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ABSTRACT

A nonlinear controller is designed for a full size
submarine using the LQG/LTR procedure. Linear models of the
submarine are developed at four different speeds and then
analyzed using the method of modal analysis. The linear
models are then augmented with integral control and a Kalman
Filter transfer function is designed using some tools for
loop shaping. The Loop Transfer Recovery technique is then
applied to recover the Kalman Filter loop shapes. A
polynomial data fit is performed on the resulting
compensators to produce a nonlinear controller. Both the
linear and the nonlinear controllers are extensively tested
using a full nonlinear model of the submarine,
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Chapter 1

INTRODUCTION AND sUmmARY

1.1 Background

The technology for building multivariable control systems

has advanced in the last several years and there is a very

definite need for complex design examples to help engineers

understand and further develop this powerful design

methodology.

Multi-input, multi-output (MIMO) control system design is

much more complex than either classical control system

design or single-input, single-output (SISO) control system

design. The engineer must use and manipulate the singular

values of the loop transfer function matrix of the plant to

determine the performance of the controller and this concept

of singular values as a measure is at present relatively

unknown to most control engineers. Therefore, it is

necessary to apply the MIMO methodology to practical

examples in order to display the power of this technique and

-U-



also to point out any shortcomings.

To date, non-trivial examples of MIMO design using the

Linear Quadratic Gaussian procedure with Loop Transfer

Recovery (LQG/LTR) are few in number (see [1] E2] for recent

examples). This is in part due to the LQG/LTR technique

having been only recently developed [3] E4] [5], and partly

due to the significant effort required to develop and

linearize a MIMO model, design the controller, and test the

resulting design.

Previous controller designs for submarines have used the

SIS0 design technique or classical design techniques [6]

17]. This thesis is believed to be the first (unclassified)

example of a MIMO design on a full-size submarine. The

LQG/LTR design methodology is used because it incorporates

the dynamics of the plant (the submarine) into the

compensator and thereby provides a vehicle for capturing the

dynamics of the submarine at various speeds. This

information can then be utilized to produce a nonlinear

dynamic compensator that varies as some sensed parameter

changes (gain scheduling), providing adaptive-like nonlinear

control of the submarine over a variety of speed conditions

and simultaneous maneuvers. In fact, the linearized models

of the submarine were selected so as to emphasize the

cross-coupling of the longitudinal and lateral dynamics.

9
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1.2 Contributions of the Thesis

The main contribution of this thesis is to illustrate the

multivariable LQG/LTR feedback control system design

methodology for a maneuvering submarine, and, further, to

demonstrate the utilization of gain scheduling to construct

a nonlinear controller. The reader should not interpret the

resulting controller design to be a final product, and

further research is needed to use such controllers for all

diverse submarine maneuvers.

The first stage of the design process is to achieve as

complete an understanding of the submarine model as is

X- possible. To accomplish this, the submarine model is

linearized about an unconventional operating trajectory so

as to capture longitudinal/lateral interactions. The

resulting linear representation is decomposed into its modal

representation. The modal matrices are then graphically

displayed to visualize the dynamic behavior of the submarine

and further manipulated to determine whether or not the

required observability/controllability requirements of the

LQS/LTR design process are met under various choices of

control and output variables.

- is-
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The controller design is based on the LQG/LTR methodology

formulated by Doyle and Stain E3 E43, and refined by Athans

Eai.

The design effort concentrates on the frequency domain

properties of the state space representations of the

submarine model. Methods of shaping the singular values of

the open loop plant transfer matrix are developed that

guarantee the identical behavior of the singular values at

both the high and low ends of the frequency spectrum.

Scaling of the output variables is utilized to produce the

desired loop shapes at frequencies near crossover.

The state variable used for gain scheduling was taken to

be forward velocity in the body reference coordinate

system. Although gain scheduling may also be desired based

on roll angle (again in the body reference coordinate

system), this would necessarily be in addition to the gain

scheduling employed using forward velocity. Time domain

plot* of nonlinear simulations of the compensated system

jf~J designed at a particular speed are presented to show the

validity of that choice.

Gain scheduling of the compensator designs Is accomplished

by performing a least squares fit on the individual

N ~ compensator parameters. An algorithm for producing the

coefficients resulting from a quadratic polynomial least
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squares fit to matrices is presented.

-~ Finally, time domain plots of the gain scheduled LQG/LTR

compensator being applied to the nonlinear submarine model

are presented as a means of illustrating the resulting

nonlinear design.

1.3 Outline of the Thesis

Chapter 2 describes the process used to model the

submarine and the methods used to produce a linear state

space representation. The computer implementation of the

submarine nonlinear and linear models is briefly described.

The chapter ends with a discussion of the reasoning used to

select the output variables and presents the performance

requirements imposed on the controller designs.

In Chapter 3, the eigenstructure of the linear model is

studied using modal decomposition. Pole-zero information

and singular value plots are also utilized to further

display the structure of the open loop dynamics.

Chapter 4 contains the linear portion of the design,

following the LQG/LTR methodology. Although the reader is

assumed to be familiar with the work of Doyle and Stein E3,

the notation being used is briefly summarized. Singular

-12-



value plots of the open loop submarine model plus

compensator are presented f or each design.

The gain scheduling method for the compensator parameters

is presented in Chapter 5. Results of various nonlinear

simulations are included to display the performance,

focusing upon simultaneous evasive maneuvers.

Chapter 6 contains a summary, conclusions, and some

proposed directions for further research.

-13-
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Chapter 2

-~ MATHEMATICAL MODEL OF THE SUBMARINE

2.1 Introduction

The submarine model used in this thesis is that

implemented at the Charles Stark Draper Laboratory (CSDL)

both as a real-time simulation facility and an analytical

model generating facility. Details of the latter are given

in E93.

This chapter discusses the equations used to model a

submarine and presents a brief history of the implementation

of the submarine model at the CSDL.

The software in its present form E183 provides the control

system designer with several useful tools. The manner in

which these tools are used to produce and validate the

required linear models for a gain scheduling LOG/LTR

controller is detailed, as well as the reasoning used to

select the output variables.

-14 -
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The chapter ends with a section on performance

4 requirements to be imposed on the controller design, thus

setting the stage for analysis of the model in chapter 3 and

finally the actual design of the controller in chapter 4.

2.2 Modeling of the Submarine

The generic model from which most submarine models are

derived is that given in the original Naval Ship Research

and Development Center (NSRDC) Report 2510 E113 entitled

"StndrdEquations of Motion for Submarine Simulation."

The model used in this thesis is believed to be an

improvement of the 'standard model' in that it includes the

4 crossf low drag and vortex contribution terms for the five

degrees of freedom (the straight ahead x-axis force is not

included).

To establish the notation for describing the submarine

motion, a brief description of the nonlinear equations of

motion is presented.

Two reference frames are used in deriving the equations of

motion for a submarine - the body reference frame and the

earth reference frame. The former is used because

hydrodynamic forces and inertias are more readily computed

-15-



in the submarine reference frame. For purposes of control

and stability determination, we are also concerned with the

motion of the submarine in the earth reference frame. The

relationship of the motion of the submarine between these

two reference frames is described by Euler's angles 1123 V

0, and +s

W (Yaw) - rotation about the z axis

9 (Pitch) -rotation about the y axis

+ (Roll) -rotation about the x axis

where x, y, and z represent the body reference frame as it

changes according to the indicated rotations and in the

order given. The orientation of the submarine in its own

reference frame is depicted in figure 2.1.

.. 16



The state vector for the submarine must therefore include

the six degrees of freedom in its own reference frame, the

three Euler angles, and any desired position variables to

locate the submarine with respect to some earth frame

reference point. For the purposes of this thesis, only the

depth position variable is used and the state vector for the

submarine model contains the states summarized in table 2.1.

Table 2.1. Submarine State Variables

u = x 1 (t) - forward velocity in feet/sec

v = x 2(t) - lateral velocity in feet/sec
2J

w = x (t) - vertical velocity in feet/sec
3

p = x 4 (t) roll rate in radians/sec
4'

q = xst) pitch rate in radians/sec

r = x lt) - yaw rate in radians/sec

- x(t) - roll angle in radians

e = X8(t) - pitch angle in radians

= x 9 (t) - yaw angle in radians

z = x i(t) -depth in feet (positive downward)

Notes u. v, w, *, and e are in the body
reference frame. All others are in the inertial
reference frame.

It should be noted that the Euler angles only

approximately describe the submarine roll, pitch, and yaw

angles in the earth reference frame, with the approximation

becoming more accurate as the magnitude of the Euler angles

17
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approaches zero. This is due to the fact that, in

transforming the coordinates from earth reference to body

reference, the Euler angle rotations are applied

sequentially, in the specific order V', e, and finally *

Using the state variables of table 2.1, the nonlinear

equations of motion are derived using force and moment

balances in the submarine rotating coordinate system. The

forces and moments due to the submarine motion must be equal

to the total forces and moments exerted by:

1. Hydrodynamic pressures

2. Control forces and moments

3. Propulsion or tow forces

4. Any other forces and moments

The reader is referred to the NSRDC Report 2518 E 121 for

details of the derivation of the nonlinear equations of

motion and a description of the hydrodynamic coefficients

describing the submarine geometry and control surfaces.

* The submarine model used in this thesis has three control

variables - rudders, stern planes, and fairwater planes (see

figure 2.2). The propeller is constrained to turn at a

constant rpm to reflect current operating procedures. The

control surfaces on the submarine are locked together in the

is.



sense that the port stern plans deflects the same as the

starboard stern plane and similarly for the rudders and

fairwater planes. Table 2.2 summarizes the nomenclature for

the control surfaces.

Table 2.2. Submarine Control Surfaces

ds = u (t) - stern planes deflection in radians

db = u2 (t) - fairwater planes deflection in radians

dr = u3 (t) - rudder deflection in radians

2.3 Implementation of the Model

Initially, the CSDL adapted model was implemented in the

simulation lab at CSIL, resulting in a real time

simulation. A Digital Equipment Corporation VAX 11-78

computer and a Computervision graphics display workstation

are used to provide both computer print-out and visual

display of submarine motion during various maneuvers.

Joystick control is used to input commands to the control

surfaces, with the state of the submarine being depicted in

real time against an x-y grid on the graphics display. The

display also includes simulated instrumentation to indicate

the current status of the control surfaces and other

selected parameters.

For the purposes of analytical studies geared to

-19
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controller design, the same set of nonlinear equation% was

later implemented on the IBM time sharing computer at CSDL.

Considerable enhancement was added to the program during the

transfer to aid the control system designer in his task. At

present, capabilities of the software includes

1. Addition of a user-friendly executive routine to allow

modification of parameters and selection of options

for a particular simulation run. This routine then

submits the tailored program for background

execution.

lv2. The option of calculating A and B matrices that

describe the linearization of the submarine about a

particular nominal point, in the form

, *~~4 (t) = A x(t) + B u(t).

3. The options of setting control surfaces to fixed

values, varying the control surfaces over time

according to values in a data file, calculation of the

controls using full state feedback, or calculation of

the controls using a LQG/LTR derived compensation.

4. Selection of computer print-out or plots (or both) of

the state variables over time of either the nonlinear

model or the linearized model.

5. The capability of searching for a local equilibrium

* 28



point for the nonlinear model that is close to a

desired nominal point.

To closely simulate typical operating profiles of an

actual submarine, the propeller rpm is kept constant during

a particular run.

2.4 Generation of the Linear Models

To perform gain scheduling of compensator designs over a

large speed range requires that several linear models of the

submarine be developed. Extensive analysis of the submarine

open loop dynamics, however, requires only a single model

that captures most of the dynamic modes present in the

submarine. As we remarked before, this linearized model was

obtained to capture significant longitudinal-lateral

interactions in simultaneous maneuvers.

The submarine modeled in this thesis (figure 2.2) is

approximately 48 feet long, has the conventional stern

* * configuration (stern control surfaces are in the shape of a

cross), and planes mounted on the sail (f airwater planes).

The lack of differential control for the control surfaces

*and the conventional stern configuration prevent an direct

control over roll or roll rate of the submarine. For this

-21-



reason, the initial linear model should be such that roll

does not dominate the submarine behavior nor is it absent

either. The nominal point used for analysis uses a forward

velocity of 28 knots, 5 degrees of rudder, and one degree on

each of the planes. This places the submarine in a diving

turn with the trajectory that of a helix. Other state

variables are as determined by an equilibrium point search

with these initial conditions. Analysis of this model is

presented in the next chapter.

'-.

(

Figure 2.2. Submarine Control Surfaces

The control variables used in the controller designs are

ds, db, and dr (refer to table 2.2), the angular deflections

of the three control surfaces. Deflection limits, as

imposed by the software, are 40 degrees for the stern planes

and rudder, and 20 degrees for the sail planes.

- 22 -
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Linearization of the nonlinear equations of motion is

performed in a straightforward manner. A nominal point is

determined by integrating the nonlinear equations of motion

using a selected set of initial conditions, and an

equilibrium point is found that corresponds to minimum

accelerations for all state variables very near the steady

state values determined from the integration of the

equations of motion. For the nonlinear equations of motion,

there are 11 state variables since the control surface

deflections are also independent variables (W9 and z have no

effect on the integration). Thus an equilibrium paint is

more precisely defined as a local minimum in li-space. The

values of the state variables at the equilibrium point then

P. describe a nominal point, about which high order terms can

be neglected. A set of linear differential equations can

then be produced, and the A and B matrices calculated, to

provide a state space description of the submarine.

For each nominal point thus determined, the resulting

linear model must be validated by perturbing the nominal

point to form a set of initial conditions, and then

comparing the results of integrating both the nonlinear and

the linear equations of motion. Provided the perturbations

* are not too large, the nonlinear model will always return to

the equilibrium point values, while the linear model will

never reach steady state due to the non-zero forcing term

-23-



imposed by the control surfaces. The comparison of the two

time histories, therefore, is limited to checking initial

derivatives, apparent natural frequencies, and the damping

rate.

Four linear models were developed, corresponding to

-~forward velocities of 5, 10, 28, and 25 knots. Control

surface deflections were maintained at the values previously

mentioned. The models are designated S5R5, SlOR5, S20R5,

and S25R5, reflecting the speed and rudder deflection.

Figures 2.3 and 2.4 show results of the comparisons for

p. selected state variables for the 5 and 20 knot models. The

* perturbations applied to the nominal point were identical in

all cases (see table 2.3). The comparisons show excellent

correlation between the linear and nonlinear models and

y.*.serve to validate the linear models. In particular, the

initial derivatives, the apparent natural frequency of

response, and the damping factors match almost exactly for

the linear and nonlinear models. Notice that the pitch rate

q~t) (figure 2.3 (c) and (d) and 2.4 (c) and (d)) contains

two oscillatory modes, reflecting the cross coupling between

the rudders and stern planes when the submarine has a

non-zero roll angle. The roll angle for the 5 knot model is

- -6.6 degrees and for the 26 knot model, -8 degrees. The A

and B matrices for the four models are presented in appendix

A.

-24-
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Table 2. 3

Perturbations Applied to Nominal Points

State Variable Perturbation

u + 2.8 ft/sec
v + 1.2 ft/sec:

w- 0.02 it/sac
p - O.81183 rad/sec
q + B.80003 rad/sec
r - 0.603 rad/sec

- 0.5 degrees
T - 1.0 degrees

2.5 Selection of the Output Variables

Selection of the output variables requires both a careful

study of the A and B matrices and determination of the

intent of the controller design. Three control variables

are available so that three output variables can be chosen.

An autopilot could be designed, using the position variables

Yand z, or a rate controller could be designed, using the

rate variables u, v, w, p, q. or r. The attitude variables

*and 9 could be included in either design, depending on the

importance of these variables to the control system

designer.

The philosophy taken in this thesis is that a rate

controller be designed to control the submarine during

various maneuvers. As previously mentioned, the submarine

-29-
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model was linearized about a nonconventional operating point

to ensure that the cross coupling of the control surfaces

would be captured in the A and B matrices. The simplifying

assumption is made that the rate commands are presented in

the form of commands for w and r. If this assumption were

not made, the coordinate transformation effect of the Euler

angles would require a C matrix that was dependent on the

real time values of +, G, and W, making the C matrix state

dependent. The third output variable is taken to be 0, the

pitch angle, permitting the controller to accomplish depth

changes without imparting a pitch angle on the submarine.

The reader should note that w(t) is not an inertial

reference plane variable, and represents the true vertical

rate only when the submarine has zero pitch and roll

-4'9 angles. Unfortunately, z(t) is not available as a state

variable and this discrepancy must be tolerated.

With the output variables determined, and the A and B

matrices calculated, the state space description of the

submarine model is now complete and takes the form

.(t) -A x(t) + B u(t)

y(t) - C x(t), (2.1)

where y(t) E w(t) r(t) 0(t) 2".

,..
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2.6 Performance Requirements

Two performance requirements are imposed on the controller

design. First, the maximum crossover frequency is limited

to that of the submarine's ability to respond and, second,

the steady state error to step commands and step

disturbances is to be zero.

The maximum crossover frequency is based on the perturbed

response of the non-linear model. Inspection of figure 2.5

* reveals an average settling time to within 90% of steady

state of 60-65 seconds, leading to a desired crossover

frequency of 0.10 radians/sec.

Inspection of the perturbed response of all four models

confirms an intuitive feeling that the settling time

increases as the submarine slows, requiring that a different

performance requirement be levied on each design.

The value of 0.10 rad/sec: was declared to be the maximum

for the fastest model (25 knots), and a least squares curve

was fitted to the approximate time constants indicated by

the plots. A linear fit proved satic;factory, giving a

correlation coefficient of 0.9983 and, when transformed to

yield maximum crossover frequencies, produced the results in



table 2.4.

Table 2.4

Crossover Frequencies for the Linear Models

Model Crossover Frequency (rad/sec)

5 Knot 0.05
10 Knot 0.06
20 Knot 0.08
25 Knot 0.10

The zero steady state error requirement is met by placing

integrators in each of the three input channels. The

integrators are placed at the input to the plant because

this is where the error signal appears. The integrators

will then become a part of the compensator which is before

the plant in the feedback loop. As will be seen, the use of

integral control does not prevent the maximum crossover

frequency specification from being met.

2.7 Summary

This chapter has described the origins of the submarine

model, briefly described the process of producing a linear

model, and presented the reasoning by which the output

variables were chosen. Additionally, performance

constraints were imposed on the controller design, thus

setting the stage for analysis of the open loop dynamics of
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~the plant.

* . The next chapter will analyze the plant using the method

! of modal decomposi t ion, and present data showi ng the

sigenstructure of the submarine linear models.
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Chapter 3

ANALYSIS OF THE LINEAR MODEL

3.1 Introduction

In this chapter, the eigenstructure of the unaugmented 20

knot model will be investigated. As previously stated, the

20 knot model was the first to be developed and the only one

to have a detailed analysis performed on it.

For each of the other three linear models (at 5, 10, and

25 knots) analysis was limited to inspection of the poles

and zeros, and producing singular value plots of the open

loop plant. Several consistency checks were also performed

in an effort to avoid any numerical errors.

In the previous chapter, a state space description of the

submarine linear model was developed in the form

S(t) = A x(t) + B u(t) (3.1)

y(t) - C u(t). (3.2)

Prior to the actual analysis of the linear model, it will be

shown that the order of the model can be reduced, based on

434
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the zero entries present in the A and B matrices.

The eigenstructure of the 20 knot model is revealed by the

method of modal analysis C13]. This method involves the

implicit application of similarity transformations to the A

matrix, reducing it to a diagonal matrix whose entries are

the poles of the open loop system. The similarity

transformations provide a means of describing the state

space of the linear system in separate decoupled modes,

thereby yielding information as to the controllability and

observability of the system.

This information, coupled with the pole-zero structure,

provides the basis and validity for the LQG/LTR designs of

the next chapter.

3.2 Reduction of the Model

Inspection of the A matrix for the 29 knot model (refer to

Appendix A, model S2MR5) reveals zero entries in all

elements of the last two columns. This indicates that the

present values of the states V and z can have no influence

on any other state. In other words, the present depth and

heading angle are irrelavent to the dynamic response of the

linear system.

-35-Vi % 4.5



Zeros in the last two rows of B (Appendix A) further

indicate that the controls exert no direct influence on the

derivatives of V and z.

Therefore, since the purpose of the controller is not

concerned with controlling either of these variables, they

are removed from the linear model. This is accomplished by

deleting the last two rows and columns of A, and the last

two rows of B, leaving an 8 state system.

3.3 The Natural Modes of the System

Determination of the natural modes of the 20 knot linear

model is accomplished by diagonalizing the state space

description. For any linear dynamic system without input to

output direct coupling, we have

x(t) = A x(t) + B u(t) (33)

Y(t) = C x(t). (3.4)

Now define a new state vector z(t) by the relation

x(t) = T z(t), (3.5)

1~* where T is an as yet unspecified, n x n, invertible matrix.

Then we have

T I(t) = A T z(t) + B u(t) (3.6)

y(t) - C T z(t). (3.7)

Multiplying (3.6) on the left by we are left with

- 36 -
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k _(t) = T- A T z(t) + T- B u(t) (3.9)

y(t) = C T z(t). (3.9)

If T is such that T A T is diagonal, then the state vector

z(t) defines a new state space in which the modes are

decoupled and the entries of T- I A T are the eigenvalues of

A. Let

A T- I AT. (3.10)

Then we have A T =T A. (3.11)

Now, represent the T matrix by its n column vectors vl, Y2,

" v' n , so that equation 3.11 can be expressed as

A v. = vi) i  for i = 1 to n (A = [)i]). (3.12)

Thus the columns of T are the eigenvectors of A and the

diagonalization is possible only when the A matrix has

distinct eigenvalues.

The T matrix is called the modal matrix, with each column

of T describing the motion of the submarine along the

coordinate axes of the state vector components u, v, w, p,

q, r, *, and 0, for a particular mode. Since every possible

dynamic response of the submarine must consist of a linear

combination of the decoupled modes, analysis of the columns

of T should provide the designer with very useful

information regarding the submarine's dynamic response.

Unfortunately, it is not a simple matter to visualize or

characterize motions in B-space, especially when the

- 37 -
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magnitude of the motions are complex numbers expressed in

various units.

Analysis of the modes of the system is accomplished in two

steps. First, the A and B matrices of the linear model are

transformed so that all angular components of the state

vector will have units of degrees or degrees/sec, as

appropriate. Details of the transformations applied are in

appendix B1.

Secondly, the columns of the resulting modal matrix are

graphed in bar chart form by taking absolute values of each

element of the normalized column vectors. The loss of phase

*information resulting from taking absolute values is

* - considered to be of less importance than the magnitude of

the motion along a particular state component.

The bar charts (figure 3.1) have a vertical scale of 0 to

100%., reflecting the intent of displaying the relative

magnitude of the response, and the eigenvalue corresponding

to a particular mode is noted below each graph. Note that

the two columns corresponding to a complex eigenvalue do not

W

produce unique modes when graphed in this manner. Complex,

or oscillatory modes are indicated by the labeling and the

- apresence of a complex nigenvalue.

It should be noted at this point that the modes shown

"...................•
S-.. . . . . . . .
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Figure 3.1(a) Modes 1, 2, and 3 for Model 928R5
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Modal Response for Model S20R5
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Figure 3.1(b) Modes 4, 5, 6, and 7 for Model S2SR5
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Modal Response for Model S20R5
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Figure 3.1(c) Mode 8 for Model S28R5
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roll and roll rate. The inability to directly control

roll and roll rate is reflected in the oscillatory

behavior of these modes.

5. Comparison of the magnitudes for roll, pitch, and yaw

rates f or modes 4 and 8 appears to indicate that as

-~ more yaw rate is introduced, some of the roll response

is converted to pitch response. This is indicative of

the cross coupling that exists between the stern

planes and the rudder when the submarine is rolling

and turning at the same time.

The eigenvalues and modal matrices for all models are

contained in appendices B2 through B5.

3.4 Controllability and Observability

The LOS/LTR design methodology provides, under certain

conditions, guarantees to the control system designer

concerning gain and phase margins M8. It should be noted

that the guarantees are not absolute, and exist only in the

sense that the LTR phase of the design process recovers a

loop shape that approaches that of the Kalman Filter design,

which does have the robustness guarantees.

The linear system must meet certain requirements, however,

-43 -
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before the validity of the results are assured.

Specifically, the system must have no unstable modes which

are not controllable, and no unstable modes which are not

observable. If controllability and observability of the

system can be established, then the weaker conditions of

stabilizability and detectability are assured.

When a linear system can be diagonalized, as in the

present case, determination of controllability and

observability becomes a very simple matter. Additionally,

even when a system does not meet the criteria for being

controllable or observable, the weaker conditions of

stabilizability and detectability are also readily

determined.

4Recall that the new state vector z (equation 3.5) defines

a non-physical state space in which the natural modes of the

system are decoupled. Thus a particular row of the T B

matrix links the input vector u to a particular mode. Each

element in the row then links a particular input (in our

case a control surface) to a mode. Therefore, a zero entry

in the (ij) position of the T- 1 B matrix would indicate

that the ith mode is not controllable by the ith input.

ISimilarly, the matrix C T in equation 3.9 indicates

whether a particular mode is visible in the output.

- 44 -
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The 20 knot linear model has non-zero entries in the T- 1 B

and C T matrices (refer to appendix B4) and is therefore

both controllable and observable, providing us with

assurances that the LQG design method to be applied in the

"* next chapter will have no difficulties.

.4

3.5 Poles, Zeros, and Singular Values

The poles of the open loop plant are the eigenvalues of

the A matrix presented in the previous section. As was

indicated, the plant is open loop stable, having all left

half plane poles.

*Multivariable transmission zeros appearing in the right

Ahalf plane may present difficulties in an LQG/LTR design

[B]. Fortunately, the 20 knot linear model has no

non-minimum phase zeros, nor do any of the other models

(refer to Appendix 86).

The open loop poles for all four models are presented with

the modal information in appendices B2 through B5, and the

transmission zeros for each model in Appendix B6.

Singular value plots of the open loop models are shown in

figure 3.2. It will be noticed that integral control is yet

to be added, and that satisfactory command following

- 45 -
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performance will indeed require the addition of integrators p

in the loop transfer function matrix. The increased effect

of the control surfaces as speed increases can be seen by

noting the increased dc gain for each sucessive model. p

As a further indication of the effect of the control

surfaces on the outputs, the dc gains of the open loop

transfer function matrix for the 20 knot model are listed in

table 3.1. By reading across for each output variable, the

relative effect of the control surfaces can be determined.

The results are as expected, with the sail planes having the

most effect on w, the rudder on r, and the stern planes on

e. The gains for w are significantly higher than for the

other two outputs, indicating a need for scaling, which is

done in the next chapter.

i Table 3.1. Input to Output Coupling

ds db dr

w 11 db 19 db 16 db

r -56 db -49 db -18 db

i 19 db -8.1 db -3.8 db
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3.6 A Further Example of the Usefulness of Modal Analysis

This chapter on analysis of the linear model would be

incomplete without demonstrating the extreme usefulness of

modal analysis in detecting inconsistencies in a model.

The initial linear model of the submarine on the CSDL

computer contained an 11th state known as n. The purpose of

this state was to include the propulsion plant dynamics and

was defined as u(actual)/u(commanded).

Modal analysis of the model with R included resulted in

eight modes essentially the same as those depicted in figure

3.1, and a ninth mode with all response concentrated in u

and ,. Furthermore, this ninth mode had a near-zero

eigenvalue and zeros in the corresponding row of the T - D

matrix.

From the previous discussion of modal analysis, we can see

that this situation is indicative of an uncontrollable and

unstable mode, thus rendering the LOG design methodology

invalid. If, however, the near-zero eigenvalue is taken to

be the digital representation of a true zero eigenvalue, and

the reasoning is applied that the actual submarine must be

stable in forward velocity, then the facts imply an

- 49 -
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inconsistency in the model.

To further refine this conclusion, both the linear and the

nonlinear equations of motion were integrated over time,

using the scaled magnitudes of the migenvector corresponding

to the unstable mode. The nonlinear plot decayed back to

the local equilibrium point whereas the linear plot

displayed an unforced response that remained at the

perturbed values.

This last information clearly indicated a dependency among

the states of the linear model, and the problem was then

.4 quickly traced to the treatment of the propulsion plant as a

constant rpm source for the propeller. Thus the commanded u

was being taken as constant for any run, and nt represented a

constant multiple of u, producing the dependent state.

Application of the chain rule to the system of 11

equations in 11 unknowns (used to calculate the A and B

matrices) reduced the order of the system to 18, and

eliminated the unstable state.

It is hoped that this example may serve to aid the reader

in the methodical elimination of similar problems in a

linear model.
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3.7 Summary

This chapter has described the technique of modal analysis

and its use in determining the eigenstructure and modal

composition of the state space description of a linear

model.

Application of this technique has enabled us to establish

the prerequisites required to pursue the LQG/LTR design

procedure to be covered in the next chapter. These are that

the open loop linear model be detectable and stabilizable,

and that the location of any non-minimum phase zeros be

determined.

Finally, an example of the usefulness of modal analysis in

tracking down an error in the linearization of the nonlinear

model was presented.

A
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Chapter 4

.*" LINEAR M1I MO DESIGN8

4.1 Introduction

This chapter presents the linear portion of the design

process, utilizing the LQG/LTR design methodology as the

MIMO design tool.

N The design section begins with an overview of the complete

step by step LQG/LTR procedure, as tailored to conform to

the main focus of this thesis.

Augmentation of the submarine model dynamics with

integrators will then be discussed, along with a comparison

of open loop singular value plots for the augmented and

unaugmented 28 knot model.

Finally, the methods used to ensure the identical behavior

of the singular values of the open loop plant at both the

high and low ends of the frequency spectrum will be

*presented.
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Testing of the compensator begins with a comparison of the

stop responses of both the linear and nonlinear models, and

concludes with simulations of evasive maneuvers and control

surface saturation tests.

All parameters used in the design process and many of the

* design products f or all four models are contained in the

appendices.

4.2 The LO6/LTR Design Methodology

The multivariable LOG/LTR design methodology consists of a

f our step process E83.

Step one involves the development of a low frequency model

of the nominal plant and determination of thie uncertainties

present in the model. It is assumed that the frequency

range of interest for purposes of command following and

disturbance rejection is at low frequencies.

The uncertainty in then nominal model, Including sensor

noise, unmodeled dynamics, and certain actuator dynamics, is

similarly assumed to be concentrated at high frequencies.

The determination of what constitutes high and low

frequencies consists of fixing the maximum allowable

crossover frequency for the nominal design.

-53-
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In this thesis, the actual linear time invariant plant and

the low frequency nominal model are taken to be identical,

and no attempt is made to establish the modeling

uncertainty. Therefore, step one is restricted to producing

the linear model, as was discussed in chapter 2, and

determination of the maximum allowable crossover frequency

for each model, also discussed in chapter 2.

Step two of the design process establishes the low

frequency performance requirements. The frequency domain

block representation of the compensated plant is shown in

figure 4.1.

-i " . ...-. .,,,,i

Figure 4.1. Block Diagram of a MIMO Compensated Plant

r(s) = reference signal or command input vector

e(s) = error signal vector

u(s) - control input vector to the plant

y (s) - output vector of the plant

d(s) - disturbance vector reflected at the plant output

K(s) - compensator transfer function matrix

G(s) = (augmented) plant transfer matrix

.1!
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The transfer matrix G(s) is assumed to contain the nominal

low frequency model of the submarine 6 (s) plus any-S. -p

augmented dynamics Ga(s) and is termed the nominal design

model. Thus G(s) = a16 (s) 6 a (s). To determine the

requirements to be imposed on the compensator transfer

matrix K(s), the overall transfer function of the closed

loop system is calculated

y(s)=[I+G(s)K(s)J I-d(s)+[I+G(s)K(s)J I-G(s)K(s)r(s). (4.1)

Good command following requires that y(s) z r(s) and good

disturbance rejection will result if the contribution of

d(s) can be kept small. Here, s = ju is in the low end of

the frequency spectrum.

Both of these requirements can be met if the minimum1* singular values of the matrix product G(s)K(s) are large

with respect to unity at frequencies below crossover.

Similarly, the response of the outputs to high frequency

effects can be minimized if the maximum singular values of

6(s)K(s) are small compared with unity at frequencies above

crossover.

The combined effect of steps 1 and 2 is to place barriers

on the singular value plot for _(jw)K(jw) as indicated in

figure 4.2. The high frequency barrier places a robustness

requirement on the compensator and the low frequency barrier
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is a result of the command following and disturbance

rejection requirements.

21 log y

. 29 log %mi n E6-(jto) K(iw)]3

20 log o'ma x [6(j)K(jw),

Low Frequency,
:1Performanceto
' /Barri er/// c

Sdb ighFreuenc
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" tarr/l or

I

Figure 4.2 Desired Singular Value Relationships

The remainder of the design process is concerned with

determining the transfer matrix K(s) so that the singular

values of the open loop transfer matrix G(jw)K(jo) will have

the shapes shown in figure 4.2. This process is known as

loop shaping and is at the heart of the LQG/LTR design

procedure.

Initially, the Kalman Filter methodology is applied to the

state space description of the nominal design model (nominal

model plus augmentation) to produce a transfer matrix KF(s)

that has the desired loop shapes. The Kalman Filter theory

is applied in a very specific manner and should not be
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confused with optimal state estimation applications.

To solve the Kalman Filter problem, the nominal design

model state space description,

x_(t) - A x(t) + B u(t) (4.2)

Y(t) = C x(t), (4.3)

is reformulated to produce the somewhat modified dynamics

*(t) - A x(t) + L M(t) (4.4)

Y(t) = C x(t) + e(t). (4.5)
1.,.

where A(t) represents the process white noise,

and e(t) represents the measurement white noise.

The covariance of these two Gaussian signals is

covEj(t);j()] = I&(t-r), (4.6)

and covCe(t);_(r)] - p I&(t-T) (. > U). (4.7)

The design parameters ). and L are then used to produce the

desired loop shapes of the transfer matrix k F (s) where

KF (s) C(sI-A)- IH, and (4.8)

H - (1/4,A) E C'. (4.9)

The matrix r is the solution to the Filter Algebraic

Riccati Equation (FARE)

U - A E + E A' + L L' - (1/,f)) E C'C E. (4.10)

Fortunately, the transfer matrix GKF(a) can be approximated

quite readily, providing that the parameter . << 1, and the

FARE need not be evaluated for each choice of )L and L. It
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can be shown E83 that

E iw ( 11,f)0. a j)3 for ). << 1, (4.11)

where 8 U)- C(sI-A)- 1 L. (4.12)

Thus the L matrix can be chosen in such a way as to

produce the desired loop shape and ,.. used to adjust the

singular values up and down to meet the required crossover

frequency criteria.

Providing that CA,L]J is stabilizable, and that rA,C] is

detectable, any choice of ). and L will produce the following

guaranteed properties for 8()

1. Closed loop stable

2. Robustness.

E I+GF im)3 1 1 (4.13)

or C 1+6 -1(i003]b 1/2 (4.14)
i -K

3. Infinite upward gain margin

4. 6 db downward gain margin

5. Phase margins of * 690

The final step in the LOS/LTR design procedure involves

the wrecovery" of the loop shapes of kF(o by the

compensated plant transfer matrix 6(s)K(s). This is

accomplished by solving the Control Algebraic Riccati

Equation (CARE)

-5-

.~~~ .* N *

6e~s.% % -



.:-

4

- K A -A'K-qCC + K B B'K q > 0 (4.15)

using the design parameter q, and defining the control gain

:V matrix 6 by

6 - B'K. (4.16)

For the solution to the CARE to be valid, we must have

cA,B stabilizable and A,CJ detectable. Furthermore, the

nominal design plant must not have any non-minimum phase

zeros.

The control gain matrix 8 and the filter gain matrix H

(4.9), when calculated using the above procedures, define a

special type of compensator K C(s) known as a Model Based

Compensator (figure 4.3). This type of compensator differs

from other LQ6/LTR compensators only in the manner in which

the control and filter gain matrices are calculated.

4- ---4

Figure 4.3. The Model Based Compensator

The state space description o-f the (model based)

compensator is then given by

- 59 -
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k(t) - (A-B 6-H C) z(t) - H alt) (4.17)

u(t) = -G z(t), (4.18)

It can be shown that the singular values of GlsIKBC S) at

frequencies below crossover converge to those of KFCs) as

the design parameter q . m, providing that the plant is

minimum phase E83. At frequencies above crossover, an extra

pole of roll-off is produced by the recovery phase, further

enhancing the high frequency robustness. Thus the loop

shape of 8K(s) is recovered and the resulting controller

will have the desired performance characteristics described

earlier.

4.3 Augmented Dynamics

The dynamics of the submarine model are augmented by

placing integrators in each of the three control channels.

This is accomplished by defining an augmentation plant 8 (s)
-a

whose state space description is simply

A - 8, B - C a I,
t- -a -a -

with all matrices being 3 x 3.

-6,-
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I 1

Figure 4.4. Inclusion of the Augmented Dynamics

Then the nominal low frequency model and the augmentation

dynamics are combined by performing a state space

multiplication, forming G(s) as shown in figure 4.4. Note

that the physical input to the plant is now labeled u (s) to
-p

distinguish it from the output of the compensator u(s).

Although the augmentation dynamics Ga (s) will eventually be

lumped with the compensator, they are kept separate until

the LQG/LTR design procedure is complete. Figure 4.5 shows

a comparison of the singular values of the unaugmented and

augmented 21 knot model. As can be seen, adding the

integrator* at the plant input produces a 66 db gain

increase at .1 rad/sec.

2.4 Kalman Filter Design

In the overview of the LQG/LTR design methodology, it was

- 61 -
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(b) Plant augmented with integral control

Figure 4.5. Singular Values for the Unaugmented and
Augmented 20 Knot Model
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s tated that the si ngul ar values of the Kal man FilIter

transfer function matrix are closely approximated by the

I singular values of (IIlf)t)GFOJ) . Furthermore, (_o~JW)

can be easily calculated for each choice of L, simplifying

[.: the iterative nature of the design process.

.- To satisfy the loop shaping requirements represented by

the low and high frequency barriers shown in figure 4.2, it

is helpful if the maximum and minimum singular values of

6 Ow(j) are identical at low and high frequencies.

Therefore, the choice of L is based an this philosophy.

Recall that G(s) = 8 a(s)G (s) (section 4.3) and define a

r •state space representation for G(s) by the relation
G(s) - C(sI-A)-IB (4.19)

: , Then the matrices A and C can be partitioned into

A.. C- I a Cp 3, (4.24)

tand similarly for sI-A and ito inverse

.I. (.I-A) 1 ,(4.21)
-B ngul a(r-A )B /o (I-A)

Atlow frequencies, s - z -Ap and (I Ap-
Recall ehal Ap-I exists since has dietinct and smliyn

igenvalues. We no partition the L matrix into L and L

-a2

[U% %
AI CE C I,(4.26

., -.,,.and ,,rimilarly."* for, ., " .- '..,,.. s. I-A.''.;;'' and. ' its inverse. ./;.'';. .... ,','''''. ,..,-'-""',.'''.,....''..
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and form 6 (s) for low frequencies
-FOL

(s) = C(s-A)- L z CE K] _--- 1 (4.22)

=FOL q3 A -1B /s -AL

L-p -P =2

S-CA -1B LI/s L C pA -1 L.-p-p -p-iz --p-p -2

From this, it is seen that we can match the singular

values at low frequency by choosing

=-(C A 1 B B - (4.23)- 1  -p-p -p)

if it exists, and leaving L unspecified. Then, as w - 0,

oL (jo) z I/jW + M, (4.24)

where M is a 3x3 constant matrix. Although M will have an

impact at frequencies approaching crossover, the first term

will dominate for w small enough.

At high frequencies, sI-A - sI and (sI-A p I/s. Thus,

at high frequencies, we have

8FL' (s) I/ a /s (4.25)

I/s B / L.
C CB L/st + C L/s.
-p-p-i -p-2

I.I
Since 1/s > i/si as S .w then the second term will

dominate the maximum singular value at high frequencies.

Thus we can match the singular values at high frequency by

choosing

- 64 -
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L2  C '(C C (4.26)
=2 -p -p -p

so that, as -

a (is) -- C B L /02 + I/a.. (4.27)
-FOL -P-p-l

4 The required inverses can be shown to exist for the models

used via numerical means. Additionally, whenever C is such

that distinct states are extracted from the state vector,

the matrix C pC p'is always diagonal and hence invertible.

The above method of constructing the L matrix provides the

designer with a guarantee of identical behavior of the

singular values of the Kalman Filter transfer matrix for low

and high frequencies. Unfortunately, the shape of the

singular values at frequencies near crossover is not

controlled, and significant differences may exist between

the maximum and minimum singular values in the crossover

region. Figure 4.6 is a plot of the singular values of

96 (s) for the L matrix constructed as in equations 4.23-FOL

and 4.28. Although the singular values match at high and low

frequencies, a large separation exists between the maximum

and minimum crossover frequencies.

To control the separation of the singular values at

4 frequencies near crossover, it is necessary to investigate

the magnitudes of the elements of the matrix transfer

- 5 -
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function 2FOL Ow) over a frequency range including the

crossover frequency, and apply scaling to the C matrix to
-p

achieve a tight crossover pattern. The magnitudes of the

elements of the matrix transfer function are plotted in

figure 4.7 for each input to output function. Each of the

j plots represents the coupling from the three controls to a

single output. The curves are fairly smooth except for

figure 4.7(a), which shows the coupling from the controls

da, db, and dr to the output w. The desired crossover is at

-0.100, or log =-1.00, and figure 4.7(a) displays both

an increase in coupling from dr and a decrease in coupling

from db in this area. Referring back to table 3.1, it was

observed that the dc gains for w were significantly higher

than for r and e. Both of these facts tend to indicate that

the C matrix entry corresponding to w should be scaled
-p

down. A comparison of the magnitudes of the transfer

matrices in this manner for all four submarine models

resulted in the following choice for the C matrix.

C=L a 13 a 1 F ] (4.28)

The vast improvement in the behavior of the singular

values near crossover can be seen in figure 4.18(a), a plot

of the singular values of 8 s) for the 28 knot model

using the new C matrix.
-p
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A more detailed discussion of output variable scaling for

the purpose of shaping the singular values at frequencies

near crossover can be found in [14] and [15].

Once the L matrix has been determined, the choice of the

parameter )L becomes a simple matter of moving the singular

value plots up or down until the desired crossover frequency

is obtained. Refer to table 4.1 for a listing of the

particular values used for )L for each of the models during

the Kalman Filter design process. The Kalman Filter gain

matrices are contained in appendix C1.

Table 4.1. Values used for ji

Model

$5R5 .134

I SLUR5 .85

S2UR5 .05

S25R5 .04

4.5 Completing the LQG/LTR Design

As was indicated in the overview of the LQI/LTR design

procedure, once the Kalman Filter design is complete, the

remainder of the design process is quite straightforward,

requiring only a choice of the parameter q. Recall that our

' -69-
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Figure 4.9. Design Summary for the 10 Knot Model
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submarine models did not have any low frequency transmission

zeros. A value of q = 100.0 was used for all models,

producing the control gain matrices in appendix C2.

The complete design sequence is summarized in figures 4.8
through 4.11, the singular value plots of _FOL(s) , KF(s) , -

and G(s)K(s) for each of the four models. The maximum and

minimum crossover frequencies for the final loop transfer

function matrix (G(s)K(s)J are summarized in table 4.2.

Table 4.2. Final Crossover Frequencies for G(s)K(s)

Model m "Modl min max

SSR5 .016 .050

SIOR5 .820 .068

S28R5 .029 .078

S25R5 .924 .079

4.6 The Closed Loop System

Prior to beginning the testing phase of the compensator

design, properties of the closed loop plant will be

investigated.

The state space representation of the closed loop system

can be written down by inspecting figures 4.1 and 4.3. Let
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xlt) represent the state of the nominal design model and

z(t) the state of the compensator. Then the closed loop

system can be described by

[_(t) A -B ]L x(t) a
=+ r(t)

tz(t)J C A-B S-H C (t) -

Y(t) -L ] X(t) (4.29)

The poles and zeros for the closed loop system are

contained in appendix C3. All poles are in the left-half

plane so that the system is in fact closed loop stable.

By setting d(s) equal to zero in equation 4.1, it is seen

that the singular values of the closed loop plant should be

very near unity (zero db on a log plot) from dc up to the

crossover frequency, and then fall off above crossover.

This is depicted in figures 4.12 and 4.13, the closed loop

singular value plots for all four models.

4.7 Testing of the Compensated Submarine Model

Testing of the LGIGLTR model based compensator design was

accomplished by providing the computer program with a data

file containing time sequenced command inputs and then

integrating either the linear or nonlinear equations of
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Figure 4.12. Closed Loop Singular Values f or the 5 and 10
Knot Compensated Designs
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motion. The command inputs for each test are superimposed

on the output variable time histories to indicate the time

that the command was applied and also to provide an implicit

error history.

Results are shown for the 20 knot model only as it enjoyed

the most exhaustive testing. Check runs were made for the

other models and displayed similar results.

4.8 Comparison of Linear and Nonlinear Simulations

The initial testing consisted of a comparison of the

responses of the linear and nonlinear equations of motion to

step inputs. Figure 4.14 is representative of this stage of

testing and shows the time histories of the three output

variables (w, r, and 0) and the three control surfaces when

the submarine model is subjected to step inputs in w and G.

For this plot, the initial values of the command inputs were

set to the nominal values for the 29 knot model, with the

. step changes being applied at t - 50 seconds, and removed at

t - 180 seconds.

The reader shouid note the coupling that exists between

the stern and fairwater planes as they deflect in opposite

directions (as they should) in response to the pitch command

-78-
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(figure 4.14 j and 1). Additionally, the pitch command

completely dominates the response initially and the command

in w has no effect until the pitch error decreases. This

should not be the case if the inertial variable i was used

in place of w, although any demonstration of this

supposition will have to wait until the computer model is

changed.

Figure 4.14 also displays the effects of the cross

coupling that exists between yaw rate and pitch, as

indicated by the variation in yaw rate (r) (figure 4.14 (e)

and Mf) and the rudder deflection (figure 4.14 (in) and (n))

at the time when the step command is applied in G (figure

4.14 (g) and (h)). This is a result of both the

unconventional operating point that the model was linearized

about and the non-zero roll angle. Recall that the nominal

point reflects a diving turn so that a roll angle is present

for this maneuver.

The main objective of this test was to determine the

extent of agreement between the linear and nonlinear

compensated models in order to establish the validity of

both the compensator design and the computer software being

used for the simulations. The extremely close agreement

between the time histories for the linear and nonlinear

models displayed by figure 4.14 thus establishes the
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validity and permits further. All further simulations are

performed using the nonlinear computer model.

-4 4.9 Further Simulation of the Nonlinear Model

Having established the validity of the compensator design

by successful comparison of the linear and nonlinear

simulations, the next step is to examine such factors as

symmetry, multiple commands, and control surface

saturation.

- . The degree of symmetry present in the submarine model was

evaluated by commanding a turn first in one direction and

then in the opposite direction. The results are shown in

j figure 4.15 and reveal that even with the unconventional

operating point used in producing the linear model,

remarkable symmetry exists in the expected state variables.

The roll angle W+ time history is included in this figure

to display the submarine's tendency to lean into a turn. A

rather curious phenomenon is also displayed in that the

submarine pitches up initially when commanded to turn. This

trait reportedly exists in an actual submarine and was also

observed on the real time simulation facility mentioned in

the introduction to chapter 2. Finally, notice that the

performance of the controller begins to degrade at about 135

so,

.4 .0
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Fig;ure 4.14. Comparison of the Linear and Nonlinear Simulations
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Figure 4.14. (Cont'd)
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seconds as the forward velocity reaches 33% below the

2.nominal point, indicating that gain scheduling is

necessary.

The multiple command test was accomplished by simulating

an evasive maneuver. The command inputs are applied at

different times and simulate first a diving turn followed by

a recovery of the initial conditions. The results of this

test, shown in figure 4.16, display the ability of the

controller to respond to commands in both yaw rate and

pitch. Again we see that the pitch command has significant

effect on the yaw rate due to the cross coupling. Also

displayed is the inability of the sail planes to control w

in the presence of pitch commands. The sail planes do,

however, aid the stern planes in the initial response to a

pitch command by deflecting in the opposite direction, as is

desired. Note the loss of control in w at about 75 seconds

when the sail planes saturate.

To fully display the behavior of the compensated nonlinear

model during periods of control surface saturation, the

reference inputs for w and e used in the previous test were

increased significantly in magnitude and the simulation

9.repeated. The results are presented in figure 4.17 and

display a loss of control during saturation along with

periods of lightly damped oscillatory response. Although
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the command inputs are removed at 150 seconds, the errors

don't return to zero until nearly 300 seconds. Of

particular note is the constant error in w during

saturation. This can be seen to be caused by the sail

planes since the error in w begins to decrease the instant

the sail planes come out of saturation. Also note that

although a 25 degree error exists in pitch (the pitch

command was -50 degrees) at 60 seconds, the stern planes are

only slowing increasing in deflection. The large control

surface deflections have slowed the submarine to nearly 9

knots by this time, however, accounting for the decreased

control gain. Observe that the submarine speed rapidly

decreases when the rudder saturates, but slowly increases in

speed past 100 seconds, even though the sail planes

saturated.

* 4.10 Summary

This chapter has presented an overview of the LOS/LTR

4design methodology and then the application of the

methodology to the design of a compensator for the submarine

model.

Compensator designs were developed for all four linear

model* of the submarine, providing the information necessary
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Chapter 5

NONLINEAR MIMO DESIGN

5.1 Introduction

It is well known that drag and lift forces on a body vary

as the square of the velocity [16]. Therefore, a

compensator designed for a particular speed should not be

expected to provide optimum performance over a widely

varying speed range.

This chapter demonstrates tt.e technique of gain scheduling

as a method of introducing the inherent nonlinearities due

to velocity into the compensator design.

The algorithm used to implement the gain scheduling is

presented, along with representative nonlinear simulations.

5.2 The Gain Scheduling Algorithm

In the previous chapters, linear models of the submarine
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dynamics were developed for four different speeds, and an

LO6/LTR design performed on each model. The products of the

design effort were the Kalman Filter and Control gain

matrices contained in Appendix C1. p

The specifics of the computer implementation of the model

based compensator require that the compensator be defined by

three matrices, A-B G-H C, G, and H (refer to equations 4.17

and 4.18). As a result, the gain scheduling algorithm must

produce the required coefficients to calculate the

individual entries for these matrices.

The fact that lift and drag forces vary as the square of

the velocity indicates the choice of a polynomial least

squares algorithm to produce the required coefficients.

Additionally, application of a least squares algorithm to

matrices as large as 11 x 11 requires that a computer be

used. The fortran program in Appendix D1 is an adaptation

of the vector based program developed by A. Miller r173 that •

will accommodate square and non-square matrices up to order

11.

The program calculates correlation coefficients for each

coefficient produced, providing a determination of how good

the approximation is. As expected, a linear fit (polynomial

of order 1) produced very poor correlation. A second order

curve fit produced correlation coefficients averaging 0.99,

95
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with a third order fit only marginally better. Since

implementation of gain scheduling would require 187 * n

multiplications and 187 * n additions, where n - the order

of the polynomial, a minimal order polynomial is desired.

Thus a second order polynomial was used to calculate the

coefficients. The results, along with the correlation

coefficients, are presented in Appendix D2.

The fortran program implementing the submarine model at

CSDL was then modified to permit the coefficients for the

A-B G-H C, 6, and H matrices to be read in, and new values

for these matrices calculated for each iteration during

integration of either the linear or nonlinear equations of

motion. To calculate a particular entry for one of the

matrices, say the .i,j) element of the H matrix, the current

forward velocity u(t) is first converted to knots (uk).

Then, if ci,j,@, ci,j,1, and cil, 2  are the coefficients

calculated by the gain scheduling algorithm for that element

of the H matrix, the updated value is given by
h = c i~,' + Uk(ci'j'l + Uk Cc i'j,2 (5.1)

Note that the order of multiplication and addition has been

arranged to require the minimum amount of calculation.

The fact that the computer implementation of the submarine

model did not provide for propeller rpm to be varied was

overcome by setting the rpm to the final speed and
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introducing then initial speed into the initial conditions.

* 5.3 Testing of the Nonlinear Compensator

Although the above method of overcoming the constant rpm

constraint of the model permitted simulation of gain

scheduling, the flexibility of the simulation was somewhat

limited. Only one speed excursion could be accomplished

during any single run, with the propeller always rotating at

a constant rpm.

Figure 5.1 simulates changing depth without imparting a

pitch angle to the submarine and provides an excellent

example of both the usefulness of w(t) as a state variable

and the increase in control surface gain produced by the

gain scheduling algorithm. The time history of the sail

planes Cdb) indicates their dominant role in this maneuver.

Although the command in wCU.5 ft/sec) is attained quite

early at 6U seconds, the submarine is still slowing and the

nonlinear compensator increases the sail plane deflection

accordingly. The second command in w, at 275 seconds,

produces the same magnitude error signal, but results in a

much larger initial deflection of the sail planes due to the

lower speed. The error in w is seen to stay constant and

very near zero during the sail plane movement.

I - 97-
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Figure 5.1. Gain Scheduling Demonstration
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The next two simulations reflect an attempt to further

define the nature of the cross coupling that exists between

* .,pitch angle e and yaw rate r. Both tests have initial

conditions corresponding to the nominal point for the 5 knot

model with the final speed equal to the nominal speed for

the 25 knot model. Command inputs were applied as step

signals that corresponded to the nominal values for the

three output variables for the 10, 20, and 25 knot models.

The step inputs for the 10 and 20 knot nominal points were

timed so as to occur simultaneously with the submarine

attaining the forward velocity appropriate to that nominal

point.

In figure 5.2, the submarine is allowed to settle for a

short time at the 20 knot nominal conditions before the

final step change is applied. In figure 5.3, however, the

last step change is applied as soon as the appropriate

velocity is reached. Thus the two time histories are

identical up to about 35 seconds. A comparison of the two

sets of time histories reveals that the cross coupling

between yaw rate and pitch angle is not minimized in the

second test, although this might be expected since the

submarine should be experiencing an attitude very similar to

that for which the compensators were designed. Instead,

although the curves appear omoother in the second teot, a

close inspection of the errors and the control surface

inle
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Figure 5.3. Yaw Rats and Pitch Angle Cross
Coupling Test Number 2
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deflections reveal that the degree of cross coupling is a

function of the yaw rate error at the time when a step

change is applied. In figure 5.2(c), the error in the yaw

rate when the third step is applied is approximately 0.003

rad/sec whereas, in figure 5.2(c), it is nearly twice as

large. The result is a larger overshoot for all three

outputs and an increased rudder deflection. Furthermore,

although the third step change was applied 50 seconds

earlier in the second test, the errors at 200 seconds are

larger than for the first test.

Time did not permit further investigation of the cross

coupling present in the submarine model simulations. it

should prove informative, however, to compare the

simulations of figures 5.1, 5.2, and 5.3 to identical

simulations for submarine models linearized about a straight

and level trajectory.

The last test, shown in Figure 5.4, illustrates a speed

A increase from 5 to 25 knots with all commands set to zero.

9' This simulation reveals an oscillatory response not present

4in any of the simulations presented so far. It occurred

consistently for all tests of the nonlinear compensator

involving a speed increase to approximately 30 knots and

having significant time for settling out to steady state.

It should be noted that the oscillations are quite small in

16
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amplitude and are very lightly damped.

Although the cause of the oscillations was not determined,

some phase lag appears to be present in the stern plane

deflection compared to the error in e. This indicates the

requirement for more data points to accurately predict the

model 's behavior at higher speeds.

5.4 Summary

This chapter discussed the motivation far including the

nonlinear aspects of the submarine model s response into the

compensator design. The technique of gain scheduling was

introduced as the method by which this could be

accomplished, and the specific algorithm used was

presented.

The first gain scheduling simulation, figure 5.1,

highlights the application of this technique in the time

history of the sail planes (figure 5.1(f)). Simulations

using the full nonlinear controller were also presented that

further demonstrated the cross coupling present in the

submarine model.
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Chapter

SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

8.1 Summary

This thesis has presented a multivariable control design

example consisting of the following steps:

1. ourlinear models of a full size submarine were

developed using a computer implementation of the

linear and nonlinear equations of motion.

2. The resulting models were reduced in order by

inspection of the A and B matrices and subjected to

modal analysis to determine their suitability for the

LQG/LTR design procedure.

3. Response characteristics of the open loop nonlinear

modal were used to establish guidelines f or

performance specifications and additional dynamics

were included in the models in the form of integrators

in each input channel.
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4. The controller was designed using the LQG/LTR combined

time and frequency domain methodology as formulated by

Stein, Doyle, et.al. Loop shaping techniques were

independently developed that provided identical

behavior of the singular values at both ends of the

frequency spectrum for linear models using integral

control.

5. A nonlinear capability was added to the controller

design using the technique of gain scheduling. A

second order polynomial was used to produce

coefficients that enabled prediction of the

compensator matrices for nominal points not modeled.

6.2 Some Conclusions and Directions for Further

Research

Modal analysis should be used as a first step in any

multivariable controller design. It not only provides all

of the necessary information for proceeding with the design,

but also provides invaluable reference material f or

determining the cause of any anomalies in the behavior of

the model.

The techniques used in this thesis to match the singular

- lie



values of the Kalman Filter transfer matrix are simple and

straight-forward. Unfortunately, they only apply when

certain of the matrices used are invertible. An extension

of this method to cover the case of noninvertible matrices

using a perturbation matrix would provide a useful and

general tool to the control system designer.

The extreme usefulness of singular value characterizations

f or multivariable systems was demonstrated in this thesis.

The concept is an easily understood extension of the

familiar Bode plots and provides a convenient means of

describing and then ensuring the attainment of performance

* requirements for multivariable systems.

The cross coupling between yaw rate and pitch angle

displayed by the submarine models used in this thesis

requires further investigation. In particular, performance

and transient response for models linearized about a

straight and level trajectory should be compared to the

simulations presented herein. Such a comparison should

allow a determination to be made as to whether or not gain

scheduling needs to performed on the basis of roll angle as

well as forward velocity.

The gain scheduling algorithm described in the previous

chapter is an idealization in that the compensator matrices

were updated on each iteration of the integration. An



actual implementation of gain scheduling might require that

* an overlapping step type of approach be used to decrease

both the computational burden and the possibility of

introducing instabilities into the controller.

In so far as the purpose of this thesis was to present an

I' LQG/LTR design example and demonstrate the technique of gain

scheduling, the reference plane problem was ignored.

Unfortunately, controlling a submarine in an inertial

reference frame utilizing a body coordinate system somewhat

abstracts the state space description of the submarine

model. To make the conversion externally, however, presents

the control system designer with a time varying C matrix.

Replacement of the state variables w and r with the

derivatives of z and V' would provide a more useful set of

I state variables for the purposes of controller design.

Although the submarine has six degrees of freedom in its

environment, the three control surfaces permit the control

of only three output variables. Of course the constant rpm

constraint placed on the model in this thesis is artificial,

and was intended only to reflect current operating

procedures. The addition of propulsion control and

differential action for the control surfaces (rudders and

stern planes) would provide a total of 6 controls, yielding

a much more flexible system.
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Appendix A

State Space Matrices f or the Linearized Models

The elements of the A and B matrices are presented in the

standard row and column format. In the case of the A

matrices, the 10 elements of each row are displayed as two

rows, containing the first five elements in one row and the

second five elements in the next.
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4'

Model S5R5

A Matrix

-.8532E-22 -.11E-01 -. 1594E-83 -. 10S1E-01 .2036E+80
.159@E+91 .0080E+80 .2954E-03 .MOOE+U0 .ODOOE+0

.1532E-82 -. 4036E-01 .1187E-02 -.3551E+00 .1268E+00
-.2569E+81 .1318E+00 -. 2805E-04 .OOOE+00 OOSE+00

-.269@E-03 .6475E-03 -.2266E-01 -.8o13E+0U .2183E+01

-. 184SE-01 .OSOOE+00 .7616E-02 .OOOOE+08 .OOBE+O0

-. 3420E-04 -. 2184E-02 -. 7419E-03 -. 8579E-01 -. 1323E+0
-. 1544E-01 -. 1621E+00 .3450E-04 .OOOE+00 OOO E+00

-.7759E-05 .6245E-05 .2209E-03 -.6028E-02 -. 8562E-01
-. 5396E-03 .OOOOE+0 -. 2512E-02 .OOOOE+00 OOOE+60

-. 2941E-04 -. 2764E-63 -. 7509E-05 -. 1346E-02 -. 7110E-04
-. 8534E-01 .2618E-03 -. 5572E-07 OOOOE+O .OE+00

OOOOE+00 .OOE+00 OOSOE+00 IOOOE+01 .2128E-03
-.2027E-01 .5899E-12 -. 6549E-02 .OOE+0 0 OSE+0

.OOOOE+0 * .OOE+00 .OOE+00 .OOOE+00 .9999E+00

.1050E-01 .6547E-02 .OOOE+0 .OOOE+0 .OOSE+0

* SUUUE+00 OOOOUE+00 OOOOUE+00 OOOOUE+00 -. 1U5ME-U1
.1OOOE+01 -. 2911E-10 .1327E-03 .OOOE+00 .O0E+00

.2027E-01 -. 1050E-01 .9997E+00 .OOOOE+00 .OOE+0

.OOOE+IlS .7882E+00 -. 9643E+01 .OOE+00 OOO E+0O

B Matrix

-. 1122E-02 -. 2826E-02 -. 1137E-01
DOOO0E+90 DDOOUE+06 .89949E-01I

-. 7633E-01 -. 5624E-01 -.2885E-U6
.OUUE+UU .000UE+00 .1661E-92

-. 1845E-02 .5402E-03 .9514E-07
. OOE+00 . USE -. 2266E-02
.*OOE+0 .OODE+00 .OOOOE+00
.0009E+00 .OOOSE+0 .666@E+60
. OBE 00 .000E Om e*OOE 0

.900E+00 .OOE+0 .GOBE+9
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Model S1R5

A Matrix

-. 1491E-01 -.2067E-01 -. 7935E-03 -. 1777E-91 .2705E+00
.2832E+1 .1366E+00 .2948E-03 .0068E+00 .@@DOE+0

.2771E-62 -. 7168E-01 .1182E-02 -.5860E+00 .2069E+00

.4562E+1 .1314E+00 -. 3061E-03 .000E+06 B0E+00

-.4935E-83 .1478E-92 -. 4014E-01 -. 1427E+01 .3871E+01
-. 1274E-81 .0OOME+00 .7599E-02 .0OE+00 .OOBOE+00

-. 6136E-04 -. 3913E-02 -. 1330E-02 -. 1522E+09 -. 2374E+00
-.2096E-01 -. 1616E+00 .3765E-03 .SOOOE+00 00OE+00

-. 1467E-04 .6635E-05 .3919E-03 -. 1069E-01 -. 1519E+ 0
S-.1162E-02 *OSE+00 -. 2506E-02 OBOO0E+00 OOOOuE+00

-. 5373E-04 -. 4895E-03 -.7697E-05 -. 2670E-02 .8318E-03
-. 1515E+00 .2611E-03 -.6081E-06 .OOOOE+00 .OGOOE+00

.0000E+00 . . 0 .1:::E+:1 .2328E-02

.7024E-01 .9818E-10 -. 1168E-01 .0669E+00 .0000E+0

.000UE 00 .00@E+00 .0000E+00 .0000E+08 .9995E+00

.3312E-01 .11&2E-61 .00@E+00 .OOOBE+00 .0000E+00

.000@E+80 .OOOOE+00 .000E+00 .0000E+00 -. 3320E-01
* 1002E+61 -. 1400E-08 eie9E-03 .000@E+00 .0000E+00

.711E-01 -. 3304E-01 .9970E+00 .OBOOE+00 .000E+00

.000E+00 .1398E+01 -. 1729E+02 .0066E+00 .0000E+00

B Matrix

-. 3512E-02 -. 8903E-62 -. 3582E-01
.000E+00 .000E+98 .291@E+99

-. 2467E+. -. 1772E+00 -. 9087E-06
.006E+80 .0U0E+00 .5191E-02

-. 5992E-02 .1782E-82 .2997E-66
" WOE+8U .USUE+00 -. 7404E-02
" 00G0E+.U .00@E+00 .0000E+00
.0000E+UU .00E+UU .O* E+00
.013@E+06 .0098E+U .068@E+U3
.000@E+98 .013E+U .0098E+09
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Model $20R5

A Matrix

-.2889E-01 -. 4046E-01 -. 6327E-02 -. 3487E-01 -. 4169E+91
• 5643E+oi .0608E+oo .2754E-03 .0000E+06 . 0U0E+60
.5539E-02 -. 1416E+00 -. 8891E-02 -.6934E+09 .1803E+98

-. 986@E+0l .1216E+86 -.6676E-02 .8800E+00 .S E+0
-. 1286E-82 .7565E-02 -. 8581E-01 -. 2851E+01 .7576E+01

.,172@E+00 .0000E+06 .7099E-22 .8000E+ 0 .00SSE+00
-. 6092E-04 -. 8099E-02 -. 2414E-02 -. 3005E+00 -. 4355E+0
.2341E-01 -. 1496E+00 .8211E-02 .SM00E+00 .0000E+00

-. 3405E-04 -. 3369E-04 .7281E-03 -. 2096E-01 -. 2998E+0
-. 5757E-02 .I000E+00 -. 2342E-02 .0000E+00 .0OOOE+00
-. 1078E-03 -,962@E-03 .4209E-04 -. 7928E-02 .1271E-81-. 2994E+o0 .2417E-03 -. 1326E-04 .OOOE+00 OOOE+00
.0000E+00 .0000E+08 ODOOEE+00 .100E+ol .5434E-01

-. 3853E+00 -.9059E-69 -. 2650E-01 . E000E4-U .000E+o

.000E+00 .008E+60 .000E+ao .00016E+00 .9902E+00.1397E+00 .2302E-01 -00@E+80 .009E+9 BOE+100

• 0U00E+00 .0000E OBOBE+00 .0000E+0 -. 1499E+00.1063E+01 .2498E-8 .9609E-02 .OOOOE+oe SOOOE+0

.3626E+00 -. 1302E+00 .9228E+00 .S000E+00 ,0000E+se• 000E+o0 .2619E+01 -. 3159E+02 .0OE+o0 OOOSE+00

B Matrix

-. 1372E-81 -. 3478E-01 -. 1399E+0
• O059E+Uu .16B6E+8 .1137E 91
.9636E+06 -.6921E+0 -. 355UE-05
.008E+80 .oSUUE+Bo .2828E-91
.2341E-01 .6648E-02 .1171E-85
. UomE+Ise .SNWE+8 -. 2892E-91
• 00ESE+80 .@@@ME+@@ .09S0@E+00
.000@+O .00E+00 .o -ooE+mm

* UU0E+Gm a 8990E+90 .9066UE+60
. 00E+66 13869E+00 .0*SIBE+0U
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Model S25R5

A Matrix

-. 3521E-61 -. 4803E-61 -. 1255E-01 -. 4146E-81 -.1686E+01
.6762E+01 .UUMBE+60 .2343E-03 .9966E+06 .oSE+U0o

.6953E-02 -. 1718E+00 -. 2605E-01 -. 3137E+0S -. 1838E+09

.1124E+02 .1017E+0 -. 185SE-01 .S0O0E+M .WWUE 0

-. 1981E-92 .1686E-01 -. 1U6SE+0U -. 3427E+01 .9191E+o1
.4173E+0 .0000E+0 .6039E-02 .000@E+00 .000E+W

.3581E-04 -. 1038E-01 -. 2127E-02 -. 3679E+00 -. 3943E+oU

.1083E+00 -. 1251E+00 .2275E-01 .0000E+00 .0000E+00

-. 4478E-04 -.9358E-04 .8713E-03 -. 2491E-01 -.3681E+00
-. 1325E-01 .000E+00 -. 1992E-02 .0000E+00 .0000E+00

-. 1331E-03 -. 1197E-02 .1125E-03 -. 1242E-01 .2915E-01
-.3652E+00 .2020E-03 -. 3676E-04 .0000E+00 .0000E+00

.0000E+00 .0000E00 .00E+00 .1000E+01 .1770E+e0-. 7482E+00 -.2864E-08 -.4430E-01 .002 E+00 .0000E+00

• BBOE+6 .0000E+00 .OOOoE+00 .O000E+.0 .9731E 8+
.2303E+00 .2784E-01 .0000E+00 .0000E+00 .0000E+00

• 0O00E+06 .0000E+00 .0000E+00 .0000E+00 -. 2905E+00
.1227E+01 .4699E-08 .2700E-01 .0000E+00 .086E+80

.6095E+00 -. 1825E+060 .7715E+00 .004DIE+0 .00E+09

.0060E+00 .2750E+01 -. 3285E+02 .0000E+00 .0000E+00

B Matrix

-.2061E-01 -. 5221E-01 -. 2101E+0
.DOE+g06 . 660E+00 .1703E+01

-. 1444E+01 -. 1039E+01 -. 5329E-05
.8 0E+00 .889DE+60 .3046E-01

-. 3509E-01 .9981E-02 .1758E-05
.•B0BE+00 .0600E+0 -. 4333E-01
• 00E+0 0 .o00+so . 80000E+
.0000E+08 .0000E+U0 .0000E+o2
* 80002 O.00 * 6+0 •.0O0OE+01• 00002+00 . OSOOEeoO . 00002.00
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Appendix 3

Modal Analysis Products

All matrices are presented in the standard row and column

format. Additionally, the data in appendices B2 through B6

-! are complex numbers. These numbers are always displayed

with the imaginary part directly below the real part. For

example, each row of a matrix with complex entries would be

displayed as two rows, the real parts in one row and the

corresponding imaginary parts in the second row. The

eigenvectors are presented as (complex) column vectors.

b74
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Appendix 81

Matrices Used to Perform Unit TransformationsI1. Matrix used to presultiply bath the A and I matrices:

1.11NE+U I.IIHE.N I.NNE.N .UEU 1.119E+11 L.MUE*8N *.NUIE.N 1.Uh11E+

1.hI1IE+N INIE+1I I.101IE.II IIIE+II I.NWIEN 8.111IE+I1 *.UhUE~f .0LIIUE+18

L.INNE4I.IUUE.N 3.IUN9E.N 5.7311E+11 *.IS11E+1I 1.811UE+11 I.IIIIE.II 1.1111E+11

1,1111E+18 1.9001E+11 1.1136E41 U.IUSUEN 5.73NE431 3.1IE.U 1.9181E+11 1.811VE4N

I.IIIIE4.8 .188IE+81 1.8881E+11 1.0618E+I1 8.1181E+1I 5.7318E+1 I.I1611E+1I 1.IIIIE.8I

*.IHE3 8.9IIE.O I.HH1E+N 1.SSSIE46 IIIUUE+9U U.11IIE48 S.1333E.3 5.7386E+11

2. Matrix used to postmultiply the A matrix only:

1.IUUIE .1 198BIE+81 1.19UUEM8 I.USUE+#U I.1181E+11 1.801E+II 6.0811E+1I *.IIIIE+I

1. IUIIE.II 1. IIIE.II IIIIE.II 1 8IIII 1.8881E+1 IU .BSE4u3 8.1111E+68 LHISOE4

1. IUOE+II 1. IIIEH .l.IIIE+ .*IIIIE4II 6.I8100E+18 1. IIBB 4 .BE+# .SI . @@.BUE+#I

U.91I1EMS LHUIUE4UB 1.SSUBIE+U3 1. 7452E-12 1. IIUIE48I LU8I8E+81 1. IIIIE48I 1 1819IE+11

1. IUOE.II I.IIE IIIIIE .111EH L.NIIE+II I.IS 1.7452E-12 I.11+ .IIIIE.II I.IINE*II

1. 11UE+ .S.UIfE4N 1.U611E+ .U 3.316E+NI 1.1111E+18 1.hE.7452E- 2 I0E1 .IIE*4

1. *.UUE.UI INIIE+H .NIUE.N 1.NN IIEN .UUIE4 . IUUE* . 7452E-1 . 1745E-6

3. Matrix used to postsultiply the 3 matrix:

5.73UE*O1 *.UNE.U 1.0UgWI

U.NUE. 5.73"E*It I."SN
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Appendix B2

Modal Decopoasition for Model S5RS

Eigenvalues
-I.1277E-82 -2.679qE-I2 -2,7689E-g2 -2.7689E-62 -4.1686E-12 -4.1686E-12 -5.3318E-12 -9.265E-i2

I.88I8E+I UI.181E+1 1.7643E-12 -1.7643E-12 3.9761E-11 -3.9761E-11 8.fl8IE4 8.BUSE+41

Eiqenvectors

- 9,0A8IE-8l 7.4178E-0I 8.9904E-82 8.904E-02 -2.9654E-03 -2.%54E-03 -o.5:18E-I2 2,4lSE-el

* l.l96E-0l 6.5aE-01 2.;77E-C2 2.977BE-O2 -2.2866E-I -2.208oE-0l 1.6124E-82 -9.TS8TE-8l
B.I90IE.6 1.1081E486 -7.US2E-873 7.352SE-03 -4-75GIE-01 2.75887-61 1.088II4 0.80IE.I8

-1.8966E-13 8.5962E-12 7.5459E-01 7.5459E-I -5.5826E-11 -5.54ME-11 -9.6376E-81 -8.9253E-83

LNIUE4I 1.61IEti 5.9693E-81 -5.9693E-11 -5.4412E-12 5.4412E-12 I.001E+8I 0.188IE+81
-2,.432E-85 2.5411E-84 1.7'94E-13 1,7394E-03 -5.1519E-82 -5.1519E-82 -1,3353E-13 -1.8784E-K3

,.o,72E- -2.46%E-14 -b.874E-3 -b.8174E-13 -4.0647E-13 -4.1647E-83 1.3928E-02 -2.5131E-84
1.1111E+11 g.g1 E4 4.8192E-93 -4.8192E-13 -9.2717E-84 9.2/17E-14 1.11E+18 1.1008E+i

-8.4622E-84 -3.5641E-I3 -3.1491E-14 -3.14qlE-14 -5.9911E-64 -5.9911E-a4 1.1526E-14 -2.17DIE-12
4.111aEt88 1.IIE+1 -2.7189E-66 2.7189E-16 -B.6117E-14 6.b137E-14 .HISIE+18 1.8188E+11

-1.7819E-83 -9.614E-83 1.1554E-13 1.1554E-13 6.9284E-11 6.9284E-11 -6.59eE-83 1.5196E-92
i.1liE+68 I.IIIIE.8 -6.8116E-83 6.8116E-13 5.6878E-12 -5.667E-12 1.110E+88 i.NiUE+8

-4.9419E-13 I.2068E-82 2.528BE-81 2.5288E-8l -1.5238E-83 -t.523SE-13 -2.6143E-11 3.7533E-13
I.iiUE+i 0.iiUE+18 -1.1295E-62 1.1295E-12 -1.197E-03 l.897E-83 0.1116E+11 1.106E11
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Appendix B2 (cont'd)

Model SSR5

Controllability Matrix

3.2358E-03 2.281SE-13 -2.3825E-11
L.882E-I8 -1.12869E-10 1.35RIE-11

8. 3133E-63 -8.5165E-13 2.8357E-81
4.5645E-11 6.1762E-1I -1.375BE-11

-8.4924E-12 5.7771E-82 -7.9711E-83
B.5281E-12 2.7335E-82 5.7777E-13

-8.4924E-82 5.7778E-12 -7.971lE-13
-8.5281E-82 -2.7335E-82 -5.7777E-13

-1.4243E-13 1.5582E-84 4.9841E-84
7.2981E-15 4.1261E-15 -3.2951E-83

-1.4243E-13 1.5582E-14 4.9141E-14
-7.2982E-85 -4.1261E-85 3.2951E-03

-1.5716E-81 1.14i1E-I1 4.5351E-13
-7.2641E-I -6.1431E-18 -1.7913E-1I

2.5616E-14 2.5224E-14 7.1342E-82
7.8113E-12 7.6491E-13 3.6112E-13

Observability Matrix

-1.8966E-14 8.5962E-13 7.5459E-12 7.5459E-12 -5.5926E-12 -5.526E-12 -9.63 3E-12 -9.9253E-04
I.UISE'S9 1.II8E+98 5.9693E-12 -5.9693E-12 -5.4412E-13 5.4412E-13 *.111E+II *.1SUE+11

-9.4622E-14 -3.564E-13 -3.1491E-14 -3.1491E-94 -5.9911E-14 -5.9911E-14 1.1526E-14 -2.1711E-12
I.UKE+U I.NNE+N -2.719E-16 2.7189E-16 -9.6137E-14 8.6137E-14 I.NUIE II I.NUIE.II

-4.949E-13 1.296E-12 2.528GE-1 2.5298E-Ii -1.523GE-13 -1.523SE-13 -2.6143E-U1 3.7533E-13
.UUE4U .NlEUN -1.1295E-12 1.1295E-12 -1.U97E-13 1.U97E-13 I.NNE4U L.NUEt9
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Appendix B')

Modal Decomposition for Model SlIR5

Eigenval urs

-l.994BE-12 -2.2887E-12 -d'.2097E-12 -4.7861E-12 -7.2735E-12 -7.2735E-12 -1.4962E-81 -1.752SE-0l8.88+8156E8 156E-2181E8 .63-1si.63-110BE8688E8

Ei genvectors

8.188IE+88 4.9564E-82 -4.9564E-02 I.88HE.N4 8 73-13 -4.8473E-l13 0.1111E+18 8.101E+81

1.1088E+68 4.349eE-02 -4.349BE-02 6.8888E+88 2.2178E-0l -2.4'171E-81 I.88IE4d 8.I8I8E+6I

-5.9146E-12 6.523"E-6l 6.522.3E-91 -5.68611E-02 -2.1658E-91 -2.I158E-01 9.776SE-Il 4.71148E-14
8.8888E+81 7.2169aE-il -7.2-69SE-6l 1-1881E+18 7.18"E-81 -7.18;7E-01 1.108IE+08 1.e68@E+16

1.457GE-14 1.59116E-83 1.597bE-13 -6.4665E-14 1.824BE-6l 1.84@E-11 -3.1177E-83 -6.Z 8E-1
U' I.38EI -i.wal6E- 1.86416E-0-i I.UIHE.II G.533E-12 -8.533,E-r. L.ORIE+8 I.IIIIE+6

-3.5989E-84 S.9126E-64 5.IWbE-84 6.4362E-85 -2.6IBIE-13 -2.6188E-13 -2.9157E-87 -.97 E-I4
8-101E+I8 5.6592E-03 -5.6592E-13 1.1118E+88 4.789SE-13 -4.788E-13 1-1801E+88 1.1881E+8U

8.7144E-14 -l.0958E-a4 -1.895SE-14 3.6271E-83 -1.316BE-13 -1.316BE-63 -2.8261E-14 -2.1382E-82
4 .1ISIE+9I -1-6859E-14 1.6855E-14 I.1108E+18 5.2738E-04 -5.273SE-I4 1.1881E+10 1.0818E+8I

4.1696E-13 -7.3594E-13 -7.3594E-13 1.69$E-12 1.2725E-11 1.272SE-01 3.6117E-82 2.8127E-12
UIIINE+II -1.4485E-12 1.4415E-12 I.IIIUE.IU -4.9625E-11 4.9625E-11 1. NIIE.N I.NIIE.HI

1.4149E-12 l.8443E-Ul 1.844'E-11 -7.9559E-03 -2.154'E-13 -2.1542E-63 1.9211E-II 1.3375E-12
I.IHE+II -1.7467E-11 1.7467E-11 I.IIUE+II 3.4431E-13 -3.4431E-13 I.1&III. U.IHIE+II
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Appendix B3 (cont'd)

Model SIR5

Controllability Matrix

. 2.3371E-12 2.9672E-03 7.7715E-I1
-,5265E-11 1.214'E-11 -1.1231E-16

-2.665E-! -I1.5615E-12 -2.3874E-82
6.0766E-12 5.3114E-12 -3.6791E-12

-4. 66E-01 -1.5615E-12 -2374E-12

-1.4^;6E-11 8.79'1E-11 5.8874E-11

-2.157?E-13 -4.6727E-14 1.7865E-12
-1.1457E-12 1.3161E-83 2.6127E-13

-2.1579E-l3 -4.6727E-84 1.7965E-12
1.1457E-82 -1.3161E-83 -2.6127E-83

1.7643E-61 -7,99NE-82 -1.BIVE-12
-9.0616E-11 3.3785E-11 -1.8464E-18

1.2687E-13 1.258E-13 2.3137E-01
-9.7488E-12 1.1881E-11 1-6121E-13

Observability Matrix

-5.9146E-13 6.5223E-12 6.5223E-12 -5.6862E-I3 -2.1651E-12 -2.1651E-12 9.776BE-12 4.7149E-85
IINIE+11 7.2b9SE-12 -7.2699E-12 I.9IIE+U 7.1337E-12 -7.19837E-12 .I8iEII1 8.iU1E+8l

8.7I44E-04 -.1959E-14 -1.1959E-94 3.6271E-13 -.3i6BE-13 -.3I6SE-83 -2.126IE-14 -2.8382E-82
1. NUE+lO -1.6959E-14 1.6859E-14 1.Ii1E+ll 5.2738E-14 -5.273BE-84 l.1861E+Il U.IhE+ll

1.4149E-12 1.1443E-11 1.1443E-11 -7.9559E-13 -2.1542E-13 -2.1542E-13 1.92UE-1 1.3375E-12
1.NNE.N -1.7467E-11 1.7467E-11 1.i1U0E+1l 3.4431E-03 -3.443[E-03 1.1181E+O 1.iiE+18
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Appendix B4

Modal Decomposition for Model S21R5

Eigenvalues

-1.5196E-82 -3.9975E-02 -5.7197E-12 -1.1187E-11 -1.3163E-11 -1.3163E-91 -3.273BE-I1 -3.5236E-I1
I.11IUE.U I.88IIE48 8.1808E88 I.IIIIE+I9 3.3886E-61 -3.3186E-61 1.8180E+1I 8.8681E+81

Eigenvectors

7516E-a2 9.6999E-81 -5.58bE-01 -6.944BE-01 2.3784E-12 2.3764-12 2.2576E-82 -I.aS93E-I1
0.11818 8.1880E,61 8.1181E+11 1.1188E+81 1.739BE-12 -1.739BE-12 1.1111E+II 1.I6I1EI84

-6.416SE-12 1.5467E-31 -2.9629E-11 -6.6735E-Il 2.3921E-81 2.39d"1E-81 2.9231E-81 9.661.E-114 .8.1IUE+8 6.11SII 1.8SIE.I *.IREI8E 1.3965E-11 -1.3985E-11 I.11NE41 *.1IHE+U

9.34I12E-I1 -1.654@E-81 7.7235E-91 -2.6461E-81 8.4294E-11 6.4294E-11 -9.3751E-I1 -1.2439E-81
*.iiN1EQi 1.1818E+18 0.8101E+11 6.111EE68 -3'.4316E-I1 5.4316E-11 1.18111I I.8I88E+I

-a.6414E-13 4.9216E-04 -5.2264E-14 -. 45-3-1.1996E-12 -1.1996E-12 3.7359E-12 3.514SE-17

5.8B466E-13 -9. 38871-64 2. 9496E-63 -3. 2382E-84 5. 5182E-13 5.584E-13 4. 3789E-62 1. 6228E-82
3.88111 8.118E+18 1.8811E+08 1.U1I8E+18 3.7313E-84 -3.7313E-14 I.1608E+11 1.8818E+81

9.Ub8BE-14 -1.0715E-83 1.735BE-83 3.7323E-83 1.5456E-13 1.5456E-13 3.3164E-13 1.9153E-12
8.8811E+81 1.1618E+10 1.8818E+1I 1.8018E+81 1.8937E-13 -1.8937E-13 8.1888E+88 0INSEII

-2.9824E-82 -2.5164E-13 -6.4512E-13 4.6243E-12 -2.5487E-81 -A.5487E-I1 -1.2756E-11 -8.4999E-82

-3. 4436E-11 2.89443E-12 -5.,2797E-12 -1. 254BE-82 9. 7445E-83 9. 744SE-13 -1. 2465E-I1 -4. 7581E-12
1. NIIE+N 1. IINE+N I. IINEU61 1.1IU1E+UI -3. 2606E-13 3. 2616E-13 I. 111E+8 1.1881IE+UU
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Appendix B4 (cont'd)

Model S2IR5

Controllability Matrix

4.8721E-I1 -4.4181E-13 -l.3148E-12

1.237"E-19 -5.5467E-11 -4.4675E-1]

-9.4816E-11 -2,1125E-81 -3.4111E+08

-5.3563E-11 5.5A16E-1I -5.1415E-11

-2.74175E+88 -5.9278SE-11 -1.1337E+48

-B.4954E-lI 1.5149E-89 5.2273E-10

8.8974E-i 2.5212E-11 -3.4319E+fl
-3.4655E-II -4.6942E-10 -l.0160E-09

l.;6SE- 1 1,885§E-13 -2.7789E-I1
1."&145E-81 -2.6434E-B&I l.846BE-8l

1.75E-1 1.B31E-13 -2.7789E-I1
-I.2245E-Il 2.6434E-12 -1.8468E-I1

-4.897@E-I1 2.1629E-01 4.1265E-8l
-1.1865E-11 -3.3717E-11 1.2161E-18

7.6635E-12 -4.6328E-82 -9.4791E-I1
7.1173E-11 3.1513E-12 -4.8438E-1I

Observability Matrix

9.3412E-12 -1.854KE-62 7.723SE-12 -2.6461E-12 8.4294E-12 8.4294E-12 -9.3751E-62 -1.2431E-82
1.llNWE+l I.HWiE+N 1.|EII N 1.11iiE | -3.4316E-12 3.4W1E-12 0. 1011E+1 0 I IE+II

9.166NE-14 -1.1715E-13 1.7351E-13 3.7323E-13 1.5456E-13 1.5456E-13 3.3164E-13 1.9153E-12
1.I ME II I.IllEIH III+I HI4 .111K+8U 1.1937E-03 -1.1937E-13 1.l111E+Nl I.NIllE~ff

-3.44UE-0l 2.0443E-12 -5.2197E-12 -1.2541E-12 9.7445E-13 9.7445E-13 -1.2465E-I1 -4.7581E-12

I.WUEI. I.IIN I.I1E.#l l.IIIKN -3.2616E-3 3.2616E-13 I.liIIE. I.IUIE.N
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Appendix 95

Modal Decomposition for Model 325R5

Eiqenvil ues

8.8811E+11 1.8181E+8 1.8880E+8U 8.8881E+8U 2.8421E-11 -7.8421E-11 1.3732E-12 -1.37,42E-12

Eigenvectors

* 2.~EE-1 -.~U4E-9l-8.586E-11 6,2~E-1 b5B7SE-63 6.5879E-I3 -1.151NE-11 -1.151ZE-01
1.1811E+11 1.8811E*1 *.IIIIE+II I.IIIIE+II 3.9627E-12 -3.q&27E-12 2.6162E-12 -2.6062E-82

4-2.:a85E-61 -7.1^44E-11 -3.715'E-11 -6.684@E-11 3.167SE-02 3.1678E-82 6.5827E-81 6.5127E-6l

4 8~~.9189E-11 1.7733E-61 4.21921-11 -4.BBSIE-1I 9.3641E-91 9.36AIE-1l 6.9L"PE-02 6.9853E-I&I
1.IIWE.II 1.11UUE+N 1.1USE4S 1.1f1E41 -5.1677E-12 5.1677/E-12 -4.6114E-11 4.6114E-11

-1.2736E-62 -8.467@E-14 -1.4691E-13 -8.1865E-13 1.9B2ZE-12 I-9B22E-82 3.241E-82 ').:411E-12

4.7957E-13 8.7ra1E-14 1.7415E-83 -6.989QE-14 4.2194-63 4.2894E-17) B.55IIE-13) 8.5lE-63
L.UII1 8.1119E+88 1.1811E+81 8.1118E81 d.2436E-83 -2.2436E-13 3.4444E-82 -3.4444E-12

1.8472E-13 1.419SE-13 2.2594E-93 3.7111'E-13 1.3149E-83 1.3149E-13 1.3528E-12 1.3528E-62
0IU1E41 I. IINE+11 1.8188E+11 I.6188E+88 I.3322CE-13 -1I .33212E-83 9.9814E-13 -9.9884E-83

-2.9714E-02 9.8925E-13 1.605SE-12 7.5988E-12 -2.23BIE-Il -2.2391E-Sl -5.4217E-92 -5.4217E-12
1. UUE+N 1. IIIE+1I 1. IINE.N1 1.1118E+II 5.21374E-12 -5.2374E-12 -1.327BE-Il 1.327BE-Il

-3.U79E-O1 -2.7826E-12 -4.1591E-12 -1.7234E-12 1.3512E-12 1.3512E-12 -2.1993E-12 -2.1993E-12
IU E.U1 1.1U08E+8I 1.IINE+I8 I.IIIIE.N -7.33S1E-14 7.33S1E-14 -7.6633E-02 7.6633E-12
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Appendix B5 (cont'd)

Model Sd25R5

Controllability Matrix

6.2761E-11 -6.4231E-13 4.8521E-12
-4.75I1E-19 -3.1469E-11 -B.7641E-19

4.7783E+18 1.1456E+1I 7.058E+88
-1 .8983E-19 -3. 94BIE-19 -2.89645E-16

-7. l7I~SI-1.5919E+81 -3.9872E+61
i.5541E-19 5.1546E-89 3.681BE-I9

2.13'E4II 6.7)27E-11 -5.1141E+88
-1.8864E-89 -4.61V)E-11 -5.5SIE-19

3.2985E-Il 7.6213T-13 -8.8275E-I!
2.6184E-11 -'5.666E-S2 4.1126E-11

3.2985E-11 7,6213E-13 -8.827SE-I1
-2. 6184E-11 5. 666BE-I? -4.,1126E-81

4.965ZE-Il -1.79BLE-Il -1.1151E+88
5.3461E-61 -2.181E-Il -3.667SE-11

3.9653E-81 -1.79B1E-Il -1.1151E+I8
-5.3461E-11 2.I8BE-Il 3.667SE-I1

Olbservability Matrix

8*. .YISYE-82 1. 773NE-02 4.219NE-12 -' SISIE-12 9.3641E-12 9.3641E-12 6.9853E-13 6.90S53E-13
I.NIIE.II I.NIIE.g 1. IIUE4N I.IINE.II -5.0677E-13 5.1677E-13 -4.6114E-12 4.6114E-12

1.0S47N-13 1. 419SE -03 2. 2594E-13 3. 7112E-13 1. 3149E-13 1. 3149E-13 1. 3528E-I2 1. 3521E-12
1.IIUE.U I.IIIIEN I.UUE.II LI.NIE. 1.3322E-13 -1.3322E-13 9.9114E-13 -9.9II4E-13

-3.UN79E-I1 -2.7826E-12 -4.1591E-12 -1.7234E-12 1.3512E-12 1.3512E-12 -2.1993E-12 -2.1993E-12
I.UU~ l.NUE.I I.IIWE+II I.IIIE.U -7.3391E-14 7.3381E-14 -7.6633E-12 7.6633E-I2
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Multivariable Zeros for all Models

Model S5R5

1.513K+E17 1.0854E+17 1.5425E+13 -8.4541E-13 -4.2165E-12 -4.2165E-12 -5.3654E-12 -1.5421E+13
lU.U +EM 6.911E+1I U.IIINE+UI ,1*.6IIUE 3.9774E-01 -3.9774E-11 8.NIIE+I 8.8181E+1i

Model SIOR5

9.1114E+1I 7.1271E+14 -1.4778E-12 -7.4214E-12 -7.4214E-12 -9.656BE-62 -3.4771E+64 -3.4771E+4
1.0118IE+14 1.I1I8E+11 1.11EE.8 3.8722E-81 -3.872d2E-Il IIIE4186&715E+14 -6.11115E+4

Model S21R5

5.1882E116 2.5141E+84 -2.8652E-12 -1.4188E-11 -1.4188E-11 -2.1274E-11 -2.5137E+14 -2.1296E+09
1.IiE+11 6.81iE+II I.IUE+II 3.2942E-11 -3.2942E-i1 I.111IE+II 1.11iIE+11 .81E+11

Model S25R5

4.1257E+12 -3.5162E-12 -1,7214E-11 -1.7214E-11 -2.5599E-11 -1.1994E+93 -1.1914E+13 -1.2696E+14
-1.28N6E |3 1.8111E18 2.6969E-11 -2.6989E-81 1.1811E+I8 7.9931E+12 -7.9931E+12 1.618E+11
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Appendix C

Gain Matrices and Properties of the Closed Loop

Plant
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Appendix Cl

Kalman Filter Gain Matrices

Model S5R5

5.8993E-11 1.1576E-02 4.1466E-83 1.9263E-83 -6.8896E-03 -5.6557E-i1
5.636SE-61 -4.7126E+6l -2.3271E-01 -7.6189E-91 -7.7504E+B

1.1576E-02 3.2717E-91 -1.5181E-83 -4.5847E-04 -1.6951E-82 -6.9427E-I1
5.6883E-91 2.6916E+91 4.2244E-01 -4.445@E-I1 5.2359E+08

4.1466E-83 -1.5191E-83 1.5587E-81 1.9535E-63 1.3183E-02 -1.1124E-02
5.3133E-82 -5.8194E-01 -4.7611E+00 -2.9808E-02 -8.5289E-02

Model SIOR5

8.1776E-0l 8.5743E-02 1.805E-02 1.7876E-03 -8.3415E-03 -6.2216E-01
1.3793E+80 -3.0833E+81 -5.9833E-01 -7.177@E-01 -7.4749E+00

8.5743E-82 5.3248E-0I -5.2855E-03 -5.8788E-04 -2.1142E-02 -6.5491E-01
1.6648E+86 1.7290E+8l 8.3463E-01 -3.7143E-01 6.1774E+9

1.8005E-82 -5.2855E-03 2.8319E-01 2.0265E-03 1.300BE-02 -1.5523E-02
1.3945E-I1 -1.1776E+88 -4.8471E+90 -2.,39SE-02 -2.5462E-01

Model S2R5

1.4466E+08 3.0242E-8I 7.0886E-02 2.0844E-83 -9.0445E-03 -6.6804E-01
1.7005E+60 -l.9263E+01 -1.3559E+00 -6.3832E-81 -6.9217E+00

3.9242E-91 9.2461E-01 -4.6849E-92 -3.715BE-94 -3.2031E-02 -6.027@E-01
2.3851E+00 8.5952E+68 1.6947E+98 1.7186E-I1 6.9342E+00

7.9186E-02 -4.6849E-82 5.6766E-81 2.1811E-03 1.4912E-82 -7.3951E-83
5.23IE-02 -2.4884E+99 -5.9834E 99 -6.6319E-92 -1.2386E+I

Model S25R5

1.717@E+09 4.1451E-I1 1.0941E-01 2.4834E-@3 -1.2226E-02 -6.782SE-8l
1.7155E+91 -1.6714E+81 -17112E811 -6.2142E-81 -6.6807E+08

4.1451E-11 1.1944E+11 -9.1668E-12 1.1144E-84 -3.9246E-92 -5.8804E-01
2.3652E+99 6.7242E+99 2.1371E+9B 3.6577E-91 7.8179E+08

1.8841E-91 -91668E-92 7.8799E-81 2.2573E-03 1.6466E-02 -1.1536E-23
5.4931E-13 -3.3726E+UI -5.3772E+98 -1.3167E-61 -2.8381E+66
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Appendix C2

Control Gain Matrices

Model S5R5

-1.0018E-02 -5.9555E-02 -5.0536E-02
-1.4786E-91 -4.9755E-02 4.0136E-02
-1.3888E-01 -9.8459E-01 -2.4462E-01
-2.1376E-92 2.1793E+00 3.7816E-92

-2.5016E-01 -2.2573E+00 -6.4614E-01
3.6744E-01 4.3158E-02 2.3112E-02
2.060E-04 1.2104E-03 6.4495E-04
1.1480E-04 1.2597E-94 1.2895E-04
4.3158E-03 3.3125E-02 8.137@E-03

-4.6205E-84 1.5528E-02 4.8522E-03
2.3112E-03 8.137@E-13 4.0875E-02

Model SIR5

-6.3111E-03 -2.9297E-92 -2.1827E-02
-1.1706E-81 -1.0929E-0l -2.3457E-03
-l.1104E-0l -6.833@E-81 -1.6012E-01
-4.2847E-62 3.6788E+88 4.1904E-81

-4.0679E-01 -3.2997E+80 -9.9766E-91
4.7272E-8l 6.5459E-02 2.1223E-12
9.9092E-84 5.8252E-03 1.8244E-03
3.8495E-95 -9.8181E-94 -1.697@E-04

6.545SE-93 4.2779E-02 1.061BE-82
-3.2826E-64 4.5913E-82 1.5766E-92
2.1223E-63 1.861BE-92 5.1121E-12
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Appendix C2 (cont'd)

Control Gain Matrices

22 Model $2@R5

-3.76E-4 1.8691E- 2.667E-3-9.9578E-02 -3.181gE-9l -4.3207E-02
-5.2549E-02 -4.0681E-0l -5.9456E-02

-4.0965E-01 6.7546E+00 1.5694E+00
-4.7391E-02 -4.6661E+00 -8.852@E-01
6.11OHE-01 5.4639E-02 8.504BE-03
3.8992E-03 2.8093E-02 3.505BE-03

-5.6741E-05 -1.-044E-02 -I.522BE-03
5.4639E-03 5.0574E-02 8.1331E-03
-3930SE-02 1.6695E-01 3.6961E-02
8.504@E-04 8,1331E-03 5.8230E-02

ft

Model S25R5

2.3797E-03 3.3659E-02 -3.7276E-03
-9.5498E-02 -4.4344E-01 -5.8065E-03
-3.4741E-02 -3.1467E-01 -5.7352E-04
-1.1024E+00 8.0306E+00 1.5822E+80
3.4893E-81 -4.6157E+g -4.8267E-02
7.7970E-01 3.562BE-02 4.7694E-02
3.2087E-93 4.8469E-02 -4.5751E-03
9.6791E-04 -1.7839E-02 1.5633E-04
3.562BE-03 4.6351E-02 2.2212E-04

-1.1216E-I 2.4663E-I1 1.7557E-02
4.7694E-03 2.2212E-04 5.7978E-02
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L

Aopendix C3

Poles of the Closed Loop Model

Real Part

-7.6489E-81 -7.6489E-01 -6.2486E-81 -3.1063E-01 -3.1063E-01 -3.9014E-01
-3.9814E-91 -1.3606E-91 -1.3696E-81 -1.519SE-01 -1.5198E-81 -3.2827E-61

-3.5318E-91 -2.8624E-91 -1.2874E-81 -5.7009E-82 -5.789E-02 -5.7206E-02
-2.8649E-82 -1.3031E-02 -1.3031E-82 -4.6457E-02

Imaginary Part

7.7616E-01 -7.7616E-01 6.86E 68 4.5795E-01 -4.5795E-01 3.4961E-01
-3.4961E-81 3.3397E-01 -3.3397E-01 3.2898E-01 -3.2898E-01 0.000@E+00
1.088E+8 9.8088E+98 @.@@@BE+8 5.1976E-82 -5.1976E-82 0.880E+00

0.B80E+00 6.1984E-V3 -6.1984E-13 0.088E+8

I

Zeros of the Closed Loop Model

Real Part

3.3822E+02 3.3122E+82 1.7590E+82 5.229E+61 -1.7678E-02 -1.7678E-02
-2.8652E-02 -9,8911E-02 -9.0911E-02 -1.31OIE-0I -1.31@1E-01- 1.419BE-01

-1.418E-81 -2.0274E-81 -3.2526E-01 -3.4898E-01 -4.2233E-01 -4.2234E-0l
-5.3055E+01 -8.8B60E+8I -8.886@E+01 -8.1268E+02

Imaginary Part

6.5409E+02 -6.5409E+82 0.080E+00 0.000E 8 3.0812E-03 -3.0012E-V.
5.8802E+89 2.2518E-82 -2.2588E-02 3.8736E-01 -3.0736E-61 3.2942E-01

-3.2942E-01 9.0099E+0 9.SSSE+118 9.SSSE+00 5.2639E+Sl -5.2639E+01
8.8888E+88 1.528@E+02 -1.5288E+82 6.6666E+89
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Appendix D

Gain Scheduling Algorithm and Coefficient*

The program in appendix Dl is written in Fortran 77 for

the Microsoft compiler. It should run on any computer

having a Fortran 77 compiler with modifications required

only for the input/output statements.

1413.



Apendix Dl

Fortran Program to Produce the Gain Scheduling Coefficients

program matlsq
c
c Parabolic least squares fit with order of Polynomial taken
c as input from the console (max order = 3)
c adapted from the Fortran program by Alan R. Miller
c this version handles matrices up to 11 x 11

c

integer maxr.maxc,linesnrowncol.matrmatc.maxsiz
real x(5),ymat(11,11,5),y(5)

real coef(11,1 1,5),correlc(4)

character*1 answer
character*15 fname(5), dskfile. prnfile
character*66 title

common /sizes/ nrowncol.matrmatc
common /files/ fname
data maxr.maxc.maxsiz/5. 4. 11/

c
write(*.'(A)') ' Specify title for this run: (60 chars)'
read(*.113) title

call input(x,vmatemaxr.maxc.maxsiz)
c

c Now do the least squares fit, storing the ncol coeff's for the
c i.j term in the matrix coeff(i,j,k) for k=1 to ncol. Store the
c correlation coefficient in coeff(i,jncol+1).
c

do 21 i=1,matr

do 21 j=1,matc
do 10 k=1,nrow

10 y(k) = ymat(i.j.k)

call linfit(xy,c.correl,maxr,maxc)

15 coef(i,j,k) c(k)
coef(i.j,ncol+1) i correl

21 continue

q
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Appendix DI (cont 'd)

Fortran Program to Produce the Gain Scheduling Coefficients

%

c
c Determine what type of output is desired
c

write(*,'(A\)') 'Write coefficients to output device? (YIN)
read (4,11)answer
if (answer .eq. 'V' .or. answer .eq. 'Y') then

* .. ~'write(*, (A\)') ' Disk file for Draper? (YIN)
read (*, lfl)answer
if(answer .eo. 'Y' .or. answer .eQ. 'v')then

write(#,'(A)') 'Enter the output filename:
write(*, '(A) '1 (example: ' b:coeff.dat-' 
read(*.*) dskfile
write(*,'(A)') ' Writino output file ........
open(7, FILE = dskfile, STATUS = 'NEW')
write(7.104) title
write(7, '(A)') ' (first coeff is the constant term)'
do 30 ial,matr

do 30 j=1,matc
30 writ9(7,1@5)i,j,(coef(ij.k), k1l, ncoi)

write(*,' (A)')
close (7

endi f
write(*, '(A\) ') 'Disk file for printing? (Y/N)
read s. 100)answer
if(answer .eq. Y' .or. answer .@a. 'vl)then

write(*,'(A)') 'Enter the output filename:-
write(*,'(A)') '(example: ''d:coeff.lst'')'
read(*,*) prnfile
write(*, '(A)') ' Writing output file ........
open(8, FILE = prnfile, STATUS = 'NEW')
write(8,104) title
write(B. ill)
do 35 i1l,matr

do 35 j=l~matc

(coef(i.a~k),k=1,ncol)
* close(S)

endif
andif
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Apoendix DI (cont'd)

**4 Fortran Program to Produce the Gain Scheduling Coefficients

M8 format(al)
181 format(' element',3x,'correlatjon',3x,

I 'coefficients~low order to high order)'/)
182 format(' ('.i2, ', ,i2, ) ',3x,e18.4,3x,5(elI.4,2x))
183 format(a69)
1814 format(' ,a6f)
1DS format(2x,i2,1x,i2, 1x~e12.6,2x~e12.6,2x,e12.6,2x.el2.6)

end
c

* subroutine input Cx ymat~maxr~maxc~maxsiz)
integer nrow,i.maxr,aaxcgncol.matr~matc,maxsiz
real x(5) ,vmat(11,11,5)
character*15 fname (5)
common /sizes/ nrow.ncol,matr,matc
common /files/ fname

c
5 write(*,'(A\)P) ' Order of polynomial to use?

read (*.*)ncol
if(ncol gqt. maxc-1)ooto 5
i4(ncol Ilt. 1) stop
ncal z ncol+1

I@ write(*, '(A\) ' Number of speeds?
read(*.*)nrow
if(nrow Ilt. ncol .or. nrow .gt. maxr)aoto 18
write(*.'(A)') Enter the sneeds and correspondinQ filenames:
write(*,'(A)) '(example: 28.8 - b:abahc.s&28'
read(*.*) (xi),fname(i). i=Iqnrow)

15 writeC'*.'CA\)') ' Specify matrix dimensions: (rowqcol)
read(*.*) matr,matc
if~matr .qt. maxsiz .or. matc .gt. maxsiz) goto 15
write(*,'(A)') 'Reading input matrices ...........
do 20 i=1,nrow

open~i. FILE zfname(i))
read(i,188) ((j,k,ymat(j,k,i), m1I,eatc), n1l,aatr)
close Ci)

28 continue
write(*, 191)
return

lag format(lx,i2,lx.i2,lxgelb.1I~lx.i2,lx,i2,lx,e16. ii,
I lx,i2,lx,i2,lx,ulb.18)

101 format('@')
and
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Appendix DI (cont'd)

Fortran Program to Produce the Gain Scheduling Coefficients

'V subroutine linfit(x ~y,coef ,corjmaxr,maxc)
logical error
integer nrow,ncolqi,oaaxr~aaxc,matr~matc
integer index(5,5).nvec

.1~ real x(1) .Y(1),coef(l)
,~ ... real a(5,5),xmatr(5,5)

real sumay,sumy29xi ,yi ~yc~res~cor~srs
common /sizes/ nrowincol~matr~matc
data nvec/1/

c
do 10 i1l,nrow

xi = X(i)
xmatr (i I )=1.

' v~Ido 13 j=2.ncol
xaatr(i ~j)= xmatr(ij-1)*xi

10 continue
call square(xmatrqyqaqcoef .maxr,maxc)
call gaussj(a.coef.index.nvec.error,maxc)
sumv = 8.0
suaY2 = 0.0
srs = 6.31
do 20 izl.nrow

vi = Y(i)

UC=6. a
do 15 i = 1. ncol

15 yc = vc + coef(j) *xmatr(i.j)

res z yc - vi
571 = Sr5 + res*res
Suly =Sumv + vi
sumY2 =sumY2 + vi * vi

23 continue
c take care of the case where the v(i) are all zero
c this is guaranteed to produce zero coefficients so cor =1.9

if(susy .eq. 9.6) then

else
cor sqrt(l.8-srs/(sumv2-sumyesumy/nrow))

ondif
return
end
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Appendix DI (cont'd)

Fortran Program to Produce the Gain Scheduling Coeffiients

* subroutine square(x .yqa,g~aaxr .maxc)
integer nrow,ncol,i~k,1 ,aatr.matcqeaxr,aaxc
real x(maxr,maxc)qy(maxr),a(maxc,aaxc).g(maxc)
common /sizes/ nrow~ncol,matr,satc

c
do 41 kal,ncol

do 291 lzl,k

do 10 i:1,nrow
a(k,l)=&(k11)4x(i,l)*x(j,k)

I@1 continue
29 continue

9(k) = 9.0
do 30 icl.nroo

9(k)=q(k)+y(i)*x(i.k)
30) continue
49 continue

return
end

C

subroutine oausj(b,w.index.nvec~error.maxc)
logical error

4 integer nrow.i .j,k.l~nvec~matr~matc.maxszz.maxc
i nteger i row. i cal .11index (maxc.*3)
real b(maxc,l) ,w(maxc~l) .big~suii,t~pivot,determ
common /sizes/ nrow.ncolomatr.matc

c
error = .false.

n-ncol
do 10 ixltn

index (i .3) =
is continue

deter. a 1.9
do 93 i:31,n

big a 9.6
do 26 jul.n

if(lfldox(j,3) e4. 1)goto 29
do 15 knlgn

if(index(k,3) .9t. 1)goto 199
if(indox(k,3) .eq. 1) qoto 15
if(abs(b(j,k)) Itw. big)goto 15
irow a j
icol *k
big * b%(b(j,k)I

15 continue
23 continue
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Appendix DI (cont'd)

Fortran Program to Produce the Gain Scheduling Coefficients

index(icol,3) = index(icol.3) + I
index(i,2) a irow
index(i.1) aicol
ii~irow .eq. icol)goto 46
determ = -determ
do 25 lx1 1n

call swap(b(irow.1) *b(icol~l))
25 continue

if(nvec .eq. O)qoto 49
do 39 1=1,nvec

call swap(w(irow.1) ,w(icol.1)
436 continue

49 pivot =b(icol,icol)
determ =determ*pa vat
b(icol~icol)a 1.6
do 45 1=1.n

b(icol,l)=b(icol,l)/pivot
45 continue

if(nvec .eq. O)goto 66
do 59 11l.nvec

w(icoll) = w(icol~l)/pivot
56 continue
be do 89 11=1,n

if(l1 .eq. icol)goto 8e
t a b(l1~icol)
b(l1,icol) 0.9
do 65 11l,n

b(Il1l) ib(Il,l)-b(jcol.I)*t
65 continue

if(nvec .ea. B)ooto 89
do 79 1=1,nvec

761.1 continue ~iol~)
73 continue
as continue

do 123 izi.n
I = nl - i 1

if(index(1,1) .eq. index(l,2))goto 129
170 ro index (I ,I)
icol a index (1 .2)
do 113 kc s 1,n

call swap(b(k,irow).b(c,icol))
its continue
121 continue
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Appendix~ DI (cont'd)

Fortran Program to Produce the Gain Scheduling Coefficients

do 138 k1l,n
if(index(k.3) .ne. 1)goto 199

138 continue
return

199 write(*,999)
error = true.
return

999 format(' ERROR - matrix singular')
end

c
subroutine swap(a~b)
real a~b~hold
hold = a
a b
b =hold
ret urn
end
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Appendix D2

A-BG-HC matrix coefficients

coefficients
element correlation (low order to high order)

C 1, 1) .9999E8 -. 1694E+00 -.6835E-01 .2494E-03
1, 2) .9996E+00 .6212E-01 -. 1287E-01 -. 2528E-U3
1, 3) .1000E+01 .2333E-02 -. 4777E-03 -. 1583E-03
1, 4) .9998E+66 -. 2230E-02 .7932E-84 -. 3585E-05
1, 5) .9479E+00 .7586E-02 -. 1184E-03 .1153E-04
1, 6) .9972E+06 .5133E+90 .1461E-81 -.383E-83
1, 7) .9850E+00 .3162E+00 -.2128E+00 .5342E-02
1, 8) .9954E+00 .6588E+02 -. 4195E+01 .9159E-01
1, 9) .9999E+00 -. 5577E-01 .6878E-01 .2617E-04
1,10) .9987E+98 .8225E+68 -. 1267E-61 .1826E-03
1,11) .9999E+0 .8144E+01 -. 7023E-01 .4817E-83
2, 1) .9996E+00 .6212E-01 -. 1287E-01 -.2528E-03
2, 2) .9999E+00 -. 95B9E-U1 -. 4723E-01 .3033E-03
2, 3) .9995E+00 .1423E-01 -. 3771E-02 .2736E-03
2, 4) .9966E+0 .7609E-04 .9534E-04 -.482E-05
2, 5) .9954E+00 .2375E-02 .1945E-82 -. 1984E-04
2, 6) .9999E+88 .7592E+06 -. 1191E-01 .1825E-03
2, 7) .996WE+96 .7432E+00 -. 3863E+06 .7306E-02
2, 8) .9985E8 -. 3881E+02 .2533E+01 -. 517S8-S1
2, 9) .1SOOE+91 -. 1555E-01 -. 7296E-01 .2372E-03
2,10) .9921E+0 .5869E+00 -. 1893E-61 -. 81lEE-83
2,11) .9976E+8 -. 4239E+01 -. 2394E+06 .5186E-02
3, 1) .19@UE+01 .2333E-92 -. 4777E-03 -. 1583E-03
3, 2) .9995E+00 .1423E-01 -.3771E-02 .2736E-03
3, 3) .9999E+98 -. 2462E-81 -. 2536E-01 -. 8143E-64
3, 4) .IOOE1+e1 -. 1879E-02 -.146E-04 -. 2144E-07
3, 5) .9984E+0 -. 1373E-01 .1785E-83 -. 1159E-64

C3, 6) .9912E+0 .2321E-01 .8329E-23 -. 6426E-94
3, 7) .9227E80 .2195E-91 -.2131E-91 .8262E-03
3, 8) .109MU+91 .2034E+00 .6213E-91 .2590E-02
3, 9) .9992E+4U .6111E+91 -.8634E-01 .278BE-02
3,18) .9952E+09 .6388-61 -.852@E-82 .4451E-83
3,11) .9999E+90 .4404E+99 -. 4512E-01 .4371E-82

( 49 1) .9998E+08 .1433E-03 -.8452E-04 -. 2997E-64
4, 2) .9999E+00 .4196E-03 -. 2215E-83 -. 7572E-04

C 4, 3) .999E+ .1652E-02 -.8999E-03 -. 3046E-63
( 4, 4) .9999E+U -. 1616E-02 -. 1368E-92 .4314E-06

4, 5) .9994E+0 -. 8778E-03 -.214BE-2 .9642E-05
C 4, 6) .9967E.U .342E-01 -. 7847E-92 .4101E-93
C 4, 7) .9994E+0 -. 7685E-93 -. 1833E-92 .7791E-U5

4, 8) .995UE+80 -.4556E+66 .16SUE+8 -.8371E-02
( 4, 9) .9967E+00 -.3616E+0 -. 512D8-81 .6185E-03
S4,1 U) .i889+81 .808+6E+U6 . 001MEiU .9 SUE.
( 4,11) .984E+88 .7786E+0 -. 1587E+06 .2462E-62
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Appendix D2 (cont'd)

A-BG-HC matrix coefficients

coefficients
element correlation (low order to high order)

S5, 1) • 1ZUE+91 .9200E+00 .OBOE+@@ .000@E+09( 5, 2) • lawE+S 1 • 018E+98 . I86E+00 .0608E+6
5, 3) .9998E+66 -. 2143E-01 .8462E-02 .2433E-02

( 5, 4) -1906E+91 .3666E-03 .2373E-93 .1173E-05
C 5, 5) .9997E+80 -. 528bE-02 -.6884E-92 .7536E-05
( 5, 6) .9998E+eeS -. 1165E-81 .1899E-81 -. 483DE-3
5, 7) .9666E+0 .1818E+00 -. 1226E+I .4071E-02
5, 8) .9735E+60 -. 1456E+08 .6368E-01 -. 2428E-02

C 5, 9) .199@E+81 .1911E+69 -. 5891E-81 -. 8543E-02
5,10) .9907E+86 •1214E+U .2518E-62 -. 1386E-93

( 5,11) .9879E+66 -. 2566E+80 •213ME+8U -.8006E-02
6, 1) .9998E+860 .1688E-B1 -. 6976E-02 -. 2069E-02
6, 2) •999BE+mID •8178E-92 -. 440SE-U2 -. 1587E-82

.' ( 6, 3) .9998E+60 .4192E-07 -. 2261E-07 -. 7728E-08
6, 4) .9987E+80 -. 2842E-93 .145SE-04 -. 3137E-I5
6, 5) . 9952E+00 • 4256E-62 -. 9237E-63 .5646E-64
6, 6) .9998E+6 -. 3663E-61 -. 4365E-82 -. 6924E-04
6, 7) .9994E+80 -. 6944E-01 -. 1435E+80 .3339E-63
6, 8) .9997E+60 .3099E+90 .3689E+90 -. 4837E-03

C 6, 9) .9998E+S .6949E-81 -. 3453E-91 .1872E-92
6,10) .100E+ 1 .000GE+8 .WWSBE+@@ • ISUUE+08
6,11) .8381E+96 -. 5165E-01 .7623E-62 -. 2808E-83
7, 1) . 1OWE+@I .O* U E+80 .86@SUE+UU .MSSE+20
7, 2) .16E+01 .USUE+W .SUUE+6U .9I0SE+8
7, 3) . 9998E+00 -. 2036E-93 .1237E-83 .4434E-04
7, 4) .9613E 0 .6191E-84 -. 2197E-04 .8259E-86
7, 5) .198@E+61 -. 57BIE-U3 -.3009E-83 -. 368SE-05
7, 6) .9782E+08 •6719E-83 -. 2997E-63 .6828E-U5
79 7) .9998E+90 -. 1383E-91 -. 1487E-01 -. 5896E-05

C 7, 9) .9847E+90 .7534E-81 -. 4371E-01 .9755E-93
C 7, 9) .9872E-4W .3083E-91 -. 112SE-Il .4921E-83
S7,18) .9997E+0 -. 1493E+M -. 3897E-62 .1696E-03
C 7911) .9774E+ .1439E-U1 -. 3452E-92 .1564E-63
C 9, 1) .9990E+ .4363E--03 -. 1735E-63 -. 5814E-64
8 9 2) .9998E+99 -. 7951E-64 .4234E-04 .1447E-64
a 9t 3) .9999E+44 -. 1383E-07 .7456E-S9 .2549E-8

C 9, 4) .9998E+m -. 1422E-05 -. 15E4-5 -. 2545E-07
B e, 5) .9973E+W -. 2191E-94 .7257E-45 -. 4619E-U6
9, 6) .9964E+1W -.6505E-04 .5711E-04 -.9199E-96
0 9 7) .9994E+S -. 4591E-93 -. 11E3E-2 .4811E-05
of 9,) .9998E+4 -. 1466E-91 -. 1386E-91 -. 1341E-04

C 9, 9) .9712E+9 -. 2689E-62 .335&E-43 -. 1262E-65
( og1) .IUENI+1 SOE+" - 6U9E+90 . SUIE40
( 9v11) .816&bE+M -. 4567E-62 .376E-93 -. 199E-04
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Appendix D2 (cont'd)

A-BG-HC matrix coefficients

coefficients
element correlation (low order to high order)

9, 1) .1009E+81 .000E+90 .000E+98 .00@E+00
9, 2) .lIme+81 96 .96E+39 .08E+66 .880E+80

C 9, 3) .9998E+80 .5768E-63 -. 2201E-03 -. 6176E-04
9, 4) .9999E+00 -. 3588E-05 -. 5043E-85 -. 6178E-68
9, 5) .9999E+00 -. 6080E-04 -. 4190E-04 -. 1457E-06

( 9, 6) .9919E+I0 -. 1029E-03 -. 857BE-04 .3225E-65
9, 7) .9998E+08 -. 1297E-02 .8453E-04 -. 2108E-04
9, 8) .9968E+00 .6898E-02 -.1812E-02 .1082E-83
9, 9) .9997E+00 -. 3057E-01 -. 1769E-01 .9496E-04

(9,10) .9907E+00 .2412E-03 .5003E-85 -. 2594E-06
9,11) .9929E+88 -. 1026E-02 -. 1709E-02 .6912E-84

(10, 1) .1060E+01 0000E+e6 .0000E+00 . 0886E+00
(1, 2) .1008E+81 .00SE+8U .00SUE+00 .0000E+80
(10, 3) .1000E+01 .000E+00 .M000E8+0 .0000E+00
(10, 4) .1008E+01 .0000E+68 .OSUE+U .MWE+0U
(10, 5) .1008E+01 .6000E+80 .08008E+10 .0000E+0
(18, 6) .9931E+00 .3843E-02 -. 9352E-03 .4867E-84
(18, 7) .1$00E+52 .10IE+01 .0002E+00 .0008+
(10, 8) .9871E+00 .6741E-01 -. 1600E-01 .8039E-03
(10, 9) .99948+00 -. 1109E+00 .2537E-i1 -.2415E-62
(10,10) .9935E+00 -. 1125E-08 .2765E-09 -. 1371E-10
(10,11) .9883E+06 .1915E-01 -. 6268E-02 .1176E-03
(11, 1) .1098+01 .00E+00 .iMSE+00 .0006E+00
(11, 2) . 1000E801 .0000+00 .0i0e0+00 . iUOIE+69
(11, 3) .1000E+01 .0000E+98 .0000+00 .006W2+00
(11, 4) .18008+01 .00028+00 .0800E+00 .00008400
(11, 5) .1000201 . 00002+00 . 0000+00 . 0,080+60
(11, 6) .8302E.08 -.59702-03 .7487E-04 -.2739E-i5(11, 7) .1000E+1 .000E+80 .000E+80 .000E+00
(11, 8) .9926E+00 .9916E+00 .2157E-92 -. 1105E-83
(11, 9) .9999E+00 -1218E-01 -. 4383E-02 .5224E-03
(11,10) .9996E+60 .7924E-03 .1129E-62 -. 1651E-95
(11,11) .99792+00 -. 20282-01 -. 2926E-02 .6999E-84
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Appendix D2 (cant d)

6 matrix coefficients

4Coefficients
element correlation (low order to high order)

(1, 1) . 9999E+8 . 1694E+06 . 6835E-01 -. 2494E-03
1, 2) .9996E+8 -.6212E-81 .1287E-01 -252BE-03
1, 3) .10E+U1 -.2333E-92 .4777E-63 .1583E-03
1, 4) . 9998E.80 . 2236E-82 -. 7932E-04 . 3585E-95

1, 5) 94 Ee -. 5 ES2 .1184E-03 -.1153E-04
16) .9972Ee-66 -.5019E.88 -.1469E-01 .31398E-03

1, 7) .985@E+00 -.3162E+80 -2128E+88 -.5342E-02

1, 8) .9954E+86 -.6508E+02 .4195E+01 -.9159E-01
1, 9) .9999E+8 .1518E+00 -.7652E-81 .758@E-04
1,18) . 9987E+06 -. 86225E+68 . 1267E-01 -. 182@E-03
1,11) .9999E+90 -.8058E+01 .6203E-01 -.2832E-03

(2, 1) .9996E4-00 -.6212E-01 .12e7E-01 .2528E-03
2, 2) .9999E+136 .958BE-91 -4723E-01 -.3g33E-03
2, 3) .9995E+06 -.1423E-a1 .3771E-02 -.2736E-03

*4C2, 4) . 9966E+86 -. 7009E-04 -. 9534E-64 * 4692E-05
2, 5) .9954E+08 -. 2375E-82 -. 1945E-02 * 1984E-04
C2, 8) *IUUSE+91 -.7411E4-96 -1923E-01 -.1646E-03
2, 7) * 9968E+86 -. 7432E4-08 * 3063E+00 -. 7386E-02
2, 8) .9985E+90 .3801E+82 -. 2533E+01 .517@E-01
2, 9) .1008E+81 .1913E-01 .7974E-01 .2815E-03
2,18) .9921E+08 -.5869E+99 .1893E-01 *8110E-83
2,11) .9982E+08 .4116E+91 .258ME+90 -. 5719E-02
3, 1) . 198E+81 -. 2333E-62 * 4777E-63 * 1583E-93
3, 2) .9995E-00 -. 1423E-ei -377LE-02 -. 2736E-03
3, 3) .9999E+98 .2462E-91 .2536E-01 .8143E-24

C3, 4) .1600E+91 .1879E-92 -146BE-84 .2144E-07
3, 5) .9984E4.U .1373E-91 -. 1785E-03 .1159E-04
3, 6) .982E+Uu -- 5691E-02 -. 1567E-62 .7094E-04
3, 7) .9227E+00 -. 2195E-01 .2131E-01 -. 8262E-93

C3, 8) . 169M+91 - -2U34E+in -. 6213E-81 -. 259DE-82
3, 9) .9955E+0 -. 4802E+81 .1219E-01 -. 1385E-92

C3,18) .9952E4U= -. 6389E-61 .852GE-U2 -. 4451E-63
3,11) .109E+61 -. 1199E+99 .2822E-61 -. 428E-62
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Appendix D2 (cont'd)

H matrix coefficients

coefficients
element correlation (low order to high order)

1, 1) .9999E+80 -. 1391E-01 .8292E-03 -.6B7E-95
1, 2) .9999E+98 -.961E-01 .7746E-02 -.1019E-63

( 1, 3) .9976E+88 -. 8577E-01 .8209E-02 -. 1985E-03
( 2, 1) .9911E+86 -. 1806E+88 .779DE-02 -. 1782E-03
2, 2) .9997E+90 -. 2579E-02 -. 6763E-02 -. 4387E-03
2, 3) .9815E+0 .1236E+6 -. 1863E-91 .5326E-03
3, 1) .9988E+90 -. 1752E+00 .7341E-02 -. 6687E-04

( 3, 2) .9975E+60 -. 1309E+01 .7416E-01 -. 1394E-02
C 3, 3) .9974E+00 -. 3206E+00 .1690E-61 -. 1708E-03
C 4, 1) .9921E+0 -. 3611E+00 .8359E-01 -. 4474E-02
C 4, 2) .9998E+98 .4995E+00 .3388E+00 -. 1437E-02
4, 3) .9848E+00 -. 7704E+00 .1587E+0 -. 2462E-92
5, 1) .9978E+88 .4290E-81 -. 7944E-91 .3686E-02
5, 2) .9983E+00 -. 7009E+00 -. 3402E+00 .7286E-02

C 5, 3) .9870E+00 .2508E+80 -. 2115E+99 .7923E-02
6, 1) .9983E+00 .3376E+iM .6572E-02 .4229E-03

( 6, 2) .9884E+88 .1273E-01 .7745E-02 -. 2754E-03
6, 3) .8392E+86 .587@E-01 -. 7487E-62 .2739E-03
7, 1) .9561E 00 -. 2202E-62 .4746E-03 -.9889E-05
7, 2) .ISOOE+01 .3365E-02 -. 9624E-03 .1104E-03
7, 3) .8933E+09 -. 7854E-82 .1677E-82 -.6174E-04
8, 1) .9153E+60 .9755E-83 -. 1886E-03 .734BE-05
8, 2) .1UUUE+U1 -. 9334E-03 .4378E-03 -. 4459E-04
8, 3) .7781E+00 .2180E-02 -. 4215E-63 .1319E-84
9, 1) .9884E+80 .1273E-02 .7745E-83 -. 2754E-04
9, 2) .9983E+00 .1790E-01 .3460E-82 -. 9251E-04
9, 3) .9929E+00 .1814E-62 .1712E-02 -. 6929E-04

(10, 1) .9931E+99 -. 3843E-01 .9352E-92 -.4867E-03
(19, 2) .9998E+86 -.2817E-82 .18B7E-02 .3286E-03
(1U, 3) .9140E+88 -. 2804E-81 .6996E-02 -.2821E-93
(11, 1) .8382E+08 .587E-U2 -.7487E-83 .2739E-84
(11, 2) .9929E+4M .1014E-62 .1712E-62 -. 6929E-64
(11, 3) .9979E+0 .2828E-21 .2926E-02 -. 6999E-64
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