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This paper shows how to predict the minimum or other life of material
limited by cyclic crack growth and crack failure as a function of the different
sequences of amplitudes of loading that may occur under random, quasi-random,
or controllable loading conditions. It is assumed that the incremental growth,
as well as the criterion of failure, is independent of the history of loading
and environment. The method covers the most commonly used law of crack growth
and of crack failure. It is obviously applicable to other cyclically induced
cunulative phenomena, e.g., degradation as in erosion or thermal fatigue.
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3 INTRODUCTION

3‘ If one accepts some of the most common types of laws for rate of crack

-growth and crack failure, including the assumption that incremental growth is

N
,S: independent of the history of loading, one is in a position to address himself
‘ﬂ to some important questions of general behavior, including that of the effect
>0 on crack growth and life of different types of loads.

Eg ' In particular, we are concerned in this paper with the effect of load

L sequence on crack growth and failure, in cases where the loading is a

{k spectrum of loads of different amplitudes. To take an example, let us

Eg suppose we have a gun or other tube, containing a small internal crack, to

if which a series of internal pressures, some high, some low, are to be

EY

applied. We may ask, will the ultimate crack growth be less if the high

Vel

fi pressures are applied first, when the crack is shortest, than if they are
o

b applied last, when the crack is longer? And, since crack length and stress
\Q may be simultaneously significant in cataclysmic, e.g., Kyc failure, what
A

.S sequence of loads will give the shortest life? And is this serious

& condition likely to occur under random loading?

. Also, are there circumstances such that for growth under many cycles
'g of loading, sequence of loading is unimportant? If so, what is the

? equivalent steady stress that gives the same growth per cycle of stressing
: as does a spectrum of loads? What do we mean by the term cycle of stress-

ing for an irregular spectrum?

It is to such questions that this paper is addressed. Our treatment has

AR

been heuristic rather than mathematically complete; it is hoped that a method of

treatment of such questions has been made sufficiently self-evident that the

s x A Ay

reader can use it for himself, for his own particular problems, if he so chooses.

b

}

. ';’J‘ T o
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CONDITION FOR MAXIMUM AND MINIMUM CRACK GROWTH

< The growth Aa, of a crack of length "a', per cycle of nominal loading
N )
SRR stress, S, is commonly given by
0
Lf- /2
m 2., m
Aa/cycle = C1 K" =C, s™ A" YC , m> 2
éi?
- in regions of K or "a" where the C's are constants and K is the toughness
§1f stress*intensity parameter. S as used in the above formula is usually taken
: to be S -S . , where S is the maximum and S . the minimum stress in a
oo max “min max min
ﬁi? cyvcle of stressing. If the loading spectrum is irregular in shape, we define
e
:? each rise in stress as a cycle. Yc is a parameter, constant or increasing*
with increase in "a" and expressing the geometry involved, such as 1.1215
Ny
‘O for an edge crack or 1/Vcos ma/w for a central crack in a plate of width w.
..1
i x We assume that the constants C, and C, may be different in different regions
5 of crack length and, correspondingly, that there may be sudden transitions
)
N
1 in the rate of crack growth as a crack grows longer. Though we have some
?: exceptional evidence ¢< sudden decreases in rate, this finding should be
e further investigated, and we shall assume here that the rate does not
s
o) . .
‘;g decrease with crack growth. Furthermore, we restrict ourselves to cases
.
l.’. 1
~ where the loading stresses are tensile, thus avoiding the complication of
- complete crack closure by compression and ambiguous experimental results.
%
BA, " Thus, for N stresses, S (=S __-S . )
» max min
o
At 2/ 2ym 2
vt c
,';j'-: E over N stresses, S
59
“w
e *For cracks leading to failure; this restriction eliminates cases of crack
X closure resulting from crack growth toward a negatively stressed region.
e
X
o
| 2
""
. g,
%2
. Y - LY LSRN $1\- * Y e, -‘_'-'.‘-‘\",.d‘..-.'"_.-'.‘-‘.‘- \f.--'.‘-‘ MR SR R




and the sum on the left must increase, as will "a" when the sum on the
right increases with additional cycles of S.*

Thus '"a" will be greater at any stage of crack growth, the larger the
sum on the right. And the latter sum will obviously be greatest if the
largest values of S, occurring in the entire spectrum of loading, are
crowded into it (independent of order, so long as thev are the largest).
Therefore, with the above law of crack growth "a'" will be maximum up to any
number of cycles, N, if the largest occurring values of S are used up, in
computing the sum up to the N stresses, on the right. And if, on the other
hand, the smallest values of S are used first, "a" will be minimum.

The intermediate cases of crack growth for n cycles may be found, in
order of severity, by progressively decreasing the sum of the n stresses on
the right. The probability of occurrence of any number n of selected loads
out of a total of N occurring in a representativet cyclic graph of loading is

n! (N-n)!
N!

P =
The final value of "a", i.e., the total growth corresponding to use of .
all the cycles of S, is a fixed value, independent of the order of applica-

tion of the stresses, S.

*In conformance with restrictions made up to this point, it will be observed
that we confine ourselves to the case where the increments are linearly
additive. That is, we confine ourselves to laws of growth for which the
incremental growth per load application is independent of the history of
loading and environment. Later on it may be noted that we have implicitly
restricted our failure criteria in the same way.

t''"Representative' here means long enough to determine frequencies of occur-
rence of all loads. Although the loading spectrum of a machine under test
may be controlled, in practice one is interested in ensemble characteristics.
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jﬁ: Figure 1 illustrates by a simple example the above formula for an
Lﬁ initial crack length a = 1 and a loading stress sequence of three cycles,
ot
>4
;;; S=1, 2, 3. (The stresses and lengths may be considered to be measured
)
\.' . . . . . . .
e in any units the reader desires, e.g., S in ksi, "a'" in inches.) It
\ .
i demonstrates the method of computation for "a' as well as the Aa/a of the
::% above equation, and shows the equality of both sides of the equation.
}tk Our argument above will perhaps be made clearer by considering the
\ above growth law expressed in integral form. This representation is
._ .
N possible because the steps Aa are very small and numerous. We have
Sﬁi: a N

' da _ m
s / Wz - © / 5T aN

W e a Y

SN a c 0

AN o

g .

Q% Suppose, for simplicity Y_is constant.

P2 %%

Rt Then
\. if m>2 m/2-1 N

) 1 - (a_/a)

o g = C s™ aN
L Y. a2 Ymrz -1y 2

A o

A 0

.

i if m=2 N
N '~ — -2 2
b\, Y n a/a_=C S® dN

?.'J Cc o 2

2

0

R

%;g Here 'a" is the crack length after any specified number, N, of
%4

Xy

‘&2 cycles of stressing.* In either case, m > 2 or m = 2, the larger "a" is,
AL
f'» the larger the left hand term is, and this will be greatest when the
:j: integral on the right is greatest, that is, when it contains the largest
..,.l
]
e values of S. Thus '"a'" is maximum when the integral on the right contains
R
. the largest values of S.

W g . :
#jh *So long as '"a" remains in a region where C2 is constant,

')
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:; Stress, S 0 1 2 3
N 52 0 1 4 9
«~

* 2

. zS 0 1 5 14
& 2

o Aa=S"a 0 1x1=1 452=8 9x10=90
' N s

el a=a +r4a 1 1+#1=2 = -—> 2+8=10 10+90=100
N

N Aa/a 0 1/1=1 8/2=4 90/10=9
4

E Iha/a 0 1 5 14
ﬂ Figure 1. Simple Example. Growth Law Aa/cycle of stressing = Sza.
] Crack Length a = a5 + I S2a and I Aa/a = £S2 for N = 1,
{ 2, and 3 Cycles of Stressing.

3

by Clearly the order of application of these (N) selected largest

;; stress cycles is of no importance since the integral on the right may be
i} conceived as an area made up of the sum of small rectangular areas of

i base dN and height Sm, the order of addition being inconsequential.

Abrupt changes in C upon reaching certain crack lengths, represent-

ing transitions to higher rates of crack growth as the crack grows longer,

. LA S AL

do not invalidate the above conclusion. For, obviously, we wish the crack
to have a maximum length up to the transition and thereafter we may con-

sider the transition point with its associated crack length, as the start

A8 B

of a new problem. Pushing the transition points closer together, we

approach the case of a continuously increasing C.

[ iy,

Analytically, if C is an increasing function of "a", it will go under
the summation of integral on the left, as Yc does, but obviously will not

invalidate the above conclusions.
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In this respect, it may be satisfying to consider the writer's
crack growth law with transitions. The crack growth laws between transi-
X . . . . 5 s M_.m m/2

tions are like those just considered with m=2 in K ~§" a but the
constants are theoretical. The constant in any region is double that in
the preceding region and for constant loading stress, the crack length at

any transition is twice the length at the preceding transition, i.e.,

ﬁn =" 50. These crack growth transitions ﬁn, N , on an "a" vs N plot
fall on a hyperbola
N-N_ = 2(1:“2 (1 - 3 /a)
th

where a_, N are values of a_, N .
0o’ o n’ 'n

"50" is a length characteristic of the material considered. For some

materials the usual initial crack length in common crack growth specimens

does not greatly differ from 50. In this case N0 = 0, of course.

4/3 4/3 1.\2/3
a2 2\1/3 2 1 1 2
o est= (5 (=7 (6]

where E is Young's modulus, u is Poisson's ratio and Y is the yield strength

under cyclic loading corresponding to stress* S.

*The above formulz for Ctp is for the usual case of very small scale yield-
ing near the crack tip, thus for small S/Y ( = S,/Y), or, more generally,
for isotropic loading S = Sy with essentially isotropic yielding.

A more generally applicable formula for the case where the loading stress S,
along the crack, and the loading stress Sy perpendicular to the crack, rise
and fall together is

(2/3)1/3 [E/(l_u2)1-4/3 Y~2/35y2
C =

{1 - o372 s, 10 - s /51

(This formula is the same as it was in the corresponding footnote of the first
(1977) issue of this report except that a term then supposed to render the
formula applicable to orthotropic yielding has been removed.)
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;«
. For simplicity, it is this hyperbola, which is periodically correct,
( that we consider as our growth law, instead of the actual law with transitions.
X4
. Differentiating N,
~
" -
:; dN 212 % .
] ~— = ——= —= (S = Const. for each increment and cycle of
2 da C
th a crack growth.)
J
:i . Hence
o
Q‘ 1 -
(21n2) a Aa —czsz
. 2 -
\ a
’ N stresses
)
N 2 L.
.4 where C = Cth/s = Const. Or, in integral form,
L
»
t.~ a N
T‘I _
Yo
i: lEZan) a_ da e 52 "
- 'é az i
A o 0

o>

B i.e., N

P

g 2
(21In2) (ao/ao) 1 - ao/a) = C S° dN

E Y 0

o

(Note that m = 4, page 4, also gives an "a" vs N hyperbola of this shape,
with stresses to the fourth power instead of second power as here, a

! difference not noticeable in constant stress tests in which growth rate
constants are determined empirically.)

o The form of these expressions validates the conclusions already
drawn. The maximum crack length up to any number of cycles corresponds to

application of the cycles of greatest stress, independent of order.

Q™
)
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e Figure 2 shows the effect of lecad sequence by extending the simple
example of Figure 1 to all possible sequences of the three loading stresses

;; given there. Since there are three distinct loading stresses, there are

six cases in all, S=1, 2, 3;: S=1,3,2; S=2,1, 3; S=2,3, I;

w $=3,1, 2; S=23, 2, 1 for the first, second, and third cycles,

;é respectively. As noted, equal crack lengths result from application of a

N set of loads independent of order of application. Up to any point, use of

the largest loads results in greatest 'a'" and use of the smallest loads

»~

a:: results in least "a'".

g

;:: It is not difficult, in some cases, to satisfactorily approximate a

@ spectrum of numerous loads, which may be applied in any sequence, by a

:i few loads such that the effects and frequency of application of

‘3 different load sequences may be easily handled and visualized without

‘}‘ the aid of a large computer. Thus, for example, since d 1In a ~ s™ dN with

EE YC = Const., in the rate of crack growth formula, if there are N, My e N

{i numbers of stresses Sl’ 82 v So’ respectively, we might form the products
n Sm, n. S® eesse N Sm, then omit any stress levels for which any of these

i 1712 7272 o "o

3:3 products are unimportant compared to the remainder, then lump the remaining

o

;:: stress levels into a few which are applied for the total number of cycles con-

ﬂ tained in their components, e.g., for stress level p, of these few

g? o nxsz L T s" + etc.

_f P n+n . *etc

;; applied for the number of cycles np equal to the sum in the denominator of

:p the right-hand side.

Figure 3a is an illustration of crack growth where stresses are applied

"~ repetitively, for an m = 2 crack growth equation.
-F..
\
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Stress, S 0 1 2 3
Aa=82a 0 (MHM=1 (4 (2)=8 (9)(10)=90
Yo gy
oy - a=a_ + Zda 1 1+1=2 =—=2+8=10  10+90=100

Q8 o
T
>4

- 2. S 0 1 3 2
,... Aa 0 (1)(1)=1 (9)(2)=18 (4)(20)=80
S a 1 2 20 100
-
< 3. S 0 2 1 3
0 ha 0 (4)(1)=4  (1)(5)=5 (9)(10)=90
0y
£,

X2 a 1 5 10 100
e

L,

' 4, ) 0 2 3 1
o Aa 0 (4)(1)=4 (9)(5)=45 (1)(50)=50

-_J,

&l a 1 5 50 100

"

S. S 0 3 1 2
*3

s Aa 0 (93(1)=9 (1} (10)=10 (4) (20)=80
o
%

N a 1 10 20 100
- 6. S 0 3 2 1
I
el Aa 0 (9)(1)=9 (4)(10)=40 (1) (50)=50
.y .

) a 1 10 50 100

« »

o Figure 2. Example: Effect of Sequence of Loading Stress S on Crack Growth
] Aa/cycle of Stressing=S2a. Initial (S=0) Crack Length, a=1.

\: S=1, 2, and 3. Note Independence of Order of Application, e.g.,
:4 a=100 for S=1, 2, and 3 in all cases and a=10 for two cycles,
LA S=1 and 2, Cases 1 and 3.

:
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EQUIVALENT STEADY STRESS

By the term equivalent steady stress applied to a cracked specimen,

we mean a cyclic stress of constant amplitude whose application would
result in the same crack growth as that due to any specified portion of
a loading spectrum of irregular amplitude, if the number of cycles of
load application were the same for each type of loading.

As so defined, it may have different values for portions of the
spectrum made up of different loads, but it will have a unique value for

the whole spectrum since this includes all the loads.

The expressions for equivalency are apparent from the summation or
integral expressions we have already obtained. Since for both the constant
amplitude steady and the irregular stress the crack growth is to be the
same, the left-hand sides of these expressions must be the same whether
produced by a steady stress or an irregular stress. Thus if there are Nr
cycles in the portion of the spectrum being considered, and if the steady

equivalent stress is Seq’ the sum or integral on the right must be equal

0 Nr stresses, S.

for the power laws; m = 2 for the envelope hyperbola.

Thus if there are n, stresses Sl’ n2 stresses SZ’ .o

n_ stresses S_,
1 T T
such that )
i=r
n. =N ,; n/N =f
:E: i T’ / T i
i=}
10
TS LTI 22 A o e VR, 8 v, 5, T Sk, SR G (R U SOy
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4

>

“~
b

)

2
s Part A
\ With da = 32 a/100
. ca
aN
‘.. ln a,/a = 82 n,/100 In a./a, = 52 n./100 ln a_/a, = 52 n,/100 "
N i U NS Uhip | 2/%1 7 72 M2 3% 7 233 !

o 1n az/ao = In al/ao + In az/a1 In 33/3o = In ::12/51o + 1n 33/82

v ;

Y, L K

< Region, i, 0 (Start) 1 2 3

\ "
Cycles, ni 0 10 2 1

. S. 0 1 2 3 N

i ~
& 312 n./100 0 0.10 0.08 0.09 -
A‘ L}
2 18 n /100 0 0.10 0.18 0.27 :

> ) :
ol ln a./a. ,(=S.n,/100) 0 0.10 0.08 0.09
-_:; i"%i-1V""104
2
Lin a./a.. . (= = = =
,*‘; i/8;:7(=28{n./100) 0 Ina/a = 0.10 In a,/a=0.18 Ina /a = 0.27 :

5 ;
R 3 a =1 a, =1.11 a,= 1,20 a, = 1.31 2
s ) 1 2 3 X
fagi ¢

.‘

d B .
i':‘ Part :_
._3 Let In, = N (=13); n /N, = f;

4%

- 2 2 2

- 1n as/ao = (S1 n, + S, ny + S3 n3)/100

]

' 2 2 2 2 .
i:: = (S1 fl + S2 fz + 53 fs)Nt/IOO = Seq Nt/IOO :
L ® o
l‘.' *
o Thus 62 _ g2¢ , g2¢ 4 g2fF = 1 (10/13) + 4(2/13) + 9 (1/13) = 27/13 :
:: eq 171 272 33
2o Seq = 1.4
\x: Figure 3. Example with m=2, da/dN=S2a/100. Amplitude (Part A) and Equivalent N
Ny Steady Stress (Part B) when nj Cycles of S;, ny Cycles of Sy, and .
T n3 Cycles of S3 are applied in succession.

A X
A
ot 11

.l

[

N
Far

e

OO S NOL R MR WAL Ty




we have®

m m
n1 S1 +n252+ .

= m m m
= (flsl + f282 + ...+ err) Nr

m m n
S1 + f282 + ...+ fr Sr

in which m = 2 for the hyberbola envelope law as well as the m = > power

law.

(RSN
20
A A

Figure 3b shows the calculation for Se for the simple case of Figure 3a,

:'?J

'.

where three loads were applied in succession for different numbers of cycles.

PN

[

For another example, suppose that the distribution of frequencies is

)
PR -

N,
LA A

)

Gaussian in Nr cycles, o being the standard deviation.

YA N

where S is the mean value of the cyclic stress rise S = S -S., so
H max min

that

[(S-S)+S]andthus
u u

§ AAKA
¢ RN,

2

o’”/ $-S s, | m
V2r all'* 5 e
oIll S \m X
L (xe) (£

*See Appendix for a cyclic relationship in lieu of equivalent stress.
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A where X

(S-Su) /o

[}~ o
t

Since the lower limit (least value) of S is zero, the lower limit

FABR

of X is - {Su/o).

. .
Vo, N NS,
2Peta’

If this and the upper limit are large, we may assume the integration is

* « e & -
e v % e Nt

between -« and + «,

i

PPN
e,

>

Let us assume this is the case and that m = 2. Then
4 2
2 S S X
K| si = = I:x2 +2x-k +(-§-)Z]e"p (‘ 'Z_)dx
'-,:: q /Z‘r

The exponential function is positive and symmetrical about X = 0 so

v
bp

-

-~

that the middle term in the brackets makes no contribution and we have

" 3 "
SZ - 02 . SZ N Gaussian Seq
eq u €
Naturally, if o is zero, there is' no scatter and Se =8

The case of the parabolic distribution, with its finite cut-off, is

treated for general values of m as part of the problem of probability of

failure.

PROBABILITY OF FAILURE

In this section we consider, in an illustrative way, the probability
of failure of a piece of material containing a crack or notch and subjected
to the various succession of loads of a given spectrum of loading. It
is presumed that the piece will fail when the loading stress reaches a
critical value, Smc. In current cases of interest concerning cracks,

this value of Smc is commonly obtained from an association of critical tough-

ness value, KIC' and crack length, The latter depends on the number of cycles
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of loading together with the equivalent steady stress to which the piece

has been subjected. The practical limitations of this approach to SmC and

:’ probability of failure will be briefly considered along with notch failure.

We first consider the case of random loading and then a class of

ordered loading. In the latter case we consider, in particular, the effect

of the condition for maximum crack growth.

1. Random Loading

Let us assume that the distribution of both the maximum stresses Sm,

S =8 , and the stress rises, S = § -S . are parabolic* with the same
m max max ~min

standard deviation o. Let Smu be the mean value of Sma and Su be the mean

X

value of the rises, S.

Thus, for the maximum stresses

e s -s_)°
_ 35 m “my
F2g0 |17z [ 5 GaSy) 208

0 for S 2 ov5 and for S, < -a/5

.
§;‘ with f
'b'
“O

so that the probability that Sm > Smc is

= (3/5/20) {2/573 - [}Smc-smu)/o] [l-(l/lS)(Smc-Smu)z/oz]}

*Note that the constants in the expressions used below are not the same as
that of the peak region of the Gaussian distribution. Here o is the o of
the parabolic distribution, not the o of the Gaussian.
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for -0¥5 s (S -S_ ) < o5,
m my

with P = 0 for Sy 2 ov5 and for S, S -0v5,

Similarly for the stress differences, S =S -S . ,

max min
2
(8-S )
f=§§ 1 - —Y |, -ov/5 < (S-S ) < o/F
200 2 - TR
LYe;
with f = 0 for S » o¥5 and for S < -ov5,

so that the equivalent stress, Seq’ is given by

/5 o
(5~58.)
" N = s"n (35 - 2 | acses )
eq T T \ 200 so2 "
-ov/5

where the crack growth per cycle is proportional to s,

Since
™ = (x+s )™ with X = S-S,
u u
+av/5
2
m _ 3/5 m X
Seq = 200 (X+Su) 1l - g—? dX
o
-0v/%

§(m+2) [(6+r)““2+(-s+r)“”2] - r[(5+r)""‘2-(-s+r)'“"2]

&5 (me1) (m+2) (me3) (2/3)

where § = 0/5 and t = Su.
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RAn

-
g .
a)
(-7
‘:':: Thus* if
% m=1, Seq = S‘J
ﬁ m=2,82=52+02
eq u
% m=3,53=53+3502
eq u H
: m=4,s" =s*s65%%+ as/7) o
. eq u v
.-" The form of the expression for seq for m = 2 is the same as it is for the
o
e Gaussian distribution which we derived heretofore even though the approximate
\'.-
k form of the peak region of the Gaussian, which is also parabolic, has different
’3 constants.
Ty
;w Knowing Seq from this formula we can compute the crack length after any
o,
— number of cycles of loading prior to failure. If m = 2 we may, for example,
zﬁ have the writer's crack growth law, or his periodically correct hyperbolic
%? simplification (page 7) of it. In the latter case,t
( * (6+r)m+2 = £0 + ZE by binomial expansion
' where I0 = I 1lst, 3rd, 5th, etc., terms
ot
1 ZE = I 2nd, 4th, 6th, etc., terms

-y whence For even m For odd m

sm - _3[8(m+2)20-TZE] " . 3[6(m+2)ZE-TZ0]
¥ € 53 (me1) (me2) (m+3) €d 53 (me1) (m+2) (m+3)
+(1) Let it take N0 cycles to get to a,

X
LY -N = - a :
No No (2 1n Z/Cth) 1 ao/ao) (v.: p. 6)

ay (2) Let it take (N + No) cycles to get to '"a" (changing the meaning of N
W N on page 6)

X N +N)-N = (21n2/C)0 - 3 /a)
- (3) Subtract (1) from (2), above, to get the N cycles it takes to get from
st a_ to "a.,"

5 o

Ly = - = _ =

: ! N (2 1n Z/Cth) (aO/a aO/ao)

*
Pl which gives

Y a :
= a=a/ [1 - (a,/a,) (C, M) /(2 1n2)] v.: p. 7
-~ 2
- =

0 in all of which C., = C Seq




Cd

e

}

-’ 2 -
4 - _ = o
’, a=a /11 (ao /ao)(c Seq N)/(2 1n 2)] :
L -
_i where 50 is a material constant (~~2 mm), a is the measure of the .
" .
e initial crack length (half length of a central crack in a wide plate) and -
' Seq is the equivalent range of loading stress acting perpendicularly to the

:\: crack, derived above for the parabolic distribution. ;
N .
\4

$ If a critical stress intensity factor, KIC’ is applicable to the

-

material used and is known for the temperature where failure is to be :

X evaluated, .
- = :
}; Kie = (smc /2) Y0 .
M “~
A 1€, Smc = KIC/('/a Yc) g
W where Smc is the peak loading stress corresponding to KIC’ Yc is a parameter f
fs which is constant or increases for cracks leading to failure, and "a" is k
. a crack length or depth which we find from our crack growth formula. Thus

o s = 1-(a /3) (€ $2N)/2 1n 2)] :
*" me = ( IC/YC)/ ao/[ -(ao ao) (C Seq / n ) .-
. X
™ and our probability of failure is given by our formula for P, that is, the

: probability of occurrence of a stress equal to or greater than Smc: iy
~ -
b _ _ _ _ 2,2 -
< P(S, 2 Smc)—(S"WZO) 2/573-1(5,, Spu) fo1[1 - (A15) (S-S )"/ 7] :
;: where Smu is the mean value the peak stresses. ;
h ' Y
M) .
.‘ - 2 L] > . *

f% For (S,.-Sp,) > © /5, the probability P is zero. Since Spc iS :
b Y
hay the value of KIC/(JZ Yc) it is not a loading stress per se, but is the -
Sﬁ stress required to cause fracture, a stress value which the loading stress

may or may not equal. Thus smc may exceed any loading stresses applied in

-
-

our bounded loading spectrum in which case there is zero probability of the

M ‘
W 3
22 occurrence of any loading stress as large as S_ . R
3 ;
. R
3 17 )
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3 1

A
N

[}

£
-
y,

)

5 A
L

A

43

e
K

A

<

\

.l
.-

o ..‘

.

5

.b
L)
»
-

4. '

l‘
L\l

“I
»

[}

.
.
»
.

L ]
»
-

L]

]

.

L]

.......



LA Sl v Al Sl A R A It S i A0 A P L A S S Y f(w'f_r_"'_f_vr?‘r;v—q

_'.:\‘.
.‘_\:
B
NN
N
e
N As the crack length measure a, increases with increase in N, or
N
(‘ KIC decreases with (ordinarily) decrease in temperature, Smc = KIC//Z'may
\1\ -
'-\ h . - . 3 » a . .
RS decrease from a safe high value until it lies within the loading range, in
e g g
QY
o which case there will be a probability of failure given by the above
<
v formula for P. If S__ falls so that S_ -S = - /5, P = 1 and failure
I mc mc my
A is certain.
\'a‘_ ]
324 In fact K. . may fall so far and so rapidly with temperature decrease

IC

on the lower side of the toughness transition temperature that Smc is
practically independent of changes in length a. In this case Smc may be
lower than the operating range of stresses and the failure may be

regarded as a stress failure independent of crack length, associated with

operation below the transition temperature, rather than as a KIC failure.
Failures insensitive to crack length, but responsive to stress and

transition temperature have been observed and studied by this writer,

On the other hand, there are cases where the crack growth necessary
to bring Smc down to the operating range of stress is so great that only
a practically insignificant amount of life would remain even if KIc
failure did not intervene. In practice, through-the-section yielding

may even occur in the net section below the crack, before a critical

failure stress is attained, such that the resultant deformation may render

° .
fib the piece useless. In this case, however, the critical stress S _ would

Ll p mc
??ﬁ not be found from the usual formula for KIC which presuppose small scale
éf? yielding.

.8

ité' Fatigue life may, of course, be estimated by use of the equivalent

i

tgc steady stress if one employs a fatigue life law conformable in type to

1 that used in our analysis of crack growth. Power law approximations to

W ; .
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any exact law are suitable. Thus if we have a stressed notch to deal
with, we may calculate a life to first macroscopic crack appearance and a
subsequent life using for crack depth a depth which includes the original
notch depth. If appreciable crack growth occurs, the type of analysis
for probability of failure with simple cracks which we have illustrated
above, would be applicable. The probability of failure prior to cracking
may be gotten from the above formula for P, omitting the crack growth
equation. Smc in this case might be determined from destructive tests

on notched material made after a few cycles of loading, or estimated

from the fracture stress F of the material, if this is known, by using

theory which takes account of yielding about the notch root.(l’z’s)

2. Ordered Loading

Here we deal with a finite number of loads of different amplitudes,
as with a gun that may be loaded with a variety of charges and whose life
is limited by crack growth if not terminated by the application of a
sufficient load or corresponding KIC‘ We wish to know what material
toughness would be required to withstand any selected load of the loading
spectrum, after the application in any sequence, of any other selected
loads.

For the most severe condition, these loads would be chosen to give

maximum crack growth and the loading stress applied after their application

(1) BEEUWKES, R., Jr. “Characteristics of Crack Failure,'" Surfaces and Inter-
faces, Syracuse University Press, Syracuse, NY, Vol. II, 1968, p. 277.

(2) BEEUWKES, R., Jr. ''Determination of Fracture Stress and Effective Crack
Tip Radius from Toughness (Kic) and Yield Strength (Y)," Army Materials
and Mechanics Research Center, AMMRC TR 78-44, October 1978.

(3) TRACEY, DENNIS M., and FREESE, COLIN E. '"Cyclic Plasticity Near a Crack-
like Elliptical Flaw,'" Mechanics of Materials, Vol.I, 1982, p. 151-159.

4'.'.'-'-’.'...'.'.>"~'..~.'
YRS AN LR E D SR A S

.
.
~'n

S




I IV )

5 4

PP s
»

Dy
ﬁ.
4

s

A
L
RARS

o/
B e
A

L4
[J
LV I R

' (i
A .
A v,

”
»

- ;"_
h Y

o,

0

APk

0
a

[ )
o8
'l.’;l.‘m. .

e,
1}

“

O )
LR sA
‘.‘ ..l -.

a'.‘l a

Y
I'b

X

L

.
.<.J

0
&

.

A
LI P Yot

-"'_l..'< N
XXX,

»

38

’

a

RN A S B A "I AN A S e S A § S A A A AL N SR SRR AL A A

would be chosen to be the maximum loading stress in the entire spectrum of
loads. Although this final load may be included among those causing the
maximum crack growth, this inclusion is unimportant where there are many
cycles of loading since no appreciable growth occurs in any one loading.

The crack depth resulting from application of any group of loads may
be found as discussed in preceding sections. If the final loading stress in

the group is Sm’ failure by the KIC criterion will occur if

Sy 7 Y. 2 Kpc
assuming KIC is known, Conversely the toughness necessary to prevent failure

must be greater than the product on the left-hand side of this relationship.

20

. .-'_ . of .f‘--' 'J!:.'.'.O'J N ;-" .f o T .\_- e <..~ o, - .’.~-‘\ .'.-.-.

o e _“p-.‘i o~ _w""

B LAy




"l cel S R |

s APPENDIX

(" Cyclic Relationship in Lieu of Equivalent Stress

[ We had (top of page 12)

- m m m m
o N = +n S +.., .+
- Seq r M S1 n2%2 T Sr

> with £ n, = N
T

Let n etc. be defined by

£1° g2

<. Then n

whence

b o
2 1 -1
1=1 Pg

of which a particular case may be fatigue provided the ne,

' fatigue failures and S and N_ to the endurance limit.
388 eq r

correspond to
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