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ABSTRACT

In this work we describe globally convergent iterative procedures for

generating a minimizing sequence for the problem of finding the infimum for

the function *(x) - I fi(x) on a certain set D. The minimizing

sequence consists of points of the infimum for functions of the type

). tBi(gi(x,fi(x)) + Cy,,x>], where the transforming functions gi(x,*) are

chosen in such a way that the compositions gi(x,fi(x)) are simpler than the

n
given functions fi(x), and where the coefficients B > 0, 7i e R

i - 1,...,m, are determined by the choice of gi. Various classes of the

functions gj are considered and global convergence results are proved. It

is shown that many well-known algorithms, for example, Weiszfeld's algorithm

and Newton's method are particular cases of the general method.

ANS (MOS) Subject Classifications: 49D37, 65K05
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SIGNIFICANCE AND EXPLANATION

-'The method developed in this paper applies to a number of nonlinear

minimization problems. The bibliography includes the numerical implementation

for several applied problems. The main advantages of our approach are:

generality of the technique, global convergence of the method, its ease of

formulation and implementation, and its numerical efficiency. The method can

be extended to variational problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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GLOBALLY CONVIPGRNT PPOCEDURFS FOP SOLVING NONLINEAR MINIMIZATION PROBLFP'S

Alexander Fydeland

1. In this paper we discuss the method of nonlinear transformation of the objective

function. This approach has proved to be a convenient tool for generating and analyzing

optimization procedures. The method is based on the following simple observation. The

minimization problem for a given function f(x), x e le , can be replaced by the problem

of minimizing the composition g(f(x)), where g() is a monotone function, provided that

the minimization problem for g(f(x)) can be solved with less effort than the original

problem of minimizing f(x). Of course the minimum points for both functions coincide.

Now we consider a more complicated case, when we have to find a sequence {xk I such

that

lim O(x ) inf 6(x)

k+m  xeD

m

(1) *Cx) - ). ft(x)
SI.. i-1

fi(x) ) 0, i - 1,...,m

where D is a convex set in le. The assumption that the given functions fi(x) are non-

negative is made for convenience and does not lead to the loss of generality. Assume that

we can find a set of functions gi(xa), i = 1,...,m, such that the compositions

gi(x,fi(x)) are simpler than the functions fi(x) (for example, the gi(x,fi(x)) are

quadratic or linear functions). Can we use the existence of the simplifying functions

9l in order to construct an iterative procedure which determines a minimizing sequence for

the problem (M)? In this paper we make an attempt to answer this question. We construct a

* minimizing sequence for the problem (1) which consists of points of infimum of functions,
mn

whose general form is ( ( iglx,f Cx) + <y ,x>), where 8i > 0 and yi e Rn . By
i-1

Sponsored by the United States Army under Contract No. PAAG29-80-C-0041. This raterial is
* • based upon work supported by the National Science Foundation under Crant Nos. MCS-821n950

and MCS-8301628.
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virtue of the assumption above, the problem of finding points of infimum for these linear

combinations is simpler than the original problem (1).

In the sections 2, 3, 4 and 6 we consider various classes of functions *(x) and

gi(x,a), construct the corresponding iterative procedures and prove convergence

results. Some of those results are from the papers (3], [5] and we only state them without

proofs. Other results are new and we consider them in detail. We do not discuss numerical

4applications of the method in this paper, although they are numerous. For some numerical

examples we refer the reader to the papers [1], [2]. Other important applied problems will

be considered in forthcoming papers. In Section 5 we show that some of the well-known

optimization procedures, such as Weiszfeld's algorithm and Newton's method, are particular

cases of the method of nonlienar transformation of the objective function. Throughout this

paper the superscript k denotes the iteration number.

2. We start with the simplest case when the functions gi depend on a only and for

every i ,

gi (a 0 for a )10

(2) gi(a) is convex for a * 0

i(a) e c
1 [0,-), gl(fi(x)) > 8 > 0 V x e D

where 8 is some positive constant. We assume that for every set of positive coostants
m

c i = 1,...,m, the set Arg inf ) cigi(fi(x)) 0 0, where for any function #(x)
xecAD i'1

and any set B the set Arg inf #(x) (Arg min *(x)) is the set of all points of infimum
xes xeB

(minimum) for the function *(x) in the set B. Now we consider the following iterative

procedure:

x0 e D is an arbitrary initial point,

(3) for k - 0,1,2,...

a
x e Arg inf I gi(f 1 (x))/gj(fi(xk))

xecID i-I

rar this procedure we can prove the following results.
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Theorem 1. Let the function 0(x), defined in (1), be convex, let the functions filx),

I - 1,.-..,m, be continuous on cID, non-negative and finite in D and let the functions

g (a) satisfy the conditions (2). If the sequence (xkl, determined by the procedure

(2), has a bounded subsequence then

*(x k ) + inf O(x) as k * *
xeD

Proof, We introduce the function

~m
(4) *Cx,y) - 0(y) + I [gt(fi(x)) - gt(fi(y))/gj(fi(y)), x,y e D

i-1

From (3) and the definition (4) of the function *(x,y) if follows that

I.k+1 k kC k k
(51 (xk xk) C ( xk xk)

On the other hand

k+1' k k+1 k @(k+
6(x x ) #(x

+ ) + (4(x ) - *(xk+5)

* m
+ [g(ftjx k+

1)) - g(f 4 (xk))]/gl(fi(xk))

4(k1 m k x
=*xl)+ ( gj~fj(xk~) gi(fi(

- glfj(xk ))(fi(xk+l) - fi(xk))]/gi(fi(xk))

Each term in the square brackets in the last sum in (6) is non-negative by virtue of the

convexity of the functions gi(a). Since, by (2), g(fi(xk)) > 0, we finally have

that

k+1 k k+1 k+1 k+1
(7) *(x ,x # # ~ (x , x

Combining the inequalities (6) and (7) together we obtain the sequence of inequalities

k+1 k+1 k+1 k k k
(B) ... x l,x l) ( *[xk,x ) x ( X x ,x ) (

or

-3-
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The function OWx is bounded from below. Therefore there exists

(9) ii. O(x k)

We shall prove now that 9-inf O(x. By the assumption of the theorem there exists a
k xeD k

subsequence (X V)o h eune ( I such that x * x e c1D as v * . It is

clear that

4 ie*xk k+1k

(10) 9 lim 4( (m x 'x

Let us assume that

(11) 9 t(;) > inf #(x)
xeD

Then there eixats a point x* e D such that the right directional derivative

(12) d +*4  + T(X- - ;) list #(x + T(x- - x)) < 0(x

Taking into account that for every pair of points x Vx 2 e ctD

d#x+T - x ) O-(x r(X x))
dT 1 + ~ 2 - x1  ) 1 -0 dTx 1 2 1 I-

we obtain from (12) that

(13) d * + T(x - - TO 0.

This inequality, convexity of the function *(x,y) with respect to x for every fixed

y e c1D and the results of 124 of [8) imply that there exists a point z - x + T(x* -x)

te [0,1], such that

*(Z'x) <(~x

k -

Since the function *(x,y) is continuous and x v x as v + from the inequality

above it follows that there exists v0such that

*(z~x )'*xx

-4-
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for V > 0 v By (3) from this inequality it follows that

k V +1 k V
*(x ,X ) l*x'x), V > V0

.1 k+1 kc -
4 which contradicts the tact that by (S) and (10), $(x ,x V;) (x;) = for all

kc 0,1,......Therefore the assumption (11) was false and

4(;) -linm ON~c k t i x 6 .X)

k.wxe

The theorem is proved.

In the following theorem we remove the condition of the existence of a bounded

subsequence of the sequence {x 1

Theorem 2. Let the functions O(x) and f (x), ± ,..m satisfy the conditions of

Theorem 1. moreover, let the functions fi~x) be convex outside a circle of some radius

R. Then

4(x )+inf 1(x) as kc +
*1 xeD

Ik
where the sequence (xk is determined by (3).

Proof. if the sequence (x k has a bounded subsequence then the assertion of the theorem

follows from Theorem 1. Let us assume now that ix k I as kc + -. we consiAer

seperately two cases.

A) In this case we assume that there exists a point x* e c1D such that

O(x*) - inf O(x). Since the sequence ((x k- x*)/Ix k- xcii is bounded for all kc there
xen

exists a recession direction

k V+1 k V+1
(14) -lim (x -xc)/lx " -xci

kc +1
for some subsequence Nx 1, v =0,1,......Consider now the set

C
w -K F. )H n cID

where C is a small positive constant, the cone K ={Xc + TnIT > 0;

-5-
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tn e n , In(- Iv -n £ ), a closed half-space HR is chosen in such a way that for

all n e K r) HR lI ) R. It is clear that the set w is convex if C is sufficiently

small, and that w is relatively closed, by the assumptions of the theorem the

functions fi(x) are convex in W. Now we introduce the set44

n = ct{o e R M3x e w such that i ? f (x, i .
i i

The set n is convex. Indeed let 0' and R" belong to n. Then there exist points

xl,x" e ( such that 01 > fi(x'), 8" ) fi(x"), i 1..... Hence the point

NOA' + (I - A)B" ) e [0,1], also belongs to n since, by convexity of the functions

fi(x) in w,

No! + (I - i) fi(Xxl + (I - A)X"), i

On the set S) x 9 we introduce the function

m f
(15) ) + •g(a)

i.1 ifti

It is obvious that if a, - fi(x), Bi = fj(y), x,y e D, i - 1,...,s, then

*l(a,O) - *(x,y), see (4).

By the definition of the set w and by (14) we may assume, without the loss of
k+ k+-

generality, that x e w, v - 0,1....... As in Theorem 1 we can prove that )(x k

as k * , where * is some positive constant. Therefore

k k *1 k
(16) *(x -) Vx v v)

Let us assume that

(17) * > inf f(x) - O(x*)
xeD

k +1
Consider now a new sequence (z 1, v - 0,1,..., defined as follows:

k +1 k +1

°oz " [x ,x*] fl ;w, v =0,1,...,

where by [x ,x*] we denote a segment of a straight line between x and x*.
k +1

Since x* is the vertex of the cone KX, the point z always exists and, by
k +1

closedness of a, z w w, v - 0,1,.... Moreover from the definition of the set

-6-
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.V.7

it follows that the sequence {1z - x'i1 in bounded by some constant T(R,C). By

convexity of the function O(x)

k +1 k +1

0 ' 4a ,(X*) Iz - o,1.

O(x V) O(x*) ix v -

tk +1
As v + " the denominator 1(x - O(x*) + - f(x*), which is not equal to zero by

the assumption (17), and 1Z - x* 4C T(R,C) + 0, since Ix +1
th.supin(7,ad k +1 k +1 -x'i+,.

IxV -I* I x -x*l

Therefore

k +1
(18) (z ) O (x*) as v**

Thus, there exist in W two sequences fx v and {z I such that 6(x ") + * and
k) k +1

#(z 4 inf I(x) as V + d. We consider the corresponding sequences {B v and
k +1" xeD
('i ) in n):

k kv+1 kV+1 k+1 k +1
(19) i -

x  
)' Yi = f (z ) , i " 1,...,m; V - 0,1

From (16) we have that

m k +1

(20) V S +1 as V + -,

and from (18)

m kV+1

(21) i + (x*) as V + .

k +1 k +1

From (20) and (21) and from the fact that 
5
i
v  

• 0, 1 V 0, i -1

V I 0,1,..., we obtain, taking smaller subsequences if necessary, that

k +1 k +1

(22) 1 
u  + gir Yi i as V4, i=1,...,m.

Since n is a closed set, i e n and Y e A. From (20), (21) and (22) it follows that

-7-
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(23) O -x *, ) "

Finally from the assumption (17) it follows that

m m
(24) > Y1

i-1 i-1

Let us prove now that

k +1 kv

(25) 1 v e Arg min I(BB ), V - 0,1,... ,
sel

kI k
where B v - f i(x ), i - 1,...,m and the function *l(a,8) is defined in (15). Indeed,

k k +1 k
V'V V

if there exists a vector a e a such that *l(,B V) < *(B ,B ) then, by

monotonicity of the g1 (a) and by the definition of 9, there exists a point z e w such
k k +1 k

that I(F(s),8 v) < V1(0 ,B 0), where for every z e w the vector function F(z) is

defined as follows: Fj(z) - fi(z). Therefore, recalling the definitions of the functions
k k +1 k

41 and #, we obtain that *(z,x ) < (x ,x . The inequality obtained contradicts
Iv+l

the definition of x * see (3). Thus (25) is proved.

Let us prove now that

d+

(26) -- 41(8 + T(i - BIDPIT-O ) 0

where the definition of the right derivative d /dT is given in (12). if we assume that

this directional derivative is negative then, by convexity of the function *1 (a,o) with

respect to a for any fixed 8, there exists a point a e n such that

< *l(B,B). Therefore, since *l(a,4) is continuous with respect to 0, it~k
follows from (22) that for some large v, *1 (;,0 V) < 4 ( ). By (25) this means that

k +1 k Is k +1 k
v V - V V

1(  , ( *1( 8 e8 ) < 0 Si" Recalling (23) and the fact that *I(8 ,B =

k+l k i-
(x vx ) we obtain that

k-- +1 kv1 ,x ) 4,

which contradicts (16). Thus the inequality (26) holds. Calculating the derivative in

~-8-
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(26) we obtain that

(27) 0i • °a
i=1 i-i

which is in contradiction with the assumption (24). Therefore the assumption (17) is false

and

(xk) + I - O(x*) - inf O(x) as k •

xeD

Thus the part A) of the theorem is proved. Consider now the second case.

B) The minimizing sequence y = 0,,..., such that O(y ) + inf O(x) as

I txeD
I + *, is unbounded. Taking y instead of x* and repeating the arguments of the part

A) we can obtain in the same manner as we have obtained the inequality (27) that

*(y ) • 4, 1 - 0,1,.... From this it follows that li O(y ) - inf O(x) ; i. On the
k 1+0 xeD

other hand inf (x) O *, since i m - #n '(x ). Therefore inf #(x) - 4 and the theorem
xeD k-K eD

is proved.

To complete the investigation of the procedure (3) we prove several results concerning

the rate of convergence of that procedure.

It is clear that the rate of convergence for procedure (3) depends on the choice of

the functions gq(a). Below we shall prove several estimates for the convergence rate

under various conditions on the gi(a). We shall always assume that there exists a point

x* e Arq inf O(x) C cLD.
xeD

First of all we observe that, by (7), (3) and (4),

#(x k + 1) C inf *(xk + T(x* - x k),x k )
Te[0,1]

inf f,(xk) + I [gilf-i(xk + .(x* - xk))) -i(fi(xkM/glfi(x W.

ie[o, 1] i-i

It is obvious that by continuity we can replace inf by min above. Hence

i • -9-
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(28) *( k+1 *2 Oxk + mi if {(k + T (* k #xk

Te [o, 1]I

f (x k+T(X'-X k)

+ I dsgjs - 1(f 1(x ))1/91(f i x)I W
i-I f ck

fix

Nov vs use the inequality (28) to prove the following lemma.

Lea 3. Let *(x) be a convex function and there exists x* e Arg int OWx. Then the

following convergence estimates hold.

A) If the functions fi(x) and g4(fj(x)). i =1..m are convex then

4Cx n) - *(x*) 1C (Cl + C 2 n)- , n 0,..

where C1 and C2 are positive constants.

Pi
3) If g 1(a) - G~c , .m Gi > 0, 1 < p1 4 2, and if the functions

fi(x) are convex then

#(X ) O(x*) 4 (C3 + C4 n) , n 01..

where C3 and C4 are positive constants.

C) If the functions fi(x), i - ,..m are convex, if the sequence (x k from

(3) is bounded, if the functions gi e C2 (Rt+), i - 1,.,, and gi(fi(x)) 4 M,

i - 1,. , x e D, n > 0, and if there exists a positive q, 1 C q 4 2, such that

(29) #(x) _ *(x*) ), -j _ ~q x e D

where ni is a positive constant, then

i) if q - 2

(30)*xn -4(x ' - *(x) - *(x*))*,, n - 00.l...

where 0 < Q, <l1

ii) if 1 4 q < 2 there exists a number no such that

(31) ON n) - (x) 4 (2/q) n- -a(n-n 0), n nono +1,.

where 0 < Q2 < and a is some constant.

-10-
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ProZ fA ). The fun t iga) 0  $ i r ncesn functions. Therefore the

I

#( )4 O((gjf + min 1 -. + -W k)f) xk

+ (gc~ + -- c k Icf x

(f ± (x k- ~* f C x k)I/lf(k)I

By convexity of the functions OWx, gi(f±(x)) and f± (x), i , I ....,m. ye obtain that

#Xk+1 ON k Ii [c(*

Te[0,iJ
(32)

IS 2
+ j-[4 (fi(x*)) - gj(fi(xkc))][fj(Xe) - fiCxkc)

where 5 is determined in (2). From Theorem 2 we know that the sequence (#(x k,

converges. Therefore, since the functions fi(x) are non-negative, the sequences

R ' = (x k 1..." are bounded. Hence from (32) if follows that

(33) 4(x k 1I ) * #( k + min [t(*) - &(x k ))+M2

where M is the bound for tg j(fi~x* - gj(f ~i )VIfji ) fi~xcI I

Denoting ONx k - *x) by y k we can rewrite (33) as

W k+ min ((1 - T)P k + T 2 N

Optimal T is U1k /234. Therefore

(34) k+ 4U ki )(I 2/(2M).

4 By the standard technique, for example see [1), we obtain from (34) that

Z11 111;111 11o -11-O

I k 1% .V ~ ~ * '
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n C~n)-1,

n (C1 + C n 0,1,... ,

0 0
where C1 - - 9(xO ) - O(x*), C 2 = 1/2M.

Proof of B). We consider this case separately because it appears frequently in

pi
*applications. First we observe that from (2) and from the condition that (a) = Gi C

1
,pi

it follows that for every x e D, fi(x) ) Si, i = 1,...,m, where 6 = (6/G) . From

(28), from convexity of O(x) and concavity of the functions g!(a) it follows that

k+ (x # I ((x ) + min [T(O(x*) - O(x )
J , el0 11

(Pi 1) (2 fx k 2+ 26 8 (f i(x* )  f " (
251) " (f1

After this the proof of 8) can be completed in the same way as was done in part A).

Proof of C). From (28), convexity of O(x) and the condition that gj(fi(x)) 4 M it

follows that

#(Xk+
l  

O 
k ) 

+ min [t(O(x*) -O(xk

Te[O,1]
(35)

m
* + (f ( + T(x* - xk)) - fi(xk))

2

where 8 is defined in (2). Since by the condition of the lemma there exists a bounded

conve;. net S C cID such that xk e S for every k 0 0, we can use the results of 124

from (8] to prove that max f i(xk + s(x* _ k)) C F for k - 0,1,... and
se(0, 11

i - 1,...,m, where F is some positive constant. Therefore it follows from (35) that

*(x k+l) 4 *(x k + min Er(O*) # (X k)) + 1 T(x* _ xk)2
Te[0,11 28

From the condition that (x" - x [1_ ({xk) -*(x*))1 2 lq we have, denoting as usual

*(k) - (X) by Pk , that

A (36) k+1 i k + min [-TUk + L( k )2/qT2 1

Te[o,i

where L MF/(2 2/q. Without loss of generality we assume that L ) 1/2. If a - 2,

-12-
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which in the case of a twice differentiable O(x), then we take in (36) the optimal

I - 1/2L and obtain

k+1 k(I 1/4L)

Hence
0 n

A P 91 ,' n - 0,1,...

where I - 1 - 1/4L < 1, Q > 0 since L ) 1/2. Thus we have proved the inequality

(30). If 1 4 q < 2 then there exists, by Theorem 2, a number no  such that Uk < 1 for

all k ) no. We take Tk -1 for k ) no  in (36) and obtain

k+1 k2/q

kP L( k - nO , n + 1...

no0
From this the inequality (31) follows with a - loL, b - U . The lemma is proved.

In Lemma 3 we have investigated only the convergence of the sequence {O(xk )) to

*(x*). If one is interested in convergence of the sequence (x k  to x*, provided that

this convergence takes place, one can easily obtain the necessary estimates using the

standard technique, which combines the results of Lemma 3 and inequalities similar to the

Inequality (29).

Remark. In Lamma 3 we have considered only few possible cases, although frequently

encountered in applications. Our intention was not to investigate all cases, but rather

o suggest an approach to the problem of finding the rate of convergence for the

procedure (3).

3. We now consider a wider than in Section I class of problems to which we can apply the

method of nonlinear transformation of the objective function. In this section we remove

the last condition in (2) and assume that each function g9(a) satisfies the following

conditions for every i -

(37a) gi(a) ) 0, gi(a) is convex for Q ) 0;

(37b) g(a) > 0 for a > Os there exist an interval [O,r]

and continuous functions Fi(u) and Gi(v) such that

-13-
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(37c) the function 71(u) > 0 for u > I1
(37d) the function G i(v) > 0 for v e (0,91(r)) and is

a monotone non-decreasing function on this intervals

for every a',** e (0,r)

(37e) 9, - - ,i' W - 60) + G(~sljj

Remark. For a given function 91()the existence of the functions Fif Gi and of the

number r, which satisfy the conditions (37c-e) does not seem to be obvious. However the

results of [5) indicate that the cases in which rf, G, and r do not exist are

exceptional. indeed in [51 we have explicitly constructed the functions Gi and Pi f or

every function q i(a) which satisfies conditions (37a.b) and for which one can find

r >0 and Pi > 0 such that j I,(G)I ios < -. Of course the standard functions, such

as apt exp(Q), etc., which are used the most in applications, satisfy the condition

above.

"4 Now we consider a procedure, which is similar to the procedure (3), but where we take

into account that the denominator qi(fi(xk)) can be equal to zero at those points Kk

where fi(x") - 0. The modified procedure is as follows.

Xe D is an arbitrary initial point,

for k - 0,1,2....

(38) a k "~ (xe') 5k1  ,.,
i i 'i

xk1- Ara inf a~ i(fi(x))/;(ai k
xecAD I 19,1

where the sequences (S k, i-1.., are chosen to satisfy the conditions
i

(39 6k ), 0 for k - 0,1,... and i G -1

i Gk ('(O) i -D L

note that the sequences (6 k which satisfy (39) always exist.
i

NNW,' N-v..- V % *~*
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As in Section 2 we assume that the set Arg inf I cigi (f i W) * 0 for every
XeCID i-i

collection of positive coefficients ct.....,cm and that the problem of finding a point in

this sct is easier numerically than solving the original problem (1). For the procedure

* . (38) we can establish the following results (see proofs in [5)).

Theorem 4. Assume that the functions fi (x), i If .... are convex, finite and non-

negative in c1D. If the functions qgi(a), i - ,.,, satisfy the conditions (37a-e)

then

*x)+ inf k() a I
xeD

where the sequence (x kI is determined in (38).

Theorem S. Let the functions fi~x), i -1..mbe non-negative and let their right

directional derivatives be upper-semicontinuous in c1D x 3 * Let the function ON)J be

pseudo-convex in D and let its right directional derivative be upper semicontinuous in

cLtD x JP. Assume moreover that for every y > 0 the sets jiY = (x e DI*(x) c Y) are

bounded. if the functions qCa), i - 1..,. satisfy the conditions (33a-e) then

*(x) inf OWx as kc*
XeD

where the sequence (xk) is determined in (38).

4. In this section we consider a new class of transforming functions. The functions

i - .. ,,depend now both on x and a. Moreover we shall allow the functions

qito change with kc. We assume that for i 1,.u and for kc = 0.1...

gi(x,e) 0O for x ec1D, a )00

gi(x,a) are convex in c1D x R+

.5 (39)

g1Cx,e) e CcDNR.), ~ (x~fi W) ;P > 0 VX e D

q?~ k (x,f1(x)l C., x e D

3x4O

% -15-
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*where C. in some positive constant. Note that C., which is the upper bound for the

norm~~~~~ ote eia of q(xfiCx)), does not depend on kc and i. We consider now the

following iterative procedure:

0l
x" e D is an arbitrary initial point,

for kc - 0,1,....

(40) ~ kx e Arg inf ( (xi(x))
xeD i-I

-X,.2 Ic ,fi(xk) kc k
)),> ( x ,fi(x

4~1 where kc - 0,1,......or the procedure (40) we can prove the following theorem.
42

Theorem 6. Let the C (D) functions OWx and fi(x), i - 1,...,,, aatisfy the

4. Ik
conditions of Theorem 1 and let the functions g I(x,G) satisfy the conditions (39). If

the sequence Nx k , determined in (40), has a bounded subsequence ( x VI then

#(x k) inf 4(x) as kc*
xeD

Proof. As in Theorem I we Introduce the function

k =Y 4(y) + .9. () - gc kAYf()

agk
-x - y, j yf(Y))]/M (y'f (y)), kc 0g1.

From (40) it follows that

kc k+1 kc k kc kc k
*( N x IC (x X)4(x)

On the other hande

V V.

.0!



(41) *I(Xk xc - ([l gk(xk~, ,fi xk+l)

-k(xkf f(k) '( k+I _ Ic k J (xc k'f (

9, 1 x i.

(f x kI f(X i x 'fi(x k)), / (xk.f (xk

Since the functions 9 k(x,a), £ ,..m are convex, from (41) it follows that

kc k+1 k kI k+1 kc+1 k+1
* (X ex Cx ON (X e x x ) Thus, as in Theorem 1, we have the sequence of

inequalities

.. C*(I) -k+I (k+I kI+1 kI k(Ic. kxc ~k kxcixc k ,Ck)

Therefore there exists

kc k k kc k k+1 kc

We assume now that

> inf Owx

Then as in Theorem 1 there exist x* e cXD and e 0 such that

#xV+T(x* - x V (I. - C

for every V a 0,1...., where by the assumption of the lema, the subsequence (x V1  is

bounded. Therefore for every v

d k v k~ Ic Ic
(r* x + T(x* - x V),X V)IT 0 4 -E < 0

k
By the last condition in (39) and by the boundedness of the subsequence {x VIthere

A exists a constant N > 0 such that

d VX V + ~--XV )XV0,..
-re(0, di

2

* . Combining the two inequalities above we obtain that

-17-
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-* 7 7
kc Vxk k , kc V NVk 2

(x 7(2c - X ),x ) 4C *x , x ) e /2K

kV +1k kV
where T O sN. Therefore, recalling that x e Arg inf * (x~x ),we have that

xeD

4.~~ k~V+h +1~k 2

for every v. It is clear that this contradicts the fact that ln # "(x ' x V

kV kV k V1#

ii. # (X 'x ) .Thus our assumption that 1 > *(x*) was false. The theorels is

proved.

Remark I . As follows from the proof of 'Theorem 6, the second condition in (39) is

excessive. We only need to require that for every kc the functions gk(x,e) are convex

in the set M k- (x e DI*(x) < ( k )) for i - ...

Remark 2. if the functions 9 i (x4) ?,.as do not depend on kc, then we can

prove for the procedure (40) the exact analog of Theorem I with only first three conditions

In (39) and requiring that ,(xin) e cI (@10 x a ). The proof will be just a repetition of

the proof of Theorem I with the function #(x,y) defined as in Theorem 6. The estimates

of the convergence rates of the procedure (40) are also analogous to those of Section 2 and

we shall not discuss them here. *instead we consider several important particular cases of

the procedures introduced In sctions 2, 3 and 4.

S. acamle I w e start with the veil-know Weber's problem of finding

(42) min wl v x- ail

where vi are positive constants, the &I, i ,.m are fixed points InNP
n 2'

Is - aif I I~ (x j - ij2l/. Weissfeld In t1Ol suggested the following procedure to

determine the minimizing sequence for the problem (42):

Jill-

01~ 0
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x
0  is an arbitrary point,

for k - 0,1,...

(43)
k+1 m wi ai w

k 1k- Ix - al a'' I eL!

Weiszfeld suggested a proof of the convergence of the procedure (43) which had several

drawbacks, see [61, related to the behavior of the procedure if one of the points x

coincides with ai. Since that time a number of papers have appeared where the procedure

(43) and its modifications were considered. We mention only [4], where the proof of the

linear rate of convergence for (43) was established if the solution of (42) x* * &I,

i - 1,...,m, and if the initial guess is close to x*, [6], where the procedure (43) is

modified so that the proof of convergence can be carried out even if xk a l; in [6] the

convergence was proved for almost all initial points. We refer the reader to [9] for

generalizations and bibliography.

The method of nonlinear transformation of the objective function allows us to suggest

a modification of Welssfeld's algorithm which will converge to x* from arbitrary initial

point. First we observe that the original procedure (43) is simply the procedure (3)

2with fi(x) - wIx - il, 9t(a) - a2
, i l,...,m. However we cannot apply the

convergence results of Section 2 because the last condition in (2) does not hold if

x - at . Thus, we have to consider the modified procedure (38) with 9t(a) a We obtain

the following procedures

x0  is an arbitrary pointo

for k = 0.1....

k~lm wlx-a m wa mwkkk k ka
(k4 1 wifwl at wi

Nei=1I 2a i  i-1 a t  = a i .

As was shown In [51 we can take

k =k It k 1,2,.... 0

. .- .-.- -.....

%.
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.

It is obvious that if the point x lies outside a small neighborhood of the points ai ,

i ,...,m, then the iteration (44) coincides with the iteration of Weiszfeld's algorithm

(43). Prom the results of Section 3 the global convergence of the procedure (44) to the

solution x* of (42) follows. As for the rate of this convergence, if x* * ai,

i - 1,...,m, than by virtue of the above-said and by Lenma 3, part B), the sequence {x k

converges to x* with the linear rate of convergence. Thus we have reproduced the result

of (41. Moreover, if x* - aI then also by Lemma 3, part C) starting from some

iteration n. we have the quadratic convergence until we approach very closely to x*, so

that = k  in (44) for some i. Then the convergence slows down and, as can be shown,

i t ( ). Note that procedure (44) allows us to avoid difficulties with xk being equal

4to ai . Of course, the procedure (43) (or (44)) is neither the only nor the best procedure

to solve the problem (42), for example, see (7]. However we have considered it because it

allows us to demonstrate the generality of our method. The next example is considered for

the same purpose.

Example 2. In this example we consider the method of steepest descent and Newton's

method. We show that both of these methods are particular cases of the procedure (40).

Therefore the results of section 4 enable us to obtain some sufficient conditions for the

global convergence of these methods. We first consider the problem of finding

(45) mn O(x)

where O(x) e C (0) and is convex and non-negative. Consider gk(x,a) = - + hkx
2

where hk is a positive constant which will be determined later. In this case the

procedure (40) has the form

x0  is an arbitrary point

(46)
kC+1 hkx2

x k1 e Arq min h x 2 (2hk x - V(x k))x"
xesen

or

-20-
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foen the procedure (4) wio conveg t fssfionttrmh oefcet haesc

that the reutos gof a arcio c tflonwe a hc prcedure (46 0wi... fovrg to thean
k k

fo e Nk _~ wherex C 1I -x (x. of corse(X if *(x is) heeH s h esa

maoriaainte uconider)the4problemn(45)ado assumetts m()etho(d. Noe takte

kie pon meho is also a paheur s omte procue poiiv4efn)emtrx

Thmete. prceur (40) secin he thsier thform entetasorigfnton ar

D~~ ~ is aclsdbuddnvearbity inte

(r7. the ut fuSction 4 it fao) th [,)a d the oere(wilconvergo h

Ilf ) , k , J!f~)) , XeD

solution e ofu(45)oi s C C0 and 1 x) are convex for D, ,.. ~0
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where tSand y are some positive constants. Note that these conditions will allow us to

consider in our method such fun~ctions gi (a) as Xn a, up, 0 < p < 1, etc. As usual we

assume that the functions gi(fi(x)). i ~ ,.,, are simple (for example, quadratic)

and that the linear combination ).cig1(f1 (x)) can be minimized on D) with loe effort

than OWx for every set of positive coefficients c .... 1
c
3
. Consider now the followingj

proedre

x 0xle D is an arbitrary pointi for k - 0,1,...

mm 1

(48) - je{,. )d ~ q g(f,(x + r(Ck x k IT-0 < 01

k k k k k 2 k kk2
N2 d 4 )+(fi( k f f(xk

kk Lmnb i k kii

cgk ~ ) mitg, 1q(f 1 (x k) g (f ( k ))/g(f (x k)
k i-I

k+i kc + c k c (Ek

Theorem 7. Assume that the conditions (47) hold and that the functions f()

i ar n,.a om-negative and convex in D. Then

#( +#(*)an k +

where x* e Arg aim OWx.
xeD

Proof. weV introduce the function

Gk(x) gi ,(f,(x))/gij(fi(x k)

4%

Since for every kc 0.1 .... the point k is a point of minimum of the function G~~

-22-
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G (E) G k X)
k cyx k k ~x~

m g~jx) gj(fj(x ))]/gi(fj(xk)

* By concavity of g (a), i =1...

g3f1x ) - g f i ))/g(fj(x k )

If (x*) f f(xk) 4 (x*) - (xk)

Thus

(49)~ G k (Ek) GO Gxk) 4 *Cx') _-~x

on the other hand, by convexity of the functions f i(x). i ,..M

'k (x) - Gk (xk) _ *(xk+l) # (x k

IsEifix ak k 
+ ~.cjt~~*a(~-x))-g 1(fi(x

- g(fj(x k))(f (xk+l) -fi(xk))J/9i(fixk))

k-I- kc m kIf k + k(k xk

kc 2 kIi kc
-f1 (x )] 3' #( ) -~

I kc 2t k, Mkkc k 2 k k f k I21
T (ag )I ik * M iI- lf -xfi ( C (x))

Ik k k
where the se J and constants Mi ,d i and at are defined in (48). Recalling the

definition of a kin (48) we obtain from (50) the following inequality:

*(x k ) 4 (x k 4 Gk,(xk ) Gk( x k) + _I *(ak2 k I 0,1,.

-23-

%' % % % %
f %



The function Gk(x) is convex for every k. Therefore, since xk+1 = k + ak k - xk

GkGx)xk)

'51) *(xk+1 k(x k - G + _I klk)
2 , 

k 
=

0,1,.

-li( "c c c(i °I 0,"1
:"'~~~~~ k; 2*LB kx)kG (

BY definition a = min{1,(Gk (x - Gk (r )/a 1, and is non-neqative since

G(E
k
) G(x). If (Gk(xk - G k(E))/Ok I we obtain from (51) that

(52) *(x 
k +

) - (x) -[G (x 
k
) - k( 2)] /(2ak

If (Gk(xk) - Gk (Ek )/a ) 1 then it follows from (51) that

(53) (x - (x ( - (G (x
k ) - G (C k

2 kc k

Combining (52), (53) with (49) we obtain that

k+1k < • k _ I ( k)2 if (Gk(x k) - Gk(Ekl)ak < I
(54) 2a

k+1 " kif (Gk(x
k ) 

- Gk(Ek))/O

k P1 k * O(xkl -(x*). Since D is bounded, a 
k 

4 T, k - 0,1,..., where T

is a positive constant. Moreover, from (54) it follows that k 4 0 for k = 0,1,...

Therefore from the second inequality in (54) it follows that

(55) Uk+1 k _ 1 0 (Uk1)2 if (Gk(x
k
) - Gk(k ))/ok k

21j

From (54) and (55) we obtain that

Ic!151U+1 c 1kk

(56) -p 11 k 1 2 k 0,1,...
2T1

0
where T1 - max(p ,T). The inequality (56) is the same as in Section 2. It follows from

(56) that k + 0 as k + -. The theorem in proved.

An interesting application of the procedure (48), the geometric programming problem,

will be considered in the forthcoming paper.
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