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ABSTRACT

JOptical fibers are produced by heating a silica rod and pulling on the

rod to produce a thin fiber. This process involves several interacting

effects, especially the temperature dependent viscosity of the rod, and the

shape of the rod in the transition zone. In this paper the equations

describing this process are studied by means of a perturbation analysis using

as the perturbation parameter the ratio of the rod to the length of the

furnace. The silica rod is usually doped so that it will have special optical

properties and it is important to know the concentration of the dopant in the

final fiber. Simple equations for the significant terms in the perturbation

series are obtained for all quantities of interest. A simple formula is

obtained which expresses the radius of the fiber in terms of the initial

radius of the rod, the drawing force and other important parameters.

(NS CMOS) Subject Classifications: R0A20, 76D30

Key Words: Optical Fibers, Perturbation Analysis

Work Unit Number 2 (Physical Mathematics)
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SIGNIFICANCE AND EXPLANATION

optical fibers are important as a new means of communication. In this

report the equations which describe the production process for the fibers are

studied. Through a perturbation analysis relatively simple equations are

obtained which describe the process.
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A STUDY OF THE DRAWING PROCESS FOR OPTICAL FIBERS

John C. Strikwerda

1. Introduction

Optical fibers are usually produced from silica rods by heating and pulling the rod

in the axial direction. This essentially simple physical process is difficult to analyze

mathematically due to the interactin of several effects. These effects include the

temperature of the furnace, the temperature dependent viscosity of the rod, the drawing or

pulling force on the rod, and the shape of the rod during the drawing process. In

addition the silica rod is usually doped so that it wili have special optical properties

and it is important to know the radial dependence of the dopant in the final fiber. In

this report this process is studied so as to produce convenient equations from which to

calculate many of these quantities and to demonstrate the essential features of this

process. in a subsequent report these equations will be solved numerically to produce

quantitative results.

2. Description of the Problem

Consider a circular rod placed In a furnace, which we assume as cylindrical in shape,

with temperature distribution in the furnace given by Tf(Z). The rod and furnace are

taken s coaxial with the Z-axLs, and for simplicity of analysis both the rod and furnace

are assumed to be infinite in extent. (In general, the furnace will be cold for all but a

finite interval.) The rod is forced to move in the axial direction under the influence of

a given drawing force rd- The initial feed rate of the rod is Uo  and the radius is

D. Because of the temperatures of the furnace the rod will behave as a viscous liquid

and be drawn down to a radius R1 and have velocity U1 . An objective of this study is

Sponsored by the United States Army under Contract gO. DAAG29-80-C-0041.
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to show how the temperature distribution T,(Z), the drawing force Fd, and feed rate

Uo  affect the radius reduction from Ro to R1 . The rod and furnace are assumed to have

no angular variation, which means all effects will depend only on the axial and radial

coordinates. Faek and Runk (1978) presented a method for determining the neck-down shape

of the rod, however there are several difficulties with the equations which they

employed. The equations should allow for the degenerate case in which the rod and furnace

are at the same constant temperature. The equations of Paek and Runk do not have such a

solution unless the temperature is 11006C, which appears to have been chosen quite

arbitrarily. The equations used here do not have such arbitrariness. Because of the

greater aenerality of the equations employed here they should be useful in studying the

cooling of the fiber after it exits from the furnace. The cooling process is of interest

because of its role in determining the strength of the fiber.

The method used in this analysis is the method of perturbation expansions using the

ratio of the rod radius to a length representative of the heating zone. This slenderness

ratio is of the order of 0.05 for the draw-down process.

The use of the slenderness ratio has been employed to study slender jets of inviscid

f:ids with great success, see the work of Geer (1977a,1977b) and has led to an effective

numerical method, see Strikwerda and Geer (1980). (See also Geer and Strikwerda (1980) and

(1983).) An advantage of the perturbation method is that it displays the relative

importance of the various effects which interact in the process. For the draw-down

process the perturbation method gives relatively simple formulas for the determination of

the temperature, shape, and dopant concentration. An especially striking formula is that

for the rod shape as a function of the viscosity of the rod.

3. The Governing rquations

The governing equations will be given first in dimensional form and then rewritten in

nondimensional form. The convention which is adopted is that for quantities denoted by

Latin letters the dimensional quantity will be denoted by the upper case and the

-2-

a, _ , :PT' % %, "" %* % %. % % % '%"' " ' '"" ' "

, " - " . . . 1 .I •. • . 1 -." " . *-' • .. • % % .

fiff ~ 4YZI . . . ?%*

!.i UNI! J



nondimensional quantity by the lower case. The exception is temperature for which 0

will denote the nondimensional temperature. For quantities denoted by Greek letters an

overbar will distinquish the dimensional value. The exception here is that T denotes

the emissivity but e is the slenderness ratio of the perturbation expansion.

The equations describing the drawing process are essentially those given by Paek and

* Runk (1978). The differences between the equations sets are that in this paper the

pressure is included in the stress, the heat flux is calculated differently, and here the

dopant concentration equation is also included.

The equations governing the movement of the rod are the balance of forces

3CR a
+ , _ - 0az R 

rz I rr
- + -- - 0
3Z R 3R R

where the a j are the usual components of the stress tensor. At the surface of the rod

we have the conditions of no stress

a z nz + orz nr - 0

arz n z + Crr nr - 0

where (nz,nr) are the coordinates of the unit normal at the surface. Surface tension is

ignored as it is negligible for silica rod* (Geyling and Homuy 1980)).

The rod is an incompressible medium so the velocity components satisfy

au +.1 inv

Z R 3R

The liquid phase is assumed to be a Newtonian fluid (see Manfre (1969)) so the stress

components in the liquid are given by

zz- au
- U + 1)

0 -P + 
21 V/R

m
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where P is the pressure and ; is the viscosity. Gravitational effects can be included

in the pressure, or ignored as we do here (Geyling and Homsy (1980)). The equation for

the temperature is

4n2

Cv(U 
T + V ) - 2(KT + 0 T4 )

3 y
in the rod and 4n 0

-- (K c T ) T - Qz)
3Y

on the surface, where Q(Z) is the heat flux due to the furnace (Paek and Runk (1978)).

QM(Z) is given by

-- * ] (Z, ) cos*I0ce* 2  dd
Q(Z) -ec 4 _ T (T(Z)4 - T( 

8
) C

2 
Ad*d

-ME(Z, ) w R12

0 1

where R12 is the distance between the point P1 on the rod surface at Z and the

point P2 on the furnace surface at C, (see Sparrow and Cess (1967)). The angle #

is that between the normal at P 1 and the line connecting P1 to P2. and * 2 is the

angle between that line and the normal at P2 . The radius of the furnace is A and

S(Z) is the angle intercepted by the tangent plane at P1 on the section of the

furnace at E. The other quantitites in the above equations are the density F, the

specific heat C ,, the thermal conductivity Kc, the index of refraction no, the

absorption coefficient y, the emissivity 7, and the Stefan-Boltzmann constant 0.

The equation governing the transport of dopant is
c 3c 3c 13 3 c
3U !C R + -- 1 (K(T) LC-) + I L (RK(T) -)

where C(R,Z) is the concentration of dopant and X(T) is the diffusivity. On the

surface the condition is

3C
an

The functions that are presumed known are the viscosity ;(T) and diffusivity K(T),

as functions of the temperature, and the temperature of the furnace wall Tf(Z) as a

function of the axial distance Z.
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The variables are nondimensionalized by expressing them as multiples of various

constant reference quantities. The reference velocity is the feed rate U., the reference

force is the drawing force Fd , the reference temperature is the initial temperature of

the rod To  in an absolute scale, e.g. *K. The initial furnace temperature is assumed to

be the same as that of the rod. There are two reference lengths, one being the initial

rod diameter Re, the other being a representative length of the furnace Zo  The ratio

t/Zo is assumed to be small.

The nondimensional variables are defined by

C- R /Z r = R/Ro z Z/Z
0 0 0 0

u - U/U0 v - V/(UaC)

0 - T/T °  
ko(A) K(T)Zo/UoR °2

0 0 a00

The reference stress Is

p/2

o odo

The~~~ ~ 0ocnrto Fs nomlie /R tht0ita

and so

a - ; ia

PI - i U/(F z
00

p P/0i

The concentration is normalized so that initially

)C(R,Z)RdR - /A 2 c0
0

and c C/Co .

The nondimensional equations which hold in the rod are

3a ra

3z r3r
aco Sro a

(2) £ , j rz +-o
as Or r

(3) Du Drv-+ 0~
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(4) as a. a 2 32 ( +k 4
32 ~3r r 3r 3r

(5 c v c 13 (r c) +2 3 k(0SC)

U: W + ir 7ir (r(G 3r *t o-( am-

in the liquid phas, of the rod the stresses are given by
(6) a -p+21b

C-1 3u 2 3v)
(7) a- i(L.-+ C T

rz 3
(8) arr p+2t V

(9) coo -p + 2P v/r.

2he normal to the rod surface is given by

n- 11ieCI(Z) 2 ' rn - /1c 28.(z) 2

where the rod surface io given *!Y r - as).

te boundary conaditions are therefore

(10) ori *,s(a) o

(11) a rr- c 81z a rz

(12) v - 842) U.

3S 23 4 2

(14) q(z) , C k 3 a 1 0 (e(s) a f M~ 2 ddt
-(sC) T I1

(1) c _ 28 Sc

Because of the nondinensionalisation which Is exployed, the values of the several

variables in the initial solid phase of the rod (i.e. at z ' are:

n~o)- 1, vjr,-i) - 0. 0 (r,-) 1

M(1) - -p k0 (1) - 0, a ZZ(r-) 1

and the other stress components vanish,

-6-
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and we assume that q(z) vanishes as z + -. Also c(r,-) is some specified

function. The initial radius of the rod is 1.

If 0* is the nondimensional softening temperature of the rod, then

S if 0 4 0*

k (0) =0
0

and

u(O) <
I if e e- .

k (6) > 0
0

A possible expression for p(e) for 0 > 9' is U(G) I ,eb/(""e * ) ' 
see Napolitano and

Hawkins (1964). The nondimensional constants are

k,- , (K )/(pCUR 2

k (4 ,o n 2 z )/(3iC U R 2 )
2 0 0 0 VO 00

(16)

k 3 T 0 3 )/(;c U S

a - A/R 0

4. Perturbation Analysis for the Shape

Bach of the variables in the process are expanded in perturbation series.

For example,

u(r,) a 0o(r,z) + u lr,z) + 2 Ul2r, ) + ...+

8(I) a 0 (X) + C2a2(Z) + 2

also

u(@(rI)) v 0olr,x) + t (rz) + C212(rz) +

-7-
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Because of the subscripts on the stresses the perturbation index for the stresses will be

a superscript, and a will be the only variable with a index of -1, i.e.rz
-1 -1 0 o

a a a + a +***.
rz rz rz

From equation (1) it follows that

-1 ar

3ra- arc
rr rr 0,

-1 o
thus ra and ro are independent of r. The boundary condition (10) further shows

rz rz

that a and a vanish identically. Since
rz rz au

-1 0

rz 0 r

it follows that u. is a function only of z. From the continuity equation (3) and (12)

there follows

du (Z) a 2 a u s 3rv
0 0.0 0 dr-0 0

dz 2 0 as0 3

a -s(s)v ° =- s (Z) s(z) Uo(z).
o0 0 0 0

Therefore, since Uo(z) - 1 in the initial solid phase,

(17) Uo(z) - 1/s0 (z)2

iFtom (3) and (12) it follows that

3(1S) vo(r,z) - r sl(z)/so(z)

Squation (1) integrated over a section, together with (10) yields

so(z) 3o
0 s0(z) arc 1

0Xrd rz dr
0 0

=- (olZ) a'z a(Z) .s ) a
o rz 0 0 35

which can be rewritten as

.--



0 a. rdr) 0.

0
Based on the initial solid phase, it follows that

(19)(Z) a 0rdr -1/2
0 z

From equation (2). with a -0,
rz

0r 0
r ar r

and substituting (8) and (9) gives

3r -P soz 0 a 0.

Since (11) shows that a 0 vanishes on the surface of the rod, the conclusion is that
rr

0
arr

or

(20) PO(r,z) - 2 -3 V (r,z).

0

Atlctin t hc the definitioniofly in the liquid phase hsfoml with (179an)(0

-0 6Z 0 (r).'z)/()

r IFo

At~ ~ ~ ~ ~ ~~ ~x loRin atwihterdi nieyi h lqi hsti oml ih(9



In the intergral in r make the substitution

(21) r - so(z)

which will prove very useful later as well, to obtain

(22) .... I -qznd)

as(2) 2 0

At this point It is convenient to make an approximation by replacing

0 (rZ) by ; 0 W, which is Independent of r. The value of ; 0 (,) can be obtained in

any of several ways. with this approximation (22) can be simply integrated toi give the

remarkable formula

(23) G ap is j (C)- do).
6-W

It Is Important to point out that the validity of the approximation of V0by

can be checked by the results of computations. if the computations show that f or a

appreciable Interval of a values there are substantial solid and liquid portions for

ee* value of s then the above approximation Is not valid. In that case, if the rod is

solid for r lss than a (Z) s (z), equations (22) is replaced by

(20)0

__2________________ 1 -
60(1-(* (z)80(a)) ) a(a)0

which follows directly from (19) and a. equal to 1.0 in the solid phase.

5. lbs Effect of Draw-down an the Dopant Concentration.

Mhe equation governing c,(r,x) is

ac 3c a c
U -A 4- V - = (r k 0) 0o 8s or r ir 0 S



It is advantageous to change coordinates from (rz) to (nz) where n is defined by

(21). The resulting equation is

a_ +(V_1 1 aco

o o a n
0

ac

a ) a k0 n

However, from (17) and (18)

V - u n * 00 a 0

and again by (17) the equation simplifies to

ac ac o
(2S) az " (n ) ), z ) , 0 -C ( 1.

which is a simple parabolic differential equation for c 0 . The initial conditions are

that c (n,) in specified in the solid portion of the rod, (i.e. where n - r). The

boundary conditIon (15) become

0(26) T- 0 at n 1.

Thus, the change of c o  is not explicitly dependent on the rod shape, depending only on

the temperature e0, which does depend on the shape. Nquations (25) and (26) are very

amenable to nmerical computation since the n variable is on a fixed domain.

6. Determination of the Temperature.

The equation for the nondimensional temperature 0 (rz) is

be 0 0 a 4
u z as -ji ; fr (r 8r(i e.-e)-ok - o +k ,

Using the transformation (21) as in the previous section this becomes
80

(27) (k + 4n
n n (  (kieok 2 eo))

The boundary condition (13) becomes

-11-



R26 ( 1 02o0 0

The determination of ROW) requires some analysis to obtain the limit as C tends to

zero.

For convenience, met

F(Z',Cc) 4 6(s(z).z) - 0 4 ()

then from (14)

(29) %o(z) - k3 a lha C # 0 F(z,C) C8 Co2 d~dC.

a 12

The coordinates of the point P1 on the rod surface at z can be taken as (z~es(a) .0)

in cartesian coordinates and those of the point P 2  on the furnace surface at r. are

(C,ea cow 4,c a sin 4). Thus

r - (Z-0C) + C2 (&-a coon #) 2+ C2 (a sin #)2

(Z-0 2 eC + a 2 2as con4)

The normal to the rod surface at PI is

and that to the furnace surface at P1  is

(0, - coo , sin *)

The unit vector in the direction P1P2 Is

(C-u, sca cog # - a), e a sin#/r1

2berefore

co C ((z-c)o'(z) + a coo# - Sa)

r 1 C+Es' C))2

con 42 - (a -so(z) Cos*)
12

The quantity for which the limit is taken in (29) Is first transformed by replacing

Cby z C and for convenience set

-12-
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r (au -2as(u) coa,2

which gives

ka C 0 0 VP(z,a-C)(Csa~a cos"-)(a-a cce4)

-***gl~z'/ a ' 0 ( 2 92 2)2

%Ier a and a' are evaluated at .

Next make the etitution

the above quantity Is then

k a00 pU.2-k)(CESar- me6a~- coon 6)
8 Y 1 * -'3 C2+12

W(1*(s) -42 r ( 1

mw the limit can he taken easily giving

k VF(2,S) 1#* (us) (a ccas )(a-m co")
% 02 22 2 -. 3/ 2 a*I +) -00(saz) (a s -2assocoe

2be first Integral Is evaluated easily a

22 w/
.do C+1)2

using for example C a tan a. Thea second Integral is also easily evaluated as follows.

First note that *0(s~u) is given by

a o 0 0 o a

* alo setting P 5(3)/a the integral become

-13-



2 jo d4e-)1Bos)8
0 (10-20cos#) 32(1+0 2B2cosT/) 1

2 sin # 2 /1-02 2
- 2_ 2_2 )1/2 2

(10 -2co4 ) 2 (10 -20

Therefore%

(30) =k 3 F. (:,z)

-k 3  (e)4 (o(z).z) - W()

Using the transformation (21) the boundary condition (27) is

a 4 4 4
(31) rv(kS 0 k 2e) 0 Wszk 3 (0 0 (1.z) - O)f(z)).

Uquatiom (27) with boundary condition (31) is again a parabolic initial boundary

value problem for the temperature 0 in terms of the coordinates (ni z) with a being

the time-like variable. The temperature depends on the fluid flow through the shape

function soz which appears in (31) and is determined by either (22) or (24) which

depend am temperature through the viscosity. The validity of the use of an average

visoseity ia(s) should be apparent from the temperature distribution of the rod. If

there are significant variations in temperature in the rod when the surface begins to

become liquid them the use of equation (24) would be more appropriate than (22).

An Interesting feature of the forula (30) Is that to within 0(c) the flux is

Independent of the furnace radius a. It is consistent with one's intuition, however,

that the effective furnace temperature is approximately that of the furnace closest to the

rod. However, one might expect that (30) would be a less accurate approximation than it

Is.

7. Smary.

This section serves as a summary of the previous analysis. The primary problem is to

determine the temerature distribution S (r, a) The governing equation is (27)

-14-
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for - ( z ( , Ocn I Ai(

with the boundary condition (31) on ni=1

a 4 4 4S(k10 +k e 0 o -o 0 Wk 3 0e (1,Z) - ef(W).

The surface shape function so(z) is given by (24).

sl(z) 1-

as(z)(1-(U Czo Wz) 2) 1 a (Z) 0
0 0 0 0

where a Wa is that value of vi for which

0 <e' for ni < % (Z)

0 > e* for ni > a (Z).
o a

if one uses an approximate viscosity 11(z) then (23) holds b

-

in the numerical computation of these probles one would take the furnace temperature and

initial rod temperature an equal, for, Say, 2 < 0. i.e.

eGvi'z) - ef(z) - I for x < 0.

Simultaneously, the dopant concentration can be computed by equation (25) with boundary

condition (26)

'o ac 0

ac0 0 O 0at vi -1.

it is also of Interest to obtain expressions for the drawing radius ratio in terms of

the dimensional parameters.* If a global average viscosity I'is defined by

(ia)1  r J ;(T(Z))- M
0

then (23) yields

(32) r-exp (-V 4 5/(UoR ,P')).
0

-1%5-
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This formula clearly show the relationship that holds between the drawing force Fd* the

feed velocity Uo, the initial radius Ro , the furnace length Zo, the average viscosity

M', and the radius ratio RI/R o . Althouqh Pu depends on Fd, Uo, and 'o presumably

it Is moat strongly dependent on the furnace temperature distribution. Assuming this,

forula (32) can be used to estimate the change in R, which would result from small

changes in ad Uo, and the furnace temperature.

The advantage of the perturbation analysis is that it gives such simple expressions

as (32) between the large number of parameters which govern this problem. The relation

(32) is only true to within terms of order R0/z o  but the experimentally obtained values

for the coefficients and functions which have been assumed as known may well have errors

of a similar magnitude.
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as the perturbation parameter the ratio of the rod to the length of the

furnace. The silica rod is usually doped so that it will have special optical
properties and it is important to know the concentration of the dopant in the
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ABSTRACT (Continued)

final fiber. Simple equations for the significant terms in the 
perturbation

series are obtained for all quantities of interest. 
A simple formula is

obtained which expresses the radius of the fiber 
in terms of the initial

radius of the rod, the drawing force and other important 
parameters.
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