“ AD-A142 959 PRINCETON VLSI PROJECT(UY PRINCETON UNIY NJ DEPT 0F7 1)1
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE R J LIPTON

1984
UNCLASSIFIED F/G 9/5

=z

g
g £
=k ™ h
F g

'- 1.8

s

P Y

i>

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I PURE " =ty S0 e
R e e

AN EUETCIE
‘fi“’;‘_l‘}:'d'.‘;:i' KA .;:l 3 &

*

Y

.

N

B 0'
T
-

o g
5

Bl
[Y

Ry
.
ol

ol
e o A

<!
i W

1
P&
e

”

£ RPN
Pt

q-,;;g - -

G|
-

AD-A142 959

*
PRINCETON VLS! PROJECT: Semi-Annual PReport

PERIOD ENDING: March 26, 1984

Richard J. Lipton -~ Principal Investigator

EECS Department

PRINCETON UNIVERSITY

FACULTY:

Bruce W. Arden, Chairman
David P. Dobkin

Hector Garcia-Molina
Peter Honeyman

Andrea LaPaugh

Kenneth Steiglitz

.
Ve

PUBT.IA 1
.wJTIcN (*l‘ I L

“tai g

g

Kad

TLELSY
._?

LA e e T Ta AT A o, ¥ g .y TP . g €

®
-

PRINCETON VLSI PROJECT

®

B. Arden, D. Dobkin, H. Garcia-Molina,
P. Honeyman, A. LaPaugh, R. Lipton, K. Steiglitz

1. Introduction 'd\a

P There are three major components to gar project. The first is in
the area of procedural design of VLSI circuits. The second is in the
area of our census language, and the third is in the area of the
testing of VLSI circuits. R

2. Procedural Approach to VLSI Design

2.1. ALI2 [LaPaugh, Mata]

ALI2 has been operational for a number of months now. A
variety of chips have been designed and fabricated using ALI2; test-
ing of them is now underway.

Already work is under way to improve ALI2 and make it more
powerful. The major new idea here is based on a new algorithm for
solving a more powerful class of constraints that we could handle
before. This new algorithm allows the designer to completely mix
both rigid objects and flexible ones: previously we could only allow
flexible objects. We feel that this algorithm with its excellent run-
ning time may have applications beyond just ALI2.

Vo By

g)«...

ad vWﬁ

3
2 2.2 Clay [Lipton, North]
u Clay our other procedural language is also now operational. <
" Chips designed with it our now just returning from fabrication and
:; our being tested. Clay is now at a number of other institutions.
AR For example, Freeman at Brown has already made extensive use of J
! Clay and has already added a number of features to Clay such as a
E.., trace package. He is also planning to add a smart leaf cell genera-
i:j tor to Clay as part of his PhD work at Brown.
’ North has also begun to think about building a better graphics {

P

interface between Clay and a bit map display. Ideally, we would
like to allow the free mixture of pictures and programs: we believe
that such a mixture would be a very powerful way to express com- 4

u

plex layouts.

Iy

, 2.3. Applications of Clay

s 2.3.1. Graphics Engine [Dobkin, Field, Souvaine] J
2 The current goal is to build high performance engines based on

:E pseudo-triangles. Various parts of the design have been completed

3 in Clay and are now in the process of being fabricated. 4
¥

N 2.3.2. Recursive Layout [Steiglitz]

y A number of recursive layouts have been completed and are

now off to fabrication. Such recursive layouts are especially easy ﬂ
b in a procedural language such as Clay. Recursion is a powerful way

b to design regular structures such as those found in digital signal

? processing. 4
i

;

i ¢

& XA

L

b I O

2.3.3. PRISM [North]

PRISM is a special purpose processor that is highly optimized
for non-numeric computations. It includes a large address and a
large data stack of 4k words. We are currently designing it as a
bit-sliced set of chips. We feel that this bit-sliced structure is
exactly what is needed to later on put PRISM onto a wafer-scale
structure.

In addition, PRISM includes a yield-enhancement mechanism.
It includes a simple way via settable switches to de-select parts of
its large stack. This will, of course, greatly improve the yield of the
chip. We are about to fabricate the first PRISM chips and will then
be able to determine the exact yield improvement obtained.

3. Census

There are two main projects under way here.

3.1. Top/Down [Lopresti, North)

This project is investigating the use of census approach to
parallel computations. We have a four processor system now run-
ning: each processor is a Motorola 68000 with 256K memory. A
large number of experiments are under way to test out the
top/down approach to parallel computation. So far we have mainly
run "simulated annealing” type computations for problems in PLA
state assignment, routing, and placement. We plan shortly to

-expand the machine to include several more processors.

3.2. MMM [Garcia-Molina, Honeyman, Lipton]

This project is investigating the Massive Memory Machine. We
have begun fairly detailed space simulations of a variety of compu-
tations. These simulations are collecting a variety of statistics
directly from running programs. For example, the ""time" com-
mand has been locally modified at Princeton to return the high

RRASE TR .“._- . . ‘ ..;’.,- .y "('.‘:'f.'.’.'-" .

i Ny . NTRUCIRIT
AT AL AR C R RO AR TN T g [y 2% 0 NS e o0 B

- ..‘-u; <,

LR

AN

e

ri
.

—g
P

wened o

e

SR

water mark or maximum space used by the executing process.

4. Testing [LaPaugh, Steiglitz, Vergis]

Work continues on a variety of approaches to VLSI testing. For
instance, Vergis's PhD will contain a powerful set of methods to
allow the efficient testing of certain systolic arrays. These results
greatly generalize old results on the testing of simplier structures.

5. Papers

PR A

k.

A Top-down Approach to Parallel Computation

Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08540

Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ 07974

Department of Electrical Engineering and Computer Science

Princeton University
Princeton, New Jersey 08540

ABSTRACT

We consider a top-down approach to parallel computation by
parallelizing a sequential computation at the highest level possi-
ble. This approach offers the advantages of simplicity, general-
ity, ease of programming. and tolerance to benign hardware

failures.

March 21, 1984

Supported in par: by DARPA N00014-82-X-0549

L e AR AL R S '.-_‘.-_‘.-_'11
!

!

h A Top-down Approach to Parallel Computation
h':'\-"
.;.:j: Richard J. Lipton
::::::f Department of Electrical Engineering and Computer Science
g Princeton University
v Princeton, New Jersey 08540
27 Stephen. C. North
Fads
:j_-; AT&T Bell Laboratories
2‘."‘. Murray Hill, NJ 07974

Department of Electrical Engineering and Computer Science
Princeton University
Princeton. New Jersey 08540

1. Introduction

Once a computer program is working the next major concern is that of per-
formance: can we make it go "faster’'? There are many approaches to this
important problem. First, we can often achieve tremendous speedup by select-
ing a new data structure or a better algorithm. For example, a program that
repeatedly searches a set of objects may be vastly improved by using a hash
table instead of linear search. Second, we can often achieve just as substantial

speedups by careful tuning of the chosen data structures and algorithms. Usu-

ally this "hacking'' is not done on the whole program, but is applied to the
“inner-loop' of the program [1]. It is frequently observed that programs spend
most of their execution time in a very small fraction of their code which is
iterated many times. This method of speedup based on hacking the inner-loop

of programs we call the bottom-up approach.

A third way to speed up a program is to map it onto a parallel machine.
Today there is a great deal of research into the exploitation of paralle! machines
as a way to speed up computations. This is a desirable goal since advances in
technology have made processors inexpensive. Our central thesis is that most

of this research makes an incorrect assumption:

R AV RN N N N e At coves

They implicitly assume that the only way to achieve speedup on a paralie!

machine is to take the bottom-up approach, i.e. to parallelize the inner-loop

of the given sequential computation.

Our fundamental point is that this is not the only way to achieve great speedups

with parallel machines.

We propose that an alternative approach, which we call top-down, is often a
more powerful way to achieve speedups. Note that often the inner loop consists
of many independent evaluations of the same function. Since our goal is really
to speed up the execution of the entire program, it is not necessary to speed up
the inner loop itself. Instead, the top-down approach obtains the speedup sim-
ply by running the independent iterations in parallel on many processors. To
parallelize the solution of a problem, we partition it into independent subprob-
lems. Each subproblem can be solved by a set of independent executions of the

inner loop on one of the parallel processors.

For instance, a Monte Carlo simulation computes the value of some function
at many different random points. These simulations are are usually processor
intensive, and in some cases researchers have resorted to designing special-
purpose hardware to obtain acceptable computational speed [2]. A bottom-up
approach to speeding up this simulation on a parallel computer would focus on
making the evaluation of the function at each individual point faster, by using
parallel processors in some clever way. However, none of the function evalua-
tions depends on any previous one. The top-down approach, then, is to assign
each parallel processor its share of the set of random points and let it compute

the function on this set, independently of the other processors.

Our model for parallel computation is a large number of processors con-
nected by a very general network, such as an Ethernet or high-speed parallel
bus. This network can be connected to a host mainframe, or one of the proces-
sors can be designated as a coordinator. To parallelize a sequential program. we

break up its set of input data into subproblems of equal size Then the program

......

.......

AR SR B

" LiadiaddalAraie WA gle T inbhets b in i ‘B At i S o ie R DA D oy S SR A -T

rs

-
o
Vatr

.
o
Py

-
N

-3-

L 8
‘.
.t

.""
v e,

¢

7’

't s Pl e ond
‘L “;-;‘L"A LGN '.- “

s _*
B

is broadcast to all the slave processors, and each is also sent its subproblem
The slave processors then run the sequential program on their sets of data, and f

send results back to the host. For this approach to be effective, computation
must dominate input/output. Fortunately, this is the nature of the compute-

bound programs we wish to speed up. 4

More formally, express the function to be computed as:

Yy

Ny

g/ (z1).f(z2). - - - .S (za))

S
A.

The top-down approach is to parallelize the computation of the f by distributing
the z; among the processors. The coordinating processor computes their com-
position, g. g is usually an easily computed function, such as taking the min. J

max, or average of the f .

The top-down approach will not allow us to parallelize all sequential compu-
tations, such as those where each execution of the inner loop depends on the
result of a previous execution, or where a suitable decomposition does nct exist. |
Nevertheless, the domain of practical problems which have top-down decomposi-
tions is very large. (Some examples will be considered in section 3.) We feel that
the simplicity of the top-down approach is of great value, and that it has been J
overlooked in the past, in favor of trying to solve the interesting problems

caused in part by the complexity of bottom-up parallel computing.

2. Advantages of Top-Down Parallel Computation *

1. Ease of programwming. There is already a wealth of experience in
sequential programming. Consequently, sequential algorithms are easier to
design and to implement than those with bottom-up parallelism. Using a J
bottom-up approach, one must carefully learn the properties of the parallel

computer to exploit it successfully. Compilers to generate good code exploiting

the parallel computer and other important tools may not even be available.

Also, in some cases, an entirely new parallel algorithm must be invented to use

-4 -

the parallel computer, which may require radically rethinking the problem By
contrast, with the top-down approach, existing sequential algorithms can be run
almost without change. New algorithms do not have to be invented Also, the
program can be debugged on a single processor before running it in parallel,

which simplifies the debugging task.

2. Flerzibility and generality. The top-down approach is ideal for many
existing architectures and networks. A machine such as we have described can
be built with off-the-shelf hardware or software, or using a local area network of
personal computers. Since the hardware is not designed around the algorithms,
improvements in the sequential algorithm run by each machine will not make
the hardware obsolete. On the other hand, a bottom-up approach to parallel
computing often requires special-purpose processors or an interconnection net-
work that is highly adapted to running a particular class of algorithms, or even
solving a given problem using a given particular algorithm. If a different prob-
lem is to be solved, or a better algorithm is discovered, the special-purpose
machine may not be able accornmodate it. Also, the top-down parallel machine
is easily expanded by simply adding more processor boards to the network.
Thus the user has great flexibility in choosing the cost and performance of the

parallel computer.

3. Low communication costs. Most computation is done locally on each
processor, which does not need to communicate with its neighbors. The only
communication required is for the controlling processor to send the program
and data, and for the slave processors to send results. Therefore, interproces-
sor communication does not become a bottleneck limiting the speed of the com-

putation. No special network topology is needed.

4. Linear speedup. If the parallel computer has p processors, we can
expect an almost p-fold speedup over the execution of the same algorithm on a
single processor, assuming that the costs of computing the f are relatively uni-

form and the costs of f dominate the cost of g. The improvement in

.‘ :. . ~ LKW - o T
SR
A
K -5-
!
\:,,\'
:.:" performance with the top-down programming technique is both good and
(¥ predictable.
$::: 5. Fault tolerance. A top-down design is potentially more fault tolerant
\‘
j f{:: than a bottom up desigr which needs all its processors to be functional We
- assume that hardware failures in the slave processors are benign, that is, they
‘:‘_’.x; are detected when they occur by causing an interrupt in the failing processor or
:~‘-: by preventing its operation altogether (''fail-stop’*). For some tasks, not all but

only a large fraction of the f (z;) need to be computed. This is the case with

._. Monte Carlo simulations. If a slave processor fails, its output is discarded.
;E Another strategy is to reserve a few slave processors as spares. The coordinator
2 can periodically poll the slaves to test if they are still functioning. When a
JON failure is detected, the failing processor's work can be reassigned to a spare.
.‘?:: The time lost because of the failure will depend on the size of the independent
t";% subproblemn that must be reassigned. This scheme is not completely immune to
’ A hardware failures, but if properly designed a top-down parallel computation can
.- be more fault-tolerant than a bottom-up scheme which requires all the proces-
\‘“ sors to be functioning at once.
o

- S. Examples
A
::" We will briefly describe a few possible applications for the top-down
:':.E approach to parallel computing.
1. Simulations and Exhaustive Searches. We have already described how
5:? integration by Monte Carlo simulations maps very cleanly onto our model of
:S;} parallel computation. This approach will also work when we need many indepen-
r; dent runs of the same simulation te solve a nonlinear optimization problem. For
AR such problems, we have a set of parameters for a complex model and an objec-
‘.: tive function whose value we wish to optimize. To find good though not neces-
.’ sarily optimal solutions to such problems, we can try many randomly chosen
parameter values and compute the resulting value of the objective function We
*
0
K
2N
==

...............

.. " "

. ‘o R - L . -
DR A R R N N A TN A S, B R S

can liken this process to turning the knobs on a black box with a meter on it,
trying to obtain the highest reading. By trying many random values, we hope to
find a good solution. Note again that the random trials are independent So
each f (z;) is a parameterized simulation, and g is an easily computed function,
such as taking the min or max of the f. Further, such a simulation can be
fault-tolerant, since the failure of any single processor results only in the loss of
a small fraction of the random trials. Similar techniques, such as the use of ran-
dom trials with hillclimbing to find local optima, are valuable for finding approxi-

mate solutions to combinatorial problems [3].

Counting problems, such as enumerating graphs with some given property
by generating graphs in a regular pattern and then testing them [4], as well as
exhaustive searches of other regularly generated combinatorial objects, includ-

ing game trees, can also be solved top-down.

As another example, consider the problem of boolean circuit simulation for
VLSI fault testing. Given a circuit ¢, we wish to find a set of test vectors that will
uncover all possible faults under sorne model. Let E={e;{ be the set of possible
faults. Let V={y| be the set of input vectors to c. The set of test data will be
some FWF={w |w is an input to ¢ and w; detects a fault in £}. Further, we want
¥ to be complete, so that every fault in E is covered, and to be small. To find a
set ¥, our algorithm will generate candidate input vectors uy and simulate both
¢ and some e;€E. If they can be distinguished, then wy is added to ¥ and ¢; is

removed from E.

There are two ways to parallelize this algorithm. First, we can distribute
the set of faults E' across processors and let each exhaustively try members of
V until all its members of £ are eliminated. The slave processors then report
the set of test vectors they found back to the host. To improve performance we
might have the host keep track of which elements of E are currently "alive,”
and once a minute redistribute E to balance the work load. Second, we can par-

tition V and broadcast £ to all the processors. Each slave tries its subset of V,

" S 73

ERRRN R

“
v,r 0.,
Car)

‘.'.:JL/

.....
VAR

P R

v Sy ty
F s

.." ¢ .l;.".ls"

LLAEIY

l“' .

!‘.

A

: f'

.e.\""i.

M

| <o)

Sy

-

2

TN A Ly

and remembers those which eliminate members of £. Again the host can keep
track of the live elements of E and occasionally broadcast this information, so
that if one slave finds an inputs that detects a fault, other slaves stop working on
it. In fact, the first strategy is better at the beginning of the simulation when
the set of faults is large and most of them are easily killed ofl. The second stra-
tegy is better later in the run, when there are only a few faults left but they are
difficult to detect. Therefore both strategies could be used at different times in

the program execution.

2. Design rule checking of VLSI] layouts is another candidate for top-down
decomposition. The input and output for this problem are comparatively small—
the input is usually a description of the polygons composing the layout; the out-
put indicates which (if any) are incorrectly placed. However, a great deal of
computation is required. Design rule checking can be parallelized by decompos-
ing the layout into sections, which are checked independently. A slight overlap
is needed between adjacent layout sections to detect errors at the boundaries.
Tom Lane at Carnegie-Mellon has implemented a portion of this algorithm,
counting intersecting rectangles, on the Cm* parallel computer, and obtained a

15-fold speedup with 20 processors 5].

3. Animation and image processing. Producing high-quality animation
sequences using ray-tracing requires much computation per frame. However, it
is often the case that once the basic animation sequence is defined, each frame

can be processed independently.

4. "Pipelined' realtime computations. Consider the case where we wish to
process a stream of data in real time, such as digitized images coming in from
an orbiting satellite for image analysis or pattern recognition, or to compute
Reed-Solomon codes for deep space communication. In the latter case, systolic
VLSI arrays have been proposed to provide fast enough response to the incoming
stream of data, since conventional microprocessors are too slow. However, if we

only require that the parallel computer keep up with the stream of data, and not

RPN

........................

.......

o ;_1.{1.11..1;_._&.&-1“;.1.

Ao s

AL

Eﬁr.v‘-“ W a4 om R Acade e et A A sl AL I Sl I A A B S A N AN R L MM S AC AN JRCUNE SN A ARME AP C R o SRR L
.

-

Py WY e
o

Pragbast N

ALY
S0 Al

-

.............

-B-

that it provide actual realtime response, then we can send each processor a por-
tion of the input as it arrives, and accept the processor's output later when it is
ready, in a round-robin schedule. For instance, if a new image arrives from a
satellite every second, and it takes five minutes for a microprocessor to process
an image, then a computer with 300 microprocessors is needed. There will be a

five minute delay for processing of an image, but images will be output every

second.

5. Rule-Based Systems. These artificial intelligence systems consist of a
global state, and a set of rules with predicates. The system searches through
the predicates to find one which is satisfied by the current state, and then
applies the corresponding rule to obtain a new state [6,7]. The expected perfor-
mance of such a system is from only a few rule firings per minute to upwards of
several thousand per second. This performance is still considered inadequate
for many expert system designs. To parallelize searching rules in a production
system, we could assign each processor a fraction of the rule base. The coordi-
nating processor broadcasts updates to the current state. Each slave processor
then examines the predicates of its set of rules to determine which can fire,
using the sequential algorithm, and sends the rule back to the coordinator. The
coordinating processor can arbitrate in the event that multiple rules fire. We

thus obtain a linear speedup in the search.

4. Conclusion

The top-down approach we have outlined has important advantages for
speeding up sequential programs. It can be applied to a wide range of multipro-
cessor hardware. Although future research in parallel computing can be
expected to uncover automatic techniques for finding top-down decompositions,

at present many practical problems can easily be parallelized by hand

..........

-«

—y — T Dt TS LW YLW™
Pty A Rm Shge e T Bt fass s fens St Sty S oot VR S At il Pl e S SRR A It R b
v, A Rt R . RO A .

5. References

(1] Bentley, J. Writing Efficient Programs. Prentice-Hall, 1982. i
[2] Pearson, Robert B., John L. Richardson, and Doug Toussaint. A Fast Proces-
sor for Monte Carlo Simulation. Journal of Computational Physics, 5:, pp.
241-249 (1983). {
[3] Papadimitriou, C. H., and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complerity, pp. 454-486. Prentice-Hall, 1882.
[4] Robinson, R.W., and N.C. Wormald. Numbers of Cubic Graphs. Journal {
[8] Lane, T. Carnegie-Mellon University. Personal communication, 1/31/84. |
[6] Forgy. Charles L. OPS5 User's Manual Dept. of Computer Science,
Carnegie-Mellon University. of Graph Theory Vol. 7, No. 4, pp. 463-467. 1
[7] Clocksin, W.F. and C.S. Mellish. Programming in Prolog. Springer-Verlag,
1981. 1
(
l
|
4

E‘-“ Paciiaa e A vdd b e i RASHL A A AL AC A I A LA AN R A A R YA Tl T -
'

>

THE CASE FOR MASSIVE MEMORY

Hector Garcia-Molina
Richard Cullingford
Peter Haneyman
Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

We argue that for certain important classes of non-

| @ numeric computations, mernory is more of a critical

resource than computing cycles. Therefore, we postulate

that there is a need for a computer with truly massive

amounts of primary storage, on the order of billions of

L bytes. We believe that such a machine, even with a relatively

v slow processor, can outperform all other supercomputers on

memory bound computations. This machine would be simple

to program. In addition, it could lead to new and highly

efficient programs that trade the available space for running
time.

This work was partially supported by DARPA grant #\N00014-
82-K-0549.

March 2:, 1984

THE CASE FOR MASS]VE MEMORY

Hector Garcia-Molina
Richard Cullingford
Peter Honeyman
Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

1. INTRODUCTION.

In recent years, the quest for so-called supercomputers has
intensified dramatically. Much of the current wave of interest was
sparked by the Japanese Government's fifth generation computer pro-
ject, which promises to deliver extremely powerful computers in the
near future. But of course, the real driving force behind the Japanese
and other supercomputer research efforts is the large collection of very
important problems that cannot be solved efficiently on today's comput-
ers.

Most of the supercomputers that are being developed or investigated
today rely heavily on parallelism for their processing power. They either
have large numbers of processors, capabilities for parallel vector opera-
tions, are highly pipelined, or have combinations of all these features.

In this paper we argue the case for an entirely different type of
supercomputer, one that bases its power not on massive parallelism, but
on massive amounts of primary memory. We do not have a specific tar-
get size for such a massive memory machine (MMM), but for argument's
sake let us say we want on the order of tens of bdillions of bytes of main
physical memory. This size is certainly larger than is offered by any
manufacturer today, or is likely offer in the near future. Our thesis is
that a MMM is justified, even today, by the importance of certain applica-
tions in which memory bound computations occur naturally. For these

computations, a parallel supercomputer will be severely limited by the

-2-

rate at which it can transfer data in and out of its memory. Therefore, a
classic von Neumann machine, even with a relatively slow processor, but
with massive amounts of physical memory, would vastly outperform any
parallel supercomputer on these problems and would be, in addition, far
easier to program.

In this paper we are not proposing a novel computer architecture,
nor are we claiming to have the ultimate supercomputer. We are simply
putting forth an idea that that appears to have been overlooked: for cer-
tain applications (and several of these will be described shortly),
memory is a more precious resource than computing cycles, and hence,
there is a need for computers that have an abundance of the former.

In addition to making the case for a MMM, our paper has two related
goals. The first is to convince computer manufacturers that they should
increase the physical memory limits of their processors. It is somewhat
distressing to see that it is currently very difficult to purchase more
than 32 megabytes for a processor, at a cost of about 70,000 dollars, but
at the same time, one can spend hundreds of thousands of dollars on a
processor. A second goal is to spark interest in large memory comput-
ers, for there are a number of intresting research questions that must
be answered before the truly massive memory machines can be imple-
mented.

The MMM we propose has two characteristics that distinguish it from
conventional and super computers and that give it its unique power. The
first is a processor that, given the size of its memory, is relatively slow.
In Sections 2 and 3 we argue that such a balance between processor
speed and memory size is advantageous for many important memory
bound computations. The second characteristic is a massive memory,
and in Section 4 we argue that this will fundamentally change the way
certain large problems are solved on a computer, and will lead to huge
performance improvements. Finally, in Section 5 we briefly discuss

some of the open research issues.

o

.

B Y

A i

L4

' DERAPNE

3

‘ .
-y 8

YA

e

2. HIGH MEMORY SIZE TO PROCESSOR SPEED RATIO.

If we look at the ratio

_ memory size
processor speed

of past and present commercial computers, we find that most are within
an order of magnitude of one megabyte per MIPS. (A MIPS is a processor
execution rate of a million instructions per second.) The value one mega-
byte per MIPS is sometimes called ""Amdahl’s constant.”” It is not entirely
clear why commercial machines have stayed close to this value, but
market forces appear to have played an important role.

The supercomputers currently being developed all have a ratios well
below this value, and are targeted for computation intensive problems.
For instance, some proposed supercomputers call for as many as one
million processors, capable of executing billions of operations per second
and yet have as “little”” as sixty four megabytes of physical memory
[Comp80, Comp81, Comp82, EvanB2].

On the other hand, the machine we propose here is at the other end
of the spectrum: it has an a ratio orders of magnitude larger than one.
Why are we interested in such a machine?

First of all, it is not because we dislike fast processors. If we could
have large memories and at the same time fast processors, we would of
course take both. However, given our limited resources, we are investing
a disproportionate amount in memory because this, not processing
speed, is the major bottleneck for many non-numeri¢ computations.

To illustrate this point, consider a program which accesses a four
gigabyte (4 x 10° bytes) data structure with an essentially random pat-
tern. Let us compare a supercomputer with one hundred megabytes of
memory and a MMM with four gigabytes of memory. Further, let us
assume that the supercomputer is "infinitely fast’’ while the MMM runs
at only one MIP3. Of course the supercomputer will vastly outperform
the MMM on compute-bound tasks. However, for the memory-bound

v
AN

Pt 2N ¥ S
‘)

~

program we are discussing, assume that the supercomputer creates a
page fault every f instructions, and that its disks are capable of servic-
ing 100 requests a second. Then on this task the MMM still computes at
its one MIPS rate while the supercomputer is reduced to computing at
about 100f instructions a second. Clearly if f is small enough the MMM
will be faster than the supercomputer: if f is about 100 then the speed
advantage is 100:1! While not all tasks will cause the supercomputer to
“thrash’ in this way, we believe that there are a large collection of
important tasks that will cause such behavior. And on these tasks,
adding memory to a computer makes much more sense than adding pro-
cessor power.

There is also economic evidence suggesting that high memory size to
processor speed ratios will be advisable. Over the past few years, the
price of logic circuits has decreased about 20% per year, but during that
same span, memory prices have decreased at twice that rate: almost
40% per year [With83]. The main reason is that memories are highly reg-
ular integrated circuits, and thus, profit immediately from higher fabri-
cation densities. This indicates that increasing the power of a computer
through additional memory will be more cost effective than through fas-
ter processors.

3. APPLICATIONS.

There are many tasks that reference a large address space in a rela-
tively random fashion, and for which memory is the critical resource.
Here we review three areas in which such tasks abound, but this list is by
no means exhaustive.

(a) Databases. It is well known that in many database applications, user

requests are computationally very simple, yet require data from
unpredictable locations in the database. Thus, a major portion of the

response time to each user request comes from 1/0 waiting. Clearly,
if the entire database or a substantial fraction could reside in main
memory, then the 170 component would be reduced substantially,

possibly even eliminated.

The improved response time will be most valuable in real-time appli-

N
~
o
L

@, cations, but even in cases where users are willing to wait seconds for
«.j their answers, massive memory may have important advantages.
E}‘ Specifically, it may now be possible to pose interesting new queries
that previously required unreasonable times to answer (e.g., a sta-
E" tistical query that requires one or two passes over the entire data-
?‘é base). Thus, users can get more useful information out of the sys-
'tﬁ tem.
: N (Reliability may be a problem in a massive memory database. We
EZ‘ return to this and other database issues in Section 4.)
:’: (b) VLSI Design. The size of VLSI circuits being designed is growing at a
N fast rate. Today there are circuits with a half million transistors,
2 and predictions of integrated circuits with as many as one hundred
S‘ million transistors by the mid 90's. VLSI design tools will perforce
,' deal with massive amounts of data, notwithstanding much cleverness
N | in the use of hierarchical design and the encoding of information.
“' Many of the VLSI design algorithms have good asymptotic running
b times, but have very poor locality of reference. Thus, they are
A naturally candidates for a high a machine. For example, a layout
& system we have designed [Lipt82] uses topological sorting for placing
:' objects. The algorithm for sorting requires linear time, but unfor-
3 tunately also requires linear space and has almost no locality. Thus,
beyond a certain layout size, its actual running time is determined
o by the memory available: at a given point, increasing the layout size

.’ -
LAALNh

by 30% sends our computer into uncontrolled thrashing and
increases the running time ten fold!

(c) Artificial Intelligence. The concept of vast data structures built
mainly by the use of pointers, and hence lacking much locality of
reference when accessed, immediately brings the words "L/SP" and
artificial intelligence (Al) to mind. Garbage collection [CoheB81] and
paging contribute substantial fractions to the total running times of

.............

7 ; ~NAALT AL |-
K ,A-l "—' .J)Jblv '-:‘};‘bu ‘

s
7

£
#

many Al programs. It seems fair to say that a good fraction of Al
research involves memory-bound computations.

Certain Al programs, such as DENDRAL [Buch78] or MACSYMA
[Mart71], have succinct inputs and generally produce succinct out-

puts, and yet may build enormous intermediate data structures.
These programs are even better suited to our machine. They would
not even need to incur the overhead of loading the massive memory
as a database or VLSI program would.

Although there have been numerous studies on the reference pat-
terns of programs [e.g., Frey75, Siss68, Smit82, Spri72], very few have
actually looked at the data references of the memory intensive pro-
grams we are interested in. The one exception we found supports our
thesis that memory is a critical resource. This paper, by D. W. Clark
[Clar79], analyzes in detail the data references of three *'real’’ LISP pro-
grams: a chemical structure generator, a parser for a speech under-
standing system, and a program that builds and executes partially
ordered plans of action. In summary, Clark discovered that the pro-
grams do have substantial locality of reference. For example, between
85 and 95 percent of the references fall within the most recently
accessed page (512 bytes). So even if we only had a single data page at a
time in memory, the miss ratio, i.e., the probability of having to fetch
the referenced data from secondary storage, would be 0.15 to 0.05.

However, if we assume, as Clark does, that a reference to secondary
memory takes about 5000 longer than a reference to primary memory,
we clearly see that this ‘low” miss ratio gives very poor performance.
The solution is, of course, to keep more pages in main memory. Unfor-
tunately, the miss ratio decreases slowly as more pages are kept in
memory (with a LRU replacement strategy). To obtain a miss ratio of
0.001, 40 percent of the total data space for one program, and 80 per-
cent for another program, must be resident in memory. (The miss ratios
of the third program are not reported in the paper.) And because these

B i T e i S

programs are memory intensive, even this miss ratio of 0.001 slows down
the programs by roughly a factor of 6, as compared to a program that
had all of its data in memory. This clearly illustrates that for these pro-
grams it is more eflective to purchase memory to hold a substantial
fraction of the data space, than it is to purchase a faster processor.

To be fair, we should mention that there is a second way to improve
the performance of memory intensive programs, in addition to simply
obtaining more memory: this involves restructuring the data to improve
locality. However, we do not believe this to be a valuable alternative in
general. In many cases it is simply impossible to get locality. To illus-
trate, consider a database that contains data on departments and the
employees who work in them. If we place the employee records close to
(i.e., on the same disk page) as the record for their department, we get
good locality when we access a department and its employees. However,
if we need a list of all departments, then we have to visit many pages. On
the other hand, if we place all department records close together, we
can find all departments quickly, but now finding a department and its
employees takes longer. In other words, unless we expect a single type
of query, it is not possible to improve locality significantly.

Even if it is possible to improve locality, we feel that forcing pro-
grammers to analyze the reference patterns of their programs and to
structure their data accordingly it is a step in the wrong direction. A
good analogy can be drawn with virtual memory: it is clear that virtual
memory is not necessary if we ask programmers to overlay their pro-
grams and data (i.e., have the programs explicitly state what resides in
memory when). Furthermore, using overlays can be more eflicient than
using virtual memory (at least from the point of view of the computer).
Yet, since overlays are so painful and difficult to use, we do not see many
people who advocate their return.

Finally, it can be argued that what we really need are tools for

automatically restructuring data to improve locality. This is certainly a
good direction to pursue, but we do not expect such tools, if they ever

1

TTEE Yy

S el TS,
o

il § 8 e i

rag s

become available, to be useful for solving general problems. Inciden-
tally, the paper by Clark describes one effort to automatically improve
locality. The idea is to periodically compact the used data space, moving
all the free space to a single area. Intuitively, it seems that this may
help because it increases the density of data and increases the probabil-
ity that a pointer leads to a nearby page. Unfortunately, as Clark
reports, the effort to restructure the data is substantial (it involves
traversing the entire data structure, writing it out to disk, and reading it
all back in), and the improvements in locality are significant, but not
great. (For example, the program that required 80 percent of its data to
be resident to achieve a 0.001 miss ratio, now only needs 50 percent of
its data resident; the program that required 40 percent, now only
requires 35 percent.)

4. MASSIVE MEMORY.

In addition to having a very high memory size to processor speed
ratio (a), the MMM we advocate (as its name indicates) has a massive
memory. Why are we interested in a machine with billions of bytes of
main physical storage?

The most immediate reason is that a massive memory will soon be
economically feasible. Even at today's prices, the cost of the integrated
circuits necessary to build a one gigabyte memory is below one million
dollars. A complete computer may cost up to (roughly) 1.5 times this
amount, but this is still not out of proportion with the investment neces-
sary to equip state of the art installations for research or production
work in some of the areas identified earlier. Furthermore, if the price
trends hold [With83], by the end of the decade the same million dollars
will purchase about 20 gigabytes.

Obviously, large memories are desirable because they increase the
power of our machine: the larger the memory is, the larger the VLSI cir-
cuit that can be simulated on it, or the faster the LISP program will run

Y~ SECaRA
* s e ’s
LA IO '

L:"_A :
L
re
F-f..:-'

However, there is an even more compelling and exciting reason to go
to massive memories: there are certain very important problems that
have large, but bounded storage requirements. As soon as the main
memory of a computer exceeds these storage requirements, the solution
strategy for the problem changes entirely. With all the necessary data in
memory, very eflicient and simple techniques can be utilized, and this
will lead to dramatic performance improvements, much larger than
those which high speed or parallel processors by themselves could pro-
duce.

To illustrate this, let us first look at an application that does not
require massive memory but that has already benefited from expanding
memory sizes: text editing. In the vast majority of editing sessions, a
user works on a relatively small document, on the order of tens of pages
(e.g., a chapter or a paper). However, a few years ago main memories
were so small that these documents could not fit in memory at once.
Thus, text editors were designed to operate on very small portions of the
document, i.e., a line of text. String searches over the entire document
were avoided.

Now, of course, memories are much larger and can easily hold the
text pages that a user is currently accessing. Modern editors utilize this
memory to provide more efficient and easier to use systems. Screen edi-
tors let a user rapidly move from one page to the next, and may allow
multiple windows for displaying different files. Bit-mapped displays,
something that would have been unthinkable fifteen years ago, store an
image of the screen in memory and make it possible to interactively
change fonts and draw diagrams.

This example shows that having the data required by a program (e.g.,
the active text pages or the bit-map) in main memory can fundamentally
change the way some problems are approached. In text processing this
change has already occurred, but we now discuss some problems where

massive memory is needed to bring about this transformation.

SELVTTVLS

N - RAER NI <o Ao
e Mt MAMACHE Ia e A e b Aol i SRR AE A S s fi i A AR AN A
LS - tet ‘. - i . B - ‘- . - T 4 - B A .

A\l

-10 -

Transaction Processing. In a transaction processing system for airline
reservations or banking operations, a high number of very simple tran-
sactions (e.g., to reserve a seat on a flight) must be executed. A typical
transaction in these systems involves very few operations, and not count-
ing system overhead, requires a few thousand instructions. Transactions
are usually pre-compiled, and since there are a small number of transac-
tion types, the code for them is kept in main memory. Yet, even with a
10 MIPS processor, the overall transaction rate will probably be low, on
the order of tens of transactions per second.

The low throughput is due mainly to the delays encountered by tran-
sactions in reading and writing data from disk. However, there are other
sources of overhead. Since transactions must wait for data, they are
usually interleaved with other transactions. The concurrency control
mechanism ensures that only interleavings that preserve data con-
sistency are run. Not only does concurrency control add overhead, but
the code for it is complex and elaborate. Similarly, data in main
memory must be held in buffers, and managing and copying these
buffers contributes to the overhead.

It is important to note that many of the databases used by transac-
tion processing systems are within the 1 to 20 gigabyte range [Gray79]
and are not growing nearly as fast as memory densities. For example,
the number of accounts in a bank is usually limited by the number of
residents in a state or country, and this number is not doubling every 2
or 3 years. Thus, it is reasonable to expect that many of these databases
will fit entirely within the physical memory of a MMM.

Having the database in main memory radically alters the structure
of a transaction processing system [GrayB83)]. With a main memory data-
base, it is best to execute the transactions serially: all the data needed
by each transaction are already in memory, and since the trarsactions
are short, there is no reason to interleave. The database can be
accessed directly, without need for buffers. Thus, in a system where

transactions are pre-compiled and pre-loaded, most of the work

PV VN T

B 5

B

)
.. *
- ""'.f.’.-.

it
R

e

L}
-

h Tl
)
v,

RO F ‘
'.‘ v{ .l'~¢:'l '_l %

',
R 3
hY)

P

.- l.‘ '’ L)

~
A, g P
O A L

.11-

performed will be useful. If transactions take between 1,000 and 10,000
instructions, and the processor runs at 10 MIPS, we can expect execution
rates between 1,000 and 10,000 transactions per second, several orders
of magnitude higher than what is currently available on any system.

Even larger performance improvements can be obtained if we
replace the database search structures, which are currently optimized
for disk, by clever, new structures that exploit the available memory.
For example, B-trees and indexed sequential files can be replaced with
simpler, more eflicient structures like hashing and binary trees.
Updates to these structures will also be more efficient.

(Crash recovery is not simplified by a massive memory. [Garc83]
addresses this problem in some detail, and shows how a massive memory
database systerm can be made reliable without sacrificing the perfor-
mance gains brought about by massive memory.)

Al Knowledge Bases. Many Al knowledge bases also have bounded size,
and as memories grow, the databases will eventually fit in main memory.
For example, a one gigabyte machine could hold one million “‘rules’ of
1000 bytes each; this seems ample for an expert system in a specific
domain (e.g., infectious diseases). Of course, if the system covers multi-
ple domains, this may no longer be true. But for a single domain, a MMM
can bring about dramatic improvements.

As with transaction processing, the improvements come not only
because all the data is rapidly available, but also because new search
techniques can be utilized. For instance, Cullingford and Joseph [Cull83]
have developed a novel tree-like discrimination scheme for speeding up
knowledge base searches that works especially well if all the data is in
memory. The scheme automatically configures a discrimination tree
that is heuristically arranged fcr maximum balance and bushiness. The
size of the tree is potentially quite large (if the knowledge base to be
searched is large), so that the scheme works best if all the nodes and

predicates are in main memory.

"s‘ BRI TN N LY T O AR G i BTN YO W T A
S) S . . N ¥ & *] *

A portion of the massive memory could also retain the most com-
monly made inferences. The system would consult this data (via fast

hash table lookup) before each required inference. For example, an
academic advisor program could directly tell engineering freshmen to
enroll in section b of Math 101, without deducing every time that Math
101 is a requirement, but Math 101, section a, conflicts with Literature
100, another requirement, and section c this semester is for Math
majors only. We can view this cache of commonly used facts as a very
simple but effective learning mechanism that could bring substantial
performance improvements.

Programming Environment. A massive memory could also lead to an
improved programming environment, of the type currently imple-
mented, with severe limitations, on some LISP, APL, and other systems
[Fras83]. The main idea is that the user is not aware of the storage loca-
tion of his objects, and simply sees a uniform ‘‘workspace’’ with a very
large address space. All objects (e.g., strings, arrays, etc.) are located in
this workspace, and can be manipulated with a single programming
language. Thus, there is no need for a command language (e.g., UNIX
Shell or CMS EXEC), and there is no need to save objects in files. (Of
course, objects may still be arranged in hierarchies as in a file system,
but the concept of ‘‘file”’ is no longer needed.)

The problem with current implementations of these ideas is that the
active workspaces of a small community of users are larger than the few
megabytes available on today’'s machines. Thus, thrashing occurs as the
system struggles to get from disk the objects accessed by users.

The active workspaces of a small timesharing community are not
growing very fast. For instance, the sizes and numbers of subroutines
being debugged or of papers being edited are not changing much. Thus,
as in our previous examples, it is reasonable to expect that a MMM will
easily hold the active workspaces, will eliminate most disk accesses, and
will make such systems much more usable.

PIPRE IPIEINT Y IR I S R I I G RV R, SN

RPN o

B ad A At i s e Bt e o i L T T VL TR TR TN e e

-13-

Code Optimization. Our final example illustrates how massive memory
can be utilized to hold pre-computed values that are likely to be refer-
enced in the future, in order to avoid recomputing them. The code
optimizer of a compiler takes sections of a program and produces
optimum, or at least good, code for them. The most common strategy is
to analyze each construct as the program is compiled. However, it is
usually too expensive to compute the true optimal code, so a good
approximation is produced for each construct.

With a MMM, a second strategy becomes feasible. It is now possible
to precompute a large table that directly gives the best known code for
the most common constructs. Since the table is only computed once, it
does pay off to find the best possible code translations. Peter Wien-
berger at Bell Laboratories [WienB83] has experimented with this idea,
and predicts that a few tens of megabytes would be necessary to hold
the most common constructs in the C language, and their corresponding
optimal code. As with our previous examples, the size of the table is not
likely to change.

Thus, with a MMM, the optimization of a construct will in most cases
simply involve a table lookup. Furthermore, the code produced would be
superior to that which a conventional optimizer could produce in reason-
able time. Of course, this strategy works best if the table can be kept in
main memory. Since the table only takes a few dozen megabytes, this
seems acceptable for a machine with several gigabytes of main memory.

Our examples have shown that there are a number of important
problems that have large but slow-growing (or fixed) storage require-
ments. As larger and larger memories become feasible, these problems
will succumb to massive memory solutions; solutions that are much
simpler and orders of magnitude faster than what is currently available.

In closing this section, we stress three points:

Memory vs Parallel Processing. First, a massive memory machine and a
parallel processing supercomputer address different, but equally

«"v

IR~ YW -

1

* "2 8" 22" s

w o

WY

.......................

-14-

important problems. A MMM is no match for a supercomputer on compu-
tation intensive problems, and similarly, a supercomputer (without mas-
sive memory) cannot beat a MMM on memory intensive tasks. The follow-
ing very simple example clearly illustrates this last idea. Suppose we
have 107 records, with 100 bytes each, that fit within a MMM. To find a
record given its key, we can construct a hash table. This memory-
intensive strategy, on the average, would give us a record almost instan-
taneously, say, in the time to execute 5 to 10 instructions. It would be
difficult for a supercomputer to beat this time. If the supercomputer
does not have 10° bytes of main memory, the search will involve secon-
dary storage and will clearly be slower. With enough memory and, say,
107 processors (with one record per processor), the supercomputer may
beat the hashing time, but considering the synchronization overhead,
the advantage may be slim. In any case, adding 9,999,999 processors is
not cost effective!

Conventional Architecture. The second point is that a MMM, unlike a
parallel supercomputer, has a conventional von Neumann architecture,
at least from the user's point of view. (As discussed in the next section,
a MMM may have an unconventional implementation that is transparent
to the user.) This fact has important ramifications. It will be easy, if not
trivial, for programmers to learn how to use the MMM. Existing programs
could be run immediately on the MMM, and could profit from its large
memory. (As we discussed earlier, new programming approaches may be
even more profitable than the conventional ones, but the standard pro-
grams will still run, probably faster than on a conventional machine.)
Just as important, existing support software like compliers and operat-
ing systems, could be used on the MMM. This again simplifies the user’'s
learning task, and at the same time, reduces enormously the systems
effort required to make the MMM operational.

Programming Style. Finally, the existence of massive memory might
also drastically change the style in which large programs are written.

Currently, many large systems tend to have a relatively large proportion
of the address space used in program text (i.e., executable code), and

.................

............
..............

B
e
r:.;?‘
E\?-* only a relatively small amount in data. For example, typical implemen-

tations of the UNIX operating system have about 70% in text and 30% in
data. Large programs written this way tend to be hard to debug, main-
tain and understand.

RN]

An alternative style is a more data-driven or interpretive one. Here

one writes a very simple control or monitor program which uniformly
retrieves data objects which are themselves programs (written in a spe-
cial language) or have program fragments attached to them. The con-
troller then has the flavor of a dispatcher, driven by the data it receives.
Current Al rule-based [Shor76] and production-system [Wate78] tech-
niques are also examples of a data-driven programming style. These
approaches have not been popular heretofore because they tend to be
slow with respect to a monolithic approach. But a large part of the cost
lies in simply accessing, more or less randomly, the required data
objects. This cost is high in a standard virtual memory architecture, but
would be low in MMM.

The advantages of a data-driven style are simplicity of control, clar-
ity and ease of incremental extension. One simply codes a new object in
the simple, specialized language (a production-rule format, for example),
and makes it available to the interpreter. Barring unexpected interac-
tions with the other objects (which can be limited by the design metho-
dology). the system simply runs with the new item. From the point of
view of understanding a system designed this way, it is worth noting that
a data-driven system can be made to explain its functioning. The data
objects can be thought of as items of knowledge, expressible using any of
a number of natural language generation techniques [e.g., Cull82].

5. OPEN QUESTIONS.

We hope the reader is convinced that memory is a critical resource
in certain applications and that having large quantities of it may be use-
ful. But is implementing a MMM simply a matter of purchasing the
required memory and attaching it to a processor in a conventional way?

..........

- - "ot A~]Sﬂiﬂb:@' SR PP LA S DU Sl Tt S TR SR S i S P .'.\'_'.'\‘-.'_-._.',~.;j
f ¥ o ‘j h.g ﬂﬂ-"’dair.[L2 ':;-'J':'.('L_ni‘\ J\ "a" X :..5':.._..'#:':;..‘;‘-. ISP Tt A MU T s

I - e

Are there any problems that must be solved before a MMM can be built?
We believe that there are some challenging, but surmountable, problems.
In this section we briefly outline some of them.

Bus Delays. As the number of devices on a bus increases, the memory
access times also increase because of the physical distances and capaci-
tance effects. Thus, as we go to larger and larger memories, we may lose
part of the advantage of having a massive memory. There are a number
of potential solutions to this problem, ranging from special purpose
hardware (e.g., optical fibers), to sophisticated interconnections (e.g., a
hierarchy of buses), to a novel computer architecture called ESP that is
described in detail in [Garc84].

Reliability. There are two types of reliability problems. The first arises
in any large computing system: as the number of components increases,
so does the probability of failure. In the case of a MMM, we are fortunate
in that the large number of components are memory cells. Memories
are very regular structures, and it is relatively simple to add redundancy
to them (i.e., error detecting or correcting codes [SiewB82]) in order to
reduce the probability of an error.

A second problem is that memory, unlike disk storage, is volatile.
Thus, in applications where the data itself are important (e.g., data-
bases) we must take additional precautions. To solve this problem we
may have battery or generator power backup systems, or a hardware
logging device thai records changes to memory on a non-volatile
medium. (One such device is presented in detail in [Garc83].)

Read-Only Memory. Read-Only memory (ROM) is denser and cheaper
than writable memory, and hence is ideally suited for holding the static
parts of a database or knowledge base. Certain types of electrically
erasable ROMs that are non-volatile but have substantial write delays
could also be useful in some applications. Managing the different types
of memory and interfacing the static and dynamic parts of the data or
knowledge base present some interesting problems.

...........................

-17-

Input /Output. A MMM may have correspondingly massive 1/0 needs, so

L facilities for moving large amounts of data to and from secondary
> storage are clearly desirable. For example, to load a 10 gigabyte data-
£3 X base into memory, say after a crash, from a disk with a 2 megabyte per
.c., second transfer rate would take 84 minutes! Obviously, this MMM needs

multiple disk controllers and independent paths into memory. Also
needed are the operating systems facilities to partition files across mul-

o tiple devices and to coordinate their transfer.
::., Acknowledgments. Several useful ideas and suggestions were made by
Si‘l:_: Bruce Arden, Jim Gray, Andrea LaPaugh, Steve North, Ken Steiglitz,
:f:: Jacobo Valdes, Peter Weinberger, and Gio Wiederhold.
4
A
L REFERENCES.
‘-; [Buch78] B. G. Buchanan and E. A. Feigenbaum, *‘Dendral and Meta-
__* Dendral: Their Applications Dimension,"’ Artificial Intelligence,
- Vol. 11, Num. 1-2, 1978, pp. 5-24.
;",-, [Clar79] D. W. Clark, ""Measurements of Dynamic List Structure Use in
s Lisp,”” IEEE Transactions on Software Engineering, Vol. SE-5,
&y Num. 1, January 1979, pp. 51-59.
f’, [CoheB1] J. Cohen, '‘Garbage Collection of Linked Data Structures,” ACH
.:5 Computing Surveys, Vol. 13, Num. 3, September 1981, pp.
, 341-367.
H [Comp80] Special Issue on Supersystems for the 80's, IEEE Computer,
November 1980.
‘ [Comp81] Special Issue on Array Processor Architecture, JEEE Com-
43 puter, September 1981.

3 [CompB82] Special Issue on Highly Parallel Computing, /EEE Computer,
; January 1982.
¥

L,

97

-18-

“~

-
i
IE [Cull82] R. E. Cullingford et al, “Automated Explanations as a Com-
P ponent of a CAD System,” IEEE Transactions on SMC, Vol.

SMC-12, Num. 2, pp. 168-182, March-April 1982.

b [Cull83] R. E. Cullingford and L. J. Joseph, 'A Heuristically ‘Optimal’

2 Knowledge Base Organization Technique,” IFAC Automatica,
o November-December 1983.

v A Ml aandh gl hdmedit” Sk Rl dLE A S A T .Yy
L e A Jn <t Ban It 20 A e SACAMACRA A L A DA - NAAASANE S LN RAL G K8 A
-l
.
.
K
o
o
-

a4

9 (Evan82] D. J. Evans (Editor), Parallel Processing Systems, Cambridge
¥, University Press, 1982.

® [Fras83] C. W. Fraser and D. H. Hanson, *'A High-Level Programming and

Command Language,” Proc. SIGPLAN 83 Symposium on Pro-
i gramming Language Issues in Software Systems, San Fran-
E cisco, June 1983.

j @ [Frei75] W. F. Freiberger, U. Grenander, P. D. Sampson, *‘Patterns in
Program References,” IBM Journal Research Development,
Vol. 19, No. 3, May, 1975, pp. 230-243.

[Gerc83) H. Garcia-Molina, R. J. Lipton, and P. Honeyman, ‘'A Massive
Memory Database System,’’ Technical Report 314, Department
of Electrical Engineering and Computer Science, Princeton
University, September 1983.

e [GarcB84] H. Garcia-Molina, R. J. Lipton, and J. Valdes, A Massive
) Memory Machine,”” JIEEE Transactions on Computers, to
‘ appear.

[Gray798] J. N. Gray, "‘Notes on Database Operating Systems,'’ Advanced
Course on Operating System Principles, Technical University
Munich, July 1977. (Also in Operating Systems: An Advanced
Course, R. Bayer, R. M. Graham and G. Seegmuller, editors,
Springer-Verlag, 1979, pp. 393-481.)

[GrayB3] J. Gray, "‘What Difficulties Are Left in Implementing Database
Systems,’’ Invited Talk at SIGMOD Conference, San Jose, CA.,
May 1983.

[g)

o

.......................

[N
".l

= [LiptB2] R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G.
(‘ Vijayan, “*ALl: A Procedural Language to Describe VLSI Lay-

o outs,” Proc. Nineteenth ACM-IEEE Design Automation Confer-

}:j_‘ ence, Las Vegas, Nevada, June 1982, pp. 467-474.

o [Mart71] W. A. Martin and R. J. Fateman, *'The MACSYMA System.,"” Proc.

ACM Second Symposium on Symbolic and Algedbraic Manipula-

‘:: tion, Los Angeles, CA,, 1971, pp. 23-25.

jt-: {Shor76] E. Shortliffe, Computer-Based Medical Consultations: MYCIN,
‘*' American Elsevier, New York, 1976.

j [SiewB2] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of
L;:' Reliable System Design, Digital Press, 1982.

2 - [Siss68] S. S. Sisson, M. J. Flynn, “Addressing patterns and memory
& handling algorithms,”” Proc. AFIPS Fall Joint Computer
: Conference, Vol. 33, Part 2, December, 1968, San Francisco,
; CA., pp. 957-967.

": [Smit82] A. J. Smith, '‘Cache Memories,” ACM Computing Surveys, Vol.
N 14, No. 3, September,1982, pp. 473-530.

\: [Spir72] J. R. Spirn, P. J. Denning, "'Experiments with program local-
‘q'é ity,” Proc. AFIPS Fuall Joint Computer Conference, Vol. 41,

Part I, December, 1972, pp. 611-621.

» [Wate78] D. Waterman and F. Hayes-Poth (Editors), Pattern Directed
s Inference Systems, Academic Press, New York, 1978.

.
&

b [WeinB83] P. Weinberger, Personal Communication.

o [With83] F. G. Withington, “Winners and Losers in the Fifth Generation,"
o Datamation, December 1983, pp.193-209. (These forecasts
D ’0

N also appear in ‘‘Future Information Processing Technology,

1983,"" Institute for Computer Sciences and Technology of the
National Bureau of Standards, August 1983.)

4 L B
-\'1

e iols [VLR MY

B

("'_

Y
i

A

A MASSIVE MEMORY MACKHIANE

H. Garcias-Mclana
R. J. Lipton
J. Valdes

TF #3155

EECS Dept.
Princeton Univ,
July, 1983

A MASSIVE MEMORY MACHINE

Heclor Garcia-Molins
Richerd J. Lipton
Jacobo Valdes

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

This paper argues the case for a computer with massive
amounts of primary storage, on the order of tens of billions of
bytes. We argue that such a macline, even with a relatively slow
processor, can outperform all other supercomputers on memory
bound computations. This machine would be simple to program.
In addition, it could lead to nmew and highly eflicient programs
which traded the available space for running time. We present a
novel architecture for such a machine, and show Low it can lead to

reduced memory access times and higher reliability.

Inder Terms: cache, computer architecture, massive memory,

memory bound computation, reliability, supercomputer.

Current address of Jacobo Valdes: Imagen Corporation, 2660
Marine Way, Mountain View, Ca. 94043.

This work was partially supported by DARPA grant #\00014-82-
K-0519.

December 13, 1983

Ny e = _w @ W W N W LWL.T TR -1—41—

C"

A MASSIVE MEMORY MACHINE

Hector Garesa-Molina
Richard J. Lipton
Jacobo Valdes

Department of Electrical Engineering snd Computer Science

)
\

i

:
E.
¥

§

Fl

-

3

o

!

b

.

: Princeton University
[. Princeton, N.J. 08544
i 1. INTRODUCTION.
® This paper argues the case for a computer with a primary memory substan-
tially larger than what is currently (or will be in the near future) available on a
single machine. We do not have a specific target size for such &8 massive memory
machine (MMM), but for arguments sake let us say we want on the order of tene
b of billions of bytes of main physical memory. This size is certainly larger than
what any manufacturer offers today, or will probably offer in the near future.
Our thesis is that such a MMM is justified, even today, by the importance of cer-
® tain spplications in which memory bound computations occur paturally. For
these computations, a classic Von Neumann machine with s relatively slow (1 to
10 MIPS) processor and massive amounts of physical memory, would vastly out-
perform even the “supercomputers’ currently being researched and would be. in
| addition, far easier to program. '
In Section 2 we present the case for 8 MMM, including its economic feasibil-
ity. In Sections 3, 4 and 5 we discuss how an eflicient and reliable MMM could
® be built.
2. THE CASE FOR A MMM.
® Researcl efforts in the supercomputer field have tended to concentrate at the
computational intensive end of the spectrum, disregarding the memor)y intensive
b applications altogether. The typical supercomputer being investigated today is a
“. multiproccssor baving up to one million processors, capable of executing up to
billions of operations per second and vet have as “little” as sixty four megabytes
@

AR A Ayt ol R A Je R SR LA L L A E R LR CR SO O (LS R K

........................

9.

of physical memory [3,4,5,7].

o3 There are many applications for which such a machine (as well as any con-

o ventional machine) would be limited by its disk to memory transfer rates. For

__ example, consider a program which accesses a four gigabyte (4X10° bytes) data i
: structure with an essentially random pattern. A machine with one hundred or
-S,' ' less megabytes of memory can be expected to generate a page fault in just about

J every memory access, rendering its potential processing power meaningless as a {
N measure of its performance.

More precisely, let us compare such a supercomputer with one hundred
\: megabytes of memory and a MMM with four gigabytes of memory. Further, let

Y us assume that the supercomputer is “infinitely fast™ while the MMNM{ runs only <
’ at one MIPS (Million Instructions per Second). Of course the supercomputer will

vastly out perform the MMM on compute bound tasks. However, for the

» memory bound program we are discussing, assume that the supercomputer J
" creates a page fault every finstructions , and that its disks are capable of servic-

\ ing 100 requests a second. Then on this task the MMM still computes at its one

. MIPS rate while the supercomputer is reduced to computing at about 100f
{ instructions a second. Clearly if fis small enough the MMM will be faster than ﬁ
‘ the supercomputer: if f is about 100 then the speedup is 100:1! While not all

“ tasks will cause the supercomputer to “thrash™ in this way, we believe that there

- are a large collection of important tasks that will cause such behavior. .‘
X 2.1 Applications.

A

. An MMM will produce significant improvements for any task which refer- dq
'f; ences, in a relatively random fashion, a large address space. Here we will review

') three areas in which such tasks abound, but this list is by no means exhaustive.

(a) Databases [6. 22). It is well known that many database applications are 10 4
‘ bound, that is, limited by the speed at which data can be transferred from

i disks. Clearly, if the entire database (or a substantial fraction) could reside

Y in main memory, then the 10O bottleneck would be eliminated.

* 1
.

X

". "- {- N

(b)

o2 LAY B NN

PP Ay

e (c)

PR S

¢

- .A. l.l.l.; ‘.-‘.'

- |

Not ouly will existing queries be answered faster, but it will now be possible
to pose new interesting queries that previously required unreasonable times

to answer. Thus, users can get more useful information out of the system.

(Reliability may be a problem in a massive memory database. We will

return to this and other implementation issues later.)

VLSI Design [15). The size of VLSI circuits being designed is growing at a
fast rate. Today there are circuits with a half million transistors, and pred-
ictions of integrated circuits with as many as one hundred million transistors
by the mid 90's. VLSI design tools will perforce deal with massive amounts
of data, notwithstanding much cleverness in the use of hierarchical design

and the encoding of information.

Many of the VLSI design algorithms bave good asymptotic running times,
but bave very poor locality of reference. Thus, they are naturally candidates
for a MMM, For example, a layout system we have designed [13] uses topo-
logical sorting for placing objects. The slgorithm for sorting requires linear
time, but unfortunately also requires linear space and has almost no locality.
Thus, beyond a certain layout size, its actual running time is determined by
the memory available: at a given point, increasing the layout size by 30
sends our computer into uncontrolled thrashing and increases the running

time ten fold!

Artificial Intelligence [16, 23]. The concept of vast data structures built
mainly by the use of pointers, and hence lacking much locality of reference
when accessed, brings the words ‘Liep’’ and artificial intelligence (Al) to
mind. Garbage collection [2] and paging times contribute substantia! frac-
tions to the total runniug times of many Al programs. It seems fair to say

that a good fraction of Al research involves memory bound computations.

Certain Al programs. such as DENDRAL (1] or MACSYMA (14, bave suc-
cinct inputs and generally produce succinet outputs, and yvet may build enor-
mous intermediate data structures. These programs are even better suited

to a MMM than others. They would not even need to incur the overhead ¢f

loading the massive memory as a database or VLSI program would.

Te " W . % W& ¥ -

R I S WL‘V\:‘W‘- RS L oW N ey e R TR TG RT R TN T T AT T e T
= B . - . . - . oo . ~

.

e 2.2 The economical feasibility of s MMM

F"\'\ Clearly VLSI has made computing in general cheaper. It is also clear,

'. . although not as well understood by everybody, that VLSI has made certain kinds

EIE::I of computing cheaper than others. Onec example of this differential impact
\:ﬁ involves memory and processing power: over the past few years, the price of logic
:l:‘:I: circuits has decreased about 20 per year; during that same span, memory prices
__._, bave decreased at twice that rate: almost 40% per year. Clearly that trend, if

:'_3'.::' continued, should be very good news indeed for applications that require memory
:-_E bound computations.

) - In fact, there are good reasons to believe that the figures given in the previ-
:"; ous paragraph represent more than a local kink in the prices of these commodi-
::j::-‘, ties, brought about by a vicious fight for market share in a particularly impor-
:’-:"?: tant market. Memories are the most regular integrated circuits (ICs). and thus
. among those which would profit immediately from higher fabrication densities.
5 We believe that memories will be aslways the first circuits to profit from progress

' in integrated circuit manufacturing technology.

At today's prices, the cost of the ICs necessary to build a one gigabyte

\j memory is below one million deollars. A complete computer may cost up to

e (roughly) 1.5 times this amount, but this is still not out of proportion with the
-s'_r,a. investment necessary to equip a state of the art installations for research or pro-

; duction work in some of the areas identified earlier. Furthermore, if the price

\‘& trends hold, the 1Cs necessary to build a four gigabyte memory would cost

\:ZE approximately 200,000 dollars by the end of the present decade.

-_-,

'f-fii 2.3 New Programming Techniques.

\.:\ A MMM is straightforward to program. Existing programs can be run on it.

and if they are memory intensive, they will run very fast. However, the impact

sf' of a MMM may be even more far reaching. A MMM may alter the way we pro-
:'.* gram. and this in turp may yield even grater improvements (10, 21].

For example. consider ibe ecncurrency control mechanisin of a database sys-

Z tem. Since user programs (called transactions) encounter long delays as they wait

%3

i

3‘):‘“ DA NS AN N .., e g .-'.*'-""" L et T L TN e N o

-— v - T W T W R T ¥ T e g 8T T T T T o
YT 2 200" 2 e A e XY TVIVEYI YL -)v.‘ﬁ‘c‘ﬁw_.“a,w.._'_‘i_‘s_‘i o I - M PR N S A C P
R R i e R T e N I N . BN o . . R

for disk pages to be brought into main memory, the database system executes
several transactions concurrently. Since the transactions are not independent
(they are reading and writing the same databasc), their sctions cannot be inter-
leaved in arbitrary ways. The concurrency control mechanism (typically using
locking) ensures that only interleavings that preserve data cobsistency are run.
Concurrency control introduces substantial overhead and complexity into the sys-
Y tem.

When the database system is transferred to a MMM, the disk delays disap-
pear, and concurrency control may no longer be needed. The data required by
each transaction is already in memory, so if transactions are short (as they are in
mapy commercial systems) they can simply be scheduled sequentially. So in
addition to making data available faster, a MMM may eliminate the overhead

and the complexity of concurrency control.

(Y In general, having massive amounts of memory will change our programming
techniques. Data structures for secondary storage (e.g., B-trees, extendible bash-
ing) will become obsolete. Table lookup will be practical in many more cascs.
For instance, instead of computing trigonometric functions with a series, we may
want to have a large table of values and use simple interpolation. Digital search-
ing [12], which improves search times at the expense of memory space, will be

commonplace.

3. ARCHITECTURES FOR A MMM.

We have argued that main memory is a useful resource in many applica-
tions, and that a supercomputer with massive amounts of memory (e.g., giga-
bytes) is economically feasible.
But are there any technological challenges in building a MMA{> s it not just 4
° a matter of connecting all the desired memory to the chosen processor in a con- ?
ventional way [17]. i.e., with a very long bus? (Sce Figure 1.)]
A conventional architecture is a reasonable one, but as we will discuss
shortly there are other architectures that may be superior. The conventional

architecture bas two main weaknesses: memory access times and reliability.

R R AT AR PRSI ERCRCRRS OU A

B AR R e A AL 1 g et AR A AR T AL . AL Sl A tubaie e aaspt) oy

- -6 -

A Fig. 1: A Conventional Architecture MMM

0 e Memory access times. Given current IC densities, a four gigabyte
2k memory requires about one thousand devices (memory cards) on a single bus.
Xy Even with clever arrangements and bigher densities, hundreds of devices per
N bus seem unavoidable. Building a special purpose bus to support that many
devices is feasible, although not trivial. However, regardless of how the bus
A is implemented, as the size of the memory grows. the access times grow
4 because of the physical distances and/or capacitance effects. At the same
“-:. time, memories are becoming faster, so that the larger access times make us
| lose part of the advantage of having a massive memory.

S o Reliability. As the size of the memory grows, the probability that one of
i its components fails also grows. A conventional architecture has o provi-
sion for graceful degradation, and hence the entire machine would be una-
o vailable with high probability. For database applications, some type of
: :i' memory redundancy is also necessary in order to avoid loss of data.

g e In the pext sub-sections we present a new architecture which addresses the

— first of these weaknesses. We return to the reliability issues in Section 4.

o Y

) l ..f *.. EP ALY

Tee e &

2 et PRI

o A G

P a2 a5 a0

3.1 A Novel Architecture.

Our basic premise is that the time to access memory over a long bus (i.e.,
one that drives bundreds of devices) is substantially larger than the access time
over a short bus (i.e., one driving a single memory board). The meaning of *‘syb-
stantially” depends on how the buses are implemented, but for the time being let

us assume that access times over a long bus are at least an order of magnitude
larger than over a short bus.

A classical solution for improving access times over a long bus is to add a
memory cache [11, 20] to the processor. (See Figure 2.) The idea is that com-
monly accessed data reside in the cache, and are hence available with smaller
delays (both because the cache bus is shorter and because the cache memory is
generally faster). Unfortunately, caching does pot improve access times
significantly for the programs we bave in mind. A cache may be useful for hold-
ing some commonly accessed values, but as discussed in Section 2, we are con-
cerned with programs that reference their data structures in essentially random

ways. Thus, for most of the recently referenced data, the probability of being
accessed next is low.

CACHE

M, M, ... M,

Fig. 2: A MMM with a Cache

If we capnot bring the data to the processor as fast as we would like, we
could instead “take the processor to the data™. This is precisely what the ESP
MMM does. A schematic description of it is shown in Figure 3. (Tbe pamic ESP

il

- '.\ Y '.. AN AN Y L RO -."c..'-._‘.- '-..'. -"- . 'n..'l.. . .:-_.;"--‘i’. COe - .-. "‘-.'.’ f .'\f.-.‘_ ..
. NS, A A o N i b N .

will be explained shortly.)

Machipe N
1
! oesl : global sddress space
X wemory !
| | processor
| Arumy\”/
] e b
)
* Esp R !
X SR
: I
'
X L atbus !
.
L]
2 Fo-—mmeemee - 1
g | Macbine j : —_
3 l . { .
[procassor ¢ PO Y
) ' - .
[} / »r » ¥
: .
' 1
: EsP !
' !
. (]
t 1
L et e e e e e —_- -

Fig. 8: The ESP M\MM

The ESP MMM consists of a collection of standard Von-Neumann machines,
interconnected by a system-wide (or global) bus that permits the broadcast of
values from one machine to all the others. Each individual machine bhas its own
processor and local memory connected via a local (short) bus. The gateway of
each machine to the global bus is an ESP device connected both to the systemn
bus and the local bus. (The number of machines is not critical to the architec-
ture, but we expect a system with a few gigabytes to have a relatively small
pumber of machines, possibly up to one hundred. This means that each indivi-
dus! machine has a substantial amount of memory.)

The individual processors share ¢0¢ S2me address space. This address space
is distributed among the 'oval address spaces as follows (see Figure 3). A small

fraction of the global address space is replicated in each local address space; the

et W T e N NN VNN S (NS

aa s A

PP g 1]

Y st Bl

PLARIS P

Ly

s ot

i

remainder of the system address space is covered in a non-overlapping mannper by
the local address spaces. An ESP device connected to each local bus is responsi-

ble for servicing requests that involve non-local addresses.

Even though the ESP MMM{ has multiple processors, it is 8 single instruction
stream, single data stream machine (SISD) [8]. All processors execute the same
program, which is loaded into the replicated portion of the system address space.
As long as that program references locations in the shared subspace all processors
will execute in locksiep and no communication through the system bus will take
place. References outside the shared address space are broadcast and received on

the global bus, as is illustrated by the following example.

Consider a program which references memory words u; through uy. Assume
that uy, ug. uy are in machine 2, and the rest of the words in machine 3. Figure
4 shows the time at which each processor receives a referenced word. In this
figure we assume that fetching a word from local memory takes one time unit,
and that broadcasting a word over the system bus takes two units. (We choose
two units only to simplify the example. As discussed earlier, we expect the sys-
tem delays to be orders of magnitude larger than the local ones.)

At time O, all processors start; since they all run the same program, they all
request word uy. Processor 3 bas v, locally, so one time unit later it receives it.
From then on, processor 3 works at full speed, accessing words w,. uj. and u,.

At time 4, processor 3 requests word u;. but since it is not local, a delay ensues.

In the meantime, the ESP at machine 3 has been broadcasting words u
through v,. Word u, arrives at processors 1 and 2 at time 3, and the following
words arrive at one unit intervals. Note that the words are ‘‘pipelined” on the
bus, so that there is only one system bus end-to-end delay involved. Hence, after
the initial delay, processors 1 and 2 start receiving and processing the words at
full speed.!

During this time we say that processor 3 *‘has the lead", i.e., is ahead of the

others. But when processor 2 references uy, it finds this word in its local memory

+ Io some cases. the bandwid'b of the system bus may limit the processor speed We return
to this issue is Section 3.3

N N N N N o N L B S R L ORI UL SO & Syt L RS g Bt N R P R

AL SRR

-

% te

SS

[t S7 S B

THEEETE

~

WA M M A RS

e s & & 4L\

]

3
NN

..........

. B -
.........................

and takes the lead. The other processors must mow wait until the ESP at
machine 2 broadcasts uy and the following words. Ib a similar fashion, the lead

changes back to processor 3 when wjy is referenced.

¢ Refereace striag: w), =y, 9y, 0, B, 0, @), B, B
¢ Locations: wy, ®y, @ in Machine 2; all others in Machine 3.

procamsors A
S+ B u u e B B o
2 - n B B v B g o L
1 - N 8 g e B Yy LY
— 44—
¢ ’ time st which processor receives s word
global bus delay

Fig. 4: Ezecution in en ESP MMM

In summary, an ESP examines each word request made by its local proces-
sor. If the address refers to the sbared subspace, the ESP does nothing. If it
refers to the local non-replicated memory, then the ESP reads the fetched word
off the local bus and broadcasts it over the system bus. In case of a reference to
remote memory, the ESP waits for the next word broadcast over the system bus,
and then places it on the local bus. (Tbis is why we picked the name “ESP™ for
these controllers: the remote words required appear on the system bus without
baving been requested, as if the controllers has ExtraSensory Perception.) In any
case, the processor is not aware of the ESP controller (except for time delays); it
operates as if it had a long bus linking it to all the memory units. Each local
memory module must know the addresses of the data it holds, honor requests for
its data, and ignore all other requests. (This is how memory modules in 8 con-
ventional architecture operate.)

Wkile the common program generates requests for data local to machince m,
the processor at m takes the lead. All other processes continue execution at the
same rate as m, with their ESPs supplying the data they peed. These *‘trailing”
processors, will be bebind the leader by an amount of time equal to the one-wa)

.................

RN N AT S LT TR A TR S

2% 24 Mt A tag AgOnE Gl Tt _..\v.-\-— MRS SS LR |t g aNK -\.‘i -y _'-'_v _j—_irr-v—ivr.v“'—v‘w—:'"' ‘\"" ey -~ Al

..................

delay time between ESPs through the system bus. When a refererce to an

address local to another machine occurs, that machine takes the lead.

Writes to memory can be igrored by the ESPs. When the program calls for

o storing into the replicated address space, all processors will execute the instruc-
tion and will update their copies. When the program modifies non-replicated

storage, the processor with the data will modify it, and the rest need do nothing.

(When we discuss reliability in Section 4, we will see that special precautions

must be taken when writing into the non-replicated address space.)

The replicated address space is used to store the program and commonly
accessed values. In addition, each processor may have registers and a cache to
® bold recently accessed data.

Two important things to note sbout the system bus are that it acts as the
system “clock’ and that there is po contention. The data transmitted over the
bus are the timing signals that keep all processors in synchrony. (In the example
of figure 4, processor 2 picks up the lead when it receives word u; from processor
3.) Since non-replicated data is found only at a single machine, only one ESP will
ever broadcast at a time. This means that the bus protocols will be very simple,

® and hence transmissions can be fast.

The ESP architecture bas the following advantages over a conventional one:

(1) The local machines have conventional architectures. They may be used
independently when the MMM is not peeded.

(2) For fully random references, memory access times are cut by roughly a fac-

tor of tuo. In a conventional machine, the address must be transmitted on

® the system bus and the referenced datum must be transmitted back. In an
ESP machine, no addresses have to be transmitted on the global bus: each

datum appears on the system bus without having been requested. That is,

since references are random, each memory access will cause a lead change.

But these lead changes only involve a one-way broadcast, and thus. half the

delay encountered in a conventional architecture.

Sad il

BENNIN WY

-" l~ sl a

x ee .‘z‘
P I PR

o e o m
PR AN

2

-
g
A
a

X0

;‘I o d ' ot
N t e,

ey
e

Kt 12

LI

73
.\.-.
", *,
L4
N

i

..........

..

(3) The ESP MMM will reward ‘“locality of reference’” by minimizing *'lead
changes’ in programs that exhibit it. That is, if two or more references fall
within the same memory module, then the access times are reduced to local
bus times. The fewer the lead changes, the faster the ESP MMM will exe-
cute.

Locality in this context, however, has a wider meaning than in a corven-
tional memory cache or virtual storage system. Here, locality of reference
means that two references are local to the lead machine, and this machine
may have a substantial chunk of memory (probably tens of megabytes). In

the next sub-section we will explore these issue in more detail.

What is the price we pay for these advantages? Obviously, we have repli-
cated processors and some data. Given current pricing trends, the cost of this
extra hardware should be reasonable, at least compared to the cost of the massive
memory. (The processors do not have to be high performance ones. Recall that
for the applications we have in mind, the limiting factor is the speed at which
data can be retrieved from memory, and not the speed at which the processor
manipulates it.)

What we have nof sacrificed is simplicity and ease of programming. The
processors and memory modules are conventional. The ESP architecture is tran-
sparent to the user program. The task of distributing the global address space to
the spaces of the individual machines can be relegated to a sophisticated loader.

3.2 Program Locality.
The potential performance improvements of an ESP MMM over ope with a

conventional architecture hinge on two main factors:
(i) The “locality” exhibited by the program, and
(ii) The memory access times over the system and local busses.

In this sub-section we study the first factor in more detail. The bus times are
discussed in the following sub-section.

The LSP MMM utilizes several mechanisms to improve memory access

-13-

times: (1) registers and caches at each processor to hold recently accessed values;
(2) a replicated address space to hold the program and commonly accessed values;
and (3) the ESP mechanism, which lets the leading or controlling processor move
to the memory module where the data resides. The first two mechanisms can be

easily incorporated into a conventional MMM, so the decisive factor is clearly the
ESP mechanism.

\What does the ESP mechanism give us that the others do not? In order to
answer this question, let us postulate a simple data reference pattern. (We are
not interested in the instruction reference pattern, since the entire program is
replicated in all machines.)

Suppose that the M memory words of the MMM are divided into blocks of B
words each. A block is the unit of data transfer between the memory and a
cache. We assume that the location of the next referenced block depends only on
the location of the most recently accessed one. Specifically, Figure 5 gives the
probability distribution of the next reference. There is a set of a blocks, centered
on the last referenced block, that have a high probability p of being accessed
next. All other blocks have a much lower probability ¢. (For simplicity, we
assume that when the last reference is within ¢/2 blocks of the ends of the

memory, the distribution wraps around.) We assume that a is odd.

probabdility
of next access & ¢ blocks =
¢ —
L memory
Z ' T)
- .1 block
last block referenced &

Fig. 6: The Probability Distridbution.

At Our experience tells us that this is, in an idealized way, the way programs ‘
reference their data (e.g., see [19, 20]). For example, consider a program that ‘
simulates a VLSI chip. When a transistor is referenced, several contiguous words
may be referenced. The next transistor reference is likely to be to a connected
one, and if the circuit is represented in a reasonable way, it will be close to the
previous one. Here “‘close” may mean within a few thousand bytes, so our high
probability window, a, may be relatively large.

The parameters a and p define the locality of the program. As a shrinks
and/or p grows, the program exhibits more locality, and as a grows and/or p
approaches g, the references become more random (i.e., the distribution becomes
flatter).

Note that this distribution ignores other types of data locality that may also

be exhibited by programs. For instance, programs may have time locality (i.e.,

tend to reference recently accessed data) or may access certzin fixed locations

with high probability. Since these types of localities are exploited by data

:::‘ caches, the distribution we have selected to study will highlight the strengths of
:_,', the ESP mechanism, not of caches. This is precisely what we want to do.

x" Using this probability distribution, we have analyzed the performance of an
o ESP mechanism (where processors have no registers or caches) and of a simple
,./- cache. The analysis is described in [9]. Figure 6 presents some typical results.
The figure shows the hit ratio for the cache (k) and the ESP mechanism (h;), as
o a function of a, the high probability window. For the cache, the hit ratio is the
"3’ probability that the pe:t referenced word is in the cache. For the ESP, it is the
f"‘" probability that the next word falls in the samc machine as the previous word.

(In the figure, locality decreases from left to right.)

L If on each memory reference the cache can fetch a significant portion of the
“high probability of next access” window, then the cache performs very well.
\l (That is, if a is close to 1 block.) In this case, either the program bas very high
locality or the system bus feeding the cache is very wide. In this case the ESP
"" docs pot Lave any advantages over the cache.

%: At the other extreme (very large a). references are fully random and both
0 mecbanisms have a hit ratio of 0. In this range, the ESP is superior by roughly a
Z;:_-

. - S s RN .ot R T R R B TR I ST
I T ‘ e ‘ J‘-‘ﬂ"f\- N‘f LAl u"\f) 3 Sel e . Tt e '-_'-l'Ll“S‘_l"_&L\"' """" e a0 'y o x 2]

A il 4 PRIV Ty ‘r ala

hit ratio ﬁ M = 10° words = 10* blocks !
1.01 B = 10 words |

ap = 0.8 J

size of cache = 10® words

size of memory module = 10® words

—y a 'l I *
10 10° 10° 10! 10% 10°

a (high probability window, in blocks)

Jogarithmic seale

Fig. 6: Hit Ratios for ESP and Cache

factor of two because, as we discussed earlier, addresses need not be broadcast.

In between is a large range of localities where the ESP performs substan-
tially better than the cache (from a equal to 4 or 5 until a is roughly the number
of blocks in a memory module of the ESP.) In this area, most references using the
ESP mechanism are local. On the other band, with a cache, most references con-

tinue to rely on the system bus. This is because the cache mechanism retricves

data from memory in very small units, op the order of a few words. The

improvement will be, roughly. the ratio of system bus access times to local bus

times. ‘
The programs that will use a MMM, as we argued in Section 2, are memory

intepsive ones, programs that cause a virtual memory system to thrash. Thus we

expect thene programs to operate in the range of localities where the ESP

mechanizm does pay ofl.

@ty T ‘-.' et " ..- 0" " \‘.\- .‘- *‘ A N .

T:-'"--?f-'r:‘ﬁ".?“.r(r. r_!

-‘ ([9] presents more results, and also considers other probability distributions.
- ,.‘:. The trends obtained are similar to what we have presented bere.)

Y

o

e

::_'E':fj 3.3 System and Local Bus Access Times.

: The performance improvements of an ESP MMM over a conventional archi-
: tecture depend on the value of the system bus access time, D, and the local bus
o time, d. So far we have assumed that D is much larger than the cycle time of the
,-:;::‘ processor(s) and than d. If these assumptions do not hold, then the gains of the
'; ESP mechanism will be limited. For example, if we can implement a system bus
4 . with D small compared to the cycle time of the processor, then obviously, cuting 1
E". the bus access times by half is not important.

t We bave also assumed that the system bus has sufficient bandwidth to pipe-
i line data as fast as it is fetched from a local bus. If this is not the case, the local

';: bus will have to be slowed down, effectively increasing the value of d.

“ The values of d aud D depend on the hardware used to implemeut the
o MMM, as well as on the size of the memory, and therefore, it is difficult to reach
4 o any definitive conclusions. For example, the delay D is a function of the bus
:?'.: physical distance and the number of loads. These parameters are in turn a func-
t“? tion of the memory size and the packaging density. The bandwidth of the sys-
y tem bus may be limited by skew on its lines, which in turp is a function of the
PiL bus length. Of course, the bandwidth will depend on the technology used, e.g..
'E.-E an optical bus will bave much bigher bandwidth than a conventional one.

- In summary, it is not possible to state whether the ESP mechanism ix
advantageous unless most hardware parameters are known. However, we can dis-
2" cuss two general implementation scenarios where certainly D is significant as
f-::': compared to the cycle timne, and where d is orders of magnitude less than D. In
; both of these cascs. the ESP NIMM{ performs very well.

e Processor and Memory on a Chip. It will soon be possible to build a

gL

_ﬁr"

reasonable processor with a few megabytes of memory, all on a single V1.SI

&

chip. These chips will be ideally suited for the comstruction of an ESP

MMMS. The time to access op-chip memory (d) will be very small. since

r‘d‘"f“" / ;‘
b Ca» “J.I -

9

)
TN

..‘P\r

......

Cgaty o

- - - - - -
NS H NG (VRN

...... - LA S L

- 17
(J
small currents and small distances are invol ed.
The limiting factor in this implementation will be the rate at which ESPs
® can broadcast data out of the chip, into the system bus. However, ap opti-

cal bus may provide the necessary throughput.

o Sharing Memory on Existing Computers. Suppose that we already

have an installation with several computers (maybe 2 or 3, maybe 100 or

L 200) connected via a local area network. The ESP architecture gives us a
way to combine these resources into a single MMM, when it is needed.
Clearly, local memory access times are significantly less than transmission
times over the network, so the ESP is a useful idea Each existing machine
would be provided with an ESP controller, and the network protocols (for
MMM operation) would be simplified, e.g., there is no contention. no need
for packet headers. (This assumes that while the machines operate as 2
PY MMM, the network has no other users.) A program requiring more memory
than is available at a single machine (even if it only needs the memory o1 3

or 4 other machines) can be sped up considerably. There will be improve-

ments even if its references are totally random, since page faults (with seek,

® rotatiopal, and substantial data transfer deluys) will be replaced by fast (and

probably short) network messages.

For some programs it may be possible to implement the ESP mechanism
fully in software. If a program has a distributiou similar to the one of thc
previous sub-section, and if @ is less than the memory at each computer.
then lead changes will be infrequent. A lcad change can then be imple
mented by sending a message with the state (e.g., contents of registers) of

® the lead machine to the next Jeader.

4. RELIABILITY ISSULS.
In this section we briefly outline how a MMM can be made relislle. For
concretepess. we conpsider an ESP MMM, Some of the techniques we discuss can

alsc be used on a conventional architecture MMM, although the ones that expluit

@ the replicated processors obviously canpot.

N T TN T e q.‘.,' N W T et et LTS e R e Catgha
- TRV NN SV L N D R OR L‘n‘.\\\ﬂ.\ ", \l'\‘.\\.\x‘

- T M wm T a W g W e ? W W W, Y W Y Yy bl ash o T X d]
A P N Y A P R ".'.'_'A-.ff-_"—-_ ARG "-.\T___ ¥ RO A G AL AN AR ST AR ANt el Sl AR A indond od L

P SR s e,

BEAROERONA A AN N A 2 SAtaiiie S 7 ite 3 & A e HA S R A S AL AL LML AL AL Ll Sk ai et o e A A P)

.....

.................

- 18-

The first step is to make the individual components of the MMM relisble.
For this, either very reliable hardware can be used, or error detection (and correc-
tion) code bits can be added to the memory modules, buses, and processor regis-
ters. (Deciding bow many bits and where they should be located is not a trivial
problem, but solutions exist and are well understood [18].) In spite of this protec-
tion, component malfunctions can occur, and the system as a whole must cope
with them. Ib the rest of this section, we discuss possible strategies for this.

We distinguish two types of undesirable events. Errors are transient mal-
functions of a component. If an error occurs during an operation (e.g., broadcast-
ing a value on the system bus, or reading a value from a memory module), then
the operation can be repeated and with high probability it will be correct. O
the other hand, failures are longer lived malfunctions that can be remedied only

with outside intervention.

Throughout our discussion, we will assume that errors and failures can be
detected immediately, say by error detecting codes. When 8 malfunction is
detected, the hardware will automatically retry the operation. After a number of
unsuccessful attempts, the malfunction is declared a failure, and po further

operations are executed by the failed component.

To coordinate recovery actions, we introduce a master processor in tLe ESP
MMM, (See Figure 7.) It is simplest to make this a specialized processor which
does not run user programs (although this is not necessary). The master has two
buses linking it to the other machines. The secondary system bus connects the
master directly to the memory modules (using dual input ports'), forming a con-
ventional architecture. This bus is used to access memory in case a local bus or
ESP controller fails. It can also be used to run the system as a con\entionsl
MMM when the main system bus fails. The control bus links the master to all
other processors. Through this bus the master can observe the status of the pro-

cessors. and can issue recovery commands.

4 Duul port memory is currently very expepsive, but for no inberent reason VLSI should
cbange this situation.

........... .

~r TS T W W W YT YR T FTAT N TR TE T T v T T T e e W
PSR I R i SR oS - A V) M A S AL A A A e B Sl Al Rl A e A e L <. . < 7

« - 160 -

-

5 spare

:.. machines
- global system bus

N -

Y [
[o
9 P | lesp] | P} |ESP P.| lese| [Pus| [ESP

.: J - o e b_--L -— - - .___ﬂ’- H - .- -—-—L—-- —— D e =
; ’r 7) 1 T control
. ® master| | T || T bus
- M. M’ M. M“‘

¢

2 1

- secondary bus

o nid

3

Fig. 7: A Reliable MMM

® 4.1 Coping with Errors.

Tbe tight synchronization of the processors complicates the recovery from
errors. If the leading processor detects an error, then there is no problem. It can

retry the operation, and the rest of the processors will be delayed accordingly.

s 274”222 &

‘. However, if a trailing processor detects an error and attempts to repeat the
N operation, it will get out of synchrony. If the operation was the reception of a
3 word from the system bus, then the processor cannot even repeat the operation
L ® since it does pot control the bus.
The solution is to simply balt any trailing processor that detects an error.
J The rest of the system will continue operating normally until control passes to a
. balted processor. At this point the master detects the problem (e.g., it sees no
® activity on the system bus), and directs one of the active processors to broadcast
. all of its state ipforiaation (i.e, contents of registers, cache, and replicated
address space) over the system bus. The halted processor(s) loads the inforina-
| @ tion and is then ready to go.
. Iv Section 3.1. when we discussed memory write instructions, we stated that
writes could be ignored by the ESP controllers and by the processors that did not
. bave the duta being updated. However, in a reliable system, this is no longer the
X4

o tata 8"

STovatate s
SN CLN,

.
.

A \ ..
YR

‘2

o

A

~

B
‘.a’c‘n‘;';';'t < SLNLAL T T)

2

. ‘.c.. - ’9‘*&; .

o R

case. To illustrate, consider 8 memory reference string r, f2. ¥3. r. ry. where r,.

ry, rq. and rg are read references to data in memory module A, and uy is a write
into module B. For the first two read references, the processor at A takes the
lead. When this processor encounters wy, it cannot assume that B will execute
the write because B could be out-of-synchrony. Thus, A must receive an ack-
nowledgment from B indicating that uy was successfully performed before taking

the lead again to perform r, and r;.

To solve the problem, we handle writes to non-replicated data with the same
protocol that is used in reading. In our example, when A encounters uy, it waits
for an acknowledgment from its ESP, just as it would wait for data had the
instruction been a read. At this point, the lead passes to B which exccutes uy,
and its ESP broadcasts an acknowledgment, just as data would be broadcast had
u3 been 8 read. If B is out-of-synchrony, the system halts when the lead passes

to it (at uy), and the recovery starts.

4.2 Coping with Falilures.

Processor, ESP or Local Bus Failures. When a processor, its ESP, or its
local bus fails, we again wait until control is passed to it. The master must then
allocate the functions of the failed machine to a spare machine. For this. it must
be possible to dynamically redefine the address space managed by a machine.
Each memory module and ESP controller would have registers with this informa-
tion, and the registers would be loadatle by the master (through the control bus).
Once the new machine is allocated, the master copies the non-replicated data of
the failed machine into the new machine (using the secondary bus). Finally. the
state information is broadcast (as if an error had occurred), and processing con-

tinues.

Memory Failures. When a memory module fails, we cannot simply allocate a
pew machine to replace it. Each module contains data that are not available
elsewhere. Oae strategy for dealing with these failures is to abort the program.

The failed machine is replaced (as disenssed above) and the program is re-started

...
.....
.............

‘‘‘‘‘‘‘‘‘‘
L3N o

TSy -_'l"‘ o

from scratch.

If abortion is undesired, then storage must be replicated. Furthermore, for
some applications (e.g., databascs) at least one of the copies must be non-volatile.
The simplest solution is to fully duplicate each memory module (within each
machine), and to make one of them non-volatile by supplying backup power from
batteries (and possibly a generator). However, the following solution may be less
expensive.

Notice that (normal) reads can be handled by thc primary copy, so only
writes must be performed efficiently by the secondary copy. (A program writing
a word must wait until both copies are safely written out, and hence both writes
must be done fast.) Therefore, when a processor issues 8 write command, a copy
of the address and new value are stored in 8 small, temporary buffer. (The buffer
can be made non-volatile with battery backup power.) After this operation (and
the write to the main copy) the processor may proceed with its work.
Meanwhile, a separate controller executes the updates recorded in the buffer onto
a copy kept on a slow, non-volatile device like 8 disk or a drum. This device can
be shared among several machines to reduce costs.

When a backup copy is peeded, it is loaded up into a functioning primary
memory module. Any unexecuted writes in the buffer are ‘“played back’ to

obtain an up-to-date-copy.

The buffer shields the slow device from bursts of write commands, but if the
average rate is too high. the buffer will fill up and the processor will have to wait.
In this case, the copy on the slow device can also be kept in journal form, i.e., as
address, value pairs. Ip this form the writes can be stored sequentially, avoiding
seck and rotational delays. Of course, when the secondary copy is needed the
recovery will be slower since the writes must be played back. To decrease these
times. periodic dumps of the primary memory should be taken. With some care,
tbese dumps can be stored in the same slow device, copcurrently with the jour-

naling of the writes, and in the same sequential file.

Power Fallures. Loss of power to the entire MMM is equivalent to a simul-
tancous failure of all the machines. \When power is restored, the contents of each

""-:"bq‘.’“ LN AT e !— R \ oF »o ".'\'."" \'~ -'. oy \'.‘. AT AR S A \'\" ‘ X N \;' 5 A V-"' N \.f\.\\ -’\-

L 2 2 ARG DDA S Sl B JnepuU i So i g

et
e
;:-f:..: memory module can be recovered using the techniques described above, tut the
.-.‘_::;. state of the processors cannot be restored since it was lost everywhere. Thus, a
e

power failure affects the MMM as it does all other computers. To avoid restart-

v,
l'
Iy

ing a task(s) from scratch, each task should periodically save its state io memory

(called checkpointing), and at recovery, a task can be restarted at its latest

i ._
e s s s
PRl

'y s

a &

PP

Lalsa ¢

>:_;::; checkpoint.
X
\} §. EXPLOITING PARALLELISM IN THE MMM.
E}i Although the MMM with ESP controllers is a single instruction, single data
:;:5“,‘ stream machine (SISD), there is no reason why the multiple processors cannot be
A used individually when needed. What is more, with some simple extra hardware,
:.' the MMM can be made into a reconfigurable massive memory and parallel pro-
,,{ZE cessing machine. This machine could switch, on demand, from SISD to SIMD
NN (multiple data streams) or MIMD (multiple instruction and data streams), and
:,; back. Clearly, this machine would be harder to program than a plain M\M, but
-§§ it could yield signifcant performance gains on programs that could be decom-
533:-.5 posed into parallel components.
19) There are several strategies for reconfiguring the MMM, For example, sup-
’_::. | pose we want to perform an associative search through a large table. and we
-.: know there is exactly one matching entry. If we split the table across the NI\
2~ memory modules, each processor could search in parallel. For this, we can add &
..-, special associative search instruction. When a processor encounters it. it forks
_:;5 and initiates a local search. Before the search, the processor informs the ESP so
:;,3 it will not broadcast the data fetched from local memory. When the processor
o finds the entry, it notifies the ESP, which in turn broadcasts it, just as if it had
\:‘ been data fetched from memory. When other ESP controllers receive the broad-
_2'.:'\7 cast, they interrupt their processors (the entry has been found elsewhere), and
::ZC' hand then the result.

After the associative search, the processors continue (in SISD mode) as they

would after 2ny other instruction. The result of the search synchronizes the pre-

o A ~
-.__l.;-‘;.;.;..t ‘

cessors, just like data fetcbed from memory does for other instructions.

]
vl ls

e

AW

........

If the search may yield multiple matches, or if we want each processor to
compute a value, we need a different mechanism for joiniug the instruction
streams intc one. One alternative is to use a special bardware device to detect
the termination of the forked processes. As each processor finds or finishes com-
puting its value, it stores it into its local, non-replicated address space, notifies
the special device, and waits. When all finish, the device signals the processors to
continue in SISD mode. Note that all the results are available to the SISD
MMM, since they are stored in the memory it can access. A second alternative,
processors could fork for a pre-determined amount of time or number of cycles.
Under normal circumstances, this time should let all processors complete.

The fork and join operations we bave described are limited. Only the NIM\{
can spawn processors, and it cannot continue until they have all joined back. Of

course, we could design more general control structures, Lut as they become more

. flexible, they become harder and harder to program. We feel that the mecban-
isms we have described strike a good balance between complexity and the perfor-
) mance that might be gained.

6. CONCLUDING REMARKS.

»
st els

If we look at the ratio of memory size to prucessor speed of past and present
commercial computers, we find that most are within an order of magnitude of

et Nl N Y'Y

one megabyte per MIPS. (The value one megabyte per MIPS is called **Amdahl’s
® constant™.) All supercomputers in use, and most of those being developed, have

ratios well below this value, and are targeted for computationally intensive prob-

2% a"a" a

lems. The machine we proposed here, on the other hand, would have a memory
to specd ratio of 100, 1000 or more. We bave argued that such a machine would
speed up memory bound programs like no other computer could. We also

asserted that a massive memory machine having unconventional architecture and

features would be more efficient and reliable. Yet, in spite of its novel structure.

e this machine would be simple to program.

We have only sketched the main features of 4« massive memory machine and

the ESP architecture, but of course, there are many other important issues that

-+ i Y)

must be resolved before such a machine can become a reality. In concluding. we

G P AT Ay \ "s\' AR A WA " Y w'\~‘\1.'~ .:\;..\'\.-\-._-._-: .'.‘.:__.-\-,-.',_.*%.:,':_‘.-_‘.'_..-_.. A LR Sty .

YL ¢ S LA

ARy LA
........

TN BN

!

NN
¢ 3

] -.' R

) BTNy - VORI

.
B
S

\
* hK . SO SO A 39 9% I I P
h\bl‘ DAL b0 ‘- L3 X < ', 4

) . . ~
..........................

mention some of these issues:

Input/Output. A MMM will have massive input/output needs. The multiple pro-
cessors of the ESP MMM are helpful here, for each one can have its own secon-
dary storage device. This way, data can be loaded in and out in parallel. As an
alternative, groups of processors can share their IO devices. Management of files
is complicated, though, since files will be partitioned across several devices.

Virtual Storage. No matter how large the massive physical memory is, there will
slways be some programs that require more. A virtual storage system is the
obvious solution, but there are several ways in which the virtual store could be
mapped into the physical memory. The number of processors baving virtual
memory facilities can also be varied.

Programming Language. It may be useful to have language constructs for speci-
fying the data to be placed in the replicated address space, and for indicating
what data should be placed in the same memory module of the ESP MMM. A

smart compiler could also automate some of these decisions.

Special Processors. The ESP MMM can operate with conventional processors,
but this does not mean that they must be conventional. Some processors could
have extra hardware for complex, less frequent operations (e.g., floating point
arithmetic). The results of these operations would be broadeast to the rest of the

processors. This strategy would reduce the cost of the majority of processors.

Also, special instructions could be added to improve the efficiency of the ESP
mechanism. For example, using a conventional instruction set, a block data
transfer between two modules will incur two lead changes for each word
transferred. However, a special block transfer instruction could make the source
processor transmit the entire block (without waiting for acknowledgments for the
writes) and the destination processor store the block. At the end of the transfer,
the destination ESP broadcasts an acknowledgment, and this is interpreted by
the other processors as the end of the special instruction. With this instruction,
the number of lead changes is reduced to two, regardless of the size of the block.

Additional instructions could improve other operations.

..............

Acknowledgments. Several useful ideas and suggestions were made by Bruce
Arden, Richard Cullingford Jim Gray, Peter Honeyman, Andrea LaPaugh, Steve
North, Ken Steiglitz, Peter Weinberger, snd Gio Wiederhold.

REFERENCES.

[t

[3]

4]

[6]
[7]

(&l

(o]

[10]

B. G. Bucbanan and E. A. Feigenbaum, “Dendra! and Meta-Dendral:
Their Applications Dimension", Artificial Intelligence, Vol. 11, Num. 1-2,
1978, pp. 5-24.

J. Cohen, ““Garbage Collection of Linked Data Structures”, ACM Comput-
ing Surveys, Vol. 13, Num. 3, September 1981, pp. 341-367.

Special Issue on Supersystems for the 80's, JEEE Computer, November
1980. |

Special Issue on Array Processor Architecture, JEEE Computer, September
1081.

Special Issue on Highly Parallel Computing, IEEE Compuler, January
1982.

C. J. Date, An Introduction to Database Systems, Addison-\Wesley, 1981.

D. J. Evans (Editor), Parallel Processing Systems, Cambridge University
Press, 1082.

M. J. Flyon, “Some Computer Organizations and Their Effectiveness™,
IEEE Transactions on Computers, September 1972, pp. 843-960.

H. Garcia-Molina. R. J. Lipton, and J. Valdes, “‘Analysis of the Massive
Memory Architectures”, Technical Report 313, Department of Electrical
Engineering aud Computer Science, Princeton University, May 1083.

J. Gray. “What Difficulties Are Left in Implementiug Database Systems",
Invited Talk at SIGMOD Conference, San Jose, CA., May 1983.

PP

et et at.T L E R ."

{111 K. R. Kaplan, R. O. Winder, “Cache-based Computer System," IEEE
Computer, March, 1973, pp.30-36.

{12] D. E. Kbuth, The Art of Computer Programming; Volume 8: Sorting and
Searching, Addison-Wesley, 1073.

[13] R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G. Vijayan, “ALI:
A Procedural Language to Describe VLS] Layouts”, Proc. Nineteenth
ACM-IEEE Design Automation Conference, Las Vegas, Ncvade, June
1982, pp. 467-474.

[14) W. A. Martip and R. J. Fateman, “The MACSYMA System"”, Proc. ACM
Second Symposium on Symbolic and Algebraic Manipulation, Los Angeles,
CA,, 1971, pp. 23-25.

[15] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,
1980.

{16} N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Com-
pany, 1980.

{17] A. V.Pohm, O. P. Agrawal, High-Speed Memory Systems, 1983.

[18] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable Sys-
tem Design, Digital Press, 1982.

[19] S. S. Sisson, M. J. Flynn, “Addressing patterns and memory handling
algorithms,” Proe. AFIPS Fall Joint Con.puter Confer:nce, Vol. 33, Part
2, December, 1968, San Francisco, CA., pp. 957-967.

[20] A. J. Smith, *“Cache Memories,” ACM Computing Surveys, Vol. 14, No. 3,
September, 1982, pp. 473-530.

[21] P. Weinbcerger, Personal Communication.
{22] G. Wiederhold. Database Design, McGraw-Hill, 1877
[23) P. H. Winston, Artificial Intelligence, Addison-Wesley, 1077.

At et A A" e Al e AT
" NN ST AT 3, PR Ty Uy Vi

New approach for a constraint-based layout system

Jose M. Mata

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

Abstract

Procedural Janguages have beer. used successfully to describe
VLSI layouts, especially those languages that are constraint-based,
since their user doesn't have to worry about absolute positions in
the layout. Some complaints about these languages are difficulty of
use, efficiency in handling large layouts, ares efliciency, need for
design rule checker, and difficulty to implement and modify.
We present a proposal for a simple and powerful constraint-
) based layout system, that can be used as part of a larger CAD sys-
tem for VLSI. Our approach consists basically in a structured way
to describe the layout, use of an intermediate form to represent
the layout (in terms of cells, not boxes), and a hierarchical con-
straint solver that deals wit}: large layouts.

L 1. Introduction

There are many advantages of using a procedural language to describe a
VLSI layout. Many of the existing languages [2.6,7] are constraint-based, that is,
the program that describes the layout generates a set of linear equations whose
solution gives the final layout.

: ® The main issues addressed by constraint-based layout languages are:

- regarding VLSI design as a programming task, as opposed to a geometric
editing task. This, among other advantages, makes the design easier, facili-
tates the division of labor, allows parametric design, facilitates the update
of layouts, and gives a good documentation of the design.

i - creation of an open-ended tool Graphics editors tend to be closed tools, in

l o the sense that it is hard to automate the process beyond what the original
design of the system allowed. With a procedural language, a program can
have some processing (for the description of a router, for example), or the
program can be generated automatically with other tool: in this case, the
layout system can be part of a more general CAD system.

- creation of tools that are simple to use. Reducing the number of informa-
() tion that the user has to give in order to describe the layout simplfies the
design; the user should describe the layout conceptually, leaving the deter-
mination of absolute sizes or positions to the system. Also, allowing
hierarchical design makes the design easier. Another aspect is error detec-
tion: the system should help the user to find errors in the design

..........

' P TR T S I R I RO R LR Rty AT
Yy ;’.ﬂ.&tnﬁ%;ﬂ‘;i\im{ip',.'.-'.fyi_ﬂi‘:i_ y R WLEY St g e w D A R AT ~¢-¢l"1}hi‘ﬂ}‘$hi};u%.

d Lo o a4 o gl et il o e i LA I SR R e T S T S e e T T R N e
'.(w-t"l_‘ T LA S ~l_ P A e e e T L e e S
i

oot

b

- 2 -
e
"
g:’ - eliminating the need for design rule checking. From the description of the
rod layout components and topology, the system generates constraints taking
o into account the design rules of the fabrication process.

eflicient node extraction for simulation. The nodes can be extracted from
the program, that describes the circuit conceptually, instead of being
extracted from the final Jayout.

LS
I

5
’, ~
'

v

4 ‘,’l'
“ [

e W
g

oy Different layout systems address these issues in different ways, each sys-
3 tem having its drawbacks. In the next session we give an overview of a
constraint-based layout system, ALI2, and then we present our proposal for a
new system.
e 2. Alayout system: ALI2
‘ e The ALI2 layout system [4.,5.7] was developed at Princeton, and has been
3 used successfully, with many VLS] designs completed and the chips fabricated.
ALI2 is a superset of Pascal. The objects manipulated by an ALI2 program
i are cells and wires, besides the usual Pascal objects. There are statements to
» \‘_’ instantiate a cell with a given orientation, and to specify the relative position of
A cells.
: .p Basically, in an ALI2 program the user describes the objects (cells and ‘
wires), and their topological relations; no absolute coordinate is ever mentioned.
The execution of the program generates constraints of the form z, = z; and
o x;, -z; 2 d (z and d integer, d> 0), taking into account the design rules of the |
™ fabrication process (NMOS). The constraints for the X and Y coordinates are ‘
X independent. These constraints are solved in linear time using the union-find]
" algorithm (linear for pratical purposes) and the topological sort, giving the final
L layout in CIF (Caltech Intermediate Form). J
conceptual level l' ALI2 o objects
: + relations
design rules —7
& {
constraints o Z—-Z2d
e =X

geomatric level layout gbsolute coordinates

- -
LA it et det ol

3
4
s
D’1
.
I
.

4
l“
¢
Ky

[
“]
g

A
]
>
, L
'ﬁ-n
. h
‘A
;’q
B
./1
A
f .. i
A.‘
K
k
l' L

TAT R AT AT e BATANT o T e ¥ FaTa T b R et '.1
T P Y S . A Foet

. ey
.

Gv.

-3-

,\' An example of an ALI2 program follows, with the corresponding layout.
o ‘
by w
e chip shiftregister (output):
N iretype
o polywire = wire (poly, 2¢Jambde, nullsigna’);
: &iffwire = wire (dif], 2*lambda. nullxignal);
P-4 metalwire= wire (metal.4*lambda, nullsignal);
v fivewires (ir: layer) = bus
9 wi: polywire;
- w2: metalwire;
w3: wire (Ir, minwidth(lr), nullxignal);
. w4: metalwire;
~ w5: polywire;
K end;
® wirevar 1], rr: fivewires (paly);
1 cell shift (left 1l: fivewires; right rr: fivewires); rigid ('shift.rc’);
S cell shiftregister (left inbus: fivewires; right outbus: fivewires)
_ Y (length: integer),
wirevar temp: fivewires (poly);
3 begin
v iflength=1
N ® then create shift (inbus, outbus)
: else begin
3 create shit (inbus, temp);
.J create shiftregis:er (temp, outbus) (length-1)
‘-: end {if]
he end;
. K4 creete shiftregister (L, rr) (3)
-4 end.
e

. 7, /I 55 ,,7: g
3%
A v ;
Yo %
A 7, A
Z Z !
‘Q‘, . [~ = %] o o .
Y 3 : _ 44—
s 3 j :
z 1=
’
LLLLIY IS PSS S S SOPAS 00 ——. TN O o IS 1A A0S

< el |- 1AL

e

RN

ol B -

R
e

¢
)

O IREArIIE - o IXRRII
ﬁ“‘.l:.‘v’ ., .'l.':‘ '! t - ‘{‘""‘. ..'.'.“. ."I-."

o~

«

- ‘5 l"

- s o
»
r

[”»

AN

‘«ﬁs

AN

.
s 8 0.

AN EED
"' l%A ..

ot

>
rd
s

>

a.’_\

:'1!',‘.“'*

& &%
" e e

o
SR T AN

-

)
N

o

AN
P N, N al)

)

N o

AN S

h

-4 -

A cell in ALI2 can be flexible (its size will depend on the context in which it

is instantiated), or rigid (fixed size, like pads or other cells generated previously
by ALI2 or by other tools). The complete ALI2 system includes a switch-level
simulator, a PLA generator, and some programs to interface with CIF code.

(8].

! cells

............

One of the chips designed using ALI2 was a n-bit paralle! adder, taken from
n is a parameter in the program. The 8-bit adder was fabricated, and the

chip works according to the specifications.

Although all the issues mentioned in section 1 are addressed in ALI2, there

are still some minor problems:

S I e

ease of use. The main complaint about ALI2 is having to name wires;
depending on the regularity of the layout we may have too many wires.
Other problem has to do with rigid cells (fixed size): as they involve a con-
straint of the form z; —z; = d (d> 0) (that is replaced by z; —z; =2 d and
checked after solving), if we don't use rigid cells correctly we may get a
system of constraints with no solution.

hierarchical design Although the program in ALI2 can be hierarchically
structured, the constraint solver is not hierarchical, bringing space prob-
lems when the number of constraints is large. If we create solving hierarchy
by using rigid cells, that brings the problem with rigid cells mentioned
above.

implementation considerations. Changes in the system are difficult to
make, since everything is related: language aspects, design rules, and con-
straint generation.

design rule checking. In an ALIR program it is possible to leave two cells
without any explicit or implicit topological relationship. thus causing some
design rule violation. So, the layout produced by an ALI2 program is not
guaranteed to be free of design rule violations.

..................................

.............

.....

........

8. Our approach

We would like to have a constraint-based layout system with the following

® features:

- easy to use;

- powerful;

- eflicient;
s - easy to implement;
X - hierarchical;
X ® - guaranteed to produce layouts with no design rule violations;

- (igtrerfoz‘aice with high-level languages, graphics editors, simulator, and
code.

Our approach consists basically of 3 ideas: imposing a structured way to
describe the layout, use of an intermediate language, and use of a hierarchical
solver.

® 3.1. Structured layout

Our first basic idea is to impose a structured way to describe the layout.

and take advantage of this structure. The basic unit in the layout is still a cell,

1 that corresponds to a rectangle, and cells are composed using unary operators

~ that specify orientation (rotation or flipping) or binary operators (left, right,
above, below).

o
; A
: —
b B c)
o
(Aabove { Bleft C)) isft (rotateds0 D)
: Fig. 4 - Structured layout description

A cell corresponds to a bounding box (rectangle), possibly with wires on
each side. There are 5 kinds of cells:
- system: transistor and contact;
- named: cell previously defined in the program;
- external: library cell;
« - rigid: cell with fixed size;
; - local: cell created by composition of two other cells.

Now the context where a cell is instantiated is well defined. Only for system
cells we have to specify the parameter wires {(layer and width); for other cells
the wires are defined implicitly For example, if C and D have the structure
shown below, the composition C left D produces the right constraints relating C

o to D and relating the wires connecting them, and leaves a cell with the structure
shown.

" s A

e R N L Ny e e S S o A S A ey

b - - -

Fig. 5 - Camposition of cells

There are many advantages of using this structured approach:

- no wire naming is necessary; at any point the system knows which wires are
hanging up, and will use the proper wires when instantiating the next cell;

o - the layout can be described in a compact way;

- separation is directly obtained, and the layout is guaranteed to be free of
design rule violations;

- since the context in which a cell is instantiated is well known, there is room
for local optimization, like cell separation;

g - easy implementation: each cell has some semantic information associated
with it; composition of cells means combination of this semantic informa-
tion. If we use a grammar to describe this layout language, the construc-
tion of the layout can be done when parsing (bottom-up). In fact, this is
similar to the way the system for typesetting mathematics EQN [1] was
designed and implemented. In EQN, equations are pictured as a set of
"boxes", pieced together in various ways.

! - easy error detection: if a cell is instantiated in the wrong context, is is easy
T to point out exactly where the error occurred; the only possible error when
' solving the constraints is when a rigid cell gets stretched, and that is also
easy to point out.

At first, it seems to the user that having to describe the layout in such
structured fashion is a strong restriction, and may cost a lot of chip area. Qur
experience shows that this is not the case. First, the ordered structure comes
naturally when we go from the floor plan to the program. Second, our choice of
the floor plan is what is going to affect the cost in area.

3.2. Intermediate language

The idea is to separate language aspects from layout aspects, or user
aspects from system aspects. For layout aspects or system aspects we mean
generating cells and wires (that is, constraints), according to the design rules.
For language or user aspects we mean the high level language used to describe
the layout, and its implementation; here, language also applies to graphics
language.

We can define an intermediate language to describe the layout, as explained
in the previous section. Considering that there are no generic cells at this level
(no conditional processing, no recursion, ...), it is possible to have a compact
form for the layout description. This form can be automatically generated from
a high level language, from a graphics editor, or even generated by hand.

PPy i A N IR IO PR PR IR PR ARG SR PGP KA RN L AL OIS NS

Now, the high level language available to the user can be as sophisticated as
we want, provided it generates code in this intermediate forr... As it should be
clear now, the implementation of the intermediate language and of the high level

G PP LG LUCHCN A Ny

L language are independent.
grephics
sditors
®
ws! ntermediet CIF
languages lenguage
) o simulator

Fig. 6 - The rale of the intermediste language

® 3.3. Hierarchical solver

The way to specify large layouts keeping the number of constraints within
limits is to use hierarchy: solve the constraints for subcells and make then rigid
cells (rectangles of fixed size, with the position of the inside elements already
determined). Rigid cells involve constraints of the form z; —z, = d (d> 0). We
PS developed an algorithm [3] that solves m constraints of the form 5 -z;2d
: (d> 0) and n constraints z; —z; = d (d> 0) with time complexity O(m.n). As n
is usually small. the algorithm is pratically linear on m, and is very efhicient. It
is implemented in the new ALI2 system, giving excellent results.

4. Conclusions

PS We are now in the process of completing the design of the system. A lot of

experience was gained with the ALI1 and ALI2 systems. Only minor details of the
syntax of the intermediate language are left. For the high level language, our
first implementation will be a set of procedures to be used in Pascal or C, that
allows the user to define and instantiate cells. Generic and recursive cells can be
easily defined by using the capabilities of these languages.

Our first implementation will be based on the NMOS technology. The other
components of the system, like switch-level simulator, PLA generator, and so on,
can be the same used in the ALI2 system.

5. References

! ° [1] Kernighan. B. and Cherry, L.
A System for Typesetting Mathematics. Communications of the ACM,
March 1975.

[2] Lengauer, T. and Mehlhorn, K.
HILL - Hierarchical Layout Language, A CAD System for VLS/ Design TR
: AB2/10, FB 10, Universitét des Saarlandes, Saarbriicken, West Germany,
: 1082.
o

. . - - " e o T T S S TP G L I N ~ LIS
!- -,',‘.h-\"s v e -.. > -.‘. 'v.. W -'-- - ‘:, --_,.._\ AT '.. e N \ *-._4‘\!..-.\ a8 S : -» 0, Ny \} \.\ ,. \.. ') '-N,‘i .

e,

v

AN

QALK | XXX

i

(3]

(4]

(5]

(6]

(7]

(6]

Mata, J.

Solving Systems of Linear Egualities and /nequalities Efficiently. Prince-
ton University, November 1983.

Lipton, R.J., North, S5.C., Sedgewick, R., Valdes, J., Vijayan, G.

VLSI Layout as Programming. ACM Trans. on Programming Languages and
Systems, July 1983.

Lipton, R.J., Sedgewick, R., Valdes, J.

Programming Aspects of VLS/. Proc. 8th Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, January 1982.

Sastry, S. and Klein, S.

PLATES: A Metric-Free VLS/ Layout Language. Proc. of the 1982 Confer-
ence on Advanced Research in VLSI, MIT, January 1982.

Vijayan, G.

Design, Implementation, and Theory of a VLS/ Layout Language. Ph.D.
Thesis, Princeton University, August 1883.

Vuillemin, J. and Guibas, L.

On Fast Binary Addition in MOS Technologies. Proc. of the IEEE Interna-
tional Conference on Circuits and Systems, New York, September 1982.

ORI > AP IIL s XA FPN

r.«

2

g Yok el o 3

IRt

)

L%

9 o us Y 3wy I oA

g,

Y

-~

> &

A Fast Tally Structure and Applic.ﬂons to Signal Proce-i.ng'

Peter R. Cappelio

Department of Computer Science
University of California
Santa Barbara, California §3108

Kennath Steiglits

Dspartment of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

ABSTRACT

We describe the design. layout. and simulation of a
recursively defined V1LS) chip, using s constraint-based,
procedurs! layout langusge. We use as an exampls the

lern of counting the number of 1's in a set of

= 1) input bits, where B is a power of 2. A regular,
recursive structure, called a unary-to-binary converter
(UBC(B)), tally circuit, or parallel counter, is described,
based on the original design of Swartziander. Ares from
the CIF plots and worst-case delay from simulstions are
given for & instantiations of the circuil, for
B = 4,0, 18, 32, and 84. The results verify the expected
esymptotic bebavior of the implementation as a func-
tionof B.

The high-level, procedural approach leads to s suc-
cinct and parameterized description of the eircuit.
Verification and simulation of different versions of the
circuit is much easier than with the conventional,
band-lsyout approach.

1. Intreduction

The purpose of this paper is to describe the archi-
tectural design, layout, and simulation of a recursively
defined VLS] chip. The empbasis will be on the design
metbodology. which relies on the VLS] layout language
CLAY (and its predecessor ALl) developed at Princeton
[7.8). We hope to illustrate the following points:

1) VLSI design and layout can be viewed at the highest
level as & programming task;

2) The procedura! approach leads to parametsrized
designs, and these parameters can be bound late in the
overall design process;

3) The paramseterization of a circuit layout aliows a
clesr svaluation of the functional depsndence of speed,
area, and power on critical circuit parameters, such as
sumber of bits, wire lengths, and pullup and pulldown
sizes.

4) The notion of regularity in ehip layout means in gen-
sral tbat the circuit has a succinet and hisrarchical

description, and includes more general structures than
simple linear or two-dimensiona! arrays of elements.

The approach lends itself particularly well to the build-
ing of paramsterized libraries (instesad of libraries of
rigid CIF cells), and ultimately can lead to a high-leve!
language for tbe design of custom signal processing
chips: s silicon compiler.

The particular computational element that we will
describe is known variously as s fally circuif, paralle!
counier, or wunary-todinary converter (UBC). and
appears to have been first described by Swartzlander
[1]. Applications to merged arithmetic and multiplier
design are described in [2,3], and asymptotic analysis
of the time and space requirements for the tally cireuit
and various of its applications is described in [4].

£. The Recursive Structure

The problem we want to consider is that of count-
ing the number of 1's on a set of (B - 1) input lines,
where B is an integer power of 2. We will refer to the
circuit that performs this task as unary-to-binary con-
verter with parameter B, or UBC(B). It bas e log, B-bit.
bit-parallel output. We will consider bere only an
unclocked, combinational circuit, for minimum latency,
but internal latching will increase the throughput at the
expense of latency. area, and circuit complexity. (See,
for sxampls, [5).)

The basic recursive structure we use for solving
this problem is shown in Figure 1. Inductively, we
assume thet the inputs sre applied ot the bottom, and
the outputs appear at the right. To construct UBC(B),
we place an instance of UBC(B/2) on the isf, another
instance on the right (mirror-reversed). and we add the
two sets of outputs in s spine of one-bit full adders
(FA's) that conatitutes a (logeB = 1)-bit full adder. The
outputs of the spine adder must be routed over the
right UBC(B/2). The basis of the recursion is simply
UBC(¢) = FA. & one-bit full adder (with 3 inputs and 2
outpuls). f N(B) is the number of FA's in UBC(B), then
N(B) = 2N(B) +logB - 1, with N(4) = 1; which lesds to
the solution N(B) = B « logB - 1. Similarly. the delay
D(B) of UBC(B) satisfles D(B)= D(Bs2)+ 2 with

'Enh-uwbynrmm:mmlm.u.l.m

Ressared-Durbam Grast DAAG29-82-K-0008

. 82d DARPA Canotract NOOO)¢-88-K-0540.

IEEE 1984 International] Conference
on Acoustics, Speech, and Signal Processing
San Diego, California
March 19-21, 1984

Y Rt S G S R 5 R b5 S AN

.) " e N A AT ; - AR
MBRIAGYT B S N S N A e e T A Y ey

.
,

Cd
n..:

[=]

o 3 A B ks 2l D K S it A

D(4) = 1 full-adder delay, so D(P) = 2ioges -~ 3 tull-
adder delays.

The implementation of the circuit is esaentislly a C
program of sbout 300 lines, which gpecifies the entire
chip down to the level of pullup and pulidown cells. It is
transisted into linear constraints and then into a CIF
fle by the CLAY [7.8] compiler developed at Princeton.
About one-third of the description is devoted to the
full-adder cell. which uses the random-logic design
described in [8]. Most of the rest of the code consists of
wire declarstions and simple wire-routing celis. The
language itself specifies only relative orientation of
wires and cells (left-to-right, top-to-bottom). and not
absolute spacing. The layout is genersted from con-
straints determined by a table of design rules, so that
scale changes and design-rule variations do not necessi-
tate re-design.

3. Nive Instantiations

At the time this is being written (December 1983),
the design has been carried through to the level of CIF
plots for N = 4, 8, 16, 32, and 84. Each design has been
tested for design-rule violations with the Berkeley tool
LYRA[9). and each design has bad its worst-case delay
path evaluated by the Berkeley tool CRYSTAL [9]. In
addition, the smaller designs have been verified at the
gate-logic level with a switch-level simulator. We plan to
submit the chips for fabrication in nMOS with A = 24,
after pad-routing is added.

We want to emphasize the fact that the only
difference in the CLAY descriptions for the 5 cases of
UBC(B) is the change of the one parameter £. The width
of the power and ground lines is calculated at each level
of the recursion, allowing 14/ ma. or the minimum wire
width 3A, whichever is larger. Since the description is
completely procedural, any circuit-size parameter can
be made a function of the level of recursion, or any
other program variable. All wire routing and placement
is done automatically, without an interactive display.

The CIF plots for the first 4 instantiations are
shown in Figure 2, one below the other, each to half the
scale of the previous.

4. Timing-Simulation Results

The CRYSTAL[P] simulstor was used throughout ss
e guide for inverter sizing. The fulladder bas one 3-input
NAND gete, six 2-input NAND gates, two inverters, and
four pullups, and these were sized by trial and error,
following the design methodology and conventions of
Mesd and Conway [10]. Future work will be directed
towards the automation of this pr . which becomes
much easier when a high-level procedural description of
the circuit is used. ¥With A = 24 nNOS parameters, the
present full adder bas a worst-case psth delay of 36.2
ns, takes area of 9900 A%, and has an estimated worst-
case power dissipation of about 2 mw. The design is uni-
form at all levels of the recursion, although the output
capacitive loading increases at higher ievels because of
the longer wires; clearly some speedup for the same
power could be achieved by increasing the size of the
outputl stages at higher jevels, but this bas not yet been
studied.

Jdeally, we would want the delay to be close to
D(B)*(36.2) ns. The extent that the delay is greater

T TN, P ol A S ,—‘-;'_.?'_ ?__‘.7'.,.“ e '_"'t‘"j"‘ ;.-.J_'_‘.j_-."‘. P j“ .-.. T T

- - -

than this indicates that the long wire routing is siowing
down the output stages of some of the full sdders. The
simulstion results show this eflect clearly. The measure
delay/D(B). the delay per full-adder stage. is listed
below:

B delay / D(B). ns
4 3.2
] 35.2
18 %81
32 90.3
64 454

We see that the long-wire loading becomes significant
only for B = 84, which is an extreme case -- the last
stage output wires for B = 64 are about 5 mm long, and
the entire circuit is too wide to fabricate. UBC(32) has
8 worst-case delay (CRYSTAL) of 275.1 ns, has 38 pins.
and represents the largest instance of UBC that we plan
to fabricate and test.

The structure bas the desirable property that the
fanout is constant for all the full-adder cells. This
enables us to keep tbe delay per full-adder stage almost
constant for B < 32. If the fanout did grow, however, it
would be easy to make the driver gizes a function of the
recursion level.

S. Space Bfficiency of the Layouts

The layout was constructed in s highly disciplined
and conservative way: for example. conventional invert-
ers are used, the pullups are straight and no wires cross
thern. metal wires are not run on_top of polysilicon or
diffusion signal wires. No hand-packing or hand-routing
was used. Thus, we can expect to pay some penalty in
terms of area utilization and speed over conventional
interactive layoul. In return, we gain in getting a com-
plete parameterization of the d«sign. and in the ability
to postpone design decisions unt.i the structure is com-
piete. For example, the inter-adder signa! wires were all
changed from diffusion to polysilicon at the last step.
with only a minor edit of the CLAY program. Similarly,
the power and ground wires were sized at a very late
stage. The situation is quite analogous to programming
in a high-leve! block-structured language, as opposed to
band-coding in machine language. In many situations we
are willing to give up a factor of of 2, say. in perfor-
mance if the design time and flexibility of the result is
greatly improved. We may also be abdle to gain back
some performance becsuse of the ease with which
parameter optimization can be carried out. On the
other hand, there will slways be situations where hand
optimization is necessary.

The width of UBC(B) is ideally proportional to B,
and the height proportional to log5. The sctua! values
ablained in the layouts are shown below, normalized to
e gingle full adder:

B width/ B height/ logB
1 1

4

8 1.69 1.67
18 2.08 1.90
32 2.27 2.07
84 2.39 2.30

Thus, the inter-adder wiring contributes a factor of
about 2 in both beight and width in this range of B,

bR eforTa

Y N e TV aTar s

which means that about one-quarter of the area is filled
with the full-adder logic. (For reference, the full adder
fits in & 163\ x 81A rectangle.)

The wide, low profile may be an sdvantage or a
disadvantage, depending on the application. In the
merged srithmetic structures it seems desirable to
bave a long, thin UBC which can collect partial products
tfrom an array. Packing schemes other than the one
shown in Figure 1 are of course possible. and each has
its own aspect ratio. The study of the relationsbip
between packing schemes and aspect ratioc is en
interesting ressarch question in itself.

The estimated mazimum steady-state power dissi-
pation is 2.38 watts 7 em? for UBC(8), and decreases to
1.09 watts/ cm?® for UBC(64). Again, the parameteriza-
tion of the circuit makes it easy to trade speed for
power. If a fabricated design is too bot, the re-sizing of
the inverters is a relatively minor programming change
for the next generation design.

6. Conclunions

We have outlined & high-level, procedural approach
to the design and layout of customn VLS] chips for digital
signa! processing. using the CLAY language[?7.8]. The
unary-to-binery converter was used as an example, and
instantiations for 3, 7. 15, 31, end 63 input bits have
been described. The worst-case delay from timing simu-
lations and the area utilization of the layouts bave been
given. ’

In many ways the approach resembles program-
ming in & bigh-level, block-structured language. as
opposed to hand-coding machine language. Thus, we are
able to study the eflects of varying circuit parameters
by simple program changes, after the design is strue-
turally complete. Ultimately, we hope to take advan-
tage of this circuit representation to study the
automatic optimization of structural parameters.

7. Acknowiedgements

We want to thank the VLS] group at Princeton for
support of all kinds, especially A. S. LaPaugh, R. J. Lip-
ton, J. Mats, S. C. Nortb, D. L. Souvaine, and J. Vaides.

(1] E. E. Swartzlander, Jr., "Parallel Counters,” JEEE
Trans. on Computers, Vol. C-22, No. 11, pp. 1021-
1024. Nov. 1973.

[2] --. "Merged Arithmetic,” tbid ., Vol. C-28, No. 10, pp.
948-950, Oct. 1980.

[3] —."The Quasi-Serial Multiplier,” sbid., Vol. C-22, No.
4, pp. 317-321, April 1973.

[4] P. R Cappello K. Steiglitz, "A VLS] Layout for a
Pipelined Dadda Multiplier,” ACH Trans. on Com-
puter Systems, Vol. 1, No.2, pp. 157-174. May 1883.

[5] P. R Cappello, A. 5. LaPaugh, K. Steiglitz, “Optimal
Choice of Intermediste Latching to Maximize
Throughput in VLS! Circuits,” Proc. 1983 JEEE
Mnternational Conf on Acoustics, Speech. and Sip-
nal Processing, April 14-18, 1983, pp. 835-938; and
IEEE Tvans on Acoustics, Speech, and Signal Pro-
cossing. in press.

fe) w. C. Holton. "The Large-Scale Integration of

Microelectronic Circuits,” Scientific Amewican. Vol.
. 237, No. 3, pp. 82-94, September 1877,

[7] S. C. North, “Molding Cley: A Manual for the CLAY
Layout Language.” VLS] Memo ¢3, EECS Depart-
ment, Princeton University, Princeton, N. J., July
1983.

[8] R.J. Lipton, S. C. North, R. Sedgewick, J. Valdes, G.
Vijayan, "VLS] Layout as Programming.” ACH Tans
en Programming lLanguages and Systems, July
1983.

[®] R. N. Mayo. J. K. Ousterhout, ¥. S. Scott, “1983 VLS!]
Tools,” Report No. UCB/CSD B3/115, Computer Sci-
ence Division (EECS). University of California,
Berkeley, Calif., Merch 1883,

[10] C. Meeaad, L. Conway, Introduction to VLS] Systems.
Addison-Wesley Publishing Co. Menlo Park, Cs..
1980.

Ngure Captions
Fig. 1 Recursive definition of the structure of UBC(B).

Fig. 2 CIF plots for the cases B = 4. 8, 16, 32. Each plot
is to half the scale of the preceding.

e L LA el Tl

o

v -
MR
‘.‘/l

- LA
A N '...\ s '.. .l,.:I.

ARALG
\.' 207

-.'.-"n'_‘-j"

;o

Coul NI
AR

»”

2
’f;) .:'.-"; ’)

<

t

Z

r" "A‘t)

P 7 A
ot L LA

>3

}

st v

€

o3

vec(e/2)

B/2 =] inputs

FA

LFA

FA

vec(s/2)

N

8/a-1 c'n'v*s

g B
oufgv ¢s

u\l;‘

.o - PTG
", q’ﬁg' \".'1 (\. R \-\-...i o ., - .h..'- - \-‘.q\ TR ESE SRR

Patre e s o il

puy ‘,..-.—\,ﬂ<

%

PE ¥ W Q¥ 34 §

-

IR BT
- B R ST

P

SOLVING SYSTEMS OF LINEAR EQUALITIES AND
INEQUALITIES EFF] Y

Jose M. Mata

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

Technical Report #318
March 1984

L : SOLVING SYSTEMS OF LINEAR EQUALITIES AND
INEQUALITIES mw:%nv

&
3 ’Q"‘\]
AN Jose M. Mata
N
X 2 Department of Electrical Engineering and Computer Science
R Princeton University
O Princeton, New Jersey 08544
,:':"'
y
oo
? \'_)
Lh Abstract
\ In many applications, like VLSI layout systems, we have to solve a
N system of linear constraints on two variables. Usually these systems
Lo involve millions of variables and constraints. If we have only equations of
S the form z; — 2y d (d>0), we can use the topological sort algorithm, that
Ej}j is linear in time and space complexity. Allowing alsc constraints of the
228 form z; — 2y = ¢ (¢>0) gives more power, but affects the efliciency in solv-
LAE ing. Algorithms for the single-source shortest path problem or for the
linear programming problem can be used, but they are not efficient
. }, 4 enough for the size of our problem.
}s" We present here an algorithm to solve systems of equations of the
!{;_.{- form z-2z;2d (d>0) and =z —2;=¢ (e>0), with time complexity
oK O((n+ny +v)n,), where n; = number of inequalities, n, = number of equal-
325 fties, and v = number of variables. It is specially efficient when the
;‘ aumber of equalities is small compared to the number of inequalities.
R 1. Introduction ~
"‘;,' In many computer aided design systems for integrated circuit design the
a0 specification of a layout is internally represented by a set of geometric con-
’ straints on the coordinates of the layout components [5] [7] [8] [11] [12][14]. In
Ry its simplest form these geometric constraints are linear inequalities between
Ao pairs of coordinates, and the z and y coordinates are independent. We can also
hy : have equivalence between two coordinates.
Py ; The geometric constraints relating the coordinates of the layout com-
£y, ponents are of the form:
. Z-z;2d (d >0, integer) (1)
oy 2=z
Ny
..ﬂ The number of layout components in usual circuit designs is of the order of
i 10%, which correspond to the same order of variables and constraints. The
‘.j_;‘ ‘ efliciency of solving this system of equations is important. that is one of the rea-
- . sons for choosing so simple equations to represent the layout.
3 The equations of the form 2; = z; can be dealt with in a preprocessing step.
;:_;.‘ by making z; and z; the same variable. This renaming can be done by using the
k% union-find algorithm [13]. So, from now on we will ignore such equations.
‘.' ' This work was supported in part by NSF Grant MCS-8004490, DARPA Contract N0OO14-82-K-
fad 0649, ONR Gran: N00014-83-K-0275, and CAPES-Brazil.
Wt
nil

IS TS SRS YS VLA Y R RS L OB

LAY

Let's consider equations of the form z; —z; >d. d > 0 implies that z; > z;.
The relation > is transitive. asymmetric, and irreflexive, so it establishes a par-
tial order on the set of variables z . We can then make use of the topological sort
algorithm [4] [10] to find a solution for the set of constraints if there is one, by
computing the length of the critical path to each node in a directed acyclic
graph. This algorithm has time and space complexity O(n+v), where n = number
of inequalities, and v = number of variables.

The algorithm builds a weighted directed graph G = (V.E) from the set of
inequalities /; as follows:

V = get of variables
E=f(z;xd) |z —z;2d €, §

We use the notation (a.b,w) to denote a directed edge from a to b with
weight w. Also, by length of a path we mean the sum of the weights of the edges
in the path.

However, there are two problems. First, as the space complexity of the
topological sort algorithm is O(n+v), for large layouts (large number of variables
and inequalities) we run into memory problems. Second, sometimes we want to
include in the layout some pieces of fixed size, and it is not possible to specify
that using only inequalities of the formz; —z; =2d (d > 0).

The solution to these problems is to allow constraints of the form
z-z;=¢ (e >0, integer). This allows the specification of pieces of fixed
sizes in the layout. By constructing the layout hierarchically (creating small
parts of the layout and using themn as pieces of fixed size in the next level of the
hierarchy), will solve the problem of large layouts.

So, our problem now is to solve efliciently a set of constraints of the form:

z-z;2d (d >0, integer) 2)
z -z;=e¢ (e >0, integer) (

The number of variables and inequalities can be huge, but for our applica-
tion the number of equalities is small, and it can even be limited. In the ALI2
layout system [8] [7] [13], each equality corresponds to a piece of fixed size
introduced. So, in the specification of the layout it is possible to control the
number of equalities generated, keeping it small (less than 100, usually). It is
also possible to control the number of inequalities by constructing the layout
hierarchically.

Note that the equality z; ~z; =e can be replaced by the inequalities
H-z;2eandz-z;<e .

Currently known methods for solving systems of linear equalities and ine-
qualities have time complexities which are polynomial of high degree, and are
not suitable for handling large number (millions) of variables and constraints.

One approach is to view this problem as a special case of linear program-
ming, with only 2 variables per inequality. In this case, a typical constraint has
the form

ax+bz;sc (abd.c are rational numbers) (3)

Algorithms for this problem are considered in [1] [9).

Other approach is to use single-source shortest path methods [2] [3] {6] on
unrestricted graphs, or equivalently considering inequalities of the form

2 -z;8c (c integer) (4)

SO LN S o TR s o

.............
.........

........

We can see that both the linear programming problem with 2 variables per
inequality and the single-source shortest path problem are more general than
our problem of solving a system of equalities and inequalities. In our problem
the coeflicient of the variables in the equations is 1, which is a particular case of
the hinear programming problem.

In order to use the shortest path method we construct a directed graph
from our system of equations: z; —z; > d corresponds to an edge (z;.z;.-d),
and z —z; = ¢ corresponds to edges (z;,z;,—e¢) and (z.z;.e). Shortest path
methods work on unrestricted graphs, while the graph corresponding to our sys-
tem of equations will have edges of positive weight only in conjunction with an
edge of negative weight, that is, if (a,b,c) exists, ¢ > 0, then (b.a.—c) exists.

So, it should be possible to find better algorithms to solve systems of equali-
ties and inequalities of the form (2).

2. The algorithm

We want to use the topological sort algorithm, since it is linear in terms of
time and space complexity. If we replace an equality z; — z; = e by the inequal-
ity 2, ~z; 2 e, we may get an answer that is not a solution to the equality. A
situation where the equality is not satisfled is for example:

2:=0 5 £3=5 -z 22
i~ = 4 & —%,25
Pid S3—2p=1
2 .71
=2

As our topological sort computes the length of the critical path to every
node, the value obtained for z; is the minimum value that z; can get. So, z;
should be at least the value of z; minuse.

Our approach is to introduce a new constraint z; > (value of) ~e for
each unsatisfied equality z; ~ z; = e , and do the topological sort again.

z,=0 5 83=5

a »
I nsw constraint: 2,2 4
2 _\- gt .
o-f

For theoretical purposes, we can assume that there is a source node s. The
constraint z; 2 4 would correspond to zp — § = 4. We also assume that there are
no constraints of the form z; =z, 2d or z; —z; = e, since they can be detected
at input time.

We claim that there is a solution to the system of equalities and inequalities
if and only if each time we introduce a constraint on z; and repeat the topologi-
cal sort, at least one equality will be satisfied and will remain satisfied in subse-
quent steps.

Note that if an equality z; ~ z; = ¢ is not satisfied then the value of z; must
be less than the value of z; minus . The effect of introducing a constraint
z; > (value of z,) - e is to move z; up; consequently, nodes that depend on z,

. - . - - b
e e o siiamnhad PP LY. Y, ORI

may move up.
The algorithm can be stated as follows:

Algorithm A

Al. Construct digraph G=(V.E):
V=s y |z | 2, appears on an equality or inequality |
E = { (2.2, w) |27, —z;2w or 2, —z;=w are constragints |

A2. Sort G topologically, computing the critical path to each z, ;
if cycle then "no solution”;

A3. while (unsatisfied equalities) and
(not all unsatisfied equalities in a previous step were unsatisfied in subse-
quent steps, not necessarily the same) do
for each unsatisfied equality z; ~z; = e
introduce z; - s > (value of z;) —e;
sort G topologically, computing critical paths;
endwhile;
A4. if (unsatisfied equalities) then "no solution”.

The second condition in the while statement is equivalent to saying that
there was some progress, or that at least one of the unsatisfied equalities in pre-
vious steps was fixed up.

By saying that all unsatisfied equalities in a step are unsatisfied in subse-
quent steps, we mean that each of these unsatisfled equalities will be unsatisfied
again later on, not necessarily all at the same time. Let's express this in a
different way. Let's call U, the set of unsatisfied equalities at step s, and R, ; the
set of all unsatisfied equalities from steps s to ¢, including s and ¢ (¢ 2 s).

Ry =UyvlUnu - - vl

B U, CRy4ye .t > 8, then at step ¢t we can conclude that all unsatisfied equali-
ties at step s were unsatisfied again.

3. Correctness

We want to show that if there is a solution then in the execution of algo-
rithm A eventually all equalities {and inequalities) will be satisfied, and if there is
no solution then all unsatisfied equalities in a step will be unsatisfied later on.
This guarantees that the algorithm always terminates with the correct answer.
These ideas are expressed in the following theorem:

Theorem 1:
There is a solution to the system of egquations if end only if not all
unsatisfied equalities in a step are unsatisfied in subsequent steps.
The proof of this theorem is contained in the next three lemmas.

Lerama 1:
If not all unsatisfied equalities in a step are unsatisfied in subseguent
steps then there is a solution to the system of equations.

o aamAa s s S 0ar: o am aaaa e

Bl e AN S ol £ o AR Dt d &

P o W R

2B M R o

PR Py

o o o

o
t}‘-", Proof:
o~ It not all unsatisfied equalities in a step are unsatisfied in subsequent steps,
that means that at least one of the unsatisfied equalities in that step will be
-~ satisfied in all subsequent steps. Let's assume that there are n, equalities. In
DS the first step there are at most n, unsatisfied equalities, in the second step at
t:-}.-j most n, —1, and so on. So, after at most n, steps all equalities will be satisfied,
e which means that there is a solution.
-::-:: . We can also derive from this proof that in at most n, steps we can find a
> solution, or detect that the equalities remained unsatisfied.
NN Now we have to show that if the equalities remained unsatisfied then there
A is no solution. We will need an intermediate result to do that. Let's consider the
S original digraph G. Let's construct G' by adding the edge from z; to z; labeled
A -e for each equality z; ~2z; =e. This corresponds to z —z;<e, or
20 z -z =-e.
[y Lemma 2:
':'.;;-:’ If there is a cycle in G’ of length greater than zero then there is no solution
T to the system of equations.
v
s Proof:
« g The cycle can have 0, 1 or more edges of negative weight.
3 -
A =
v .
N - -
- %
) ﬁ"ﬁj
; 'f'::,". a] ¢
S
4 . " a) If the cycle doesn't involve cycles of negative weight, that means a cycle in
o G, that is, no possible solution.
_:'.Cj-f b) If the cycle involves one edge of negative weight then the endpoints of this
i-.j,'-: edge are variables involved in an equality. If the length of the cycle is
U greater than zero, then there is a path from z; to z; of length greater than
, ¢, that is, the length of the critical path from z; to z; is greater than e, so
o z; — z; = e is not possible.
ﬁj-f-j-_ c) An edge from z; to z; labeled —¢ means that wherever z is, z; should be
:}:;s. below z; separated by the exact distance e. let's take a negative edge
o (zi.z;) in the cycle containing more than one negative edge. Again, the
N length of the critical path from z; to z;, considering negative edges, is
Lo greater thane, so z; - z; = e is not possible.
CAGA
o Lemma 3:
:c‘,.-;:, If all unsatisfied cql{.amies in a step gre unsatisfied in subsequent steps,
4'-‘.',: then there is a cycle in G'of length greater than zero.
..
’
o
o
T
1)
e
4*

..................

! .(! R PP U
L) - - - e m” DIPL PE E IPL PR PR I SO TR T St | B e et e N Tt e s T e x PP L)
!1‘}“ (IS Wi ¥ ‘# 3 “ oy ' .Q' .’. "y ol "',.f - _.‘. oA S DA ."-'q L., DRI MR > ha . Sl RN .

Lo, A d, Y

PPl Bl e AP i Y -

WXV e s SN

Proof:

Let's first consider the situation in which no z; a:ppears in two equalities,
that is, the equalities are disjoint.

When an equality z; —z; = e is unsatisfied we introduce a constraint
z; > (value of z;) —e; if after the next solving step z; has the same value as
before then the equality will be satisfied (remember that there is an edge from
x; to z; labeled e). If the equality is unsatisfied in a subsequent step (not neces-
sarily the next), that means that z; moved up.

Let's assume that at step s there are m unsatisfied equalities, and at step ¢
(t > s) we conclude that all those equalities were unsatisfled again. That means
that each z; involved in one of the m equalities z; ~ z; = e moved up; in other
words, the critical path to z; goes through some new edge corresponding to a
constraint introduced.

If z; goes up because of a constraint on z; (z; — z; = e), then the critical
path from z; to z; is greater than e, which corresponds to a cycle of length
greater than zero in G'.

The only possibility is that z; goes up because of a constraint introduced for

other equality.
B %1e %im

Note that the effect might not be immediate, that is, a constraint on z;
forces constraints on other z;'s, which finally forces z;, to move up.

So, in G’ there is a (critical) path from z; toz, .7 #s,for 1Sssm. We

first want to show that this corresponds to a cycle in G'. Let's consider the
directed graph constructed by taking as nodes each pair (z(.z;). 1ss<m,

and drawing an edge from (z,,.%;,) to (z(.z;,) if there is a (critical) path trom z;_
toz, inG'. r #s. The in-degree of each node in this new graph is at least 1. If

there was no cycle in this graph there should be a node with in-degree 0 where
we could start a simple path. As such node doesn't exist, we conclude that there
is a cycle in this graph, and correspondingly a cycle in G'.

Let's consider one cycle, with g vertices.

LY A AN g . » - T VO P TS T P YR LSRN S TR S
5!.1‘\\‘! lhll . 3 .u :.h PN ..I'-‘\‘.'.'. [3} AINN AN e Y Na X WX N ‘. %, . , -'1'., '!' ".

‘ Ll Y v et et R ~ T AN .""K L QRN SRS - H’.‘T\F "-_‘— ettty T w -"_-'_:'.':-‘ .'- - .'. -“_T
- AR
LY
-‘..q‘:
2L
= -7
(.
0
o
o>
("-q'
3 '.'\
o ~. -
P
::".:' 14| Ce Cq
o
b
MG d, = length of the path from z;, to z, ..
:ﬂ- cx = value of ¢ in the last constraint z;, 2 ¢ introduced for z;, .
o\’
LSEN
;. Because of our assumption that z; goes up because of a constraint on z; .
adke r # 5, the critical path to z goes through z;, and we can write for the last step
AN (step t):
., .
\"-
‘c}\
\f C|+dl§0g+'g
>
N
‘ cg + dg 2Ccg+ eg
A
e
; / \I.‘
S cgtdg2c,+e
::", There is at least one unsatisfied equality in the last step, so at least one of
) the above > should be >. Let's consider

Cp +dp >Cpyy + 8y,

Summing up:
o

v

1,.\".':-7 (2‘—' —-cp) + (Xd - dy) 2 (Xe =cpa) + (Le - 8p+1)

A
ek

b cptdp DCpyy +ep,, ===> Yd>Ye

FAS

,.-_‘.c
"'-::: Considering the digraph G'. this implies that there is a cycle of length
o greater than zero.
In the situation where the equalities are not disjoint, the proof of lemma 3
e proceeds the same way. If z, appears in two equalities we replace z, by z,, and
.9 z,, and assume there is a path from z;, to z,,, and from z,, to z, , with weight 0.

...............................

.................

This way we can consider the equalities disjoint, and the proof of lemma 3 holds.

Lemmas 2 and 3 imply that if there is a solution to the system of equations
then not all unsatisfied equalities in a step are unsatisfied in subsequent steps.
So, the proof of theorem 1 is completed.

4. Complexity

Let n; = number of inequalities, n, = number of equalities, v = number of
variables. The topological sort has time and space complexity = O(n; + n, + v).
Checking if equalities remain unsatisfied takes time O(n,) and space O(nf). The
while Joop in algorithm A is repeated at most n, times. So, the worst case com-
plexity for algorithm A is:

Time complexity =0 ((n; +n, +v) n,)
Space complexity =0 (n; + nl +v)
If the number of equalities is very small compared to the number of ine-

qualities and variables then the algorithm is almost linear in the number of ine-
qualities and variables.

5. Characterization of the solution

The system of equalities and inequalities may admit an infinite number of
solutions. We claim that if there is a solution then algorithm A finds the solution
with mininum possible value for each z, .

Theorem 2:
The solution found by algorithm A has the minimum possible value for each
variable that satisfies all equalities and inequalities.

Proof:

In order to construct the graph upon which algorithm A works, the equality
z; — 2; = e is replaced by the inequality z; — z; > e. The value obtained for each
variable, after the topological sort, is the minimum value that satisfies the ine-
qualities, since our topological sort computes the length of the critical path to
every node.

When we introduce a constraint z; 2c, ¢ = (value of z)-e, for
Z - z; = ¢, that means that z; must have the value at least c, that is, there is
no solution with z;<c.

Let's assume that the solution found by algorithm A is not the minimum
solution. Then there should be some variable z, with value a in the solution,
z,=a, such that there is other solution with z, =a’', a'<a.

- s

zy z
¢ ¢ a a

z, moved up because of a constraint introduced, that is, in our graph the
critical path to z, goes through some edge (s.z;,c), corresponding to z; 2 c. As
we didn't change the length of the path from z; to z,, the solution with z, = a'
should have z; = ¢, ¢’ <c, which is not possible. By contradiction, we conclude
that the solution found by algorithm A is the minimurmn solution.

e et
Y % % \ [

TN AT AT AT NN NN NI b W S SRR AT A ST S R P e T

.
a"a"a"aal

e ;
8 o e e 0
& .
.

“y b v al ey

A MR

et

o
L)

‘o
g
»
f
.‘%

6. Implementation considerations

The topological sort doesn't have to be done many times. If we split it into
sorting and assigning values, we can do the sort only once, and the assignment
of values each time we introduce new constraints. This assignment of values
involves traversing the edge list for nodes that have their values updated. We can
start this process with the first node in the ordered list that was involved in a
new constraint.

In order to check if unsatisfied equalities remain unsatisfied we can have a
bit vector for each step describing which equalities are not satisfied at that step.
Equalities that are unsatisfied in subsequent steps have their corresponding bits
reset. If the bit vector becomes zero then all unsatisfied equalities in that step
remained unsatisfied. .

The algorithm has been implemented in the ALI2 layout system [14], and is
faster than we expected.

7. Conclusions

We presented an algorithm to solve systems of equations of the form
z-z;2d (d>0), and =z, -z;=e (e >0), with time complexity
O((ny+n, +v)n,). This algorithm is specially useful when the number of equali-
ties n, is small compared to the number of inequalities n;, as it is the case for
many constraint-based VLSI] layout systems.

With this algorithm co solve the set of constraints, we can construct a truly
hierarchical layout: we can have hierarchy not only at the specification level but
also at the constraint level. This allows the construction of large layouts without
having to deal with large sets of constraints. It also allows the introduction of
pieces of fixed size, produced by other layout tools.

Acknowledgements

Thanks to Prof. Andrea LaPaugh and to Alfred Huang for helpful discussions,
comments, and suggestions.

References

[1] Aspvall, B. and Shiloach, Y.
A Polynomial Time Algorithm for Solving Systems of Linear Inequalities
with Two Variables per /nequality. SIAM Journal on Computing, Vol. 9, No.
4, Nov 1980.

[2] Bloniarz, P.
A Shortest-Path Algorithm with Expected Time O(nflognlog®r). SIAM Jour-
nal on Computing, Vol. 12, No. 3, Aug 1983.

[3] Johnson, D.
Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the
ACM, vol. 24, n. 1, Jan 1977.

[4] Knuth, D.
The Art of Computer Programming, vol. 1. Addison-Wesley, 1971

[5] Lengauer, T. and Mehlhorn, K.
HILL - Hierarchical Layout Language, A CAD System for VLS Design. TR
AB2/.0, FB 10, Universitit des Saariandes, Saarbriicken, West Germany,
1982.

(6]

(7]

(6]

[e]

-10-

Lengauer, T.

On the Solution of Inequality Systems Relevant to JC-Layout. Proc Bth
Con!. on Graphtheoretic Concepts in Computer Science. Munich, West Ger-
many, 1982.

Lipton, RJ., North, S.C., Sedgewick, R, Valdes, J., Vijayan, G.

VLSI Layout as Programming. ACM Trans. of Programming Languages and
Systems, July 1983.

Lipton, R.J., Sedgewick, R, Valdes, J.

Programming Aspects of VLSI. Proc. 8th Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, Jan 1982.

Megiddo, N.

Touards a Genuinaly Polynomial Algorithm for Linear Programming. SIAM
Journal on Computing, Vol. 12, No. 2, May 1983.

[10] Moder, J. and Phillips, C.

Project Management with CPM and PERT. Van Nostrand Reinhold Co., 1864.

[11] North, S.

Molding Qay: A Manual for the CLAY Layout Language. VLS! memo #3,
Princeton University, July 1983.

{12] Sastry, S. and Kein, S.

PLATES: A Metric-Free VLS/ Layout Language. Proc. of the 1882 Confer-
ence on Advanced Research in VLSI, MIT, Jan 1982.

(13] Tarjan, R.

On the Efficiency of a Good dut not Linear Set Union Algorithm. Journal of
the ACM, Vol. 22, No. 2, 1975.

[14] Vijayan. G.

Design, Implementation, and Theory of a VLS! Layout Language. Ph.D.
Thesis, Princeton University, August 1983.

38
ey e
.40
s

RLANIR
~ Tk

