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.1 INTRODUCTION

If one accepts some of the most common types of laws for rate of crack

*growth and crack failure, including the assumption that incremental growth is

independent of the history of loading, one is in a position to address himself

to some important questions of general behavior, including that of the effect

on crack growth and life of different types of loads.

In particular, we are concerned in this paper with the effect of load

sequence on crack growth and failure, in cases where the loading is a

spectrum of loads of different amplitudes. To take an example, let us

suppose we have a gun or other tube, containing a small internal crack, to

* which a series of internal pressures, some high, some low, are to be

applied. We may ask, will the ultimate crack growth be less if the high

* pressures are applied first, when the crack is shortest, than if they are

applied last, when the crack is longer? And, since crack length and stress

* may be simultaneously significant in cataclysmic, e.g., KIC failure, what

sequence of loads will give the shortest life? And is this serious

condition likely to occur under random loading?

* Also, are there circumstances such that for growth under many cycles

of loading, sequence of loading is unimportant? If so, what is the

equivalent steady stress that gives the same growth per cycle of stressing

as does a spectrum of loads? What do we mean by the term cycle of stress-

ing for an irregular spectrum?

It is to such questions that this paper is addressed. Our treatment has

- been heuristic rather than mathematically complete; it is hoped that a method of

treatment of such questions has been made sufficiently self-evident that the

reader can use it for himself, for his own particular problems, if he so chooses.
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* y CONDITION FOR MAXIMUM AND MINI UM CRACK GROWTH

The growth Aa, of a crack of length "a", per cycle of nominal loading

stress, S, is commonly given by

Aa/cycle =C1 K
m  C Sm a m/ Ym1 2 "c ' m> 2

* in regions of K or "a" where the C's are constants and K is the toughness

stressointensity parameter. S as used in the above formula is usually taken

to be S -S . , where S is the maximum and Smin the minimum stress in acyclemax min max

cycle of stressing. If the loading spectrum is irregular in shape, we define

each rise in stress as a cycle. Y is a parameter, constant or increasing*

with increase in "a" and expressing the geometry involved, such as 1.1215

*. for an edge crack or 1//cos ra/w for a central crack in a plate of width w.

We assume that the constants C 1and C. may be different in different regions

of crack length and, correspondingly, that there may be sudden transitions

in the rate of crack growth as a crack grows longer. Though we have some

exceptional evidence cf sudden decreases in rate, this finding should be

further investigated, and we shall assume here that the rate does not

decrease with crack growth. Furthermore, we restrict ourselves to cases

where the loading stresses are tensile, thus avoiding the complication of

complete crack closure by compression and ambiguous experimental results.

Thus, for N stresses, S ( s
max min

Aa C

.'E over N stresses, S

* *For cracks leading to failure; this restriction eliminates cases of crack

closure resulting from crack growth toward a negatively stressed region.

~4 2
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and the sum on the left must increase, as will "a" when the sum on thle

right increases with additional cycles of S.*

Thus "a" will be greater at any stage of crack growth, the larger the

sum on the right. And the latter sum will obviously be greatest if the

largest values of S, occurring in the entire spectrum of loading, are

crowded into it (independent of order, so long as they are the largest).

Therefore, with the above law of crack growth "a" will be maximum up to any

number of cycles, N, if the largest occurring values of S are used up, in

computing the sum up to the N stresses, on the right. And if, on the other

hand, the smallest values of S are used first, "a" will be minimum.

The intermediate cases of crack growth for n cycles may be found, in

order of severity, by progressively decreasing the sum of the n stresses on

the right. The probability of occurrence of any number n of selected loads

out of a total of N occurring in a representativet cyclic graph of loading is

P= n! (N-n)!
N!

The final value of "a", i.e., the total growth corresponding to use of

all the cycles of S, is a fixed value, independent of the order of applica-

tion of the stresses, S.

*In conformance with restrictions made up to this point, it will be observed
that we confine ourselves to the case where the increments are linearly
additive. That is, we confine ourselves to laws of growth for which the
incremental growth per load application is independent of the history of
loading and environment. Later on it may be noted that we have implicitly
restricted our failure criteria in the same way.
t"Representative" here means long enough to determine frequencies of occur-

4 rence of all loads. Although the loading spectrum of a machine under test
may be controlled, in practice one is interested in ensemble characteristics.

3



-: Figure 1 illustrates by a simple example the above formula for an

initial crack length a = 1 and a loading stress sequence of three cycles,

S = 1, 2, 3. (The stresses and lengths may be considered to be measured

in any units the reader desires, e.g., S in ksi, "a" in inches.) It

demonstrates the method of computation for "a" as well as the ta/a of the

above equation, and shows the equality of both sides of the equation.

Our argument above will perhaps be made clearer by considering the

above growth law expressed in integral form. This representation is

possible because the steps Aa are very small and numerous. We have

a N

da C2  S m dNam/2 ym 2
f a m2Y m 2

a c 0
0

Suppose, for simplicity Ycis constant.

Then
if m>2 m 21 N

. m m/2-1 (m/2 - C2 f

c o 0

if m=2 -2y l-2ya$2

c 0

0

Here "a" is the crack length after any specified number, N, of

. cycles of stressing.* In either case, m > 2 or m = 2, the larger "a" is,

the larger the left hand term is, and this will be greatest when the

integral on the right is greatest, that is, when it contains the largest

values of S. Thus "a" is maximum when the integral on the right contains

the largest values of S.

*So long as "a" remains in a region where C2 is constant.

4
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. Stress, S 0 1 2 3

S 2  0 1 4 9

E S, 0 1 5 14

Aa=S 2a 0 1xl=l 4x2=8 9x10=90

a=a o  --1 1= 2+8=10 10+90=100

Aa/a 0 1/1=1 8/2=4 90/10=9

EAa/a 0 1 5 14

Figure 1. Simple Example. Growth Law Aa/cycle of stressing = S2a.

Crack Length a =a o + E S2a and E Aa/a = ES
2 for N 1,

* I,
P0

t 2, and 3 Cycles of Stressing.

Clearly the order of application of these (N) selected largest

~stress cycles is of no importance since the integral on the right may be

cnevdas an area maeup ofthe sum ofsmall rectangular areas o

ddbase dN and height Sm , the order of addition being inconsequential.

~Abrupt changes in C upon reaching certain crack lengths, represent-

~ing transitions to higher rates of crack growth as the crack grows longer,

do not invalidate the above conclusion. For, obviously, we wish the crack

~to have a maximum length up to the transition and thereafter we may con-

~sider the transition point with its associated crack length, as the start

of a new problem. Pushing the transition points closer together, we

~approach the case of a continuously increasing C.

Analytically, if C is an increasing function of "all, it will go under

the summation of integral on the left, as Y Cdoes, but obviously will not

invalidate the above conclusions.

'p.5



In this respect, it may be satisfying to consider the writer's

crack growth law with transitions. The crack growth laws between transi-

tions are like those just considered with m=2 in K m S a / but the

constants are theoretical. The constant in any region is double that in

the preceding region and for constant loading stress, the crack length at

any transition is twice the length at the preceding transition, i.e.,

- na = 2 a . These crack growth transitions an, Nn' on an "a" vs N plot
n 0n n

fall on a hyperbola

N-N 21n2 (1 - /a)
0 C th 0

where ao' N are values of a, Nn"

"a " is a length characteristic of the material considered. For some0

materials the usual initial crack length in common crack growth specimens

does not greatly differ from a . In this case N = 0, of course.0 0

Cth = C [2(Z)1/3 ( 1 _) 4 / 3 (L)4/3 02/3 12- Cth 3 E -

where E is Young's modulus, u is Poisson's ratio and Y is the yield strength

under cyclic loading corresponding to stress* S.

*The above formulE for Cth is for the usual case of very small scale yield-

ing near the crack tip, thus for small S/Y ( a Sy/Y), or, more generally,
for isotropic loading Sx = Sy with essentially isotropic yielding.

A more generally applicable formula for the case where the loading stress S.
along the crack, and the loading stress Sy perpendicular to the crack, rise
and fall together is

(2/3)1/3 [E/(li 2)]-4/3 Y2/3S 2

44 Cth 2/

-I1 (1V'/2) (S /Y) [(I - S x/Sy)

(This formula is the same as it was in the corresponding footnote of the first
(1977) issue of this report except that a term then supposed to render the
formula applicable to orthotropic yielding has been removed.)

6



For simplicity, it is this hyperbola, which is periodically correct,

that we consider as our growth law, instead of the actual law with transitions.

Differentiating N,

" a
dN 2n 2 ao (S = Const. for each increment and cycle of
da Cth a2  crack growth.)

Hence

(21n2) a Aa• o___So

' 2 =
a

N stresses

2
where C = Cth/S ; Const. Or, in integral form,

a N

(21n2) a° da 2
2 = f S dN

a a
a 0 

0

" i.e.,
N

(21n2) (a /a (1 a) =C S2 dN
U, 0

(Note that m = 4, page 4, also gives an "a" vs N hyperbola of this shape,

with stresses to the fourth power instead of second power as here, a

difference not noticeable in constant stress tests in which growth rate

constants are determined empirically.)

The form of these expressions validates the conclusions already

drawn. The maximum crack length up to any number of cycles corresponds to

application of the cycles of greatest stress, independent of order.

7C . . . . .



* Figure 2 shows the effect of load sequence by extending the simple

example of Figure I to all possible sequences of the three loading stresses

given there. Since there are three distinct loading stresses, there are

six cases in all, S = 1, 2, 3; S = 1, 3, 2; S = 2, 1, 3; S = 2, 3, 1;

S = 3, 1, 2; S = 3, 2, 1 for the first, second, and third cycles,

respectively. As noted, equal crack lengths result from application of a

set of loads independent of order of application. Up to any point, use of

the largest loads results in greatest "a" and use of the smallest loads

results in least "a".

* It is not difficult, in some cases, to satisfactorily approximate a

* spectrum of numerous loads, which may be applied in any sequence, by a

few loads such that the effects and frequency of application of

different load sequences may be easily handled and visualized without

the aid of a large computer. Thus, for example, since d ln a - S m dN with

Y c= Const., in the rate of crack growth formula, if there are n1 , n 2 **.n.

numbers of stresses Si., S * S,. respectively, we might form the products

....................... n Sm, then omit any stress levels for which any of these

products are unimportant compared to the remainder, then lump the remaining

stress levels into a few which are applied for the total number of cycles con-

S. tained in their components, e.g., for stress level p, of these few

nm S~ m + S+etc.

p n X+ n *+ etc.

applied for the number of cycles n p equal to the sum in the denominator of

the right-hand side.

Figure 3a is an illustration of crack growth where stresses are applied

repetitively, for an m =2 crack growth equation.

8



A .. * . , : .. ,.-..-.-,. -," , . . . .. ' .,

-, ,,, . ,, , , , _ o , . ., . -* ' ,' " .; ." . , , , - 4 - _ .(.. . . . . .. . . . ..

7,y 7. - iI

Kv:S

-, U U
U

1. Stress,S 0 1 2 3

Aa=S 2a 0 (1)(1)=l (4)(2)=8 (9) (10)=90

- a=a + EAa 1 1+1=2 /----2+8=10 10+90=100

2. S 0 1 32

aa 0 (1)(1)=1 (9)(2)=18 (4)(20)=80

a 1 2 20 100

3. S 0 2 1 3

Aa 0 (4)(l)=4 (1)(5)=5 (9)(10)=90

a 1 5 10 100

4. S 0 2 3 1

Aa 0 (4)(1)=4 (9)(5)=45 (1)(50)=50

a 1 5 so 100

5. S 0 3 1 2

Aa 0 (9)(i)=9 (1)(0)=10 (4)(20)=80

a 1 10 20 100

6. S 0 3 2 1

Aa 0 (9)(l)=9 (4)(10)=40 (l)(50)=S0

a'1 10 so 100

! Figure 2. Example: Effect of Sequence of Loading Stress S on Crack Growth
Aa/cycle of Stressing=S 2a. Initial (S=O) Crack Length, a=l.
S=l, 2, and 3. Note Independence of Order of Application, e.g.,
a=100 for S=l, 2, and 3 in all cases and a=l0 for two cycles,
S=1 and 2, Cases 1 and 3.

9
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EQUIVALENT STEADY STRESS

By the term equivalent steady stress applied to a cracked specimen,

we mean a cyclic stress of constant amplitude whose application would

result in the same crack growth as that due to any specified portion of

a loading spectrum of irregular amplitude, if the number of cycles of

load application were the same for each type of loading.

As so defined, it may have different values for portions of the

spectrum made up of different loads, but it will have a unique value for

the whole spectrum since this includes all the loads.

The expressions for equivalency are apparent from the summation or

integral expressions we have already obtained. Since for both the constant

amplitude steady and the irregular stress the crack growth is to be the

same, the left-hand sides of these expressions must be the same whether

produced by a steady stress or an irregular stress. Thus if there are N r

cycles in the portion of the spectrum being considered, and if the steady

equivalent stress is Seq, the sum or integral on the right must be equal

toSmN
eq r

That is, N
r

S m Nr f S m dNS

0 N r stresses, S.

for the power laws; m = 2 for the envelope hyperbola.

Thus if there are nIstresses Sl' n 2 stresses S 29..n rstresses S r

such that
i =r

n n. =N r; n./ N r=f.

10
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Part A

With da =S 2a/100

2 2 2
Ina1/ 1 /0Ina 2//a 1 = S2 n 2/100 Ina3 /a2 S3 n3 /0

Ina2/a o= In a 1/a 0+ in a 2/a 1I a na2/ na3/

4.Region, i, 0 (Start) 1 2 3

Cycles, n. 0 10 2 1

S. 0 1 2 3

AS.2 n./100 0 0.10 0.08 0.09
1 1

2
ES nl /100 0 0.10 0.18 0.27
1i

in a./a.1 (=S2 n /100) 0 0.10 0.08 0.09

Eln a. /a. (=Es 2 n /100) 0 in a /a =0.10 in a /a=0.18 Ina /a =0.27

a a =1a, 1.11 a 2 1.20 a 3 1.31

Part B

Let En. = N (=13); 1 /N 1f.

Ina/*=( 2 n+S2 n+S2n)/0
3a/ =( 1 n1  2 2  S 3 n

= (S2 f1 + 2fS2 f )Nt/10 SO N /100
11 22 3 3teq t

Thus S2 S2 f + S2 f+ S 2 f 1 (10/13) + 4(2/13) + 9 (1/13) =27/13
eq 1 1 2 2 33

S =1.44

t eq

Figure 3. Example with m=2, da/dN-S2a/100. Amplitude (Part A) and Equivalent
Steady Stress (Part B) when ni Cycles of Sl. n2 Cycles Of S2, and
nl3 Cycles of S3 are applied in succession.

11
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we have*

Sm N = n 5m + nSm + . + SM

eq r 1 1 2S2 rr

= (f sM + f • + fr m N
1 1 2 2 r r r

whence

" m = fl m f m ++f SM

eq 11 2S2 r r

in which m = 2 for the hyberbola envelope law as well as the m = 2 power

law.

Figure 3b shows the calculation for Seq for the simple case of Figure 3a,

where three loads were applied in succession for different numbers of cycles.

For another example, suppose that the distribution of frequencies is

Gaussian in N cycles, a being the standard deviation.r

oS [ _lj_( _
m"N r S-S 2 d

eq N r ] 42.7rexp [2]d(j

where S is the mean value of the cyclic stress rise S = S - S m so..* max mi m

that

[(S = S S ] and thus

m a- S
qSq JLSP + M exp

= f X+ ep _- dX

*See Appendix for a cyclic relationship in lieu of equivalent stress.

12



where X (S-S.)/a

Since the lower limit (least value) of S is zero, the lower limit

of X is - 'Sla).

If this and the upper limit are large, we may assume the integration is

between -- and +

Let us assume this is the case and that m = 2. Then

- " (s\2 -..fji2 2 2 S S 1 exp X- dX
= X +2 X- +(

eq j a

The exponential function is positive and symmetrical about X 0 so

that the middle term in the brackets makes no contribution and we have

S 2 =S a 2 S2 "Gaussian Seq

eq e

Naturally, if a is zero, there is no scatter and S eq= S

. -: The case of the parabolic distribution, with its finite cut-off, is

treated for general values of m as part of the problem of probability of

failure.

PROBABILITY OF FAILURE

In this section we consider, in an illustrative way, the probability

4 of failure of a piece of material containing a crack or notch and subjected

to the various succession of loads of a given spectrum of loading. It

4-- is presumed that the piece will fail when the loading stress reaches a

critical value, S . In current cases of interest concerning cracks,

this value of S is commonly obtained from an association of critical tough-

* ness value, KIC, and crack length. The latter depends on the number of cycles

13
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of loading together with the equivalent steady stress to which the piece
has been subjected. The practical limitations of this approach to Smc and

A probability of failure will be briefly considered along with notch failure.

We first consider the case of random loading and then a class of

ordered loading. In the latter case we consider, in particular, the effect

of the condition for maximum crack growth.

. 1. Random Loading

Let us assume that the distribution of both the maximum stresses S m

S =S and the stress rises, S = S -S. are parabolic* with the samem max' max min

standard deviation a. Let S be the mean value of S and S be the meanmu -x
value of the rises, S.

Thus, for the maximum stresses

3 F (S m- S m) 2
Sf = 20 l - 5 _S < ASo 2 M (Sm1S)<

with f = 0 for S > arS-and for S < -a-
m m

so that the probability that S _ S mc is

f$ 3s5 (Sm 2

P (Sm > Sm =f 1 I m mu d (Sm-Sm
r -S

-S I Imc MIa

=(3/5/20) 12r/S3 - (Smc-Smp)/J l-(I/i5)(Smc 1 2a

*Note that the constants in the expressions used below are not the same as
that of the peak region of the Gaussian distribution. Here a is the a of
the parabolic distribution, not the a of the Gaussian.

14
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for -ard s (S-Sm) < ar,
m M11

* with P = 0 for S a/ and for S s -a/5-.
m m

Similarly for the stress differences, S S -S
max min

( S _S- -Si) 2(S2S )"
2010 1 5 2 , -als5 < ( - < a/5 .

a 2

with f = 0 for S > a/r and for S 5 =aV, Pl

so that the equivalent stress, S, is given by

S N= 2 1 d(S-Seq r r (2 2 S

m
where the crack growth per cycle is proportional to S

* Since

= (X+S)m with X= S-S ,

qm 3 - (X+S)m I -X dX
eq 20 j I'

6(m+2) (6+T)m+2 (-6+T)m+2 r "+T) m2(-6+T)m +2

Sm3 Cm+l) (m+2) (m+3) (2/3)

where 6= o4 and 'r S.

...



Thus* if
m=l, S =Seq 

V

m =2, S
2  S2 + a

2

eq p1

m =3, S
3 = S3 + 3S a

2

eq V p

m = 4, S = S4 + 6 S 2a
2 + (15/7) a

4

eq p p

The form of the expression for S for m = 2 is the same as it is for the. eq

Gaussian distribution which we derived heretofore even though the approximate

form of the peak region of the Gaussian, which is also parabolic, has different

constants.

Knowing S from this formula we can compute the crack length after anyeq

number of cycles of loading prior to failure. If m = 2 we may, for example,

have the writer's crack growth law, or his periodically correct hyperbolic

simplification (page 7) of it. In the latter case,t

(S+T) m+2 = £0 + ZE by binomial expansion

where EO = Z 1st, 3rd, 5th, etc., terms

ZE = E 2nd, 4th, 6th, etc., terms

whence For even m For odd m

n= 3[6(m+2)ZO-TEE sm = 3[6(m+2)EE-EO]
eq a 3(m l)(m+2)(m+3) eq 63 (m+l)(m+2)(m+3)

t(l) Let it take N cycles to get to a°

N - No = (2 In 2/Cth)(1 - ao/ao) (v.: p. 6)

(2) Let it take (N + N ) cycles to get to "a" (changing the meaning of N
on page 6)

(N + N )-No = (2 in 2 /Cth)( - /a)0 0h(

(3) Subtract (1) from (2), above, to get the N cycles it takes to get from
a0 to "a."

N a -(2 In 2/Cth)(o/a- o/ao)

which gives

a - ao/ 1 - o/io)(CthN)/(2 In2) (v.: p. 7)

in all of which Cth C S2eq
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a = a /[ (a0 /0 )(c Seq 2 N)(2 n 2)oCao eq ( n )

where a is a material constant (--2 mm), a is the measure of the
0 0

initial crack length (half length of a central crack in a wide plate) and

Seq is the equivalent range of loading stress acting perpendicularly to the

crack, derived above for the parabolic distribution.

If a critical stress intensity factor, KIC, is applicable to the
C'

material used and is known for the temperature where failure is to be
evaluated,

Ki (S i/a) Y4. KIC =Smc 0 Y

i.e., S = KIC/(Va YC)

where Sm is the peak loading stress corresponding to KIC, is a parameter

which is constant or increases for cracks leading to failure, and "all is

a crack length or depth which we find from our crack growth formula. Thus

Sm (Kic/Y)/Iao/[l-(ao/ao)(C S2 N)/2 In 2)]1
mc ICC0 eq

and our probability of failure is given by our formula for P, that is, the

probability of occurrence of a stress equal to or greater than S
mc

P (Sm > S mc) =(3/'720) 12573-[(Smc-Sm )/-] [ - (1/15)(Smc-Sm) 2/2

where S is the mean value the peak stresses.
mu

For (Smc-Smu) > a FS, the probability P is zero. Since Sc is

the value of KICC(,ra Yc) it is not a loading stress per se, but is the

stress required to cause fracture, a stress value which the loading stress

may or may not equal. Thus S c may exceed any loading stresses applied in

our bounded loading spectrum in which case there is zero probability of the

occurrence of any loading stress as large as Smc"

17

" '5ad'iB U~i' l aC a & : " ,,' "," ,- "'",',"'*: ",'." ."..: : "; ," '.",,"" -' : - ": ' '.""'A



As the crack length measure a, increases with increase in N, or

K ICdecreases with (ordinarily) decrease in temperature, S =c K IC //a may

decrease from a safe high value until it lies within the loading range, in

which case there will be a probability of failure given by the above

formula for P. If S falls so that S -S u /,P = 1 and failure
mc mc mi'

is certain.

In fact K IC may fall so far and so rapidly with temperature decrease

on the lower side of the toughness transition temperature that S mcis

practically independent of changes in length a. In this case S mcmay be

lower than the operating range of stresses and the failure may be

regarded as a stress failure independent of crack length, associated with

operation below the transition temperature, rather than as a K ICfailure.

Failures insensitive to crack length, but responsive to stress and

transition temperature have been observed and studied by this writer.

On the other hand, there are cases where the crack growth necessary

to bring S mcdown to the operating range of stress is so great that only

a practically insignificant amount of life would remain even if K IC

failure did not intervene. In practice, through-the-section yielding

* may even occur in the net section below the crack, before a critical

failure stress is attained, such that the resultant deformation may render

the piece useless. In this case, however, the critical stress S mcwould

not be found from the usual formula for K IC which presuppose small scale

yielding.

* Fatigue life may, of course, be estimated by use of the equivalent

steady stress if one employs a fatigue life law conformable in type to

that used in our analysis of crack growth. Power law approximations to

18



any exact law are suitable. Thus if we have a stressed notch to deal

with, we may calculate a life to first macroscopic crack appearance and a

subsequent life using for crack depth a depth which includes the original

notch depth. If appreciable crack growth occurs, the type of analysis

for probability of failure with simple cracks which we have illustrated

* above, would be applicable. The probability of failure prior to cracking

* may be gotten from the above formula for P, omitting the crack growth

equation. S mcin this case might be determined from destructive tests

on notched material made after a few cycles of loading, or estimated

-~ from the fracture stress F of the material, if this is known, by using

theory which takes account of yielding about the notch root. (1,2,3)

2. Ordered Loading

Here we deal with a finite number of loads of different amplitudes,

as with a gun that may be loaded with a variety of charges and whose life

is limited by crack growth if not terminated by the application of a

sufficient load or corresponding K IC* We wish to know what material

toughness would be required to withstand any selected load of the loading

spectrum, after the application in any sequence, of any other selected

loads.

For the most severe condition, these loads would be chosen to give

maximum crack growth and the loading stress applied after their application

(1) BEEUWKES, R., Jr. "Characteristics of Crack Failure," Surfaces and Inter-
faces, Syracuse University Press, Syracuse, NY, Vol. 11, 1968, p. 277.

(2) BEEUWKE S, R. , Jr. "Determination of Fracture Stress and Effective Crack
Tip Radius from Toughness (KIC) and Yield Strength (Y)," Army Materials
and Mechanics Research Center, AMMRC TR 78-44, October 1978.

(3) TRACEY, DENNIS M'., and FREESE, COLIN E. "Cyclic Plasticity Near a Crack-
like Elliptical Flaw," Mechanics of Materials, Vol.I, 1982, p. 151-159.
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would be chosen to be the maximum loading stress in the entire spectrum of

loads. Although this final load may be included among those causing the

maximum crack growth, this inclusion is unimportant where there are many

cycles of loading since no appreciable growth occurs in any one loading.

The crack depth resulting from application of any group of loads may

be found as discussed in preceding sections. If the final loading stress in

*the group is S mA failure by the K IC criterion will occur if

assuming K IC is known. Conversely the toughness necessary to prevent failure

must be greater than the product on the left-hand side of this relationship.

42
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APPENDIX

Cyclic Relationship in Lieu of Equivalent Stress

We had (top of page 12)

S . N =n SU + nS 2 + +nS
eq r 11 22 r r

with E ni = Ni r

Let nfl , nf2 etc. be defined by

S n s m Nr

1 fl eq r

S m n = m  N etc.
.2 f2  eq N

Then S mN Sma N S m N
S m N = n r + n eq r + + n eq r

eq r 1 n n f2 r m fr

whence

r

I=~ l nfi

- of which a particular case may be fatigue provided the nfi correspond to

fatigue failures and S and N to the endurance limit.

eq r
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