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ABSTRACT

Various weighted inequalities and weighted function spaces relevant to

degenerate partial differential equations are studied. The results are

applied to degenerate second order divergence form elliptic equations and

systems to establish continuity of weak solutions. The methods used allow the

consideration of very general classes of weights.

In particular the weights are characterized for several Sobolev

inequalities in terms of weighted capacities, a theorem is proven for weighted

reverse H81der inequalities and a continuity estimate is established for

certain weighted Sobolev spaces.
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SIGNIFICANCE AND EXPLANATION

Many physical systems which are in an equilibrium state are modeled by

elliptic equations. A simple example of such an equation is

V.(w(x)Vu) = 0

where, for example, w(x) is the density of a plasma. The classical theory

for such problems deals with situations where H ) w(x) > X > 0, i.e. the

"density" is uniformly bounded away from zero and infinity. In certain

situations degeneracies appear and w becomes zero or infinite. In such

situations classical methods break down. One approach to this problem is to

prove weighted versions of certain inequalities used in the classical methods

in order to extend their use to degenerate situations. This is carried out in

the present work for an extensive class of weights w(x), and the results are

applied to a general class of elliptic equations.

Degenerate problems of this form appear in a number of areas including

plasmas, gas dynamics, and diffusion processes. In addition the use of

weighted inequalities is prevalent in physical problems which are set in

unbounded regions or which involve local singularities, and their general

understanding for a large class of w(x) should have potential applications.
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WEIGHTED INEQUALITIES AND DEGENERATE
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E. W. Stredulinsky

Introduction

The main purpose of these notes is the analysis of various

weighted spaces and weighted inequalities which are relevant to

the study of degenerate partial differential equations. The

usefulness of these results is demonstrated in the later part

'of the text where they are used to establish continuity for

weak solutions of degenerate elliptic equations.

The most important inequalities dealt with are certain

weighted Sobolov and Poincare inequalities for which the

admissible weights are characterized. Weighted reverse Holder

inequalities and weighted inequalities for the mean oscillation

of a function are dealt with as well. A much larger class of

degeneracies is considered than previously appears in the

literature and some of the applications are known only in the

strongly elliptic case.

Two approaches are taken to the problem of establishing

continuity of weak solutions. The first approach taken involves

a Harnack inequality and the second Morrey spaces. The first

applies to equations of the form div A - B, where A, B satisfy

the growth conditions

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based upon work supported by the
National Science Foundation under Grant No. MCS-8210950.



JAI I U.(x)tVuI P - 1 + a (x)uP- 1 + a2 (x)

A'Vu > X(x)lVulP - cI(x)uP - c 2 (x)

Ja C b 0 X(x)IVuIP + b1 (x)fVuIP'l + b 2 (x) uP- 1 + b3 (x)

A Harnack inequality is proven for weights U . X satisfying certain

capacitary conditiona. Interior continuity follows immediately

from this, and a Wiener criterion is establish for continuity

at the boundary. This generalizes work of D.E. Edmunds and

L.A. Peletier(EPI,R. Gariepy and W. P. Ziemer (GZ), S.N. Kruzkov

[K], M.K.V. Murthy and G. Stampacchia [MS1, P.D. Smith [SI, and

N.S. Trudinger [TI).

A theory of weighted Morrey spaces is developed which

extablishes continuity estimates for a wide class of weighted

Sobolev spaces Wl 'p with p > d,d the spatial dimension. This

is in turn applied to prove the continuity of solutions of systems

of the form div Ai = Bi, i - 1,...,., where Ai and Bi satisfy

growth conditions similar to the above with p> d-e. In the non-

degenerate case this is due to K.O. Widman ['I] and, in mor6

general form to N.G. Meyers and A. Elcrat [MYE].

It is necessary to mention related work of E.B. Fabes,

C.E. Kenig, D.S. Jerison, and R.P. Serapioni [FKS),[FJKI which

was done independently at the same time as the work presented

in these notes. The approach taken and the material covered differ

considerably but there is a certain overlap (see comments before

2.2.40 and the introduction to Section 3.1.0.).
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The following is a brief description of the contents of

each chapter. The reader interested mainly in the applications

should proceed immediately to Chapter 3.

Chapter 1 contains the basic analysis needed for Chapter 2.

The relationship between maximal functions, covering lemmas and

Lebesgue differentiation of integrals is reviewed. A calculus

for functions absolutely continuous with respect to a measure

is developed and the admissible weights for several new variations

of Hardy's inequalities are characterized. Finally, several

comparability results are proved for "capacities" and set functions

which appear later in the analysis of the weighted Sobolev

inequalities.

Chapter 2 deals mainly with weighted Sobolev inequalities

and properties of weighted Sobolev spaces. The characterization

of weights for Sobolev inequalities is carried out in a very

general setting in the first section and is translated to a more

useful form in Section 2.2.0 where, in addition, some examples

are developed. The main thrust of Section 2.2.0 however, is

the development of results relating capacity, quasicontinuity,

convergence in weighted Sobolev spaces and weak boundary values

for Sobolev functions. Chapter 2 closes with a result on weighted

reverse Holder inequalities.

All direct applications to differential equations are

contained in Chapter 3. These include the Harnack inequality

as well as the interior and boundary continuity results for weak
solutions of divergence type degenerate elliptic equations (3.1.0);

modulus of continuity estimates for Sobolev functions and functions

-3-



of vanishing mean oscillation (3.2.0); and the continuity result

for weak solutions of degenerate elliptic systems in a "borderline"

case (3.3.0).

I would like to express my sincere thanks to William Ziemer

under whose guidance this work was completed. I would also like

to thank David Adams, John Brothers, and Alberto Torchinskv for

conversations pertaining to this material.

-4-



CHAPTER 0

The following is a short list of conventions and notation to be

used throughout the text.

Sections, theorems, and statements each are labelled with a

sequence of three numbers, the first two denoting the chapter and

section, the third denoting order within the particular section.

The Lebesgue measure of a set E is represented as JEI . Hn

represents n-dimensional Hausdorff measure. The abbreviations

sup, inf will be used to represent the essential supremum

and infimum unless it is specified otherwise. B(x,r)" is the open

ball of radius r > 0 , centered at x . The specific space in

which B(x,r) is contained will be clear from the context. Sometimes

the notation Br a B(x,r) is used. XE is the characteristic func-
tion of the set E , that is, (X) I x E Theeletter

XE(X 0 otherwise ' h lte

c will be used to represent constants which may differ from line to

line but which remain independent of any quantities of particular

importance to the specific calculation being carried out. LP(W,E)

Is the space of equivalence classes of measurable functions u : E 0 M

such that j IuI P dw < . Finally, Vu denotes the gradient of u

thatis, Vu u u

l at

.. -5-



CHAPTER 1

The results of Chapter 1 are of little direct interest from the

point of view of differential equations but are necessary tools in

proofs of the major theorems of Chapters 2 and 3. .1.1.1 and 1 .1 .1

deal with the relationship between covering properties, maximal func-

tions, and the differentiation of integrals. The basic

calculus for functions absolutely continuous with respect

to a measure is developed in 1.1.10. In Section 1.2.0

the weights for several variations of Hardy's inequalities

are characterized, and in Section 1.3.0 a number of

capacities and set functions are shown to be comparable.

1.1.0 Calculus in Measure Spaces

The basic motivation for the inclusion of Section 1.1.0 is the

desire to present in an elementary manner special cases of known results

which are needed in other sections.

1.1.1 Coverin Properties, Maximal Functions, and Differentiation of

Integrals. Let n1 be a topological space and (n,w) a measure

space with w positive such that the integrable continuous functions

are dense in L 1(w60) . For instance, this is true if w is a locally

finite regular Sorel measure and a is a qr-comnpact Hausdorff space.

Recall also that every locally finite Sorel measure on IRn is regular.



Let H - U H , where Hy is a nonempty collection of measurable

yelY

sets B with y B and O<w(B)<- and

Mf(y) = sup W(B) Iflidw
Bey

It is said that M satisfies a weak Ll estimate if there exists

c1 >0 such that

W((Mf > A ) S l f Idw

for all f e L(w4,) .

Consider the following covering property for some collection

U Ly )yen :

1.1.2 There exists c1 >0 such that if E c $ is measurable and

G c U L is a cover of E such that for every y E there exists
y(l

B € GnLy , then there exists F, an at most countable collection of

pairwise disjoint sets, such that F c G and w(E) : c1 W(U B) .
F

1.1.3 Proposition. If {H satisfies property 1.1.2, then M
y yen

satisfies a weak LI estimate.

1.1.4 Proposition. If w(l) <w , 1 <p< and M satisfies a weak

L' estimate, then

f1 (f)Pdw c2 fI fIPd

for all fLP(wfl) , where c2  c

1.1.5 Proposition. If M satisfies a weak L1  estimate and f e

L 1wQ ,then

-7-



(1.1.6) 1ir sup I,,B) f f- f(y)I dw B cH, diam B <ct) 0
"o0 wl,, (B7

fo. almost all y eO . The convention is used that the supremum taken

over the empty set is zero.

1.1.7 Remark. (1.1.6) implies that f(y) s Mf(y) almost everywhere if

Hy contains sets of arbitrarily small diameter.
y

Proof of 1.1.3. Assume (Hy I yel satisfies 1.1.2 and let E. a (Mf >1}

For each yeE3e H such that -C Ifl dIfIdw>X. Let G be a

covering of E, consisting of such sets and use 1.1.2 to get F c G

F, an at most countable collection of pairwise disjoint sets with

w(EX) s c1 ,(U B), so that
F

wlE ) S c1 I W(B) & C Ifl dw s T f Id .

Proof of 1.1.4. Given f c LP(w,) , 1 <p<w , it follows that f

LT(w,n) since w(z) <- . Without loss of generality, assume f O

Let f" X(f>X/2} f so that f s f X+X/2 and Mf s MfA +X/2 , but

then w({Mfi >AI) sw({Mf x > A/21) S X f x dw . J f dw and

'Mfp dl - p ,pI 4(fMff > 1)) d

s 2pc1 f p-2f( f6 XsZPl 0 '2If>Xk/2})~ d

2f
-2pC 1  f jf X-2 dX dw

* c1  .

I2
-8-, fPd



Proof ofl.1.. Let Lf(y) =lm sup(-'.7J If-f(y)I dw: B Hy

dim B<'4 so Lf(y) s Mf(y) + f(y)I and

w({Lf >)) s w({Mf >/2)) +w ((IfI >X/2})

2(c1 +1) I

If g is continuous and Integrable, then It Is clear that Lg - 0

Choose gn continuous such that g f in I (wn) If e L(f-g n +

Lgn  L(f-gn) and so w((Lf>;k) 5 w([L(f -g n ) >)

2(c +1) If-gnI dw 0 as n.-. Thus Lf=0 al most everywhere. I

J n

-'9-



1.1.8 Covering Lemmas

The covering lemma 1.1.9 is a direct generalization

to doubling measures of a standard covering lemma for

Lebesgue measure. For nondoubling measures this may be

replaced by Besicovitch-type covering lemmas, a very

general form of which is proved in [MR] € the proof

following the basic outline in Besicovitch's original

paper [B]. A more accesable reference is [,].

1.1.9 Proposition. If w is a doubling measure in a bounded

open set 0 , i.e. w(B(x,r))< cW w(B(x,2r)) for all x,r such

that B(x,2r) C Q, then the covering proDerty 1.1.2 holds

with {L yI being the collection of all balls B C A with

y 6B.

Proof. Proceed as in (ST], page 9.

1.1.1 Calculus for Functions Absolutely Continuous to a Measure. The

basic calculus for functions absolutely continuous with respect to a

measure w closely resembles that for w a Lebesgue measure.

If w is a finite positive Borel measure on [a,b) and f :[a,b)

R , then it is said that f is absolutely continuous with respect to w

if

-10-



Vc>0 36>0 so that if W(11)< 6 , where the 1,

(1.1.11) 1a 1~bi) S Ea,b) are pairwise disjoint intervals, then

1 1f(b )-f(a )' < C
1tl

As a direct consequence f is left-continuous and in fact discontinuous

only on atoms of w

Let N = {y[a,b) : w[y,x)-O for some x>y , xe[a,b)) . N is

a countable union of disjoint maximal intervals of measure zero, and so

(1.1.12) I(N) - 0 .

The results of the previous section will be applied to the measure space

[a,b) -N , with Hy consisting of all intervals (y,x) with x>y,

xaCa,b) , so that Mf(y) - sup 1 f f-X . The fact that
y<x~bW(LYIX) J~yx)

continuous integrable functions are dense in LI (w, [ab) -N) follows

from this being true in LI(w , [a,b)) .

1.1.13 Proposition. Suppose f, g are absolutely continuous with

respect to w . Then:

(1.1.14) f is of bounded variation and f(t) a f(a) + Pa - N t
a a

where Pa , Na are the positive and negative variations of f on

[a,t).

t

(1.1.11 Pt , N are absolutely continuous with respect to w and in-

duce measures p , n absolutely continuous to w so that

f(t) - f(a) + J t dwj fa, t)



where is defined as w -- for , n , the densities of p,n

with respect to wI.

(1.1.16) h 1 hdw h(y)
W Cy+ x ,x)

W almost everywhere for hgLI (wEa,b)) , and so

1 im f .- -f X (Y)
x+ w(Ly~x)) d

W almost everywhere.

(1.1.18) fg is absolutely continuous with respect to w and

d(fg) .df +
dw K dw +

0 almost everywhere, with f+ representing the limit from the right of

f . The asymmetry disappears if it is realized that f+(y) t f(y) only

df f+ (y) -f (Y)
if W((yl) 0 , in which case - (y) = W({y) , and so

d (Y)

(f+(Y) - f(y)) g(y) + (g+(y) - g(y)) f(Y) + (g+(y) - g(y)) (f+(Y) - f(y))
• .... w( {y})

(1.1.19) If gzc>0 for some c , then 1/g is absolutely continuous

with respect to w and

df £ g _- f

9g g--.

-12-



w almost everywhere.

(1.1.20) L ~r g ~do
(a ,b) Ia Ja.b) df

(1.1.21) If F:IR is differentiable, then Fof is absolutely con-

tinuous and

F f , a.e. where f is

(F df continuous
(Fo? - Fof

f+ _ f  , everywhere f is
discontinuous.

A typical application of Proposition 1.1.13 is the evaluaiion of

(44[t.-)) + X)O dw(t) for > -1 and XzO where w is a finite

positive Borel measure on [a,-) and 0((a,.)) 9 0

Let f(t) - w((t,-))+)X so that f is absolutely continuous with

respect to w on any finite interval and df -l by (1.1.1Z. Let b' =

tnf{ta(a,.-) : w(Et,-))*O} , b' possibly o, and choose b such that

a <b<b' and w[t,-) z c >0 on [a,b) for some c . Altering the

function F(t) t +1  on (--* c/2) if necessary to insure that it is

differentiable on R , apply 1.1.21 to see that F of is absolutely

continuous on [a,b) with respect to w and that

- -(a,+)(w([t,.))+ G)a  if t is not

Fof t) - an atom of w

(W((t,-))+ 2)+l - ((rtaX))*+ X)+l if t is an
B . 5 fl) atom of W

By 1.1.15 it follows that

_13-



- (a +1) J(w((t.os))+ X)) dw(t)
(~a~b)..Tb

+ I (W((t 1 ,a)V c+ l (w(Et 1,-))+ X)O+l
tleTb

where Tb is the set of atoms of w in (a~b) and so

1 w1a.)(([.))~ + A)" w(tb)) jl

Wr.)+ 2 0+ (((t 1 )) + ,A)G+ w(t.')+A'

6+1 tieTb

+ (+)~( 1 .) )~f 1 )

Let b -, b , recall that w(b',*-) *0 ,and make a few adJustments if bI

is an atom to get

4+

I OL~l

+ +1 U4:1 -a)+ )M(tt' )) + A(t1 )J

* -14- _____



where T is the set of atom of w in [a,) . A simple calculation

shows that

-sign oi (w((t,-)) + X)) dw(t)

(1 .1.22)

sign q (([a))a+)
G+ 1

Proof of 1.1.14. This is a slight variation on the standard proof to

avoid the discontinuities of f • Let 8 >0 be related to c -I , as

in (1.1.11), so that "  If(b1) -f(a)l 1 If 1 w(Ii) < 6 . Since
i- i fiI

w([a,b)) is finite, w has at most a finite number of atoms of measure

larger than 6/2 . Let these be located at x , ... , x , x i +•

Pick ei such that w(x ,x 1 +C) (6 , I .I..., n , so given x i <y

xt , + then w y,xi t+C) < 6 , and so If(xt +ct) - f(y)1 < 1 . Pick

a partition a a (a 1 < .. < a a b ,which includes *xi) and

(x 4C ) and for which w((aj , aj+l)) <6 j 0 , ..., mI-1

Given a partition a a b0 < ...< b -2 b , let a = c ... < Cm 323

b be a refinement Including both {a1) , {b1} so that

i. If(bi+l) -f(bi)I

m3_1

a I If(c1+1) -f(c1)I
ino

k If(cj -f(x )I + lf(ci+ l) -f(c i )t ,
ja 1 j i x•

-1,..,



where Cx is the division pt to the immediate right of xj and so

M -1 n

i I f l(bi +1.) -"f(bi I IJ lf (xJ + -I  f f(x1)l

+ j- If(xj +cj) -f(cx)I

a+cIa. If(ck+l) -f(ck)laISc k <a i+I
ck XJ

S If(x++jC) -f(x )I + n + ml
Jul

which is independent of the partition '{b) . so f is of bounded varia-

tion. a

t tProo of 1.1.15. From the above, it follows that f(t) * f(a) +Pa a '

where Pt 9 Na are the positive and negative variation of f on [a,t) .
P t will be shown to be absolutely continuous with respect to w , and the

samwil folowor ilt by considering -f
aasane will follow for Na bycnieig- .

Given e>O , let a be as In (1.1.11). If W <()< 6 for

Ii " [ea,b t) , pairwise disjoint intervals, pick a partition a, = c 1 0 <

bt n-l +
. C ig b1  such that Pas j1 (f(c1,t~ 1 ) -f( Ili ))+ 2 where

X+ : xO " It is now clear that P is absolutely continuous

-s-nce

~-16-



t a, -P
P P

11 a a a1
nt-1

' ~ f(ct,+) -f(c1 ,1 )j + c1-1 J[-O]  jl

s 2e

since

n-1

I W[c 1  ct  ) • w(I 1 j8
,il jio n .i )

1.1.23. Since Pt Nt are monotone increasing and left-continuous, they

-a a
induce measures p . n . To see that these are absolutely continuous to

w , let E be a set such that w(E) a 0 . Given e >0 , pick 6>0 ,

as in (1.1.27) (with f replaced by P at ) and V relatively

open in [a,b) such that E c V and w(V) < 8 . V x U [

where the 1, are pairvise disjoint Intervals , I.

(a1 ,b t ) , 1 - 2,...,- and either 11 (al,b 1 ) and al a or

(al , b1 ) . Only the first case will be dealt with, the other being similar.

PW bl N (a)a()1-2 a P8

b,+ ij bi ai+8~
s a + Pa "p a + for some 6i>0

s 22

' -17-



since (C[a'bl))+I wI(a +6i 
, bi) i w(V) < 5 . The absolute continuity

1 2
of n follows similarly.

The Radon-Nikodym theorem now gives the existence of p , , the

densities of p, n with respect to w . Letting L -- * 1.1.15 fol-

lows from (1.1.14) and 1.1.23. 1

Proof of (1.1.16 . Recalling (1.1.12), it is only necessary to show that

{Hy ycra,b).N satisfieg property 1.1.2 in order to use Proposition 1.1.5

to conclude for h c Ll(w , [a.b)) that

1 f h~ du h (Y) a. e. w
xy+ W IX yx)

This being proven, (1.1.17) follows easily since
"f(x-i) I 1f Iy -d.

S' ) w x X) cka

from 1.1.15.

To show property 1.1.2 is satisfied, let G be a collection of in-

tervals Cy.,x) , cA , A some index set.

1.1.24. It will be said that F is subordinate to G if F c G and

U I= U I.
IF IceG

1.1.2 It will be shown that there Is an at most countable collection F

subordinate to G , in which case there is a finite collection F, S F

such that

6w( U 1) <2w(U ) .
IF Iag

-18- *



L

Due to the properties of intervals, there then exists a collection F2

subordinate to F 1 which has the property that every point in

(1.1.27) U I - U I
- IcF 1  I cF2

is covered at most twice by intervals in F2  F2  can then be split into

two collections F3 , F4 , with F2 = F3 uF4 , where the intervals in F1

i - 3,4 , are pairwise disjoint. Then

W(tU 1) :52' U 1)
IeF2  IF 1

for one of 1 -3,4 , in which case considering 1.1.24 to (1.1.28), it

is seen that property 1.1.2 is satisfied with c1 - 4

To show that there exists an at most countable collection F sub-

ordinate to G , let Y be the set of points y= , alA , such that

Y. is not in the interior of any interval (y8 ,x8 ) , 8 eA . It is

claimed that Y is at most countable. For y' e Y , no point of LyQx )

can lie in Y . Pick a rational number r, [y,,x,) and pair it with

y* . ra  cannot be paired in this way with any other element of Y , so

the map Y. - r. is a one-to-one map of Y into the rational numbers,

and so Y is at most countable. The conclusion now follows easily since

to each pair of rational numbers r , s with y, < r < s < x, for some

B a A , one such interval Eyo,x8 ) can be associated, 0 denoted as

rs • Given y a U Cymx) -Y , y lies in the interior of some in-
csaA

terval [yc,x=) , so there exist r, s rational with y < r < s < x,

and so y lies in one of the countably many intervals [y r s , x0 )r '

-19-



and the proof is done. I

fProof of 1.1.18-1.1.20. The absolute continuity of fg and 1/g follows

exactly as in the Lebesgue measure case. Using (1.1.17) then gives 1.1.1,

1.1.19, exactly as in basic calculus. 1.1.20 follows from 1.1.15 and

~1.1.18. UI

Proof of 1.1.21. Since f is bounded, it follows that F is uniformly

continuous on the closure of the range of f , so that it is easily seen

that F of is absolutely continuous with respect to w . Using (1.1.17)

again and proceeding as in the basic calculus proof of the chain rule,

1.1.21 follows. 5

1.2.0 Weighted Hardy Inequalities

Tomaselli (TM], Talenti [T.], and Artola CAR] characterized the

weights for which a Hardy inequality of type (1.2.10) or (1.2.12) with

p -q holds. A simpler proof was found by Muckenhoupt [Ml], which in turn

was generalized by Bradley [BR] to include the case q >p . The other

inequalities dealt with in this section are not direct generalizations

of the original Hardy inequalities but are similar in nature. Their im-

portance stems from the fact that they arise naturally in the analysis of

certain Sobolev inequalities.

It will be assumed that p , A are positive measures on

(i f-a,-) , K) , where K is the a-algebra generated by the Borel sets

B and the points (-,-} ; and v is a positive measure on (R S) for

which there is a Lebesgue decomposition with respect to Lebesgue measure.
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For notational simplicity, ( J ;(t)'1/(pl) dt)p'l will represent

sup 0 when p 1 , = being the density of the absolutely continuous
A I 1
part of v and + Tr I The proofs of the following theorems will

be deferred to 1.2.13,

1.2. Theorem. For I psq< ,

for some c, >0 and all nonnegative Borel measurable g 1ff

(1.2.3) U l/q (E-ftr) f g(s) ds C2( gP(t) (t) dt)l/P

for some c2 <. and all r e IR and g nonnegative and Borel measurable;

1ff

(1.2.4) U l/q (.mr) ;(t)-l/(p-1) dt)l/p' s c3

for some c3 <- and all r e I. And, by a reflection,

for some c1 <- and all nonnegative Borel measure g 1ff

(1.2.6) UI/q ([r,-]) r  g(s) ds s c2 (fr gP(t);(t)dt i p
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for some c2 <- and all r c IR and g nonnegative and Borel measurable;

1ff

(1.2.7) l/(r.-])( (t) 1 /(p ' 1) dt)LP V 9 3

for some c3 <W and all r e JR , where i is the Lebesgue density of v
j (dv - ;(t) dt + dv S) .

If the constants ci , i = 1 2 ,3 are chosen as small as possible,

then c3 S C2 S c1 c p I/p' pl/qc 3 . The convention 0 = 0 is assumed,

and p,/p' is taken to be 1 when P' = -"

Given uJ a positive measure on (AK) and v a positive measure

on (B,8) , extend vz so that u((IR u{- 1)-A) = 0 and v to have

infinite density on JR-B , then it easily follows from Theorem 1.2.1

that

(.. A (Bn(t, . g(s)ds)q du(t))lIs c(L g(t)P dv(t))/P

for some c <- and all nonnegative Borel measurable functions g 1ff

su 11l/q ([--,r] nA(J ;()'/P dt)1"o < .0 Theorem 1.2.9
r Bn(r,)

presents two special cases of this.

1.2. Theorem. For I sp s q<

(1..10 (JJ'g(s) ds)q d~) l/q :5 c1(f gp(t) dJ(t))11P
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for some cI < w and all nonnegative Borel measurable functions g , 1ff

(1.2.11) sup U1l/q ([0, rJ)( r 'l/(P-1)dt U bl <
Osr

And

(1.2.12) g(s) ds) dudt))l/q :s C2(f gP(t) dv(t))I/p

for some c2  and all nonnegative Borel measurable functions g iTff

SUP U1/q ([r/ ( p-1) dtp' b
(1.2.13) '" .1r ([ fJ)jo v(t) dt) <

And, as a consequence,

for some c3 >0 and all nonnegative Borel measurable g 1ff

sup Ui/q (Er: a )(r °  )-,/(P-l) t )l/p'. a2 <

Osr

(1.2.15) and

sup Ll/q (0-.rJ)(J (t)11/(p 1 ) dt)1/p' a br'O " 3 r

where ; is as in Theorem 1.2.1.

If c 1, . -1.2.3. b, . 1-1.2 arechosenas smallas pos-

sible, then bt s c i Spl/q p.11/pbi for t - 1 ,2 and
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max{b 2 b3) S c3 f pl/q p1/Pt  maxib 2,b 3} . The convention f: g(s) ds

- g(s) ds for t<O is used in (1.2.14) and 0 - 0 is used

throughout. Also pi/p' - 1. for p' =

The inequalities dealt with in Theorem 1.2.16 depart somewhat from

the structure of the classical Hardy inequalities, but their analysis is

similar. They arise naturally in the study of certain Sobolev inequalities.

It is somewhat remarkable that (1.2.23) and (1.2.24) are equivalent since

in general their left-hand sides are not comparable unless JX , Il <-

and X(E) t c u(E) .

1.2.16 Theorem. For 1 :p <q <s

(1.2.17) (ft( g(a) d dX(s)) d(t))l/ c1 (f gP(t) dv(t

for some cl, 1 < w and all nonnegative Borel measurable g 1ff

(1.2.18) 11 /( [--=,r]) fg(s) X~s,--]ds & c2,1(f gP(t) d%.(t) ) 11

for some c2,1 < a and all r C R and g nonnegative and Borel meas-

urable iff

(1.2.19) sup V /q([-a,r])(f (xjt~w) dt I b1 /, b
r

And, by a reflection,
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t : t /qI/
(1.2.20) ((o) dad(s)) q dI(t c<1 2 (FgP(t) dv(t))

for some c1, 2 <, and all nonnegative Borel measurable g 1ff

(1.2.21) 1 l/q(r,]) g(s) )--,r ds s c2,2( gP(t) dv(t)

for some c2,2 < - and all r e JR and g nonnegative and Borel measurable,

1ff

(1.2.22) SUP dt) b2 <

And, in consequence,

for some c1,3 < , and all nonnegative Borel measurable g 1ff

(1.2.24) (Ut 9(a dad(s)Jq du(t))lI/q S C23(f gP(t) dv(t))l/P

for some c2,3 < and all nonnegative Bore1 measurable g which are

bounded and have compact support,

1ff (1.2.18) and (1.2.21) hold,

1ff (1.2.19) and (1.2.22) hold,

where ; is as in Theorem 1.2.1.

The conventions .J g(o) do - - g(o) do for s>t,
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) 0 if the numerator and denominator are either both 0 or both

,and 0- =0 are used.

1.1.25. If the integral JS g(a) dadX(s) in (1.2.24) is not defined

in the classical sense, that is, if t is given and Js g(a) da takes

on both positive and negative values and is not in LI(A) , then it may be

given an arbitrary value without affecting the theorem. Care must bet I
taken if for fixed t , J g(a) do is of one sign and is not in LI(A) ,

in which case the integral 1.2.25 is given the value - or - , depend-
t

ing on the sign of J g(a) da . The assumption that g is bounded ind

of compact support in (1.2.24) is added solely for use In the applications;

it is not necessary here.

If ctj are chosen as small as possible, then bt ! c,1 sc lS I

pl/q p, /p' b1  for 1 1,2 and max{b1,b21 S c2,3 Sc 1 , 3 
<

2pl/q p,1/p max(b 9b2}.

Remark. Theorems 1.2.1, 1.2.9, and 1.2.16 are equivalent. Theorems 1.2.9

and 1.2.16 will be proven directly from 1.2.1, and Theorem 1.2.1 may be

recovered from 1.2.9 by a change of variable from [0,-] to (-a,-] ac-

coupanied by appropriate choices of measures, and from 1.2.16 by choosing

Sto be a point mass at - or -

It would be interesting to extend the preceding theorems to the case

q <p . The following theorem extends the last part of Theorem 3 to the

case q-1 . The global nature of condition renders it of no use in prov-

ing Sobolev inequalities.
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1.2.26 Theorem. For lsp < -

(1.2.27) ga) d dX(s) di(t) s c 9P(t) dv(t) '/"

for all nonnegative Borel measurable g iff

(1.2.28 dt S c,

as in Theorem 1.2.1. The conventions for the integrand of
t 40

(1.2.28), 0."" 0 , and i g(a) d- -i g(r) da for s > t are used.

Proof'of Theorem 1.2.1. The main substance of the result

is the sufficiency of inequality (1.2.4) . Assume

(1.2.4) and p > 1. Let h(t) - ( s)"1/(P'1) ds)1/p' and I a

(t: u(E-,t]) - 0) so that (I ) a 0 . From (1.2.4) it follows that h • -

only on 1. and so h <- on T a M- I .

1.2.29. Let 10 be the interval 10 - (t: h(t) -0) so that h is locally

absolutely continuous on T -10 • This combined with the continuity of h

on T leads to

(1.2.30) h(t) h - h'(s) ds for t . T

1.2.31. If g>0 and a e on a set of positive measure, then (1.2.2)

Is true; otherwise g - 0 a.e. on a -m) ,and so g -

p1l/P' g('h)I/P(h) l/p' a.e. in T . Now using H6lder's Inequality and

(1.2.30), and recalling that i(R- T) - 0 , it follows that
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(by using Minkowski's inequality)

(by (1.2.4), where V ={t: u[-c,t]--o})

S p.P/P' c "I pP/q f gP ~h I/q([-*,s]- V ) ds

(using 1.2.32)

p'PP pp/q f gP ds

(by (1.2.4))

1.2.32. [-,sJ ni' is an interval [-,s'] or (-m,s') on which

a([-,.,tJ) is finite. Pick s" < s' and let Z be the restriction of

I to (- ,s"] , and let w be the reflection of i , I.e. w(A) a w(-A)

Now apply the results of 1.1.13, specifically (1.1.22), with w and

-t j((-)) to get that

(1.2.33)-,s" -iP' ([--t])du(t) i pul/P([-,s"])

Let s" * s' and use ua / p ({s'))i((s')) - P1/P((s'}) if s' is an

atom of ~ito get (1.2.33) with s" replaced by s as required.
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If pl -I then

(L ( g(s) ds)q du(s)) 
p

j g(s) l/q([-=,sJ) ds by Mlnkows'kl's inequality

S c3  g(s) ess inf v ds
(s,-)

s c 3  g(s) ds.

The fact that (1.2.2) implies (1.2.3) follows by first replacing

g by 9X(r,.)nA , where IR- A supports the singular part of v and

IR-AI - 0 and then reducing the interval of integration

with respect to V to [-o,v1.

The proof of the implication (1.2.3)-*(1.2.4) is brokendown into 3 cases

depending on whether ;(t)f I/(p'I)dt)p'  is zero, strictly positive

but finite, or infinite (recall that for p-l this integral represents

sup 1 ). In the first case (1.2.4) is trivial. In the second case,

if p>l ,set g- ,'/(p-1), andlf pal set gagn XB where

Bn - {t: "I (t) k>-+ sup ;1} , and let n.' to achieve (1.2.4).n (r,-)

1.2.34. In the third case it is necessary to construct a function g

such that g O , fgP; dt < while fg in which case,

recalling the convention 0'e- 0 , It is seen that u([-N.r]) - 0 and

(1.2.4) is proven.
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To construct g as in 1.2.34 it is first assumed that ' > 0 a.e.;

otherwise let g be = on { -0) and zero elsewhere. For p>1 let

En - {t c (r,-): 2" (n+l) < ;(t) < -n, . If IEnl = for some n , then

pick g such that g L P(En) g j I , and g =0 elsewhere.

Otherwise .E nl < * for all n

E EnI 2(n+l)/(P-l) ; 1/(P'l) = . so pick ik Iteratively

k-1
such that 10 =0 and for nk = 'I It holds that

Lao 1
S- E l I 2( n+ l ) / (p ' l  (k +l)Q

n k :lnl<n k +ik

for a fixed 2 > In.

Let g(t) 2\(+l)/ -- ) if nk< Inl c nk+ and tc En  so

nk-= 2 (kkl)I Sn

S 1 n Inn 2(n+l)/(p-1)f P O (kl)2  (kl) Sk

ka k l2  Sk n I~n 2(n+l)/(p-l

< 1 o

k-O (k+l)

while
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E n I 2(n+l)/(p-1)

n-- ((k+l)2 Sk)

aI2lI1pam I I/p  J In 2(n+l)/(P-1)
k=O k(k+1)2 S k  nk slnf<n k+1

S 1-1/p
2I 2-/p 6 +l)a(l-I/p)-2/p

kO (k+l)
2/P  k 0k

U 2

since t(I- )- 0
p p

For p=1 , inf ; = 0 , so pick a set A of positive finite meas-
(r,)

ure such that inf = 0 • Either v 0 on a set B of positive measure

A

in which case take g s = on B and zero elsewhere, or else en  can be

Cnt+11
chosen such that e +0 , I< and IE > 0 . where E {t e A:

Cn+1 I. ;(t) < .n For this case let an li c~A: (t) < c.1 so that
I~nl an  n+1 , ad lt g n " n+l I n on En

lEnl * an -an 1  - It then

elsewhere
follows that

j = Enj an an1
r n410 n a n+l 'n

- £n+l) 1
O nxO

while

--1



=J n  n I €

n nan an+ I En

-t - 11m nn

UC0 < a*

The second half of the theorem is proven by replacing u , v , g

by ,; , j , where (A) = i(-A) , ;(A) = v(-A) , j(t) - g(-t)

and using L A i(t) d4(t) 'A gt) d(t)

Proof of Theorem 1.2.9. Restrict 4z to A - CO,-] and v to B a C,O),

and then extend them as in (1.2.8). If (1.2.10) holds, then (1.2.2) holds

with the extended measures since if g > 0 on a set of positive measure

in (-m,0) , then the right-hand side of (1.2.2) is infinite. (1.2.11) then

follows from (1.2.3). Conversely, if (1.2.11) is true, then (1.2.4) trivially

holds for the extended measures, the condition for r < - reducing to that

of r=0 , and (1.2.10) follows from (1.2.2) by taking g with support in

0,-) . The equivalence of (1.2.12) and (1.2.13) follows similarly.

Assume (1.2.14). Letting g have support in [0,') and (--.0

respectively, it follows that (1.2.12) and its reflection

g~s ds d~t) :5 3( gP(t) d-,(t) )1/p

hold, which then implies (1.2.13) and Its reflection, and so (1.2.15) holds.

Conversely, if (1.2.15) is true, then both (1.2.12) and its reflec-

tion hold so that
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J~ fg(s) dsq ut

- '(:g(s) ds)d(t) + : (J:gS) d du(t)

S (C, (J gp(t) dv(t))~ + (c4(f gp(t) )IP)

S maxic q I q, f gP(t ) dt)q/ I

Proof of Theorem 1.2.16. The equivalence of (1.2.17), (1.2.18). and

(1.2.19) will follow from that of (1.2.2), (1.2.3), and (1.2.4). The

equivalence of (1.2.20), (1.2.21), and (1.2.22) then follows from applying

the reflection A -i -A I as in Theorem 1.2.1.

It willI now be shown that (1.2.17) --*(1 .2.18) "(1.2.19) '-(1. 2.17).

(1.2.35) ( g(a) do d),s) afg(a)x~a,wJ ds by Fubini.

Assue (1.2.17), so

Replace g by g *X(r,.) and reduce the interval of integration on the

left to get u l/q[-M~r] f g(s)X(s,-) ds :9 cl1 (fgt d I/ I and

(1.2.18) Is verified. r9~ 
)d~ )

Assume (1.2.18), replace g by g *xA Iwhere A is the support of

the singular part of v *to get
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0.2.36) ul/qC-,r] r g(S)IS-] d s c (t (t), d, '

Let 10 a {t: u[-1,t] =01 So i(IO) = 0 since I0 is an Interval. Let

JO - {t: x[t*] = 0) and J.= (t: A[t,-] = -1 . From (1.2.36) it is

seen that ; - a.e. on the interval q. 1 0 (let g = gn =

X{<n~nP.io-)n(.a,n) ), so if ;,(t) - -(t) then ;.(t) = - on0 XP[t,-3
X{~)kP~t"] -0 the ~ )] a n (t

- 10 using the convention that pt)L$ - = 0 if Xft,-] and

are either both 0 or both . Also ;,(t) = - on J0 using the same

conventi on.

If It doesn't hold that g =0 a.e. on (,, - Io) u JO 9 then

(1.2.37) .1/q[--,r] f g(s) ds : C2 ,S f gP(t) (t) dt

otherwise let i(t) ,so on M- 10 ,g(t)=

otherwise

j(t)X[t,-) and §P gP , . Using g in (1.2.36) then gives (1.2.37),

but since (1.2.3) -* (1.2.4), it follows that 1/q[-4,r] (f */(p)(tdt)1 '

:9 c2.1 - so (1.2.19) is verified.

Assume (1.2.19). Using (1.2.4) -.(1.2.2), it follows that

t))ll/q /q Ip'd) /p

Replace g(s) by g(s).[s,-] and use that A.t,-] (t) s ;(t) to get

(1.2.17) and so the circle of implications is completed.
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It remains to show that (1.2.23)-.(l.2.24) {(1.2.18), (1.2.21))-

{(1.2.19), (1.2.22)) * (1.2.23). Recall 1.2.25. (1.2.23) -. (1.2.24)

is trivial. To show (1.2.24) * (1.2.18), first reduce the interval of

integration on the far left of (1.2.24) to [-,r] and -eplace g by

g X(r,,.) to get

pl/q[" r] F.g(s),X[s,®] ds

(J. Ifr Jr g(c) dcadX(s)j dit))

I/
for bounded g of compact support since ig ()X[r,o da-0 if both

s, t s r . Take monotone limits to get all positive measurable g . In

a similar way (1.2.24) -*(I.2.21). {(1.2.18), (I.2.21)}--{(l.2.19),

(1.2.22)) by the first part of Theorem 1.2.16. From Theorem 1.2.1 it

is seen that {(1.2.19), (l.2.22)}--{(1.2.2), (1.2.5)1', with ;(t) re-

placed by I so replacing g(t) by g(t)X[t,m] and using that

; (t) , it follows that
)t

t tlq /

S(fg() dad(s)) d(t))

+(f (ft g(a)A[",a] d) d 1())
/

dt

S 2p l/q p, ip' max(b,b2 P(t) ;(t) dt /

2i



and the proof is comlete. I

Proof of Theorem 1.2.26.

£St i g(a) da dX(s) ut

a f (fg(a)X(arw) day + J g(a))L[-,a) do) dp(t)

a>tf g(a) f(a,t) du(t) di for f(a.t) 0 a(t

(1.2.38) g(a) h(a)da

for h(a) = X(am]pE-ma) +

Let E0 .{t: h(t)= 0} , E {t: h(t)w}.

Assume (1.2.27). Replace g by g XA , where A is the support of

the singular part of v to get

(1.2.39) g(o) h(a) dc . c gP(t) (t) dt )

From this it is easy to see that = on so that ;,(t) ; (t)
hP(t)

on Em using the convention for hM that - 0- . Also (t)Also (t) =

o u the 0. 0 convention for h(t . If it is not true that

g a 0 a.e. on E0 u E, , then

lip

(1.2.40) F0g(s) ds s c gP(t) ;(t) dt

. .. . . . .. . . .. ..3 6. . . . ...- , , , _ I



(0 E u E.
otherwise let i(t) = , and substitute g in (1.2.39)

I tl elsewhere

to get (1.2.40). Assuming ( t)"I/(p I) d =- leads to a

contradiction with (1.2.40) using the construction in Theorem 1 since

either .(t) 1/ (p'1 ) dt) a or (1 (t)1/(p'1) dt =

If ;,(t) "I / ( pf I ) dt)p  = 0 , then (1.2.28) is trivial; otherwise

for p1 let g(t) - (t)- " / (p l ) in (1.2.40) to get (1.2.28). For

p- let gn(t)=- 'Xt-n,t+n ]  in (1.2.40), and let n to dif-

ferentiate the integrals and achieve (1.2.28).

Assume (1.2.28). The Integrability of (- ) imlies that

< a a.e., and so considering the 0 convention, off a set of

positive measure,

(1.2.41) either (t) - 0 or h(t) - 0 for a given t

Also it can be assumed that g a 0 a.e. on 't: ;(t) - -) since other-

wise (1.2.27) is trivially true. Considering this and (1.2.41) it follows

that g(t)h(t) & g(t) I/P(t) (h) )I/P a.e. and so H31der's inequality

applied to (1.2.38) gives (1.2.27). a

1.3.0 Equlvalence of Capaclties

The set functions which arise naturally in the analysis of the

Sobolev inequalities treated in Chapter 2 are difficult to work with in



their original form except in special cases. In the present section they

are shown to be comparable to more familiar capacities and set functions.

Let (M,F,v) be a measure space with v positive, and let

V'P(v,M) be a set of real valued F measurable functions on M satis-0
fying the following properties. kJ1'P(v,M) is closed under composition0

with functions f c N- (f e C7(R): f(O) 0, f' is bounded, and

f' 0} . There is a map IDI :Wl'P(v,M) LP(vM) such that

(13.) J Df o4IP dv) "d (f jf'( )IP JDOIP dv )

for all e W P(v,M) , where the notation ID0I - I01(,) and a ud b0d
1ff d-la s b s da has been used.

If H c W'P(v,M) , H closed under composition with f • N and

Isp < , AcM, then let

C,,p(A) Infif IDJIP dv: * e. , *l on Al

KH,p(A) - infj( *(t -) dt ): *eH , *21 on Al

pi Is the density of the absolutely continuous part of * the distribu-

tion measure of P with respect to 0 i where du I I1 P dv , i.e.,

U;(E) -I JD0Ip dv . The. conventions are used that

U (t "1 / (p '1 ) dt - inf V (t) if p1 , and inf if

Gn 0

-38-



1.3.2 Theorem. KH,p(A) -. dp Hp(A) for A N

Proof. Let HA {0 c H: *a1 on Al , so HA is closed under composi-

tion with f E N* = (fc N: f(1) 1 )

(1.3.3) L 1 (M)

1 (in)

since J *(t) dt :S J 0 dl001P D dv , which is finite since

* Wo'P(v,M) . Given fg N* let g- fV;so J g(t) dt- 1 and

J gp dm* - J gP(O) ID0I1 dv . Use (1.3.1) and Lemua 1 with U*as the

measureon JR , a- 0, ba 1 , a= w ,and I =R , toget
tnf~~ I -,d [ ;) 1 ( ' ) d) ( p' I )

inJ IDfo 1P d ' *;tr"/P 1 ) dt) Taking the infimum

over HA gives KH,p(A) .dp Cp(A) since the function f(x) * x is in

N* and HA is closed under composition with functions In N* ,

Let (M,F,X) be a measure space and W 'P(v,M) be a set of real-

valued F measurable functions closed under composition with f e N' -

{f e C: V is bounded and of one sign) and on which 101 is defined

as before. If H c W 11p(v,) , K closed under composition with f e N'

sp <a and A_ cM , then let

Cff,p(A) - inf{i I0Dp dv: 0 a.H n L(..14) .

*al on AJ d-O )

El ,(A) - infff 1041p dv: s, H n L l(A,M) .

$so on A J dAl 1
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R ,(A)- inf( Pbk))IP ):

*cH, sO on Al

The conventions ) dt) inf 1( if*Mt (Oeo Ap( .
4I

p-1, inf-- if G=0 and = , = for the ratio
0 0

xPu z t)), are used.

(t)

All of the expressions above are comparable (equal if d =l) , ex-

cept for one pathological case, this being if

(1.3.4) 34eH, sO on A such that ({>tl)== for some t>O

It Is clear that this is impossible if A(M) < - . In applications

X(M) is typically equal to one.

1.3.5 Theorem.

(1.3.6) KHdp(A) dp CP (A)

if (1.3.4) does not hold,

(1.3.7) C HIP(A) dp Ckp(A)

If X(M)- 1

(1.3.8) If (1.3.4) holds, then Rp(A) • 0HIp

Remark. Under fairly general circumstances, it is possible to show that

another comparable expression is
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nf{i p( (x))losPH d.(x): * H O on A.

inf{t: W({ It}) 01 - 1.

Proof of Theorem 1.3.5. (1.3.8) follows from the definition of R.. and

(1.3.3). (1.3.7) follows by replacing 0 with 1 -4 and using f(x)

1 -x in (1.3.1).

1.3.9. It can be assumed that there exists a H c H with sO on A

and 1({#>0) > 0 since otherwise Ks,P(A) = ® from its definition and
0

the 0 convention, and C,9p(A) - - using the convention inf =
f G

If G- 0, since it would be true that J dX s 0.

1.3.10. In addition to 1.3.9, assume that (1.3.4) does not hold.

Given * H with 0 s 0 on A and b - inf{t e [0,-):

X((#at})-O} (b- possible), then b>0 by 1.3.9, bnd 0 < X({ >t})<

by 1.3.10. If du' then v'(K) <- and O< Ck S X ({k })

C<-" for some Ck , Ci if K c (O,b) , K compact and t K since

x({* zt}) is monotone and v;(R) < - Applying Lemma 1.3.14 with I -

(O,b) a- 0 , and o(t) - X({>t}) i It follows that

(J b ( X ~ } )l/ p. 1) dt )

0 5*(t)

(1.3.11) " inf{J gP(t) d*(t): g E F , g 2 0 * and

-g(t) X,(It)) dt 1



for both F = C(]R) n L(R) and F = Co(O,b) . Let

L -Eg cr(R) n L**(R): g a 0 ,

g(t) A(foat}) dt + O g(t) ,((O;t}) dt < - , and
-g(t) X((>t}) dt - L: g(t) X ((O t}) dt - I

Considering all g* = g( J g(t) ({02t}) dt) 1  for g e L and noticingbL

that g(t) M{((,t) dt = g(t) (It}) dt a 1 for g e L by the

definition of b and L , it follows that (1.3.11) with F (R) n L(R)

Is no larger than

(1.3.12) Inf f gP(t) dp*(t)

But L contains F - C'(O,b) , so the opposite inequality is true, there-

fore (1.3.11) and (1.3.12) are equal.

Now let f(t) * g(s) ds using the convention that -
it

so that ~'g(t) X((Ozt1) dt - J. g(t) ({,t)dt =Jf(O) dA . This

holds because f'(t) X((4t}) dt = f(t) A((f(O)>f(t)}) dt since

f(t) - 0 , where f is not one to one, and so a change of variables gives

I~~f(-) k{>}d
fl(t) x({Ozt)) dt - zt)(O)

X r k(f(O)zt)) dt
f(0)

* J0  A(f(#ht) dt
since f(O) - 0 , and then a similar calculation handles the other
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integral. it is now clear that

inf 91(Pt) dp*¢t)

inf{J f'()P IO1 P dv: f c C7, V a 0

(1.3.13)

f' bounded, f(0) 0 , f(4) c L (A

and J f(,) dX -1)

Finally, using (1.3.1) and taking the infimum over H H with s < 0 on

A and * dX 1 I, t follows that RHp(A) ".dp e,p(A) , since H is

closed under composition with f of the type described in (1.3.13), one

of which is f(x) - x . I

1.3.14 Lemma. Suppose v is a positive Borel measure, a : R o ]R is

a Borel measurable function, a ,b a R u {--,-} , a < b , and I is an

interval, po~stbly unbounded, such that v(K) < - and 0 < CK < a(x) s

Cj < - for K compact, x e K and K q (a,b)cI I , then

pn 1/0-1)
(1.3.15) inf J g(t) dv(t) QJ (V/ PlMt

where F may be any subcollection of G - {g: IR - Ri g is Borel

measurable, g k 0 , g(t) a(t) dt 1 } which contains G n C(a,b)

Is the density of the absolutely continuous part of v . The convention

td - inf 2 will be used if p- ,
a M (a,b)
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Proof. (1.3.15) will first be proven for dv(t) = ;(t) dt both with

F - G and F = G n C0(a,b) . Then Lemma 1.3.16 will imply (1.3.15) in

the general case for F - G n Co(a,b) . It then follows that (1.3.15) is

true for all intermediate subcollections of G

Assume dv - ;(t) dt . Once (1.3.15) is proven for F - G , a smooth-

ing argument will be given to prove (1.3.15) for F = G n C(a,b)

If p = 1 , then for xc (a,b) let gn X1( a(t) dt)" I , In -
n1 n

, x+- , which is defined for large n since then I c (a,b)n n n
b

It is now seen that Ja gn(t) a(t) dt = I and

J g(t) dv(t) -Ji P(t) ;(t) d

- (2nJ ;(t) dt) (2nJ f,a(t) dt) -I

n n

for almost all x € (a,b) . Therefore

inf 9 P(t) dv(t) s inf

gEGJ fC (a,b) Y

In addition,

], P~t) dv¢t)- ],P~t) ;(t) dt

6 gP(t) a(t)dt inf v-

(a.b) o

inf -

(a,b) •
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If p 1 , then (1.3.15) will be proven for a -.1 ,in which case

making the substitutions g - g'a and a and recalling that 0 <

a < on (a,b) ,it follows that (1.3.15) holds for general a

Assuming a I an inequality in one direction is obtained by

letting g -~b -10 14 ("' t as long as

J~() l/ pi)dt < ,otherwise a construction virtually identical to

that in the proof of the first Hardy inequality gives g such that

Jg(t) dt - and J gP(t) ;(t) dt < - and so, letting a n

iuax~a ,-n) b~ minib,n)

a (gsN} n (a n bn)

and

J g~d a g P t( g XE dttrl

n 0 as n

soth t ame inaty follows.

The opposite inequality is a consequence of Jensen's inequality.

The inf is not increased if only g a G supported in (a,b) are con-

sidered. Given such a g ,lot gn be as above.
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( Ja (~+) l/r~-l dt

Qrpt gn(g+c)

b n9( +e dt

b

by Jensen's inequality since Ja gn dt = I

Let c * 0 using the monotone convergence theorem on the left, then

Ja bgXE ;dt bJag d t a n - . J 9P dt
(j g XE dt)

as well by the monotone convergence theorem, and so the opposite inequal-

ity holds and therefore equality as well.

(1.3.15) will now be proven for smooth 9 . Given g e G , pick

gn bounded and positive with compact support in (a,b) such that gn + 9

in (a,b) . Let 6m be a C' approximate identity with am ? 0

J6m 1 , and the diameter of the support of - 0. Thus 0m ,

has compact support in (a,b) for large m and is bounded independent

of m so
b blim gn* 6madt " (Y dt

and

lm (g*6)P dt -b g dt
in*- ja n a n

by the dominated convergence theorem since is integrable on compact

*MOON=- _-46-



subsets of (a,b) and a is bounded uniformly away from 0 ,- on the

support pf gn*6m ,

The monotone convergence theorem now leads to

b b
1lm nim I go-1

:,I nn M.,nof mwa a f
and

l lm b (gn*6 ) dt - bgP dt
n+W OM 'a fa

From this can be extracted a sequence [fk) ,fk such that

fk Co(ab) , fka -$ , and fP R dt JgP dt. Letting

k•b, it follows that ? ka dt •1 and RP dt

Ja*a =k dta

fb gP; dt and 1.3.14 is proven for smooth g . !

a

1.3.16 Lema. If v is as in Lemma 1, then inf gPdJ -

1nf gp; dt , the inf being taken over G n C(a,b)

Proof. Pick s a support of the singular part of v with Isl - 0 and

0 n  open such that s O n , a,b aO n , and 10.1 - 0 . Since 0 n is a

collection of pairwise disjoint open Intervals, it Is easy to construct

C;(ab) functions *nt (each *n,i " 1 off of a finite number of the

intervals) such that *n,i X(ab)-O everywhere on (a,b) with 0 5
n

#ni , and n~i I on (a,b)-on . It then follows for 9 e G n

C;(ab) that
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f11" (g *, i)P -J gP X(a.b)n n

SJ(a.b) - P dt

and
b

1im f g Onl adt= J gadta-, fnla~b).o n

so

b
lim lim f (gOn. )P v = gp ;dr

and
b

li lim 9On4 dtJ gdt 1

From this extract a sequence gk * k so that 9k

iag Onkvtk a dt

G n C(ab) and

l1. J P dv* J P dt

and the result is proven. I
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CHAPTER 2

The results of Chapter 2 form the foundation on which Chapter 3 is

built. For the most part they involve weighted analogues of important

basic tools used in the study of partial differential equations.

In Section 2.1.0 the weights for several Sobolev inequalities are

characterized in a very general setting. Section 2.2.0 develops the theory

of weighted Sobolev spaces, weighted capacity, and weighted Sobolev in-

equalities in a setting appropriate for the application to differential

equations. An example is developed in which Sobolev inequalities are

proven having weights of the form distF(x,K) for a class of sets K in-

cludingunions of manifolds of co-dimension> 2. In section 2.3.0

a result on "reverse H6lder" inequalities is developed which implies

higher integrability for functions satisfying a maximal function

inequality.

2.1.0 Weighted Sobolev Inequalities

Conditions equivalent to two types of Sobolev inequalities

are developed involving the dominance of measure by "capacity".

It should be noted that V.G. Mazda [MA2] has proved 2.1.7 for

v - lebesgue measure and M - R d and D.R. Adams [Al-3J has done

the same for higher order inequalities (as well as two-weighted

inequalities for potentials). He has also shown that 2.1.9, in

the special case described above, is needed only for K which are

balls. After having discussed my results on Sobolev inequalities

with me, Adams found an alternative proof for 2.1.7 and some

cases of 2.1.20 using strong type capacitary estimates, the

study of which was initiated by V.G. Mazda [MA1.

Let (M,F,w) and (M,G,v) be measure spaces with w,v positive.

Let lf'P(w,v,M) be a set of real-valued F measurable functions

satisfying the following properties.
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2.1.1. lP(,v,M) is closed under composition with f c N = {f Cw(I):

f(O) = , , fV is bounded and of one sign)

There is a map 101 such that JDJ: WN'P(w,vM) - LP(v,M) and

(2.1.2) df IDf°IP dv) /P < (J jfl( ),P 14 1 P d )l/P

<d Of If*P dv)Il/P

for some fixed d > 0 , where the notation ID$I = ID, is used.

The symbol IDI is only meant to suggest the absolute value of the

gradient on the classical WI 'p  space. It should be noted that ID

need not be sublinear. Special cases of WIP(w,v,M) are developed in

Section 2.2.0.

Given Wo'P(Wv,M) , let u be the finite measure defined by

dl* = ID0]p dv . •* will be the distribution measure of * with respect

to P0 , that is, p;(E) = p(0' (E)) so that ) g(t) du;(t) =

Jg(O) dul for all Borel measurable g . Also let be the density

of the absolutely continuous part of . p' will always represent the

exponent conjugate to p , that is, 1+ = 1 . The proofs of the fol-

lowing theorems will be deferred till later.

2.1.3 Theorem. If 1 5 p : q < .= and 0 e WI'P(qvM) a then

(2.1.4) (J ulq 1k )/q )lDuJp dv I / P
ciw c(J i 1

for some c >0 and all u f° f N , Iff.

(2.1.5) sup 1/q( *)jf_ dt(t)' / ' dt P -
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The convention I t - f g s used for t < s . If c is chosen as

small as possible, then d'1b s c s d pl/q p I/p' b

2.1.6 Remark. Under fairly general circumstances the co-area formula (F2] can

be used to give an explicite expression for The following is a very

special case.
- n

Suppose M - a c R , 1 open, ID! v is absolutely con-

tinuous with density v , an integrable Borel function and C O)

.IV*lIdHn' dHnl dt

for all positive Borel functions * supported in n so letting 4-

lV[ p I -l , It follows that i*(t) a Ivlp-' ; dHn-l a.e.

*- (E) If .L t

This can be generalized to allow M to be a "manifold" in a weak measure-

theoretic sense and f to be "Sobolev".

if H I'P(w,v,M) and H is closed under composition with f c N

then for A .M let CH.p(A) - itnf{ IO1P dv: * H , a I on A .

2.1.7 Theorem. If I sps q < ,then

(2.1.8) (j ju jq d,)l/q s c (J j ou l p dy)l/P

for some c > 0 and all u e H

1ff

(2.1.9) Wl/q(A) - b P(A)

for some b > 0 , and for all sets A - { _},* c H, r j 0.

r ~~ E ,r0



If both c b are chosen as small as possible, then d_3 b : c s
d 3 p l/q p,1/p' b.

2.1.10 Remark. Although it seems in most cases that the use of the capacity

C H, PIs more practical, there are specific cases when the equivalent expres-

sion KH.P described in Section 1.3.0 is more easily calculated. This oc-

curs, for instance, when the level sets of the Sobolev functions considered

are of a fixed geometry or if they display certain symmetries. It is neces-

sary in these cases to use the co-area formula, as described in 2.1.6, to

calculate

Let (M,F,X) be a measure space with A positive, and let Wl'P(w,v,M)

be a set of real-valued F measurable functions satisfying the following.

2.1.11. W1'P(w,v,M) is closed under composition with f £ N' - (f c C(]):

f is bounded and of one slgn} , and there is a map IDI: WlP(W,v,M) .

LP(v,M) such that (2.1.2) holds.

2.1.12 Theorem. If 1 % p s q < - and f e W1'P(w,v,M) , then

(2.1.13) (I (J Iu(x) -u(y)l dX()) q d(x))/q < Cl ( I Ip  )l/p

for some cI > 0 and all u a f , f a N' iff

(2.1.14) Sup W1 /q(sr) ( F X( !t) ) 1dt) b1

If A(M) 1, w(M)c , and f e LI(X,N) . then

(2.15 (J u(X) f u U(Y)dA (Y)~ I qw(x))l /q S c( ID I )/P
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for some c2 > 0 and all u - fo. , f e N1  1ff (2.1.14) holds.

The conventions 0.- 0 and, for XP , " 0 0 are

used. If the c1  are chosen as small as possible, then d1 b1 S c2 S
c 1 :9 2d p l/q pl1/p' bl I.

If H C WI 'p(wvM) and H is closed under composition with f £ N'

then for A c M let

CH.plA) inf{J ID1 P dv: * H n LI(XM).

a Ion A and f f - 0

and

(A) inf(J 101 p dv: # e H n LI(A,M)

lsO on A and J dX - 11

In Theorem 2.1.17 it will be assumed that

(2.1.16) if # e H , then X({#at}) <- for t > 0

If this is not the case, then the theorem still holds but CHp and

C' must be replaced by the set function R,,p defined in Section 1.3.0.
H,p

2.1.17 Theorem. If 1 s p s q < - and (2.1.16) holds, then

(2.1.18) (J J ju(x)-u(y)j d(y))q dw(x))l S c1 (J IDuI P dv)

for some c1 > 0 and all u H

iff

• , .,1/p )

)-(A) bll/ (AI .



for some b>0 andall sets A. ao) H *H.

If A(N) = 1 w(M) <m and H cL I(AM) ,then

(2.1.20) Ju(x) u(y) dX(y) I dw(x)) S (f IDup d)lI/P

for some c2 > 0 and all u e H

1ff

(2.1.21) (l/q(A) s b2 CP(A)

2H,p

for some b2 > 0 and all sets A ={ O} , c H,

1ff (2.1.19) holds since d-p HpA(A) s A) s dp CH.p(A).

If ct , 1 - 1,2 , 1 , I = 1,2 are chosen as small as possible,

then d'3 b1 s c1 C 2d3 pl/q p 'P b1 , i = 1,2

Remark: 2.1.10 is applicable to ]ldp *'p , and CH.p as well as

K,p and CHfp.

Theorem 2.1.22 is an example of how the conditions in

Theorems 2.1.7 and 2.1.17 can be put into a more computable form when

2.1.22 Theorem. Let H = 0(s) , where n c IRn  is open, and let v be

absolutely continuous with density L W)

If p a1 , then condition (2.1.9) is equivalent to

(2.1.23) W l/q (A) s c 1,min, 1 dx

6

for some c > 0 , all A compact with C boundary and C6 - (xAA:

dist(x,A) % 6)
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If i is continuous, then this reduces to

(2.1.24) Wl/q(A) s c dHn l

or, in a more suggestive notation,

Yn(A) s c vn- 1 (BA)

If H fl open and c ll , then for p 1 condition

(2.1.19) is equivalent to

(2.1.25) Wl/q(A) )X(l- A) c liminf I dx

for some c > 0 and all A , closed relative to Q, which extend to com-

pact sets with C boundary in n'

If I is continuous, then this becomes

(2.1.26) Wl/(A) A (fl-A) s c dHn l

The proof of Theorem 2.1.22 will rely on the following proposition.

2.1.27 Proposition. If C C1(o) , a 3in is open, t I is such

that {-t) n {VI -0 -.0 , and if w is continuous, then

1im,1 wdx - w dHnl6-04 f6(t) t

where C6(t) - {x J ost): dist(x , {(-t}) s 6)

If # a Cn(n) and w is an integrable Borel measurable function, then

I imn1 w dx s J ~ -
o us 6t

for almst all t, e R



Proof of Theorem 2.1.3. Assume (2.1.4) holds. Let w*(E) w(*'I (E)) for

E c R so that for all f E N and u = f o ,

Q jujqdw) lq j o=~ )qd 't /

(2.1.28) t q llq

(J IDuIP dv ) / sd (J if'(.)JIDO d)/P

(2.1.29)

adf Jf'(tIP du*) I/P

Letting g =If'I and recalling that V' does not change sign, it follows

that

• )l /q . li/p

(2.1.30) (f~ g(s) dsj dwo*) cdf gP(t) du*(t))

for all bounded nonnegative C functions g

is a finite measure since I0$1 c LP . Also i is seen to be

cW* integrable by letting g - 1 in (2.1.30). Taking uniformly bounded

pointwise limits of bounded nonnegative C functions g it follows that

(2.1.30) holds for all bounded nonnegative Borel measurable g . Taking

monotone limits then gives (2.1.30) for all nonnegative Borel measurable

functions g . Using (2.1.14) it follows that
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sup IA/(r~)( (ty' 1/(P-1) dt) isc
O<r

(2.1.31) and

I~ l/l--,r]) *(lt) "I/ (p'I) dt d.

r<O f

But w(r,)) - w({o2r}) and w*((--.r]) w w({0r) , so considering the

sign of r and using the convention s - J , it follows that
sup llq (Iz1) I Um(t) " (p1  ) dt s cd
raO

Assume (2.1.5). As above. (2.1.5) is equivalent to (2.1.31) so, by

(1.2.15), (2.1.30) holds (with a different constant) for all nonnegative

Borel measurable g . Given f i N , let g - IfI and use (2.1.28),

part of (2.1.29), and (2.1.2) to get (2.1.4). 1

Proof of Theorem 2.1.7. By Theorem 2.1.3 it follows that d"1 b' : c s

d pl/q p01/p, b if c is the smallest constant in (2.1.8) and

1/q 1/p,
* sup sup aq 1 ) J .t)_II(p'I dt

*'e rJO

Given and r( R , r A , let f(t) .t so fc N4.

r
a Pc b will be used to mean that ac1 s b s ac . .Io*(E)

P (.,(f@o#c E)) 10frE Iof.*tlP d f IrlP LE I4P d-

Irl'P (rE) .so f lo+(t)idt Irl'P~ 0(s)-ds-57-



Divide by IEI and differentiate using Lebesgue's theorem to get that

*o (t) 'I  p P (rt) a.e. A change of variable now gives

ddt

so that

b ds./q ({ } r ;t)/  p '1 )  dtp

since f £ N . Using the 0.- - 0 convention, it is clear that b'

b"M if b" is the smallest possible constant in the inequallty

10 b inf{ ;(t)"I ( p I  dt): * >  on A and *df}

considered for all sets A - {i> 1 } where is a function

in H. Using Theorem 1.3.2 it then follows that C2.1.8) and (2.1.9)

are equivalent and d'3 b < c • d3 pl/q p~l/' b for b , c chosen as small

as possible. U

Proof f Theorem 2.1.12. As in Theorem 2.1.3, (2.1.13) reduces to

(2.1.32) (4sb (iJ( IJ g(o) do );(s))q d(t))

t) •: 1olAanpH

S~ cw*dtf glt)dl*(

(2.1.3) g~c) do -58-)



with If'I and X* defined as X*(E) a X(- (E)) for E cR

Also, as in the proof of Theorem 2.1.3, the function it-sl has the

necessary integrability properties to allow the taking of limits, thus

giving (2.1.32) for all nonnegative Borel measurable g . Using (1.2.23)

and arguing as in Theorem 2.1.3 it is seen that (2.1.13) is equivalent

to

sup W l/q({Osr)) p- U(t) ) 1/(p-I) d) <-

combined with

r -- IA0

It is easy to see that this is just (2.1.14).

If X(() 1 , w(M) < and * c L1(X,M) , then (p.1.15) reduces to
/ rot tI q 1l/q I

(2.1.33) (L I J: g dT dAs ()I dw*(t))

S c 2 d .gPlt) duo*(t))l /

The finiteness of X , w implies that of X* and W* so that taking
4 0

limits of C7 functions of compact support it is seen that (2.1.33) holds

for all bounded Borel measurable g of compact support. Using (1.2.24)

and continuing as above, the equivalence of (2.1.14), (2.1.15) is proven. 1



Proof of Theorem 2.1.17. By Theorem 2.1.12, it follows that d" b s c I s

2d pl/q pIb if c, is the smallest constant in (2.1.18) and

1/(p-1) -lIp'

b a sup sup w11q ({srl)( p( t) dt

since f e N' if f(t) -t.

Given * • H , r e , let f(t) = t-r so f N' and u*(E+r) =

1€e({* E+r}) = v (O-r E) ij*r(E) , and therefore, by differentiation,

d~ *- = lf(,)(t);t+ r) ni, M 5*.rl ) (t a.e..

(Recall P* is a finite measure so Is Lebesgue integrable.) A change

of variables now gives

11(r)(Fr(  P { } )
I I ( p ' I ) d /l p '

I/ 5( t) )dt)
i (*(t)Id=/q([f(¢)O})(To kP((f( )Ztl) )I/(p')dt/ y p '

) /(p-l)
and so sup w dt) '/ 'd b

Using the 0.. - 0 convention, it is clear that b "d b' if b'

is the smallest constant possible in the inequality

l/q(A) s b' inf( ~( {*t}) d ) : sO on A, *H

considered for all sets A - (1)10) where P is a function in

H. Noting (2.1.16) and using Theorem 1.3.5, it now follows that
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(2.1.18) and (2.1.19) are equivalent and d"3 b S c1 s 2d3 p11q p,1/p, bl

if b, and c, are chosen as small as possible. The equivalence of

(2.1.20) and (2.1.21) follows in a virtuallyidentical manner. I

Proof of Proposition 2.1.27. If {(=t} n {IVOI =0} - 0 , then 1'4I 2 6 >

0 on {f-t} for some 6>0 since f has compact support, so Mt =

{Out) is an oriented compact n-1 dimensional manifold. If fs(X) =

x+nx s , where nX is the unit normal to (0-t} at x directed into

(49t , then 3 d>O such that if Osd , then f : Mt f (M ) is
s t 5 t

a diffeomorphism and 1Js1 * I as s * 0 , where Js is the Jacobian

of the transformation.

If d s d and i Is continuous, then

l~ J() 'dH" - n-1

a ~ ~ *(x) dHn-l ds'- *dHnl

from the co-area formula and the
fact that the gradient of the

distance function has absolute

value one a.e. on C(6)

SJ,tI 1*(s )J~JS - *(x)lI dHn 1 ds

S £ J dHn-l if 6 4 for some 6, since
(#t) *Jsj 1 and Is continuous.
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Therefore the first statement of the proposition is proven with i =

If * ( Q) and B = {t: {,=t} n (IVOI =01 $ O} , then the Morse-

Sard theorem says that IBI = 0 . B is closed since * has compact sup-

port so MR- B U I9 I being pairwise disjoint open intervals.
1 -l1

Given [to,t I ] cII i , then jv J ! 6 > 0 on ' ([to,t,]) If fs is

defined essentially the same as before, then fi: 1 (toot 1 ) 1 fs( 1 (tot))

is a diffeomorphism for all sufficiently small s , say s 5 d for some

d.

If * is an integrable Borel function, then

I- f Jof() V~*x) dHn~l ds dt + J *IV4I dHn

' ~~.j JIvID 0f;lIdId+Ji~ ~:9 1o '.f-1 Hd + d °"

S CJ40 dH n

with C independent of t0 , t I  if to ,t1 1 a,b] I.i for fixed a ,b

Given E > 0 , pick ; continuous such that J Iw-;I < C and pick

a 0, 6 as in the first part of the proof. Then,
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o (t) t

t I a dHn d t f tJ ( ; d n -
J ( n t 0- w) =1 d n- dtl

t T ( -t }a)

C ( J dHn'l dt+C)

Ito {* uti

:g C(J IV,1 + C)

n I
so liminf 1J dH im j tl  I dt

to 0 (t) 0 C(t)

0 } adHn dt.
ito Jft)

Now divide by ti-t0  and let t, * tO to get the final result. I

Proof of Theorem 2.1.22. Assume (2.1.23), that is,

1/q(K) i c llminf 1 J dx

for all K compact with C boundary.

Take ; to be a representative of the L' equivalence class which

is Borel measurable and everywhere defined. Let A - { > 11 for



some ' CO (S) . Given C 0 (SI) such that * a 1 on A , it follows

by the Morse-Sard theorem that {t =t} r. {IVI =0) = 0 for almost all

t e IR for which it then follows that { =t} is compact with Ca°

boundary, so

WI/q(A) S W/q({. l}) < I/q(f 4>t}) for Ostsl

S c limlnf ; dx a.e.,
6-sO C6 (t)

where C6(t) = {x E {€st): dist(x,{4=t})<6} , by taking K = { =t) for

those t in (0,1) where (0=t) n {(IV(=0} =0.

It now follows that

1 /qUA) < 1nf liminf /qdx

l)inf dx by Proposition 2.1.27

(0,1)

considering the remark given after Theorem 2.1.3. Using Theorem 1.3.2 now

shows that (2.1.9) holds for p = 1

Assume (2.1.9) so that

(2.1.34) q d

for all * E CO(0) . Given A compact with Cal boundary, 3 c*> 0 such

that *(x)= dlst(xA) is C' for x E 0-dlst(x,A)<c*} with

IV(x)I" 1 . Let
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ri on,

fa(x) (1- L ) if < 6 , xd A,

0 otherwise,

and let on6 ahn fa where hn(X) 2n h(2n) ,h . h z 0

J h a 1 , and the support of h I spt h c (-1,1] . If a CO(n) with

k > 1 on a neighborhood of A , n is large and a small, then a

dominates the on.6 * (2.1.34) then implies that a e LI(c.a) since

LI() , so the dominated convergence theorem can be used on (2.1.34)

to show that fq dw s c dx . Taking the limlnf gives(f . fC0

(2.1.23).

To prove (2.1.25) equivalent to (2.1.19), first extend v , w , X

to be zero in 2' -A and do all further work in n' . Assume (2.1.25) so

that

(2.1.35) 0 l/q(A) ,(LV-A) s c lminf dx

for all A c L' A compact with C boundary.

Let K {xcO: *(x) sO) for some a C'(n')1 Given * C;(O')l

such that # s 0 on K , let # Ia a *2 ' where f2 is an extension of

to A' and aa Co(n') , a = 1 on ni . By the Morse-Sard theorem

a at) n {V lj -0} - 0 for almost all t , and so { 1 st) is a compact

set with C' boundary for almost all t , but then

41/q (K) sml/q((1!50) S Wl/q( 1 !gt) for Ost <1



liminf dx
s 6.+0 C ( t) a.e, by (2.1.35) , where the

convention -w = - is

used for this ratio,

IWOJ vdx
a o~c (t)

a, 6 1 >t M a.e.,
A(fl WtJ

since X({[ > t)) . being monotone, has at most a countable number of dis-

continuities and therefore X(4 1 =tl) = 0 a.e.

It now follows that

liminf .f dx

lqK inf 8.-0 6 C(t)

(0,-) >t1)

(, j f d(*1 t }) by Proposition 2.1.27

(0,-) X(4 -t} )

since and X are zero in l'-nl and l Using Theorem 1.3.5

it can be seen that (2.1.19) is verified.

Assume (2.1.19), so for * C(nl')j i it follows that

(2.,.36, ( f ((x) -* ,(y), dA( y))o dy) As c J ,,f dx

-66-



Given A c n' with C boundary, let f... be as before, recalling1 1
that the diameter of spt thn - . Let Fn - xcfl': dtst(x,3A) ~ S 4+1}

n6 n11Then SO anW-- and f 1.1i o A for 1!56 since

1 - on xfi': dist(x,aA) : 1/n} , and so 8n *

(1~j~)hu I- .From (2.1.36) it follows thatn 6

Wl/q(A) X(01- ~A -F )(l 1

jn n 8#

I c 174n.,6l ; dx.

Let n- to get

Ml/q(A) X(n -A) i5 c dx,.

J6
and taking the liminf gives (2.1.25), as required.

840

In case ; is continuous (2.1.24) and (2.1.26) can be shown equivalent

to (2.1.9) and (2.1.19), respectively, by going through the proof above,

using the first part of Proposition 2.1.27 and replacing liminf by Urm
8.0) 8.0

Alternately, (2.1.24) and (2.1.26) may be shown equivalent by using directly

the methods of Proposition 1. a
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2..0 Properties of Sbolev Spaces and Capacities= fo Application to

Differential Equations

The Sobolev spaces and"capacitied'dealt with in Sections 1.3.0 and

2.1.0 will now be placed in a setting appropriate for the applications to

differential equations developed in Chapter 3.

Basic properties of the capacity CH,P and its extremals are developed

such as subadditivity and capacitability. It is shown that Sobolev spaces

are closed under operations such as composition with certain Lipshitz

functions. The weight conditions for Sobolev inequalities developed in

Section 2.1.0 are translated into the setting of Euclidean space and an

example is given, where it is shown that weights of the form distP(x,K) are

admissible, for a class of sets K including unions of C2 compact manifolds

of codinension > 2. The notion of quasicontinuity is developed and ap-

plied to prove a weighted analogue of a result of Bagby [BG] which char-

acterizes W6'P(n) . This In turn is used to demonstrate the equivalence

of two approaches to the definition of weak boundary values for the Dirichlet

problem. Many of these results are true in a more general setting.

d
Throughout Section 2.2.0 S1 will be an open subset of IR , p l , 

and w , v , and X will be locally finite positive Borel measures on

0 with v absolutely continuous to w and X(Qa) - 1.

d
2.2.1. Sobolev Spaces. Let LP(E) LP(mE) x t1 LP(v,E) for E c 1,

isl
E Sorel measurable. Assign LP(E) the norm |(f'gl, ""'gd)p;E

d /p
(J jf1P d + K 1g l ' g p )l
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Let L, {(f,g1  e ( LP(K) for all

K c , K compact} .Lioc() is given the topology induced by the

seminorms | |p;K , K c n compact. W1'(w,v,n) is now defined as the

closure of H, f(0,70): *e C(n)nLP(w2,) and 70 - 11 LP(v,.)) in
Kul

LP(a) W1 'P(,v,1l) as the closure of H n Chi2) x 1 C(n) in LP(a) ;0-- p 0 KulI

and WloP(n) as the closure of H in L W

Given (u,v) C W ,WV9S) , the notation v- Vu , u e ' bc VA

and I(uv)Ip; IuI,., will be used for convenience even though this is

misleading. It is not claimed that u has a unique gradient. In fact

Serapioni has observed that for some weighted Sobolev spaces, zero may

have a nontrivial gradient in the sense above as well as a zero gradient.

Under fairly weak conditions it can be shown that if (u1,v) . (u,,v) E

w I'P((,V,) , then u1 = u2  almost everywhere. If w(E) - 0 on sets E

of capacity zero, then this will follow from Proposition 7. For convenience

WI'P(() will be used to denote WIP(w,v,n)

One of the basic operations needed in the theory of Sovolev functions

Is composition with Lipschitz functions. The following proposition shows

that this is possible for a wide class of Lipschitz functions. For example,

any Lipschitz function with at most a countable number of discontinuities

in its derivative is acceptable. The other basic operations considered

are needed in Chapter 3 to show that certain functions are allowable as

test functions in the definition of weak solution.

Unless a particular space is specified, all the Sobolev functions

in Proposition 2.2.2 will be assumed to lie in one fixed Sobolev space,

the three possible cases being wloc\ , W1'(n) . and W1'P(n) . Con-

vergence is always that appropriate to the particular space considered
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unless otherwise Indicated. It will be assumed throughout that (u,7u)

(u n ,Un) , (vVv) , (vn ,Vvn ) are Sobolev functions and that f(O) :

- (11) is being considered or if w() and P()

is being considered.

2.2.2 Proposition. Assuming the above it follows that:

(2.2.3) If f e C IR) with V bounded, and if un  C((a)

with (un ,vun) . (u ,vu) I then

Mu nm ) I, .'(u nm) Vu nm) -. ( u , (u) Vu)

for some subsequence (nm)

(2.2.4) Suppose f : JR -i. JR is uniformly Lipschitz and 3 f n c Cl(R) such

that fV converges everywhere in a uniformly bounded pointwise manner to a

Borel measurable function g , g - V a.e., and fn(O) - f(O) .

if (u, 1vun ) (u Vu) , then there is a sequence nm such that

(fM(un ) ,f;(u ) Vu ) (f(u) ,g(u)Vu)

and if u * u pointwise everywhere on a set E I then fo(un) -m f(u)

pointwtse on E as well.

(2.2.5) Let

I xeE x xkO• ,( " 110
i O+

0 otherwise0 S
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I X>O b x 2tb
sign x 0 x=O , hab(x) x asxsb

-1 X<O a xsa

where it is assumed that a sO sb in the wl'"P(n) case or in the WT'P(n)
case if w(n) -, . The cases a - and b - are included.

For each of the pairs (x+ X x>O1) , ( x sign x) ,

(hab(X) ,Xfax<b}) , represented as (f,g) , there is a sequence (fn c.

C'(IR) such that f , (f n , g satisfy the requirements of 2.2.4.Therefore it follows that (u+ , Xu>O} Vu).. (Jul ,sign u Vu) t and

(hab(u) I X(a<.ub) Vu) are Sobolev functions.

The fn may be chosen to converge uniformly. Fdr f(x) x + or

JxJ , the fn may be chosen such that 0 s fn(x) s f(x) and for f(x)

haeb(X) , the fn may be chosen such that a s fn s b . If in addition

a < 0 < b, then a < fn < b is possible.

(2.2.6) If f: m o M , f CI(a,b] and a < u < b , then (f(u),f'(u) Vu)

is Sobolev.

(2.2.7) If u and v are bounded, then (uv ,v Vu + u Vv) is Sobolev.

(2.2.8) If u , v are bounded, u e w'P(n) and v e W1'p( ) , then

~ 0

(202.9) If u C(0) v WLP(n) and either v is bounded or v s cw(2,29) I u € ( ) v €loc

then uv £(P)
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Proof of Proposition 2.2.2.

Throughout the proof it will be assumed that E 0 if wi P(n)

or W1'P(O) are being considered and E is an arbitrary compact subset

of 0 if i1oc") is being considered.
1 oc

Proof of 2.2.3. Since If'(x)l s M for some M < - then f(x) s

Mjxi + f(o) , so f(u) c LP(wn) or L oc(wn) depending on the case

being considered. Also on some subsequence nm , u no - u pointwise

almost everywhere with respect to w (and also v since v is absolutely

continuous to w ), so

'E f'(unm) Vu nm f'(u) Vul p dv s E lf(unm)lP IVunm -Vul p dv

+ JE I f'(Unm) " f'(u) I p IVuI P dv

0

since lf'(unm )I s M and If'(unm ) -f'(u)j * 0 pointwise almost every-

where v in a uniformly bounded manner. Also

E if(Un. ) -f(u)IP d s M' fE Un. -P - .0

Proof of 2.2.4. By 2.2.3, (fm(un) ,fm'(u n ) vun) is Sobolev, also Unt u

pointwise almost everywhere a , v on some subsequence n1  so
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(E Ig(u) Vu f u' VUnlP dvI

fE 19(u) -+ f (u) Vu (fUn(un) Vuni

and therefore

lim limsup f 1g(u) Vu - f;(Un ) VUnilp dv = 0

the second term converging to zero as in 2.2.3, and the first converging

to zero since f; -g everywhere in a pointwise uniformly bounded manner.

A subsequence {m can now be chosen so that fm(u-m) Vum - g(u) Vu in

it LP(v,Z) "

k-l

For xaO,

f,(x) -f(x)I s If,(s) -g(s)I ds + Ifm(o).-f(o)j

S NjxI + If,(o) -f(o) 1

for some N< - and also f(x) - f(x) since f' g pointwise in a

uniformly bounded manner and f n(o) - f(o) . The same is true for x s 0

so the dominated convergence theorem implies that f if (u) -f(u)j p dw 0;E m I

Also IfI :s M for some M < - and all m , so

jf I,(u;.)-f,(u)IPdw sP I ° u - l Pdw 0

Combining these shows that

JE f.(u;.) -f(u)IP d.a fE jIf,(u) -f(u)jP do + JE If M(u un -f,(u)(P dw

.0,

-73-'
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and so f (u- ) f(u) in Sobolev norm.

If U% .6 u pointwise everywhere on a set F , then,

Ifm(un)-f (u)u %(u)-f(u)l + jf(un )-fm(u)I

S Ifm(u) -f(u)l + MUn -ul

*0

on F as well. I

Proof of 2.2.5. Pick n c d(M) such that the support of n l_ [0,1] ,

n 0 , and rl - . Let nn(x) = nn(nx) , f(x) =x+ , and fn(X)u

n* f(x) so that

f'(x) - nn * fnx)

with 0 S f; 1 . It is now clear that

(2.2.10) fn -6 x>O} everywhere in a pointwise uniformly bounded manner.

Also fn(O) -f(O)= 0 and 0 s fn(X) x+  since

0~~~ -S7 x X n (y) (x* - (x-nI) + ) dy s x +.

The fact that the f n converge uniformly follows from (2.2.10), f n(O)

f.(O) , and f" fm' in m- [0,1j.

For f(x) - jxJ use that jxj - x + (-x) in combination with the

smoothing of x+  done above to define fn so that fn(x) . sign x
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everywhere and the conditions of b) are met.

For f(x) a ha,b(X) pick n C0(I.) with naO, f n 1 1 , and

the support of n c [-1,11 . Let n n n(nx) and g n(X) n * XE with

n nn

0 if xsa+. or xzb-

n n

S(2.2.11) Osgn sl , g~n(X) -.. i

for large n and gn(X) Xfa<x<b} everywhere in a pointwise uniformly

bounded manner.

Let

(2.2.12) fn(x) - f(O) + f gn(s) ds

(where the convention f = -J for x<0 is used)so that fn(O) = f(O)

and f; ' gn ' xfa<x<b} everywhere in a pointwise uniformly bounded manner.
+

Uniform convergence of the fn follows as for x . If a < 0 < b ,then

it is seen from (2.2.11) and (2.2.12) that a < fn < b for large n

Otherwise it follows similarly that a s fn s b . U

Proof of 2.2.6. With fn as above, apply 2.2.4 to f(fn) , f(ha,b) and

g a f'(hab)Xfa-x<b . Since a < u < b , this implies 2.2.6. 1

Proof of 2.2.7. Assume lul v lvI s M < and apply 2.2.5 with ha, b

a a -9 , b a M in combination with 2.2.4 to see that 3 (un) - {vn} C

C'(Q) such that (un ,Vun) - (u ,vu) and (vn ,Vvn) - (v ,Vv) with IUnI

Ivnl s 1 . In addition, choose the sequences so that they converge point-

wise almost everywhere w , v . Consequently,
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fE uv -UnVn P dS < I P IV-vnlP dr + JE Ivnip l u-unIP dw

I OE~( jvV ni di) + fE Iuu~ di)

-.0,

and

( 7(uvv+v7u)- (un Vvn +vn Vun)I P dv

:5 (E Iu -u n v nIp  )1/p+ (JE IV )lp

:5 (1E I n f IVVnIp vu) / p + M(J IVv- vI PP )/p

0

since vn -* v and un -* u almost everywhere in a pointwise uniformly

bounded manner. a

Proof of 2.2.8 and 2.2.9. Assume that u e W'P(n) v , W1'(n) and

u , v are bounded. In the proof of 2.2.7 choose E - n and un £ CO(n)

so that uv c Wo'"P() since uVn C C W

If instead u j , v c , and v is bounded, then

choose E- support u and choose un  u ,so again uv WIP(n)' . In

the last case when u a C( ) v , -ioc ( n) and v s cw the only change

Is that v s cm is used to show that J n Iv-vnIP 7uiP dv -+ 0 . This is
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clear since Ivul is bounded on E = support u and vn  6v in

LP(c*,E) . I

2.2.13 Capacity. CHP I CHP and C, will be redefined and CHP

will be shown to be subadditive and capacitable. The concepts of quasi-

continuity and capacitary extrenal will be developed. The proof of the

fact that the capacitary extremal satisfies a degenerate elliptic partial

differential equation will be left to later, when it is used to prove a

particular Sobolev inequality.

If H , as described in 2.1.7, is Coc(n) , then all level sets are

compact and the conditions, equivalent to the Sobolev inequalities dealt

with in 2.1.7, only involve capacities of compact sets. This motivates

an alternate and more classical definition of capacity for noncompact sets.

Let H be a subset of C(n) (the functions typically vanishing on

some set or a nbd of some set) closed under addition, and composition

with f ' {ffC: f' bounded, f(0) - 01 . Let

CH() a infif IV*1p dv: *eH , *zI on K

for K c 0 compact,

C(O) - sup{C'(K): K ,O , K compact}

for O ca open,

CH(E) a inffC'(0): 0 open E c0 cn}

for arbitrary E c n

-77-



2.2.14 Proposition. CH is monotone increasing and for E either compact

or open

.C'(E) = CH(E)

Proof. If E is open and E cO , 0 open, then for any K cE , K is

also in 0 so C'(O)> C'(E) , and so C(E)> C'(E) , but C(E) k C(E)

since E is open, so C(E) = C(E) as required.

If E is compact and if E c 0 , 0 open, then C'(O) k C(E), and

taking the infimum over such open sets gives CH(E) z C (E) . If * £ H

And * > 1 on E , then * > I-c on an open set 0 with E c 0 , so

that

CH(E) s > I

sup{C(K): Kc( >l-}l, K compacti

S 1 f] 1l v()p

since k I on all K c 4>1-} . Now let e -0 and take the in-

fitumu over all such f to get CH(E) < C (E) .

2.2.15 Proposition. If A, B8 c , then

(2.2.16) CH(AuB) +CH(AnB) < CH (A) +CH(B)

and CH is capacitable, that is, if E is Suslin (this includes the Borel

sets), then 3Kn compact such that Kn _ E and CH-(Kn)' CH(E) as n -- .

Proof. Once (2.2.16) is proven, then capacitability follows from a theorem

of Choquet fC). Assume A and B are compact. If CN(A)-- or
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C()-- , then (2.2.16) holds. Otherise let S Max (X.y) = fn(Y-x) +x

and S Min n (xy) - y - fn(y-x) . where fn(x) is the smoothing of x+  as

in Proposition 2.2.2, so fn (x) * x fn * X x>Ol , and x+ -'n ! fn(x) s

x for some c+ 0 . Pick f, 4 I H with * on A, a I on

, [J iv.p dv <- and J 19*1 p dv <-. Let Oln SMaxn(u,4) .

0 2,n S Mn n(,) , so a o * (WO-) + = Max( 4.) , 2 O) - -

Min(,,*) , and 2: 1 on AuB , a2.n 2 1 on AnB.
n

From Proposition 2.2.14 and the definition of C it now follows that

CH(AuB) + CH(MB)

' )p 1  ni p  + J IVOI d

(1-. )p f(*-,)(V-V,) +v, P dv +J fV -fn(,)("-V .)IP dv
0 -Cn p

* J IX,, (v*-V) +V#IP dv + f I P d!

V P l p dv + f Iv# I dv + Jf iViP dv

-f V p dv + I IvfI p dv

Taking the infimum over such * , j it follows that

CK(k.B) +CtH(AnB) % C1 (A) +C (B)

and so (2.2.16) follows for A, B compact by Proposition 2.2.14.

If (Kn)  are compact and 0 is opens then (Kn ) is said to ap-

proximate 0 if Kn SInterior K n+ l  and U Kn  0 . Assume A B are
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open and pick (An} , I n(B , compact sets which approximate A, B ,

respectively. It is seen that (An u Bn}  and (A. n BnI approximate

AuB and AnB .respectively. Given KcAuB and C cAnS, K and
C compact, tIen K cAn u B , and C cA n n B for some n ,so

CH(K) +CH(C) S CH(AnuBn) +CH(AnnB)

:s C (A ) +CH (B)

5 C,(A) + C,(B)

Taking the supremum over all such K and C , and using Proposition 2.2.14,

It follows that (2.2.16) holds for open sets.

Assume A, B are arbitrary sets in n . Given open sets 0 , P £

with AcO and B cP , then

Cf(AuB) + CH(AnB) : CH,(OuP) + CH(OnP)"

CH(O) + CH(P)

and taking the Infimum over such 0, P shows that (2.2.16) holds. a

2.2.17 Proposition. CH is countably subadditive.

Pr f. Given E .S & I - , ... ,,n ,it follows from Proposition 2.2.16
nn

that CH(U Et ) t C(Et)

Let {0t}1. ]  be open sets and K a compact set with K c U 01 so

Sm
Cjf(K) sCH( U Oi) :5 CH(01) S CH(O)
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for some m , so taking the supremum over all such K it follows that

CH( oI ) CHi C"(°l) . Finally for , I l ,2... if

CH(E1) a for some I, then CH(U E1) : CH(EI) . Otherwise pick

0 open such that Ec 01 n$C and CH(O I ) s CH(E I ) +c2  so

CH( U E i C H~( U O0)1 CH(O1) £+ CH(E i)

and letting e - 0 gives the result. I

Propositions 2.2.18 and 2.2.19 will be used to motivate the definition

of quasicontinuity.

2.2.18 Proposition. If * £ H , then

CH*((I>IIN) ) -L f I V.I P dv

for all x 0.

Remark. Using a smoothing of the absolute value function the coefficient

2 may be replaced by 1

Proof. If K c (fA) and K is compact, then k 1 on K , so

Cff(K) :s f , lP dv , therefore taking the supremum over all such K

gives CH((,>x}) s ( Iv l v . Considering that 1#I >X)

u (-#>) and using the subadditivity of C. # it is seen that

Proposition 2.2.18 holds. m

2.2.19 Proposition. If *n c H , n - 1 ,2,... , and the *n are

Cauchy in W'P(fl) , then a subsequence of the *n converges uniformly off
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open sets of arbitrarily small CH  capacity.

If H - Co(a) C M I n n are Cauchy in W Ioc41) and either 1*n' 1

N < or v s cm , then there is a subsequence {ntI and there are open

sets of arbitrarily small C. capacity off of which the n converges

uniformly on compact sets. In any of these cases a subsequence of the

On converges pointwise off a set of CH  capacity zero.

Proof. Choose n1  Iteratively so that n1 < n 1  and On - S

2-(i+2)(p+l) for all m a n i . Let E,= {(n -*n M > 2"(1+2)}

so that by Proposition 2.2.18 it follows that CH(Ei) s 2"(1+1) and so

CH(LU EI ) s 2m  for all m > 0 . If xe £ - U Ei 
, then

i-1-*,x (x)j k l klX) Wk (Xlj f 2'm for I > m and so theI.(xn) kim nk n k+l

-n
On converge uniformly off the open set U E  which has capacity 2

If - C(M) and {1n)n.1 is Cauchy in Wloc42) then pick Kt _ n
n nI cI

compact such that Ki S interior K 1  and U K1 a n and choose nt,

Cm(intertor Kt+ 1) so that ni = 1 on K, . Also choose a subsequence

n so that the 0*n converge w almost everywhere (and so v almost

everywhere since v is assumed absolutely continuous with respect to w )

so that

In Jn i n klp d  s c KI lj -nkIP dw  O

as J,k w , and
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I IV(n1 On V(ni Ok Pdv

I + c K+ Ivn -V* nkIP

0

as J ,k. if jn i M or if v s cm . Therefore {nti nj }j. is

Cauchy in W1'P(n) and so by the first part of Proposition 2.2.19 sub-

sequences n can be chosen iteratively so that (niJ }I is a subsequence

of (n. 1,)j , and {Ini *n, }j. 1 converges uniformly on Ki-Gi , where G|

is an open set with Cff(G) < 2('+1) . Let Fk - U G1  so CH(Fk) I 2-k

and the diagonal . zed sequence *nj converges uniformly on any compact sub-

set K of 2 - Fk since K must lie in K1 for some i.E

2." Definition. If a property holds everywhere except possibly on a set

of CH capacity zero, where H =C!(n) ,then it is said to hold quasievery-
where. If u (w '"P() and there exists a sequence C (0) such that

* u in Wl' P(n) and n * u pointwise quasieverywhere, then it is said that
% ~0n

u is quasicontinuous. If u c -ioe ( ) and there exist n £ C(n) such

that *n * u in i ), then it is said that u is locally quasicon-

tinuous.
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2.2.21 Proposition

(2.2.22) If u s W6 'P() , then u can be redefined w almost everywhere

so as to be quasicontinuous.

(2.2.23) If u is quasicontinuous, then u is continuous off open sets

of arbitrarily small CH capacity for H - C7(nl) and if

On a CO(Q) and On* u in wI'P(n) , then 0ni - u polntwise

quasleverywhere for some subsequence (nil

(2.2.24) If either u is bounded or v s cw , then (2.2.22) and (2.2.23)

hold for u and Wn 1C;(f9) if quasicontinuity is

replaced by local quasicontinuity.

Remark. The conditions u bounded and v < cw in Propositions 2.2.19

and 2.2.21 are actually needed only near the boundary of n

Proof. Given u eW'P(D) , there exist *n a CO(0) such that n u

in Wo'"P() . Using Proposition 2.2.19 a subsequence fn I may be chosen

such that *ni converges polntwlse quasieverywhere as well as w almost

everywhere so u can be redefined on a set of w measure zero to equal

lim (x) , where it exists, and so is quasicontinuous.

If u is quasicontinuous, then there exist * n C CO(A) such that

% - u in W'P(n) and pointwlse off a set E , where C (E) - 0 ,

Ii - CO(o) . By Proposition 2.2.19, there exists a subsequence fn1) such

that # n converge uniformly off open sets G with C#H(GJ) sj

Cj O . Choose 0 open such that EsOj_€ E and C H(0) < tj so
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u uniformly off G, u 0, and CH(G uOj) < 2cj . Therefore u is

continuous off open sets of arbitrarily small CH capacity.

If n 9 CO( ) and n* u in Wo'"P(), then *n-@n 0 in

WoP(n) and by Proposition 2.2.19 n, -4nl * 0 quasieverywhere for some

subsequence {n,} . n'* u quasieverywhere so it is now clear that

S-* u quasieverywhere.

The proofs above go over to the Wo1 ,P() case with minor changes as1oc:
In the proof of 2.2.19. 3

It is useful to know that there exist extremal functions where the

infimum in the definition of Ci is achieved. To accomplish this a vector-

valued form of the Clarkson inequalities is needed.

2.2.25 Lema. Suppose (M,F,v) is a measure space and H a real

Hilbert space with norm I I • If f , g are H-valued functions on M

with Ifl, . g If1I If-91 , F measurable, then

(2.2.26) fiP dv + fi iP s JIf P dv + IJglPdv

for 2 s p < ,and

(2.2.27) (11 jj 1 P _(p1 + (f f I l/-)

S(.J f1P dv + f J gjP dv -)

for 1 <p 2.
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Proof. Given u , v E H , let L be their span. Since the scalar field

is R , there is a linear map f: L * C such that jxi - I*(x)I for

x e . Using 15.4 and 15.7 in [HS] it follows that

I6(u) -t(v) p + ON) -I '(M P 1 ( P

2 + p $  2 2 2u

for 2 :s p < and

4.( °, .uv, -,i6(, °  p ' ,.bu , ,/(p-v) (, 1/0 -1+

for 1 < p s 2

Using linearity of I and lxl = I$(x)1 and letting u f , " g

leads to

for 2 % p <0 and

i PAP(,,, 1) f i,,, p/ ( ,,, 1)gP I /

for 1 < p s 2

(2.2.26) follows by integration of the 2 s p < - Inequality. Using

Mlnkowski's inequality for powers between zero and one, 12.9 in [HS], it

follows that
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(J dv1!-"Q fP dv)l/(Pl)-J1 s 1

if II P)( +f 19 P)' dv

from above, and so (2.2.27) holds. I

2.2.28 Proposition. If H a C(n) , E £ n , and the inequality

(2.2.29) 141Pj dc, :s c J v~j P dv

holds for all * Co() , then:

(2.2.30) C,(E) - inf{J IvuIp dv: uWI'P(n)

u al on E quasleverywhere,

and u is quasicontinuous)

and

(2.2.31) CHW(ul >A)]) s; f 7IulPdv

for all quasicontlnuous u eWI'P(n)

(2.2.32) If un awI'P(n) is quasicontlnuous for n-i , 2,... and

(un) is Cauchy in WI'P(n) , then there exists u q W'P(n) , u

quasicontinuous and a subsequence (nil such that un o. u in WI-P(A)

and uniformly off open sets of arbitrarily small measure, and so
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pointwlse quasieverywhere as well.

(2,2.33) If C(E) <w , there exists u Wo1'P(n) such that u is

quaslcontinuous, 0 s u s 1 u a 1 everywhere on E , and

T Vui dv - CH(E)

(2.2.34) If (u,.Vu1) is an extremal in the sense that u1 eWc P(n)

u is quasicontinuous, u1 k 1 quasieverywhere on E , and

J IVuli p dv - Cj(E) , then (ulVU1) - (uVu) in W6'P(n) , where

(uVu) is as in 2.2.33.' Also, u - ul quasieverywhere.

(2.2.35) If 0' is open and bounded, n'c na , E c a' , and C,(E) 0

for H - - ' then C,(E) - 0 for H' - C(n')

In consequence, if either u is bounded or v : cm and if

ua Wa , u locally quasicontinuous and ul,, Wo'"P(O) , then

uj is quasicontinuous with respect to n'.

Remarks. If (u,Vu) is an extremal as in 2.2.34, then , will be

called a capacitary extremal of E . It is clear that it is essentially

unique.

The assumption of the Poincar6 inequality 2.2.29 may be avoided bythe use

of a definition of WI'P(O) which does not require u a LP(w,n) for

(I, in

18
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Proof of Proposition 2.2.28. As will be shown in Proposition 2.2.41,

the inequality (2.2.29) implies that if H * C(n) , then w(E) <

cPCH(E) for all Borel sets E . Thus any set of CH  capacity zero

is automatically of w measure zero. Therefore if u £ we P(R)

then redefining it on a set of CH  capacity zero will not alter the

LP(w,n) equivalence class in which it lies and so it is unchanged

as an element of WI'P(n) . Also, if it is quasicontinuous initially,

then from the definition of quasicontinuity it will remain so. This

property will be used periodically throughout the rest of the section.

Given u W , u quasicontinuous and u z 1 quasievery-

where on E , pick *n ) such that *n - u in W1 'P(I) and

uniformly pointwise off sets of arbitrarily small capacity. Let

E, 8  ( fxn: 4n(X) ?l-6 for all n zN} ,

so C,(EN") s 1  IP d(Iv')

1( [( IVulp dy + £N)
(6.)p

where e* 0 as N.. . Since the 40, converge uniformly to u

off sets of arbitrarily small capacity, there exist FN c 11 such that

Clf(FN) < 0 .O as N.. ,and (u~l} _EN,6 u FN • As a

result,

CH(E) i CH((uzl}) < CH(E N,6 + CH(FN)

a~) (fu I~Idv +cN) + C
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Let N.- and then 8 0 to get CH(E) < f IVuIp dv. Given

e > 0 , pick 0 open, E c 0 such that CH(O) < CH(E) +e . Choose

Kn  compact, Kn + 0 such that C(K n) + C(O) and cn CC4) such

that fn a I on Kn  and J IVnIP d, S CH(Kn) + 2"

(2.2.36) By Lemma 2.2.25, using H = Rd , it follows that

TIn e m + 
d n+V

~2 I7nipdv + 12f1 mIdv f

and

' ( J IV*nI dv+ J IV,"I *)"( P" for 1, p.n) (+  + Cm " ,

> I on KnA m ,where nAm - min{n ,m) so CH(Knm)

nJ dv . Using this inequality on the above and then taking

the limsup , recalling that C(Kn) * C(o) , it follows that

Wn  P~ Hon~ln.. n
limisup 2 d + C (0) S C (0)

for p z 2 . A similar inequality holds for 1 < p < 2 so the V€n are

Cauchy in it LP(v,Q) . The inequality (2.2.29) now implies that the #n
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are Cauchy in LP(w,ni) and so the n are Cauchy in W 'P(nI) . The

fn converge to some u e w6'P() which can, by Proposition 2.2.21, be

chosen such that a subsequence *nt converges quasieverywhere to u

and so u 1 quasieverywhere on 0 and u is quasicontinuous.

In addition,

J ivuPdv -"lm I VnIPdvn."

s li (C (Kn) +2-n)Hnn

SHcH(O) & CH(E)+e

and so (2.2.30) is established. I

Proof of (2.2.31). Using (2.2.30) and arguing as in Proposition 2.2.18,

it follows that C((ul >x) S L ivulP dv for all quasicontinuous
H £p

Proof of (2.2.32). Proceeding as in the first part of Proposition 2.2.19

implies that a subsequence of the un converges uniformly off sets of

arbitrarily small capacity. Since the capacity of a set E can be ap-

proximated arbitrarily closely by capacities of open sets containing E

it follows that the exceptional sets above may be taken to be open. Let

u be the wI'P(O) limit of the un . Redefine it on a set of w measure

zero as in (2.2.22) so that un o u quasieverywhere. Arguing as in the

last part of (2.2.23) with *n a sequence in C'O(n) such that *n . u

in w6"P(1) , it follows that u is quasicontinuous. I
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Proof of (2.2.33). Given E c fl , it can be seen from (2.2.30) that

there exist quasicontinuous u WoP(n) such that un  1 quasievery-

where on E and

CH(E) s f I'IVun p dv r CH(E) +e , nn - 0 as n -

Using Clarkson's inequalities as before, it follows that the un  are

Cauchy and therefore by (2.2.32) there exists u c W'P( ) quasicontinu-

ous and a subsequence fnI}  such that u u in w"'P(i) and point-i ~ ni  W

wise quasieverywhere, so f IVuI p dv = CH(E) and u z 1 quasieverywhere

on E . Use 2.2.5 with h0 1  to show that (h0,1 (u) ,X{(u<l} Vu) C

'P( ) . It is also clear from the proof of 2.2.5 that ho1 (u) is

quasicontinuous. Also

f iX(0<uj<j) Vuj dv J jVujP dv sCH~( E)
but CH(E) 1 J IX(O<u<l} vurP dv from (2.2.30), so equality holds and ho,l(u)

is the required extremal after redefined on a set of capacity zero. a

Proof of (2.2.34). Clarkson's inequalities imply that f IVu1 -VuI P dv = 0

and the inequality 4 *P dw s c J jVOjP C6 , which holds for u, I u by

taking limits, then implies that fJ ul-uIp dw = 0 and so (Ul, Vu1)

(u.7u) in W1'o(n) - I.0 o(s) Iand n (u,vu) in "(.)

then n (u,Vu1 ) in W 'P(n) , in which case there is a subsequence

of the On which converges to both u and u1  quasieverywhere so that

u - ul quasieverywhere. I
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Proof of (2.2.35). If K cnI is compact and C (K) - 0 , then

f C(n) such that nz I on K and J Iv*fIP dv 0 o. If

1 x z

g(x) '2x -IIx2
I X ' x ,

e , supporta acJ 0 nd.

a(-x) , then let f = a*g so that Ijfl I f(x) I if x k I

f(O) =0 , and If'[ < 2 . It now follows that f(¢n) CO(),
f(*~~~~ 0 1 o adr

( I o~n K and f lVf(,)IP dv s 2 fI 1vI P dv - 0 . An ap-
nn1ication of Clarkson's inequalities implies that f(¢ n)  0 in

w'P(Ql) as in 2.2.36, and so f(fn ) e 0 a almost everywhere.

Choose n i e(o') , 0 :s n s 1 and n •I on K so that nf(fn) =I

on K and

J V(nf(*n))I~dv :s f' Inip if(*n)1Pdv + 2 f IVIP dv

.0

since If(n) I & 1 , f(fn) o0 , w almost everywhere, and v is ab-

solutely continuous to 0 . It is now clear that CH,(K) - 0 . If

E _ fl' and CH(E) 0 , then CH(CK) * C) * 0 for all K _ E

K compact but then the capacitability of CH , as in Proposition 2.2.15

implies that CH,(E) * 0

Suppose u a Wlo(n) , u locally quasicontinuous and

ul , 'P(O') . Choose n C (n) such that u- in
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l and pointwise quasieverywhere and { n} I n C!(n') such

that ut in W"P(n') and pointwise quasieverwhere. ?' is

compact since n' is bounded so nl .uj in W and

from the above nfl, -, ul, ' - quasieverywhere, but then u,

is W'-locally quasicontinuous. By (2.2.24) it now follows that

* Ut , L' -quasieverywhere, and so Ut is i' -quasicontinuous. 5

The set function CH,P defined in Section 2.1.0 is unfortunately

not subadditive, even in the case of Lebesgue measure, though it can

be redefined, as CH,P has been, to give a more natural measure of

non-compact sets. If n' Is open, P c 1 , w(O) <- , A is a posi-

tive Borel measure with X(O') - 1 and R is a subset of C;(O)

closed under addition, and under composition with C'7() functions

having bounded derivative, then let

a(K)- inf{L, VflP dv: zel. , I1 on K ,and ,d)=01

for all sets K, K- K' n n' for some compact K' c

C(0) - sup{i.±(K): K=K' nn' for some compact K' c_. and KcO}
H H

and

CR(E) - inf{Z(o): 0 is open, E ccal'}

for all E c_.'

2.2.37 Proposition. E!(E) Z C(E) if E is open or E - K n L'
HH

for some compact K c n
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Proof. The proof is virtually identical to that of Proposition 2.2.14

but with compact sets replaced by the intersections with W of com-

pact subsets of al . I

2.2.38 Proposition. Assume X ! cw , : s cw , and

(2.2.39) i -J dX1 :s c f iv7IP dv

forall * E .

If K K' n ' with K' C_. compact and C.(K) <=, then

3 u t WI'P(1) such that u is locally quasicontinuous, f u dx - o ,

u z 1 quasleverywhere on K , and r lVujP dv - t.H(K)

Proof. Choose n' such that n z 1  on K , n dX - 0 and

J nI*jp dv - t4(K) Use Clarkson's inequalities as in 2.2.36 to showH d
that the Vfn are Cauchy in U LP(vA) . Inequality (2.2.39) then

K-l
implies that the n are Cauchy in LP(w,n1) so the *n converge in

wlP(n) to some u which can be chosen locally quasicontinuous by

(2.2.24), in which case for some subsequence Ini} the n1-u
i

pointwise quasieverywhere and u a 1 quasieverywhere on K . Since

X s c, it follows that the *n converge to u in L1 (X,,;) so that

u d) 0 . Finally, J IVu p dv - t.(K) since Ivn IP dv .H

H

Sobolev Inequalities. The characterizations of the weights for the

two inequalities (2.1.4) and (2.1.15) will be translated into the

present setting, (2.2.42) and (2.2.46), and weights of the form

distP(x,K) will be shown to be admissible.
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A number of sufficient conditions for special cases of (2.2.42)

and (2.2.46) appear in the literature. The condition on w , v assumed

in [K], [MS], and [Ti] is fairly strict. A result of Muckenhoupt and

Wheeden [MW] introduces a less strict condition but the resultant inequali-

ties are not useful here, since they assume that the density of v is a

fixed power of the density of w . Welland [W] has given a simplified proof

of this result, the methods of which (along withthe Besicovitch covering

lemma (Gi) can easily be adapted to yield suitableinequalities if W.v

satisfy a condition of the form

(B x) dx)i/1q (J v(x) 11 (P-' p-i) (p*..l)/p* Sc IBI~

for all balls B c n , n a bounded open set and for some e > 0

p* < p , and q* = p*-q . If w a v , then this includes the A weights
p p

(Nl. The assertion above will not be put into rigorous form and

proven since it departs from the general direction of these notes.

The fact t-hat Ap weights are admissible for the appropriate Sobolev

inequalities was also recognized by E.B. Fabes, C.E. Kenig and

R.P. Serapioni (FKS] independently and at the same time as by the

present author. The use of fractional integrals in this approach

turns out to be too crude to allow a characterization of the weights

needed for the Sobolev inequality (2.2.42)and (2.2.46), since it

annihilates important geometric properties of certain classes of

weights. A simple example is provided by the weights w(x) a v(x)

lxl in fl - B(0,1). The condition assumed in K] forces -min{p,n<a<

min(p,n(p-l)), while altering the methods of (MW] and [WI allows

-n < a < (p-l)n and the present methods allow -n < -.
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It will be assumed in Lena 2.2.40 and Theorem 2.2.41 that

CO(n) and a- Co(n) where fl' is open, fl

2.2.40 Lemma. If K c fi is compact, then 3 Kn S n such that Kn =

z* l} for some d (n), K cK , Kn  is C and C (K).n n 0n n H n
CH(K)

If K_ c , K K' n n for some compact set K' cn ,then

3 K' c such that K= {nl) for some *ne e n) nK is C
0n

K c K and t (K n' n,) ,(K)K n  Hn

Proof. Let K cfl be compact. Given £, 0 < < 1 , choose *
CO(A) such that # zI on K and Jiv*iP dv < CH(K)+e . By the

Morse-Sard theorem ( IVl .01 n {( at) 0- for almost all t e IR

Choose one such to  with 1-c s to < 1 so that (0 >t} is a compact

set with smooth boundary, K c {# ztO}  and

1

S(CIK) + e).

Sequences Kn , fn can now be easily chosen.

If K cA' K - K' n 0' for some compact set K' c , then

argue as abovewith * chosen so that $ z I on K , L f d, 0

and I 1,I1P dv E .(K) +c . and with C H((#a to)) replaced by
(¢t 0} )  • I)

2.2.4 Theore. If 1 sp %q<, then

(2.2.42) (f Iu1q d)Iq C'" ( jvu°p .)l/P
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for some c1 > 0 and all u i CO(0) iff

(2.2.43) 0l/q(K) s bI C1/P(K)

for some b1 > 0 and all compact sets K c n with C" boundary

1ff

(2.2.44) l/q(E) s b1 C11 E

bH(

for some > 0 and all Borel measurable sets E c n

If p - 1 and v is absolutely continuous with respect to

Lebesgue measure on n with density L I (S), then (2.2.42) holds

1ff

(2.2.45) Wl/q(K) : b1 liminf dx6-*0 6

for some b, > 0 and all compact sets. K with C boundary, where

Ca (x eQ-K: dist(x,K) s6)
1 /qIf ; is continuous, then this reduces to wl/ (K) S

b1 d n l

If (') <- , X(fl') z 1 and 1 s p s q <= , then

S(2.2.46) (l' u- u dXIq do)I/q :s c L, ,,uI- dv) 1/ P

for some c2 >0 and for all ue Co(n)j ,

1ff

(2.2.47) Wl/q (K) s b2 C'lP(K)

H

for some b2 >0 and all K cl such that K- K nl for some

compact set K' n ,
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1ff

(2.2.48) c/q(E) s b2 .el/P(E)

for some b2 > 0 and all Borel measurable sets E '.

If p I and v is absolutely continuous with density ' £ L(')

then (2.2.46) holds 1ff

(2.2.49) Wl/()X(fl -K) :s b2 llmsup f;dx

for some b2 > 0 and all K c n' such that K K' n I' for some

compact set K' c n , and where C- (x fl'-K: dlst(x.K) s6 .

If ct , bi , 1-1,2 , are chosen as small as possible, then b1 !S

c1 : pl/q p 1/ P' bl and b2 s C2 s 2pl/q p1/Pb 2 .

Proof. Consider Theorem 2.1.7. It is claimed that (2.1.9), (2.2.43),

and (2.2.44) are all equivalent. It is clear that (2.2.44) implies both

(2.1.9) and (2.2.43). (2.2.44) follows from each of these in a similar

manner so only one implication will be done explicitly. Assume (2.1.9).

Given a compact set K c S1 , Lemma 2.2.40 supplies a sequence (K nI of
compact sets of the type considered in 2.2.40 such that wl/q(K) s

6lI/q(Kn) s b1 Cl/P(Kn) - b1 C'/P(K) . Given a Borel set E c n , use the

regularity of w to choose a sequence of compact sets Kn such that

nnKn E and w ,) wE , so

0 l/q (E) lim wl/q(Kn) s b Ilmsup CH(Kn) b1 CH(E)

and (2.2.44) is verified.

The equivalence of (2.2.42) and (2.2.45) now follows directly from

Theorem 2.1.22.
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The second half of the theorem follows in a similar manner to the

first using Theorem 2.1.17 instead of 2.1.7. 1

It will be shown in Theorem 2.2.56 that weights of the form

dist(x,K) admit Sobolev inequalities of the type (2.2.42) and (2.2.46).

These will be used in Chapter 3 to demonstrate the Holder continuity of

solutions of certain differential equations which have these weights as

degeneraci es.

It will first be shown that two weighted isoperimetric inequalities

hold under the conditions (2.2.51), (2.2.52), and (2.2.53). The rather

technical verification of these conditions for specific geometries is

left to the proof of Theorem 2.2.56.

Let w , v be nonnegative Borel functions defined everywhere on

(x, ,2RO) S md , d>2 . For each r , 0 - r s 2R0 , let Cr and

Dr be Borel measurable subsets of R(x0 ,2R0 ) , Cr will correspond to

sets where v is "small" and Dr to sets where w is "large". Finally,

let Pz be the projection of Rd onto the hyperplane {x cmd: x-z O ,

ze]Rd ,zO , Pz( OR ) wil sometimes be casually identified with d- .

a(d) will be the d-dimensional measure of the unit ball in IRd

2.2.50 Proposition. Assume that the following conditions hold for all

B(x,r) S B(x0 ,2R O) and z e Rd, z 0 .

(2.2.51) N dl (P(C B(xr))) s 4-4rd-l9
z r 25+

(2.2.52) o)(B(xr)) Cl(B(x,r) -Dr )

(2.2.53) max , S c2 16(xrr))(( dr1)/d)-l/q min V
| ex'r)'°r B(xr)-C r
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for some qzl and c1 , c2  independent of r , x , z , then there

exists a constant c(d) such that

(2.2.54) If X is open and JB(xo9RO) -XI 2 1 IB(xo,Ro)J , then

1' lq(Xn B(xoSRo)) < c(d) c c2 ldol(SX n B(xo,Ro))•

(2.2.55) If X is open and X cB(xoR O) , then

0 1q(X) s c(d) c.lq c2 dl(aX)

where w(E) w and Vd.1(E)-EvdH

The abbreviations max , min have been used instead of sup and

inf to emphasize that it is the true supremum or infimum which is

indicated and not the essential supremum or infimum. The proof of

Proposition 2.2.50 will be deferred till later.

Suppose K cIRd, IR K 0, da2,and c,.OcIR . Then

let w(x) - dist(x,K) , v(x) - distl(x,K) , and A(t) (x c Rd:
dtst(x,K) :st}

T.2.6 heorem. If I s q s d+0 -1 and the following
d-l q

conditions hold for all B(x,r) s B(xo9R0) and z • d

(2.2.57) If 0 >0 , then Hdl(Pz(B(x,r) n A(er))) s A- U rd-l

12
for some e1 , 0 <e1 <If

(2.2.58) If a < 0 , then w(B(xr)) s clw(B(x,r) -A(ezr)) for some
1

c1 >0 and some e2 * 0<C2 <
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--7

with el E £2 , and c1  independent of r , R0 , x z , x0  then

there exists a constant c2  independent of x0 , R0  such that

(2.2.59) If X c d , then

l/q(xn B(xoRo))w(B(xoR 0 ) - X)

:S c R t/q )-S R (d/q) 'd~l (a(B(xoRo))vd.(3X n B(xoRo)
2 k 0d-0

(2.2.60) If X c B(xo,RO ) , then

ollq(x) s cL ( /q )-l R(d/q)'d+ld l ( x

o 5 () c2  0 vdil(aX)

where Rk = maxfR0 ,dist(xoK)}

In addition, if 1 z > I-1 9 1 +-1 and a(x) =

p q t p q

d1stlO'(P'l)4(x.K) v(x)P -(P-1) , then there exists a constant c3

independent of x0 , R. such that

(2.2.61) (J 1,tM)lt I cR (cs/q) -0 R(d/q)-d+l (J I ), /

for all # e Co(B(xoRo))

(2.2.62) ([ -h 'B 1 /t :5 c3 R (J/)- (/)- 1w*a1 P

for all *(B(xoe2R and B - B(xoR O) .or~~~~~ B'l+ 'SXR)I(ORo)

If K - U =1 Mi, M i a compact C manifold of co-dimension yi> 2,

or a point (yt-d), and >-yi , iul,...,n, then (2.2.57) and (2.2.58)

-102-



are satisfied for all x M d and r c(0,-) so that (2.2.61) and

(2.2.62) hold for all xO , R. In addition, if Op-(p-l)a > -y

then

(2.2.63) R (I/q)-B Rd/q)d+(B(xoR ))'/P(B(xoR ) R

for some c4  independent of x0 ,R

Remarks. The conditions on , allow o/w to degenerate to zero

on K and also q may be chosen arbitrarily close to 1 so as to

allow consideration of arbitrarily large p

The assumption that Mi is a compact manifold is not necessary but

merely convenient. The conclusions of the theorem are true for much

more general sets K.

The specific estimate for the coefficient Rc/q)8-  R (d/q)-d+l given

in (2.2.63) is important since its existence will lead to a proof that

solutions of certain differential equations with degeneracies of the form

dista(x,K) are I61der-continuous.

It is first convenient to prove a lemma which is a generalization

of a lemia of Federer (F1] which he used to provide a simple proof of an

important result of Gustin [GU].

2.2.64 Lemma. If A , B are compact sets, A uB convex with diameter

8 and E is a Borel set, then
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j ' j d a(d) Hd'l((An B)" E) + H Hdl (P(E)) dz

6d d 6d-l 62d-1 zz~

Proof of Lemma 2.2.64. If A , B are compact sets, AuB convex with

diameter 6 and E is a Borel measurable set, then

IAI IBI = JJ XA(X) XB(Y) dx dy
' JJ X(x) x, (x+z) dxdz
= Jf, 1  ltx: xA , x+zcB1 dz

JH({x: x cA and x= +tz for some t}) d&dz

.11zi 1:6 fPz(AnB )
8 f TI Hdl(Pz (AnB))dz

< 6 J 1 Hd-(P z(((AnB) - E) u E))dz
Izl z

zl HI(P ((AnB)- E) u Pz(E))dz"

a fII [H d-I(P z((AnB) - E )) + H d'I(P z(Q)] dz

< a(d) 6d+l Hdl((AnB) - E) + 6 fz I" Hd-1 (P(E))dz

Dividing by 62d now gives the result. I

Proof of Proposition 2.2.50. Assume that (2.2.51), (2.2.52), and (2.2.53)

hold and that X is open and JB(xo,R O) -Xa .1 IB(xo,Ro)I

2.2.65. Given x e XnB(xoR O ) , 3 r , 0 < r s 2R0 , such that

IB(xr) nB(xoRo)n XI = + IB(xr) nB(xoRo)I since

IB(x,r) nB(xoR O ) nXJ is continuous in r , IB(xr) nB(xo,RO ) nXt

IB(xr)J" IB(xr) nB(xo,Ro)1 for small r and
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18(x.r) nB(xIR 0) nXI - I B(x0 IR 0) nXf

- IB(x.R 0 )1 -jB(x0,R 0)-

' 9 IB(x0 ,R0 )l

* . B(X,r) nB(x0,R )I

for r~ 2R0

Let r' = W~-O) and R6 R.0 -0 for small e so that

IB(x,r') nB(xoOR6) nXI - -1 f(e) jB(x,r') nB(xoR6)1 , where f(e) *1
as c -a 0 . Now apply (2.2.51 ) and Lemmna 2.2.64 with A B~x-.rP) n

R~oR6 , B - (-BTx.r') nBFZxaR6))x and E -Cr n B~x,r) t~o

get that

jB(x.r') n B(xoSR6) nAXI I(B(x,r') n B(x,,R6)) - Xj

d 8d

Ad4Hdi((aXn BX.' BC-R6 C + a d) r~
B~~r) Bx 0 R~ r) 2 5d+4 =a-

for 8 dIa m Brx-r') n B~x70 ,',

A simple calculation shows that 6 :s 2r and

jB(x,r) nB(x01R0 )I z ~)

rd
2ta(d)( 1 9

so letting c 0 it follows that
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IB(x.r) nB(X01R0 ) nIA I (B(x,r) n B(X03,R0)) - XjI

I]B(x,r) nB(x 0 9R 0)1 IB(x~r) n B(x 0 'R0 )I

- 5~ ~~ H d -(( X n B(x, r) n B(xo OR )) - Cr) +

and by 2.2.65 , 1: dlHd-l(( 3X nB(x,r) n B(x0,Rd) r and8 a(d)r d-lC

IB(x~r)I (d-l)/d s 25d+1 a(d)- l/d Hd-l (( 3X nB(x,r) n B(x0 OR 0))- Cr)

Using (2.2.52) and (2.2.53), it follows that

I r

I B(x,r)-Dr

S clq i v IB(x,r)I(d-l)/d

2 aCd c1  c m(anM~rnBx, 0 ) rBB~xqr)-Cr

S 25d+l a(dyl /d c / C2 V d(aXn8(x~r) nB(x 0,R0))

Now apply the Besicovitch covering lemmna [G] to find F1 , 1 1 ... 9 ,

each F1 a collection of pairwise disjoint closed balls i , B - B(x,r)

as above, such that U F1 is a cover of X n B(x0,R0) .Since m can
i

be chosen to be dependent only on d , it follows that w(X nB(x 3 R 0)) :5

MM ) for some 1.

Lot F1  (B(xj~rj)lj so that
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xl/q x

s m/q ,l/q(B(xjr)

1 m/q 25d+4 a(d) -l / d cl/q c2

Svd-l(X n B(x jrj) nB(xo,R0 ))

s c(d) cI/q 2  0dl(X nB(xoR))

since the balls B(x ~r ) are pairwise disjoint.

(2.2.55) follows almost identically since given x e X , there

exists an r , 0 < r % 2R0 , such that IB(x,r) nXi 1 , IB(x,r)l

This is true since B(x,r) c X for small r , and X . B(x,r) and

IB(xr) nXI = IxI - 1B(xo,R 0 )l 1 B(x,r)l for r =.2RO. Lemia

2.2.64 is applied with A - Yxr) nX and B = BTxr) -X . A short

calculation simpler than the one above then leads to

IB(x.r)l(d' l ) I d s 2d+ 4 a(d)"l/d Hd- (( aXnB(x,r))- Cr)

and the proof is concluded as above with the exception that B(xoR O)

does not appear. I

Proof of Theorem 2.2.56. Recall that A(t) ( (x IRd: dist(x,K) <t}

Let Cr a A(eir) if 0 > 0 and Cr = if 0 s 0 , and let Dr a

A(e2 r) if e < 0 and Dr = 0 if m z 0 . Assumptions (2.2.51) and

(2.2.52) now follow from (2.2.57) and (2.2.58). (2.2.53) is verified

as follows.
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There are a number of cases to consider, depending on the relative

geometry of K and B(xr) and the sign of a and B . Assume

B(x,r) S B(x0,R 0) , and let r, . dist(x,K)

A. If r < r , then A(eir) nB(x,r) = 01 = 1,2 since
12

S , and so

max W : C-
B(x,r)-D r

l 3rl 0

min V z

B. If r zT then

f (3r)r ak0

B(x'r)Dr (c2rf' a < 0,

in v k (3r)O 0 s 0
B(x,r)-C r (er)O 0 > 0

The proof of (2.2.53) is virtually identical in each of the cases so

only onewill be done explicitly. If a < 0 > 0 ,and r <-r,

then
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max 1 /q w

B(xr)-Dr

rI-/q r I alq -

B(x,r)-C r

S 2(a/q)a(d )(I/q)'4dl )/d)r a/q j'0 r (dlq)d+l 18(x,r)) (( d l ) / d ) I / q  min v£ 2B-(ct/q) ~m

B(xr)-Cr

9 c R c / q ) ' R (d/q)- d+l IB(xr)l((d- l )/d)- / q  min v
K 0 B(xr)-Cr

for RK - max(R0 ,dist(x,K))

Since (2.2.51), (2.2.52), and (2.2.53) are verified, it follows that

(2.2.54) and (2.2.55) hold. It will now be shown that the assumption

that X is open is superfluous. If 3X nB(xo,RO) has positive

d-dimensional measure, then (2.2.59) holds since JRJ.- 0 . Otherwise

assume (X nB(xo,R0 )1 - 0 . Let X' - interior X in which case

aX' c aX and 1B(xo,Ro) -XI - IB(xo,RO) -X'j , so if JB(xo,RO) -XI

1 tB(xo,Ro)i , then

(2.2.66) 0I/q(x n B(xoRo0) ) - l/q(X)' n B(xoRo) )

s cR (a /q) 'IB R(d/q)-d+l (W nB(xoR

sc R~a / q ) ' o R(d/q)'d+l d-1 13X nBlxoSRO))

K 0 d Ian~xR)

A similar argument works for (2.2.55), in which case (2.2.60) is

proven.
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(2.2.59) follows directly from (2.2.66) If IB(xoR O) -XI 2

I IB(xo,Ro)I since w(B(xoR o) -X) s w(B(xo,Ro)) If IB(xo,Ro ) -X1

IB(xo,Ro)j , then let X - B(xo,RO) - X so IB(xo,RO) - X,

1JB(xoRo)I , and (2.2.66) implies that

0K
W l/q(x ' nB(xoRo !5 c R (t / q ) ' o R ( d / q ) -d+ 1 d1(3X' nB(xoRo)) .

ax, C ax so

W/q( X n B(xoDRo0)) (B(XoR O0 ) - X)

:s w(B(xoRo0)) =I/q (B(xoR O0 ) - X)

s cR ( a / q )  d/q)d+ (B(xo,Ro))vdl(X nB(xo,R))

K 0 O)dla0

i(B(xoRo)) >0 since IRI - 0 , so let I = w/w(B(xo,Ro)) . If v

were integrable, then (2.2.61) and (2.2.62) could be proven by appealing

to 2.2.41, but there are interesting cases when this is not the case.

To handle these, Section 2.1.0 is used in conjunction with a direct

proof of the capacitary conditions involved. It will first be proven

that wl/q(A) s c 2R(c/q)-OR (d/q)-d+l RH,(A) for all level sets A - f{so,
2 K 0H1

4 [ H=s Cm(B(xo,2Ro)) o n ($: IVl LP(v)}

in which case it will follow from Section 2.1.0 and 1.3.5 that (2.2.62)

is true in the case p - 1 and t * q . It will then be shown that

(2.2.62) holds in general.
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Given A -( O) for some * K ,pick * H with * s 0 on

A.

1( (I=/qlf*<tj))XlBlx oRo ) -(*<t))

: C2 R(%/q) 0 R (d/q)-d+l it B v dHd -1
2 K0 J{*< t)nB (x0 , RO)

for all t>O , recalling that the domain of * is B(x0 RO) . It is

claimed that (t M J3(*t nB(x R v dHnl a.e., so using the in-

finite arithmetic conventions in 1.3.5 it is seen that

Sl/q(A) s c2  R(d/ql'd+l inf -( t)

Taking the infimum over all such 41 gives

0 l/q (A) :s c2 R(c/q)- (dfq)- d+l-

Theorem 1.3.5 states that Kdl(A) - CH,I(A) , so (2.2.61) holds by

Theorem 2.1.17.

To prove the claim use the co-area formula to get that

p(E) - 1 17* x' )(oolVl

JEJ~JItmB( 0I 0)v dH dl dtfE f(*<tlnBlxoJRO)

for E c . These integrals are defined and finite since I*1

LP(v) and v can be realized by a pointwise everywhere, monotone

increasing limit of bounded functions. This means that
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v dHd-l is locally integrable so that -*(t)
)faf*tlnB(xO$R 0)

Jo dHd-l a.e. as required.
Ffat{nB(x0, R0 )

A similar proof, using the capacity KH, , establishes (2.2.61)

for the case p=l and t =q

To prove (2.2.62) in general it is necessary to prove the t zq

p - 1 case for * replaced by +a = for a z I . To do

this choose a C smoothing (f }  of f(x) = X0xO} x such that

fn * f uniformly and fn - X{x>O} with 0 < fn ; *X(x>O It is

clear that f (o) 4 + )" in Ll(wsQ) and L q(w,1) so that substitut-

ing fe( ) in (2.2.62) with t = q , p = 1 , and then taking limits,

it follows that (2.2.62) holds with (O+)c' instead of 0 . The same

is true for (W)a = X{O} •

One additional calculation is necessary. If a and b are non-

negative and a z 1 , then Ja -bia < la' - b I since'if a is the

largest of the two, then a = Ob for some e , o s e :s , and

Ia-bj= - (l -e)aa 5 (1 -e)a" Iaa- baI . It will also be used,

for B = B(x0,R0) , that

,u(x) - J u(y) (a(y) dyI5 w(x) dx)/Sj

'(iBT- w7 87J('BIu(x) -u(y)l w(y) dy
S (x)

, < I,< !, u~x. Is ~z o~, ° o,, ,>,o~ddxx)
.A.S

f u x) - I- u(z) w (z) zj ( ) ) (,9 (-.,,T fw~x)dx)

+ ~k 1  9 ~ l u(y) - u (z)caa(z) dzj w(y) dy) w(x) dx)

B I W-12-



2(9uyTLJ u(x) - U() uwb(z) dzI5 cw(x) dx)

so that the first two integrals are comparable. Now let aL a I and

let u(x) - f(x W i y ) c&(y) dy so that

J ult w(x) xI/

(L (J~ u(x) -1~ J u(y) w(y) dylt w(x) d) I/q

'(L ~~f Iu(x) -u(y) w(y) dy t w(x) xI/

(L L LI f~j j Iu(x) u(y) c(y) dy) wa(x) dx )

+ (L~ U-yJ I(x))a U (uy)) (y ) dy)q w(x) dx)]

S5 20- [(u +~'x)~ (x))c (u+)(y) w4y dq (x)dx

A) L
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:9c (C/q)O R (d/q)- d+1 rI~aI *(C I V)
K 0 CfBnfu>O} + nu<O)

.R (a/q)-0 (d/q)-d+l I'x. I I ulK 0 B(X0.R 0) H -I

:S (L/q -R d/)-dl J ll OL-)P WI/pa (Ivl a)I/P

It is easily seen that (cL-1)p' =t, =  , and Vu = V$ so that

1(J -1ai) JB j a)1/t scR (a/ )-0 R (d/q)-d+1 Ji 1i aF)l

t

To prove (2.2.61) let * = uL for a so that

and so (2.2.61) follows after using Hilder's inequality.

If K - UM.i M a comDact C2 manifold of co-dimension
1 1

y>2 or a point (y : d) then it is routine to show that there

exist c0 , rO , co > 0 such that

(2.2.67) Hd-l(B(x,r) nB(t)) < c0 r d -- j- 1

for O<r<r 0 P t < cOr,y - MinyiardB(t) -{x e IRd: dlst(x,K) -t1 . This

will be used to verify (2.2.57) and (2.2.58) for all x IRd and

r a (0,n) and (2.2.63).
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Assume 2 diam K r for C- a(d) l/d- Let r)

diam K + c1r so if el s then A(elr) S B(x',r') for x' £ K

and

Hd'l(Pz(B(x,r) nA(e r))) s Hd-l (pz(A(lr)))

is H d-l (Pz(B (x,. r,)

SH d-l(P z(B(x' ,cr)))

S a(d-1) (cr) 
d-l

as required in (2.2.57).

If r s r0 , t s e0r , and a > -y , then the co-area formula im-

plies that

(2.2.68) dist(x,K) dHd . t SO Hd-l((x,r)

J(x.r)nA(t)

s c rd Y  ds

, r d-y t+y

2.2.69. By covering K with a finite number of balls of radius less

than r0 and applying (2.2.68) with a - 0 , it is clear that there

exists c' t0 > 0 , such that JA(t)j ' c' t' for t s to
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If x P(A(t)) , then choose x2 c A(t) such that Pz(x 2 ) =

x Pz(Xl ) nA(2t) contains a line segment of length 2t

since any point within a distance of t from x2 is in A(2t) ,

so 2tHdl (P z(A(t))) < 1A(2t)I 1 c' 2Yte and Hd'l(P z(A(t))) <

C' 27'1 t Y ' l for t s t 0/2 C

I f ro r < ~~2 dlamK an E,: 0c he
If .< r<2 c and £1 < 4 diam K , then

H d ' l (P z(B(x,r) n A(re I ))) <s H d 'l (P z(A(rcl)))

S c' 27- 1 (2 diam K )Y-1 CY-I

so that for e, small enough it follows that

Hd-(Pz(B(x~r) nA(rel)) ) <S~ d r- <!9 rd-
2 6d+3 0 25d+42 2

r 0
Finally, (2.2.57) will be verified for r s " If XI

P (B(xr) nA(rel)) and £1 s minfl/2 ,c 0 /2) , then P-1
z z (XI) n

B(x,(l+2e1 )r) n A(2r l ) contains a line segment of length 2rel

Using (2.2.68) with a = 0 , it now follows that

2rI Hd-(Pz(B(xr) nA(rc1 ))) s Hd(B(x,2r) nA(2r)) s co 2 d d

and

d-1 c0 2d-lEy-I rd-1
Hd(Pz (B(xr) nA(rel))) , - 2
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It is now clear that (2.2.57) is verified for a sufficiently small

choice of 1,

Let X, (x) distF(x.K) and X, (E) = J X0(x) dx . It will be

*shown for o > -y that

(2.2.70) c-1 ),o(B(x,r)) s maxO{r ,dist(xK)}rd

S c Xo(B(x,r) - A(e r))

for some c , > 0 independent of x and r . (2.2.58) then follows

by setting a - a . Also, considering a - pO -(p-l)a , it follows that

if po - (p-l)cs > -y in addition to > -y , then

l/tI~R1~ l/~'~f.O 0 0 C/t ad/ t R4$+(P-l)i/P -i0) / X, 0 MxDO uA 
0 

a c ~0 K 0 K

•cR "L/q)"O Rd/q) d+ l ,

so (2.2.63) is verified.

The proof of (2.2.70) will be broken down into a number of cases.

First consider the case where r, > 2r for r I  dist(x,K) An easy

calculation shows that

(r, + r)7 o 2:0

on B(x,r) , so xo(B(xr)) sc maxfrlgrrd . Similarly it is seen that
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Ak(B(xr)) c max{r l ,r}rd. If E2 s 1 , then B(xr) nA(c 2 r) 0

so x,(B(x,r) -A(ezr)) z c maxfrl,r}rd

If rl s Zr and r s ro , then it follows from (2.2.68) that

c d+c Fy4

AX(B(xr) nA(eor)) S y-+ o "

Also,

{ (3r)" a 0

(cor)a a < 0

on B(x,r) -A( 0r) , so

,(B(x~r)) s X a (B(xr) -A(£or)) + X a(B(x,r) nA(eor))

aid

s c r°

s c maxO{r l ,r}rd

1f E2 s o  r then IB(x,r) nAr s c if £2 Is small

enough, then IB(x,r) -A(E2r)I z c rd . Now considering the two cases

a < 0 and a k 0 separately, it follows that

rd+ o

)X,(B(x,r) -A(£ 2r)) z cr k c maxa{r 1,r}rd

Covering K with balls as in 2.2.6g and using (2.2.68) it follows

that there exists t0 > 0 such that \a(A(t)) s c ta+Y for t < to .

If r0 < r s 2 diam K , then
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)(B (x.r)) :sx (B(x, r) ~A( :K) + X,(A( 2 ~ )

a~

s c maxorpIr)rd

As in 2.2.69, tA(t) 1 : cty for t s to so ifC2S

to(2 diam K)1 , then

I5(x,r) -A( 2 r)( a IB(x,r)l -Ac2 j

a(d) rd _ c CY(2 diam y

and so for e2small enough

.IB(x~r) -A(c 2r)j a c(2 diai K)d

z crd

and

a+d ~ aarr dA(B (x, r) - A (er)) z c r acm~ ,.r

Finally, if r > 2 diam K ,then for some x c K use polar coordinates

to get



X a(B(xr)) s Xa(B(x' , 2 diam K)) + X (B(x',4r)- B(x' 2 diam K))

Sc((2 diamK) + r  s - ds
f2 didam

s crd o

s c maxacr l r) rd

Also, A(c2 r) EB(x',r') for x' € K and r' = diam K+ 2 r , so

if £2< , then r' < 4r , and IB(x,r) -A(c2r)l z a(d)(l -( ))r ,

so

X0 (B(x,r) -A(c 2 r)) ? c maxayr l , r ird

The Euler Equation for Capacitary Extremals and a Wirtinger Inequality

The CH-capacitary extremal for E c n satisfies a degenerate dif-

ferential equation. This can be used to develop an interesting sufficient

condition for a special case of inequality (2.2.46). This is motivated

by a paper of Meyers [MYl].

If (u.Vu) e Wo'P(n) and I is a finite positive Borel measure,

then it is said that (u,Vu) satisfies -div(v jVul p '2 Vu) = U weakly

if f Vu IVuI p 2 d = dci for all f*e Co(n) . The convention

0 se 0 is used for Vul p-2 7u if 1 : p < 2 .

2.2.71 Proposition. Assume 1 < p <- and inequality (2.2.42 ) holds.

with p - q . If Ecfl, compact, and 0 < CH(E) <- for

H w CO() , then there exists a finite positive Borel measure U supported

on 3E such that (f) CH(E) and i(F) • 0 if CH(F) 0 and F is
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Borel measurable. Also,

iJ a d1 :g c(J IVoIp d, + J 1oP &)l/p
for all a CW(n) and c = C(P-')/P(E) max(dist'l(E, an) , I , and

-div(v IVul p -2 Vu) = 11 weakly

if (u,Vu) is the capacitary extremal of E .

Remarks. A weaker notion of Sobolev space can be developed which

admits much of Proposition 2.2.71 without assuming the Poincari in-

equality (2.2.42).

The dependence of c on dist(E,M) can be removed in the non-

weighted case if an alternate capacity is used.

Using Lagrange multiplier techniques it can be shown that .
H

capacitary extremals of compact sets satisfy a similar differential

equation.

Proof. Let (u,Vu) be the capacitary extremal of E which exists

by (2.2.33) and (2.2.34), and let F(ta) - f IVu +tao p dv for

t IR and a C (n) . By the mean value theorem if x y • ,

theh

tXIx~yl -x p p2 *).
- t " I jx+t*y1 (x+t* A y

for some t! between 0, t ,where the convention 0 . 0 is used

for lx+t*ylP '2 (x+t*y) if 1 < p < 2 and x+t*y - 0 . It is clear

then that
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IVu+tVOa p -p Vu p I p I VuIP '2 Vu .7
t

v almost everywhere, the difference quotient being dominated by

p(Ivuj +t lVal) 'IP IVol , which is seen to be in LP(vj1) by using

H1blder's inequality and recalling that IVol has compact support and

v is locally finite. From the dominated convergence theorem it now

follows that

(2.2.72) d = lm F(t,a) -F(O,o)(..2 t" t-0 t--11 t

aP f 1Vup- 2 Vu Va dv

2.2.73. If u+to z 1 quasieverywhere on E , then by Proposition

2.2.30 it follows that

F(Oa) - f ulp dv
a CH(E)

S J lvu+tvOl~pd
- F(t,o) .

If a a 0 and t z 0 , then u+to k 1 quasieverywhere on E and

(2.2.74) 0 S Lt.. P J tVu= Vu .7o dv

Let T(o) - J pVu-'2 Vu .vo d for a c(n) . By Hilder's inequality

it follows that IT(a)I s c(P')/P(E)(J Ival p dv)' /p , so that T is a

distribution. From (2.2.74) it follows that T is positive, and so T
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is a locally finite positive Borel measure 1 on nl , that is,

IvuJPu 2 Vu oVa diJ a di and so -div(v 1VuP' 2Vu) - i weakly.

If the support of a -E , then for any t e IR , u+ta a 1 quasi-

everywhere on E and so T(a) - 0 by (2.2.72) and 2.2.73, but then

,p is supported in E and so is finite since is compact.

If K c Is compact and C,(K) - 0 , then choose *n £ C-n) such
n 0

that n zl on K and J iV.Ip dv*O so

U(K) :s f 'n d.

- u p-2 VOV n d

.0.

If F cfl is Borel measurable and CH(F) - 0 , use the regularity

of pj to choose Kna F , Kn compact such that U.(Kn) -I(F)

CN(K n ) s CH(F) - 0 so u(Kn) - 0 as above, and therefore ii(F) 0

Choose fn e( C (a) such that *n . u in WI'P( ) . As in the

proof of Proposition 2.2.7, the *n can be chosen to be uniformly

bounded and by (2.2.23) they can be chosen to converge pointwise quasi-

everywhere to u . Therefore

Ju dMa -liin $n diA

- 1II' IVul p '  Vu . "n  dy

SJ jVulp dv CH(E)
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If E is compact, then since u = 1 quasleverywhere on E

and p is supported on E , it follows that U (fQ) a U(E)

u du - CH(E) . Otherwise use Proposition 2.2.15 to choose Kn c E

such that K n S_ K n+l and C H(K n ) -C H(E) . If un  is the capacitary

extremal for K and p the associated measure, then an application

n Hnf

of Clarkson's inequalities as in the proof of (2.2.30) implies that

the un are Cauchy in Wl'P(sl) . By (2.2.32) there exists a

W 'P(AI) , ;u quasicontinuous and a subsequence fn I  such that

U i in Wl'P(l) and pointwise quasieverywhere. Cf,(E)Un 0

lit CH (Kn) CH(UKn) :. CH(E) = J jVu1 p dv and 5 = 1 quasieverywhere

on U Kn ,since Kn c Kn+l , so u is a capacitary extremal for U K n

but u is as well, for similar reasons so u = in W,'P(n) by

(2.2.34), and so un -* u . Choose a e CO(n) with a = 1 on

so that

CH(E) = litm CH(Kn) = lim n (Kn)

a lir a

* litf IunP2 Vun Va

f j Vulp 2  V-a dv* J jvu- 2 Vu *od

Ja dU -*f
To complete the proof that p is supported in 3E consider

h.1 as in 2.2.5 so that (h.,l{U) ,X(u.l} Vu) a wo'P(n) . It is

clear that this is quasicontinuous by inspection of the proof of 2.2.5.
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Also h., (u) 1 quasieverywhere on E , so

CH(E) s J Jx(u l V VUIP dv

s JI vulP dv CH(E)

therefore Vu * 0 , v almost everywhere on {ukl} . Since u may be

chosen to be one everywhere on E by (2.2.33), it is seen that Vu = 0

v almost everywhere on E

Choose a *(n) . n=0,l 2,... such that 0 f< aan  0 n~.,,.,

=1 on E, an(x) -o(X) for x -interior E and

lim a n (x) 0 for x i Interior E

1(E) a .li an d

" fli -vu 2 Vu . Vayn dv

-lii jum vu *vaI dv since Vu 0
n" j ~ulpv almost every-

where on interior

of E

Finally, given a g e(nl) ,choose *such that * O C(n)

O *si ,and - n .

if dulI a duo dI

If I u iP'2 Vu V(af) dvI

-125-



(J lOUIP dv)(PI/ (IVldQP0P+1V.IP 101P) dv)

and e,( smothig of1 -dlst~x,E)

and a () smoing of dist(E, along with a limiting

process gives the necessary constant. U

2.2.75 Proposition. Assume (2.2.42) for some q z p a 1 , I

v (g) -1 . If T is a linear functional on Ce{() n W P(C)

such that lTI s C1 (f IjIV p dv + f ¢ijP dv)'/ p  and T(l) 1 , then

(f I# T(f)lq dv )l/q s c2 (f IvoIp dv)iP"

Proof. If e* C0(n) , then

Cf~~~ ~ ~ Tj )/ f .f * vq dv)l1q

+ (f IT( -f f dv)jq d.)l/q

! c (f I v Ip dv) I/p + IT(.-J * dv)I

since v(SI) - 1

:S Cf Iv~jp dv)
I p

+ c1(J (,IP + I.- f dvIP) dv)11P

s c (f IVIdy)I/p. m

2.2.76 Proposition. Assume I < p , A a w . v , X(n) = 1 , In-

equality (2.2.46) holds for q - r , and inequality (2.2.42) holds for
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q p. If E compact and 0 - CH(E) ce ,then

d1. dIrSC,( 7l pd~l

for all * ( , where ji is the measure associated with E as in

Proposition 2.2.71 and c- c(I + max(dist'1 (E,an) ,II C.p(E)).

Consequently if * £C7(n) and €- 0 on E , then

~1,1q d,)l/q ci Cf IV I P dv) /p

Proof. Let T(O) -C;(E)f* du. and use Propositions 2.2.71 and

2.2.75: U

Boundary Values for W1'P Functions

The following proposition is a generalization to weighted spaces

of a result-of Bagby [BG].

2.2.77 Proposition. Suppose n' c md is open and bounded, ' . .

and

(2.2.78) J 1#11 dw & c f jv J dv

for all (n)

If (u,Vu) W 'P(n) , u is quasicontinuous and u - 0 quasievery-

where in n -n' I then

(U ,X u1o) vu) £,P~n')

and is quasicontinuous with respect to n' • If in addition vu - 0

v almst everywhere on (u-0) , then
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(u.vu)I C £ '

Proof. At first it is assumed that Jul < M < . Inequality (2.2.78)

implies as in Proposition 2.2.41 that w(E) : c C (E) for Borel sets

E csl and H = CO() , so a Borel set of zero capacity always has zero

o measure.

2.2.79. It is clear then that u may be altered on a set of C H

capacity zero so that u = 0 everywhere on n-n' . By Definition 2.2.20

u is still quasicontinuous and there exist i c CO() such thatn 0
* u in W"'P((1) and poi:ntwise quasieverywhere. As in the proof of

2.2.7 the in can be chosen so that lin < M

2.2.80. By 2.2.5 and 2.2.4 there exist fn C(1R) with 0 s f (x) S

x+  and a subsequence nm  such that if f( n) , then (4MVM)

W C '(u)O) Vu) in WoP(n) . Since un u quasieverywhere, it fol-
0 ~ n

laws from 2.2.4 that bn -I u +quasieverywhere.

2.2.81. Therefore (u ,X{u>o}) is quasicontinuous (with respect to

n ). The will be used to construct a sequence {un) in WlP(n)

such that un s 0 on n' -cn , where cn c n' is compact, and

(un .Vun ) * (u + ,X(u>O) Vu) in W 'P($n) . Using this it will be shown

that (u+ ,X(u>O) Vu) j W1 'P((1') .

Choose a bounded open set n" c M such that n' c (1" and " n f.

In addition choose p t ' (n) such that 0 s p s 1 and p- 1 on 0"
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2.2.82. Given e > 0 , pick m s.t. IonUI,p;n < F for all

nam, and choose N N' open such that ' cN ,N N' c 

and

(2.2.83) 'n(u vujP dv < c

This can be done since u 0 on n -Q' and so in particular on an'

2.2.84. Choose a >0  such that IapHl, ;n IpIl ,2;0 < c , and choose

Co(N') such that a 1 on N . The n converge v almost

everywhere to u since v is absolutely continuous with 
respect to

W so arguing as in the proof of 
2.2.7 it follows that o n - ou+ in

W"'P(N ' ) and so by 2.2.19 if 14' a C'(N') , then for some subsequence

0

(nil . the Gont converge uniformly off open sets 
of arbitrarily small

ni 
+

CH, capacity. Let E = {x N': On(x) 4 u + )1 . Since u is

quasicontinuous with respect 
to a , it follows that CH (E) = 0 for

H a CO(n) and (2.2.35) implies that C1,(E) = 0 . Since E is con-

tained in open subsets of N' with arbitrarily small CH, capacity,

it follows that the o converge uniformly to ou off open subsets

of N' of arbitrarily small C., -capacity. Let G be an open subset

of N' su.ch that CjP(G) < and la$,i -au + 5- in 14' -G for

A k i . On an, u - 0 and p a a 1 , so *n - apS- on an-G,

in which case 0*n -p < 0 on an open set H. with M -G c H

Let W be a capacitary extremal for 
G relative to CO(N') as in

(2.2.33) such that
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2.2.82. Given c > 0 , pick m s.t. Ion  + ll p;n < e for all

n 2 m , and choose N , N' open such that an' c N R c N' R' c W

and

(2.2.83) J Vujp0 < e .

This can be done since u = 0 on n-n' and so in particular on an'.

2.2.84. Choose a >0 such that lapol,2;O = a PPIl,2;n < e . and choose

a e Co(N') such that a = 1 on N . The o n converge v almost
+

everywhere to u since v is absolutely continuous with respect to
+

w so arguing as in the proof of 2.2.7 it follows that On - au in

WIP(N') and so by 2.2.19 if H' a Co(N') , then for some subsequence

{n,} , the onI converge uniformly off open sets of arbitrarily small

C/H, capacity. Let E = (xeN': oCn(x) -# u+(x)} . 'Since u+  is

quasicontinuous with respect to n , it follows that CH(E) = 0 for

H a Co(A) and (2.2.35) implies that CH,(E) a 0 . Since E is con-

tained in open subsets of N' with arbitrarily small CH, capacity,
+

it follows that the oni converge uniformly to au off open subsets

of N' of arbitrarily small CH , -capacity. Let G be an open subset

of N' such that CHP(G) < c and a -au I s S in N' -G for
Iu+ In

i I . On an , - 0 and p -a a a so -n s -'2 on an-G,
In which case *n,- ao < 0 on an open set H with an-G Hn

Let W be a capacitary extremal for G relative to Co(N') as in

(2.2.33) such that
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(2.2.85) O:Wsl , W=I on G , and f IVWlPdv = CHe(G) < cP.

Let V = (n -ctp)(-W) , where z i and n . z m so V < 0

on H u G and V c w'P(rz) by 2.2.9. Using (2.2.78), 2.2.82,

(2.2.83), 2.2.84, and (2.2.85) it follows that

I V "u+I Ip;n !5 In " ul 1, p;n + Had 1,p;Ia + l n(4nI "°p)WI 1 ,p;n

< 2e + (c+l) 1 /p (J IV((n t 'ap )WIlp dv)'/P

I/ i/p
2c + (c+1)11p (M + rPTi1 2X dv1 '"

+ (c+1)l (JN' INiP dv)/P

s[2+(c+1) l i p (M+ e e)l~~

+ (c+l)l  [(N'n(uOl I"ul p dv)llp

+ 1f IVni "X{u>O} VUl
p dv)l/P]

s (2 + (c+l) 1/p [2 +M + C

Since e is arbitrary and n' -(H uG) is a compact subset of n'

( 1l c H u G) , it is clear that there exist un C w'P(n) such
ni+ n

that un  is bounded, U n U in W (), and u S 0 on

a#' -cn  for some compact subset cn  of n'

-130-



Let fn be as in 2.2.80 so that for some subsequence {nm}

(fm(Un), U nm) Un) -. (u VX{>Vu) in w'P(n) . It is claimed
(f~nm )fm~um Vum fO0

that (fm(unm) 'f'(unm) Vunm)in , C wl'p(n') so it follows that

(u+ X{u>O} Vu), € W1'P(') . The same procedure applied to -u

shows that (-(-u)+ ,Xfu<O) Vu), EwP(n
' ) so that addition gives

u vu), W P( ) . To prove the claim choose nm C(')

such that nm  1 on cn . By 2.2.9

(nm fm~unm fm(UnmVn +nf( )Vni l  w 'P(ne )

m f un m f'(unm) Vunm 0

but fr(x) = 0 if x S 0 , so fr(unt) - 0 on f'-cnm and also

f,((un) = 0 on n' -cn for the same reason, so this, combined with

the fact that nm - 1 and VnM = 0 on cnm , implies that

(f(unm) - fm(unm) Vunm)In. C Wo'P(') , as claimed.

Considering 2.2.81 and (2.2.35) it is clear that (u X uOj) Ing

Is quasicontinuous with respect to nl' . If u is unbounded, then

let fn = h-N,N as in 2.2.5 so that (fN(u) ,xIu } Vu) 'P(a)

and is quasicontinuous because of 2.2.4 and 2.2.5. Also fN(u) is

bounded and zero quasieverywhere in n -n' so that the work above

implies that (fN(u) ,X{CuIN,uZO) vu)j, c Wl'P(n') and so

(u 'X{uWO Vu) ewIP(n' ) since IfN(uM-ul p d-

0 N
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(IluN}luIp dw-O as N-1- and

J1X(IuIA u. dv dv ulPd 0 as N

Since (fN(u) 'X{Iul<N} Vu) ns is also quasicontinuous with respect

to Wl and fN(u) - u everywhere, it follows from (2.2.32) that

(u ,X{uO }1 Vu) is quasicontinuous with respect to Wl' . I

Weak Boundary Values

If f:alal- IR is continuous, u E W'P(n) and x £ an , then

it is said that u(x) < Z weakly if for every k > 2. there exist

an r > 0 such that (r(u-k)+ ,n×{uk1 Vu+(u-k)+7) e WlPr) )

for all ncC=(B(x,r)) . In addition u(x) a I weakly if -u(x) < -Jt weakly

and u(x) = I weakly if both u(x) s I weakly and u(x) a I weakly.

Proposition 2.2.86 shows that under certain conditions this definition

of weak boundary values is virtually equivalent to a More conventional

definition.

2.2.86 Proposition. Suppose ' is open and bounded, ' n

U a 'P(nl) , f e W 'P(n) , f quasicontinuous in n and continuous

in n-n', and either v < cm or u ,f are bounded.

If (u-f1 , Vu-Vfl ) e w 'P(n') , then u(x) = f(x) weakly

for all x e an . Conversely if u(x) f(x) weakly for all

an' , then (u-f1  Xfuofl(Vu-fj )) e WoP( W)

Remark. In the converse it is only necessary to assume that u(x) *

f(x) weakly quasieverywhere on an' . This follows from an argument
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similar to that in Proposition 2.2.77, where a capacitary extremal

is used to remove an open set of small capacity.

Po. Assume (u-f Vu-Vfj e W"'(n') . Choose C

such that n u-fJ , in W0  (n) . Consider the *n as functions

in C(n) , let v be a quasicontinuous limit of the n in o'P(n)

and a - v+f , so a- f quasieverywhere on n-n' . If 'In Co (n)

such that * f in W"'P(n) , then (7n+4n , ~n+ n) *( Va) inqn

W".(n)with VG* Vv.+Vf so (. ' v1,) 4 G) In0n n1Pi' .~n -u (,nNln i

in W1P(fl') . but (0n+ In, Vn+Ini, ) * (u ,Vu) in WI'P(n ')

also, so

u * u , , almost everywhere, and(2.2.87) (77- Vu , v almost everywhere.

Given x0  an' ,pick K so that f(xO) < K . Since f is

continuous in n-n , there exists an r > 0 such that f(x) < K

in B(xOr) n (n- n') , so if n c Co'(B(xor)) , then n(;u-K)+

n(f-K)+  0 quasieverywhere in n-a' .

2.2.88. a-K s 1o ; so that 2.2.5 implies that

((i-K)+ i V) ' 0"(n)

and so 2.2.9 implies that
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nX{;>K} v+ (0-K)+ n) )

Following the proofs of 2.2.5 and 2.2.9, it is clear that (;-K) +

is locally quasicontinuous (2.2.20) and n(a-K)+ is quasicontinuous.

Proposition 2.2.77 now implies that

(n(;-K)+ S nX{;>O) v6+ (;-K) + 7n)I W P( )

but (2.2.87) then implies that

(n(u-K) + 1, inX{uO Vu+ (u-K) + 7) ' £ w )

since "v is absolutely continuous to w . This is true for all

K > f(x0 ) so u(xo ) s f(xO ) weakly. In the same manner it is

shown that u(xo) a f(xO ) weakly and so u(xO ) = f(xO ) weakly for

all X0 4 30

Conversely if u(x) = f(x) weakly for all x c 8 , then for

x0 a al' and e > 0 , there exists an r > 0 such that

If(x)-f(xo)I < e for x e B(xOr) n (n-') and in(u-f(xO)-e)+ e

W'P(w) for all n e C M (B(xor)) . From the first inequality it

follows that -f(x)+f(xO ) -c < 0 on B(xO,r) n (fn-n') so

n(-f+f(x, 0 - = 0 on n-iW for n c CO(B(X 0 r)) . As in

2.2.88, it follows that n(-f+f(xo) -E)+  e W'P(n') . an' is

compact since n' is bounded so a covering of balls such as

B(xOr/2) can be reduced to a finite subcover B(x1 ,r 1 /2) .

i.,..., n , such that n(u-f(x1 )-c) +  and n(-f+f(x i ) - E) +

are in W1'P(n ' ) for n E %((xt,ri)) . Pick in I * 1 1,...,n,

such that ne C0(B(xiri)) and n, 1 on B(xi ri/2) , and
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n

no C*(n') such that n - I on n' - U B(xyr /2) , in which

case n0(u-f-2c)+ C W'P(n) by 2.2.9. Also, (u-f-2c)+  s)+++

(U- fixx) - )+ (-f+f(x)-c)+ , so if * (u-f-2) + ,then

0 S r Si(u-f(x1)-E)+ + ni(-f+f(xt)-c)
+

in B(xt,ri/2) , 1 =1 ,..., n , and

0 s s < 0u-f-20)
+

n
in a' - U B(x1.r1/2) . Let o = 0(u-f-2) +

In Irni(u-f(x1)-e)+ + ni(-f+f(x1)-)+] , 0 s * s on W' and

W6 ;P(11. c i) , so 01n C ~ ' ic 'i

compact. Pick dn ') n W1 'P(n') and *n eCoin ') such that

I in W"P(nl) and * in W ,P(n') . Letting f(x)

X and using 2.2.4 and 2.2.5, it follows that there exist fme( (),

m - 1,2 , ... , and a subsequence nm  such that ( fm( nm-*nm)}

converges in Wl p(n') to + I -41W -*)+ u with gradient

(X( >) V, -X( v -)) (X(,>O} V) since 0 s ,

fm( n)-fm( n-M*nm) - 0 when nm - , and so is in Cow) ,
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therefore ((u-f-2 )+ X{u-f 2 e>Oi V-f) gPn).B h

dominated convergence theorem this converges in w"'(nl) to

((U-f)+ I fuf (Vu-Vf))I Doing the above for -u , -f instead

of u ,f shows that (-(f-u)~ (Vu-Vf))I Cwl'-(s) so

that (u-f ,Xfu.fl (Vu-Vf)) f £wl.p(p.) a
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2.3.0 Higher Integrability from Reverse Holder Inequalities

It will be shown that functions satisfying a maximal

function inequality, where lower powers of the function

dominate higher powers, actually lie in higher Lp classes

than initially assumed. This is applied in Chapter 3 to

prove higher integrability for the gradient of solutions of

degenerate elliptic systems.

Theorem 2.3.13 is a generalization of (S11 to weighted

spaces, which in turn is an adaptation of a result of

F.W. Gehring (GH] to a setting more natural for the analysis

of differential equations. The first adaption of (GH] seems

to be by M. Giaquinta and G. Modica [GM] although the slightly

more general [Sl was done independently, see (GI] for further

references.

Only measures which are doubling will be considered

here and only very restricted geometries since these are

sufficient for applications in Chapter 3. In [S21 Theorem

2.3.13 was proved for very general measures with the restriction

that the density of the measure must be uniformly bounded away

from zero near the boundary of the domain being considered.

This restriction may be weakened even further to the assumption

that the measure is doubling near the boundary.

Let fQ be an open set in JRd and w a positive Borel measure.

It will be assumed that w is doubling, that is, there exists a

constant c1  0 such that

0 < w(B(x,r)) i clw B(x,r/2)
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for all balls B(x,r) c fn. By iterating this inequality

it is easily seen that there exists a constant 8 > 0

such that

(2.3.1) w(B(x,R)) <_ c(j)o w(B(xr))

for all x,rR, 0 < r < R, B(x,r) C n.

Let Q. _ Q, S Q0 C 0 be open concentric cubes with

sides parallel to the coordinate axes and with side lengths

s., 2s1 , 3s,, respectively. Also for ease in applying the

doubling condition it will be assumed that Q0 lies at least

a distance of 15 /a S. from Mf.

LP norms on 0 will be estimated in terms of Lq norms

on Q0 for some p > q. To accomplish this a continuous "itertion"

will be carried out on a parameterized collection of cubes

Qt, 1 < t < -, where Qt is a cube concentric to Q. with sides

parallel to 0 and side length S(t) = S (l+t'U/O).

The choice of parameterization is related to the

following estimate which can be used to show that a ball centered

in some Qs actually lies totally in Qt for some specific t < s,

if its measure is small enough.

Given B(x,r) C Q0 there exists an r > 0 such that

r < i< 3 S,, Zand Q0 SB(s,). Using (2.3.1) it now follows

that
W (Q0) < W(B (x,) <c 1 ( w(B (x, r)

so that

(2.3.2) ro <c 1 (3 S./a)Ow(B(x,r))/w(Q0 )

t: -138-



for all B(x,r) S QO.

The maximal functions to be dealt with are defined as

follows for 0 < R <-.

I. -1
MRf(x) - sup ( (B) Ifi dw:B - B(x,r) C 91, 0 < r < R}

For convenience let Mf - M.f. The super-level sets of functions

g,f will be of central importance in the main estimate for
*

theorem 2.3.3. These are denoted by E (t) - {x E Q0 : g > t),

E(t) - E (t) n Qt and E*(t) - E (t) A Q.. F Ct), F(t), F*(t)

are defined analogously with respect to f.

2.3.3. Theorem. Suppose g,f are nonnegative Borel measurable

functions defined on Q0, 0 < a < 1, b > l and

(2.3.4) MR(gq) < b Mq(g) + M(fq ) + c M(gq ) a.e. inQ 1

then there exists a constant p0 such that if p0 > p > q then

(2.3.5) [ 1- gPdwIlP c[[.(TWO-)J gdw]1I +WqO J fPd.)1/P]
0 Q0

where c depends only on d,p,q,a,8,c1 ,b,R/S., and p0 depends only

on d,q,a,cl,b,R/S=.

Proof. (2.3.5) will first be proved under the assumption that

(2.3.6) MR(gq) b Mq(g+f) + M(gq ) a.e. in Q,
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Then either f f LP(w,Q0 ) in which case 2.3.4 is true or

f E LP(w,Q0 ), in which case from propositions 1.1.3, 1.1.4,

1.1.5 and 1.1.9 it follows that M(Ml/q(fq)) > M 1/q(fq ) a.e..

(2.3.4) then implies that(2.3.6) holds for f replaced by M1/q(fq)

and (2.3.5) follows form propositions 1.1.3 and 1.1.4 and (2.3.5)

with f altered as above.

Let

(2.3.7) 6 - Min R3 dB / 2 0'ad/2c I B )S 1(Q1)

where c5 is the constant appearing in 2.3.11 (depends only on

cl,d) and kq = 3q(c 5 b(l+a)/(l-a)) > 1. The doubling condition

implies that w(Q.)/w(Q0 ) is bounded below by a positive number

depending only on cl,d so that 6 is bounded below by a positive

constant depending only on d,clia,8,R/Sm.

Normalize g and f by dividing by

6((W'l(Qo) I gqdw)l/q + (w'I(Qo) J fPdw)I/p)1 l

Qo Qo
so that without loss of generality (replace g,f by these

normalized versions) we may assume that

(2.3.8) (w,1 (QO) J gqdw) I/q + (w-l(QO) J fPdw) I/P . 6

Q0 Q0
The remainder of the proof will consist of four parts.

I



Part I (Decomposition)

Fix s>k and let t - s/k. From 2.3.7 it follows that

S (Qo)  J iw

QS Qo

(Q0 ) aq < s q

Divide Qs dyadically a minimum number of times so that the

subcubes have diameters less than Min{R,S,1. For each such Q

gdw < • 9 dw < c 3 s

Q Qs

where c3 depends only on Min{R,SG}/S, , d, c1 . Now subdivide

each subcube as in the decomposition lemma of Calderon and

Zygmund [ST] to get disjoint subcubes {Pi of Qs such that

g < s a.e. in Qs\(U Pi) and

(2.3.9)

q <. 9 gqdw<c s q

Pi
1

for some c4 depending only on d, cl, c3 . The Calderon-Zygmund

lemma easily generalizes to the case of a doubling measure

because of propositions 1.1.3, 1.1.4, 1.1.5 and 1.1.9. The

initial subdivision guarantees that diam Pi <Min{R,S..

Let G - U Pi SO
ii

(;.3.10) 9 gqd. I C4 sq .(G)

G
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Given x 6 Pi consider B(x,r) with r - diam Pi< MinfR,S.i

so that

(2.3.11) sq c 1 gqdw< (BB) 1 gq dc

r~i -iTT -WWB J~

where c5 depends only on cl,d

Part II (Removal of the term a M(gq))

Let F - {x E G: (2.36) hold ) so w(F) = wC(G). If a = 0

continue from 2.3.12 otherwise 2.3.11 implies that
c- I<s q csl< MR(g q) ( x ) < M(g q ) ( x )  for all x r= G. Given x F !

there exists a ball B - B(x,r) C Q0 such that (l+a)2 1 c- -

C5

< (1+a)2 " 1 M(g q)(x) < w-l(B) J gqdw since (1+a)2 " 1 < 1.

From this it follows that

wCo) < 2 c5 (1 a) 1 J gqdw 2 c5 (14a) w C%0) q .

QO

(2,3.2) and (2.3.7) now imply that r < R and so

M(gq)(x) < 2(1+ca) '1 1 (B) 1gqdw < 2(l+a)'lMR(gq ) (x)

Combining this with (2.3.6) gives

(2.3.12) MR(gq)(x) < gf(x

for all x e F.
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Part III (Basic Estimate)

Given x 6 F use (2.3.11), s - kt and the above to get

3q~cs b~l+a)/Cl-a))t q- sq< (c5b(l+a)/(l-a)) Mq(g+f)(x)

so there exists a ball B - B(xr) cQ0 such that

(2.3.13) t < 1 (g+f)dw

It will now be shown that B c Qt. To see this it is sufficient

to show that r < (S(t) - S(s))/2 - Sat-q/0(l-k'q/O)/2. In

addition r < S/10 will be proved for later use. The definition

of *(t) implies that I gdw < tw(B) + I g dw.
BAB C*t)

Using this, a similar inequality for f and (2.3.13) it follows

that

tw (B) < J gdw + J*fdw < tl-q *Jg dw + ti- f~dw
B WE(t) B:nF (t) E t) F t)

and since t > 1 and p > q it is seen that

(B) < t-q( gqdW + Pdw))< t'q(6 q+ap) w(Q O)

< 2 t-q  aq  ( ) .

This combined with (2.3.2) and (2.3.7) implies that

r < S"t'q/0(1-k'q/0)/10 and so B C Qt. Since t > 1, k > 1 it

also follows that r < S /10 so that B(x,Sr) c Q0. Using the

fact that B C Qt and arguing as above it follows that
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(2.3.14) tg() gdw + J f dw

B AEt) B nF(t)

F is covered by such balls B. Using the covering lemma 1.1.9

again it is seen that there exists a pairwise disjoint sub-

collection of balls [B.)1, B. -. B(x.,r.) such that {,B~x.,r~

is a cover for F. Now, since B~xi9Sri) C Q0, the doubling

condition implies that

w(G) *w(F) <. E w(B~x 1 Sri))

and consequently

Jgqdw < J q dw <c c4 s q (G)
E(s) G

<k c 3 C q-1( gdw + J fdw~
1~sk) F(s/k)J

from (2.3 .10) and (2.3.14).

Part IV (Reduction to Stieltjes integral form)

Let h(s) -Jg dw, H(s) - f dw , so h is non-

increasing and right continuous, and Lim h(t) - 0 since

tq- h(t) < 1 9dw 0 as t *0. Integrate by parts to get

E (t)
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(2.3.1S) - J tq  dh(t)
,(S Om)

M (q-l) J t q - 2 h(t)dt + sq-lh(S)

C5,0)
- (q-1) J q J dw dt + sq1h~s)

(2.3.16) < (q-1) J g J 2 dt dw + sq-'h(s)

E(s) Cs g)

(2.3.17) = J gqdw

E (s)

k c3 c4 sq'-1 J g dw + J dw)

E(s/k) F(s/k)

So

- tq'ldhct) < k c c sq-l(h(s/k) + H(s/k)) for s > k.

Apply lemma 2.3.18 to get

- JktP"dh(t)

< c( - J tq'ldh(t) + J tP 2 H(t/k)dt+h(1)).(k,-) (k -)

Inequality (2.3.16) is reversed if E*Cs) replaces ECs),

so with s - k use (2.3.1S) to (2.3.17) (with p replacing q)

and the inequality above to get

J gPdw .C(J 1 9dw. J tp-2  J wt+hl)
E*(k Ek) (k.) F(t/k)

9P < kP'q gq for g < k so
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gPdw < c(l+kP- q ) J gqdw + c f t dw

QO QO

+c J gdw
E (1)

c 6q r(Q 0)+ ckp
' I J fPdw+cJ dfgqd)

< c W(Q.)

c independent of w(Q.). Reversing the normalization of f,g

gives (2.3.5).

2.3.18 Lemma. Suppose h:[l,c) -* [O,o) is nonincreasing, right

continuous, and Lim h(t) = 0. Also suppose H:[l,-)- [0,) is

measurable, q> 1, a> 1, k> 1 and p satisfies l>akP1 (p-q)/(p-1)

with p > q. If

- J sq-1 dh(s) < a tq'lChCt/k) + H(t/k)) for t > k

(t,
then

s p-1 dh(s)

(ki-)

c c1 (- J q-1 dh(s)) + c2  J tp '2 H(t/k)dt+ c3 h(1)

(k,c) (kco)
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Proof. Let IsP- 1 dhts) .An integration by parts gives

(2.3.19) j It.1  tp-q t-l dh(t) - ~p-q I + (p-q)J

where J t ~ki p-q-1 '-h q- 1 dh(s)) dt

Combining this with the hypothesis it follows that

(2.3.20) J s kJ t p-q-(at q-1 C( -1) +H( I.)] + '( s. 5q-1 dhts)) dt,

but

____ -) h(l) -P ' dh t

(_T h(J

kP-i p- t-

f( tP- dh(t) - f dh(t))

since

- dh1 Ot) -q dh(t)
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This combined with (2.3.19) and (2.3.20) gives

II kp q I J+ .2S akP' I  ( t p' dh(t))
p q p-1 ( 4

+ (p.-)a -I) j p - q  - ( t q -' dh(t))

-p q J(j tq  dh(t) + (p-q)a (kJ) p 2 H(kd

Now use that [a(p-q)/(p-1) - ] c 0 . Subtract part of the second term

from both sides and let J - to get

(I1- ( p.R)akp ' I ) IpSc k p ' q iq + (p-q)a I~,)t p '2 Hj(t) dt

P1q f(k,..)k

+ 4P kP-'(- ft I,k] tP'ldht

but (I -(p-q)/(p-l))ak p'l) > 0 by hypothesis, and

- ]t p- dh(t) <skp'I h(l) , so the desired conclusion is reached. I
-,k]
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CHAPTER 3

The theme of Chapter 3 is that of establishing continuity for

solutions of degenerate elliptic equations.

In Section 3.1.0 both interior and boundary continuity are con-

sidered for single equations of the form div A(x,u,Vu) a B(x,uVu)

where A , B satisfy certain natural growth conditions. As a byproduct

of this a Harnack inequality is proven for positive solutions.

In Section 3.2.0 estimates are derived for the modulus of conti-

nuity of functions in weighted Sobolev spaces, analogous to Morrey's

result that functions in WlgP(d) , p > d , are Hlder continuous.

This is relevant since solutions of equations with natural exponent

p (pa2 for linear equations) are often contained in such spaces.

In Section 3.3.0, degenerate elliptic systems are considered

of the form div A,(x,u,Vu) - Bt(x,u,Vu) , i - 1 , ... , N , where

A1 , B1  satisfy certain growth conditions. Additional integrability

is proven for Ivul and this, combtned with the results of Section 3.2.0.

establishes continuity in certain borderline cases where 3.2.0 does not

apply directly.

In each section an example is worked using equations with de-

generacies of the form dist(x,K) , for a class of sets K which

includes finite unions of c" manifolds of co-dimension greater

than or equal to 2. (including co-dimension d, i.e. points).
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3.1.0 a Harnack ineQualit and Continuity of Weak Solutions for

Degenerate Elliptic Equations

The main results of this section are a Harnack inequality for

positive solutions and the interior and boundary continuity for weak

solutions.

The basic structure of the proof of the Harnack inequality is due

to Moser [MEl). Techniques of Trudinger [TI], [T2] are used to replace

the John-Nirenberg lemma [JN], which is not of use when the weights

are badly degenerate. The proof of the boundary continuity essen-

tially follows that of Gariepy and Ziemer [GZ].

Various results have been proven for linear degenerate equations

by Kruzkov [K], Murthy and Stampacchia [MS], P.D. Smith [SM]

and Trudinger.[TlIT2] and a degenerate Harnack inequality

has been proven by Edmunds and Peletier [EP] for quasi-linear

degenerate equations. The present results allow a more

general class of degeneracies. The reader should note the

related work done independently by E.B. Fabes, D.S. Jerison,

C.E..Kenig, and R.P. Serapioni [FKS], [FJK] (see comments

preceding 2.2.40).

The equations considered are of the form

(3.1.1) div A(x,u,Vu) = B(x,u,Vu).,

where

A: nd X-I d

and
8: fix Mi x M d -i R 1I
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are Borel measurable functions satisfying the conditions

(3.1.2) IA(x.u,w)[ :;.(x)Iwjp-l + a,(x) IuIP'I + a2(x)

IB(x,u,w)l s b0 (x)IwIP + bl(x)Iwl p -i + b2 (x) 1ul
p I

+ b3(x)

A(x,u,w) .w>z x(x) IwJP - c (x) Iulp - c2(x) .

.Md isopen. p > , X , V, a1 , 1 = 1,2, b1 , 1 1 ,2,3,

cf , 9 1 ,2 , are nonnegative Borel measurable functions on a and

a up -(p-1)and ) are assumed to be integrable with 0 <X <u <,

almost everywhere.

Identifying w and X with the measures they induce, W 1'P(W,9,, )

p(,,,and W) will be the Sobolev spaces defined in

2.2.1. For convenience these will be represented by W 1  W1' '.1,p) O
and W I ; )

There are a number of useful definitions of weak solution in the

present setting. For simplicity a pair (u,Vu) e W;(n) is called

a weak solution of (3.1.1) in an open set V if

(3.1.3) J *. A(x,uvu) + 08(xuVu) -0

for all (0,vq) t W 'P(V) . In more specific contexts definitions such

as that in [Ti] may be more natural. In any case the basic methods are

quite flexible in adapting to different definitions of weak solution.

The following Sobolev inequalities will be assumed. B * B(xO,r)

is a ball of radius r , cA , and xO , r vary depending on the

specific result being considered.
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,.. o0Iq W
(3.14) ~ 7 8 1~ )l/ :5 rs (r) (B)r~v 170 '/rX -

+ TBT

for all (0,v) E WI'P(B) , where q > p and

s(r) z 2 (for computational simplicity);

(3.1.5) Ow I jp- waI :5 rP PMr IVOlP X+ q(r)oj(B)
f I ,PB)(Xof)

for all (v7) C W,'p(B(X0,i)) and some r > r ;

(3.1.6) JB IIPFr< erP SoL Iv'x+ -'6 s F( r ) fB ,0PW

for all (0,70) e w'P(B) and 0 < c s 1 , where s

is either 0 or I and Fr will be defined slightly

differently In each of Theorems 3.1.10, 3.1.15, and

Corollaries 3.1.12, 3.1.13.

The weights w , ) for which (3.1.4) and (3.1.5) hold, with

t(r) = q(r) - 0 and 0 e C(B) and Co(B(xor)) , respectively, are

characterized In Theorem 2.2.41. Simple limit procedures as done in

Lemma 3.1.7 then show that (3.1.4) and (3.1.5) hold for general Sobolev

functions.

If Fr s sF(r)w , then (3.1.6) is trivially true with so  0 ;

otherwise (3.1.6) can be deduced from Inequalities such as (3.1.8),

for which the weights have been characterized in Theorem 2.2.41.
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3.1.7 Lemma. Assume for some s , 1 s s < p , that

(3.1.8) fB IDISFr s C(r)r S fB ivlSS/P W(p-s)/p

for all e Co(B) . Then

(3.1.9) sP r f I,I P X + c(,.) -"(-) cP'(-s)(,r) JI.ioF 1

for all (0,v) e Wo'(B)

Proof. Given u e e0(8) ,let t" up/s VO a ku (p s)/s u ,so by

(3.1.8)

J8  UI~Fr S L~~rJ IuIp-5 IvuI5 x"' ( ~P

Use Younges' inequality to show that

s~ cr ru is5 1vu ,s/p (p-s)/p(s) i(r) rs~j Iu P'S IVulsx/ PS/

g C(p.s) C-s/cp-s)cP/(P-slr) iuIp + c rp IVuI p X

so that (3.1.9) is true for u eC'o(B) . Given (Wv") Wl'P(B)

pick #n a Co(B) such that (On,"n) 0 (*,V) in W6'P(n) . Using

(3.1.9) with 0 - #n -Om ittis seen that i n is Cauchy in LP(FrB)

and since #nt 4 * a.e. for some subsequence {nt) it follows that

* LP(Fr ,B) and #n in LP(FrB)
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Letting = in (3.1.9) and letting n shows that (3.1.9)

is true for (.,vo) - (j,pv*) , as required. m

For Theorem 3.1.10 it will be assumed that a2 = 3 = c2  0 ,

FR a RPEc l +bP X-(p-1) + b + alP/(P-V1 )'P/(P'I) , , B X,R) E. n

and (3.1.4), (3.1.5), and (3.1.6) hold for r = R

3.1.10 Theorem. If u is a positive weak solution of (3.1.1) in

B(xoR) with u s M <- and 0 <e < 1, then

(3.1.11) sup u : C(R) inf u
B(xodR) 8(xoeR)

for C(R) - c[(s(R)+t(R) exp(p(R)H(R)+q(r))] Fs(R)(s4 / p(R)+1)+ LIR)$/( q-p)

and H(R) a I + w '(B(Xo.R)) x E(c,+b1IP -p-1) +b2) RP+ a, Rp- 1

fx0,R)

c depending only on p, q, e , M, b0

The proofs of Theorem 3.1.10 and the following results will be

deferred until later.

Remarks.

The boundedness assumption for weak solutions is not essential if

b0 - 0 . In this case methods of Aronson and Serrin [AS] can be used

to achieve similar results.

As in [T3] the Harnack inequality may be split into two parts, one

relevant to subsolutions and one to supersolutions.
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The John-Nirenberg Lemma [JN] generalizes easily to accommodate

doubling measures, that is, measures U such that p(B(x,2r)) <

cp(B(x,r)) . So if integration against , is a doubling measure and

if the Inequalities (3.1.4), (3.1.5), and (3.1.6) hold for 0 < r s R

with p(r) , q(r) , H(r) bounded, then the "crossover" can be done

as in [T3].

The last remark applies to supersolution calculations as well,

but if full solutions alone are of concern and if the remaining Sobolev

constants s(r) , t(r) , sF(r) are bounded for 0 < r s R , then a

simple method due to Bomb1eri [BI) and appearing in [ME2] can be used

as well, to prove (3.1.11) with R replaced by r and C(r) bounded.

If, as in the symmetric linear case, Lw1 *A(x,u,w 2)1 S

jw1 - A(x,uw 1 ) I w2.A(x,u,w2 i , then the derivation of the fundamental

Inequality in the proof of Theorem 3.1.10 may be improved as in CME2J.

This leads to the replacement of w by the smaller weight v , thus

allowing consideration of more degenerate weights.

Definition. If x e n and lim inf V a inf V then it is said

r.o B(x,r)

that V achieves its essential minimum at x The analogous definition

is adopted for essential maximum at x

3.1.12 Corollary. Assume 0 a -a 2 - b2  b3  c 1 -c 2  F r

rPbP -(p-1) , n is open and connected and for all x c n 3r > 0

such that inequalities (3.1.4), (3.1.5), and (3.1.6) hold for x0 - x

and B(xr) En
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If V is a bounded weak solution of (3.1.1) in nl and V

achieves its essential minimum or maximum at an interior point, then

V is constant (off a set of measure zero).

Remarks. If a1, a, b b3 ,l c c2  are not assumed to be

zero, then a weak maximum principle may be proven similar to that of

[AS].

If C(R) in (3.1.11) depends on R in an appropriate manner,

then a Liouville theorem may be proven as in (MEl].

In Corollary 3.1.13 it is shown that a slightly altered Harnack

inequality holds if a2 . b 3 9 C3  are not zero. The function K(r)

is usually chosen to be r~l for some a > 0

Let FR-RPEc, + c2(ICP(R) + bjP (P1 + b2 +b 3 K(-)

+ (a1 +a2K-(Pl)(R))P/(P-l) IW-P/P 1 ) X] and assume (3.1.4). (3.1.5),1

and (3.1.6) for r = R

3.1.13 Corollary.. If u is a positive weak solution of (3.1.1)

in B(x0,R) with u :sM and 0 < <l , then

(3.1.14) B(sup u s C(R) inf u + (C(R)-l) K(R)

Bx08OR) B(x0,eR)

where C(R) is as in Theorem 3.1.10.

For Theorem 3.1.15 let F a *KPr b'f X7P1r rP((cl M C2 1 r 1

+(b 2 Mb 3)K (P (r) + (a1 M + a 2)/ P-NK Cr) 1ii (-) 1 n
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assume (3.1.4), (3.1.5), and (3.1.6) for 0 < r s R

3.1.15 Theorem. If u is a weak solution of (3.1.1) in B(xoR)

with Jul < 4/2 and C(R) , K(R) , 9, M as in Corollary 3.1.13,

lm Osc u - 0 f - c(rk) = and lim C(rk)K(rk) -0

ke B(xo,rk) k-0 k-wa

where rk R

If C(rk) Is bounded and K(rk) ! c' r c > 0

then

Osc u i c for some c, a,> 0
B(xO,rk)

These conditions are sharp in the sense of Lemma 3.1.16.

In addition, if C(r) is nondecreasing and K(r) is nonincreas-

ing as r -0 , then

-cg~rg(rd )

Osc u eC(rk)( Osc u+4. Y° g 1 (t) ctdt
B(xO,rk) B(Xo,R) )

R__I drwhere g(s) J r and y(s) - C(s) K(s/e)

Remark. Semicontinuity results for subsolutions and supersolutions

may be proven as in [TI] using the calculations mentioned in the

second remark after Theorem 3.1.10.
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Example

Let K be as in Theorem 2.2.56 such that 2.2.61-3

hold and w(x) - p(x) - X(x) - dist3(x,K), a > - y.

From this and a limiting argument (as in Lemma 3.1.7) it

follows for some q> p and all B(xor) C Rd, that (3.1.4)

and (3.1.5) hold with s(r) = p(r) = 1 and t(r) - q(r) = 0 . For

simplicity assume that a1, a2 , c1 , c2 , , b2 , b3  are

bounded by a constant multiple of w and choose k(r) = r + r .

This Implies that F r S cW , so (3.1.6) is trivially true with

s- 0 and sF(r) = 1 . Also C(r) is bounded for r < R <- .

It now follows from Theorem 3.1.15 that if u is a bounded weak

solution of (3.1.1) in il , then u is locally Hi8lder continuous.

3.1.16 Lema. Let rk a 8k R for 0 < e < l , R > 0 . Assume

(3.1.17) C(rk) > 1

and

(3.1.18) Osc u s ak l( Osc u + 2K(rk-1))/
B(xO~rk) - B(xOrk-1)

CQrk) - 1

-for k=O,l ,2,... ,where ak  C(rk)- en

n-1 n-I n-l
(3.1.19) Osc U is i< ak) Osc u+2 k(r ak

B( r k-0 8R J-0 kai

and if
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(3.1.20) -I C'l(rk) a C and C(rk)K(rk) * 0

as k- ,then

(3.1.21) Osc u - 0 as n .
B(xo,r n )

(3.1.22) This is sharp because if(3.1.20)does not hold, then there

exists u such that Osc u X > 0.

B(xo0 rn)

If C(rk) is bounded and K(rk) s cra for some c , a > 0

then

(3.1.23) Osc u s c' r n for some c' , a' > 0
B(xo2rn) n

If C(rk) is nondecreasing as k , then this is sharp as

well.

If C(r) is nondecreasing and K(r) is nonincreasing as r 0

then

Osc u !5 e-g(rn  Csc U + 2c g(r) l(t) ect dt ,

B(xor n) B(xoR) Je

R 1 dr . I -

where g(s) C- 17 y(s) = C(s)K(s/e) and c = (log .

Proof of Theorem 3.1.10. The fundamental inequality (3.1.29) is

proven; then this is iterated to give (3.1.31). The final step is

the crossover from LP norms of u with p > 0 to those with

p < 0 . This is accomplished by iterating norms of log u
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It can be assumed without loss of generality that u is strictly

positive, 6therwise let u u+c , e > 0 . is a weak solution

of dtv A - i , where A(x,u,Vu) = A(xu-c,Vu) and B(x,u,V5) =

B(x,u-e,V) , and since A , B satisfy (3.1.2), the following

proof gives sup u s C(R) inf u . (3.1.11) is recovered by letting
B(xO oR) B(xoeR)

c0

Throughout the proof, c will represent a constant depending

only on p , q , 6 , M , b , and will change from time to time.

Let o - oPus exp(b 0 sign$ u) , O $ 0 , c Co(B(xoR))

Several applications of Proposition 2.2.2 show that o (wI'P(B(xoR))

with

O = pp-1 V u8 exp(b 0 stgnO u)

+ Bep u0-1 u exp(b0 signB u)

+ b0 signO *P uO exp(b 0 sign u) Vu

and so

#P uO' I exp(bo sign$ u) Vu . A

- uO exp(b0 signB u)B

.p J *p-I us exp(b0 signs u) V A

-b0 signo J OP uB exp(b 0 signs u) Vu . A

Now multiply by sign B , use the structure inequalities (3.1.2) and

us , and let E exp(b0 signO u) to get
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(3.1.24) 1j1 J *P uO' 1 IVuI p AE

S 1• 1 P uo1 l cIE + b0 J p U8 IVuI p XE

"1 j pUO I VuI P b, E + fJ *IP~p1 b2E

" p f -* j v~I uO 17ujp-l uE + pf *D1 ,'Vf 1 uo+P-1 a E

-b0 J * UO 17uIP XE + bOM J *p uB+p-1 c1 E

The second and the seventh terms on the right-hand side cancel.

This is in fact the reason for introducing exp(b 0 signB u) in the

test function .

The following inequalities are proven using Young's Inequality.

UP 17ul p-I b1 ! el (1 I ) uO+p ' g bP ;(p-l).

+, p -I U S-1  ul x

(3.1.25) €-(p-1)
P-1 [V$9'u8 jVujP'lzs 2 ivclp u+p-1  P-p

+ iR-1 P-2 p u0_' l I Vu Ix p

(3.1.26) p-*1 lVl a1 :5 Iv#Ip UP -(p-l)

+ i OP aP/(P-1) -p/(P-1) X
P

Applying these to (3.1.24) with e1" -" and 2

p-i an E2U ' _1--1
and absorbing the gradient terms into the left-hand side it follows

that
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I J * ~u l  ivuIP XE

pj u04p-1 CIE + ( P-i u O+P-1 bp i.P-)E

+ Jp 'p-i b2E + (e 2((P-i) +1) J ov uP 1  ,:1 P ) E

+ f ,boP apP- e -p/(p-1 PAE+b MfOpuo+Pl C E

Considering that 1 s e b e and iP*1 Ivul p  (2P-) IVuY/FIP

for y = B+p-1 $0 , it follows for y t p-i , y t 0 , that

Rp foP (Vu/p/ Ip X cc(y)f [RP I jI P + OPFRI uT

where FR = RP[c1 *b (P-l) +b +ap 1 (p-1 ) i-P/(P-1) A] and c(y)=

R 1 1 2 1
(I + 101P)yp

Now use (3.1.6) with t = uy / p  and c1 = max{l ,2cc(Y)}

The resulting gradient terms may be absorbed on the left to give

(3.1.27) RP  o? IVuY1/PIPi. X c c(Y) J ('S SF (R) P+ RP IVjOP) uYOj

(recall X :s ). Using inequality (3.1.4) with 0 = *uy'p  and

BR B(xo,R) , it follows that

Oq / ,q /q u i/p

ON ~B R R IBR
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with G * sP(R) C(y)(C' SF(R)OP + RPI VIP) + sP(R)Rp g O p + tPCR)O p •

3.1.28. This inequality is now Iterated. To do this choose 0 ,

i 0, ,2,3, such that ae 0 <e < e < <e 3  1 ,and let Pin

RSI . Also let Bk % B(xo,rk) where rk - R(eO +(el-e ')2 .

Choose Ok 4 Co(Bk) such that 0 : Ok 5 1 , Ok 1  on 8k+l and

IV kl s 2k+2/[Re 1 -62 )) , and let Yk a y. ( ql r ) k  With these

choices of * , y it follows that

+Yk

S Cl k(R)( (7 J Tku
V Jk

where

C'R *(~,~d 6 (R)4.( k+2 \P (k+2 ~ /lyki
C (R) ckR)Tk\C s 10))+ + + tP(R))

C(Yk) and in turn Clk(R) blow up if Yk tends to p-I . If

Yo < 0 , then this is impossible. If yo > 0 , then yo must be

chosen carefully.

3.1.30 Given 1 a 0 (to be determined in 3.1.38), pick To

such that P-a < y< and qi)0 - for

all k. With thls choice of yo, C(y) s cyP , and so after a crude
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calculation it follows that

Ck(R) :g Ck/ 1Yk1 s(R)(jyj sl/P(R) +1) + t(R)) p / I k lCl,k(R <F se(xo

Iterating (3.1.29) it follows that

(3.1.31) sup u y C(R) u (

B P TB 
knBp

that

Cl(R) s c(s(R)(IyOj s4/P(R) +1) + t(R))
pq/(IyIOl q-p 

.

The last step in the proof is the "crossover". First an ine-

quality is derived which in the uniformly elliptic case leads to the

conclusion that log u e B.M.O. which, in turn, gives the "crossover".

If w is not a doubling measure, this is not sufficient, and one

further iterative procedure is necessary to get the "crossover".

3.1.32. Take B 1-p at (3.1.24), and proceed as before but with-

out using inequality (3.1.26) to get

Jp IV log ujp S c J p(c I +bp  -p-1) +b2 )

+ #p-l IvI a1 + IV#lp
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I
calculation it follows that

Clk(R) I C k1 1 's(R)(Iyol s/(R) +1) + t(R 'Ik'

Iterating (3.1.29) it follows that

slgnyo <(cl(R) _krJB1uO)lTI

(3.1.31) sup u r ()
1 Y°I

BBP aT7R BP1

with CI(R) " 11 C1 ,k(R) . Recalling that Yk = YO( p) I it follows

that

C(R) s c(s(R)(IyOI sl/P(R) +1) + t(R))P q/ lIYol
lq p.

The last step in the proof is the "crossover". First an ine-

quality is derived which in the uniformly elliptic case leads to the

conclusion that log u e B.M.O. which, in turn, gives the "crossover".

If 6) is not a doubling measure, this is not sufficient, and one

further iterative procedure is necessary to get the "crossover".

3.1.32. Take 0 " 1-p at (3.1.24), and proceed as before but with-

out using Inequality (3.1.26) to get

# p IV log ul :S c 0 P(c, +bP -(-1) +b2)

+ €p-1ivl 1
+  v p  • I*plIvsI a1 + .VI
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Choose C(B(xoR) such that 0 s *, l on

and 1,I s 2/(R-p2) I RI1 (2/(Iz) ,so

pP IV 1o9ul P X : H(R)(ON)
P2

where

) + E(c, +bP (p-1) +b )RP + a, R 1H(R) a I + 2U~

Using inequality (3.1.5) it follows that

(3.1.33) i P log U I F W c K(R) o(BR)

where K(R) - p(R)IH(R) + q(R) and k -a' W I (log u) W
lp2 .

To derive the inequality needed in the final 
iteration let the

test function be

93nP ,1-P~vis f) exp(-b U)--

where nC(R) , n a 0 , v log k as above, and 0 z I

Repeated applications of Proposition 
2.2.2 show that 0 Eo'P(B(XoR))

with
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70 pp- ul -P (I VIO + I,)$ exp(-b U)

-n Pu ((p-1) (I VII + AL))-a ~I vi 1 sign v exp(-b 0 U)

- bonpllPl via + ( -L*-)) exp(-b U) vu

3.1.34. Substituting this in 3.1.3 and letting E = exp'-b. U) ,it

follows that

JnpuPE((p.1)(1v18$ + (s) -o BjvI 81 sign v)Vu -

p Jn p- l-P E(I v 1 + ( J2 )8) 17n -A

-b Jn UPuE (I v I + Vlu -A

+ JnPul-PE(IvIB + (O 0')

Use the structure inequalities (3.1.2) and J2 IvIO1 :s

il + P to get 
-

-166-



(~-l2 JPuPj,uj E(Iv1Is

sp JnE(1v18S 4L'

+ p i-1 BPIU (1 1 )1)1vujlP

+. p j 1l- E(IV + a1-

4. b J tP-1  PE(VI + (.2T~))V lx

4. v~'-P~~E(Iv1
8 ' ;:T))~ ~l'b

+ J uP E(IV I + b,)~

The fourth and sixth termus cancel- Eliminate E ,multiply

by ,t use Young's inequality as before, and recall 
that Vv

UVU to get

use IVO (jvfjY/P + 2L SI y6 O+p-1 (0 zl) on the right

and *1vI- S 1II +. IL) on the left to get

4
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gcy ~ -(IvIY'p + ( -2L P)p (np FR + RP 1VrnIp W)

Use inequality (3.1.6) on the F R term with 0=

n( jYP+ (JL S/ and C- 2cyp z: 1 'and then cancel gradient

tern5s to get

RPJf 1P I vvy/P IP X : cy~ J (E-' SF(R) p+ RP I~nI) (1VIY P -

Use inequality (3.1.4) with 0 a=V/ to get

:s s(R)(-~ J (F-- sF(R)1,P + RP IvnIP)( 1 vly + .2L)) w

+RP j~jjj w) + t(R)(0-3 - ni v /

I c~T (s(R) P~eA sF (R) n +RP IVn IP) + tP(R) nP)

Let B k aB(x~r k) r k *R(e I - (2- )2 k -0,I

Pik k( (Bk) such that 0Sln k I o 8 + ,and

I~k 2 k+2 /(R(e 2 -81)) , and let Yk p(q/p) k .This gives

-168-



WithY PakR 
=\ 

kFR \e- 1 /

Recalling the definition Of E it follows that

C k(R) 4 c kk(P(R)(s(R)+1) +tP(R)) /k c z

Use lMinkowskl's inequality to get

lvj/k1l /~yk+l S (RJ(' k t) Yk l'Yk 1 k
(6AR JSk+1 2kl 3  B kj

Iterate this to get

7ua) S lvi1 Ck (R 1 II
/ 7 k=O wX R 18P 6)

+ 1 (u C 2, (R)Y4
J0O kaj

C2,kR) s I i C 2k (R) Y Yj n C 2, (R)
c~k(R) 1 o ~ kaj 2k j*O k0O

C ~ 2 (R) s c Y,(s(R)(sl'P(R) +1) +~q)/qp

Let C(R c(s(R)(4'/P(R) +1) + t()*/qP then
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l/Yn

n~l ~ n ~ F( /P 
BT IviP n

Given s a p , then yns s < Yn+l for some n k 0 . Use Hblder's

inequality, c(Bn+l) /c(BR) s 1 and Bpl _ Bn+1  to get

v I/s I/R[ I v p s

(3.1.36) (- w B 1  ) : C(R) K 1l/P + s]

Expanding ex in a Taylor series, it follows that

ealviw = s.( IvjS )

Use Holder's inequality on the first [p] terms and (3.3.36) on the

rest to get

I- y ealyl W :g O a S CS(R) ( ( ) JB 1VIP wIj' 'r
Pl P2 +

The series (x+s)s  converges and is bounded by cex  if

b < e"1 , so

SJ eavi S ex_ Iv-yB ,Iv ) if a <e-'C2 I(R)
R BPl P2

s ec(p(R)H(R)+q(R))

since (3.1.33) holds. Finally,
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uta eta) J I~ 0 og u A

scc(p (R)H (R)+q(R ) k±a

and so

Ia 1/al u' /a

(3.1.37) ) (d-J Ia/Q~ 1f )-
:c' cec (p(R)H( R)q(R))/a

if 'ae lc2 .(R)

3.1.38. Let a from 3.1.30 be elso that a such that

po/q < a < a and (3.1.31) holds with YO ±a . With this choice

Of it follows that IYOIS/P(R) s 1 so that Cl(R) s
c(s(R)+ )P/(lOQ ')) . ombning (3.1.31) and (3.1.37) it

now follows that

sup u s C(R) inf u
B Bp p

c(S (R) (s'/P(R)+I)+t (R))q / ( q - p )

with C(R) - [(s(R) +t(R))exp(p(R)H(R)+ q(R))]

since it was assumed that s(R) a 2 for simplicity. I

! of Corollary 3.1.12. It is easy to see that if u is a solution

Sof (3.1.1). then -u is a solution of an equation which is almost
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identical to (3.1.1) and which satisfies conditions (3.1.2). Because

of this it is only necessary to deal with essential minima.

Since a - a 2 - b2 = b3 a c1 
= c2 = 0 , it is seen that

V-c is a solution for any constant c . Assume V has an essen-

tial minimum at x0  and let u = V - inf V, and apply Theorem
B(xoR)

3.1.10 for any 8 , 0 <9 < I , to show that

sup V - inf V sC(R)( inf V - inf V)
B(xoBR) B(XoR) B(x0,OR) B(x0 R)

and so V = lnf V = lnf V a.e. in B(xO,6) . But then the set

B(xo R)

of points where V achieves its essential minimum is both open and

closed so the connectedness of SI implies that V = inf V a.e.

in 0.

Proof of Corollary 3.1.13. Let u = u+K(R) and define

A(x,;,v;) - A(x, G-K(R), Va)

and

- B(x , 5-K(R) ,V5)

so that
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IA(x, ,v )l -jIA(xu,Vu)l

S pIvuIPlp  + aIuP-1 + a2

, p -1 + (aI +a2 K7(P- 1 )(R)) 6 p-1

Similarly,

tI(x.5,vu)i < boXJV;IP+ bjIVUl pI + (b2 +b3 K" (P - (R))p-

and

A.(xiiv ) .v v > I vl P - (c +cK'P(R))

and dlv A A

Now apply Theorem 3.1.10 to to get

sup s C(R) lnf u
B(xOeR) B(xOeR)

and (3.1.14) follows. I

Proof of Theorem 3.1.15. Let l u - inf u , u2 " s - Bru2 sup uBB

B(xovr) 
rr

Al(x ;l ,Vl) " A(x . ; +lnf u ,v 1)8r

A2(x ;2 9 vG2) " A(x, sup u - ,"Vu2)
ir

and similarly for , 1 2 * so that 1 I t 1 ,2 , are

solutions to the equations dlv A I 1 t 1 1 ,2 ,which satisfy

the structure
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JAil :s ulVil P' I + (a1M+a2 )

Il bo (75uf P + b1j(V.Ij' I + (b2z+b 3 )

A1 Vai z A Ival p - (c1M+c2)

Now apply Corollary 3.1.13 to get that

sup s C(r) inf Ul + (C(r)-l)K(r) for 0 < r s R

B8 Bre

Adding these inequalities gives

Osc u + Osc u s C(r)(Osc u - Osc u) + 2(C(r)-l) K(r)
B Be r  Br Be

and so

s U r- (Osc u + 2 K(r)).

re  , .,Br

Now apply Lemma 3.1.16 to finish. I

Proof of Lemma 3.1.16. Iterating (3.1.18) easily gives (3.1.19).

Assume (3.1.20), so

n-i C(rk)-l n-l 2
(3.1.39) log k O C(rk)+l kO log(1 - C(r)+ 1 )

n-i 1 n- I
-2k0 (rk)+l k- CO

n-1
since C(rk) > 1 , so 11 ak- 0 . Furthermore,

kO0
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n-i n-i n-i n-i n-1
(3.1.40) 2 1 K(r 1  ak KiN j (Ci.- T ak- T1

js0 kw i (k-j+i k uj k

N-i n-i
+ 2 - K(rj) 11 ak

s sup K(rQ)C(rj)
JZN

+ 2 11 ak) NI K(r) (i(- N1J1 a I
k=0 J=O k J

so given > 0, pick N such that K(rj)C(rj) < e for j a N.
n-i

Then, since TI ak+ 0 as n , it is possible to pick n > N
ko0

so that the second term is less than e . Therefore (3.1.21) is

proven.

To prove 3.1.22, first assume that I I , so from7F7t' < " S fo
n-i kO ""k' n-i

(3.1.39) it follows that II ak z C > 0 , and so kI an  converges
kaO k0 "

to a strictly positive number since ak < 1 . It is possible to

choose u such that

OscU, "1,,..
r u '  u ,k 1 2

but then lim Osc u 11 ak Osc u > 0 . The other possibility is
n l Brn k=O Br

that C(rk)K(rk) a c > 0 , In which case pick u such that

Osc U C 0 (l -)c

so
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e s (1 -2-)C(r )K(r) :s (Crk -l)K(rk

by (3.1.17). and so

e(1 -a k) :s 2ak K(rk) and c s a k(e + 2K(r k))

satisfying (3.1.18).

To prove (3.1.23), pick M ,c a > 0 such that Qr k) S N

K(rk)£rk 9 k -O0i12...

a - 2 sa = o

akin 0~k+l £1

forsowe b >0 , and so

0sc u sa n- sc u +2cge n L

:s (eR)- r b Osc u + 2c e~ enb nII 9(cib)j
n ino

S C' &a

for somie C' o' >0 , since

*-b oi-b > 0

CI e(c-b)n -<0

To prove sharpness first assume that CQrk) is not bounded so that

the monotonicity assumption gives CQrk) + -. Now pick u such

that
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Oscu ak.I Osc u
Brk 

ark-1

so that

n-1
Osc u kO ak Osc u
Srn  B r

If Osc u cr n ,then
B rn

n-i c erR
ak as Osc u

k=O

Pick N such that e <a s ak < 1 for ka N ,so

N

and then (-;) sc"

for n a N , which is impossible since 8 e>  . To show the neces-

sity of K(rk) i cr* , pick u such that (3.1.19) is satisfiedk)t

with equality. Assume Osc u s c rn , n - 0 , 1 ,... , so that
8n

- rn 1 -c a Osc u8 rn

n-i n-1 n-i
I akOscu + 2  1 K(rj) I. ak

kO k r J 0 knj
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z:a2a K(r,) z 2(1 - ~ r

and K(rk ) s c' r k = 1 , 2 ...

Finally, assuming that. C(r) is nondecreasing and K(r) is

nonincreasing as r -. 0 , it follows that

n-I n-I k-I rk fiI(r)))dh~r

n-I I log a k - I l/(C(rk)) -C l J
Ii a =ekwj k- s e rk+l
kvj

where c v(logO )- and so

n-i -c(g(r,)-g(r.)
R1 ak :s e
kaj

where g(r) =~ c d
r

Al so,

n-i n-I n-i -C(g(rn )-g(ri))
I K~ i t a S K(rji)e

j r kuj ak j0

-Sc cg(rn )n-Il s cg(s) ds
1C 1j K s)

gg~r ))

a c e-g(rn) g~dY g 1 (t) ect dt

where y(s) a C(s)K() so that
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Osc u -c(r(Osc u + 2 (r) g'(t)eCtdt .Br.n

Boundary Continuity

In this section solutions which take on continuous boundary

values in a weak sense will be shown to do so continuously. The

definition of weak boundary values adopted is that introduced by

Gariepy and Ziemer [GZ]. The local nature of this condition is more

appropriate and less restrictive than the more usual global condi-

tion that u-f c W 'P(1) for boundary values f c)0
c n' and f continuous in n' -n . In Proposition 2.2.86 it is

shown that under certain circumstances the two are equivalent.

For (uvu) c Wloc(n) . e and t e M , it is said

that

(3.1.41) u(xO) s , weakly

if for every K > I there is an r > 0 such that n(u-k)+

P(Az) for all n e Co(B(xo,r)) . The condition

(3.1.42) u(xO) z I weakly

is defined analogously and u(xO) - X weakly if both (3.1.41) and

(3.1.42) hold.

Throughout this section it will be assumed that n , n' are
openwith ac-n, , and that U, X,, ail, Ct , 1-1 ,2, bt

i w 1 ,2,3 are defined in n'

Suppose that u is a bounded weak solution of (3.1.1) in nl

and that x0  an and u(xO) s I weakly. For k > t. let
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Uk
k

so for some RO>

(3.1.43) flPk£ o if n 1E C'O(B(x 0,R))

In the setting of 3.1.48 it is shown that given R > 0 ,(3.1.43)

holds for all k > sup f . In any case, Theorem 3.1.44 holds
B(x0 ,r)nao

for any R , k for which (3.1.43) holds. It will be assumed that

the Sobolev inequalities (3.1.4), (3.1.5). (3.1.6) hold for

0 <r % R ,where

F(r) -rP[(c +C )K-P(r) + 1POP1 + (b +b )K(P 1 )(r)

+ (a I+a,)P/(P-1) K_(r) 1jP/(Pi1)]

for some function K(r) , 0 < K(r) !5 1

Let 1j(r) - sup uk and Y ~(r) + K(r) - uk
BC x0 r k r)

3.1.44 Theorem. If u is a bounded weak solution of (3.1.1) in

nl with jul :S M I Xo a a and u(x0) s t weakly, and

Co(~xor/)),wit jnj 5- and r < R te

rP IV(nia)lp X
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where c (s(r) (s P(r)+1)+t(r ))ql (q-r)
G(r) e [(s(r)+t(r))exp(p(r)H(r)+q(r))] q

and

H(r) - 1 + fBrJ ((c1+c ")(r) +bP X(P-l)+ (bl +b)K- ( p- 1) (r)JrP
r + (a,+a 2)K(P1)(r) rP- I )

Br - B(x0or) . c depends only on p, q ,M ,

Definition. If K c' is compact, then

C,(K) - infif IV.IP : * JP€I.) . z I on K.

3.1.45, Theorem. Suppose u is a bounded solution of (3.1.1) in

n and lul M,. xo e an and u(xO) w weakly. If

(3.1.46) J(C, B =x /4)-n~)rP )l(~)dr(3.I46)JO w(B(xo),r)) G(r) r

and K(r) -r" < a , then

lmup Iu(x)-1I 0 .
X*XDx~x0

6(r) Is as in Theorem 3.1.44.

Remarks. Semicontinuity results for sub- and supersolutions and

results on capacitary fine limits may be derived as in (GZ].
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If u is taken to be quasicontinuous (see 2.2.20), as may

be done if C (E) - 0-* IEI = 0 (a condition which follows from

the existence of a Poincar6 inequality), then

(3.1.47) sup u = supc u

where sup u = nf t e IR: u<t a.e.} and supc u a inf{t eIR:

u<t quasieverywhere) . Theorem 3.1.45 then states that u(x)-1 as x-W0

for all x c nl outside of a set of capacity zero. (3.1.47) follows

from the fact that u can be approximated pointwise quasievery-

where by *n n C such that n < sup u . This is proven in

Proposition 2.2.2.

Modulus of Continuity at the Boundary

3.1.48. Assume f :o -*MR is continuous, and u -'f weakly on

30. If x0 9 i, t

V(r) - sup (u-f(x0 ))
+

B(xo,r)nn-

and

N(r) - sup f-f(xO) .
Blxo,r)n3n

From (3.1.51) and (3.1.52) in the proof of Theorem 3.1.45 it follows

that
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A(r) - (c (B(xor)G-(r))
)1(r) -u_{r/2) +K(r)

+r +K (r) li

when r, k satisfy (3.1.43). But by Lemma 3.1.50 r, k satisfy

(3.1.43) if k > sup f . It is clear that (u-f(xo)) + S
B(xosr)nafl

(u-k)+ +k-f(xo) , so V(r) s u(r)+k-f(x,) . But (u-k)+

(u-f(x0))+ , so p(r) -jj(r/2) s V(r) -V(r/2) +k - f(xO) , and letting

k. sup f it is seen that
B(xo,r)n3n

(V(r) - m(r) + K(r)) A(r) s (V(r) - V(r/2) + m(r) + K(r))

and

V(r/2) (1 -A(r))(V(r)+K(r)) + (l+A(r))m(r)

s (1 - A ) (V (r) +K(r) +4mr))

S
; (- )((r)+ 2(r)

for C(r) - 4A'lCr) and R(r) - -Ki 4 (r1 • With this identifica-

tion Lemma 3.1.16 applies. In particular:

3.1.49 Theorem. If A(r) 2 c > 0 and K(r)+m(r) s cra for some

a 0 9 then

sup ju-f(xo)I s cre '
B(xor)nn
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for some ci' > 0.

Proof. By Lema 3.1.16 and the calculations above, it follows that

V(r) s cr ' for some a' > 0 . Do the calculations above for -u

and -f to get sup (f(Xn)-U)f + cri , a" > 0 , and the
B(xoR)nA

result follows. I

3.1.50 Lemma. If u e Wlo (£ , f :l - IR is continuous with

u i f weakly on an and x0 E an , r > 0 , then

nl(u-k) +  wI'P(Q)

for k > sup f for all n £ CO(B(xor))B(xo,r)nan

Proof. The result follows from a partition of unity argument.

Assume k > sup f so given e an n Bxor) ; 3 > 0 s.t.
B(xosr)n3n

i r and n(u-k)+ c W'P(n) for c C.(B(xF)) The balls

Bx,F/2) cover B(x0 r) an , which is compact, so pick a finite

subover 81 . B(x1,r1/2) , 1 - 1 ,2 , ... , n . Choose ni £ n

ith n 1 on B . and let N (!x( .) ) - ti B1

N is compact, and N c n since nTF nall c U 61 .,so choose
n

no C0 (A) with no- I on N . Since =n > I on U B1 u N

nn
choose 4 '* £i > with I on U 8, u N .It fol-

0 2l

lows that
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ntat " -- c'(n')
II u '

and

n

n+
on U B u N But t(u-k) + a U1P( ) since 1t E Co(B(x 1,r 1 ))

for 1,..., n , and o C "(nl) ,so

*(u-k) I i(u-k) e Wo

1*0

n + +

But -1 on B(xor) n c U Si u N , so n(u-k) -n*(u-k) £

1-1
V'iP(n) for all n C((xOr)), as required. I

Proof of Theorem 3.1.45. Given k > 1 , it is clear that u -

U(r) +K(r) if Uk 0 Take I" 1 on B(xo,r/4) so A(r)+K(r)

on 6(xo,r/4) n {Uk 0) , and

(3.1.51) C,(B(x O L) n (Uk O})

; r-P(V(r) +k(r))(p-i) . (a(r) -U( L) +k(r)) p 'I w(B(xosr)) G(r)

from (2.2.30), Theorem 3.1.44, and the definition of CA

If A lmup u' >, , then for k such that t -c k < A it
X4*X0

xan
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is clear that p(r) k A-k > 0 . Also,

(3.1.52) n(xo,r) -f {uko}

by the definition of uk , so from (3.1.51) it follows that

I CX (B(xoir/4) -n)rP /r) .r

0 (B(xo,r) G(r) 
) r

s (A-k)fl JI ((r)- u(r/2) +K(r)) t0 ro
This is finite since 1.(r) is monotone increasing and K(r) kjo r

but then (3.1.46) is contradicted, and so limsup u 5 .

xen

Since -u is a solution of a slightly altered equation which

satisfies the structure inequalities (3.1.2), it is also true that

limsup -u S -2,
X 0

which completes the proof. I

Proof of Theorem 3.1.44. Let ;0 - (11(r)+K(r))o for 8 $ 0

Given 0 < r < R , R as in (3.1.43), assume * c Co(Br) Br

B(xo~r) , and choose n e Co(BR) so that n I on Br nuk n

'P(n) , so repeated applications of Proposition 2.2.2 show that

a WO'P(nB r ) , where
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bs0 sng)+

P((u(r)+klr)-nUk)O - (fi(r)+k(r) ebO signB (p(r)+k(r)-nuk)

with gradient

p- 0 ssign

s - g bosign.

b0 sgr V;
+. signo b0f** e b Vugn

Substitute this in (3.1.3), use E e b , and multiply by

sign$ to get

IBI j B V AE

-stign f 84P BE- sign p J B V*.AE

"bo 1 *p v;Bu-AE

Use the structure inequalities (3.1.2) with the fact that * , V; ,

and 0i are supported in 2 , VB "0 on fu<k) , and Vt *

-X(uak) Vu to get
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18 ;0*-81 )vi X E

s j8 1cll~ 2

" bo J 4p 4,8IvuIp XE

+ ~~~ ~ bu~ b)'E

" p J Iv7fi *P-1* IV 1i- 1 IJE

+ p J- *V , ~*(a, I u I P1 + a2)E

- bo J *8 V;Jp AE

The second and the seventh term cancel. Use

(3.1.53) :s ;0 .lul & M , 1 s i K-1( W , i (a I+a 2)K(p1l (r)

6a (b 2+b 3 )KICP 1 )(r) * (c 1+C2 )KC(r) , and K(r) s 1

to get

(3.1.54) 181 f ;0- 1V;JP XE % c($+1) fJ ;O~+P-1(6+

# PP JV;p-1 bE
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Much of the rest of the proof follows that of Theorem 3.1.10.

Continue as from (3.1.25) with minor changes such as the redefini-

tion of F(r) to get as in (3.1.27) and (3.1.29) that

(3.1.55) r p  7P a0YPIPPA : c C(y) J F(6 +Fr p P ) ;Y

for y 0 p-1 , y I 0 , and

(3.1.56) ( WJ. k Yl k+l /IY k+lI

r k+l

S C1,k(r) fek Uy\ 0 /Iyk

Where Clk(r) a c P~(r) aCT)~~ s (r) + 2k+2 _-) + ( 2W p) + tP(r))/yk

Given a s.t., 0 < a < p- ,iterate as in (3.1.31) with y.

-a < 0 , to get

(3.1.57) ( -as Cl(r) infO

with Cl(r) - c(s(r)(IyI s/P(r) +1) + t(r))
pq/l ol(q p)

As in 3.1.38, yowill be chosen so that

Cl(r) s c(s(r)+t(r))Pq/ 
YO I(q-p)

; If Yo a > 0 , iterate Inequality (3.1.56) only for ks k0

where yk 0<p-i By choosing 01 and 02 at 3.1.28 slightly
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differently the iteration gives

(3.1.58) BOq6/P )P/q 8 s C,(r)( - J a) /a

for a -yk 0 < p-i .

The "crossover" also follows that of Theorem 3.1.10 closely. Proceed-

ing as from 3.1.32, using (3.1.54) instead of (3.1.24) and letting

K f log , it follows that
P2

P2P

where H(r) - 1 +- ([(Cl+C 2 )l-P(r) +bp  (p-l) + (b+b3 ) K-(P-)(r)] rP

+ (a+a 2)K'(P'I)(r)rP') . Now let nP - + (p-I ))e -bO for
Oz wihicO*-0-P-(a)Kr)-

wIth n Co(Br) , - Ulp - lj lr)+Kl rlp , and v = log K1 ,

K1  as above, and

.- a p P'l.(ivIB • (S)0).- eb

n- PVo((P-1)(IvIO+ (J& ) P- 1 Ivi 1 0-signV)e e 0

- ,",0 -*(v 1 + ( 1 - vv

Proceed as from 3.1.34 recalling that 9 u and that n ,
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are supported in n , then continue as in (3.1.53) to get

Sc(J *P (6+a))(1vil +

+ J Vp +1P ( '- +B) 

I + [ p"o Ivo! Ovil + (-E.L)) a

+ [ 5p OP Ii + (A. )~=l p. b, .

Proceed as from 3.1.35 with minor changes as in the redefinition

of F(r) to get

(3.1.59) (tJ a a -a

• c(pr)H(r)+q(r))/a

for a < e-1 CI (r) . C2(r) . c(s(r)( ./P(r) +1) +t(r))q/ (q-p)

Given a s.t. q s a < P-1 , pick a and ko  s.t.

a Iim nf~le- - ),1  2-11  and y 1 0
q 2 qko (p ko

*. Now combine (3.1.57). (3.1.58), and (3.1.59) to get

-19- C3(r) nf
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with C3(r) s c Cl2(r)•
c(p(r)H(r)+q(r))/

a

Taking p - j and recalling that v - z(r) -uk+K(r) , It

follows that

(3.1.60) ( 1~& fB )q/ p/S- C()p~)vr2+~

for q 5 6 , p-i

For the final step let = fP -b0 Uk with CO(Br/2)

I and 1#1 s c .

-boa

-b

I+ +P e Vu K

+ b0 4p e-b O uK VuK  (V ,,VUK)

and following the usual procedure It is seen that

# *P VuK AE P "J *P UK BE - p f *P-l UKV 'AE

"bo p uKVuK AE

and
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J P IVu ki XE s *P(C lulP +C2)E

+ b 0 1 p UklVUklP AE

+ *pp UkIVUk p" blE

+ # p Uk(b 2 luiPj1 +b3)E
+ P [ p-1 IV l UklVUklP-l viE

p JP-1 I*1 uk(alluI +a2)E

ibo #P ' p  )Ei

+b0 J *p uk(clllP +c2)E
Cancel the second and seventh terms and use an Inequality similar to

(3.1.26), Jul s M , and K(r) s 1 to get

rP J *p VukI p x

& c(t(r) + K(r)) eP1l(r) I' (O p rP C (cl+c2)K-P(r) + (b 2+b 3)K7(P-l)(r)

.+(alI +2)P/(P-1) U -P/(P-I) ),K'P(r) +r p IV41 p m1

+ rP #p- 1 UkVuklP-1 (#bl +JIVjI)

Use Inequality (3.1.6) with e a 1 and * - * on the first expres-

sion along with Vuk -VQ to get
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(3.1.61 p * IVOIX 'x SC(sF(r)+1)(1i(r)+K(r)) K"(r) "'(B)
F rr

+ r pj. p- UIVO I P (Ob,+ I VOJi

Pick aL > so that 1 (1-a)p < .Use inequality2P p
(3.1.6) with c *1 0 a #G * y * pOl-c)(p-1) to get

(3.1.62) vrp #P 5 bP OJP..1)

S rpPJ. F(r.)

SV Ip Opx+ c(sF (r) +1) JB r/2 u o

.c(SF (r) +1)J1 / by using 3.1.55.

Also,

v.p J #p-1 UkIVUIP1 (#b1 + jVfjlp)

S 3  (O~P-1 O(r1-1)(P-1)rP-l Ivl- X(p-1)/p

(D (1-*) (P-i1) r. (#bI + Ivf Iii) OJP.1 )/P)

% cm(v.)(vP ,P IVCPIPx)(P-l)/P x

c~s~v)4)35r)J~(p-1)/P 1/p

v./2 ~ r/2

using (3.1.55) ,(3.1.62)
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s C ( r + ) C p - I  ( l ( ) ( I ( r ) -I ( r / 2 ) + K ( r ) ) p - 1 w ( B )

by using (3.1.60).

Combining this with (3.1.61) gives

rpI PIal" s C(Fr+)C3  (r)(p(r)+K(r))(U(r)- (r/2)+K(r)w(Br.

Using (3.1.60) once more gives

r5 Jiv(*U)Ip
S G(r)(1u(r)+K(r)) (p(r)-p(r/2)+K(r))p'I 1(B)

csrslip r+)+~)q/(q-p)
where G(r) : [(s(r)+t(r))exp(p(r)H(r) +q(r))] c  (r)+l)+t(r)) p

using the' assumption in (3.1.6) that s(r) ? 2

3.2.0 Modulus gf Continuity Estimates for Weighted Sobolev and V.M.O.

Functions

A result of Morrey implies that functions in the unweighted

Sobolev space Wl p(,Rd) are Hblder continuous for p > d . In the

present section a similar result is proven for the weighted spaces

WI'P(cvO) which support a weak type of Sobolev inequality. This

result is derived from an estimate for the modulus of continuity of

functions of vanishing mean oscillation which in the unweighted case,

for g(x,r) - cr , is due independently to Campanato [CA] and Meyers

[MY2]. It will be used in Section 3.3.0 to establish continuity

for solutions of certain degenerate elliptic systems.
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Functions of Vanishing Mean Oscillation

Let g: A l]R+M + be Borel measurable and let be a locally

finite positive Borel measure on an open set £ For simplicity

it will be assumed that

(3.2.1) 4(a) - 0

for all balls B with B c . The theory is much more technical

without this assumption.

MOg will be the space consisting of functions u :Rd ,

u g L oc (c1,) such that

(3.2.2) ),Ju(y) j < ,() dw(z)I do(y) , 9(x.,r)

for all B = B(xr) , . . The methods used allow for much more

general sets than balls. This restrictive approach was chosen for

simplicity.

To estimate lu(y)-u(z)l for y , z c B , c _. , it is only

necessary to estimate O(x)- Ju(x) - 0 (7 ujdwi for x c B

since ju(y) -u(z)l S o(y)4(z).

To do this it is necessary to introduce some geometry.

3.2.3 Assume that x a B - B(xo,R) , and that Fx :B t [O,R) is

continuous with F 1 (o) - x . F (OR)) - B . and F-1 [or)

S (r) for 0 < r < R , where B (r) is a ball of radtius r centeredx x
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at r.(r) 1]Rd. The continuity of Fx forces cx(r) to be

continuous in r . Also, assume that Ix-Cx(r) < er for some

8 , 0 < 6 < 1 , to Insure that l xl .uFcI - u(x)
r*W B;( J6 x(r)

a.e. w . This follows from Propositions 1.1.3 and 1.1,5 and a

covering result of A. P. Mbse, page 6 [6]. Points where

the limit above exists will be referred to as Lebesgue

points.

Let ;x(r) - w(F;x([Or))) - c(Bx(r)) < - so that .x(r) is
a monotone increasing left-continuous function on [0,R] and so

induces a finite Borel measure ix on [0,R] . ;x(r) is actually

continuous in r because of (3.2.1), so a has no atoms. If f,

E are Borel measurable and f 2 0 , then

(3.2.4) f (r)% d x l ( F y)) wy

The method of proof of Theorem 3.2.5 involves a reduction to

one dimension, where an Integration by parts with respect to Wx is

carried out. (3.2.4) indicates the flavor of the reduction, the

basic difference being that f(Fx (y)) must be replaced by an

arbitrary function u(y)

3.2.5 Theorem. If u t NO and x ,y are Lebesgue points of u

with respect to w , then
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(3.2.6) 0~x W Iu(x) f u1J d.

S2g(x0,R) + 4 R g~c (r),r) dxr

and so ~d 4 r

(3.2.7) lu(x)-u(y)I s 4(g(x01R) + f: gc(r] - r)

An alternate expression for (3.2.6), (3.2.7) results from (3.2.4)

since

g(c, (r),r) dw =r 9(c x(F ( z)). F X(z)) dw(z)J0 .o(r) Js C(X( W

3.2.8. If. in addition.

g(x~r) - f(ow(B(x~r)))

for f: 1R+ .k continuous, then
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Remarks

It should be noted that the assumption that x,y are

Lebesgue points is usually unnecessary. In fact if

R g(Cx(r),r)X dw~r) < then it can be seen from the

0 xCr) -

proof of Theorem 3.2.5 that the averages

-1
B (Bx Cr)) JB (r) u dw form a cauchy sequence in r and

therefore converge. If the above integral is finite for

all x in some set E then u may be redefined almost

everywhere -w in E so that every point is a Lebesgue point.

A typical geometry would be given by defining Fx

implicitly as y-c Cx(Fx(y))I - Fx(y), with x(T) -

x - r(x-xo), B - B(xo,R), R ' I 1. F(y) is the

positive solution to a quadi,.tic and its graph is a skewed

cone with vertex x.
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The geometry described at 3.2.3,wtth x generally off centered

in 8 , is not necessary if is a doubling measure. That is, if

w(B(x,2r)) s c w(B(x,r)) . In this case take x - x0 - C (r) and

Fx(y) - Jxo-yj so that for x, y with ax-yj - R

(3.2.9) lu(x)-u(y)l S Ju(x) u (8(IR)) J dwR

luMy) - JB(yR)

+ E

where

W -(B(x,R))((B(y,R)) B(xR) (y, R) julx)-uly)j y

a c IBB u(x)-u(y)l dw(x) dw(y)

for B B( '-, R) , using the doubling condition. Considering

(3.2.10), this can be bounded using (3.2.2).

The continuity of f in (3.2.8) is not necessary. If

(B)) - 0 , where B is the set of non-Lebesgue points of f

then (3.2.8) still holds.

of fTheorem 3.2.5. (3.2.6) will be proven first, then (3.2.7)

will follow immediately.
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* Assume that u c HO and that x is a Lebesgue point.

(B (r)) > 0 for all r > 0 since lrn __ r)) u d must ber-60 x Bx(r)
defined. For convenience the subscript x will be dropped from ;x

and Sx ,and Br will be the ball Br(x) " 1 Jul dw < - since

u a L I (wl) and _ . Let f(r) n u dw . f is absolutely
"cr

continuous with respect to w (see 1.1.10) since V e > 0 . 3 8 >0

such that if ow(A) < a A c 8 ,then Jul~ dw<e . so that given

disjoint intervals 1t  [atsbi), t- 1,2,3, i. ,wth g(!U 1i) <

a. , thn wA)- Y€, 61  . where A "-1 (ebi " 8) ,, o
11

From Proposition 1.1.13 it follows that f(r) JEO,r) ( d(s) .

Denote r by u . It is easy to see for u ,v g Lloc(mn) and

. R that 7iv-- +xb a.e. w .

It Is claimed that J;J % T . Pick sets F+ , F_ disjoint

so that u , the positive part of , is supported on F+ ;and 0,

the negative part of i , is supported on F , so

fE y J + dofr- I (E d+) d

I(EnF)  d EnF -
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for all Borel measurable E . Therefore 0+ 7 and so 1u1

+ 4.

From this it can be seen that

J I J a(s) -5(t)I d_(s) d(t)

rr

(") 1, 1 u(x) -(t)j d-(t ) a(x)r

Sr

f T~ Ir Ju(x)-- 8r u(z)d (z) dn(y) d(x)

fe r r r

JBr is rI; S:Tr u(,z) ckw(z) -u(y)I do(y) dca(x)

2w 2 (B g(c(r),r) by (3.2.2),

so '6rj or01(s). (t)l k(s) 4L(t) ! 2g(c(r).r) . Now let

Ar)- t 5r(s) ds , which is absolutely continuous with respect

to a on [(,R) , C > 0 by Proposition 1.1.13 since L(r) > 0 for
r

r > . Also by differentiating Z(r)A(r) - a(s) ds with respect
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dAA
to L a in1.1.18, it is seen that A(r) +w(r) Ld- (r) ; (r) for

r : 0 a(r)-A(r) Proposition 1.1.13 is usedr : 0 a d w so () & (r) "

several times in the following.

Ir  -( l A s  _s
IA(r)-A(e)i u (s) s)k )I

;1-~ io
, IG(s)-5(t)) d_(t) k_(s)

T o ( ) leI' 2 J 5(J I(t) (t) d(~iP)d(s)

s 2s(r),) 4J da(s)p

A~ r) -(f (o) u

To~~~ prv .28 e

r

sBg~(r) .r) + ds

i s absolutely continuous with respect to w since
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W(a

Differentiate using (1.1.33) to get -G fIwf3) , so that

G(r) - Jr MAO1)s dw(s) . Let c - 0 to finish the proof. m

Continuity of Sobolev Functions

Let n S_. be an open set and let w , v be locally finite

positive Borel measures on s with v absolutely continuous to w

Let WI'P(w,v,II) be the Sobolev space defined in 2.2.1 with p z 1

3.2.11 Theorem. Assume that u e W"P(w,vn) and that the Sobolev

inequality

(3.2.12) f JB Iu(x)- f1J u(y) dw(y)l dw(i)

S K0x~r)(f B 17uI p dv) I / p

holds for every B - B(x,r) with A c n . Then, assuming the

structure of Theorem 3.2.5,

lu(x)-u(y)i s 4(K(xoR) + £ xKcx(r))r) d(r)

S K(c,(r),r) l/p
+ J% d(r)) RIVul d)

- (Xo,)
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if x y are Lebesgue points of u with respect to w

If, In addition, K(x,r) - f(w(B(x,r))) for f:M+ : +

continuous, then

(1.2.13) ,u(x)-u(y)l s 8 (((B(xo$R))) + ( ( O R ) f(s) ds)

I/

(fB(xsR) 1/pv  .

Proof. Apply Theorem 3.2.5 with

g(x,r) - K(x,r) Bjxo 'R) i P

Remarks. Theorem 3.2.11 is true in the more general setting of

Section 2.1.0.

By applying H61der's inequality, it is seen that the inequality

(3.2.14) fy f*x *(y) dca(y) fca&(x)OT""" ,, 1#()

s KP(xr) i 1vI P dv

for all B- B(xr) with I cn and all W ( W1'p(a,v,.A) is suffi-

cient for (3.2.12) to hold. A limiting argument shows that (3.2.14)

need only be assumed for # Ct(n) . In Theorem 2.2.41 it is seen

that (3.2.14) is equivalent to
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(3.2.15) c K(x,r)C H(KnB)

for compact sets K .fl (recall that § _ fl so Cm(fl) C

Example. If K is as in the example preceedini Lemma 3.1.16

and w(x) = v(x) dista(x.K1)

with a > -y , then (3.2.13) holds with K(x,r) = cr -11 P(B(x,r))

by Theorem 2.2.56 (specifically (2.2.62) and (2.2.63)). As in

(2.2.70) it is seen that

(*(B(x,r)) Ov r d ma)xfr, dist(x,IO} .

If % a 0 , then rdcL s caw(B(x,r)) , so X(x,r) = cr'I/P(B(x,r))s

f(,(B(x,r))) for f(t) = ctO 8= -1 1 If pd+ ,

apply (3.2.13) to get

lu(x)-u(y)l S cw,(B(xoR))

s co d maxB{R ,dist(xO,K)•

so u is HIlder continuous.

If a < 0 , then

rd s w(B(xr))maxt'x(r ,dist(x,K)}

sc w~ex,r))

for bounded r , x , so a similar argument shows that u is HI3der
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continuous if p > d

It is interesting to note that there is some additional regular-

ity at R in the case of a < 0 . A careful analysis of the proof

of Theorem 3.2.11 shows that

Iu(x) - I Ju dwi s crl-(d~a)/p 8 B 8(xr)

if p > d+m and x w R where u(x) has been redefined on R in

the natural way, that is, u(x) is defined as the limit of the

averages o(B(x,r)) Bx dr)

3.3.0 Higher Integrability for he radient _9f Solutions 9f Eliptic

S with- Application X Continuity 9f Solutions

Solutions u of second order quasilinear degenerate elliptic

system are considered. It is assumed that u a WI 6jQ) , where

p is the natural exponent for the equation. Then it is shown that

IVuI a LP+(U,fl) . In the case of Lebesgue measure with p 1 , this

can be used to show that u is Hblder continuous in the borderline

case d-e < p s d . In the weighted case the critical exponent may

change but continuity is still achieved. The analysis also applies

to higher order equations. The basic method is due to

N. Meyers and A. blcrat (HYE] (U-l).

The equations considered are:

(3.3.1) V *At(x,u,Vu) , Bt(x,u,Vu) , i , 1 , ... , N
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where

A: lxmN x dN -. Md

and

6: nx N x RdN -

are Borel measurable functions satisfying the conditions:

SA 1(x'uvu)l :5 aOpiVujp-l + a11 v

(3.3.2) 1B1(x,u,Vu)l s bljVujP'l + b2p ,

SAi ' vu1 i a Ivul p - c ,l

where u ( ,..., uN) , Vu (VuI ,..., NuN) a a0 z 1 is a

constant, and Iz, ay-, bi , b2 , c1  are nonnegative Borel measurable

functions on the open set a . It is assumed that 0 < < - a.e.

and that i induces a locally finite measure (a which is doubling,

that is, 03(E) = jj and 0(B(x,2r)) s c 0(B(x,r)) . It is also

assumed that there is an a > 0 such that

(3.3.) a, LlP/lP-1))+a (u.2a) b, /( SPa loc • )

3l Ioc l1 c
b sl(s-1)+a (iQ an c, L140 (,,n) 9t2b2 oc (li , and cI €Lloc

where s is given in (3.3.4), (3.3.5).

In some cases these conditions can be weakened by using other

Sobolev inequalities in combinations with those in (3.3.4), (3.3.5).
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Le W 1'() - ItN w1'(ia;j W.(;j,fl) "~ ~.) as defined in
Ic i Ic Io

2.2.1. A pair (u,vu) g PUn is said to be a weak solution of

(3.3.1) if

j Jo *, A1(x~uVu) + 't B(x.u,7u) -0

for all o e lpPa

It will be assumed that the following Sobolev inequalities hold

for p, q, s with l qcp~s

(3.3.4) (I 1BII 1 t. Pd./

S~~~~ ~ ~ /q coIT ,0qd

for all *I W7 1%,,n) and all balls B with diamete'r r , IQA

ldo)

for all* # ~a W 'f ) and all balls B with diameter r , B

It is of course only necessary to assume (3.3.4), (3.3.5) for

* I' functions and then the usual limit procedures allow general

Sobolev functions. Conditions for Sobolev inequalities of the form

(334. (3.3.5) are discussed for scalar-valued functions in Section

2.2.0. The vector-valued case is an obvious corollary. For certain



s > p , Inequality (3.3.5) follows from inequality (3.3.4) as in the

proof of Theorem 2.2.56. A simple consequence of inequality (3.3.5) is

that if ' c W;P(un) , then 0 eLloc(pn)

The analysis of the equations will produce a "reverse H5lder"

type of maximal function inequality from which the higher integrability

of the gradient will follow.

3.3.6 Theorem. If (u,Vu) is a weak solution of (3.3.1) in a

bounded open set n c ]Rd , then there exists c > 0 so that -

IVul e LlP4oo(Vn) . c depends only on d, p, q , s, aO , c, ,

31  , S 2  •

Remark. As in [MYE], if (u,vu) e Wl'P(u,,n) and certain weak as-

sumptions are made about an , then Ivul e Lp ( ) .

Proof. Let Q,, QI, Q0 be concentric cubes, Q0. 9 with side

lengths S,, 2S,,, 3S respectively, as in section 2.3.0.

Estimates will be made over balls B' - B(xr), x 6 Ql, r<S./2,

using test functions of the form 0 = *(u-k) where * is a

function such that

(3.3.7) E Co(B(x,2r), 0 _ < 1, - on B',IV,1 <2 /r.

These calculations will yield the inequality

(3.3.8) MR~gq) (T) <. c '(g) Cy) + (g4)(Y) + (y)

for y e Q, and R S ./2 where MR,H are as defined in section

-210-



2.3.0, g -Vu q , j - p/q and c depends only on a0, Si,

s2 9 p, d, c.; and F E LI+ a '(M,Q1 ) for some a' > 0, a'

dependent only on a, s, p.

Using propositions 1.1.3, 1.1.4, 1.1.S and 1.1.9 to

show that F ' M(F) a.e and letting f - Fl/q it follows that

Mqgq) < c M4(g) + M(f4) + M(g4) a.e. in Q,

Applying Theorem 2.3.3 it is clear that VuIE LP+C( Q.) for

some e > 0 dependent only on d, p, q, s, a0 , c,a, sl, s2,

so IVul 6 LP+ErO)loc

To prove 3.3.8 let K - 0I(B) Ludw, B - B(x,2r),

V - u-k and 9 - *Pv, * as above. Take

91- p *Pp l VO v + fP Vv

so that (e,VO) e w"'P(p,n) by Proposition 2.2.2, and

. [p#P- v, V .A, + *bP Vv1. A1 + P vt Bt) . 0

Rearranging terms and using the structure conditions (3.3.2), it

follows that

+ aop J *p-1 lI vI IvulP'1 P

+ p p- Iv#l Ivi a1)

+ # lvi jup-i ~

+ J *p Ivl b2p.



Younges' inequality implies that

p1 Ivl Iv S s p  ulp + -(p-l) Ivolp IvlP

Ivi Ivulp l ib1 s C Ivul p + C-(p 'l) Ivjp b.

Applying these with e = min{-. (4aOP)-I , absorbing the gradient

terms into the term on the left-hand side, using Holder's inequality

on three of the remaining terms and recalling (3.3.7), it follows that

T' lvu'Iis TB C111 + cr'P TB f v VI

+ cr1(J vl s) (lB Ul(s-l)/s

+ cf vi )P/t (Bb~t/(t-P) )(tP)/t

B 2
for some t< s such that pt <-P- +a and < -- i+o

t-1 s-i < -1 "
Finally, use inequality (3.3.4) on the second term, inequality

(3.3.5) on the third, followed by an application of Younges' inequality

and recall that w(B) s c C M(B') to get that
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+v IvuIpii

P(S

+ c(7--] 'B 'v ii )P/t  ( -- ' b Pt (t P) )(t p)/t

IB B
Takig the supremum over r, O< r< S./2 and letting e -i/2,

.]uj. - g, 4 - p/q and R = S./2 it is clear that 3.3.8 is

verified with

F(y) c(1 (c1)(y) + MP(S'l)/(P-1)s (as/(s-1)(y)

+ p/t(lvlt)(y) M(t 'p)/t (bt/(t'Pllly)

Ntlvlt)y) M(t-Wt (bt/(t-l))(y)

and F c L1IU(*,Q1) for some a' > 0 because of Propositions 1.1.3,

1,1,4, assumption 3.3.3, and the fact that jrV a L o(u ) , which

follows from Inequality 3.35. The proof is completed as in 3.3.8. U

i*



Continuity of Solutions

Suppose the measure is fixed and there is a critical exponent

Po where the constant K(x,r) in the Sobolev inequality (3.2.12) is

bounded for p 2 pO and unbounded for p < pO . (If w is Lebesgue

measure, then PO = d .) If a0 and a (as in (3.3.2). (3.3.3))

are fixed and only equations satisfying this structure are considered,

then under fairly general circumstances the c given in Theorem 3.3.6

will depend continuously on p so that estimates on the modulus of

continuity for solutions u can be derived for p > po-c' , with

C1 > 0 dependent only on pO, ao, , d , and the measure wi.

For simltcity only the borderline case p = pO will be considered.

3.3.9 Corollary. Suppose u , Vu , ,, r are as in Theorem 3.3.6

and

(3.3.10) 10x 0(9 ~ J y) di(y)l dca(x)OU T"°

for all a ,£ WP(uU,O) and all balls B with Sc . If x yfor ll E loc ,

are Lebesgue points of u with respect to c , such that B(xo,R) .

Q for xo X+Y and R xY-I then
2 2

-214-



(3.3.11) Iu(x)-u(Y)I 1 8 ld(" )K( o Jvul O  A

c/(po+e)
4) ((xoR)).

Remark. Conditions for (3.3.10) to hold are discussed in the remark

after Theorem 3.2.11..

Example. In the example developed after Theorem 3.2.11, It is easy

to see that the critical exponent is d if e < 0 and d+a If

Sa 0 . Also, since w(B(xr)) u rd max)(r ,dist(x,K)1 , L > -y a d,

it follows from Corollary 3.3.9 that I6lder continuity can be es-

tablished for solutions in the borderline cases.

Proof of Corollary 3.3.9. u (u1 , ... , ud ) so

J ui(x) - - j ui(y) dw(y), dc(x)

s K~Ll IvuiIP dw1 pO
c/(po.fll )  PoC 1/(0o',0

S K ) (B) ( iuil d)/

Given x, y £ * Lebesgue points of u with respect to w

and a ball B(xoR) such that B(xo,R) and x ,y a B(xoR)

use the geometry described in the first remark after Theorem 3.2.5

and apply the second part of Theorem 3.2.5 with
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to conclude that

1u1(x)-U1(y) I

Now Iet xand R+-.4 X. in such away that x y

rmain in B(x0,R) so that (3.3.11) is verified. I
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ABSTRACT (Cont.)

In particular the weights are characterized for several Sobolev

inequalities in terms of weighted capacities, a theorem is proven for weighted

reverse H61der inequalities and a continuity estimate is established for

certain weighted Sovolev spaces.
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