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\ ABSTRACT !
B 3
Optical fibers are produced by heating a silica rod and pulling on the G
v
rod to produce a thin fiher. This process involves several interacting ‘2
B
effects, especially the temperature dependent viscosity of the rod, and the \é
shape of the rod in the transition zone. 1In this paper the equations \
y
describing this process are studied by means of a perturbation analysis using .
. K.
as the perturbation parameter the ratio of the rod to the length of the ¢
¥
. furnace. The silica rod is usually doped so that it will have special optical s
properties and it is important to know the concentration of the dopant in the ;?
. b
final fiber. Simple equations for the significant terms in the perturbation g‘
series are obtained for all quantities of interest. A simple formula is :
obtained which expresses the radius of the fiber in terms of the initial Q
( 4
\
radius of the rod, the drawing force and other important parameters. B
3
AMS (MOS) Subject Classifications: 80A20, 76D30
N Key Words: Optical Fibers, Perturbation Analysis i
3 o
Work Unit Number 2 (Physical Mathematics) o
|
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SIGNIFICANCE AND EXPLANATION 'g

%

Optical fibers are important as a new means of communication. 1In this a

e

report the equations which describe the production process for the fibers are Q

R

studied. Through a perturbation analysis relatively simple equations are =

a

obtained which describe the process.
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A STUDY OF THE DRAWING PROCESS FOR OPTICAL FIBERS

John C. Strikwerda

1. Introduction

Optical fibers are usually produced from silica rods by heating and pulling the rod
in the axial direction. This essentially simple physical process is difficult to analyze
mathematically due to the interactiin of several effects. These effects include the
temperature of the furnace, the temperature dependent vigcosity of the rod, the drawing or
pulling force on the rod, and the shape of the rod during the drawing process. In
addition the silica rod is usually doped so that it will have special optical properties
and it is important to know the radial dependence of the dopant in the final fiber. In
this report this process is studied so as to produce convenient equations from which to
calculate many of these quantities and to demonstrate the essential features of this
process. In a subsequent report these equations will be solved numerically to produce

. quantitative results.

2. Description of the Problem

Consider a circular rod placed in a furnace, vhich we assume as cylindrical in shape,
with temperature distribution in the furnace given by Te(Z). The rod and furnace are
taken as coaxial with the Z-axis, and for siwplicity of analysis both the rod and furnace
are assumed to be infinite in extent. (In general, the furnace will be cold for all but a
finite interval.) The rod is forced to wove in the axial direction under the influence of
4 given drawing force rd. The initial feed rate of the rod is Uo and the radius is
.o' Because of the temperatures of the furnace the rod will behave as a viscous liquid

and be drawn down to a radius ll‘ and have velocity U1. An objective of this study is

A K «l ‘; x'-« [ :.“l.‘,l‘.
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to show how the temperature distribution Tf(Z), the drawing force Fyqe and feed rate

!

Us affect the radius reduction from R, to Ry. The rod and furnace are assumed to have

v

¢
St -

»
3

il 5%

no angular variation, which means all effects will depend only on the axial and radial

ot
a & a e
e e T

A ¥,

coordinates. Paek and Runk (1978) presented a method for determining the neck-down shape

.

k2
.
()

of the rod, however there are several difficulties with the equations which they

employed. The equations should allow for the degenerate case in which the rod and furnace

i

are at the same constant temperature. The equations of Paek and Runk do not have such a

ot P

solution unless the temperature is 1100°C, which appears to have been chosen quite
arbitrarily. The equations used here do not have such arbitrariness. Because of the
greater generality of the equations employed here they should be useful in studying the

cooling of the fiber after it exits from the furnace. The cooling process is of interest

IR A

because of its role in determining the strength of the fiber.

g The method used in this analysis is the method of perturbation expansions using the
5

s ratio of the rod radius to a length representative of the heating zone. This slenderness
,g ratio is of the order of 0.05 for the draw-down process.

The use of the slenderness ratio has been employed to study slender jets of inviscid
f.aids with great success, see the work of Geer (1977a,1977b) and has led to an effective

numerical method, see Strikwerda and Geer (1980). (See also Geer and Strikwerda (1980) and

3 (1983).) An advantage of the perturbation method is that it displays the relative

3 importance of the various effects which interact in the process. For the draw-down

‘?' process the perturbation method gives relatively simple formulas for the determination of
t the temperature, shape, and dopant concentration. An especially striking formula is that

for the rod shape as a function of the viscosity of the rod.

o

o E R

3. The Governing Fgquations

b

The governing equations will be given first in dimensional form and then rewritten in
nondimensional form. The convention which is adopted is that for quantities denoted by

Latin letters the dimensional quantity will be denoted by the upper case and the
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nondimensional quantity by the lower case. The exception is temperature for which 0

will denote the nondimensional temperature. For quantities denoted by Greek letters an

overbar will distinquish the dimensional value.

The exception here is that £ denotes

the emissivity but € is the slenderness ratio of the perturbation expansion.

The equations describing the drawing process are essentially those given by Paek and

Runk (1978). The differences between the equations sets are that in this paper the

pressure is included in the stress, the heat flux is calculated differently, and here the

dopant concentration equation is also included.

The equations governing the movement of the rod are the balance of forces

? ozz 1 3(Ro r)

2 ' R®R =0
By, 120, ’__%2

3z R 3R
where the 3;j are the usual components of the stress tensor.

=0

At the surface of the rod
we have the conditions of no stress

o n_ + -
zZZ Z ol‘l nt' °

n_ + -
rz P2 ¥ Opr P = 0

al

where (ng,nr) are the coordinates of the unit normal at the surface. Surface tension is

ignored as it is negligible for silica rods (Geyling and Homsy 1980)).

The rod is an incompressible medium 80 the velocity components satisfy

o 30 1 3Ry -0
. 32 R3R
; The liquid phase is assumed to be a Newtonian fluid (see Manfre (1969)) so the stress

Sy

iy components in the liquid are given by
- - 3U
Oz "~ P+ 2u 3y
3 -7Ru,
dtz ”‘an + 3z
r v

rr P+ R

000 = - P 4+ 2u V/R

-3=
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where P is the pressure and Y is the vigscosity. Gravitational effects can be included

;4;?‘ in the pressure, or ignored as we do here (Geyling and Homsy (1980)). The equation for
o
-. } the temperature is 4
. -
oL
‘ i - 3T T 2 ‘n: o a4

] ‘I’C"(Ua *V‘a'i)'v(xc'ri»s; T)
N in the rod and !
1N an’s .
8 3 [ 4 [
i (K. T+ TV) = - 0(2)
b n [ 4
3% ’

on the surface, where Q(Z) is the heat flux due to the furnace (Paek and Runk (1978)).

Q(Z) is given by

—_— = ¢ (2,8) cosé ,cosd
z) =€a | J° rz)? - 0 —2 pase
bt 'OO(Z,E) L) R12

where Rys is the distance between the point P, on the rod surface at Z and the
point P, on the furnace surface at £, (see Sparrow and Cess (1967)). The angle 01

is that between the normal at Py and the line connecting Py to Pz, and ¢ 2 is the

angle between that line and the normal at Py The radius of the furnace is A and

00(2 «£) 1is the angle intercepted by the tangent plane at P; on the section of the

R -

*é; furnace at ¢£. The other quantitites in the above equations are the density o, the
B

?}:';'f“ specific heat C_, the thermal conductivity K_, the index of refraction n_, the

absorption coefficient Y, the emissivity €, and the Stefan-Boltzmann constant O.

The equation governing the transport of dopant is

ac aC 13
U 3z + Vv 3R 3z (R(T) -—) + - R R (RK(T) ﬁ)

where C(R,Z) 1is the concentration of dopant and K(T) 1is the diffusivity. On the

surface the condition is
ac

n = 0,
The functions that are presumed known are the viscosity W(T) and diffusivity K(T),
as functions of the temperature, and the temperature of the furnace wall Tt(z) as a

function of the axial distance 2.
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The variables are nondimensionalized by expressing them as multiples of various
constant reference quantities. The reference velocity is the feed rate Uo' the reference
force is the drawing force F3, the reference temperature is the initial temperature of
the rod T, in an absolute scale, e.g. °K. The initial furnace temperature is assumed to
be the same as that of the rod. There are two reference lengths, one being the initial
rod diameter Rye the other being a representative length of the furnace Z,- The ratio
V’o is assumed to be small.

The nondimensional variables are defined by

c-Roﬂo t-R/Ro z-z/zo
u= u/uo vs= V/(Uot:)

2
0= T/T, ko(e) - x(r)zolvoko

The reference stress is

- 2
Oo - !'d/ll°

%4 = %3%

w=UU/02Z)
oo
p= P/co.
The concentration is normalized so that initially
A
| c(r,Z)RaR = YpaZc
0 o
and ¢c = C/Co-

The nondimensional equations which hold in the rod are

il €% ‘T

(2)

(3) 3zt~ 0

-l

75 A S B SRR
l.'a'-\(.f‘\,

"'\ '- SCROON
0 L3




2

8, 30 _ 13 3 . 22% .
(4) “3:"3: (ratrar0e azz)(k19+k29)
3¢ dc 13 3¢ 223 ac
) b ™ tv r r or (rko(e) 32) te dz (ko(e) az)

In the liquid phase of the rod the stresses are given by

(6) cu--p+2u%
(7) O ™ e-‘u(:—: + cz %)
(8) o" = - p+ 2u :—:

(9) o“ = -p + 2 v/r.

The normal to the rod surface is given by

—€s' (=) 1
P ® 2 2+ %" 2 2
/14¢“s'(2) /14 (2)

wvhere the rod surface is given >y r = s(s).

The boundary conditions are therefore

{10) 0" =c g'(2) L
(1) O ™ € s'(2) L
(12) v =g'(g) u.
L) 2 ] 4 2 2
(13) (G -€8 37 (k0 +k,07) =~ qla)(1+e s’ () )1/2
o ¢ (z,E) cosé ,cosd
(14) qtz) =ckya) J° o -0 €)) —I—2 M
- -00(3.5) LI PP
(15) -:f - 29 -:—:

Because of the nondimensionalization which is employed, the values of the several
variables in the initial solid phase of the rod (i.e. at £ = -») are:
ulr,») = 1, vir,~=) =0, © (r,~») = 1

() = », k(1) = 0, a“(r-)-l

and the other stress components vanish,




£
s and we assume that q(z) vanishes as z + ~», Also c(r,~) is some specified
e function. ‘The initial radius of the rod is 1.
P i) I
%"s If O* is the nondimensional softening temperature of the rod, then |
2N
kel
Rt u(e) = o
] if o < o+
k (8) =0
]
and i
u(e) <=
if 6 > o+,
ko(e) >0

I

b/(6-e*),

A possible expression for u(®) for O > O* ig u(O) = pte see Napolitano and

Hawkins (1964). The nondimensional constants are

)(1 - (K z )/(DCVUORO)
N I - - 2
kz (u'o n azo)/(:macv U R
‘ (16)
‘:l#." - — 3 -
B L (eo 'ro )/(pcv Uo zo)
2 a = A/R ]
w5 o
>
4. Perturbation Analysis for the Shape
Each of the variables in the process are expanded in perturbation series.
‘ For example,
u(r,z) = uo(r,:) + € u,(r,:) + :2 nz(r,z) + v0e
- 2
= s(z) = 8 () + € 8.(2) +c8,(x)+ e, !
S also 3
e u(bir,z)) = u (r,2) + ¢ p(r,z) + czuz(r.z) + oee 3
L
- 1
. -7 {
1
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Because of the subscripts on the stresses the perturbation index for the stresses will be

a superscript, and °rz will be the only variable with a index of -1, i.e.

-1 =1 o o
¢ =€ g +¢ o + oo
re re rz

From equation (1) it follows that

arc-1 are °
xz _ IZ _ o
rdr rdr ’
thus ro;: and ror: are independent of r. The boundary condition (10) further shows
that ar;' and °r: vanish identically. Since
3du
-1 o
S 92 " ¥ Toxr ” 0

it follows that u, is a function only of z. From the continuity equation (3) and (12)

.. there follows

2
du (z) s s au drv
] o o ©°
az 2 - ] az rar=- ] ar ar

=-8 (v = -8 (z) s (z)u (2).
Therefore, since uo(:) = 1 in the initial solid phase,
(1m u(z) = Ve (2)? .
From (3) and (12) it follows that
(18) volr,z) = r s(z)/a ()3,

Equation (1) integrated over a section, together with (10) yields

o 1

s (z) 30 s (z) 3ro

° il I o O

0 0

. 1 o
= - -o(z) Oy~ =" 8 (z) s' (z) o ez '
wvhich can be rewritten as

-8

‘ .~1.~
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- - - S e A ) a*atertLr. .
1
| w— i
iy
‘ -] 'o(z) o °
. i () g TAT) = 0.
Based on the initial solid phase, it follows that
l'o(z) o 1
(19) J o,, Ta&r =7/
0
o From equation (2), with 02;1 =0,
) o
Lt drc o
R A__xx__é¢
r dr r 0
. and substituting (8) and (9) gives
s'(z)
:—(-p +2-2 3 ¥o! .ﬁar:-o'
s _(z)
%
8ince (11) shows that ot: vanishes on the surface of the rod, the conclusion is that
o
p a" =0
. or
s'(2)
(20) po(r,z 3 uo(t,z).
s_(z)
? o
By the definition of o“ in the liquid phase, with (17) and (20)
o a“o
922 " " P * Vo 32
=- 6y (x,2) 8'(z)/s ().
o ! ) o
At locations at which the rod is entirely in the 1liquid phase, this formula with (19)
gives
3 -o(z) 1
_ ~ 6 8)(z)/8_(2) jo u,{r,2) rar = 7.
. -9-
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In the intergral in r make the substitution
(21) r= lo(l) n,

which will prove very useful later as well, to obtain

s (3) 1 1 -1
(22) RO ( Jo o (n,z)nan) .

At this point it is convenient to make an approximation by replacing
Ho(!.l) by ;o(:). which is independent of r. The value of ;o(z) can be obtained in
any of several ways. With this approximation (22) can be simply integrated to give the
remarkable formula
(23) s (2) = oxp (- 3 3 we) ™! a.

It is important to point out that the validity of the approximation of "o by |-|
can be checked by the results of computationg. If the computations show that for a
appreciable interval of =z values there are gubstantial solid and liquid portions for
each value of = then the above approximation is not wvalid. 1In that case, if the rod is

solid for r 1less than co(:) so(s), equations (22) is replaced by

'; -1
,2 ( ] )uotn.:)ndn)

0

(24)
8! 1-(0°(8)l°(s)) )

which follows directly from (19) and c.: equal to 1.0 in the solid phase.

S. The Effect of Draw-down on the Dopant Concentration.

The equation governing c,(r.z) is

-a_cg aco 19 ac
“obs"or-;s;( ‘00)52—)'

-10-




It is advantageous to change coordinates from (r,z) to (n,z) where

(21). The resulting equation is

3c° 1 aco
p— - L} ——— —
Yo 32 + (v° us" 8, s, an
ac
19
=T 2 Rﬁ( k@) T 3'\ ) -

Io(z)

However, from (17) and (18)
- [ ]
v° uon 'o =0

and again by (17) the equation simplifies to

3 Oc
- (e)an ), > ==, 0< n<« 1.

¢
—_— . n
F) an

(28)

."l-

n

is defined by

which is a simple parabolic differential equation for c,. The initial conditions are

that co(n,:) is specified in the solid portion of the rod, (i.e. where n = r). The

boundary condition (15) becomes
¢
(26) 7“2 =0 at n=1.

Thus, the change of €o

is not explicitly dependent on the rod shape, depending only on

the temperature eo, which does depend on the shape. Equations (25) and (26) are very

amenable to numerical computation since the n variable is on a fixed domain.

6. Determination of the Temperature.

The equation for the nondimensional temperature Oo(t, z) is

%0 20
-} o 13 ) 4
% 3z + Yo " ror (r (k e +k 90))

Using the transformation (21) as in the proviou- section this becomes

(27) 34 1L & o et

The boundary condition (13) becomes

afi=

.o

D
—— a e\
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L) 4
(28) n (k19°+k29°) - -so(z) qo(z).
The determination of qo(z) requires some analysis to obtain the limit as € tends to . ¢

£6X0.

Por convenience, set

. m .

P(z,2,6) = 0'(s(2),2) - 63(0)

GO

- then from (14)

L] ¢° cosd 1 cosoz .
¥ (29) q,(x) =k, a lime ] | % rz.z0) 2 asag.

N €E*0) = -4 Tr

L o 12

The coordinates of the point P‘ on the rod surface at z can be taken as (z,es(z),0)

in cartesjan coordinates and those of the point P, on the furnace surface at ({ are

(z,ca cos $,€ a sin ¢). Thus ‘

rfz = (z-2)2 + e2(s-a cos $)2 + c2(a sin 92 K

- = (t-C) + ez(cz + a2+ 2 as cos $) .

The normal to the rod surface at P, is o

(-ea*(2), 1, 0)/(1+(es (2272 :

’ and that to the furnace surface at P, is .

(0, - cos ¢, -~ sin ¢) .

The unit vector in the direction P,P, is .

' v

(¢-z, €(a cos ¢ - 8), € a sin $)/r, L

) Therefore .
: cos ¢, = :12“- 8'(z) + a cosd - s(z))

1+(cs'(z))

eo-bz--e—(l--(z)eo-ﬁ- N

12 o

The quantity for which the limit is taken in (29) is first transformed by replacing N

T by 2 ~(, and for convenience set

-12-
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- 1
rs= (52«“)2 - 2a8(s%) co-"alz

which gives

3

k ace - 0° P(x,2=C)(Cs'+a cosd=-s)(a-s coséd)
Ty, | | 2.2 ~2.2 N
T (1e(es) )2 = oy (7T D)
wvhere s and s’ are evaluated at =x.
Next make the substitution
g=fc¢ ;v
the above quantity is then
k a -« . -~ ~
o RKiz,z-exf)icCp's+e copé-p)(a-p co8 ¢)
J J - “‘ .
mm--)!)’ - P gden?

Wow the limit can be taken easily giving

a cosd~s_)(a=-s_ocosé)

k - ¢ (s,8) (
kb X e sove B N v oo 2R T
-  (§7+1) -Oo(:,s) (a"+s_-2as _cos 4)

%

T™he first integral is evaluated easily as

| E— -
- (E7+1)

using for example £ = tan a. The second integral is also easily evaluated as follows.

Pirst note that Qo(:,s) is given by
a cos 0° = .o(s)

also setting B = o o(:)/a the integral becomes

13-
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2 J‘o {cosé~8)(1-Bcosd) % = 2 sin ¢ .o

h
0 (1+83-28cons) V2 (148%-28c08e)2  I°

2 sin ¢, 2 /1-8>
- %" .32 3% " %
(148°-28cosd )2 (1487-287)"2
Therefore
(30) 9, = ky F, (z,2)
=k, (0%s (2),2) - 0%(2))
3 Yoo £
Using the transformation (21) the boundary condition (27) is
3 4 4 4
(31) ﬁ(k@oﬂtzeo) - "o“"‘a(eo“") - 9,(:))-

Bquation (27) with boundary condition (31) is again a parabolic initial boundary
value problem for the temperature 9° in terms of the coordinates (n,z) with z being
the time-like variable. The temperature depends on the fluid flow through the shape
function s,(z) which appears in (31) and is determined by either (22) or (24) which
depend on temperature through the viscosity. The validity of the use of an average
viscosity u(z) should be apparent from the temperature distribution of the rod. If
there are significant variations in temperature in the rod when the surface begins to
become liquid then the use of equation (24) would be more appropriate than (22).

An interesting feature of the formula (30) is that to within O(c) the flux is
independent of the furnace radius a. It is consistent with one's intuition, however,
that the effective furnace temperature is approximately that of the furnace closest to the
rod. Nowever, one might expect that (30) would be a less accurate approximation than it

is.

7. Summary.
This section serves as a summary of the previous analysis. The primary problem is to

determine the tewmperature distribution Oo(r,z). The governing equation is (27)

%, 45

? 4
3z " n o (n N (k1e°+k29°))
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for » ¢z <w, 0<n<1

with the boundary condition (31) on n = 1,

\,L.@_,

4 4
(k10°+k260) o(z)k3(6°(1,z) - Gf(z))-

The surface shape function so(z) is given by (24).

e

s)(z) 1 -1
3 ] (8 (n,z)) nan)
so(z)(1-(uo(z)-°(z)) ) ao(z)

where ao(z) is that value of n for which
[ -
A <9 for n < ao(z)

*
(-)o >0 for n> ao(z).

If one uses an approximate viscosity u(z) then (23) holds
z

1 - -1
s (z) = expl-¢ ] wg) “ag).

-
In the numerical computation of these problems, one would take the furnace temperature and

initial rod temperature as squal, for, say, z € 0. i.e.
90('\.:) = et(z) = 9 for z2< 0.

Simultanecusly, the dopant concentration can be computed by equation (25) with boundary

condition (26)

a"o 13 aco
—=ym k (6,(n,2)) e ), 0<¢ng

3¢

3,-‘2-0 at ns= 1,

It is also of interest to obtain expreasions for the drawing radius ratio in terms of

the dimensional parameters. If a global average viscosity U* is defined by

-
an'=L | Seen'a
0 ==

then (23) yields

l1 2
s 2 (-Pdlo/(uokou'))-
o
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This formula clearly show the relationship that holds between the drawing force F4s the
feed velocity Uo, the initial radius Ro' the furnace length zo, the average viscosity

U*, and the radius ratio Ry/R . Although U* depends on Fq, Uy, and R, presumably
it is most strongly dependent on the furnace temperature distribution. Assuming this,
formula (32) can be used to estimate the change in Ry which would result from small
changes in 'd' Ro ot and the furnace temperature.

The advantage of the perturbation analysis is that it gives such simple expressions
as (32) between the large number of parameters which govern this problem. The relation
(32) is only true to within terms of order Ro/zo, but the experimentally obtained values

for the coefficients and functions which have been assumed as known may well have errors

of a similar magnitude.
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ﬁgj final fiber. Simple equations for the significant terms in the perturbation
rti series are obtained for all quantities of interest. A simple formula is
N obtained which expresses the radius of the fiber in terms of the initial
radius of the rod, the drawing force and other important parameters.
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