fabrication in nMOS with A a 2ps. 5. pace moeleay of the Layouts
after pad-routing is added. The layout was constructed in a highly disciplined

We want to emphasize the fact that the only and conservative way: for example, conven~tonal invert-
difference in the CLAY descriptions for the 5 cases of ors are used. the pullups are straight and no wires cross
UBC(B) is the change of the one parameter B. The width them. metal wires are not run on.top of polysilicon or
of the power and ground lines is calculated at each level diffusion signal wires. No hand-packing or band-routing
of the recursion allowing lIPYa, or the minimum wire was used. Thus. we can expect to pay some penalty in
width 3A. whichever is larger. Since the description is terms of area utilization and speed over conventional
completely procedural, any circuit-size parameter can interactive layout. In return, we gain in getting a com-
be made a function of the level of recursion, or any plets parameterization of the d:sign. and in the ability
other program variable. All wire routing and placement to postpone design decisions untJ the structure is com-
is done automatically, without an interactive display. plete. For example, the inter-adder signal wires were all

The CIF plots for the first 4 instantiations are changed from diffusion to polysilicon at the last step.
howin Fgure pone below heothe r eahto hahe with only a minor edit of the CLAY program. Similarly,shown in Figure 2. one below the other, each to half the the power and ground wires were sized at a very latescale of the previous, stage. The situation is quite analogous to programming

in a high-level block-structured language, as opposed to
4. Tming-Simulation Reaults hand-coding in machine language. In many situations we

The CRYSTALC9] simulator was used throughout as are willing to give up a factor of of 2. say. in perfor-
a guide for Inverter sizing. The fulladder has one 3-input mance if the design time and flexibility of the result is
NAND gate, six 2-input NASD gates, two inverters, and greatly improved. We may also be able to gain beck
four pullups, and these were sized by trial and error, some performance because of the ease with which
following the design methodology and conventions of parameter optimization can be carried out. On the
Mead and Conway [10]. Future work will be directed other hand, there will always be situations where band
towards the automation of this process, which becomes optimization is necessary.
much easier when a high-level procedural description of The width of UIC(B) is ideally proportional to B.
the circuit Is used. With A a 2p nMOS parameters. the and the height proportional to logB. The actual values
present full adder has a worst-case path delay of 36.2 obtained in the layouts are shown below, normalized to

4 ns. takes area of 9900 At, and has an estimated worst- a single full adder:
case power dissipation of about 2 mw. The design is uni-
form at all levels of the recursion, although the output B tupdAh/B ight /logB
capacitive loading increases at higher levels because of 4 1 1
the longer wires; clearly some speedup for the same a 1.69 1.67
power could be achieved by increasing the size of the is 2.06 2.90
output stages at higher levels, but this has not yet been 32 2.27 2.07
studied. 64 2.39 2.30

Ideally, we would want the delay to be close to
D(B)0(36.2) ns. The extent that the delay is greater Thus, the inter-adder wiring contributes a factor of

about 2 in both height and width in this range of B.

II
q,' : , . ,- r-/,'.. .'. V.,- i ;... , / .'. ,. 2.'.. .'". ,;- "". ;;-.

which means that about one-quarter of the area is filled [6] T. C. Holton. "The Large-Scale Integration of
with the full-adder logic. (For reference, the full adder Microelectronic Circuits.,' Sc-en c American. Vol.
fits in a 163? x SIX rectangle.) 237, No. 3, pp. 82-94. September 1977.

The wide, low profile may be an advantage or a [7] S. C. North. "Molding Clay: A Manual for the CLAY
* disadvantage, depending on the application. In the Layout Language. VLSI Memo #'3. EECS Depart-

merged arithmetic structures It seems desirable to ment, Princeton University. Princeton. N. J.. July
have a long, thin UBC which can collect partial products 1953.
from an array. Packing schemes other than the one [8] R. J. Lipton. S. C. North. R. Sedgewick. J. Valdes. G.
shown in Figure I are of course possible, and each has Vijayan. "VLSI Layout as Programmig." ACM Tons
its own aspect ratio. The study of the relationship nn Progamming L ag es am 3mitems, July

between packing schemes and aspect ratio is an 1983.
nteresting research question in itself. [9] R. N. Mayo, J. K. Ousterhout, W. S. Scott. "1953 VLSI

* The estimated maximum steady-state power dissi- Tools," Report No. UCB/CSD 63/115. Computer Sci-
pation is 2.38 watts/ cm t for UBC(S), and decreases to ante Division (EECS). University of California.
1.09 atte/am' for UBC(64). Again, the parameteriza- Berkeley. Calif.. March 1983.
tion of the circuit makes it easy to trade speed for Beel. Cnwf.. Mrho1983.
power. If a fabricated design is too hot, the re-sizing of [10] C. Head. L. Conway. Mnvoduchon to VLSI Sstems.
the inverters is a relatively minor programming change Addison-Wesley Publishing Co. Menlo Park. Ca..
for the next generation design. 1960.

We have outlined a high-level, procedural approach p s captions
to the design and layout of custom VLSI chips for digital
signal processing, using the CLAY language[7.6]. The
unary-to-binary converter was used as an example, and Fi. 1 Recursive definition of the structure of USC(S).
instantiations for 3. 7. 15. 31. and 63 input bits have
been described. The worst-case delay from timing simu- Fig. 2 CIF plots for the cases B = 4.18, 16. 32. Each plot
lations and the area utilization of the layouts have been is to half the scale of the preceding.

* given.
In many ways the approach resembles program-

ming in a high-level, block-structured language. as
opposed to hand-coding machine language. Thus, we are
able to study the effects of varying circuit parameters
by simple program changes, after the design is struc-
turally complete. Ultimately. we hope to take advan-
tage of this circuit representation to study the

* automatic optimization of structural parameters.

T. hckmowledemonts
We want to thank the VLSI group at Princeton for

support of all kinds, especially A. S. LaPsugh, R. J, Lip-
ton. J. Mat&. S. C. North. D. L Souvaine, and J. Valdes.

*6. 6.Mrman
[1) E. E. Swartzlander. Jr.. "Parallel Counters." IEEE

Trans en Cbmpuers, Vol. C-22. No. 11. pp. 1021-
1024. Nov. 1973.

[2] -. "Merged Arithmetic," ibid. Vol. C-29. No. 10. pp.
946-950. Oct. 1980.

[3] -. "The Quasi-Serial Multiplier," Oid., Vol. C-22, No.
* 4. pp. 317-321. April 1973.

(4] P. R. Cappello K. Steiglitz. "A VLSI Layout for a
Pipelined Dadda Multiplier." ACM Trans on Chn-
puter Sg tems, Vol. 1. No.2. pp. 157-174. May 1983.

[5] P. R. Cappello, A. S. LaPaugh. K. Steiglitz. "Optimal
Choice of Intermediate Latching to Maximize
Throughput in VLSI Circuits," P ,oc J983 IEEE
Mevnatuinal Cbnf an Acoustics, Speech. and Sig-

* mlf PROceustng. April 14-16, 1953, pp. 935-938. and
iZEE Trwa on Acoustis, Speech, and Svnal Nro-
eatng . in press.

S%

FAA

uscce/utg'a PACS(/

4.A

..........

4T

*r

SOLVING SYSTEMS OF 12TFM EQUAL[TI! AND
IN!EQUAIES EFMhAOrIT

Jaosi . Imta
Department of Electrical Engineering and Computer Science

Princeton University
* Princeton, New Jersey 08544

4, Technical Report #318
March 1984

0

0

0L i

I

-0

" m .m*. -. -

SOLVING SYSEMS OF LINEAR EQUALITIES AND
DIEQUALn'TIE EFFICIENTLY

Jose U. ilata
Department of Electrical Engineering and Computer Science

Princeton University
Princeton. New Jersey 08544

In many applications, like VLSI layout systems, we have to solve a
system of linear constraints on two variables. Usually these systems
involve millions of variables and constraints. If we have only equations of

. . the form sk - s a d (d>0). we can use the topological sort algorithm, that
.s linear in time and space complexity. Allowing also constraints of the
form s - s- me (e >0) gives more power, but affects the efficiency in solv-
ing. Algorithms for the single-source shortest path problem or for the
linear programming problem can be used, but they are not efficient

* ,enough for the size of our problem.
We present here an algorithm to solve systems of equations of the

form zg- jkd (d>O) and h - si - (e>O), with time complexity
0 ((vk4 +v)%). where uj - number of inequalities, Y4 = number of equal-

0 ities, and v - number of variables. It is specially efficient when the
number of equalities is small compared to the number of inequalities.

1. kntrdutan
In many computer aided design systems for integrated circuit design the

specification of a layout is internally represented by a set of geometric con-
straints on the coordinates of the layout components [5] [7) [8] [11] [12] [14]. In
its simplest form these geometric constraints are linear inequalities between
pairs of coordinates, and the z and V coordinates are independent. We can also
have equivalence between two coordinates.

The geometric constraints relating the coordinates of the layout com-
ponents are of the form:

-. (d> .&edee d) ()

The number of layout components in usual circuit designs Is of the order of
10'. which correspond to the same order of variables and constraints. The
efficiency of solving this system of equations is important; that is one of the rea-
sons for choosing so simple equations to represent the layout.

The equations of the form z - zj can be dealt with in a preprocessing step.
by making z and zj the same variable. This renaming can be done by using the
union-find algorithm [13]. So, from now on we will ignore such equations.

Tkis work was supported in par. by NSF Grant iCS4J00440, DARPA Contract NOOI4-W2-K-
0049, 0?4R Gran N00014- 6-K-MO5, said CAPS-Brail.

-2-

Let's consider equations of the form ' - zi X, d. d > 0 implies that z1 > z1 .
The relation > is transitive, asymmetric, and irreflexive, so it establishes a par-

* tial order on the set of variables z . We can then make use of the topological sort
algorithm [4] [10] to find a solution for the set of constraints if there is one, by
computing the length of the critical path to each node in a directed acyclic
graph. This algorithm has time and space complexity 0(n+v), where n = number
of inequalities, and v = number of variables.

The algorithm builds a weighted directed graph G = (V,E) from the set of
* inequalities I. as follows:

V = set of variables

We use the notation (a,b ,w) to denote a directed edge from a to 6 with
weight u. Also. by length of a path we mean the sum of the weights of the edges

SIn the path.
However, there are two problems. First, as the space complexity of the

topological sort algorithm is O(n+v), for large layouts (large number of variables
and inequalities) we run into memory problems. Second, sometimes we want to
include in the layout some pieces of fixed size, and it is not possible to specify
that using only inequalities of the form ; - zj a d (d> 0).

The solution to these problems is to allow constraints of the form
zi -xj a e (> 0, Wteger). This allows the specification of pieces of fixed
sizes in the layout. By constructing the layout hierarchically (creating small
parts of the layout and using them as pieces of fixed size in the next level of the
hierarchy), will solve the problem of large layouts.

* So, our problem now is to solve efficiently a set of constraints of the form:
xz -zj k d (d > . nteger) (2)
z- z= a (> 0.teger)

The number of variables and inequalities can be huge, but for our applica-
tion the number of equalities is small, and it can even be limited. In the ALl2
layout system [6] [7] [13], each equality corresponds to a piece of fixed size
introduced. So, in the specification of the layout it is possible to control the
number of equalities generated, keeping it small (less than 100, usually). It is
also possible to control the number of inequalities by constructing the layout
hierarchically.

Note that the equality t- zj = u can be replaced by the inequalities
* ;-z k e and zj-zj s e.

Currently known methods for solving systems of linear equalities and ine-
qualities have time complexities which are polynomial of high degree, and are
not suitable for handling large number (millions) of variables and constraints.

One approach is to view this problem as a special case of linear program-
ming. with only 2 variables per inequality. In this case, a typical constraint has

* the form
a i + b zi i c (a,b,c .re rtioWnumbers) (3)

Algorithms for this problem are considered in [1] [9].
Other approach is to use single-source shortest path methods [2] [3] [6] on

unrestricted graphs, or equivalently considering inequalities of the form

s, -z a c (c i.teger) (4)

. r rr. . .

-3-

We can see that both the linear programming problem with 2 variables per
inequality and the sifgle-source shortest path problem are more general than
our problem of solving a system of equalities and inequalities. In our problem
the coefficient of the variables in the equations is 1, which is a particular case of

A -the linear programming problem.
In order to use the shortest path method we construct a directed graph

* from our system of equations: zj -zj a d corresponds to an edge (zj1z,,-d).
and ; -zj = a corresponds to edges (zjA,-e) and (Shortest path
methods work on unrestricted graphs, while the graph corresponding to our sys-
tem of equations will have edges of positive weight only in conjunction with an
edge of negative weight, that is. if (a.b,c) exists, c > 0. then (b ,a.-c) exists.

So, it should be possible to find better algorithms to solve systems of equali-A? ties and inequalities of the form (2).

a The aorithm
*, We want to use the topological sort algorithm, since it is linear in terms of

time and space complexity. If we replace an equality z. - zj = e by the inequal-
ity zj - z X e. we may get an answer that is not a solution to the equality. A
Ssituation where the equality is not satisfied is for example:

2105X3z - s3 -z &a2a -s - Slt 5

xg=2

As our topological sort computes the length of the critical path to every
node, the value obtained for zt is the minimum value that ;, can get. So, zj
should be at least the value of Tj minus e.

Our approach is to Introduce a new constraint zj a (zlue of z) - a for
each unsatisfied equality ;, - = e , and do the topological sort again

81-O 5 x=

no C €onnstlru : Xg & 4

4 xg=4

For theoretical purposes, we can assume that there is a source node s. The
constraint zg • 4 would correspond to z2 - a k 4. We also assume that there are
no constraints of the form zt -zt L, d or z -;t = , since they can be detected
at input time.

We claim that there is a solution to the system of equalities and inequalities
if and only if each time we ntroduce a constraint on zj and repeat the topologi-
cal sort, at least one equality will be satisfied and will remain satisfied in subse-
quent steps.

Note that if an equality; - zj = e is not satisfied then the value of zj must
be less than the value of z, minus a. The effect of introducing a constraint
z, a (value of zt) - a is to move zi up; consequently, nodes that depend on zj4

V,. - . .; . • ' ": :".

may move up.
* The algorithm can be stated as follows:

Algorithm k

Al. Construct digraph G=(V,E):
V = s u Ix I Zt appears anl an equalityj 07 inequalityJ

SE = I (zI.z,.w) Izb-zikw or z&-z=w are constaints

A2. Sort G topologically. computing the critical path to each zt;
9f cycle then "no solution";

A3. while (unsatisfied equalities) and
(not all unsatisfied equalities in a previous step were unsatisfied in subse-

* quent steps. not necessarily the same) do
for each unsatisfied equality zi - zj = a
lntroduce zj -: a (vaLue of zt) - a;
sort G topologically, computing critical paths;

endhile;
A4. It (unsatisfied equalities) then "no solution!' .

The second condition in the ueils statement is equivalent to saying that
there was some progress, or that at least one of the unsatisfied equalities in pre-
vious steps was fixed up.

By saying that all unsatisfied equalities in a step are unsatisfied in subse-
quent steps, we mean that each of these unsatisfied equalities will be unsatisfied
again later on, not necessarily all at the same time. Let's express this in a
different way. Let's call U the set of unsatisfied equalities at step s, and R., the
set of all unsatisfied equalities from steps s to t, including s and t (t k s).

R..u. U u,U U Us

* If Us c Rsc,., , t > s, then at step t we can conclude that all unsatisfied equali-
ties at step s were unsatisfied again.

8 Correctnes
We want to show that if there is a solution then in the execution of algo-

rithm A eventually all equalities (and inequalities) will be satisfied, and if there is
* no solution then all unsatisfied equalities in a step will be unsatisfied later on.

This guarantees that the algorithm always terminates with the correct answer.
These ideas are expressed in the following theorem:

Theorem 1:
There is a solution to the system of equations if and only if ,not al

* amaatisfled equalities in a step ae unsatisfied in subsequent steps.
The proof of this theorem is contained in the next three lemmas.

Lmma 1:
If niot ll unsmtsaied squalities in a step are unsatisfied in subsequent
steps then there is a solution to the system of equations.

',-

* a . - P -.

-5-

p... -Proof:

If not all unsatisfied equalities in a step are unsatisfied in subsequent steps.
that means that at least one of the unsatisfied equalities in that step will be
satisfied in all subsequent steps. Let's assume that there are nt equalities. In

S,-. the first step there are at most n, unsatisfied equalities, in the second step at
most n, -1. and so on. So. after at most 74 steps all equalities will be satisfied,
which means that there is a solution.

We can also derive from this proof that in at most Y4 steps we can find a
solution, or detect that the equalities remained unsatisfied.

Now we have to show that if the equalities remained unsatisfied then there
is no solution. We will need an intermediate result to do that. Let's consider the

" .original digraph G. Let's construct G' by adding the edge from z, to zj labeled
-e for each equality z, -zj = e. This corresponds to 7 -zi ;e. or
Zj - Xk -e.

lamma 2.
If there is a cycle n G' of length greater than zero then there is no soLution

" .to the system of equations.

Proof:
The cycle can have 0, 1 or more edges of negative weight.

a b

a) If the cycle doesn't involve cycles of negative weight, that means a cycle in
G. that is. no possible solution.

b) If the cycle involves one edge of negative weight then the endpoints of this
.1- edge are variables involved in an equality. If the length of the cycle is

greater than zero, then there is a path from z, to zL of length greater than
e. that is, the length of the critical path from zj to zx is greater than e, so
. - xj = e is not possible.

c) An edge from ;j to zj labeled -e means that wherever ;. is, zx should be
:- .,,below ;j separated by the exact distance e. Let's take a negative edge
":. (zt,zj) in the cycle containing more than one negative edge. Again, the

length of the critical path from zj to ;, considering negative edges, is
greater than e, so ; - zj = • is not possible.

lemma 3:
If all unsatisfed equalities in a step are unsatisfed in subsequent steps,
then there is a cycle in G' of length greater than zero.

, a,'',.,..,2 ""'2 '; *. ''.. '''''. '""'''., .• .." ... , ." '.,'., -, ." .-. ' """

! -6-

Proof:
Let's first consider the situation in which no Zk appears in two equalities.

* that is, the equalities are disjoint.
When an equality z, - z e is unsatisfied we introduce a constraint

z. - (value of z) - e; if after the next solving step r, has the same value as
before then the equality will be satisfied (remember that there is an edge from
xi to ; labeled e). If the equality is unsatisfied in a subsequent step (not neces-
sarily the next), that means that ;, moved up.

* •Let's assume that at step s there are m unsatisfied equalities, and at step t
(t > s) we conclude that all those equalities were unsatisfied again. That means
that each z7 involved in one of the m equalities zi -zj = e moved up; in other
words, the critical path to zi goes through some new edge corresponding to a
constraint introduced.

If zi goes up because of a constraint on zj (r, - zj = e). then the critical
- path from Zj to zi is greater than e, which corresponds to a cycle of length

greater than zero in G'.
The only possibility is that , goes up because of a constraint introduced for

other equality.

Note that the effect might not be immediate, that is. a constraint on z4
forces constraints on other zj 's, which finally forces z to move up.

So, in G' there is a (critical) path from zj, to z,. r Y s. for 1 ! s ! m. We
first want to show that this corresponds to a cycle in G'. Let's consider the
directed graph constructed by taking as nodes each pair (z ,,zj,), 1 is s s m,
and drawing an edge from (z ,,z4) to (zq.zj8) if there is a (critical) path from zi;
to z,, in G', r # s. The in-degree of each node in this new graph is at least 1. If
there was no cycle in this graph there should be a node with in-degree 0 where

* we could start a simple path. As such node doesn't exist, we conclude that there
Is a cycle in this graph, and correspondingly a cycle in G'.

Let's consider one cycle, with 9 vertices.

4.

#7- T% 7.

-7-

w4,

01 Ca C

.ode

j.%-.Z, Iis " 1

" "2 ,, d

4=length of the path front ztto N1
,, value of c in the last constraint kc introduced for zj.

Because of our assumption that -, goes up because of a constraint on

r ao s. the critical path to x,6 goes through x4,, and we can write for the last step
(step f

c I +| d, atcg• J.

eg + d cg + @3

cfI+ dv 1 ac+ of

2 Thaere is at least one unsatisfied equality in the last step. so at least one of

the above ! should be >a Lets consider

c.+ df> c., + @+

Summing up:

.5.,(Ec - c.) + (Ed - dp) 2! (Ec - c,+,) + (E' -a,)

Ed- (c. + 4) a!E - (c,,+ ep*1)

Considering the digraph goe thhs implies that there is a cycle of length
greater than zero.

In the situation where the equalities are not disjoint, the proof of lemma 3
proceeds the same way. If zt appears in two equalities we replace xt by zt, and

xt and assume there is a path from a11 to zA13. and from xt, to a11 , with weight 0.

* 4% -*.% * *'**** * .s ***d*s

**, *C*...

This way we can consider the equalities disjoint, and the proof of lemma 3 holds
Lemmas 2 and 3 imply that if there is a solution to the system of equations

* then not all unsatisfied equalities in a step are unsatisfied in subsequent steps.
So. the proof of theorem 1 is completed.

4. Compleity
Let YN = number of inequalities, n. = number of equalities, v = number of

variables. The topological sort has time and space complexity = O(N + " + V).
* Checking if equalities remain unsatisfied takes time O(,.) and space O(n). The

ufIee loop in algorithm A is repeated at most N times. So, the worst case com-
plexity for algorithm A is:

Time complexity = 0 ((+ % + v))
Space complexity = 0 (n + n, + v)
If the number of equalities is very small compared to the number of ine-

* qualities and variables then the algorithm is almost linear in the number of ine-
qualities and variables.

5. CMaracterlzation of the solution
The system of equalities and inequalities may admit an infinite number of

solutions. We claim that if there is a solution then algorithm A finds the solution
* with mininum possible value for each Z,.

Theorem 2:
The solution found by algorithm A has the mininmum possible value for each
variable that satisfles all equalities and irequalities.

* Proof:
In order to construct the graph upon which algorithm A works, the equality

- zi = e is replaced by the inequality z - zj a e. The value obtained for each
variable, after the topological sort, is the minimum value that satisfies the ine-
qualities, since our topological sort computes the length of the critical path to
every node.

When we introduce a constraint zj~ c, c = (value of ;) - e, for
- = e. that means that zi must have the value at least c, that is, there is

no solution with Zj <c.
Let's assume that the solution found by algorithm A is not the minimum

solution. Then there should be some variable zk with value a in the solution,
• , =a, such that there is other solution with zt =a', a' <a.

e C ! a
C' c a/' a

xt moved up because of a constraint introduced, that is, in our graph the
critical path to Zj goes through some edge (s ,z,c), corresponding to zj a! c. As
we didn't change the length of the path from zj to zt, the solution with zt = a'
should have z - c', c' < c, which is not possible. By contradiction, we conclude
that the solution found by algorithm A is the minimum solution.

-. implementation considerations
The topological sort doesn't have to be done many times. If we split it into

sorting and assigning values, we can do the sort only once, and the assignment
of values each time we introduce new constraints. This assignment of values
involves traversing the edge list for nodes that have their values updated. We can
start this process with the first node in the ordered list that was involved in a
new constraint.

In order to check if unsatisfied equalities remain unsatisfied we can have a
bit vector for each step describing which equalities are not satisfied at that step.
Equalities that are unsatisfied in subsequent steps have their corresponding bits
reset. If the bit vector becomes zero then all unsatisfied equalities in that step
remained unsatisfied.

The algorithm has been implemented in the ALU2 layout system [14], and is
faster than we expected.

7. Conclusions
We presented an algorithm to solve systems of equations of the form

;-zjkd (d >0), and -z =e (e >0), with time complexity
O((r4 +n. +v)n.). This algorithm is specially useful when the number of equali-
ties n, is small compared to the number of inequalities 74, as it is the case for
many constraint-based VLSI layout systems.

nWith this algorithm o solve the set of constraints, we can construct a truly
hierarchical layout: we can have hierarchy not only at the specification level but
also at the constraint level. This allows the construction of large layouts without
having to deal with large sets of constraints. It also allows the introduction of
pieces of fixed size, produced by other layout tools.

Aeknm edgeements
Thanks to Prof. Andrea LaPaugh and to Alfred Huang for helpful discussions,

comments, and suggestions.

Ref erences

[1] Aspvall, B. and Shiloach, Y.
A Polynomial Thne Algorithm for Solving Systems of LinA r Inequalities
uoith 7 wo Variables per Inequalityj. SIAM Journal on Computing. Vol. 9, No.
4, Nov 1980.

[2] Bloniarz, P.
A Shortest-Path Algorithm uith Expected 7Xme O(n'lognlog Mn). SIAM Jour-
nal on Computing, Vol. 12, No. 3. Aug 1983.

[3] Johnson, D.
Micient Algorithms for Shortest Paths in S)pmrse Netuiorks. Journal of the

ACM. vol. 24, n. 1, Jan 1977.
[4] Knuth, D.

The Art of Computer Programming, vol. 1. Addison-Wesley, 1971.
[e(5] Lengauer, T. and Mehlhorn, K,

HILL - hierarch,al Layout Language, A CAD System for VLSI Design. TR
A82/10, FB 10, Universitfit des Saarlandes, Saarbracken, West Germany,
1982.

-10 -

[6] Lengauer, T.
On the Solution of M quality Systems Releunt to IC-Layout. Proc 8th

* Conf. on Graphtheoretic Concepts in Computer Science. Munich, West Ger-
many, 1982.

[7] Lipton, R.J., North, S.C., Sedgewick, R., Valdes, J., Vijayan, G.
VLSI Layout as Programming. ACM Trans. of Programming Languages and
Systems, July 1983.

[8] Upton, R.J., Sedgewick. R., Valdes, J.
Programming Aspects of VLSI. Proc. 9th Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, Jan 1982.

[9] Megiddo, N.
Tbords a Gknuvaly Pot ynowiaL Agorithm, for 1Mw rgwin. SIAM
Journal on Computing, Vol. 12, No. 2. May 1983.

* [10] Moder, J. and Phillips, C.
Project Management oith CPM and PERT. Van Nostrand Reinhold Co., 1964.

[11] North, S.
Molding Cy.: A Manual for the CLAY Layout Language. VLSI memo #3,
Princeton University, July 1983.

[12] Sastry. S. and Klein, S.
0 PLATES: A Metric-Pree VLSI Layout Language. Proc. of the 1982 Confer-

ence on Advanced Research in VLSI, MIT. Jan 1982.

[13] Tarjan, R.
OA the JIiaiency of a Qaod but not bMw Set Lfton Algorithm. Journal of
the ACM, Vol. 22, No. 2, 1975.

[14] Vijayan. G.
Design. mplementation. and Theory of a VLSI Layout Language. Ph.D.
Thesis, Princeton University, August 1983.

0

' 'JK

AlrYi- AT

t,
'J e

.r*0ve t4 '

kq ~ .'*

Lot*',
S, i

ll

