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\‘ ABSTRACT
-

Various weighted inequalities and weighted function spaces relevant to
degenerate partial differential equations are studied. The results are
applied to degenerate second order divergence form elliptic equations and
systems to establish continuity of weak solutions. The methods used allow the
consideration of very general classes of weights.

In particular the weights are characterized for several Sobolev
inequalities in terms of weighted capacities, a theorem is proven for weighted

reverge HSlder inequalities and a continuity estimate is established for

certain weighted Sobolev spaces.fii\
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SIGNIFICANCE AND EXPLANATION
Many physical systems which are in an equilibrium state are modeled by
elliptic equations. A simple example of such an equation is
Ve(w(x)Vu) = 0
where, for example, w(x) is the density of a plasma. The classical theory
for such problems deals with situations where M > w(x) > A > 0, i.e. the

"density" is uniformly bounded away from zero and infinity. In certain

situations degeneracies appear and @ becomes zero or infinite. In such

51 situations classical methods break down. One approach to this problem is to
prove weighted versions of certain inequalities used in the classical methods
in order to extend their use to degenerate situations. This is carried out in
the present work for an extensive class of weights w(x), and the results are
applied to a general class of elliptic equations.

Degenerate problems of this form appear in a number of areas including
plasmas, gas dynamics, and diffusion processes. In addition the use of
weighted inequalities is prevalent in physical problems which are set in
unbounded regions or which involve local singularities, and their general

understanding for a large class of w(x) should have potential applications.
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WEIGHTED INEQUALITIES AND DEGENERATE
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E. W. Stredulinsky

Introduction

The main purpose of these notes is the analysis of various
weighted spaces and weighted inequalities which are relevant to
the study of degenerate partial differential equations. The
usefulness of these results is demonstrated in the later part
‘of the text where they are used to establish continuity for
weak solutions of degenerate elliptic equations.

The most important inequalities dealt with are certain
weighted Sobolov and Poincare inequalities for which the
admissible weights are characterized. Weighted reverse Holder
inequalities and weighted inequalities for the mean oscillation
of a function are dealt with as well. A much larger class of
degeneracies is considered than previously appears in the
literature and some of the applications are known only in the
strongly elliptic case.

Two approaches are taken to the problem of establishing
continuity of weak solutions. The first approach taken involves
a Harnack inequality and the second Morrey spaces. The first
applies to equations of the form div A = B, where A, B satisfy

the growth conditions

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based upon work supported by the
National Science Foundation under Grant No. MCS-8210950.




Al < ux) [valP s a]_(x)up':l + a,(x) ,
A*Vu > A(x) [VulP - cl(x)up - Colx) ,
Bl < by A (x) [valP + b, (x) [Pu|P-L b, (x) wPl . by (x) .

A Harnack inequality is proven for weights u , )2 satisfying certain
capacitary conditions. 1Interior continuity follows immediately
from this, and a Wiener criterion is establish for continuity

at the boundary. This generalizes work of D.E, Edmunds and

L.A. Peletier (EP], R. Gariepy and W. P. Ziemer ([Gz], S.N. Kruzkov
[K], M.K.V. Murthy and G. Stampacchia [MS], P.D. Smith [SM], and
N.S. Trudinger [T1l].

A theory of weighted Morrey spaces is developed which
extablishes continuity estimates for a wide class of weighted
Sobolev spaces Wl'p with p > 4,4 the spatial dimension. This
is in turn applied to prove the continuity of solutions of systems
of the form div Ai = Bi' i=1,...,m where Ai and Bi satisfy
growth conditions similar to the above with p> d-e. In the non-
degenerate case this is due to K.0. Widman [WI] and, in moré
general form to N.G. Meyers and A. Elcrat [MYE],

It is necessary to mention related work of E:B. Fabes,

C.E. Kenig, D.S. Jerison, and R.P. Serapioni [FKS], [FJK] which
was done independently at the same time as the work presented

in these notes. The approach taken and the material covered differ
considerably but there is a certain overlap (see comments before

2.2.40 and the introduction to Section 3.1.0.).
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The following is a brief description of the contents of

each chapter. The reader interested mainly in the applications
should proceed immediately to Chapter 3.

Chapter 1 contains the basic analysis needed for Chapter 2.
The relationship between maximal functions, covering lemmas and

Lebesgue differentiation of integrals is reviewed. A calculus

for functions absolutely continuous with respect to a measure
is developed and the admissible weights for several new variations
of Hardy's inequalities are characterized. Finally, several
comparability results are proved for "capacities" and set functions
which appear later in the analysis of the weighted Sobolev
ineqpalities.

Chapter 2 deals mainly with weighted Sobolev inegqualities
and properties of weighted Sobolev spaces. The characterization
of weights for Sobolev inequalities is carried out in a very
general setting in the first section and is translated to a more
useful form in Section 2.2.0 where, in addition, some examples
are developed. The main thrust of Section 2.2.0 however, is
the development of results relating capacity, quasicontinuity,
convergence in weighted Sobolev spaces and weak boundary values
for Sobolev functions. Chapter 2 closes with a result on weighted
reverse Holder inequalities.

All direct applications to differential equations are

contained in Chapter 3. These include the Harnack inequality
as well as the interior and boundary continuity results for weak
solutions of divergence type degenerate elliptic eauations (3.1.0):

modulus of continuity estimates for Sobolev functions and functions
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of vanishing mean oscillation (3.2.0): and the continuity result
for weak solutions of degenerate elliptic systems in a "borderline”
case (3.3.0).

I would like to express my sincere thanks to William Ziemer
under whose guidance this work was completed. I would also like
to thank David Adams, John Brothers, and Alberto Torchinskv for

conversations pertaining to this material.
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CHAPTER 0

The following is a short list of conventions and notation to be
used throughout the text. _

Sections, theorems, and statements each are labelled with a
sequence of three numbers, the first two denoting the chapter and
section, the third denoting order within the particular section.

The Lebesgue measure of a set E 1is represented as |E| . K"
represents n-dimensional Hausdorff measure. The abbreviations
sup, inf will be used to represent the essential supremum
and infimum unless it is specified otherwise. B(x,r)" is the open
ball of radius r > 0 , centered at x . The specific space in
which B(x,r) is contained will be clear from the context. Sometimes
the notation Br = B(x,r) 1s used. Xg is the characteristic func-
tion of the set E, that fs, xg(x) = { ) X€E . = . The letter
¢ will be used to represent constants which may differ from line to
1fne but which remain independent of any quantities of particular
importance to the specific calculation being carried out. Lp(m,E)
is the space of equivalence classes of measurablé functions u:E -+ R

such that I Iulp do < , Finally, Vu denotes the gradient of u ,
.2 3u
tht 159 vu ( aX1 [ X X'} ) axd) .




CHAPTER 1

The results of Chapter 1 are of little direct interest from the
point of view of differential equations but are necessary tools in
proofs of the major theorems of Chapters 2 and 3. 1.1.1 and 1.1.8
deal with the relationship between covering properties, maximal func-
tions, and the differentiation of integrals. The basic
calculus for functions absolutely continuous with respect
to a measure is developed in 1.1.10. In Section 1.2.0
the weights for several variations of Hardy's inequalities
are characterized, and in Section 1.3.0 a number of

capacities and set functions are shown to be comparable.

1.1.0 Calculus Jn Measure Spaces
The basic motivation for the inclusion of Section 1.1.0 is the

desire to present in an elementary manner special cases of known results

which are needed in other sections.

J.1.1 Covering Properties, Maximal Functions, and Differentiation of
Integrals. Let Q be a topological space and (Q,w) a measure

space with w positive such that the integrable continuous functions

are dense in L](u,n) . For instance, this is true if » 1is a locally

finite regular Borel measure and Q@ s a og-compact Hausdorff space.

Recall also that every locally finite Borel measure on R" s regular.

T
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tet H= U H , where H 1is a nonempty collection of measurable
yeQ y y

sets B with yeB and 0 <w(B) <= and

: 1
Mf(y) = sup o6 L |f] dw .
BeH‘v w(8
It is said that M satisfies a weak L' estimate if there exists

=) >0 such that

)
w({MF>2}) s < I [f] dw
for a1l f e L'(w,9) .

Consider the following covering property for some collection

' {Ly}yeg :

1.1.2 There exists 9 >0 such that if E c Q@ 1{s measurable and

6c U L is a cover of E such that for every yeE there exists
yeQ

B ¢ GnLy , then there exists F, an at most countable collection of

pairwise disjoint sets,such that F <G and w(E) < < o(U B8) .
F

1.1.3 Proposition. If {Hy}yen satisfies property 1.1.2, then M

satisfies a weak L1 estimate.

1.1.4 Proposition. If w(R) <o , lcp<w and M satisfies a weak
1
L

estimate, then
I(Hf)pdw S ¢cy J |f|pdm
for all f eLp(m.Q) , where ¢y = Bg_%- <

1.1.5 Proposition. If M satisfies a weak L] estimate and f ¢
L‘(w.ﬂ) , then




(1.1.6) | ;13 sup {F(!BT L [f-fly)]dw: BcHy , diamB<a} = 0

for almost all y e . The convention is used that the supremum taken

over the empty set is zero.

1.1.7 Remark. (1.1.6) implies that f(y) s Mf(y) almost everywhere if

Hy contains sets of arbitrarily small diameter.

- Proof of 1.1.3. Assume {Hy}yeﬂ satisfies 1.1.2 and let E, = (Mf>2} .

: )
For each _veE1 ’ BBeHy such that WL [fldo>A . Let G be a
covering of Ex consisting of such sets and use 1.1.2 to get Fec@G,
F, an at most bountable collection of pairwise disjoint sets with
w(E,) < ¢, w(Y B), so that
A 1 F

(o c
(g,) B stil 1flawst| 1fd .
CARERE ‘*Hs" SALH .

Proof of 1.1.4. Given f e LP(w,2) , 1<p<w, it follows that f ¢

L."(w,n) since w(Q) <o . Without loss of generaﬁty. assume f 20 .
Let fA = x{f>A/2} f so that f < fk+x/2 and Mf < MfA‘*)‘/Z » but

2¢ Zc.I

“then w({MF>1}) < w((MF, >M/2}) s -Alj fdo = =1 fdo and

Lfﬂ/z}
I’nf"dm = p J: APV LMF > 23) dA
, s 2pe r AP-2 I f dod
] ' 0 {f>2/2}
: 2
| -ch]LfI AP7C da da
| 0

.2 4




1 '
L] * * - : ’
Proof of 1.1.5. Llet Lf(y) = lim sup {-TTB |f f(y)| do: BeH

diam B<a} so Lf(y) s Mf(y) +[f(y)| and

o({Lf >1}) < w({MFf>2/2}) + w({|f] >2/2})
2(c1 +1)

s——;——] 1] do .

If g is continuous and integrable, then it is clear that Lg=20.
Choose 9, continuous such that g9, * f in Ll(m.n) . Lfs L(f—gn) +
Lg, = L(f-gn) and so w{{Lf>2}) ¢ w({L(f-gn) >A}) <

—————

2((:1 +1) _
X J |f-gnl do +0 as n+e ., Thus Lf=0 almost everywhere. B




1.1.8 Covering Lemmas

The covering lemma 1.1,9 is a direct generalization
to doubling measures of a standard covering lemma for
Lebesgue measure, For nondoublinj measures this may be
replaced by Besicovitch-type covering lemmas; a very
general form of which is proved in [HRI; the proof

following the basic outline in Besicovitch's original

paper [B]. A more accesable reference is [G].

1.1.9 Proposition. If w is a doubling measure in a bounded

open set 9 , i.e. w(B(x,r))< <, w(B(x,2r)) for all x,r such
that B(x,2r) € @, then the covering nroperty 1.1.2 holds
with (L} being the collection of all balls B C Q with

Yy yeQ
Y € B.

Proof. Proceed as in (ST}, page 9.

1.1.16° Calculus for Functions Absolutely Continuous to a Measure. The
basic calculus for functions absolutely continuous with respect to a
measure « closely resembles that for w = Lebesgue measure,

If w §s a finite positive BOre‘l'measure on [a,b) and f:[a,b) +
R , then it is said that f is absolutely continuous with respect to «
if

-10-




(Ve>0 36>0 so that if ] w(l;) <&, where the I, =

i=]

(1.1.12) [ai'bi) c [a.b) are pairwise disjoint intervals, then

\ 121 (b)) - f(a,)] <e .

As a direct consequence f s left-continuous and in fact discontinuous
only on atoms of w . ‘
Ltet N = {ye[a,b): wly,x) =0 for some x>y , xe[a,b)} . N is

a countable union of disjoint maximal intervals of measure zero, and so
(1.1.12) w(N) =0 .

The results of the previous section will be applied to the measure space
[a,b) -N , with Hy consisting of all intervals [y,x) with x>y,

1
x ¢ [a,b) , so that Mf(y) = sup —-([y——-»—I fdo . The fact that
yex<b WX dpy x)

continuous integrable functions are dense in L1 (w, [a'.b) -N) follows

from this being true in L'(w, [a,b)) .

1,1.13 Proposition. Suppose f, g are absolutely continuous with

respect to w . Then:

t

(1.1.214) £ 1is of bounded variation and f(t) = f(a) + P: =N

where P: ’ N:' are the positive and negative variations of f on

[a,t) .

(1.1.19 P: ’ N: are absolutely continuous with respect to w and in-

duce measures p, n absolutely continuous to w so that

f(t)'f(a)+Iat)%dw




where g{ is defined as % =p-n for p, n , the densities of p,n

with respect to w .

‘ =
(1.1.16) ;l‘l;*m I[y,x) hds = h(y) ,

w almost everywhere for th‘(w,[a.b)) , and so

(1.1.137) lim %ﬁf%}l -4y,

xoyt

w almost everywhere.

(1.1.18) fg is absolutely continuous with respect to w and
f d
w almost everywhere, with f_ representing the limit from the right of

f . The asymmetry disappears if it is realized that f_(y) # f(y) only
f.(y)-f(y)

1f w({y}) # 0 , in which ca‘se %ﬂt(y) e €02 ) R and so
4ifa) (y)

(f,(y) - fly) oly) + (g,(y) - 9(y)) f(y) + (g, (y) ~aly)) (f (y) - f(y))
- w({y})

(1.1.19) If g2¢c>0 for some c , then 1/g is absolutely continuous

|
with respect to w and ‘ '11




w almost everywhere.

(1.1.20)

J[zl.l:o) %‘% fdo = fgla i J[a.b) w9 &

(1.3.21) If F:R + R {is differentiable, then Fof is absolutely con-

tinuous and

F'?f% , a.e. where f is

d (Fof) continuous
S o =
d Fof, - Fof
S i everywhere f s
+ . discontinuous.

A typical application of Propositifon 1.1.13 is the evaluation of
I )(w([t."'))"‘ A)*do(t) for a>-1 and 1220, where w is a finite
a,»

positive Borel measure on [a,») and w((a,»)) #0 .

Let f(t) = u([t.w).)'l' A so that f is absolutely continuous with
respect to w on any finite interval and -‘;‘;:-- -1 by (1.1.17,. Let b' =
inf{te[a,») : w([t,=))=0}, b' possibly = , and choose b such that
a<b<b' and w[t,*) 2c>0 on [a,b) for some c . Altering the
functfon F(t) = 1ot on (-»,c/2) if necessary to insure that it is
differentiable on R , apply 1.1.21 to see that Fof 1{s absolutely
continuous on [a,b) with respect to w and that

(e + 1) (w({t=))+ 2)® » 1f t is not
!'Fﬁ.i (t) = an atom of w

atl at+l
(w((t,=)+ 1) {-t}(sg(&.a))x* 2) ,if t is an
@ atom of w .

By 1.1.15 it follows that

%4

AN




(wlTbs=)) + 1) = (u([a,e)) + 2)°"!

- (a+1) ] (W([t.=)) + 1) do(t)
[.ob)‘Tb

t, ¢'l'h

where T, is the set of atoms of w in {a,b) and so

| tatreens 0% ale)
[a,b)

. (o(fa,=) + M - %m(tb.w)H )2
+

a

I S (GO LR b TS R Vg
1°'b

+ (o +1)(w([ty =)+ A)um({ti})] .

let b +b', recall that w(b',») = 0 , and make a few adjustments if b’

is an atom to get

[ ((lt)) + 1)® dult)
[aa.)

- ‘mﬂa,w[h A)"ﬂ

a+l

atl

toir DLt =)+ )% < (u(lt =D en)™!
ticT .

+ (@ + 1) ([t N+ 1) wl{t, D] ,

+ L =N+ N - e(eaen s )T




where T 1is the set of atoms of w in [a,») . A simple calculation

shows that

-sign a ja' (([t) + A)® do(t)

(1.1.22)
s -Slane (raa)+ 2)%

a+t+ ]

Proof of 1.1.14. This is a slight variation on the standard proof to

avoid the discontinuities of f . Let 6§>0 be related to =1, as

in (1.1.11), so that 1{1 [f(by) -fag)l <1 1f f{] w(l;) <& . Since

w([a,b)) is finite, w has at most a finite number of atoms of measure
larger than &/2 . Lgt these be located at Xpooeen X0 X < X141
Pick € such that t»(xi .x1+e1) <§, i=1,...,n, sogiven Xy <y<
Xytey then o[y ,xi+ei) <&, and so li’(x,i +e1) - f(y)] <1 . Pick
a partition a = 3y <3y < ... < am1 = b , which includes '{xi} and
{x1+ei} and for which m((aj , ajﬂ)) <§ , §=0,.. .m]-1 .

~ Given a partition a = bo < ...< b'“z ah,let a= <o <o Sy ®

3
b be a refinement including both {a;} , {b;} so that

mz-'l
L 1f(byg) - £6)]
.m'3-‘

R LR CH

n
. 21 lf(cxj) -fxp)] +

J=

t -f .
c,ng [£(csqq) - fley)l

J=1,...,n

Sy

T T R e AT Y <+ = OB - 17 o o



where Cy is the division pt to the immediate right of xJ and so
3 )

f,-1
n
PN RN LR R AT

n
+ jg] I£(x; +e,) -f(cxj)l

+ f(c, 1) - flc,)
ALY
t:k#x‘j

n :
< le |f(xj+ej) -f(xj)l *ntm o,

which 1s independent of the partition ‘{bi} » S0 f 1is of bounded varia-
tion. B

Proof of 1.1.15. From the above, it follows that f(t) = f(a) +P- Nt ,

where P;' . Nt are the positive and negative variation of f on [a,t) .

a
P: will be shown to be absolutely continuous with respect to w , and the

same will follow for N: by considering -f .
[ ]
Given €>0 , let & be as in (1.1.11), If J u(li)<6 for

i=1
l1 = ['1"’1) » patrwise disjoint intervals, pick a partition a; = c, 0
n,-1
by ™ ] +
e € <:1'“1 = b1 such that Pa1 3 Jgo (f(ci’jﬂ) - (ci.J» + ;‘T , where

X » x>0 . It is now clear that P: {s absolutely continuous




® b
| ‘1
P, - P,
i I 121 ‘1
« n«"']
s- 1§‘ JZO [fley gaq) - Fleg ) + €
< 2 ,
since
@ I|1-'| -
HE A SR RS

1.1.23. Since P: ’ N: are monotone increasing and left-continuous, they
induce measures p , n . To see that these are absolutely continuous to
w, let E be a set such that w(E) =0 . Given €>0 , pick &§>0,

as in (1.1.27) (with f replaced by P-at ) and V'relati:ely

open in [a,b) such that EcV and w(V)<s§. V= }-J-I I »
where the 11 are pairwise disjoint 1intervals, Ii =

(a1 obg) » 1=2,..., = and either I, = [a.l.b]) and a;=a or I, =

('l’bl) . Only the first case will be dealt with, the other being similar.

(V)-P + Le, P (P‘)

® b +6
b‘ (2 Pai a1 )4-6 for some 61>0
{=2

s 2,

AT gy | SMRT g -

Ty <y

oatition e o




since m([a.b.I N+ :{:2 m[ai * bi) sw(V) <6, Tf.ie absolute continuity
of n follows similarly. [

The Radon-Nikodym theorem now gives the existence of p , n , the ' i
densities of p, n with respect to w . Letting %—S =p-n, 1.115 fol-

Tows from (1.1.13) and 1.1.23. @

Proof of (1.116). Recalling (1.1.12), it is only necessary to show that
{"y}yc[a,b)-N satisfies property 1.1.2 in order to use Proposition 1.1.5
to conclude for h e L'(w , [a,b)) that

1 =
11;l+ m J[_y,x) hdw = h{y) a.e. w .

This being proven, (1.1.17) follows easily since

from 1.1.15. '
To show property 1.1.2 1s satisfied, let G be a collection of in-

tervals [-Ya'xa) » aeA, A some index set.

1.1.24. It will be said that F is subordinate to G if FcG and

1.1.25 It will be shown that there is an at most countable collection F
subordinate to G , in which case there is a finite collection Fy sF
such that

(1.1.26) w(U 1) <c2(U I).
I¢F I¢G




Due to the properties of intervals, there then exists a collection F2
subordinate to Fl which has the property that every point in
(1.1.27) U 1=y 1

IcF.' Ier
{s covered at most twice by intervals in F2 . Fz can then be split into
two collections F3 . F4 , with Fz = F3|JF4 » where the intervals in Fi ,
i = 3,4, are pajrwise disjoint. Then

(1.1.28) o(U 1) s 2u( U 1)

I¢F2 IeF1

for one of § =3,4 , in which case considering 1.1.24 to (1.1.28), it
is seen that property 1.1.2 is satisfied with ¢, = 4.

To show that there exists an at most countable collection F sub-
ordinate to G, let Y be the set of points Yo r © €A , such that
Y, 1s not in the interior of any interval (yB.xB) R .8 eA . It s
claimed that Y 1{s at most countable. For Ygo€Y s no point of [ya.xu)
can 1ie in Y . Pick a rational number r, e [ya"‘a) and pair it with
Yq + T Cannot be paired in this way with any other element of Y , so
the map y, * r, is a one-to-one map of Y into the rational numbers,
and so Y {s at most countable. The conclusion now follows easily since
to each pair of rational numbers r, s with Yypsr<sc< Xg for some
B « A, one such interval [yB.xB) can be associated, B8 denoted as

r.s
terval (y,.x,) » so there exist r, s rational with y <r<s«< Xy

8 . Given y ¢ UA [yqsXq) =Y » y 1lles in the interior of some in-
ae

and so y 1lies in one of the countably many intervals [y » X ).
Br.s 8|r-.s




and the proof is done. B

Proof of 1.1.18-1.1.20. The absolute continuity of fg and 1/g follows
exactly as in the Lebesgue meésure case. Using (1.1.17) then gives 1.1.18,
1.1.19, exactly as in basic calculus. 1.1.20follows from 1.1.15 and
1.1.18. &

Proof of 1.1.21. Since f {s bounded, it follows that F {s uniformly
continuous on the closure of the range of f , so that it is easily seen
that Fof is absolutely continuous with respect to w . Using (1.1.17)
agatn and.pmceeding as in the basic calculus proof of the chain rule,

1.1.21 follows. B

1.2.0 Weighted Hardy Inequalities
Tomaselli [TM], Talenti [TL], and Artola [AR] characterized the

weights for which a Hardy inequality of type (1.2.10) or (1.2.12) with
p=q holds. A simpler proof was found by Muckenhoupt [M1], which in turn
was generalized by Bradley [BR] to include the case q>p . The other
jnequalities dealt with in this section are not direct generalizations
of the original Hardy inequalities but are similar in nature. Their im-
portance stems from the fact that they arise naturally in the analysis of
certain Sobolev inequalities.

It will be assumed that u, A are positive measures on
(R y{-o,m} , K) , where K 1is the o-algebra generated by the Borel sets
B and the points (-=,»} ; and v 1{s a positive measure on (R,8) for

which there is a Lebesgue decomposition with respect to Lebesgue measure.




For notational simplicity, ( L \')(t)'”(p'” dt:)p'l will represent

1

sxp 9" when p=1, Vv being the density of the absolutely continuous
] 1

P P
be deferred to 1.2.123

part of v and < + = =1 . The proofs of the following theorems will

1.2.1 Theorem. For 1s<psq<e,

(1.2.2) ([;(J: g(s) ds)q du(t))l/q s ¢ (J:gp(t) dv(t) )llp

for some 9 >0 and all nonnegative Borel measurable g iff

1/q Prey o /p
1.2.3 -, d dt
.23 W erd [ o) a8 < o[ Pl o)

for some =3 <o and all re R and g nonnegative and Borel measurable;
iff

(1.2.4) W8 (e[ 5000711 at)'? s ¢
r

for some €3 <= andall re R . And, by a reflection,

(1.2.5) (f; (C.g(‘) ds)Tau(t))'/9 < c,(j: Pty av(t) )'/?

for some €y <= and 211 nonnegative Borel measure g {ff

r
-0

026 WD [ anes < o[ Pwsme)




for some Cy < and a1l re R and g nonnegative and Borel measurable;

iff

r
ro_ .. - 1/0"
(1.2.7) u‘/"([r,«])(j O A dt) AP
for some c <= andall re R, where v 1is the Lebesque density of v
(dv = v(t) dt + dv.) .
If the constants Ci » i=1,2,3 are chosen as small as possible,

then ¢3¢, s ¢ s pr1/p" pl/a ¢; - The convention 0-= =0 {s assumed,

11/p! is taken to be 1 when p' = o,

and p
Given u a positive measure on (A,K) and v a positive measure

on (B,B) , extend u so that u((R v{-=,=})-A) = 0. and v to have

infinite density on R-B , then it easily follows from Theorem 1.2.1

that

(1.2.8) ( L ( Ln(t . g(s)ds)q du(t))vq < °(L o(t)° au(t) )1/p

for some c <= and all nonnegative Borel measurable functions g iff

sup u]/q ([~=yr] nA)(I \'»(t)-”(p'”dt)”p. <o ., Theorem 1.2.9
r Bn(r,w)

presents two special cases of this.

1.2.9 Theorem. For 1spsq<=,

(1.210) (f;(j: a(s) ¢s) au(t) )" s c1([: Pty o) )P




for some €y <= and all nonnegative Borel measurable functions g , iff

< ®

1/q 5-1/(p-1) )P,
(1.2.11) sup » ([O.r])(r 9 dt) b

r

And

(1.2.12) (r( o(s) &5 au(e) ' sc(rgp(t)dv(t))”p

for some 23 and all nonnegative Borel measurable functions g 1iff

(1.2.13) sup u/9 ([r.@])(r see)”1/(p-1) dt)w b, <.
Osr 0

And, as a consequence,

a2 ([ s sfan) o Poam)”

for some c3>0 and all nonnegative Borel measurable g i{ff

¢ sup u'/9 ([r.wl)(r Sy VD g )P Ly <o
0

Osr

1/ « -1/(p-1 = o
‘ ::gu (- .r])(I v(t) (p )dt) by<e=

where Vv 1is as in Theorem 1.2.1.

If Cy » 1i=1,2,3, b1 » 1=1,2 are chosen as small as pos-
sible, then b1 s ¢ ‘pllq p']/p' b; for 1=1,2 and




max{b,,b.} < ¢4 < pllq p"/p

t
max{bz.b3} . The convention Jo g(s) ds =

10
- I g(s)ds for t<0 1is used in (1.2.14) and O += = 0 is used
t

]
throughout. Also p‘”p =1 for p' =,

The inequalities dealt with in Theorem 1.2.16 depart somewhat from
the structure of the classical Hardy inequalities, but their analysis is
similar. They arise naturally in the study of certain Sobolev inequalities.
It is somewhat remarkable that (1.2.23) and (1.2.24) are equivalent since
in general their left-hand sides are not comparable unless |A| , |u| <=

and A(E) s ¢ u(E) .

1.2.16 Theorem. For l1spsq<e,

(1.2.17) (E(EE g(a)dgdl(s))q dum)l/q ‘°1.1(J: L) dv(t))'llp

for some c] 1 < o and all nonnegative Borel measurable g i{ff

(1.218)  w/(-r]) r a(s) Als,=]ds s c, 1(J’ Pie) o) )7
r L o

for some 1 <o and a1l re R and g nonnegative and Borel meas-

urable iff

(1.2.19) sgp ﬁ”q([ﬁ.r])(f: (L':-,[(%Fl)‘/(p-” dt)vp' =by<=

And, by a reflection,




. (1.2.20) (J:(E‘ j: o0 do r(s))d ault) /" s &2 (J:gp(t) dv(t))”p

for some Cig<™ and all nonnegative Borel measurable g 1{ff

]
(22 WM(teeD) [ als)abmrlas sep (] P0) avin))'?

-t

for some Chgp<e and all r ¢ R and g nonnegative and Borel measurable,
?

iff

. (p-1) '
(1.2.22) sup u""q([rw])q_:(l‘f%ﬁ')ﬂ)w ! dt)”p =b, <= .

And, in consequence,

o2z ([ “': ato) ds| ) ()" s ¢ ([ o) i) ”?

for some € 3<= and all nonnegative Borel measurable g iff
]

a2z ([ ][ j: sto) awan(s)|* ae) <oy 7 Prerae)”

for some c2.3 < = and all nonnegative Bore} measurable g which are
bounded and have compact support,

iff (1.2.18) and (1.2.21) hold,

1£f (1.2.19) and (1.2.22) hold,

where v 1{s as in Theorem 1.2.1.

The conventions I
S

t S :
9(0)60'-L glc)do for s>t , - :

-25- . ; ]




Pre o
L\L»%tTl = 0 if the numerator and denominator are ejther both 0 or both

o ,and 0+= =0 are used.

t
1.1.25. If the integral rl g{c) doda(s) in (1.2.24) is not defined
-0 Jg
t
in the classical sense, that is, if t 1{s given and I g(o) do takes
s

on both positive and negative values and is not in L](A) , then it may be
given an arbitrary value without affecting the theorem. Care must be
taken if for fixed t , r g(c) do s of one sign and is.not in L](A) .
in which case the 1ntegralsl.2.25 is given the value «» or -=» , depend-
ing on the sign of It g(c) do . The assumption that g 1is bounded and
of compact support ins (1.2.28) is added solely for use in the applications;
it is not necessary here.

If ci' are chosen as small as possible, then b'l < c:z.1 < c.'.1 <
/9P p for 11,2 and max{bybyl s ¢, 3 scy o8
2p}/q 177! max{b, ,b,} -

Remark. Theorems 1.2.1, 1.2.9, and 1.2.16 are equivalent. Theorems 1.2.9
and 1.2.16 will be proven directly from 1.2.1, and Theorem 1.2.1 may be
recovered from 1.2.9 by a change of variable from [0,=2] to [-=,»] ac-
companied by appropriate choices of measures, and from 1.2.16 by choosing
A to be a point mass at « or == ,

It would be interesting to extend the preceding theorems to the case
qQ<p . The following theorem extends the last part of Theorem 3 to the

case q=1 . The global nature of condition renders it of no use in prov-

ing Sobolev inequalities. r r




1.2.26 Theorem. For lgp < =,

(1.2.27) J: [: ”t 9(c) daldx(s) du(t) < c(r gP(t) du(t)

S =g

1/p
)

for all nonnegative Borel measurable g iff

i 1/(p-1) 1/p'
AMewm,t t,o] + A(t,» -co, ¢ P
(1.2.28) ( [ [(_[_Lm_._J_,THL_qL] dt) ce.

= 5 s 0 for the integrand of

oo

v as in Theorem 1.2.1. The conventions

t
(1.2.28), O-= =0, and I

s
g(o) do= -I gloc)do for s>t are used.
S t

Proof ‘of Theorem 1.2.1. The main substance of the result

i{s the sufficiency of {nequality (1.2.4) . Assume
(1.2.8) and p>1. Let h(t) = (r \',(s)"'/(P"l) ds)]/p' and I_=
t

"{t: u(Ew,t]) = 0} so that u(I_) = 0 . From (1.2.4) it follows that h = =

onlyon I and so h<e on T=R-1_.

1.2.29. Let Io be the interval IO = (t: h(t) =0} so that h 1s locally
absolutely continuous on T -I0 . This combined with the continuity of h

on T leads to
(1.2.30) ) h(t) = - r h'(s) ds for teT.
t

,2.31. If ¢g>0 and v = » on a set of positive measure, then (1.2.2)

is true; otherwise g =0 a.e.on {v=w},andso g =
p'm" g(Gh)‘/p(h')Vp' a.e. in T . Now using Holder's inequality and
(1.2.30), and recalling that u(lR-T) =0 , it follows that




(r (j: a(s) ds)? au(t))”/
p.p/p'([:q: 9p\?h)q/pg(t)q/p' du(t))l’/(!

» - /(S - \p/q
(by using Minkowski's inequality)

o/p* P~ VP e Pl
o [ P[P (e o)

(by (1.2.4), where I' = {t: u[-=,t] ==})

< pnp/p' g'] p/qr g vhu/q([.eo s]-[ ) ds
(using 1.2.32)

< prP/®' & L J"; P ds
(by (1.2.4))

1.2.32. [~,s)nl' is an interval [-9,s'] or (-»,s') on which
w{(-=,t]) 1is finite. Pick s" <s' and let @ be the restfiction of

p to (-=,s"], and let w be the reflection of w , i.e. w(A) = w(-A) .
Now apply the results of 1.1.13, specifically (1.1.22), with o and

A= p({-=}) to get that

(1.2.33) WP (Lemt]) du(t) s pu!/P([-=,s"]) .

J[“‘o s"]

Let s*+s' and use u“lp'({s'})u({s'}) = ul/p({s'}) if s' 1s an
atom of u to get (1.2.33) with s" replaced by s as required.




If p=1, then g

(R(XSD) auts) :

< r g(s)u”q([-“.s]) ds by Minkowski's inequality
«00

s ¢ r g(s) ess inf v ds

(s,=)
$ c3£ g{s)v ds .

The fact that (1.2.2) implies (1.2.3) follows by first replacing
g by gx(r’“)nA » where R-A supports the singular part of v and
IR -A| = 0 and then reducing the interval of integration
with respect to u to [-=,v].

The proof of the implication (1.2.3)=(1.2.4) is brokendown into 3 cases
depending on whether (Jﬂi\'a(t:)'”(p"l)dt)p"1 is zero, strictly positive
but finite, or infinite riv'e(:z:'ll that for p=1 this integral represents

(sup) G" ). In the first case (1.2.4) is trivial. In the second case,
(P,

if p>1, set g-\')']/(p']).andif P=1 set g=g =yx5 » where
n

B, = {t: \':'1(1:) z-%+ sup s , and let n -+ o to achieve (1.2.4).

ry®)

1.2.34. In the third case it is necessary to construct a function g

such that g=20 , r9p5 dt <= while rg = @ , {n which case,
. r r

recalling the convention 0 +» =0 , 1t is seen that u({-=,r]) = 0 and
(1.2.4) 1s proven.

e | -29- .




To construct g as in 1.2.34 it is first assumed that v > 0 a.e.;

otherwise let g be = on {v =0} and zero elsewhere. For p>1 let

E, = {t e (r=): (1) oty <2M . 1f [E,| = = for some n , then

pick g such that g ¢ Lp(En) » 9 ¢ L](En) » and g = 0 elsewhere.

Otherwise -|E | <= for all n.

I IE, 201}/ (p-1) rG VN Lo, 0 pick %k fteratively
n=-c r
, ' k-1
such that 10 = 0 and for n = 2.20 iz it holds that
. +1 -
Sk = X lEn| 2(" )/ (p-1) > (k*])u

nks|n|<nk+ik .

2
for a fi?(ec-l a> 77 .

S1+pn)/ (p-1) \I/P
Let g(t) = if nosinf<n, and tcE .so

(k+1)? s,
[ § Sl 200
r n=-o w  (k+1) Sk
- I -(-';-]‘)—2;; o Jioen, £ | 20w/ (m)
. ;
" ko (e <7 |




" (n+1)/(p-1)
r g = 2~1/p 3 IEn| 2
r pe-e ((k+1)¢ 5,)'7P

A 2 \/p -
- o ((k+1;2 s ) nsinfen.,. ol 2D
k k* Tk

w s 1°1/p o
= -]/p .i_.__ 2 z'llp 2 (k"’] )G(]']/D)'Z/p
k=Q (k+1)</P k=0

since a(‘l-%)- %> 0.

For p=1, inf v =0, so pick a set A of positive finite meas-

ry)

ure such that infv =0 . Either Vv =0 on a set B of positive measure
A

in which case take g = on B and zero elsewhere, or else en can be

€
ntl _ 1
chosen such that ¢ +0 , —én_s 7 and [E | >0, where E = {teA:

€nsy S V(t) <€} . For this case Tet a = [{tcA: U(t) < el so that

€ €
n-ntl 1
: 3, - a1 &, on En ’
Il =a -2 ,; »and et g= . It then
0 elsewhere

follows that

« € -¢
1 -1
g = E n - n+ [ QN
J:'- n'z-o IEq! 4 " % Sp

T R -
ngo (‘ gn ) : ngo z "




= Eo <o,

The second half of the theorem is proven by replacing u , v , ¢
by ﬁ ’ ; ’ § » Where ﬁ(A) = u('A) ’ G(A) = V('A) ’ §(t) = g('t) »
and ustng [ §(0) dice) - jA a(t) du(t)

Proof of Theorem 1.2.9. Restrict u to A= [0,»] and v to B = [0,») ,
and then extend them as in (1.2.8). If (1.2.10) holds, then (1.2.2) holds
with the extended measures since if g > 0 on a set of positive measure
in (-=,0) , then the right-hand side of (1.2.2) is infinite. (1.2.11) then
follows from (1.2.3). Conversely, if (1.2.11) is true.'then (1.2.4) trivially
holds for the extended measures, the condition for r < » reducing to that
of r=0, and (1.2.10) follows from (1.2.2) by taking g with support in
[0,») . The equivalence of (1.2.12) and (1.2.13) follows similarly.

Assume (1.2.14). Letting g have support in [0,%) and (-=,0]
respectively, it follows that (1.2.12) and its reflection i

| (Ii (Lo a(s) ds)q au(t))'/9 s °3(Ji P(t) dut) )'l/p

hold, which then implies (1.2.13) and its reflection, and so (1.2.15) holds.
Conversely, if (1.2.15) is true, then both (1.2.12) and its reflec-

tion hold so that




T ST e —r—p s

J:”ot g(s) ds ‘q du(t)
- ]:(]: als) as)‘f ) + [ ([: a(s) ¢s )7 du(t)

-0

< (¢, (]: P& () ") + (e, [i P ao() )

s max{clq. c4q}(£ aP(t) d\)(t))q/p . B

Proof of Theorem 1.2.16. The equivalence of (1.2.17), (1.2.18), and

(1.2.19) will follow from that of (1.2.2), (1.2.3), and (1.2.4). The
equivalence of (1.2.20), (1.2.21), and (1.2.22) then follows from applying
the reflection A <+ -A , as in Theorem 1.2.1.

It will now be shown that (1.2.17) == (1.2.18) = (1.2.19) =»(1.2.17).

(1.2.35) J: J: g(o) dodr(s) = f:g(o))\[o.v] ds ~ by Fubini.

Assume (1.2.17), so

(E‘ (J: o(6) At s d"(t))”q £ (J:. P o).

Replace g by ¢ *X(r,) and reduce the interval of integration on the
*
1/p
Teft to get uuq[-«'.r] r g{s)A[s,»] ds s €11 (r gP(t) dv(t)) , and
r ? N em

(1.2.18) s verified.
Assume (1.2.18), replace g by g “Xp where A {s the support of

the singular part of v , to get




p

(1.236)  uV%er] [ atontsed a5 s ¢, ([T Plor s e’
r P e

Let I0 = {t: y[-=,t] =0} so u(Io) = 0 since I0 is an interval. Let
Jo = {t: A[t,=] = 0} and J_ = (t: A[t,=] ==} . From (1.2.36) it is

seen that v = » a.e. on the interval I - I (let g = 9,

s = O(t) 5 s w
X{S<n}n(d -1 )a(-=,n) )s S0 if v.(t) D , then v (t) on
C 1] AT [t,=]
P
. Al t, = _ - -
J, - IO using the convention that N3 =0 if Aflt,»] and v(t)

are either both 0 or both = . Also v,(t) == on Jo using the same
convention.

If it doesn't hold that g =0 a.e. on (J_ - Io) v J0 » then

(1.2.37) W erd [ atsras < ¢ ) [ Pl Sutnyae
r Y r
0 s Jo v, .
otherwise let g(t) = »soon R-1,,g(t)=
Y tfw » Otherwise

3(t)A[t,»] and P9V = ¢° v, - Using g in (1.2.36) then gives (1.2.37),
but since (1.2.3) =» (1.2.4), it follows that u”"[-«»,r](r 5, V(-1 4 dt) /p
r

$ Cpy s SO (1.2.19) is verified.
Assume (1.2.19). Using (1.2.4) =»(1.2.2), it follows that

(L([ store) w) oo ([ Prorsymae)”

Replace g(s) by g(s)Als,»] and use that A[t,»]v,(t) < v(t) to get
(1.2.17) and so the circle of implications is completed.

[
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It remains to show that (1.2.23)=»(1.2.24) =» {(1.2.18), (1.2.21)} =»
{(1.2.19), (1.2.22)} =» (1.2.23). Recall 1.2.25. (1.2.23) =(1.2.24)
is trivial. To show (1.2.24) = (1.2.18), first reduce the interval of

integration on the far left of (1.2.24) to [-=,r] and -eplace g by

g X(r,=) to get ;

W/9er] [ glsRIsie] 65

r @'

-( In ]: o(o) warts)|* au(wy)

< c2’3(J: Pt i)’

. t
for bounded g of compact support since J

S
s, t < r . Take monotone limits to get all positive measurable g . In

a similar way (1.2.24) =»(1.2.21). {(1.2.18), (1.2.21)}=>{(1.2.19),
(1.2.22)} by the first part of Theorem 1.2.16. From Theorem 1.2.1 it
is seen that {(1.2.19), (1.2.22)}={(1.2.2), (1.2.5)} , with u(t) re-

placed by ;’ttw so replacing g(t) by g(t)A[t,»] and using that

9(0)X[p ) 90 = O 1f both

A[t, @] V,(t) < V(t) , it follows that

(CL L oo 00| orto)? )™
s (J: (E I: g(o) dad)k(s))q du(t) )”q
(LA [ s wans) ()

([ ([ stontod @)’ aun)”

([ ( ji (M=o &) du(t))

e alall G,

' - 1/p
< Zp]/q p"/p max{b] .bz}(r gp(t) v(t) dt) ,




and the proof is complete. B

[od

Proof of Theorem 1.2.26.

'££|Ltg(o>dc|dx(§) ;m(t)

= J: (E glo)r(o,>] do + J: g(o)A[-»,0) da) du(t)

X(09°] ya>t

= r 9(a) r f(o,t) du(t) do for f(o,t) ={0 ,g=t
- - A[-=,0) ,0<t

(1.2.38) B P TORIOR”

for h(O’) = X(Gn‘”]}l['“so) + A[""’U)U(U’“'] .
let E, = {t: h(t) =0}, E_={t: h(t) ==} .

Assume (1.2.27). Replace g by g Xp » where A is the supbort of
the singular part of v to get

' A 1/p
(1.2.39) r g{c) h(c) do < c(r 9" (t) v(t) dt)
-0 -0l
From this it is easy to see that v == on E, so that v (t) = lp-((—))- = ®
h(t
P ® -
on E_ using the convention for h\.’ : that — =0 . Also V,(t) ==
0 WP (t

on EO using the ° = ) convention for Sty If it i{s not true that

g=0 a.e.on EjuE,, then

B Ry Tl o NS

(1.2.40) fg(s) ds s ¢ (J: gP(t) 9, (t) dt:)]/p R

'
14

E \




[}

0 » Eg v Ey
otherwise let g(t) = , and substitute g in (1.2.39)

h E s elsewhere

- - - p-1
to get (1.2.40). Assuming (r v, (t) 1/(p-1) dt) = o Jeads to a

~ contradiction with (1.2.40) using the construction in Theorem 1 since

either (E \';*(t)'1/(9']) dt)p.'| 2o or (Jo \'),(t)'ll(p'” dt)p-] = o,

- .- " p-1
1f (r 5.7V 1) g) 20, then (1.2.28) is trivial; otherwise
0D

for p>1 Tet g(t) = v,(t)"V(P1) 44 (1.2.40) to get (1.2.28). For
p=1 et g(t) = Txre ey 10 (1.2.40), and let n+ = to aif-
ferentiate the integrals and achieve (1.2.28).

1/(p-1)
) implies that

p
Assume (1.2.28). The integrability of (%—

P .
!'-\-’- <® a,e., and so considering the %' 0 convention, off a set of

positive measure,
(1.2.81) efther V(t) =0 or h(t) =0 for a given t .

Also it can be assumed tﬁat g=0 a.e. on {t: v(t) = »} since other-

wise (1.2.27) is trivially true. Considering this and (1.2.41) it follows
-1/ Pey NI/P

that g(t)h(t) < g(t) v ”p(t) (%-(%)-) a.e. and so Holder's inequality

applied to (1.2.38) gives (1.2.27). m

1.3.0 Equivalence of Capacities
The set functions which arise naturally in the analysis of the

Sobolev inequalities treated in Chapter 2 are difficult to work with in




their original form except in special cases. In the present section they
are shown to be comparable to more familiar capacities and. set functions.

Let (M,F,v) be a measure space with v positive, and let
HA‘D(V,M) be a set of real valued F measurable functions on M satis-
fying the following properties. N(lj’p(v.M) is closed under composition
with functions f e N={f e C°(R): f(0) =0, f' is bounded, and
f'20} . There is a map |D| :ug’p(u,n) - Lp(v.M) such that

(1.3.1) (I [Df o 6|P dv)VD y (I [ (6)1P [08]P dv)llp

for all ¢ e ua'p(v,n) » where the notation [D¢| = [D{(¢) and a ;b
i#f d7!
If He H;’p(v,M) » H closed under composition with f ¢ N and

a s b < da has been used.
Tsp<o, AcM, then let

CH’p(A) = 1nf{J |Dq>|p dv: ¢eH, 621 on A},

1 ‘ -(p-1
Ky, p(A) = 1nf{(Io ﬁ;(t)"’("'” at) (e-1), oeH , 621 on A} .

is the density of the absolutely continuous part of u; » the distribu-

= 06| av , i.e.,

a®
)

tion measure of u, with respect to ¢ , where du

¢ ¢
u;(E) = I_] ;) ID‘Mp dv . The conventions are used that

1 -(p-1) ‘
o* -1/(p-]) = -* = e o
(L u¢(t) dt) . ((1)?:) u¢(t) if p=1, and 131’ if
Ge @




1.3.2 Theorem. KH,p(A) a

Cyplh) for AcH.

dP
Proof. Let Hy = {6 e H: 21 on A} , so Hy {s closed under composi-

"tion with f ¢ N* = {feN: f(1) = 1) .

(1.3.3) i < R

since IIR ﬁ;(t) dt < LR du, = I [06[P dv , which is finite since

¢

1
X3 Hs'p(v.M) . Given f e N » let g=f ;s0 Io g(t)dt =1 and

hgm.hmmmwwmmmmmmmeum

measureon R, a=0, b=1, o=1,and I =R, toget

Vo 1t -(p-1)
1nfj |of o¢|pdu " (f nr(t) V{p-1) dt) . Taking the infimum
N* @ Vp 9

over HA gives KH,p(A) n

p Cy (A) since the function f(x) = x {s in
p P

N* and ”A is closed under composition with functions in N* . g

Let (M,F,A) be a measure space and N]’p(v,M) be a set of real-
valued F measurable functions closed under composition with f ¢ N' =

{f eC": f' 1is bounded and of one sign} and on which |D| is defined

as before. If H gw"p(v,u) » H closed under compasition with f ¢ N' ,

1spc<eo and Ac M, then let

Qmm)-mquupw:¢gunﬂum),
' ¢21 on A,Iod).-O} >

koW = tnfl[ (ool vz g catlom
$<0 on A.IOdA‘” ’

LN



1/(p-1) -( -1)
Ry p(A) = inf{(jo (—‘.{?ﬁ)—*ﬁ at)

¢€Ha QSO on A]’.

v N/ (p-1 <{p-1) uy
The conventions (E(M)/(p )dt) = inf -—-u-Q(—E)-— if

iy(t) : (0u=) AP({02t})
p=1, inf== if G=9 and 3=0, 2=0 for the ratio
6
0 |
Alozt)) are used.

~%
Hy(t) |
A1l of the expressions above are comparable (equal if d=1) , ex-

cept for one pathological case, this being if
(1.3.4) 3¢eH , $s0 on A such that A({¢2t}) == for some t>0.

It is clear that this is impossible if A(M) <« . In applications
A(M) 1is typically equal to one.

1.3.5 Theorem.

(R)

(1.3.6) - °KH’p(A) mdp “

if (1.3.4) does not hold,

(1.3.7) ‘ CH.p(A) Ndp Cﬁ’p(A)
if A(M) =1,
(1.3.8) : If (1.3.4) holds, then RH.p(A) =0

Remark. Under fairly general circumstances, it is possible to show that

another comparable expression is

A5+ =

B i s 0

wraltss s



P
1nf{J-—-—LQQl—dv(x): deH, $s0 on A,
AP ({920(x)})

inf{t: A({¢2t}) = 0} = 1} .

Proof of Theorem 1.3.5. (1.3.8) follows from the definition of kH b and
]

(1.3.3). (1.3.7) follows by replacing ¢ with 1-¢ and using f(x) =
1-x in (1.3.1).

1.3.9. It can be assumed that there exists a ¢ ¢« H with ¢<0 on A
and A({¢>0}) > 0 since otherwise RH p(l\) = » from its definition and
the %- 0 convention, and E“ p(A) = » using the convention inf = =

G
if G =@, since it would be true that I ¢d\ 50,
1.3.10. In addition to 1.3.9, assume that (1.3.4) does not hold.

Given ¢ ¢ H with ¢ <0 on A and b = inf{t ¢ [0,):
A{{¢=2t}) =0} (b=w possible), then b>0 by 1.3.9, and 0 < A({p2t}) <=

*

dus
AP({e2t}) °* |
Cgp <o forsome C , C {f Kg (0,b) , K compact and te K since

by 1.3.10. If dv' = then v'(K) <= and 0< C, s A{{e2t) <

A{{¢ 2t}) 1is monotone and u;(R) <o , Applying Lenma 1.3.14 with I =
(0,b) , a=0, and o(t) =r({o=2t}) , it follows that

- bs.p 1/(p-1) \-(p-1)
A ({¢2t})

(1.3.11) { = 1nf{I(o . () aul(t): 9cF, 920, and

L . L:s(t) A({¢2t}) dt =1}

-4]1~




for both F=C(R) n L”(R) and F = c;(o.b) . Let

L={geC(R) nL”R): g20,
0
Eg(t) A({¢2t}) dt +[ g(t) A({¢st}) dt <= , and

-

0
J:g(t) A({¢p2t}) dt - I g(t) A({¢st}) dt = 1

b
Considering all g* = g(J g(t) r{{e2t}) dt)"l for g ¢ L and noticing
0

b
that Jo g(t) A({e=2t}) dt = r g(t) A({¢2t}) dt 21 for g e L by the
0
definition of b and L, it follows that (1.3.11) with F = C(R) n L®(R)
is no larger than

(1.3.12) 1an aP(t) du*(t) .
gel ¢

But L contains F = Cz(o,b) » S0 the opposite inequality is true, there-
fore (1.3.11) and (1.3.12) are equal.

t
0
so that L: g(t) A({¢=2t}) dt - I g(t) A({¢st}) dt = J f(¢) d . This

t . 0 t
Now let f(t) = L g(s)ds using the convention that I =z . I

holds because L: fr(t) A({¢2t}) dt = [: fr(t) A({f(o)2f(t)}) dt since
f'(t) = 0, where f 1{s not one to one, and so a change of variables gives
()
Ef‘(t) AM{g2t}) dt = L M{gat}) dt
(0)
= f: AM{f(e)2t}) dt
(0)

f(e) dr

[f(o)zol
since f(0) = 0 , and then a similar calculation handles the other




integral. It is now clear that

r inf | gP(t) du*(t
tnt [ oPe) @i

. 'Inf{J £ (6)° |06P dv: FeC, f 20,

(1.3.13) { :
f' bounded, f(0) =0, f(¢) ¢ Ll(k.ﬁ) ,

L and I f(o) dA = 1} .

Finally, using (1.3.1) and taking the infimum over ¢ ¢ H with ¢ <0 on

A and J¢ dA =1 , it follows that Kﬂ.p(A) Ndp C“’p(A) ,» Since H s
closed under composition with f of the type described in (1.3.13), one
of which is f(x) =x . &

1.3.14 lemma. Suppose v is a positive Borel measure, o:R + R s

a Borel measurable function, a,be R v {-=»,®} , a<b,and I is an
interval, possibly unbounded, such that v(K) <® and 0 < Cy s o(x) s
Ck <= for K compact, x e K and K c (a,b) ¢ I, then

(1.3.15) ;:; L gp(t) dv(t) = (Lb (%)T/(P'” dt)-(p-]) .

where F may be any sugcol’lection of G={g: R+ R: g is Borel
measurable, g 20, J g(t) o(t)dt = 1} which contains G n c;(a.b) .
a

Vv 1s the density of the absolutely continuous part of v . The convention

(Lb(%%% )1/(p-1) dt)-(p-ﬂ . (mz)g will be used if p=1 .
a,
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Proof. (1.3.15) will first be proven for dv(t) = v(t)dt both with
F=6 and F=Gn Cyla,b) . Then Lemma 1.3.16 will imply (1.3.15) in
the general case for F = G n Cg(a,b) . It then follows that (1.3.15) is
true for all intermediate subcollections of G .

Assume dv = v(t)dt . Once (1.3.15) is proven for F = G , a smooth-
ing argument will be given to prove (1.3.15) for F = G n Cgla.b) .

If p=1, then for x ¢ (a,b) 1let g, = Xq (L o(t) dt)'] .
. n

[x-%- s x-i%] s which is defined for large n since then In c (a,b) .

b
It is now seen that I gn(t) o(t)dt =1 and
a

'L oh(t) dv(t) = L oP(t) S(t) dt

- (2n j 3(t) dt) (2n J o(t) dt)”!
Iﬂ Iﬂ

Vix
o(x

->

for almost all x ¢ (a,b) . Therefore

ajds

1nf] gP(t) dv(t) s inf
g€G I . (anb)

In addition,

] P(e) avie) = | aPe) S(e) e
r I

Qj<cH

N Ib gP(t) o(t)dt inf
a (a\b

= inf i .
(arb) ©




T o e

If p> 1, then (1.3.15) will be proven for o =1 , in which case
makihg the substitutions g = g'c and v = 3’ and recalling that 0 <
o<o on (a,b) , it follows that (1.3.15) holds for general o .

Assuming o = 1 , an inequality in one direction is obtained by
-=1(p-1) /(P -, -1/(p- -1
letting g = X(a,b) ¥ /(p-1) ([ v(t) Vip-1) dt) as long as
] a .

b o -1(p1)
I v(t) dt < = , otherwise a construction virtually identical to
a

that in the proof of the first Hardy inequality gives g such that
b b -
J g(t)dt = =« and I gp(t) v(t) dt < » and so, letting a, =

a

max{a ,-n} , b_ = min{b,n} ,

n
E, = (gsn} n (an,bn)
and
J° at)™!
9. *9X ng t)
n En 3 T By
b
so that I gn dt =1 and
a

b b b
P3d P3d dt)"P
L 9p v ts(Lgvt)(Lngn )

-0 as n+ow,

the same inequality follows.
The opposfte‘inequality is a consequence of Jensen's inequality.

The inf is not increased if only g ¢ 6 supported in (a,b) are con-

sidered. Given such a g , let 9, be as above.




T T ——— —

TE T YNV YT s ot T

(r G ey M (-D) dt)'(p‘”

)-(P-” _ [

- <1/(p-1) _-1

b -
< I gg(v+e) dt
a

b

by Jensen's inequality since I 9, dt=1.
a

Let ¢ + 0 using the monotone convergence theorem on the left, then

b
b .
ng\':dtt ab

( L 9 %, dt)p

as well by the monotone convergence theorem, and so the opposite inequal-

p

9" Xg v dt
n

b
-+ J gp\'adt
a

ity holds and therefore equality as well.

(1.3.15) will now be proven for smooth g . Give;l ge G, pick
9, bounded and positive with compact support in (a,b) such that 9t 9
in (a,b) . Let §, bea C® approximate identity with §p2 0
J 8 " 1 , and the djameter of the support of S 0. Thus Gm *9,
has compact support in (a,b) for large m and is bounded independent
of m, so

b

b
tn [ g 46,00t = L g, odt

and

" r( 1 b P
m g *6 vdt-I g, Vdt
Mo ly RM y M

by the dominated convergence theorem since V i{s fntegrable on compact




subsets of (a,b) and o is bounded uniformly away from 0 ,= on the
support of g n*sm .
The monotone convergence theorem now leads to
b b
Tim HmI gn*sm = I go =1
e g J3 a

and

b P s b ps
1im Hm’ (gnnsm) v dt =I 9" v dt .
a a

e me
From this can be extracted a sequence {fk} , fk =g, * Gm such that
k K
- ' b b - b -
f_ e C.(a,b) , J f,o+1, and I 3 dt+ gpvdt. Letting
k 0 a k a k a

f b b
’k = -5—-'5——- , it follows that I ?ko dt =1 and J fﬁ vdt -+
I fk o dt a 3
a

b
I gpi dt and 1.3.14 is proven for smooth g9 . #
a

1.3.16 Lemma. If v {s as in Lentma 1, then inf I gpdv =
1an gP% dt , the inf being taken over G n C';(a,b) .

Proof. Pick s a support of the singular part of v with |s] =0 and
O, open such that s cO , a,be O, s and [on| + 0 . Since o, isa
collection of pairwise disjoint open intervals, it is easy to construct

C;(a.b) functions ¢n.1 (each °n,'l = | off of a finite number of the

intervals) such that O i X(a,b)-0 everywhere on (a,b) with 0 s
]
n
$p,gsToand o . =1 on (a,b) -0, . It then follows for g ¢ G n

co(a.b) that




p
}jﬂ J (9 6,40 tv = I ¢ X(a,b)-0, ®

-J P Vdt
(a,b)-0,
_and
b
Hmj g¢n1°dt=I godt ,
{40 3 ’ (a,b)-on
SO
b P~
1im lim I (g¢n i)pdv = J g vdt
e joc ’ a
and
b .
1im 1im J 9 ¢ ; dt = I gdt =1.
Mo f-e s a
g¢ i
nk! k
From this extract a sequence 9 * 5 » SO that 9, €
gé o dt
h Ml

6n c;(a.b) and

1im I gﬁ dv = I gP v dt .,
ke

and the result is proven. B

——r

|
|
!
!




CHAPTER 2

The results of Chapter 2 form the foundation on which Chapter 3 is

built. For the most part they involve weighted analogues of important
basic tools used in the study of partial differential equations. !

In Section 2.1.0 the weights for several Sobolev inequalities are

characterized in a very general setting. Section 2.2.0 develops the theory ;
of weighted Sobolev spaces, weighted capacity, and weighted Sobolev ine

equalities in a setting appropriate for the application to differential ?
equations. An example is developed in which Sobolev inequalities are l
proven having weights of the form disﬁ’(x,K) for a class of sets K in- h
cluding unions of manifolds of co-dimension> 2. In section 2.3.0

a result on "reverse Holder" inequalities is develoved which implies
higher integrability for functions satisfying a maximal function

inequality.

e et et e e T O

2.1.0 VWeighted Sobolev Inequalities %

Conditions equivalent to two types of Soﬂolev inequalities
are developed involving the dominance of meisure by 'capacity".
It should be noted that V.G. Mazya [MA2] has proved 2.1.7 for
v = lebesgue measure and M = rd and D.R. Adams [Al-3] has done
the same for higher order inequalities (as well as two-weighted
inequalities for potentials). He has also §hown that 2.1.9, in
the special case described above, is needed only for K which are
balls. After having discussed my results oﬁ Sobolev inequalities
with me, Adams found an alternative proof for 2.1.7 and some
cases of 2.1.20 using strong type capacitary estimates, the
study of which was initiated by V.G. Mazya [MAl].

Let (M,F,w) and (M,G,v) be measure spaces with w,v positive.
Let W%’p(m,v,M) be a set of real-valued F measurable functions

satisfying the following properties. ?l
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2.1.1. wé’p(w.v,M) is closed under composition with f e N = {fe c*(R):
f(0) =0, f' 1is bounded and of one sign} .
There is a map |D| such that |D]: H(]J’p(m,v.M) + LP(v,M) and

' 1oreol® aV/P s ([ 19 (o21P 1001 &)/
(2.1.2)
<d (J [0f o 6{P av) /P

for some fixed d > 0 , where the notation |D¢| = |D[¢ 1is used.

~ The symbol |D| 1s only meant to suggest the absolute value of the
gradient on the classical wheP space. It should be noted that |D|
need not be sublinear. Special cases of wg’p(m,v,M) are developed in
Section 2.2.0. '

Given ¢ € H;’p(é.v.M) » let u¢ be the finite measure defined by

dug = Io¢|P dv . u; will be the distribution ?:asure of ¢ with respect
to u, , that is, wi(E) = (¢ (E)  so that | o(t) dup(t) =

J g(¢) du¢ for all Borel measurable g . Also let ﬁ; be the density

of the absolutely continuous part of u; . p' will always represent the

exponent conjugate to p , that is, % pl| = 1 . The proofs of the fol-

lowing theorems will be deferred till later.

2.1.3 Theorem, If 1 <psqQ<o and ¢ ¢ N(])’p(m.v.l‘l) » then
V4 1/p
(2.1.4) (I u® @) s c(J 10u|P dv

for some c>0 and all u=fo¢p , fe N, iff.

r 1/p'
(2.1.5) sup w/9(221) ” VD P i pca
r#0 r o ¢ |




t 3
The convention I gs=- j g fsused for t<s . If c 1is chosen as
S t .

small as possible, then alpscs dpl/q p']/p' b .

2.1.6 Remark. Under fairly general circumstances the co-area formula (F2] can

be used to give an explicite expression for ﬁ; . The following is a very
special case.
Suppose M = Q ¢ R" , Q open, |D¢] = |V¢) ,» v {is absolutely con-

tinuous with dedsity vV, an 1ritegrab1e Borel function and ¢ ¢ !:'I Q) .

L v 76| " = r L vai™ gt
- J{¢st}

for all positive Borel functions ¢ supported in £ so letting y =

[velP1Sx _; .+ 1t follows that () -L 1volP V5™ ae.
¢ (E) - R{¢st)

This can be generalized to allow M to be a "manifold" in a weak measure-
theoretic sense and ¢ to be "Sobolev”. .

1t H g W)'P(u.w.M) and H 1s closed under composition with fe N ,
then for AcM let G (A) = 'lnf{] 106]P dv: 6 e H , 421 on A}.

2.1.7 Theorem. If l1spsqQ< o , then
(2.1.8) (] lul? @)V9s ¢ (J [oul® ¢v)'/P

for some ¢>0 and all u e H
iff

(2.1.9) w/9(a) =b c},’g (A)

for some b > 0 , and for all setsA-i% }_1},45 e H, T ¢ 0,

e




3

If both ¢, b are chosen as small as possible, then d °b s ¢ s

d3 pllq p.l/p'b i

2.1.10 Remark. Although it seems in most cases that the use of the capacity
cH.p

sion KH p described in Section 1.3.0 is more easily calculated. This oc-

curs, for instance, when the level sets of the Sobolev functions considered

is more practical, there are specific cases when the equivalent expres-

are of a fixed geometry or if they display certain symmetries. It is neces-
sary in these cases to use the co-area formula, as described in 2.1.6, to
calculate ﬁ; .

Let (M,F,\) be a measure space with A positive, and let H"p(m,v,ﬂ)

be a set of real-valued F measurable functions satisfying the following.

2.1.11. H]’P(m,v,ﬂ) is closed under composition with f ¢ N' = {f ¢ C (R):

f' 1is bounded and of one sign} , and there is a map |D|: H]’p(m,v.M) -+
LP(v,M) such that (2.1.2) holds.

2.1.12 Theorem. If 1 spsq<® and ¢ ¢ H"p(m.v,M) » then
1/q 1/p
@113 ([ (] 160 -un)1 T @) s ¢ ([ 10ul” o)

for some c.|>0 and a1l u=fo¢ , f ¢ N' {ff

(2.1.14) sup wl/q(“r) (I: (ﬁ%%%t}l)]/(p']) dt)l/p' - b.' <.

r.y=t¢ .

If A(M) =1, w(M) <>, and ¢ ¢ L'(A.M) » then

(2.1.15) (J lu(x) - I uly) dA(y)| dm(x))”q <c, (I L d\,)""




Ve (2.1.14) holds.

The conventions 0+« =0 and, for kp/ﬁ; s %8 0, §= 0 are

1

for some c2>0 and a1l u=foe¢p , f e N

used. If the c, are chosen as small as possible, then d~
¢, s 2d p1/0 p.1/|:>' by
If Hc H]’p(m.v.M) and H 1is closed under composition with f ¢ N*' ,

b] sc2 <

then for Ac M Tlet

Eﬂ.p(A) = 'Inf{I |06|P dv: ¢ € H n L‘(A.M) .
¢21 on A and J¢dx-0} ,

and

T ) - mf{[ 106]P dv: ¢ € H n LIOM) ,
"~Q_so on A and Iq; dx =1} .

In Theorem 2.1.17 it will be assumed that
(2.1.16) if ¢ eH , then A({¢2t}) <= for t> 0.

If this is not the case, then the theorem still holds but CH.p and
C,; P must be replaced by the set function KH p defined in Section 1.3.0.
] . ’

2.1.17 Theorem. If 1 <psq<= and (2.1.16) holds, then
. 1/ 1/p
(2.1.18) (I (I Jutx) - u(y)] AN d(x)) A °1(J 10u] o)

for some ¢ >0 and a1l u e H
ire

(2.1.19) w'/9(a) s by T/P(A)

st e . Lol




for some b] >0 and all sets A= {¢<0}) , deH.
If A(M) =1, w(M) <o and H cL'(A,M) , then

@120 ([t - [ utn) el win) < e, ([ 1ou® @)””

for some c2>0 and all u ¢ H

iff
1/q 1/p
(2.1.21) w (A) < b2 cH,p (A)
for some b2 >0 and all sets A={¢s0} , deH,

Pz P
{1ff (2.1.19) holds since d cﬂ’p(A) s C;"p(A) sd Cu,p(A) .
If Cy » i=12, b, 1=1,2 are chosen as small as possible,

then d3b, sc, s2a3pYI p Py, 1202,

Remark: 2.1.10 is applicable to T(H p* C;‘ ,and T as well as

P H,p
Ke,p 2 Cyp -

Theorem 2.1.22 is an example of how the conditions in
Theorems 2.1.7 and 2.1.17 can be put into a more computable form when

p.]o T

2.1.22 Theorem. Let H = C';(n) , where @ c R" s open, and let v be
absolutely continuous with density v e Ll(n) .
If p=1, then condition (2.1.9) is equivalent to

(2.1.23) o/ YA) s ¢ Viminf %—L 3 dx
s Sk,

for some ¢ > 0 , all A compact with C" boundary and Cy = (x4A:
dist(x,A) < §} .




If v 1is continuous, then this reduces to

(2.1.24) w/A) < ¢ LA S,

or, in a more suggestive notation,
/95y
wy (A)'s ¢y, (3A)

If H= (2“(!2')|n » 2' open and & cQ', then for p =1 condition
(2.1.19) is equivalent to
(2.1.25) 0/9(a) A(a-R) s ¢ Viminf %L 3 dx
§+0 s
for some ¢ >0 and all A, closed relative to Q,which extend to com-
pact sets with C_ boundary in Q' .

If v 1is continuous, then this becomes
(2.1.26) w/9(A) A(R-1) < ¢ L st
AnQ :
The proof of Theorem 2.1.22 will rely on the following proposition.

2.1.27 Proposition. If ¢ ¢ cg(sz) s Q¢ R" 4sopen, te R is such
that {¢$=t} n {Vdp=0} =g , and if w {s continuous, then

wdx = I W dl'l"-] .

{¢=t}
where Cc(t) s {x ¢ {¢st}: dist(x , {¢=t}) < &} ..
% If ¢¢ Cg(n) and w s an integrable Borel measurable function, then

z
| Viminf %-L 0 dx s I w !
o O Kg(t) (9=t}

for almost all t ¢ R .
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Proof of Theorem 2.1.3. Assume (2.1.4) holds. Let w3(E) = w(¢™ (E) for
Ec R sothat forall feN and u=fog ,

(] Jul? dw)]/q =(j:° 1£(£)19 duf(t) 1/q

| -(I: ”: £ (s) dqu aw;(t))”q

t [
since f(0) = 0 and the convention I = -I is used. Also,
3 t

(] 10u® &) < (] 1#(0)1® 100l® &)

. d(fllf'(t)lp du;) e

Letting g = |f'] and recalling that f' does not change sign, it follows

(2.1.28)

r

(2.1.29) {

.

that

(2.i.30) (J: ”ot g(s) dslq dm;)]/q < cd(J: g’ (t) du;(t:))vp

for all bounded nonnegative C_ functions g .

u; is a finite measure since |D¢| e Ls . Also t9 is seen to be
m; integrable by letting g = 1 1in (2.1.30). Taking uniformly bounded
pointwise 1imits of bounded nonnegative C® functions g it follows that

(2.1.30) holds for all bounded nonnegative Borel measurable g . Taking
monotone 1imits then gives (2.1.30) for all nonnegative Borel measurable

functions g . Using (2.1.14) it follows that

e ., .




Mttt v 5 e b

coda

PR

e

[

r RYIA 1/p'
[ sup w;'/q([r.w))(i) ﬁ;(t) 1/(p-1) dt) s cd

O<r_
(2.1.31) ( and
0 . _1/(n 1/p'
gm0 ) s |

But m;([r,w)) = w({¢2r}) and m;((-w,r]) = w({¢sr}) , so considering the
t

s .
sign of r and using the convention J = - J » it follows that
s

t

sup w9 (%21) ”r ﬁ;(t)-]/(p'” dtl]/p' s cd .
r=0 0

Assume (2.1.5). As above, (2.1.5) is equivalent to (2.1.31) so, by
(1.2.15), (2.1.30) holds (with a different constant) for all nonnegative
Borel measurable g .. Given fe¢ N, let g = |f'| and use (2.1.28),
part of (2.1.29), and (2.1.2) to get (2.1.4). B

1

Proof of Theorem 2.1.7. By Theorem 2.1.3 it follows that d” ' b < c s

dpvq p’”p' b {if ¢ is the smallest constant in (2.1.8) and

r YT 174
b' = sup sup m‘lq(%zl) ” ﬁ;(t), V(p-1) dtl .
ée{ =0 0

Given ¢ ¢ f and re R , r £ 0, let f(t)a-:- so feN.

2 ~, b will be used to mean that ac']

c sbsac. u;%(E) =
Iof el &v wp Irl"’L 1061P o =
€rg

Mo o{{fod ¢ E}) =
fot ‘ LcrE

-p * =% -pI =%
irl Hy(rE) , so L uf°¢(t) dt Iri " u¢(s) ds .



Divide by |E| and differentiate using Lebesgue's theorem to get that
B (t) A Irl] P 1I"(rt) a.e. A change of variable now gives
fod dP

1/p'
1/q({121}) ”0 -*(t) ~1/(p-1) dtl

ng 6'/9(£(0) 21) (L T o) (8 -1/(p-1) dt)

so that

1/p'
b vy gup m‘/q(wan)(L a*(e) V(-1 dt)

since feN. Using the O0-= = 0 convention, it is clear that b' g

b* if b" 1is the smallest possible constant in the inequality
JMa “(p-1) )P |
(A) < b" inf{(L *(t) dt) : 621 on A and ¢t}

considered for all sets A = {y>1} where ¢ is a function

in H.  Using Theorem 1.3.2 it then follows that (2.1.8 and (2.1.9)

3
3 p1/q

are equivalent and d"°b scsd p'”p' b for b, ¢ chosgn as small

as possible. B8

Proof of Theorem 2.1.12. As in Theorem 2.1.3, (2.1.13) reduces to

(2.1.32) - (L: (J: ”: a(o) dcl dx;(s))q dm;(t))vq
s ¢d (J: aP(t) du;(t))]/p




with g = |f'| and J\; defined as x;(s) = A(¢"(E)) for E<R .

Also, as in the proof of Theorem 2.1.3, the function |t-s| has the

necessary integrability properties to allow the taking of 1imits, thus
giving (2.1.32) for all nonnegative Borel measurable g . Using (1.2.23)

and arguing as in Theorem 2.1.3 it is seen that (2.1.13) 1s equivalent
to

P 1/(p-1)  \W/p'
sup w'/9({esr}) (J: (A .{.f:} ) dt) <w
r

combined with

sgp w‘/Q(wzr}) (L: (X—p%?% )ll(p-l) dt)vp‘ <o,

It is easy to see that this is just (2.1.14).
If A(M) =1, wM) <= and ¢ e L'(A,M) , then (2.1.15) reduces to

(2.1.33) (j: |£(Lt ¢ & dA;(s)lq dw;(t))vq

s ¢ d ([: gP(t) du;(t))]/p

The finiteness of A , w implies that of A; and w; so that taking
limits of C functions of compact support it is seen that (2.1.33) holds
for all bounded Borel measurable g of compact support. Using (1.2.24)

and continuing as above, the equivalence of (2.1.14), (2.1.15) is proven. B




i

Proof of Theorem 2.1.17. By Theorem 2.1.12, it follows that d” b s ¢ s

2d p”q p"/p.b if < is the smallest constant in (2.1.18) and

rf.p Vip-1)  \-U/p!
b = sup sup w9 (%srl)(} (A—_(iﬁt—})') dt)
deH - r 0 u;(t)

since f e N' if f(t) = -t .

Given ¢ e H, re R , let f(t) =t-r so fe N and u;(E+r)=

u¢({¢ eE+r}) = u¢({¢-r €E}) ~

P u;_r(E) , and therefore, by differentiation,

ﬁ;(ti-r) mdp ﬁ;_r(t) = ﬁ;(tb)(t) a.e. .

*

s is Lebesgue integrable.) A change

(Recall u; is a finite measure so ¥

of variables now gives

1/(p-1) 1/p'
o/ q(¢sr)(r< AP({¢2t}) ) dt)
r

ip(0)
) (p-1)" \1/p'
. muq({fmso})(r (uf_ﬂmn) dt)
0\ HE(e)(t)
0 1/(p-1)  \1/p'
and so sup m‘/q({q’so})([("—@ﬁl}l) dt w b
deH u*(t)

Using the Q+= = Q0 convention, it is clear that b ~d b* if b’

{s the smallest constant possible in the inequality

1/(p-1) \-1/p'
/%) < b 1nf{j.("p_{¢2t} ) dt) : 950 on A, de H}
0\ H*(t)

considered for all sets A = {y<0} where pis a function in

H. Noting (2.1.16) and using Theorem 1.3.5, it now follows that

T L e o A5 g o



—

(2.1.18) and (2.1.19) are equivalent and d'3 by s ¢ s 2¢° p'l/q p‘]/p' by
if b] and ¢, are chosen as small as possible.ﬁ The equivalence of

(2.1.20) and (2.1.21) follows in a virtually identical manner. g

Proof of Proposition 2.1.27. If {¢=t} n {|V$| =0} =g , then || 2 6>

0 on {p=t} for some &6>0 since ¢ has compact support, so M, =
{¢ =t} 1is an oriented compact n-1 dimensional manifold. If fs(x) =
x+n s , where Ny is the unit normal to {¢ =t} at x directed into
{¢st} , then 3d>0 such that if Osssd, then f_: M, +F (M) fis
a diffeomorphism and lel +1 as s+0,where J  1is the Jacobian
of the transformation.

If §<d and ¢ is continuous, then

l%- Lc(t) v dH" - I{q;-t} ¥ dun-ll |

1 n-l n-1
+ v(x) ai™! ds - v dH
6 E Ifs(wﬂ:}) J{¢-t}

"from the co-area formula and the
fact that the gradient of the
distance function has absolute
value one a.e. on C(§)

§
1 - n-1
sl L [{¢-t}|"’(fs(“” 9] - u(x)| @) s

n-1

dH if csae for some se since

[Jg| +1 and y f{s continuous.

¢ I{¢-t}

e epoers e -
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Therefore the first statement of the proposition is proven with ¢ = w .

If ¢¢co“(n) and B

{t: (o=t} n {|V$| =0} # @} , then the Morse-
Sard theorem says that |B|

0. B 1is closed since ¢ has compact sup-
port so R-B =) Ii ’ Ii being pairwise disjoint open intervals.
i
=S Ii

Given [to.t]] , then |v¢] 26 >0 on ¢'1([t0.t]]) . If fs is

defined essentially the same as before, then f_: ¢'](t0,t1) -+ fs(¢-](t0,t]))

is a dfffeomorphism for all sufficiently small s , say s s d for some
d.

If ¢ 1is an integrable Borel function, then

4 4
I -;-J R’ " gt - J J v a™! dtl
ty  G(t) tg =t

et
1,

¥(x) a7 ds dt + J v|vé]| du"

H
ty o(fg (xD=t
< g-f: I wlwofs"l di" ds + lewl aH"

< CI@dH"

with C 1independent of tyr % if to .t:1 e [a,b] Ii for fixed a,b .

Given € > 0, pick ® continuous such that | |lw-@| <& and pick

§>0, &= 68 as in the first part of the proof. Then,

ey e



t t

1 1 ( _

l ;-I 0 di" dt - ® dﬂ"‘dtl
c

tg cy(t) tg o=t}
t t
1 1 ( )
s ‘j H BdH“dt-I adn“'dt‘
tg Cs(t) t; o=t}
t
1 Y
+ l] %—l (@ - o) di"dt - { ! (@ -w)ai"™ ! dt
ty Cs“‘) ty o=t}

(Y
s eq [ ! dt+c)

ey Jget)
< e(] lvs| +¢) ,

4 t, t,
$0 [ Yiminf g-l © di" < 1im %—I I o dH dt
t &0 " e (¢) 80 " ey eyt
t
1
- f i o di" dt .
t, o=t}

Now divide by t]-to and let 1:.l + to to get the final result. B

Proof of Theorem 2.1.22. Assume (2.1.23), that is,

u‘lq(K) < ¢ liminf }—I v dx
§+0 CG

for all K compact with C~ boundary.
Jake 3 to be a representative of the L' equivalence class which

is Bore) measurable and everywhere defined. Let A={y>1} for




some V¥ e c';(n) . Given ¢ € CZ(Q) such that ¢ 21 on A, it fellows

by the Morse-Sard theorem that {¢ =t} n {|V¢| =0} =@ for almost all
t e R for which it then follows that {¢ =t} is compact with C

boundary, so
m”q(A) < w”q({qbzl}) s w”q({&:zt}) for Oststi

sc h’minf%— v dx a.e.,

§+0 ICG(t)

where Cs(t) = {x e {¢ st}: dist(x,{¢=t}) <6} , by taking K

{¢ =t} for
those t in (0,1) where {¢=t} n {|{V¢]=0}=¢g .
It now follows that

as]/q(A) s inf liminf + v dx

(0,1)  6+0 GICG(t)

< inf J

(0,1) {¢=t}
= inf "
(0,1) ¢

v dx by Proposition 2.1.27

considering the remark given after Theorem 2.1.3. Using Theorem 1.3.2 now
shows that (2.1.9) holds for p=1.
Assume (2.1.9) so that

(2.1.34) ' (I ¢9 dm)vq sc I |Y¢| v dx

for all ¢ ¢ CB(Q) . Given A compact with ¢” boundary, 3 e* >0 such

that ¥(x) = dist(x,A) is C for x e {0<dist(x,A) <’} with
[P(x)] =1 . Let




1 on A,
£ = {-UX) g y<s, xga,
0 otherwise,
and Tet o  =h +f. ,where h(x) =2nh(2n), heC(R) , h20,
I h =1, and the support of h =spt hc [-1,1]. If o ¢ C‘;(Q) with
o 21 ona neighborhood of A, n 1is large and § small, then o
dominates the %ns ° (2.1.34) then implies that o ¢ L‘(m,ﬂ) since

G_ € L‘| (Q) , so the dominated convergence theorem can be used on (2.1.34)

q 1/q 1 -
to show that ([ \"6 dm) scy L v dx . Taking the liminf gives
: §+0
. 8 .

(2.1.23).
To prove (2.1.25) equivalent to (2.1.19), first extend v, w , A

to be zero in R'-Q and do all further work in Q' . Assume (2.1.25) so

that
(2.1.35) u‘,q(A) A(Q'-A) s ¢ liminf %L v dx
§+0 8

for all AcqQ' , A compact with C  boundary.

Let K . {x €Q: Y(x) <0} for some VY ¢ C“(n')l . Given ¢ ¢ C‘;(n')
1) Q

such that ¢ #0 on K, let $y=o ¢y » where L2 is an extension of

¢ to Q' and 0 ¢ C;(n') » 6=1 on Q. By the Morse-Sard theorem
{6, =t} n {lv¢]| =0} = g for almost all t , and so {¢; st} fs a compact
set with C boundary for almost all t , but then

m'/q(l() < w""‘({q’] <s0}) < m]/q((bl st) for O<st<e




1iminf %- J v dx
é+0 Ca(t)

s X((5; >t a.e. by (2.1635)«" where the
convention 5 =2 == is
used for this ratio,

vainr L[5 o
§+0 Ca(t)
= A({¢1 th}y a.€.,

since A({ds] 2t}) , being monotone, has at most a countable number of dis-
continuities and therefore k({¢] =t}) =0 a.e.

It now follows that

liminf .;- [ 3 dx
Va Lo 80 Sl
@ 7(K) s (0':0) X({‘h 2t})

I 5 T
t9y°t)

(0m) MGzt

by Proposition 2.1.27

Wi (t)

Ry

since v and A are zero in Q'-Q and ¢]‘n = ¢ . Using Theorem 1.3.5
it can be seen that (2.1.19) is verified.
Assume (2.1.19), so for ¢ e c"(n')ln it follows that

@138 ([([ 1otx1-9t0f aats))? m(y;)”q sc[lo] % ax.

1 O P 01




Given A c Q' with ¢ boundary, let ¥n.s be as before, recalling

that the diameter of spth =1 . Let F = {xed’: dist(x,2A) s 6 +1}.
= A~ .—1— l

Then ¢, ;=0 on 2 A-F,  and s 2 1--5 on A for o s& since

f’6 21- -“% on {xeQ': dist(x,3A) < 1/n} , and so §, * \“‘s 2

(1 --.%) [ hy = 1- n—}- . From (2.1.36) it follows that

W'/R) ARt -A-F (1 - )

n
: c[ |98, g1 ¥ dx .

Let n+= to get

u"q(A)_ A(Q' -A) s ¢ %I vdx , -
Cs
and taking the H;n:é\f gives (2.1.25), as required.

In case v 1s continuous (2.1.24) and (2.1.26) can be shown equivalent
to (2.1.9) and (2.1.19), respectively, by going through the proof above,

using the first part of Proposition 2.1.27 and replacing liminf by lim .
§+0 &0

Alternately, (2.1.24) and (2.1.26) may be shown equivalent by using directly

the methods of Proposition 1. 8

el o,




2.2.0 Properties of Sobolev Spaces and Capacities for Application Lo

Differential Equations
The Sobolev spaces and'capacities'dealt with in Sections 1.3.0 and

2.1.0 will now be placed in a setting appropriate for the applications to
differential equations developed in Chapter 3.

Basic properties of the capacity CH,P and its extremals are developed
such as subadditivity and capacitability. It is shown that Sobolev spaces
are closed under operations such as composition with certain Lipshitz
functions. The weight conditions for Sobolev inequalities developed in
Section 2.1.0 are translated into the setting of Euclidean space and an

example is given, where it is shown that weighté of the form dist®(x,K) are

admissible, for a class of sets K including unions of C2 compact manifolds

of codimension > 2. The notion of quasicontinuity is developed and ap-

plied to prove a weighted analogue of a result of Bagby [BG] which char-

acterizes w(‘)"’(n) . This in turn is used to demonstrate the equivalence

of two approaches to the definition of weak boundary values for the Dirichlet

problem. Many of these results are true in a more general setting.
Throughout Section 2.2.0 Q will be an open subset of le » p21,

-and @, v, and A will be locally finite positive Borel measures on

Q with'v absolutely continuous to w and A(Q) =1 .

d
2.2.1. Sobolev Spaces. Let LP(E) = LP(w,E) x hd LP(v,E) for Eca,

E Borel measurable. Assign LP(E) the norm |(f.91. '"’gd)lp;E’

(IE 1£1P do + Ki" L |9|(|p dv)1/p .

A omats s




1

-

tet L5 (a) = {(f.gs.. SENLRULISRER I P(x) for all

Keq, K compact} . loc(n) is given the topology induced by the
seminorms | lp'K » KcqQ compact. w1'p(m,v,n) is now defined as the
9

closure of H = {(¢,74): ¢ C () aLlP(w,2) and V4 € Kﬁl LPv,a)} in

@) ; Ho’p(m.v,n) as the closure of H n C3(a) x n G in tP)
K=1
1,p
and “10 () as the closure of H in L]oc(n)
Given (u,v) ¢ wiéc(m,v.ﬂ) , the notation v'=%u , Ue "lop(“’“’n)

and I("‘v)lp;n = Iul]'p
misleading. It is not claimed that u has a unique gradient. In fact

will be used for convenience even though this is

Serapioni has observed that for some weighted Sobolev spaces, zero may

have a nontrivial gradient in the sense above as well as a zero gradient.
Under fairly weak conditions it can be shown that if (u;.v), (upsv) e
H"p(m.v.n) , then U =y, almost everywhere. If w(E) = 0 on sets E
of capacity zero, then this will follow from Propositién 7. For convenience
H"p(n) w11] be used to denote Hl’p(m,v.n) .

One of the basic operations needed in the theory of Sovolev functions
is composition with Lipschitz functions. The following proposition shows
that ;his is possible for a wide class of Lipschitz functions. For example,
any Lipschitz function with at most a countable number of discontinuities
in 1ts derivative is acceptable. The other basic operations considered
are needed in Chapter 3 to show that certain functions are allowable as
test functions in the definition of weak solution.

Unless a particular space is specified, all the Sobolev functions
in Proposition 2.2.2 will be assumed to lie in one fixed Sobolev space,
the three possible cases being qup(a) . w"p(n) , and H;'p(n) . Con-

vergence is always that appropriate to the particular space considered




unless otherwise indicated. It will be assumed throughout that (u,7u) ,
("n .Vun) s (VaWV) , (vn ,an) " are Sobolev functions and that f(0) =
fn(o) =0 if H;’p(ﬂ) is being considered or if w{(Q) == and w"p(n)
is being considered.

2.2.2 Proposition. Assuming the above it follows that:

(2.2.3) If fe C'(R) with f' bounded, and if u_ € C°(a)
with ("n ,vun) + (u ,yu) , then

(f(u“m) ’f"("nm) Vunm) +> (f{u) , f'(u) vu)

for some subsequence {nm} .

(2.2.4) Suppose f:R + R is uniformly Lipschitz and 3f, e C](IR) such
that f," converges everywhere in a uniformly bounded pointwise manner to a
Borel measurabie function g, g = f' a.e., and fn(O) + f(0) .
If ("n .Vun) + (u,Vu) , then there is a sequence n, such that
(f,,,(unm) .f,;,(unm) vunm) + (f(u) , g(u) Vu)
and if u, *u pointwise everywhere on a2 set E , then fm(unm) + f(u)

m
pointwise on E as well.

(2.2.5) Let

1 xekE } b x20

0 otherwise 0 xs0

i pr > e o et e i

i e e vy

e S T



1 x>0 b x2b
signx-{o x=0 , h, . (x) -{x asxsb ,
a,b
-1 x<0 a Xxsa

where it is assumed that a<0Osb in the u;’p(ﬂ) case or in the W' P(q)

case i1f w(R) == ., The cases a =-® and b =« are included.

For each of the pairs (x' ’x{x>0}) » (x|, sign x) ,

(ha.b(x) "x{a<'x<b}) » represented as (f,g) , there is a sequence (fn} c

C*(R) such that f , '{fn} » § satisfy the requirements of 2.2.4.

Therefore 1t follows that (u', Xtu»0) T4) (lul » sign u Yu) , and

(ha,b(") . x{a <u<b} Vu) are Sobolev functions.

The fn may be chosen to converge uniformly. For f(x) = xt or

[x] » the fn may be chosen such that 0 g fn(x) s f(x) and for f(x) =

h‘.b(x) , the fn may be chosen such that a s fn sb . If in addition

a<0<b, then a<fn<b ts possible.

2.2.6) If f:R >R, feC[a,b] and a<u<b, then (f(u),f (u) vu)

is Sobolev.

2.2.7) If u and v are bounded, then (uv,v Vu + u Wv) is Sobolev.

2.2.8) If u, v are bounded, u H(])'p(n) and v ¢ N"p(n) » then

w e ¥g'Pla) .

(2.2.9) If u ¢ CB(Q) » Ve N};';(n) » and efther v 1is bounded or v < c» ,

then uv ¢ H;’p(n) .




Proof of Proposition 2.2.2.

Throughout the proof ft will be assumed that E =2 if Wy*P(q)
or "1.p(9) are being considered and E 1{s an arbitrary compact subset

of Q@ if u};‘c’(n) is being considered.

Proof of 2.2.3. Since |f'(x)] s M for some M <= , then f(x) s

Mix] + f(o) , so f(u) ¢ LP(w.9) or Lgoc(m.n) depending on the case

being considered. Also on some subsequence n

m * Yn + u pointwise

m
almost everywhere with respect to w (and also v since v is absolutely

continuous to « ), so

IE ['f'(unm) Vunm « f'(u) VuIp dv < L lf"(u"m)lp |‘7u“m-‘7u|p dv

+ L £ Cup ) - £ (IP [0l o

since If'(uﬂ )| sM and [f'(u )-f'(u)] + 0 pointwise almost every-

m m
where v in a uniformly tounded manner. Also

L Iflay ) = F(WIP du 5 P L i -ulP w0 @

Proof of 2.2.4. By 2.2.3, (fm("n) .f.;i(un) Vun) is Sobolev, also u“1 - U

pointwise almost everywhere » , v on some subsequence n; so
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IE lg(u) Yu - f“"(uni) Vu“ilp dv

3 [E |g(u) -f';(u)l IVu.lp dv + fE [f,;'(u) w - f’;‘(uni) Vunilp d ,

and therefore

1im Vimsup I lg(u) Qu - f'(u_ ) Vu |p dv=0,

me {20 JE mongt N
the second term converging to zero as in 2.2.3, and the first converging
to zero since f';‘ + g everywhere in a pointwise uniformly bounded manner.

A subsequence {ﬁm} can now be chosen so that f';‘(u'-‘ ) Tu- g(u) u in
m m

d
1 LPv,) .
k=1

For x20,

t
[tal) - #0015 |

< Mlx| + |f (o) - f(o)]|

f2(s) -g(s)| ds + | (o).~ f(o)]

for some M <= and also fm(x) + f(x) since f';‘ + g pointwise in a
unfformly bounded manner and fn(o) + f(o) . The same is true for x < 0
Mso |fi] s M for some M <= and 211 m, so

L |fm(u'-|m) -fm(u)lp do s W I lu;-"'-u|p do + 0 .
Combining these shows that

[ 1talt) - f0)1P o s L tal0) - (1P o+ 11000 - ) 1P @0

+0,

so the dominated convergence' theorem implies that I |fm(u) - f(u)lp du+ 0 .
E

S e

e



and so fm("ﬁ ) + f(u) 1in Sobolev norm.

1f u, * U pointwise everywhere on a set F , then- E
m )

[ty ) - flu] < [£,(u) - Flu)] + LA RAT]

s |fm(u) -f(u)] + Mlunm-ul ﬁ

+0

on F as well. B

Proof of 2.2.5. Pick n ¢ C‘B(IR) such that the support of n < [0,1],
nz20, and f n=1. Let nn(x) = nninx) , f(x) = x s and fn(x) =

n, * f(x) so that

() £ (x) 0 x<s0
f'ix) =n_» f'(x) =
n ] n 1 xZ%

with 0 s fr" £ 1. It is now clear that

(2.2.10) f;‘ +X everywhere in a pointwise unifoﬁn]y bounded manner.

{x>0}
Also fn(o) = f{(0) =0 and 0 s fn(x) s x' since
1
0sny s f00 = x" - [ ) G- G-Dt) @y st
0

The fact that the fn converge uniformly follows from (2.2.10), fn(O) =
fm(O) , and f"‘ = f|;| in R-[0,1].
For f(x) = |x| use that |x| = x* + (-x)" in combination with the

smoothing of x+ done above to define fn so that f,"(x) + sign x
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everywhere and the conditions of b) are met.
For f(x) = ha b(x) pick n e C;(IR) with n20, fn =1, and
the support of n c [-1,1] . Let n, *n n(nx) and gn(x) =n, * xE with

.~‘- n
En'-{a_+%<x’<b--:-}-so
0 if xsa+-},— or xzb-%
(2.2.11) Osgnsl s gn(X) ‘{
3 3
1. if a+;'-$!$b-;,‘

for large n and gn(x) -+ 'x{a<x<b} éverywhere in a pointwise uniformly
bounded manner.

Let
| X
(2.2.12) £.(x) = £(0) + fo g (s) ds ,

0
(where the convention r = -I
0 x

for x<0 1is used)so that f“(o) = f(0)
and f"‘ g, -X{a <x<b} everywhere in a pointwise uniformly bounded manner.
Uniform convergence of the 1"ﬂ follows as for x+ . If a<0<b, then
it 1s seen from (2.2.11) and (2.2.12) that a < fn <b for large n .

Otherwise it follows similarly that a < fn <sb. 1o

Proof of 2.2.6. With f_ as above, apply 2.2.4 to f(f ), f(h ) , and
g= f'(ha.b)x{a<'x<b} . Since a <u<b , this implies 2.2.6. ®

Proof of 2.2.7. Assume |u] , |v]<M<® and apply 2.2.5 with ha,b .
a=-M, b=y in combination with 2.2.4 to see that 3 {un} s {vn} €
C(R) such that (up »Vup) + (u,9u) and (v, ,9v ) + (v,ov) with |fu ] ,
Ivnl < M . In addition, choose the sequences so that they converge point-

wise almost everywhere w, v . Consequently,
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i p P iy |P P iyoy (P
L juv unvnl dmsL ul® |v vnl dm+IE Ivnl lu unl &

s MP(L Iv-vnlp do + IE |u-unlp dm)

-50,‘

and

(!E |(uKVV+ viu) - (u ov + VnVUn)lp dv)]/p
] (IE |uvv- uannlp d\.))"/p + (IE |vvu- vann|p dv)]/p
s (L lu-u [P fov}P dv)“p " n(f vv- v [P av)w

-|»(IE iv-vnlp |vulP d\:)vp + M(I |Vu - unlp d\)).llp

since Va* ¥ and u, > u almost everywhere in a pointwise uniformly

bounded manner. B

u, v are bounded. In the proof of 2.2.7 choose E = Q and up, € C';(n)

so that uv ¢ "(l).p(n) since UV € Co(n) .

If instead u ¢ c‘;(n) s Vo€ H};z(n) ,and v 1is bounded, then

choose E = support u and choose u_ * U, SO again uv ¢ w&’p(n)' . In

the last case when u ¢ CB(Q) » Ve u};g(n) and v s ca , the only change

is that v < co fs used to show that L lv-vnlp IVulp dv - 0 . This is
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clear since |Vu] {s bounded on E = support u and v_~+ v in

n
WP(o,E) . ®

2:2.13 Capacity. C, 5 . CH,P » and CQ,P will be redefined and ¢, o
will be shown to be subadditive and capacitable. The concepts of quasi-
continuity and capacitary extrenal will be developed. The proof of the
fact that the capacitary extrema) satisfies a degenerate elliptic partial
differential equation will be left to later, when it is used to prove a
particular Sobolev inequality.

If H , as described in 2.1.7, is C;(n) » then all level sets are
compact and the conditions, equivalent to the Sobolev inequalities dealt
with in 2.1.7, only involve capacities of compact sets. This motivates

an alternate and more classical definition of capacity for noncompact sets.

Let H be a subset of C (2) (the functions typically vanishing on
some set or a nbd of some set) closed under addition, and composition

with f ¢ {feC: f' bounded, f(0) =0} . Let
. CA(K) - 1nf{f Iv¢|p dv: deH , 621 on K}
for K ¢ Q compact,
C,‘,(O) = sup{C'(K): KecO , K compact}
for 0 < open,

C,(E) = inf{C'(0): 0 open E c 0 cq}

for arbitrary Ec Q.

WA




2.2.14 Proposition. C, 1s monotone increasing and for E either compact

or open
,C,"(E) = C,(E) .

Proof. If E is openand Ec 0, O open, then forany Kc &, K is_
also in 0 so C'(0) 2C'(E) , and so C(E) 2 C*'(E) , but C'(E) 2 C(E)
since E is open, so C'(E) = C(E) as required.

If E is compact and if Ec 0 , O open, then c;‘(O) 2 C*'{(E) , and
taking the infimum over such open sets gives CH(E) 2 C,;(E) . If ¢ eH
and ¢ 21 on E, then ¢ > 1-c on anopen set 0 with Ec 0, so

that

CH(E) < C;{({cb >1-€})
= sup{cf'{(K): Ke{p>1-€}, K compact}

1
(m)PI Iv6] o

s

since T%? 21 onall Kc{¢>1-€} . Now let € - 0 and take the in-
fimum over all such ¢ to get CH(E) < c*"(E) .

2.2.15 Proposition. If A, B <Q, then

(2.2.16) Cy(AuB) +Cy (AnB) < C,(A) +C,(B)

and Cy 1is capacitable, that is, if E is Suslin (this includes the Borel
sets), then 3K, compact such that K cE and CH(Kn) - CH(E) as now

Proof. Once (2.2.16) is proven, then capacitability follows from a theorem

of Choquet fC]. Assume A and B are compact. If CH(A) =@ Or




C (B) == , then (2.2.16) holds. Otherwise let SMaxn(x.y) = fn(y-x) +x
and S Minn(x.y) 2y - fn(y-x) » Where fn(x) is the smoothing of xt as

+ . +
in Proposition 2.2.2, so fn(x) x o, fo x{x>0} s and x -€, S fn(x) <
x* for some €, +0. Pick ¢, peH with ¢21 on A, p21 on
B, I |V¢|° dv <= and I [Pw|P dv <= . Let Oyn " SMaxn(¢.w) R

+

Gz.n = sninn(¢:W) » SO 0] n ad (¢'¢) +¢ = Max(¢.xp) ’ 02.“ -9 - (¢'°¢)+ =

g
Min(¢.¥) , and 1%;_? 21 on AuB, g, =1 on AnB.

From Proposition 2.2.14 and the definition of C,_" it now follows that

CH(AUB) + CH(AnB)
n

1 [ 1t toma) (Pecte) 5707 .
n-en)PI |£000-0) (-70) +901° v + [ |70~ £3.6-6) (70-90)]° &0

*[lﬁwﬂwwwrwﬂ°w+[lw-qw“Wwwnpm

P [P e

lwl® v + j{m} |v81P dv + [{ e

IWW}

v>¢

[ 1ol dv'+[ vs[P ¢v .

Taking the infimum over such ¢, ¢ 1t follows that
] ]
¢, (AB) +CH(AnB) 3 CH(A) +C H(a)

and so (2.2.16) follows for A, B compact by Proposition 2.2.14.
If {Kn} are compact and 0 1s open, then (K n} is said to ap-
proximate 0 if K g interfor Kney 2nd UK = 0. Assume A, B are
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open and pick {An} R {Bn} » compact sets which approximate A, B ,
respectively. It is seen that (An U Bn} and {A" n Bn} approximate
AuB and AnB , respectively. Given KcAuB and CcAnB, K and

C compact, tren Kc A u Bn » and chn n Bn for some n , so
C, (K} +C,(C) < cH(An“Bn) +CH(An“Bn)
23 CH(An) +CH(Bn)
s Cy(R) + ¢,(8) .

Taking the supremum over all such K and C , and using Proposition 2.2.14,
it follows that (2.2.16) holds for open sets.
Assume A, B are arbitrary sets in Q . Given open sets 0, PcQ

with Ac0 and B c P, then
CH(AuB) + CH(AnB) < CH(OuP) + CH(OnP)‘
S C“(O) + C“(P)

and taking the infimum over such 0, P shows that (2.2.16) holds. B

2.2.17 Proposition. Cy is countably subadditive.

Proof. Given E;c®, t=1,...,n, it follows from Proposition 2.2.16

n n
E C,(E;) .
that CH(1L'J] 1) s izl H( 1)

[
Let {01}:_] be open sets and K a compact set with K< U 0, so
. i=1

m m od
Culk) sC {U 0,) s c.(0;) s c,(0,)
WK s QLU 05) s 3 (0)) s T Gyl




for some m, so taking the supremum over all such K it follows that

CH(,UO)s X CH(O) Fina‘l'lyfor Eicn, i=1,2,..,Iif
CH(E ) = w for some i , then cH(u E;) s )j Cy(E;) . 1Othermse pick
0,l open such that Ej s 01 cQ and CH(O ) s CH(Ei) +e2
C(UE)sC(UO)s €,(0,) se+ ¥ C,(E,)
Higgy 1= HY o) §Hi §u1
and letting € + 0 gives the result. #

Propositions 2.2.18 and 2.2.19 will be used to motivate the definition

of quasicontinuity.

2.2.18 Proposition. If ¢ ¢ H , then
¢ (Clo] >21) s—j %P av
1

for all A >0.

Remark. Using a smoothing of the absolute value function the coefficient

2 may be replaced by 1 .

Proof. If K c {¢>A} and K {s compact, then %21 on K, so
-CH(K) < ATI IV¢|p » therefore taking the supremum over all such K
gives C ({¢>2}) < ;‘-J |v6|P dv . Considering that {]¢] >2) =

{#>A} v {-¢>A} and using the subadditivity of Cy » it is seen that

Proposition 2.2.18 holds. @

2.2.19 Proposition. If bpeH, n= 1,2,... , and the ¢, 3re
Cauchy in H] 'p(n) » then a subsequence of the ¢, converges uniformly off




open sets of arbitrarily small CH capacity.
et 1,p

If H = CO(Q) R {¢n} are Cauchy in W, (Q) and either I¢n| <

n=] loc
M<® or v s cw , then there is a subsequence {"i} and there are open

sets of arbitrarily small CH capacity off of which the ¢n converges
i

uniformly on compact sets. In any of these cases a subsequence of the

¢n converges pointwise off a set of CH capacity zero.
- P
Proof. Choose n, iteratively so that n; < L and n¢ni ¢"j]’p <

2'(1+2)(p+]) for all m2n, . Let E = {l¢. -¢ | > 2°(i+2)}
"y +]

n
so that by Proposition 2.2.18 it follows that CH(Ei) < 2'(i+]) and so
CH(U Ei)szm forall m>0. If xe- U E;, then

iam -1 iam

¢ (x)-¢_ (x)]s= o (x)-¢ (x)] <2™ for i>m and so the
l"m " | kzm | "k e+ |

¢n1 converge uniformly off the open set JJ Ei which has capacity 2"
2m
If H= C;(n) and {¢n :,] is Cauchy in w}sg(n) » then pick K, c

compact such that K; ¢ interior K., and U Ki =@ and choose n, e
C;(interior Ki+1) so that ng = 1 on Ki . Also choose a subsequence

n1 s0 that the ¢n converge « almost everywhere (and so v almost
|

everywhere since v 1is assumed absolutely continuous with respect to o )

so that

P p
n,¢ -n, ¢ do < € I . -9 do + 0

i

as j,k+w , and
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(W) (e, -¢ WP av + ¢ v, - |P dv
« |1 .l Lm 900, <y

e e o =Tty e

is

as j.k+= if |¢n|sM or if v s cw . Therefore {“i¢ }J-]
' i

Cauchy in H1‘p(n) and so by the first part of Proposition 2.2.19 sub-
sequences n, . can be chosen iteratively so that (n j} is a subsequence

of "{n,_; s}, and {n; ¢ n, }3-1 converges uni formly on K;=G; » where G,

-(141) . Let Fk- U G1 so CH(Fk) s 2 -k

s an open set with CH(Gi) <2
i2k

and the diagonalized sequence ¢“jj converges uniformly on any compact sub-
set K of @ -F, since K must lie in K, for some 1. B

2.2.20 Definition. If a property holds everywhere except possibly on a set H
of C" capacity zero, where H -c‘;(n) , then it is said to hold quasievery-

where. If u ¢ H;'p(n) and there exists a sequence ¢y € C';(n) such that

°n +u in u}"’(n) and ¢ + u pointwise quasieverywhere, then it is said that
u fs quasficontinuous. If u ¢ Nu;p(n) and there exist ¢, ¢ c(q) such

that ¢, +u in Hu;p(n) , then it is said that u is locally quasicon-

tinuous.
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2.2.21 Proposition

(2.2.22)

(2.2.23)

(2.2.24)

If ue NA’p(ﬂ) » then u can be redefined w almost everywhere

so as to be quasicontinuous.

If u 1is quasicontinuous, then u 1s continuous off open sets
of arbitrarily small CH capacity for H = d;(n) and if

. 1 .
oy € 63(9) and ¢ +u in No’p(ﬂ) » then ¢“i + u pointwise

quasieverywhere for some subsequence {n;} .

If either u 1is bounded or v s cw , then (2.2.22) and (2.2.23)

hold for u ¢ N};g(n) and ¢n e C(R) if quasicontinuity is

replaced by local quasicontinuity.

Remark. The conditions u bounded and v < cw 4in Propositions 2.2.19

and 2.2.21 are actually needed only near the boundary of & .

Proof. Given u ¢ ug’p(n) » there exist ¢ e 63(9) such that Yy, * U

in ";,p(n) . Using Proposition 2.2.19 a subsequence {"1} may be chosen

such that wn converges pointwise quasieverywhere as well as « almost
i

everywhere so u can be redefined on a set of «» measure zero to equal

1im ¢_ (x) , where it exists, and so is quasicontinuous.
~

If u 1s quasicontinuous, then there exist ¥y € d;(n) such that

Yy * U in H;’p(n) and pointwise off a set E , where CH(E) =0,
He= d;(n) . By Proposition 2.2.19, there exists a subsequence {“i} such

that *"1

CJ"O.

converge uniformly off open sets GJ with C“(GJ) <Eg s
Choose OJ open such that E 