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Abstract

The combined effects of finite deformation and material inertia have
been analyzed for fast crack growth under anti-plane loading conditions.
A steady-state dynamic solution has been obtained for the finite strain on
the crack line, from the moving crack tip to the moving transition boundary
with the zone of small strains. The crack propagates in a material
with a response curve in uniform shear that is linear at small strains,
and that remains constant once a critical strain has been exceeded. The
corresponding quasi-static solution is given in the full zone of large
deformation. For the dynamic formulation, an explicit expression for the
crack-line strain has been obtained by expanding the displacement in a
power series in the distance to the crack line, with coefficients which
depend on the distance to the moving crack tip. Substitution in the
equation of motion yields a nonlinear ordinary differential equation for
the relevant coefficient, which can be solved rigorously. The finite
deformation crack-line fields have been matched to appropriate small-strain
fields at the transition boundary. The principal result is that the
dynamic strain remains bounded at the crack tip, apparently due to the
effect of material inertia.chzhe crack-line strain has been plotted for
several crack-tip speeds. It decreases with higher crack-tip speed. An

explicit expression has been given for the extent of the zone of finite
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deformation, as a function of the crack tip speed and the far-field loading.oR—
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1. Introduction

Several recent investigations have been concerned with the effects of
finite deformations on the fields of stress and deformation near a crack
tip. Most notable are a series of papers by Knowles and Knowles and
Sternberg, in which full nonlinear equilibrium theory of homogeneous and
isotropic, incompressible elastic solids has been employed to construct
fields near the tip of a crack. A summary has been presented in Ref.[l].
The most complete results have been obtained for a crack in a body
subjected to finite anti-plane shear, as reported in Refs.{[2] and {[3].
Related work for the anti-plane shear case has been carried out by Lo [4],
who found that for certain forms of the strain energy density, the formu-
lation of the problem becomes formally identical to those of certain previously
studied small strain elastic-plastic problems.

The present paper 1is also concerned with finite deformations near a
crack tip under anti-plane shear loading. The formulation of the
governing equations follows by-and-large Refs.[2] and [3]. A notable
difference is, however, that we study a growing crack, and that the effects
of inertia have been included in the formulation. We consider a strain
energy density which yields a response curve for uniform shear that is
linear at small strains, but that maintains a constant plateau once a
certain critical strain has been exceeded.

The method of solution employs power series expansions in the distance
to the crack line, with coefficients which depend on the distance to the
crack tip. To analyze small strain crack line fields in elastic perfectly-

plastic materials, such expansions have previously been used by Achenbach
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and Dunayevsky [5] and Achenbach and Li [6] for quasi-static problems,

and by Achenbach and Li [7] for dynamic crack growth cases. Substitution
of a displacement expansion in the equation of motion yields a nonlinear
ordinary differential equation for the relevant coefficient, which can be
solved rigorously. The crack-line fields have been matched to appropriate
small strain elastic fields at a transition boundary.

The paper also includes a section which shows that for dynamic crack
growth the stresses and the displacement gradients are continuous across
the moving transition boundary which precedes the crack tip, at least near °
the crack line. Continuity of these quantitites all around the transition
boundary has been shown for the quasi-static case. Furthermore, the full
quasi-static field has been obtained in the zone of large deformation. For
the elastic material that is considered in this paper, the static fields for
a moving and a stationary crack are identical for coordinates centered at the
crack tip. The quasi-static crack-tip strain is shown to be singular. An
independent application of the expansion method yields the correct crack-line
approximation to the exact solution.

The analysis of the crack-line fields for steady-state dynamic crack
growth has yielded the most surprising result of this paper. It is shown
that the effect of inertia is to remove the strain singularity at the crack
tip. Thus, for the dynamic problem both the stress and the strain are
bounded at the crack tip. Curves are presented which plot the strain versus
distance along the crack line. An expression has been obtained for the

length of the zone of large deformation as a function of the crack~tip speed.




2. Governing Equations

The equations which govern finite anti-plane shear deformation in an
unbounded body containing a crack have been formulated by Knowles [2] and
Knowles and Sternberg [3]. In this Section we briefly review the formulation
of [2] and [3] in a slightly different notation, we introduce a different
strain-energy density than was used in these papers, and we extend the
formulation to the dynamic case.

Let Xi and X, be the Cartesian coordinates of a typical point in the
undeformed and deformed states, respectively. For anti-plane strain we

have

The corresponding components of the deformation gradient F are

ax ) 0
i af
F =—1a (2.2)
) ¢ (U 1)
13 9K .8
and the first fundamental scalar invariant is
I1 = tr(FTF) = 3 + g2, (2.3)
where
2
€ U’GU,G ’ U,a av/axa (2.4a,b)

We consider an incompressible material. Hence the deformation is locally

volume preserving, and the Jacobian of the mapping (2.1) is
J = det(F) = 1 (2.5)
Let 1 be the actual (Cauchy) sgtress tensor field in the deformed

body, and let §(Xa,t) be the corresponding nominal (Piola) stress field

in the undeformed configuration. Then
teSsF, s=1EH" (2.6a,b)

The analysis of this paper is restricted to the class of incompress-

ible solids for which W depends on I1 only

A A AT LA A NN S MRS A AN % STRD AR b SN T TR P b ST T L T Lo o]



W= W(Il) for all L 23 Ww(3) = 0.

As discussed by Knowles [1], we then have

= = '
So.3 2w (Il)u,a’

=8..=0,

= [ 2
33 2w (Il)e

T33
where ¢ is defined by (2.4a,b), and
' =
W (11) dW/dIl.

For dynamic problems these equations are supplemented by

- DOU » (.) - 3/3t ’

s3a,a
where ° is the mass density in the reference configuration.

To define the desired relation between S a and U o’ we consider the
]

3
static problem of an unbounded body, which is subjected to the following

condition at infinity

U(Xl,xz) = KX2 +0Q1) as xaxu > o

The solution then is

U(Xl,xz) = kX for all (xl.xz)

2

Too ® T.p = T(k) = W' 3k, T1,, = 1)k (0 <Kk < =)

23 33

32
The graph of T versus k(0 < k < =) is calied the response curve in
simple shear. In this paper we wish to consider a response curve of the
form shown in Fig. 1, which is defined by

UK kK <€,
(k) =

ue K > €
0 - 0

The corresponding strain energy density for an incompressible elastic

solid then follows from (2.14a) as

(2.14a,b)

(2.15a)

(2.15b)
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(1,-3)

<ao)

W(Il) = .f T(x)dk (3=<1
o

1

Substitution of (2.15a,b) into (2.16) yilelds

2(1,-3) 3<I s
wW(1,) =
: (4 -3)s:2];5 -1 €2 3+ 62 <
H & o 2*% o —
The stress-strain relations follow from (2.8) and
S3a= uU’a for 0 < e < €y »
S3a- SOU.“/e for ¢ > €,
where
So = W&

It is noted that (2.19) implies that for ¢ > €, e have

2 2 . a2
S31 +55, 75, -

It is noted that the Cauchy stresses Tij

analogous simplicity.

do not satisfy a relation of

(2.16)

3+ e; (2.17a)
1 (2.17b)

(2.17) as
(2.18)
(2.19)

(2.20)

(2.21)
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3. Discontinuities across a Propagating Transition Boundary

A surface which separates regions where the constitutive behavior is
defined by (2.18) and (2.19), respectively, will be called a transition
w% boundary. In this Section we examine the possibility of propagating

discontinuities in the stress, S; (X,t), the displacement gradient,

J
Fij(g.t), and the particle velocity, ii(g,t), across a propagating

transition boundary, for the case that the linear relation

(2.18) holds ahead of the moving surface, while the nonlinear relation

(2.19) applies behind it.
The propagating surface 1is represented by the relation
Z(X,t) = 0 (3.1)
‘The unit normal to the surface is denoted by N. The speed of propagation

VN’ which is the speed with which the surface traverses the material, is
positive when the surface moves in the direction of Y. A discontinuity of a ‘
field quantity, say G(X,t), is denoted in the usual manner by
(el = ¢* - ¢~ (3.2)

where G+ and G are the limits as X approaches a point on the surface along
paths entirely ahead of and entirely behind it.

The displacement is continuous, and hence displacement gradients in
the surface are also continuous

[lax,/or 1) =0, 8= 1,2 (3.3)
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where Pl and F2 are two independent coordinates in the surface Z(X,t) = 0. The

balance of linear momentum yields the well-known relation

(083,008, = o V\L[%,1]
where s is the mass density in the reference configuration, and g
denotes the particle velocity. From the balance of energy it follows
that the energy dissipated locally as the surface passes, may be written
as

Ho= [V +3 0 %% 11V, + [1x;5,, 1IN, »

where W(X,t) is the strain energy density. It is assumed that
H>0,

i.e., the energy dissipation across a propagating transition boundary

cannot be negative [ 8 ].

It can be verified that H may be rewritten as

1

H= [N - 50 %% 11V, + i;[[poiiVN + 5 N1+ IR 11 G %V + 5, N7

ij i'N ij 3

The second term on the right-hand side cancels by virtue of Eq.(3.4). A

further rearrangement of H yields

B o= ([IW]] - 5 o, [1%, 111K, 1DV + (0% 1SN,

or, by the use of (3.4) in the second term,

1 .. -
B = [(W]IVy + 3 (& 11C0IS, 1IN, + 257 ,8,)

1 . + -
= [[W11Vy + 3 [[%,11(S], + S{ N

I

By using the compatibility relation

[(,1] = - [[ox /oN11V, ,

vt Ly fa

(3.4)

33)

(3.6)

(3.7)

(3.8)

39

(3.10)
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‘-i\': we finally find
N 1 + -

v{l.. = - — + N V (3.11)
2% H= ([[W]] -5 [lox;/aN11(ST, + S, N} Vy
e
_ For anti-plane shear, (3.11) reduces to
'. Pd
hYO) 1 + -

) = - - 3.12
f$$; H= {[[W]] 3 [[3x3/3N]](S3a + S3a)Na}VN ( )
L where & = 1,2. An expressio= siii’ar to (3.12) has been presented in [9].

4

: In this paper the interest is focussed on a field x3(X1,X2,t) which is

s

:2 antisymmetric with respect to the Xl axis, but which has discontinuities

2,

L]

— across a transition boundary which is symmetric relative to X2 = 0, and on which

L)

*b VN > 0. This case applies, for example, to a transition boundary ahead of a

X
N Mode-III crack tip. The condition H > O then becomes

be” o, - 1 -
g?' H=8/V, = [[W]] —-5[[3x3/aNl](S;; + S5, )N, >0 (3.13)

Let us first consider the intersection point on X, = 0, which is defined

2
iy by X2 = 0, X =X (t). Because of antisymmetry we have x_(X. ,0,t) = 0,
Ly o 371
,22 and hence
A
= 3x3/8X1 =0 , (3.1%)

x|
v

o while (3.3) implies

A

W, - +

Iy € =¢ =3x./3X, = ¢ (3.15)
E.} 32 o

; i where € is defined by (2.20). By using the expressions for W given by

i,, (2.17a) and (2.17b), it then follows that

} P

: i T - 1, +2 - 1 »

> H= [[W]] iu(e ) -~ ue €, + FHE 0 (3.16)
vi

;ﬁ; Next we consider a position (xo.dxz). Here we have by (3.13) and

(3.16)
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L4
% il >0, (3.17)
K
X where
- - - _ we  _ we € _
‘ dH = us+ds+ - ue de - l(e:+ - €.) (ude+ +—2 ge7 - —2 N 4¢ )
N o 2N N N E" (E-)z
& _
. >
y 1 + - + N
1% - E-(deN - deN)(ueN + we, e_) (3.18)
.
i: ey = 3%,/3N (3.19)
. - + -
o Since e’ = ¢  =¢ and el =¢. =0 » (3.18) reduces to
o N N
3 + -
%] ueo(de -de ) >0 (3.20)
W
)

In the domain of small deformation the quantity e cannot increase with distance from

402 8

the crack line, hence ds+ < 0. On the other hand ¢ maintains the condition of

-

large deformation, € > €g? behind the transition boundary, and hence de-.i 0.

Consequently (3.20) can be satisfied only if
! +

- A-l—-"s"

de” =de =0 (3.21)
;{ Equations (3.15) and (3.21) imply
‘3 [[e]] = O (3.22)

Equation (3.22), together with the constitutive equations, (2.18) and (2.19),

give

[[S3,]] = ul[3%,/3X 1] = N [[3x,/N]] (3.23)

where (3.3) has also been used. Next (3.4), (3.10) yield

[[ssallna - p°V§[[3x3/8N]] =0 (3.24)

Substitution of (3.23) subsequently gives




u(l - Mé) [[ax3/3N]] =0, (3.25)

where M; = poV;/u . It follows that

[[8x3/3N]] =0 (3.2)

provided that MN< 1. Equation (3.26) in turn implies by (3.10) that

[[i3]] = 0 , and hence
[[5,,11 =0 (3.27)
by (3.23). We have thus proven the continuity of the relevant quantities

across the transition boundary near the crack line, for dynamic problems.

In (quasi) static problems (po = 0), we can prove the same results all along

the transition boundary. Indeed, (3.3) and (3.4) give [10]

[[S5,]1003%,/3X 11 = 0 , (3.28)

which is written explicitly as

+ -, - + -
I= {u(ax3/axu) - so(ax3/axa) /e }{(ax3/axa) - (ax3/axa) } =0 (3.29)

It follows that

2 - - - - -
I=uh + 5,¢ - so(ax3/axa)+(ax3/axa) /e~ - u(ax3/axa)+(ax3/axa) . (3.D)

By using the inequality

+ + + b, - -k
Ix3.ax3.al :-(x3,ax3,u) (x3,8x3,8) ’ (3.31)

it follows from (3.30) that

2 2
+ - + + - + - + + -
I>u(e) + Soe - Soe -pye e =uf(e) + ExE ~E,f T €€ ]

=uet - et -ey 20, (3.32)
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since €' < ¢ and € <e_ . But (3.28) and (3.32) will be in conflict,

+
unless ¢
+
€

e, on the transition boundary (note that e+ = ¢ will lead to
= € also). It can be shown that this result, together with (3.3) and
(3.4), yield either et = e ,or N~ Vx, = 0 (i.e. X4 is locally constant)

on the transition boundary. As will be seen later, we may exclude the

latter possibility for the present application. We thus conclude that
+ -

€ =¢g = €, O the transition boundary. With this result, we can follow
the procedures in Eqs.(3.23) ~ (3.27) to prove continuity of Ssa’3x3/3N and
X3.
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:‘: 4. Static Fields Near a Crack Tip
‘ .
:"_'..- In the immediate vicinity of a crack tip the deformation is large,
3o
) i.e., € > €, and consequently Eqs.(2.19) and (2.21) hold. Outside the
::3 region of large deformation, linearized elasticity according to Eq.(2.18)
v\
3 %ﬁ applies. The two regions are separated by a transition boundary. In this
XN
\ section it is assumed that the largest length dimension of the region of
\,_r! large deformation is small as compared to the length of the crack. This
\1 <
“&j assumption implies that the crack may be taken as semi-infinite, and that
~1
Ak the displacement outside the region of large deformation may be represented
\l
5': by the well-known square-root solution according to linearized elasticity.
ATAY
o
3".'.3 The conditions on the faces of the crack are
1
) +
;‘j U’Z(XI,O )=0 - < Xl <0 (4.1)
0%
,;C: The equation which governs the displacement field in the zone of large
i deformation is obtained by substituting (2.19) into the balance equation
3
é‘& for static equilibrium. The result is
; 5'1 2 2 = |
&;: (U )2V 11 = 20U U )+ (U )P =0 (4.2)
7 Y Equation (4.2) can be rewritten as
*."3
1)
R (1/u HL{v ,} - (/v HL{U ,} =0, (4.3)
o : '1 ,1 ’2 ’2
where the differential operator L is defined as
. -.4 - - .
<o) L (Blaxl) (U’]_/U'z) (8/3X2) (4.4)
»F
l; :~
3
¥ h
¥
%
4

RO . ,‘e..'q ~. o »‘.".

. - "t " 4 -.~q S0 \- -.\.\1 ...'. NNT AN _: .. L . e te®a'a® -t - - ...... Lo



B

- | MY NN
| RIS |

t - AP AARIA

[

€ o/l b L MRS

o g

&

HERR

13

It is now noted that L is a total differential along the characteristic
line defined by

dxz/dx1 = - U,I/U.Z (4.5)
Along such a line (4.3) can be integrated to yield

» » 3 !2

where C and D are constants. By combining (4.5) and (4.6b), we conclude
that the characteristics are straight lines:

dledx1 =D 4.7

On these characteristics the displacement U is constant, because it follows
from (4.5) that
du = 0 4.8)

The problem formulation in the zone of large deformation as defined by
Eqs.(2.21) and (4.8) is now identical to the one for small strain deformation
near a crack in an elastic perfectly-plastic material with the Huber-Mises
yield condition. The solution to the latter problem was given first by Hult
and McClintock [11]. It was discussed in some detail by Rice [12]. 1In the
present context the Hult-McClintock solution shows that the zone of large

deformation is a circle of radius

- L 2
Ro 2n (KIII/SO) 4.9)

which 18 centered at a point E on the crack line (see Fig. 2), a distance




Ro ahead of the crack tip. In the zone of large deformation we have [11],[12]:

R Y
.(_°) 2 4.10
U=\2r/ ¥ Kppp 8in® (4.10)
S31 = -Sosine ’ 532 = Socose (4.11a,b)

In the region of linearized elasticity we have

%
R\Z 2 1
U= (i;) ;.KIII siniw (4.12)
S,y = - (—i- § inky (4.13)
31 zm) K11 8im y
S,, = (—1— ¥ ey 4.14
32 zm) K11 €083 (4.14)

where (R,}) are polar coordinates centered at the point E. Thus, (4.10) -
(4.11a,b) hold for R < Ro’ while (4.12) - (4.14) are valid for R > Ro.

We conclude this section by rederiving the field on the crack line in
the zone of large deformation, by the use of an expansion method. This
method can be used for problems that are not otherwise solvable. The
method is shown here to demonstrate its utility, and as a preliminary to
its application in the next section to the problem of dynamic crack growth.
Following the approach of Achenbach and Dunayevsky [5] and Achenbach and
Li [6], we seek a solution to Eq.(4.2) for small values of Xz(lex1 << 1),

in the form

vy (%,)X, + e (X,)X3 + 0(x3) (4.15)

- (..4'_..' ‘.'..-"_.d'. '..n'..-“.-'..‘,..' Can ™ .'..-‘..-‘_'.‘ .'_.. DN
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Substitution of (4.15) into (4.2) followed by collection of terms of

order X2 yields

2
ufiiu(l) - 2(ufi)) =0 (4.16)

Equation (4.16) is satisfied by

2
ufi) = /ey (4.17)
where C is a constant. The general solution to (4.17) is U(l) = -C/(X1+D).

A singular and multiple-valued solution at the crack tip is obtained by

setting D = 0. Hence

oD . &%, (4.18)

where C is a still to be determined constant. At X1 = Xo’ Xz = 0, we have
1)

U( = eo. and thus C = xoeo where xo is the xl coordinate of the transition

boundary on the crack line. It follows that

- 3
1)) (xolxl)eoxz + O(Xz) (4.19)

The corresponding stresses at the transition boundary follow from (2.19)

S = g (4.20a,b)

== 5,(X)/X) s S5, =8

31

Near the crack line in the zone of linearized elasticity, we now assume

solutions of the general form (4.12) - (4.14). Continuity of S31 and 832
then yields by the use of (4.13) and (4.14)
e 2 X,/X = lw (4.21)
2"70 2
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which implies that Xo = 2R°. It is now easily verified that for & << 1,

(4.19) and (4.20a,b) do indeed correspond to (4.10), (4.lla,b) with (4.9),
respectively.

As a final comment we note that the results derived in this section
also apply to the crack line fields for quasi-static crack growth. For a
propagating crack it is convenient to define the coordinate system (Xl,xz)
as moving with the crack tip. Stationary coordinates (X,Y) and moving

coordinates (xl,xz) are related by

where X = a(t), Y = 0 defines the position of the crack tip in the (X,Y)
system. In the moving (xl,xz) system, the material time derivative is

defined as

(') = (3/3t) - a(d/3x,) (4.23)

where a = da/dt is the crack-tip speed. Spatial derivatives are the same in
the two systems. Since the time derivatives do not appear in the elastic
constitutive equations used in this paper, they do not enter the formulation
of the quasi~-static crack growth problem. Hence, the governing equations
and ,therefore,the fields are identical for the stationary and the moving
crack tip, provided that they are defined relative to a coordinate system

that is centered at the (stationary or moving) crack tip.




o A W W T W W e T, L VY. A A Rl T T e e R A -
t
17
v
L
N
<.
<.
=
\...
')'; 5. Dynamic Fields near a Moving Crack Tip
3
E It is convenient to formulate the governing equations in the moving
-
.oA
coordinates (xl,xz) defined by (4.22a,b), with the material time derivative
_"' as defined by (4.23). In this paper we will restrict the attention to the
)3 steady-state field near a crack tip which moves with a constant speed c.
(]
) The material time derivatives then reduce to
e ¥
el -
Lot (C) = =c(3/3%,), () = c?(3%/3x}) (5.1a,b)
b5 Relative to the moving coordinate system, the equation of motion (2.11)
' becomes
R
) 4 = 2 =
ke S3a.,a p c '11 » Wwhere a 1,2 (5.2)
}‘p' Substitution of (2.19) into (5.2) yields in the zone of large deformation
\
]
My, 2 2 2 213/2
(U )70 4y = 20 105U 15+ (B )7V 5o = AU )+ ) 70 (5.3)
E AN
P where
)
D - 2
3 A =c po/So (5.4)
Ly
bl A solution in the vicinity of the crack line can be obtained by using
the expansion given by Eq.(4.15). By substituting (4.15) into (5.3) and
\'
:‘; collecting terms of order x2 we find
‘
1
< fﬂ (1) 2(U(1)) X(U(l)) U(l) (5.5)
3
% For A = 0, (5.5) reduces to (4.16). It is convenient to define
W _ (D
:.‘ v = U.l ’ (5 -6)
50
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o and to rewrite (5.5) in the form
e 1) )
$ee du I\ 5.7
s v aar®) D '
l;::: This equation can be integrated to yield
2
‘;""é g2 @
(* = . (5.8)
1§ where Vo is a positive constant, and the sign is chosen so as to make the right
Bt
_){:' hand side positive. For a few values of A , :v(l)/vo has been plotted in
ks Fig. 3. Also plotted in Fig. 3 is the corresponding relation for ) = O,
S 8
..'_‘ which follows from (4.19) and (5.6) as
.p:g
1 2
e x v o L @)y (5.9)
: o 0 gqs qs
]
k ':; Since we expect that U(l) *> U(l) and V(l) - V(l) as A - 0, it can be
0 N qs qs
24 seen from Fig. 3 that the relevant dynamic solution for U(l) and V(l) should
# be located in the part of the phase plane defined by
N
0 < U(l) <1l/A , V(l) <0 (5.10a,b)
e
—— Bence, for Vo > 0 , the minus sign applies in Eq.(5.8). An important
P 4
X consequence of (5.10a) is that U} remains bounded for A # 0.
w-i\:
35: We now return to Eq.(5.6), and we write
N
T 1 2
_,* Xy 1 _ @( ) 1/2) (5.11
ot ;M " m,? —
gy du V' v (U
A): '.-a o
ANy )
gyt where (5.8) has also been used. Integration yields
Bt
% x = -3 fu® -2 oD _ L. 1—} +C (5.12)
e, v A 2 (1)
pint [+] A U :
BY l
)
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\f\;: This expression contains 2 constants, Vo and C, which can be obtained from
"o

'_: the conditions at Xl = 0 and Xl = Xo, where Xo is the intersection of the

r s

N

transition zone with the X1 axis in the moving coordinate system. We have

L o
S.‘c

{
ol v e arx =x (5.13)

e [o] 1 (o]

«.?,";
S The only place on the crack line where singularities can be expected is
:,m X, = 0. Since Eq.(5.8) shows that V(l) + = as U(l) + 1/x, we conclude
RS

% B a1 aex -0 (5.14)
po . .

T Application of (5.13) and (5.14) to (5.12) yields

£

ot

XY C= (2/AV )2nA 5.15
il.’?' (2/27) (5.15)

v, = (M2 + 22nM? + 1/M2)/AX° (5.16)

where M is the Mach number

234 M2 = c2/(u/p) (5.17)
o °
248 Substitution of (5.15) and (5.16) into (5.12) yields
X182 4 2?Ten () (5.18)
X (A-M* + 2422nM2)T
Here U is the normalized strain
U= U(l)/eo (5.19)

The condition that the crack tip is in the zone of large deformation

implies 1/A > ¢ _, and hence M2 < 1, since M? = e
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Plots of U versus xl/xo can be obtained from (5.18). Results are
shown in Fig.4, for various values of M. For M > 0, U remains finite

(and equal to 1/M?) at Xl = 0., In the limit M - 0 we find

-“ . = - (1)
] Xl/Xo 1/ , or U = (Xo/Xl)eo » (5.20)

in agreement with the quasi-static results given by (4.19).

Equation (5.18) is the main result of this paper. It is, however,

A0
PANR

;sh desirable to determine an explicit expression for Xo in terms of the crack
L;;: tip speed and the far-field loading, albeit by approximation. In Section 3
E;Zé it was shown that ax3/3N (or 3U/3N), and S3a are continuous at the transition
E;%; boundary. Thus, the fields of large deformation can, in principle, be matched
‘ to corresponding linearly elastic fields, to yield an expression for Xo.

;21' Under the aséumption that the zone of large deformation is small, the small
i:‘ﬁ strain fields are taken as the asymptotic near-tip fields for a crack in a
M linearly elastic solid. For the quasi-static case the solution (4.12)-(4.14)
%%55 shows that exact matching can be achieved, provided that the center of the
',E; small strain field is shifted to a point on the crack line ahead of the

;j:: actual crack tip. For the dynamic problem we do not expect that the zone of
3& S large deformation will be circular, and hence it is unlikely that a simple
gﬁ;? solution valid along the complete transition boundary can be obtained. In
if:’ any event we have expressions for the large deformation fields only in the
é;;% immediate vicinity of the crack line. It is, however, noted that to first
:i{ ) order in X2 the small-strain quasi-static and steady-state dynamic solutions

~5 o€,

-,

are both of the general form, given by (4.12) - (4.14). Hence it seems
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reasonable to assume linearly elastic fields of the type (4.12) - (4.14),
at least near the crack line, but where KIII should now be interpreted as
an elastodynamic Mode-III stress intensity factor. For a semi-infinite

crack the elastodynamic and quasi-static stress-intensity factor are

related by (KIII)dyn = (l-M)li

(4.9) also holds for the dynamic problem, but with the understanding that
Ro is the local radius of curvature of the transition boundary at its
intersection with the crack line.

Near the crack line continuity of 3U/3N implies continuity of V(l).

At the transition boundary we then have
-y ®| . o _
S3p = ¥EV X=X, "X e -1/

s32 - so !

where (5.8) has been used. Continuity of §,. and 832 yields by the use of

31
(4.13) and (4.14)

V'3
X
M2 1 152
uX \'j ) /s = -—1‘; [
2 0 (I-Mz o 2 2 R°

Subgtitution of Vo and Ro as given by (5.16) and (4.9) finally yields

X

2
. l(KuI) 1-M* + 2M%enM?
o T

so (1-M%)2
The dimensionless form (So/KIn)"x° has been plotted versus M in Fig. 5.
It is noted that the zone of large deformation ahead of the crack tip

decreases as M increases.
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