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L. i ABSTRACT

' In this work we describe globally convergent iterative procedures for
;eiq generating a minimizing sequence for the problem of finding the infimum for
a3+

f’iﬁ the function &(x) = ) £,(x) on a certain set D. The minimizing

AN

— sequence consists of points of the infimum for functions of the type

Y3

55

?gg ) [Bi(gi(x,fi(x)) + <Yi,x>], where the transforming functions gi(x,°) are
ﬁﬁ . chosen in such a way that the compositions gi(x,fi(x)) are simpler than the

given functions fi(x), and where the coefficients Bi > 0, Yi e RP,

i=1,...,m, are determined by the choice of gy Various classes of the

functions g4 are considered and global convergence results are proved. It
is shown that many well-known algorithms, for example, Weiszfeld's algorithm

and Newton's method are particular cases of the general method.

AMS (MOS) Subject Classifications: 49D37, 65K05
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?ﬁ%} Key Words: Nonlinear minimization problem, globally convergent

a minimization procedure, transformation of the objective function
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SIGNIFICANCE AND EXPLANATION
‘3: The method developed in this paper applies to a number of nonlinear
minimization problems. The bibliography includes the numerical implementation
for several applied problems. The main advantages of é\;r :ﬁpproach are:
generality of the technique, global convergence of the method, its ease of
formulation and implementation, and its numerical efficiency. The method can

be extended to variational problems.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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GLOBALLY CONVERGENT PROCEDURFS FOR SOLVING NONLINEAR MINIMIZATION PROBLEMS

Alexander Fydeland

) 1. In this paper we discuss the method of nonlinear transformation of the objective

-

\:
‘Ei function. This approach has proved to be a convenient tool for generating and analyzing
o

The method is hased on the following simple observation. The

optimization procedures.

minimization problem for a given function f(x), x € R?, can be replaced by the protlem

is a monotone function, provided that

of minimizing the composition g(f(x)), where g(a)

the minimization problem for g(f(x)) can be solved with less effort than the original

Ny

problem of minimizing f(x). Of course the minimum points for both functions coincide.

k
Now we consider a more complicated case, when we have to find a sequence {x } such

that

"hdjtﬂb

lim O(xk) = inf &(x) ;
k+® x€D

s

m
) o(x) = ) £,(0) ;
i=1

i=11,..0,m,

fi(x) >0,

* where D is a convex set in K'. The assumption that the given functions f£,(x) are non-

negative is made for convenience and does not lead to the loss of generality. Assume that

we can find a set of functions gi(x,u), i=1,...,m such that the compositions

gi(x,fi(x)) are gimpler than the functions fi(x) (for example, the gi(x'fi(X)) are

Can we use the existence of the simplifying functions

quadratic or linear functions).

ay in order to construct an iterative procedure which determines a minimizing sequence for

the problem (1)? 1In this paper we make an attempt to answer this question. We construct a

minimizing sequence for the problem (1) which consists of points of infimum of functions,
%) v
] whose general form is ) (B g, (x,f (x)) + <y
" 11 171 i

,X>), where Bi >0 and Yy, K6 € Rn. By

i i

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
. based upon work supported hy the National Science Foundation under Grant Nos. MCS-8210950
and MCe-8301628.
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virtue of the assumption above, the problem of finding points of infimum for these linear
combinations is simpler than the original problem (1).

In the sections 2, 3, 4 and 6 we consider various classes of functions &(x) and
gi(x,a), construct the corresponding iterative procedures and prove convergence
results. Some of those results are from the papers {3], (5] and we only state them without
proofs. Other results are new and we consider them in detail. We do not discuss numerical
applications of the method in this paper, although they are numerous. For some numerical
examples we refer the reader to the papers [1], [2). Other important applied problems will
be considered in forthcoming papers. In Section 5 we show that some of the well-known
optimization procedures, such as Weiszfeld's algorithm and Newton's method, are particular
cages of the method of nonlienar transformation of the objective function. Throughout this

paper the superscript k denotes the iteration number.

2. We start with the gimplest case when the functions gy depend on a only and for
every i = 1,...,m

gi(c) >0 for a>0,
(2) qi(c) is convex for a > 0 ,

gt ec'to,=), gite(x)) >8>0 vxen,

where § 1is some positive constant. We assume that for every set of positive constants

n
Cye i=19%,...,my the gset Arg inf ) ciqi(fi(x)) # ¢, where for any function ¥(x)
x€clD i=1
and any set B the set Arg inf $(x) (Arg min ¢(x)) is the set of all points of infimum
x@p x€B
(minimum) for the function ¥(x) in the set B. Now we consider the following fterative

procedure:

xo € D is an arbitrary initial point;

3) for k= 0,1,2,...

m
Ve arg inf ) g (f,00)/g5E, (x%)) .
x€clD i=1

For this procedure we can prove the following results.
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Theorem 1. Let the function ®&(x), defined in (1), be convex, let the functions fi(x),

i=1,...,m, be continuous on ciD, non-negative and finite in D and let the functions
gi(u) satisfy the conditions (2). If the sequence (xk), determined by the procedure

(2), has a bounded subsequence then

O(xk) + inf &(x) as k + =,

x€D
Proof. We introduce the function
m
(4) $(x,y) = 8(y) + ) (g tf,(x)) = g, (£,(y)))/gi(£,(y)), x,y €D .
i=1

From (3) and the definition (4) of the function ¢(x,y) if follows that

(s) 20 %) < (x®,x) = 0(x5) .

On the other hand

1

k+1 K y + (0(xX) - 0x**"))

d(x ,x) = O(xk+1

m
+ ) 1g, () - gt N /ap e (D)
i=1

m
= 0™y + ) g (£, %) - gy e ()
i=1

g N XYy - £ RN /g e M)

Each term in the square brackets in the last sum in (6) is non-negative by virtue of the
convexity of the functions qi(“)' Since, by (2), gi(fi(xk)) > § > 0, we finally have

that

k+1 k+1

7 o k) > e(x AR

) = (x* ) .

Combining the inequalities (6) and (7) together we obtain the sequence of inequalities

(8) e 60 e LR <0 x®) < Ll
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The function ®(x) is bounded from below. Therefore there exists
A
» 9) 1im (x5) = § .

koo

V<Y

:ﬁ) We shall prove now that ® = inf &(x). By the assumption of the theorem there exists a
Y k x€D k

subsequence {x '} of the sequence {x“} such that x ' » x e ctD as v + . It is
e
2}} clear that
i.
i (10) 8(%) = & = Lim 0(x") = 1im 6(x"*",x") .
N ks k>
q Let us assume that
:/; ¥,
iy (O $ = &(x) > inf &(x) .

x€D

S
%

P
0

PR

-

B Then there eixsts a point x* € D such that the right directional derivative
oo
at .- - O(x + T(x* = x)) = &(x)
Rt (12) S a(x + tlx* = x)) = 1im =X X - X X <o
WL ar =0 T
Lo T+0
:
»". Taking into account that for every pair of points Xyoxy € clD
A
. + d+
s _— - P -
r;(g ar $0xy * TOxy = X 1eX Mol " ar ¥UXy * TUxy = X)) g
’t-i,&, .
,9!; we obtain from (12) that
4 - - -
(13) ar $(x ¢ T(x* - ")"‘)‘1’-0 <0 .

5 ‘E "Ew -

This inequality, convexity of the function ¢(x,y) with respect to x for every fixed

y € cAD and the results of §24 of [8) imply that there exists a point 2z = X + Tix* -~ x),

o
TR -
—_— T e (0,1], such that

o oz, < $0x,%) .

""’i“‘ x

:? Since the function ¢(x,y) is continuous and x V+X as v+ w, from the inequality
3 above it follows that there exists v, such that
g,

- X

i v o

N dlz,x ) < ¢(x,x)

8
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for v > vo. By (3) from this inequality it follows that

k +1 k

pix Y V) < atRx), v v

+1 Kk - - -
which contradicts the fact that by (R) and (10), o(xk X ) d(x,x) =% for all

k = 0,1,... + Therefore the assumption (11) was false and

8(xX) = lim 8(x") = inf 6(x) .
k4o xeDn
The theorem is proved.

In the following theorem we remove the condition of the existence of a bounded
k
subsequence of the sequence {x }.
Theorem 2. Let the functions &(x) and fi(x)' i=1,...,m, satisfy the conditions of

Theorem 1. Moreover, let the functions fi(x) be convex outside a circle of some radius
R. Then

O(xk) ¢ inf P(x) as k + @ ,
x€D
k .
where the sequence {x } is determined by (3).

k
Proof. 1If the sequence {x } has a bounded subsegquence then the assertion of the theorem
k
follows from Theorem 1. Let us assume now that Ix | +@ as k + ®. We consiéer

seperately two cases.

A) In this case we assume that there exists a point x* € c2D such that

®(x*) = inf ¥(x). Since the sequence {(xk - x')/lxk - x*|} is bounded for all k there
x€D
exists a recession direction

kx +1 k +1

(14) £ =11im (x ° = x*)/|x 0 - x*|
v+

k +1
for some subsequence {x ° }, v = 0,1,... . Consider now the set
= Ke N H_ N ckD
w £ AR P
€
4 where € is a small positive constant, the cone KE = {x* + tnlt > 0;
. 5-
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n
ner, Inl =1, In-¢| <e}, aclosed half-space Hy 1is chosen in such a way that for

Hird

A £
{ all ne Ke NH Inl > R. 1t is clear that the set w is convex if € is sufficiently

‘3 small, and that ® is relatively closed. By the assumptions of the theorem the
)

~
ﬂf functions fi(x) are convex in w. Now we introduce the set
f o
x| R =ct{B e ﬂnlax € w such that Bi b fi(x), i=1,...,m} .

The set @ is convex. Indeed let B' and R" belong to . Then there exist points

i
T x',x" € w such that 81 > £i(x'), B; 2 £,(x"), i =1,...,m. Hence the point
"_‘
;% AB* + (1 - 2)B", X e [0,1], also belongs to O since, by convexity of the functions
5
W fi(x) in w,

ABY + (1~ MR 3 £ (Ax' + (1 - A)x"), i=1,...,m .

M. i i i
b

ﬁ On the set 2 x @ we introduce the function
f" m m

(15) ¢.(a,8) = )} B + ) (g, (a) ~ q (B)]1/g'(B) .
1 i i 1 i
i=q i=1

It is obvious that if ai = £,(x), B1 = fi({y), x,yepn, i=1,...,m, then

01(6.6) = ¢(x,y), see (4).

By the definition of the set ®w and by (14) we may assume, without the loss of
k +1
generality, that x €w, Vv =20,1,... - As in Theorem 1 we can prove that b(xk) + @

as k *+ =, vhere ¢ is some positive constant. Therefore

kv - kv+1 k“ N
(16) P(x ) + &, d(x X )+ O ag v+ e,

-f, Let us assume that

e (17 ® > inf 6(x) = &(x*) .

N x€D
L

!“('

i k1
- Consider now a new sequence {z }, v=0,1,..., defined as follows:
x K+ k+1

- 2 = [x X*] N 3w, v=EO,1,... ,

bs)
:‘j K +1 kK +1
6y where by ([x v ,%*] we denote a segment of a straight line between x and x*.
- k +1
- €
—— 8ince x* is the vertex of the cone KF, the point =z always exists and, by
pra® Kk +1 ’

ﬁk closedness of w, =z €ew, v=20,7,... . Moreover from the definition of the set ®
1h
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ag*. it follows that the sequence {|z - x*|} is bounded by some constant T(R,e). By
A . convexity of the function &(x)
K+ LIRS R
. oMz~ ) - o(xt) 2 i K
K+ k1 ’ et
d(x ) ~ (x*)  |x - x+|
kv+1 -
A8 Vv + ®» the denominator &(x ) = ®(x*) + & - &(x*), which is not equal to zero by
k +1
v D e k +1
the assumption (17), and Jzk e x‘l,‘ kTifLE) + 0, since |x° - xt| + =,
'xv -:K‘l ,x" -x'l
Therefore
kv+1
(18) ¢(z ) ¢ ¢(x*) as v+ e,
kv+‘ kv+1 k
Thus, there exist in ® two sequences [x } and {z } such that #(x ¥) + & ana
k k +1
4(z v) + inf #(x) as v + @, We consider the corresponding sequences {8 v } and
kv+1‘ x€D
167 } in Q:
k_+1 k_+1 k +1 k_+1
v v v v
(19) Bi - fi(x ), Yy = fi(z ) , i=1%,...m v=0,1,.., .
From (16) we have that
m k +1
v -
(20) ) 8 +% as vre,
i
=1
and from (18)
k +1

(21) + $(x*) as v > w

II ~3

k +1 k +1
From (20) and (21) and from the fact that 81“ >0, yiv >0, i=1,.e0,m,

v=10,1,..., we obtain, taking smaller subsequences if necessary, that

kv+1 _ kv+1 _
(22) 81 + Bi' Yi + 11 as v+, §{=1,...,m.

Since Q is a closed set, B eQ and Y € Q. From (20), (21) and (22) it follows that
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m
(23) )y B =8, ) 71 = 0(x*) .

Finally from the assumption (17) it follows that

m m
(24) Y B, > ) ¥y, .
i=1 i i=1 i
Let us prove now that
kv+1 kv
(25) B € Arg min .1(818 Yo v =0,1,...,
gen
Xy ky
where B, = f {x ), i=1,...,m and the function ¢_(a,8) is defined in (15). 1Indeed,
i i kK 1 k4t k
if there exists a vector a € 8 such that 01(0,8 v) < ¢1(8 v 8 Yy then, by

monotonicity of the qi(a) and by the definition of R, there exists a point z € w such
k k +1 k :

that 01(F(z).8 V) < 01(8 v B v)' where for every z € w the vector function F(z) is

defined as follows: Fi(z) = f;(z). Therefore, recalling the definitions of the functions
k k +1 k
0‘ and ¢, we obtain that §(z,x v) < $(x v X “). The inequality obtained contradicts
k _+1

the definition of x » see (3). Thus (25) is proved.

Let us prove now that

+
a - - = =
(26) a7 8B ¢ Ty - 8),F)|T_° >0,

where the definition of the right derivative d+/dt is given in (12). If we assume that

this directional derivative is negative then, by convexity of the function 01(0.8) with
u regspect to a for any fixed 8, there exists a point 2 €2 such that

. 01(;,3) < 01(5,5). Therefore, since 01(0,8) is continuous with respect to 8, it
: k
iy follows from (22) that for some large v, ¢,(a,8 Yy < $,(8,8). By (25) this means that
kt1 Kk K41k
4,8 BV < 01(5 g) = 2 a . Recalling (23) and the fact that ¢,(8 B ) =
K+ K =1
${x +X ) we obtain that

Ty
. kv+1 kv

01(x x ) <

L]

which contradicts (16). Thus the inequality (26) holds. Calculating the derivative in

X $¢»' LAY , ‘-,' .\-,‘-'\.- - : B . R LGP
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(26) we obtain that

m -
' c (27 Y
i=1

which is in contradiction with the assumption (24). Therefore the assumption (17) is false

and

O(xk) + 8 = 8(x*) = inf O(x) as k + = ,
x€D

Thus the part A) of the theorem is proved. Consider now the second case.

£
B) The minimizing sequence ({y }, £ =0,1,..., such that O(Yl) ¥ inf ®(x) as
1.5 x€D
L + », ig unbounded. Taking yl instead of x* and repeating the arguments of the part

A) we can obtain in the same manner as we have obtained the inequality (27) that

Prom this it follows that 1im 8(y’) = inf &(x) > . on the
_ - X Lre xeD _

e, other hand inf &(x) < &, since o = 1lim ¢(x ). Therefore inf #(x) = ¢ and the theorem
‘ x€D k+® x€ep

o(y") 8, L= 0,1,.00

is proved.

To complete the investigation of the procedure (3) we prove several results concerning

the rate of convergence of that procedure.

It is clear that the rate of convergence for procedure (3) depends on the choice of

the functions gi(a). Below we shall prove several estimates for the convergence rate

under various conditions on the qi(a). We shall always assume that there exists a point

x* @ Arg inf &(x) C ciD.
x€D
First of all we observe that, by (7), (3) and (4),

1y 8y ¢ inf 40K + T(x* - ¥),x5) =
te[0,1]

o int {0(x") + ) CHEN (x* + Txr = xM)) - g,(f, (x* M1/gje, (x “nt.
B, te[o,1] i=1

It is obvious that by continuity we can replace inf by min above. Hence
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(28) o™ < ax® ¢ min {005 + rixr - x5 - 0 x5
1e[0,1)

fi(xkﬂ’(x'-xk))
+ ) J aslg)(s) - g}(£, (x*N)/gjte, (x"n)
i=1 k
fi(x )

Now we use the inequality (28) to prove the following lemma.

Lemma 3. Let ®(x) be a convex function and there exists x* € Arg inf é(x). Then the

following convergence estimates hold.

A) 1If the functions f;(x) and gi(tl(x)), i{=1%,...,m, are convex then

8(x") ~ 8(x*) < (Cy + MY, n=0,1,...,

where C, and C, are positive constants.
)
B) If g,(a) = Ga 1, 1=1,...m © >0, 1<p <2, andif the functions

f (x) are convex then

£

23 i

Ry SN

™

o Tt Wi

*x") - 8(x*) € (C3 + Cm™Y, n=0,1,..,

where Cq and C4 are positive constants.

C) If the functions f,(x), i = T,...,m, are convex, if the sequence {xk} from

(3) is bounded, if the functions g; € Cz(l,), i=1...,m, and gz(fl(x)) < M,

i=1,...,m, x€D, M> 0, and if there exists a positive g, 1< q < 2, such that

(29) #(x) - ¥(x*) > nix - x*|9, xepD,

wvhere n is a positive constant, then

1) if q= 2

(30) $6") - (x0) = (4(x") = #(x*))0], m =00,

where 0 < 91 < 1;

11) 4f 1€ q < 2 there exists a number n; such that

n-n

(2/q9) o-a(n—no)

(31) O(x ) = ¥(x*) ¢ 92 ¢ M=Dng, Ng*+ Teue,

where 0 < 92 <1 and a is soms constant.
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Proof of A). The function gl(a), i=1,...,m, are increasing functions. Therefore the

inequality (28) can be replaced hy the following inequality:

*Hhcand®) + min {00 ¢ rixv - X)) - 8(x5)
te(o,1]

m
k k k
+ 121 [(gi(f, (x" + T(x* = x7))) = gj(f (x))) »

k k k k
(£, (x + T(x* - x)) = £,(x ))])/gy(f (x nt.
By convexity of the functions ¢®&(x), qi(ti(x)) and fi(x), i=1,...,m, we obtain that

0(xk+1) < O(xk) + min [T(d(x*) - O(xk))
te(o,1]

(32)
m 12 X
+ 1)1 3 loileg(x*)) = gite NIIL (x0) = £, ,

where &8 1is determined in (2). From Theorem 2 we know that the sequence {0(xk)}
converges. Therefore, since the functions fi(x) are non~negative, the sequences

{fi(xk)}. i=1,...,m are bounded. Hence from (32) if follows that

(33) 0™ < oxM) +  min  [r(8(x*) - 8(x")) + ) .
ze(0,1)

n
1 k k
where M is the bound for 3'121 [9i(f1(x')) - gi(fi(x ))][fl(x') - £,(x7)] k=0,1,¢e0 &

Denoting O(xk) - §{(x*) by uk we can rewrite (33) as

uk+1 <€ min [(1 - t)uk + rznl .
1€{0,1)
Optimal T is uk/zn. Therefore
k+1 k.2
(34) R - Mo .

By the standard technique, for example see [1], we obtain from (34) that
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0
where Cy =y = O(xo) - &(x*), Cy = 1/2M.

Proof of B). We consider this case separately because it appears frequently in

p
applications. First we observe that from (2) and from the condition that qi(a) = Gi° i
1/p

it follows that for every x e D, f£,(x) 2 61. i=1,...,m, where §, = (6/Gi) i. From

i
(28), from convexity of &(x) and concavity of the functions qi(u) it follows that

o) <o)+ min  [1(8(x*) - 8(x"))
Te(0,1)

(p1 - 1)

m
ST ) (e - £

i=1

After this the proof of B) can be completed in the same way as was done in part A).

Proof of C). From (28), convexity of &(x) and the condition that g;(fi(x)) <M it

follows that
™M) < ax®) +  min  [T(0(xm) - #(x*))
1€[0,1)
(35)
m
+ %g }oe, (F + Tixr = 1)) - g0,
i=1 i

where 6§ is defined in (2). Since by the condition of the lemma there exists a bounded

convex set S C c&D such that xk € S for every k » 0, we can use the results of §24

+
from (8] to prove that max S— £.(xX + s(x* - xX)) < F for k = 0,1,... and

ds 1

selo0,1]
i=1,...,my vwhere F is some positive constant. Therefore it follows from (35) that
™) < 0(x®) +  min  [T(8(x*) - 0(x")) + -:—: 2 - x93 .
Te(o0,1)
)2 1 k 2/q

From the condition that (x* - 1€ < [;-(O(x ) - O(x'))J we have, denoting as usual

8(x") - 8(x*) by %, that

(36) e s min en® s L ¥%RY

refo0,1]

2/4).

where L = MF/(28n Without loss of generality we assume that L > 1/2, If ao = 2,
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*1 which is the case of a twice differentiable ¢(x), then we take in (36) the optimal
-~

! T = 1/2L and obtain

+1 k
uk <Cu (1~ 14L)

Hence
o.n
WTC WO, =0t ,
where O = 1 - 1/4L < 1, 0 > 0 since L » 1/2. Thus we have proved the inequality
(30). If 1< g <2 then there exists, by Theorem 2, a number ng such that uk <1 for

all k > no. We take Tk = 1 for k > ng in (36) and obtain

k+1 k.2
M < L(u ) /q, k=mnp, ng+ 1,000

n
From this the inequality (31) follows with a = logL, b=y 0. The lemma is proved.

In Lemma 3 we have investigated only the convergence of the sequence {O(xk)] to
#(x*). 1If one is interested in convergence of the sequence {xk) to x*, provided that
this convergence takes place, one can easily obtain the necessary estimates using the
standard technique, which combines the results of Lemma 3 and inequalities similar to the
inequality (29).
Remark. In Lemma 3 we have considered only few possible cases, although frequently
encountered in applications. Our intention was not to investigate all cases, but rather
to suggest an approach to the problem of finding the rate of convergence for the

procedure (3).

3. We now consider a wider than in Section 1 class of problems to which we can apply the
method of nonlinear transformation of the objective function. 1In this section we remove
the last condition in (2) and assume that each function gi(a) satisfies the following
conditions for every i = 1,...,m:

(37a) 91(“) >0, gi(u) is convex for a ?» 0;

(37b) qi(c) >0 for &> 0; there exist an interval (0,r]

and continuous functions Pi(u) and Gi(v) such that

=13~
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38 (37c)  the function F,;(u) >0 for u > 0 .
: (374) the function Gy(v) > 0 for v € (0,9{(r)] and is
vé
LW a monotone non-decreasing function on this interval;

.t
¥ for every a',a" € (0,r)

]

q‘_(c') - 91(0") q (a®)

’ LI S ta” -
o (37e) T > (a* - a®) + G (g]la ”'1(" 310 |)

'\ +

; "
_"- ] Remark. PFor a given function gl(a) the existence of the functions Fye Gy and of the
e

N number r, which satisfy the conditions (37c-e) does not seem to be obvious. However the
4 results of [5] indicate that the cases in which !‘1, Gy and r do not exist are

3, exceptional. Indeed in (5] we have explicitly constructed the functions G; and F, for
.:,'g.'
‘-’\: every function q‘(a) which satisfies conditions (37a,b) and for which one can find

r P
r>0 and p; > 0 such that ] |g;(a)| "du < ®, Of course the standard functions, such

as of , exp(a), etc., which are used the wmost in applications, satiafy the condition

above.
Now we consider a procedure, which is similar to the procedure (3), but where we take

into account that the denominator qi(ti(x")) can be equal to zero at those points x*
where fi(x") = 0. The modified procedure is as follows.
x° €D 4is an arbitrary initial point,

for k= 0,1,2,...

(38) a* = max(f, (x),85), 1= 1,...m
i i i
a

R e ara ane ) g g 1/glta}) ,

x€@clD i=1
R
% g where the sequences {6:), i= 1,.¢cs,m, are chosen to satisfy the conditions
b
P\
S . . .
) (39) 61 >0 for k=0,1,... and i = 1,.,.,m 2 Gi(gi(Gt)) =w, {i=1.,..,m,
- k=0
x'_ Note that the sequences {6:} which satisfy (39) always exist.
;1;*.1'
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\:.‘ As in Section 2 we assume that the set Arg inf ) cy9,(f,(x)) # § for every
x€clD i=1
( . collection of positive coefficientsa CqresesCy and that the problem of finding a point in
.“.-
-_i- this set is easier numerically than solving the original problem (1). For the procedure
<.’
-f' (38) we can eatablish the following results (see proofs in [5]).
Q...
) Theorem 4. Assume that the functions ¢£;(x), i = 1,...,m, are convex, finite and non-
A negative in cf&D. If the functions gi(c), i=1,...,m, satisfy the conditions (37a-e)
..{I K
R then )
e e
M x
. ®(x ) ¢ inf &(x) as k+ =,
o x€D
. where the sequence (xk} is determined in (38).
n'
:'-: Theorem 5. Let the functions fi(x), i=1,...,m, be non-negative and let their right
'
'
ok directional derivatives be upper-semicontinuous in cfD X ®". Let the function &(x) be
s

pseudo-convex in D and let its right directional derivative be upper semicontinuous in
ctp x R'. Assume moreover that for every Y > 0 the gets "Y = {x ¢ D|#(x) < Y} are
bounded. If the functions gi(a), i=1,...,m, satisfy the conditions (33a-e) then X
OxX) ¢ inf 6(x) as k+ @ +

x€Dp

where the sequence {xk} is determined in (38).

4. In this section we consider a new class of transforming functions. The functions

TOXIATE " TRRBL !

g3, 1= 1,....m, depend now both on x and a. Moreover we shall allow the functions

R

-::: gy to change with k. We assume that for i = 1,...,ma and for k= 0,1,...

¥
:F’ q:(x,a) >0 for xectd, a > 0 ;

"' g:(x,a) are convex in cfD x R

o

) (39)

. x 2 39: )
:‘ gi(x,c) e (ctD x R+), e (x,fi(x)) >8>0 vwebD; :
A +

> 2 gX(x, £, (x)) € C., x €D

W : axiaxi 1770 (M ! .
i3

]

o>, .
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where C, is some positive constant. Note that C,, which is the upper bound for the
norm of the Hessian of gt(x,fi(x)), does not depend on k and i. We consider now the

following iterative procedure:

xo €D is an arbitrary initial point,

for k= 0,1,...

(40) x**' e Arg inf ), [gi(x £ (x))
x€D i=1

aqk agk
-, 52 oK M) s e o,

where k = 0,1,... . For the procedure (40) we can prove the following theorem.

Theorem 6, Let the cz(D) functions %(x) and £,(x), i = 1,...,m, satisfy the

conditions of Theorem 1 and let the functions g:(x.a) satisfy the conditions (39). 1f

k
the sequence {x }, determined in (40), has a bounded subsequence {x Y} then

8(x) + inf 8(x) as k+ = .
x€D

Proof. As in Theorem ) we introduce the function

m
k
iy = 0y 4 2 tgfx,£,0x0) = afty, £, (y))

3gk Bg
= <x -y 3% (¥ef, (¥))2) / 357 (v £ (9))s k= 0,%,..0

From (40) it follows that

o¥ 1, x%) < ¢X(xX,x*) = 0ix) .

On the other hand

-16~




m
(e1) ‘k(xlﬁ“'xk) _’(Xk#i) . )‘ [qi(xk*" 1(xk+1))
i=1

L aqr
%‘: - g:(xk.fi(xk)) - <xk¢1 - xk 5—1 ,f (x ))>

A aqi 391 k
- (titx Y- £ oy = (" oL, 6ENy s 3o (X f, TR T

L
)

> a0

Since the functions g:(x,c), i=1...,m are convex, from (41) it follows that

S ae B b

Rl R A

. +
=~ Ok( kﬂ.xk) > Q(xk+1) - 0k+‘(xk+1.xk 1)- Thus, as in Theorem 1, we have the sequence of
» inequalities
Xy + +1, k+ +1 +
;i T T P T T T ol I T T P G YT R
N
22 Therefore there exists
YR
N k -
1im O(x ) = lim Q (x X ) = lim 0 (x ,x ) =8 .
k*e | 3ol

f‘

-y

We assume now that

a0

$ > inf 0(x) .
xeD

I s
AL NS

o

Then as in Theorem ! there exist x* € cAp and € > 0 such that

k“ k

L ox v rxe - x "N < -€ <0

=0
kv
for every Vv = 0,1,..., where by the assumption of the lemma, the subsequence {(x } is

bounded. Therefore for every V

k. k k k.
4 MUREE T(x* - x v),x V)

aT t_°<-€<0

k
By the last condition in (39) and by the boundedness of the subsequence {x v) there

exists a constant M > 0 such that

2 k k k k.
max g—; [ v(x v + T(x* - x v),x “) €M, V=0,%.cc0 &
te(o,1] at

Combining the two inequalities above we obtain that

-17-

L !’ ™ .
Y ‘¢ ¢ A \*\ PO O A CACAGN
F ) LAY ‘ \ \, o
!. ‘.,'\.' LA .\f . o, ? v’ 2 N e \'- o

o SAESL
l' Q' ; .‘ .-... e 1'..1'\

‘,‘\-




kv kv ~ kv k\» kv kv 2
¢ (x +T(x*-x ),x )€ ¢(x ,x ) ~-€ /24,

- k +1 K k
vhere T = ¢/M. Therefore, recalling that x v € Arg inf ¢ v(x.x v). we have that
x€D

3 k +1 k ) 3 k 3
0%’ Y1 ¢ce’xVx ") - e?/am

k k+t k
for every V. It is clear that this contradicts the fact that lim ¢ v(x v X v) =-
k k. k Ve
1im ¢ “(x “,x v) = §. Thus our assumption that [ 38S ¥(x*) was false. The theorem is
Ve
proved.

Remark 1. As follows from the proof of Theorem 6, the second condition in (39) is
excessive. We only need to require that for every k the functions g:(x,a) are convex
in the set " = {x & D|8(x) < ox")) for 1= 1,....m

Remark 2. If the functions gi(x,a). i= t..0,my do not depend on k, then we can
prove for the procedure (40) the exact analog of Theorem 1 with only first three conditions
in (39) and requiring that qi(x,c) [ ] c‘(cl.b x l*). The proof will be just a repetition of
the proof of Theorem 1 with the function ¢(x,y) defined as in Theorem 6. The estimates
of the convergence rates of the procedure (40) are alsc analogous to those of Section 2 and
we shall not discuss them here. Instead we consider several important particular cases of

the procedures introduced in Sections 2, 3 and 4.

S. Example 1. We start with the well-known Weber's problem of finding

|
(42) min ) wix-a|,
o t=1 1 i

where w, are positive constants, the a, iw1...,m, are fixed points in l",
n

Ix - 01| - [ ). (xj - .u)z]vz. Weiszfeld in [10] suggested the following procedure to
=1

determine the minimizing sequence for the problem (42):
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xo is an arbitrary point;
for k= 0,1,...

(43)
K+ m w,a, m v,
x  om ) ==y ) —

i=1 |xk - ai| 1=t [x - .1|

Weiszfeld suggested & proof of the convergence of the procedure (43) which had several
drawbacks, see (6], related to the behavior of the procedure if one of the points xk
coincides with a;. Since that time a number of papers have appeared where the procedure
(43) and its modifications were considered. We mention only [4), where the proof of the
linear rate of convergence for (43) was established if the solution of (42) x* ¢ a,,
i=1...,m, and if the initial guess is close to x*, (6], where the procedure (43) is
modified so that the proof of convergence can be carried out even if x* - a;; in [6] the
convergence was proved for almost all initial points. We refer the reader to [9]) for
generalizations and bibliography.

The method of nonlinear transformation of the objective function allows us to suggest
a modification of Weigzfeld's algorithm which will converge to x* from arbitrary initial
point. Pirst we observe that the original procedure (43) is simply the procedure (3)
with f£,(x) = '1|* - '1" g (a) = az, i% 1,...,m. However we cannot apply the
convergence results of Section 2 because the last condition in (2) does not hold if
X = &;. Thus, we have to consider the modified procedure (38) with qi(a) - 02. We obtain
the following procedure:

x? 1s an arbitrary point;

for k= 0,1,..¢

i e
|‘ 37 y
‘ 3 3 a3

k k k
(44) a, = -ax(vilx - ‘1"61) ’
2 2 2
" W (x<~-a) n w.a n w
& eargmin ) 2 - 1 . 1k1 /7 ) _% .
i=1 ZG‘ =1 a, i=1 a,
As was shown in [5] we can take
6:-6"--&, K= 1,2,000 8% a1,
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) It is obvious that if the point x lies outside a small neighborhood of the points a;,
N
i . i=1,...,m, then the iteration (44) coincides with the iteration of Weiszfeld's algorithm
Qx; (43). From the results of Section 3 the global convergence of the procedure (44) to the )
Wl
A
-} ) solution x* of (42) follows. As for the rate of this convergence, if x* # a,,
\S
'Eg} i=1,...,m;, then by virtue of the above-gsaid and by Lemma 3, part B), the sequence {xk}

converges to x* with the linear rate of convergence. Thus we have reproduced the result

.
.

of (4)]. Moreover, if x* = a, then also by Lemma 3, part C) starting from some

iteration ny we have the guadratic convergence until we approach very closely to x*, so

that a: = Gk in (44) for some i. Then the convergence slows down and, as can be shown,

k

AN

o

being equal

-

uk = 0(%). Note that procedure (44) allows us to avoid difficulties with x

to a;. Of course, the procedure (43) (or (44)) is neither the only nor the best procedure

2%

:xv to solve the problem (42), for example, see (7]. However we have considered it because it
‘J
A allows us to demonstrate the generality of our method. The next example is consicered for

the same purpose.

et

Example 2. 1In this example we consider the method of steepest descent and Newton's
method. We show that both of these methods are particular cases of the procedure (40).
Therefore the results of Section 4 enable us to obtain some sufficient conditions for the
f o s global convergence of these methods. We first consider the problem of finding

3*{1 (45) min_ #(x) ,
xR

- wvhere &(x) e C1(IP) and is convex and non-negative. Consider gt(x.u) =a ~ &(x) + hkxz

"3 where h* is a positive constant which will be determined later. 1In this case the

$:1 procedure (40) has the form

xo is an arbitrary point

2

(46)

1 e arg min_ n*x? - (20%" - ve1x"))x}

xR

ol
LA L

- o

or
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xkyl = xk - "7 VO(xk) .

h

This is an iteration of the steepest descent method. By the results of Section 4, in order
for the procedure (46) to converge it is sufficient that the coefficients nX are such
that the functions q?(x,u) are convex and lhk| < Cor k=0,1,..., for ae l+ and
for x € M5, where M* = {x e R*|&(x) < 8(x")}.

Now again we consider the problem (45) and assume that &(x) € Cz(lp). wWe take

A3

q:(x.a) =g - $(x) + <Hkx,x>, where H is some symmetric positive definite matrix.

Then the procedure (40) will have the form

x° is an arbitrary point ,

(46)

I e R s

From the results of Section 4 it follows that the procedure (46) will converge to the

solution of (45) if lﬁkl < co and g:(x,a) are convex for k = 0,1,..., a > 0,

x e Mk = {x]0(x) < O(xk)}. of course if HX is H(xX), where H(x) is the Hessian

matrix of the function &(x), (46) is an iteration of Newton's method. Note that the

fixed point method is also a particular case of the procedure (40).

6. Pinally we consider a version of the method of nonlinear transformation of the
objective function without which our presentation of that method undoubtedly would not be
conplete. In this section we consider the case when the transforming functions qi(a) are
concave. We assume that

D is a closed bounded convex set in R';
(47) the functions qi(a) e cz(o,-) and are convex;

gi(f,(x)) >8>0, |gf(eytx)f €y, xeD, 1= 1,..0,m

the functions g,(f,(x)) are convex for x € D;
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where § and Yy are some positive constants. Note that these conditions will allow us to

consider in our method such functions gi(c) as &n a, ap, 0 <p< 1, etc. As usual we
assume that the functions g¢,(f;(x)), i = 1,...,m, are simple (for example, quadratic)
n
and that the linear combination ) c39;(24(x)) can be minimized on D with less effort
i=1

than @&(x) for every set of positive coefficients c,,...,c,. Consider now the following

procedure:
xX*ep is an arbitrary point; for k = 0,1,...
X Y X
£ =min ) g,(f,(x))/g{(f,(x")) ,
1=1
M - min la8)l/gyce, N, 1= 1,iem,
- X X
BELE (x"), 2, ()]
k
(48) Jk - {j e {1'...,l}|d: d j(f (x + T(E - x )))|r=0 < o}
k k k, k 2 : k k k,.2
o = ) MalE - + ) MUEED) - £(x))
iey
o = minf{1, = T (9,02, - g0, (BN /gt (e, (x5
T K my T 95'%y 9114 ’

A N T A alE a

Theorem 7. Assume that the conditions (47) hold and that the functions fi(x),

{i=1,...,m, are non-negative and convex in D. Then

Ox5) ¢ O(x*) as k+ e,

vhere x* € Arg min &(x).
x€D
Proof. We introduce the function
»

Gy(x) = 121 g3e,(x))/g) (L, (x)) .

Since for evexry k = 0,1,,.. the point Ek is a point of minimum of the function Gk(x),

=22~
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6, (E5) = 6 (x) < G (x) - 6 (x)

m
- 121 (9, (£,(x*)) = gy (£, (xX))1/gie, (x*))

By concavity of gi(a), i=1...,m,

m
Y oggte (xe)) - gyt (KN y/gice, (M)

i=1
T K
< ) IE e - £.0)] = e(x*) - 6(x).
i=1
Thus
(49) G, (E) - G (%) ¢ 8(x%) - 8"y .

On the other hand, by convexity of the functions fi(x). i= 1,..0,m,

6 Yy - G () = 80Ty - 81x")
Y K,k
+ ) g (e 8 4 atE" - ) - gyt 0xF))
i=1
RS I AT A R NS DV HI NS
K+1 k, 1\ k . k. k_ k
(50) >ty ey -1 ) Mite of ¢ MR - X
=1

ti(xk)] > O(x ) - O(X )
1 k2 kk Xk _ k2 k k, _ k,, 2
-3 (@) {1£Jk M (€ = x )"+ 1&3* M (€)= £ 7}

vhere the set JX and constants M:,d: and ak are defined in (48). Recalling the

definition of ok in (48) we obtain from (50) the following inequality:
1 k k. 2

8™y - 005y < Gk(x Y - G, ) tyo (@), k=010

e e e m——
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}% : The function Gk(x) is convex for every k. Therefore, since o - uk(E - X ),
\_ (51) L B T A N S T S T TR
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ey By definition a = min{1,(Gk(x ) - Gk(E ))/a"}, and is non-negative since

;:;3 G(Ek) < Gk(xk). 1f (Gk(xk) - Gk(Ek))/ok < 1 we obtain from (51) that

Nt

(52) 8"y - 0¥y < 16, (x) - 6 €N/ (26%)
X k k
If (Gk(x ) - ck(g ))/6 » 1 then it follows from (51) that
k+1 k 1 k k
(53) $(x ) - ¥(x) € - 2 (Gk(x ) - Gk(E )) .

Combining (52), (53) with (49) we obtain that

s U A R AN R U NN GV LRI
20

(54)

<3 u* 1 (6 (%) - ck(s"))/o“ >1,

K= 0,1,600, uk - O(xk) - ®(x*). Since D is boundegd, ok <T, k=0,1,..., where T

is a positive constant. Moreover, from (54) it follows that uk < uo for k= 0,1,.c0 .

Therefore from the second inequality in (54) it follows that

(55) TR - Lk e 6 ) - e e et 1
2u

From (54) and (55) we obtain that

k+1 k 1
(56) u <u -~ 5;— (u ) k=0,1,.00 ,

vwhere T, = nax(uo,T). The inequality (56) is the same as in Section 2. It follows from
(56) that uk +0 as k + =, The theorem is proved.
An interesting application of the procedure (48), the geometric programming problem,

will be considered in the forthcoming paper.
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