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Abstract

The combined effects of finite deformation and material inertia have

been analyzed for fast crack growth under anti-plane loading conditions.

A steady-state dynamic solution has been obtained for the finite strain on
the crack line, from the moving crack tip to the moving transition boundary

with the zone of small strains. The crack propagates in a material

with a response curve in uniform shear that is linear at small strains,

and that remains constant once a critical strain has been exceeded. The

corresponding quasi-static solution is given in the full zone of large

deformation. For the dynamic formulation, an explicit expression for the

crack-line strain has been obtained by expanding the displacement in a

power series in the distance to the crack line, with coefficients which

depend on the distance to the moving crack tip. Substitution in the

equation of motion yields a nonlinear ordinary differential equation for

the relevant coefficient, which can be solved rigorously. The finite

deformation crack-line fields have been matched to appropriate small-strain

fields at the transition boundary. The principal result is that the

dynamic strain remains bounded at the crack tip, apparently due to the

effect of material inertia. The crack-line strain has been plotted for

several crack-tip speeds. It decreases with higher crack-tip speed. An

explicit expression has been given for the extent of the zone of finite

deformation, as a function of the crack tip speed and the far-field loading. 0 -
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1. Introduction

Several recent investigations have been concerned with the effects of

finite deformations on the fields of stress and deformation near a crack

tip. Most notable are a series of papers by Knowles and Knowles and

Sternberg, in which full nonlinear equilibrium theory of homogeneous and

isotropic, incompressible elastic solids has been employed to construct

fields near the tip of a crack. A summary has been presented in Ref.[1].

The most complete results have been obtained for a crack in a body

subjected to finite anti-plane shear, as reported in Refs.[2] and [3].

Related work for the anti-plane shear case has been carried out by Lo [41,

who found that for certain forms of the strain energy density, the formu-

lation of the problem becomes formally identical to those of certain previously

studied small strain elastic-plastic problems.

The present paper is also concerned with finite deformations near a

crack tip under anti-plane shear loading. The formulation of the

governing equations follows by-and-large Refs.[21 and [3]. A notable

difference is, however, that we study a growing crack, and that the effects

of inertia have been included in the formulation. We consider a strain

energy density which yields a response curve for uniform shear that is

.linear at small strains, but that maintains a constant plateau once a

certain critical strain has been exceeded.

The method of solution employs power series expansions in the distance

to the crack line, with coefficients which depend on the distance to the

crack tip. To analyze small strain crack line fields in elastic perfectly-

plastic materials, such expansions have previously been used by Achenbach
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and Dunayevsky [51 and Achenbach and Li [61 for quasi-static problems,

it and by Achenbach and Li [7] for dynamic crack growth cases. Substitution

of a displacement expansion in the equation of motion yields a nonlinear

. ordinary differential equation for the relevant coefficient, which can be

solved rigorously. The crack-line fields have been matched to appropriate

small strain elastic fields at a transition boundary.

The paper also includes a section which shows that for dynamic crack

growth the stresses and the displacement gradients are continuous across

the moving transition boundary which precedes the crack tip, at least near

the crack line. Continuity of these quantitites all around the transition

boundary has been shown for the quasi-static case. Furthermore, the full

quasi-static field has been obtained in the zone of large deformation. For

the elastic material that is considered in this paper, the static fields for

a moving and a stationary crack are identical for coordinates centered at the

crack tip. The quasi-static crack-tip strain is shown to be singular. An

independent application of the expansion method yields the correct crack-line

approximation to the exact solution.

The analysis of the crack-line fields for steady-state dynamic crack

growth has yielded the most surprising result of this paper. It is shown

that the effect of inertia is to remove the strain singularity at the crack

tip. Thus, for the dynamic problem both the stress and the strain are

*bounded at the crack tip. Curves are presented which plot the strain versus

distance along the crack line. An expression has been obtained for the

length of the zone of large deformation as a function of the crack-tip speed.

"A ::; ,, "r ' " "- ' ' ' ' "''-,"-" " " ' , ' "," "" ' ,""- , ' , •""/ 2, ' ""'.' .' . -. W '
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2. Governing Equations

The equations which govern finite anti-plane shear deformation in an

unbounded body containing a crack have been formulated by Knowles [2] and

Knowles and Sternberg [3]. In this Section we briefly review the formulation

of (2] and [3] in a slightly different notation, we introduce a different

strain-energy density than was used in these papers, and we extend the

formulation to the dynamic case.

Let Xi and xi be the Cartesian coordinates of a typical point in the

undeformed and deformed states, respectively. For anti-plane strain we

have

x3 - X3 + U(Xl,X 2,t), x a - X a = 1,2 . (2.1)

The corresponding components of the deformation gradient F are

F ax , as8 (2.2)ii ax:I U13

and the first fundamental scalar invariant is

I, M tr(F TF) - 3 + e2, (2.3)

where

2 U U , U aU/ax (2.4a,b)

We consider an incompressible material. Hence the deformation is locally

volume preserving, and the Jacobian of the mapping (2.1) is

J - det(F) - 1 (2.5)

Let T be the actual (Cauchy) stress tensor field in the deformed

body, and let S(X ,t) be the corresponding nominal (Piola) stress field

in the undeformed configuration. Then

T -S FT , S - T)-1  (2.6a,b)

The analysis of this paper is restricted to the class of incompress-

ible solids for which W depends on I only



W - W(II) for all I, > 3, W(3) = 0. (2.7)

E

As discussed by Knowles [1], we then have

T3 = S3 =2W'(I1)Ua, (2.8)

-s =s M 0 3 2W'(I1)e2 (2.9)

where e is defined by (2.4a,b), and

W'(I 1) - dW/d1 ,s (2.10)

For dynamic problems these equations are supplemented by

S poU , (') W a/at , (2.11)

where p is the mass density in the reference configuration.

To define the desired relation between S and U,.9 we consider the

static problem of an unbounded body, which is subjected to the following

condition at infinity

- U(XIX 2 ) - KX 2 + o(I) as X a  = L (2.12)

The solution then is

, U(X,9X CKX2  for all (XlX 2 ) (2.13)

and

T 23 -32 = *(K) - 2W'(3+K2)K, T33 
= (K)K (0 < Kc < =) (2.14a,b)

The graph of T versus K(O < K < -) is calied the response curve in

simple shear. In this paper we wish to consider a response curve of the

form shown in Fig. 1, which is defined by

(K JK K < C 
(2.15a)

-0

-UE- 0 K > C (2.15b)10 - 0

The corresponding strain energy density for an incompressible elastic

solid then follows from (2.14a) as

• ,! Z '. . " A:." .: :.-'.' .. '.% A.'wx . ' ,4'
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( 1- 3( 3

"I I W(I )  f T (K) dK (3 < II < )(2.16)

0

Substitution of (2.15a,b) into (2.16) yields

3 < 1, 3 + c2  (2.17a)
oZIC2]11 1 2 €2 i 0
0 I (+(I-3) 1 3+ o < (2.17b)

% . 0

The stress-strain relations follow from (2.8) and (2.17) as

for 0<c<c 0 (2.18)

S 3a- SU a for c > co (2.19)
3to- s  -

° ,o o

where

So = Uo (2.20)

It is noted that (2.19) implies that for c > c we have

S2  + 2 S (2.21)31 S32 0

It is noted that the Cauchy stresses T j do not satisfy a relation of

analogous simplicity.
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3. Discontinuities across a Propagating Transition Boundary

A surface which separates regions where the constitutive behavior is

defined by (2.18) and (2.19), respectively, will be called a transition

boundary. In this Section we examine the possibility of propagating

discontinuities in the stress, Sij(Xt), the displacement gradient,

Fij(3,t), and the particle velocity, i(39t), across a propagating

transition boundary, for the case that the linear relation

(2.18) holds ahead of the moving surface, while the nonlinear relation

(2.19) applies behind it.

The propagating surface is represented by the relation

Z(X,t) - 0 (3.1)

The unit normal to the surface is denoted by N. The speed of propagation

VNs which is the speed with which the surface traverses the material, is

positive when the surface moves in the direction of j, A discontinuity of a

field quantity, say G(X,t), is denoted in the usual manner by

[[G1] = G+ - G- (3.2)

where G+ and G are the limits as X approaches a point on the surface along

paths entirely ahead of and entirely behind it .

The displacement is continuous, and hence displacement gradients in

the surface are also continuous

[[axi/ar8 ]] - 0 , 8 = 1,2 (3.3)
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where rI and r2 are two independent coordinates in the surface I(X,t) 0. The

balance of linear momentum yields the well-known relation

([[Sij ] j= - o VNE[[ii] ] , (3.4)

where p0 is the mass density in the reference configuration, and ;

denotes the particle velocity. From the balance of energy it follows

that the energy dissipated locally as the surface passes, may be written

as

H - [[W + T roriNi]]vN + [ ] ]Nj, (3.5)

where W(Xt) is the strain energy density. It is assumed that

H > 0 , (3.6)

i.e., the energy dissipation across a propagating transition boundary

cannot be negative ( 8 1.

It can be verified that H may be rewritten as

1 . . .

H - [W- Xi]VN + x i[[p xiVN + SiiN ]] + [[ki]](piVN + SNij ) (3.7)

The second term on the right-hand side cancels by virtue of Eq.(3.4). A

further rearrangement of H yields
1

H - ([[WI] - -1 p I[i ]][[kI]]IN + [[i 1 I N , (3.8)2 0 1 u N i iji

or, by the use of (3.4) in the second term,

H [[W]]V( SIlN j + 2SjNJ)

I [WJ V + -1 [[I](s+ + Si )Nj  (3.9)

By using the compatibility relation

[[ll] - - [[axi/aNJJVN , (3.10)

2, . ,.
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E l

. .i we finally find

S- ([W+ + S )N V (3.11)
H = [ [[axi/N]](Sij + j N

For anti-plane shear, (3.11) reduces to

H - + S3  Na }VN (3.12)

where a - 1,2. An expression si;ila.r to (3.12) has been presentcd in [9].

In this paper the interest is focussed on a field x 3(Xl,X 2,t) which is

antisy-netric with respect to the X1 axis, but which has discontinuities
across a transition boundary which is symmetric relative to X2 = 0, and on which

VN > 0. This case applies, for example, to a transition boundary ahead of a

Mode-III crack tip. The condition H > 0 then becomes

Hi-H/V - [[W1] 1[fax3/3N]](S+ + S_ )N > 0 (3.13)
N 2 3 3% 3a a

Let us first consider the intersection point on X2 = 0, which is defined

by X2 - 0. X - Xo(t). Because of antisymmetry we have x 3(X,.0,t) 0,

and hence

;)x3/ X1  0 , (3.1/6)
a3 /a,

while (3.3) implies
C + = x3lx2 0(3.15)c- -e - ax3/aX2 -c (3*° 5

where e is defined by (2.20). By using the expressions for W given by

(2.17a) and (2.17b), it then follows that

[[Wl] = t -p(C) UC0+ o -o 0.(3.16)

Next we consider a position (Xo,dX2)• Here we have by (3.13) and

(3.16)

., .. *-%. * *%z% % .* ~ .
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d > 0, (3.17)

where
_ P + _ - + l oE

o 2 N N N - N E-N

I + + EN
-i (deN -c)( + PC 0 (3.18)

In (3.18).

= ax 3/aN (3.19)

Sincec + =- and N c -= 0, (3.18) reduces to
o N N

P.o(de+ - dE-) > 0 (3.20)

In the domain of small deformation the quantity c cannot increase with distance from

the crack line, hence de+ < 0. On the other hand c maintains the condition of

large deformation, e > cot behind the transition boundary, and hence dE > 0.

Consequently (3.20) can be satisfied only if

de +  dc-.- 0 (3.21)

Equations (3.15) and (3.21) imply

He]] - 0 (3.22)

Equation (3.22), together with the constitutive equations, (2.18) and (2.19),

give

[[s 1] - u[[ax 3 / 3X]] - uN [[x 31N]] (3.23)

where (3.3) has also been used. Next (3.4), (3.10) yield

[IS- 0 [[x/N] - 0 (3.24)3a ci o N x3/a]

Substitution of (3.23) subsequently gives

w9
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,(- M) [[3x3/aN]] = 0 , (3.25)
N 3

where M2 ffi V /i . It follows that
N ON

[ [x 3/3N]] = 0 (3.26)

provided that < . Equation (3.26) in turn implies by (3.10) that~. .. 53

1[1k3] = 0 , and hence

U53[ 1] = 0 (3.27)

k; by (3.23). We have thus proven the continuity of the relevant quantities

across the transition boundary near the crack line, for dynamic problems.

In (quasi) static problems (p = 0), we can prove the same results all along

*X.. the transition boundary. Indeed, (3.3) and (3.4) give [10]

[[S ]][[ax3 ax ] = 0 , (3.28)

which is written explicitly as

I = {W(x 3 /aX )+ - S (x 3 /ax )-/C-}{(ax 3 /ax) - (x 3 /aX) 0 (3.29)

It follows that

I 2 ( + ) + S - S(3x /ax )+(ax3/ax)-/E
- - uOx3 /ax )+(x 3 /X)-. (3.3D)

By using the inequality

+ - + - -+

x3,3. x (x ,x3  ) (x3,x, (.31)

it follows from (3.30) that

+ 2 _ + +- + 2 - + +-
I > P(c ) + S - Sc -IEPC C [(E) + -C c -c c ]

0 0 0 0

- +( - C-)(C+ - c) > 0 , (3.32)

' s ,.,, , " '. .' " " . *," " .'.''':..,'''''' - 5 ,,. 5\.,.. ,,¢',:,..., _ v .'. ,.,,\,,,,.- 5 %s ,
.
s ,'< 1;. ... k" -*
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+ +
since c < E and e < c 0 But (3.28) and (3.32) will be in conflict,

+ + -

unless + = e on the transition boundary (note that e + s will lead to
0

i= e also). It can be shown that this result, together with (3.3) and0

(3.4), yield either e f , or N - Vx3 = 0 (i.e. x3 is locally constant)

on the transition boundary. As will be seen later, we may exclude the

latter possibility for the present application. We thus conclude that
+ -

C = C = e on the transition boundary. With this result, we can follow

the procedures in Eqs.(3.23) ~ (3.27) to prove continuity of S 3a•x 3/N and

3"

• € -' ' ,". . . '5-.. ..- ' ' -% ' 
" , ' g

'.'
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4. Static Fields Near a Crack Tip

In the immediate vicinity of a crack tip the deformation is large,

i.e., £ > £O , and consequently Eqs.(2.19) and (2.21) hold. Outside the

region of large deformation, linearized elasticity according to Eq.(2.18)

applies. The two regions are separated by a transition boundary. In this

section it is assumed that the largest length dimension of the region of

large deformation is small as compared to the length of the crack. This

assumption implies that the crack may be taken as semi-infinite, and that

the displacement outside the region of large deformation may be represented

by the well-known square-root solution according to linearized elasticity.

,% The conditions on the faces of the crack are

U-(X 11 = 0 < X < 0 (4.1):. . u,2(X ' -

The equation which governs the displacement field in the zone of large

deformation is obtained by substituting (2.19) into the balance equation

for static equilibrium. The result is

(U 2)
2U,11 - 2U 1U 2 21 + (U 1)aU, 22 ) 0 . (4.2)

Equation (4.2) can be rewritten as

(1/U )L{U 1I - (l/U 2 )L{U 2 } - 0 (4.3)

where the differential operator L is defined as

L i (a/aX 1) - (U1 /U.2)(a/aX 2) (4.4)

'**''%V *.LV *--- V * %*~*%'*%%%*- . ....
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It is now noted that L is a total differential along the characteristic

line defined by

dX2/dX I - 1 /U,2 (4.5)

Along such a line (4.3) can be integrated to yield

In(U I/U 2) - C , or U, I/U 2 = -D , (4.6a,b)

where C and D are constants. By combining (4.5) and (4.6b), we conclude

that the characteristics are straight lines:

dX2 /dX1 - D (4.7)

On these characteristics the displacement U is constant, because it follows

from (4.5) that

dU - 0 (4.8)

The problem formulation in the zone of large deformation as defined by

Eqs.(2.21) and (4.8) is now identical to the one for small strain deformation

near a crack in an elastic perfectly-plastic material with the Huber-Mises

yield condition. The solution to the latter problem was given first by Hult

and McClintock [11]. It was discussed in some detail by Rice [12]. In the

present context the Hult-McClintock solution shows that the zone of large

deformation is a circle of radius

R°  1- (KIIIlSo)2 (4.9)0 1r

which is centered at a point E on the crack line (see Fig. 2), a distance

I , , _. ,- " .. , .-- .? .,.-./.'. -.-. ,-.e- , -.. .. .>
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I

*.'.."R ahead of the crack tip. In the zone of large deformation we have [ii],[12]:
0

/R\
U Kill sine (4.10)

S inS5 sine S S cose (4.11a,b)UN 31 o o2$

In the region of linearized elasticity we have

u K s1 (4.12)

_ 31 - III si n:2 (4.13)

S .I (4.14)

where (R,) are polar coordinates centered at the point E. Thus, (4.10) -

(4.11a,b) hold for R < R , while (4.12) - (4.14) are valid for R > R0.

We conclude this section by rederiving the field on the crack line in

the zone of large deformation, by the use of an expansion method. This

method can be used for problems that are not otherwise solvable. The

method is shown here to demonstrate its utility, and as a preliminary to

its application in the next section to the problem of dynamic crack growth.

Following the approach of Achenbach and Dunayevsky (51 and Achenbach and

Li [6], we seek a solution to Eq.(4.2) for small values of X2 (X2/X1 << 1),

in the form

U - U(1)(X )X2 + U(
3) (Xl)XI + O(X) (4.15)

2 5)

-~~ 2 17 ~ 2:.3* .- C: v&2v
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Substitution of (4.15) into (4.2) followed by collection of terms of

order X2  yields

UMUM(I ) - 2(U )) - 0 (4.16)

Equation (4.16) is satisfied by

- (1 ) - (1/C)(U (1 )) (4.17)

where C is a constant. The general solution to (4.17) is UM -C/(X 1+D).

A singular and multiple-valued solution at the crack tip is obtained by

setting D - 0. Hence

i u(1)
U . /X (4.18)

where C is a still to be determined constant. At X2 - X0, we have

UM (1 - and thus C - XE where X is the X1 coordinate of the transition

boundary on the crack line. It follows that

U - (Xo/X)coX2 + O(Xl) (4.19)
.0 1

The corresponding stresses at the transition boundary follow from (2.19)

as

S 31  So0(X2/x - S (4.20a,b)
. 31 o ) o $32 5 o

Near the crack line in the zone of linearized elasticity, we now assume

solutions of the general form (4.12) - (4.14). Continuity of $31 and S32

then yields by the use of (4.13) and (4.14)

e a x /x - (4.21)
2o2
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which implies that X - 2R . It is now easily verified that for e << 1,0 0

(4.19) and (4.20a,b) do indeed correspond to (4.10), (4.11a,b) with (4.9),

respectively.

As a final comment we note that the results derived in this section

also apply to the crack line fields for quasi-static crack growth. For a

propagating crack it is convenient to define the coordinate system (XI,X2)

as moving with the crack tip. Stationary coordinates (X,Y) and moving

coordinates (X1,X2) are related by

- X - a(t) , X2 = Y, (4.22a,b)

where X - a(t), Y - 0 defines the position of the crack tip in the (XY)

system. In the moving (X1,X 2) system, the material time derivative is

defined as

() - (a/at) - '(a/aXl) , (4.23)

where & - da/dt is the crack-tip speed. Spatial derivatives are the same in

the two systems. Since the time derivatives do not appear in the elastic

constitutive equations used in this paper, they do not enter the formulation

of the quasi-static crack growth problem. Hence, the governing equations

and,therefore,the fields are identical for the stationary and the moving

crack tip, provided that they are defined relative to a coordinate system

that is centered at the (stationary or moving) crack tip.

, i , ' --I"'..,, ,'-. ...- .- ""'"" .
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5. Dynamic Fields near a Moving Crack Tip

It is convenient to formulate the governing equations in the moving

coordinates (XI,X2) defined by (4.22ab), with the material time derivative

as defined by (4.23). In this paper we will restrict the attention to the

steady-state field near a crack tip which moves with a constant speed c.

The material time derivatives then reduce to

() - -c(aaX ) - 2(91/X2) (5.1a,b)

Relative to the moving coordinate system, the equation of motion (2.11)

becomes

S ,=pC 2  , where a = 1,2 (5.2)

3a,a 0 U 11  whre 1,

Substitution of (2.19) into (5.2) yields in the zone of large deformation

(U 2 )2 U 1 1 - 2U 1U,2 U12 + (U 1 ) 2 U 2 2 - X[(U)2+(U,)2] 3 / 2  (5.3)

where

X - c 2 p o/S (5.4)

A solution in the vicinity of the crack line can be obtained by using

the expansion given by Eq.(4.15). By substituting (4.15) into (5.3) and

collecting terms of order X2 we find

- 2(U ) A(U 1 ) U (5.5)

For X - 0, (5.5) reduces to (4.16). It is convenient to define

V( 1 ) - () (5.6)



.

and to rewrite (5.5) in the form

dU (I  dV (I

(1) (1) 2(1)  (5.7)

. This equation can be integrated to yield

U (1) 2 v)

( ±---- (5.8)

4 where V is a positive constant and the sign is chosen so as to make the right
hand side positive. For a few values of X , ±V(1)/V has been plotted in

0

Fig. 3. Also plotted in Fig. 3 is the corresponding relation for X_ 0,

which follows from (4.19) and (5.6) as
N

X - - (U (1) (5.9)o oqs (1

Since we expect that U (1) -1 U " ') and V "l V I as A 0 it can be
qs qs

seen from Fig. 3 that the relevant dynamic solution for U(I) and V(I) should

be located in the part of the phase plane defined by

0 < UM ) < l/X V() < 0 (5.10ab)

Hence, for V > 0 , the minus sign applies in Eq.(5.8). An important0

consequence of (5.10a) is that U (1) remains bounded for X # 0.

We now return to Eq.(5.6), and we write

dX 1 1 (UM u(1 ) 2

1 ) - 1 1 - (1 & - (5.11)

dU~1  V (1(

where (5.8) has also been used. Integration yields

._ l ) -1 Inu(l) -_-1 (5.1]2)

S V - XAu

+ ',, '+ + e ,+ ,+ .- : + ', , " -, , + ,. , , ,.", .j -, ., , .; ...v -+;.... . . .. .. . .. . .. . .. . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ., ',.. . ..... . . . . . . . . . ., ..,.. . .,.. . . . . . ... ".S& + ..
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This expression contains 2 constants, V and C, which can be obtained from

the conditions at X= 0 and XI = X, where X is the intersection of the

transition zone with the X axis in the moving coordinate system. We have

U (1 ) . Co  at X1 M X (5.13)

The only place on the crack line where singularities can be expected is

. . .. = 0. Since Eq.(5.8) shows that V(I) -M as U() - l/X, we conclude

U(I) = 1/A at X1 = 0 (5.14)

Application of (5.13) and (5.14) to (5.12) yields

C - (2/XVo).n (5.15)

V 0 (-M2 + 2nM2 + 1/M 2)/XX0 (5.16)

where M is the Mach number

MH= c2 /(I/p ) (5.17)

Substitution of (5.15) and (5.16) into (5.12) yields

X1 1-M4U2 + 2M2 U n(M2U) 
(5.18)

o 0 (1-M4 + 2M2-,nM 2)U

Here U is the normalized strain

i U' I() (5.19)

The condition that the crack tip is in the zone of large deformation

implies i/A > Co' and hence M2 < 1, since M2 _ C0X
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~4.

Plots of U versus X /X can be obtained from (5.18). Results are

shown in Fig.4, for various values of M. For M > 0, U remains finite

(and equal to l/M2) at X-0 . In the limit M - 0 we find

1""(1 , - (X /Xl) °  (5.20)

../XlX°  llu or u( )  o 1

in agreement with the quasi-static results given by (4.19).

Equation (5.18) is the main result of this paper. It is, however,

desirable to determine an explicit expression for X0 in terms of the crack

tip speed and the far-field loading, albeit by approximation. In Section 3

it was shown that 3x3/aN (or aU/SN), and S3a are continuous at the transition

boundary. Thus, the fields of large deformation can, in principle, be matched

to corresponding linearly elastic fields, to yield an expression for X .0

Under the assumption that the zone of large deformation is small, the small

strain fields are taken as the asymptotic near-tip fields for a crack in a

linearly elastic solid. For the quasi-static case the solution (4.12)-(4.14)

shows that exact matching can be achieved, provided that the center of the

small strain field is shifted to a point on the crack line ahead of the

actual crack tip. For the dynamic problem we do not expect that the zone of

large deformation will be circular, and hence it is unlikely that a simple

solution valid along the complete transition boundary can be obtained. In

any event we have expressions for the large deformation fields only in the

iediate vicinity of the crack line. It is, however, noted that to first

order in X the small-strain quasi-static and steady-state dynamic solutions
2

are both of the general form, given by (4.12) - (4.14). Hence it seems
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reasonable to assume linearly elastic fields of the type (4.12) - (4.14),

at least near the crack line, but where K.1 should now be interpreted as

an elastodynamic Mode-Ill stress intensity factor. For a semi-infinite

crack the elastodynamic and quasi-static stress-intensity factor are

related by (KIII)dyn - (1-M) 1 (l) qs. see e.g. [13,P.35]. It follows that

(4.9) also holds for the dynamic problem, but with the understanding that

R is the local radius of curvature of the transition boundary at its
0

intersection with the crack line.

Near the crack line continuity of DU/aN implies continuity of V(I) .

At the transition boundary we then have

2

$31 - ix2 (1 - -lx2V0 (- ,_) (5.21)

S32 - S 0 (5.22)

where (5.8) has been used. Continuity of S31 and $32 yields by the use of

(4.13) and (4.14)

2 x
ix V0 ( H2  /s 1 _1 2 (5.23)2V 1-" 2  2 R 0

Substitution of V and R as given by (5.16) and (4.9) finally yields
0 0

1 (KT1 2 i-M4 + 2 M2 nM2  (5.24)

0o f\ so / (1-H2)2

The dimensionless form (S0/KII)ZX° has been plotted versus M in Fig. 5.

It is noted that the zone of large deformation ahead of the crack tip

decreases as M increases.
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