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ABSTPACT (cont.)

calculated from the Behrens-Fisher distribution is derived and comparei with

the maximum likelihood and uniformly minimum variance unbiased estimators

through a simulation study. Two approximate methods for obtaining c- .

intervals and an approximate Bayesian probability interval is obtained. The

actual coverage probabilities of these intervals is examined by simulation.
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SIGNIFICANCE AND EXPLANATION

The reliability, say R, of a system is often of interest, where

R =P(Y < X). Here, the random variables X and Y are assumed to be

independent, vith X the strength of a component of interest subjected to a

stress Y. Our results are for the case where X and Y are normally

distributed with unknown means and unknown variances. (This of course means

that after transformation to logs, that our results apply for the case where

X and Y are distributed as log normal). For the case of point estimation

of R, we obtain a new estimator based on the predictive distribution of

Y - X. This is compared, via a simulation study, with 2 estimators mentioned

in the literature without too much analysis, namely the "nearly" maximu

likelihood estimate and the Rao-Blackwell UNVUE. The simulation study

supplies evidence for the conventional wisdom that the use of the "nearly*

maximum likelihood esimtate is well advised.

In addition, we obtain for the first time two approximate methods for

constructing confidence intervals for R, as well as an approximate Bayesian

probability interval. The actual coverage probabilities of these intervals is

examined by simulation.

st'

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.



STATISTICAL INFERENCE FOR RELIABILITY FROM STRESS
STRENGTH RELATIONSHIPS: THE NORMAL CASE

Benjamin Reiser* and Irwin Guttman

1. INTRODUCTION.

Let X and Y be independent normal random variables with means and

variances ijafo and Ps a 2respectively. Interest is focused on
x y y

statistical inference for the parameter

R -(y <X) X

x y)

where * is the standard normal cumulative distribution function. If X is

interpreted as the strength of a component subjected to a stress Y, the

resulting reliability is given by R. This type of situation is of particular

interest in probabilistic mechanical design (for example, see Haugen

(1980)). We further assume that, random samples of size n and m, say

X - and Y - (Y1 ,...,Y)' are available on X and Y. In

this situation point and interval estimation procedures are discussed.

Related problems have been widely presented in the literature. Birnbaum

(1956), Birnbaum and McCarty (1958) and Owen et al. (1q64) present non-

parametric confidence limits for this problem. In addition Owen et al. (1964)

discuss the normal case for m - n and ax - ay and for paired observations

on the jointly normal variates X and Y. Enis and Geisser (1971) look at

various situations from a Bayesian viewpoint giving predictive estimates and

posterior Bayesian limits but do not discuss the case where a is not

*Department of Statistics, University of Toronto, Toronto, Ontario M5S 1A1
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necessarily equal to a . Procedures if the parameters ui F y are known are

given in Church and Harris (1970) and Mazumdar (1970).

For the particular problem we have defined, Lloyd (1980) and Haugen

(1980) use the (almost) maximum likelihood estimate

R- - (1.1
S _S 2

x y/

n m 2 n2
where ) Xi/n, (Yi/m n- 1)S - ) Ix - 1 and

i-1 ii i1i
m

Cm - 1)S2 - ) (Y - ji)2 while Downton (1973) derives the uniformly minimum
y 

A

variance unbiased estimator (UMVUE) of R, which we will denote by R2 . (For

completeness, we state the formula for R2  in Appendix Al.) Lloyd obtains,

by the usual propagation of errors method, an estimate of the variance of
A * t

RV which with the assumption that R1  is normally distributed, then gives

approximate confidence limits. Since 0 < R1 < 1 with R1 usually close to

one this procedure can give misleading limits. Haugen (1980) obtains

confidence limits of ux - iy based on the standard approximate t solution

to the Behrens-Fisher problem. The limits for ux - Uy are simply divided by

/ -S2 + S2 and in turn 0 of these values are calculated providing limitsx y

on R. The properties of this procedure are not well understood due to the

division by a - /S 2 +S 2 , without accounting for the variation of a.x y

Kececioglu and Lamarre (1978) attempt to generalize the standard procedure for

deriving confidence limits for the tail probability of one normal distribution

to this case. Unfortunately their derivation involves a fundamental error

which will be discussed in more detail below.

In Section 2 of this paper, we derive a point estimator of R using a

fBayesian predictive approach, whose characteristics are compared with those of

RAand R 2in Section 3, by means of a simulation study. In Section 4, we

-2-



derive confidence limits on R, first from the frequentist approach involving

a non-central t distribution, obtained by approximating the distribution of

a weighted sum of independent Chi-squares by the distribution of a scaled

2
X - variable by equating the first two moments. A well known approximation

to the non-central t is then utilized to drive a different confidence

interval. Finally, we use a Bayesian approach to derive a (posterior)

confidence interval for R. These confidence intervals are compared in

Section 4.4 by means of a further simulation study.

2. PREDICTIVE APPROACH

There is another approach which will generate a point estimate of the

reliability functions, namely the Bayesian approach through the relevant

predictive distribution. So suppose in general, that the random variable

w, whose distribution is f(wIO), with 8 a (t x 1) vector of parameters,

is to be observed independently of the data at hand, say wl,...,wn, where

the wi are independently and identically distributed observations on w.

Then the predictive distribution of w, say h, given the data

- (w1,...wn), is defined as

h(wlv!) -jh(wj!)p(9jw)d8 (2)

where p(OIv) is the posterior distribution of 9, given w, that is,

n
p(Ojv) -X( H f(W 18) ,vp (2.1a)-

i-1

with p(e) the prior of e.

-3-



Now we are interested in the reliability R, where

2 2
R - P(Y < X1j ,Ii , a ) (2.2)

and suppose we have available the data x = (xi,...,Xn)' and ' Yl1 ... ! )''

which are, respectively n and m independent observations on X, the

strength variable, and Y, the stress vairable. If subsequent to the taking

of x and x, we will observe, independently, X and Y, where X has the

same common distribution of the xi and y has the same common distribution

of the yj. then, as is well known, if xi - N"Ux' ' yj - N(U a 2). the
x ~ y

application of (2.1) when the prior distribution chosen is the Jeffrey's

diffuse prior

P(j ,U ,2,2) (221 (2.3)
x y x y x y

leads to independent predictive distributions hx  and by for X and Y

which are such that - + I t + Is _,,. ,
XS2t (2.3a)

and

Y 12
y - (2.3b)

where tn.l, t,.1  are independent random variables with student t-

distributions of n - 1, m - 1 degrees of freedom respectively. We note

that in this particular case, the above predictive distributions also have a

confidence interpretation.

We now consider the predictive estimate of R defined in (2.2), namely
R3 - P(Y < Xlxy )  (2.4)

From (2.3) above, we have that (2.4) may be written as

-4- p
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- -I +s t /(_ < I- Sl 2x) (2.5)
3 a y n- x n

SP((cos O)t 1  (sin e)t <
+ _I)S2 + (1 1 )S2

-P(BFTlm- 1,n- 1) < x

i t 1 )s 2  ( + _)s2/ m + )y n x

where BFT in the Behrens-Fisher t variable, degrees of freedom

(m - I,n - 1), and e given by

I S28 - tan~1 ,( (2.5a)

m y

For a given set of data, tables of the Behrens-Fisher t are available

for various values of the pairs of degrees of freedom, and 'angle' 8. These

prove to be not very helpful in practice - only percentage points are

available, and this coupled with the fact that the calculated value of 8

(with probability one) is never a value used in the table, requires reverse

double extrapolation, etc. There is, however, an approximation due to Patil

(1965), who sets

BFT(m - 1,n - 1) - tf/h (2.6)

where tf is a Student-t variable with f degrees of freedom, with

[m I cos 29 + n-I sin2el2

f 4+n 3 (2.6a)
S) Cos4e + (n -sin4

(m- 3) 2(m- 5) (n- 3)2(n - 5)

and

2 f m 1 +n - 1 2.-1h --- [-- - coe8 +n 3 sin 2 ](2.6b

-5- -



This approximation seems to work well for (n,m) as small as 8, and in our

simulations below we use (2.6) above in evaluating R3 of (2.5). The

behaviour of the Ri's is now discussed in the following sections.

3. SIMULATION STUDY OF THE BEHAVIOUR OF THE Rio

For various sample sizes (n,m), we generated random samples on X

and Y for the case where R defined in (2.2) takes on the values .99, .90

and .67. For each of the chosen (n,m), we iterated 5,000 times, and from

the results computed the bias and the root mean square error (RMSE), for the

Ri's. The results are given in Table 1.

The simulation results confirm that the UNVUE estimator R2  is indeed

unbiased. In terms of bias, the predictive estimator R3 is, in all our

calculations, worse than either R I or R2 . The bias of R, seems not large

(discrepancies are in the third place).

Referring to RMSE, none of the Ri  turn out to be best uniformly. The

predictive is best only for the case R - .67, and is otherwise the worst. We

note that for R - .67, that Rt is second best with R2 trailing the other

two, but that differences are small.

For the cases R - .99 or .90, R3  in terms of R4SE, is always ranked
AA

last, with R and R2 alternating as the best, but again with only small
A A A

differences. However, the difference of RI or P2  with R could be
1 2 3

substantial. For example, for R - .99, (n,m) = (10,10), the RMSE of R1

and R2 are .0173 and .0146 respectively, while the RMSE of R3 is .0266.

We note that as the sample sizes (n,m) increase, the behaviour of the

Ri  tend to be similar, and this is repeated as R tends to .5. As a

! -6-



R R2  R3

R n m BIAS RMSE BIAS RMSE BIAS RMSE

10 10 -.0047 .0173 .0000 .0146 -.0161 .0266

10 15 -.0038 .0148 .0001 .0126 -.0129 .0221

10 20 -.0037 .0144 -.0040 .0121 -.0119 .0209

15 10 -.0038 .0148 .0001 .0126 -.0129 .0221

.99 15 15 -.0031 .0131 -.0001 .0114 -.0100 .0183

15 20 -.0028 .0120 -.0041 .0104 -.0086 .0164

20 10 -.0033 .0140 .0003 .0121 -.0115 .0204

20 15 -.0028 .0120 .0000 .0104 -.0087 .0164

20 20 -.0023 .0107 -.0037 .0091 -.0071 .0141

10 10 -.0053 .0662 .0019 .0673 -.0240 .0700

10 15 -.0052 .0605 .0007 .0613 -.0207 .0636

10 20 -.0055 .0572 -.0009 .0576 -.0195 .0601

15 10 -.0052 .0605 .0007 .0613 -.0207 .0636

.90 15 15 -.0036 .0533 .0011 .0539 -.0161 .0556

15 20 -.0049 .0505 -.0025 .0510 -.0159 .0527

20 10 -.0040 .0565 .0018 .0567 -.0180 .0590

20 15 -.0052 .0513 .0002 .0511 -.0162 .0535

20 20 -.0037 .0471 -.0009 .0476 -.0131 .0488

10 10 -.0039 .1161 -.0016 .1181 -.0135 .1105

10 15 -.0015 .1071 .0003 .1085 -.0096 .1025

10 20 -.0013 .1007 .0000 .1018 -.0085 .0969

15 10 -.0015 .1071 .0003 .1085 -.0096 .1026

.67 15 15 -.0011 .0946 .0003 .0957 -.0078 .0914

15 20 -.0006 .0879 -.0014 .0882 -.0064 .0853

20 10 -.0028 .1026 -.0003 .1044 -.0099 .0989

20 15 .0006 .0879 .0033 .0903 -.0053 .0852

20 20 -.0023 .0833 -.0034 .0855 -.0073 .0812

Table 1. Comparisons of the Ri based on 5,000 iterations.
A AA

Rif see (1.2)1 R2 . see (AI.3) R3 0 see (2.5)

-7-



consequence of this and the results above, and because of the simplicity in

computing R, we favour its use as a point estimator.

We also note that for small samples, the RMSE is quite large, so that

point estimates here are not very satisfactory. It is for this reason that we

now consider the question of interval estimation.

4. CONFIDENCE LIMITS ON R.

4.1 The Frequentist Approach

Usually a lower bound on the reliability is of interest and we will

restrict ourselves to this case. Since 4 is a monotonically increasingfunctin of,//o02 2
function Of x ( finding a lower confidence bound for

R is equivalent to finding one for 6. our problem has essentially the same

structure as the Behrens-Fisher problem and the solution presented below is

similar in spirit to the standard approximate "t" solution to the Behrens-

Fisher problem. 2 2

Note that X - +

and

22 2
(n - 1)S 2/a0

x x n-1

(m - 1S 2/Y2 - 2 2

y y 'm-I

2 + 2
0 y0

with all three of the above being pairwise independent. Let N - 2 ,
a 2 + 2

Then 
-x _X
n

2+2 2 +2

xxy
N N



In the equal sample size case, N - n - m. In addition

2 2

82 + S2 a x 2 + a 2x y -_ Xn-1 +m-IX._1

or approximately

2 +a2
f .. X2 (4.2)
f f

(The notation a stands for "approximately distributed as") where

( 2 +a22 a + a

x y /n -i mn-i1

and S2 + S2 is distributed independently of (4.1). Defining 6x Y / S 2  + _ 82

x y

we obtain from (4.1) and (4.2) that

a t f(I 6) (4.3)

where t (& 6) denotes a non-central t distributed variate with f
f

degrees of freedom and non-centrality parameter /1 8. If n - m and it is

known that ax - a y (4.3) holds exactly and leads to the well known sampling

theory solution (see Owen et al. (1964), Vnis and Geisser (1971)). By using

2 2
S and 8 in the formula for N and f the estimates N and f are
x y

obtained giving the further approximation

For equal sample sizes N - n - m does not require estimation. Since the

non-central t distribution has the monotone likelihood ratio property an

approximate 1 - a level lower confidence bound for 8 can be obtained by

solving

Prob(t(/ N 5) N 5) -1 - (4.5)

numerically for 8 (Lehmann (1958)). Denoting this solution by 1 the

1 - a level approximate lower confidence bound for R is then simply

II -9"



R *(61). Kececiogle and Lamarre (1978) take a similar approach but make

the mistaken assumption that N = f + 1.

A simplification is possible by using the well known approximation

tl2 1/2

(t (Y) - Y)/(1 + 2 I N(o,1)

Applying this to (4.3) gives

^( 2 1/2-N + N )(01 (4.6)
2f

Thus a (1 - a) level approximate lower confidence bound 6 2 can be

obtained as

;2 1/2

26 +6 _ z 1 0  (4.7)
N 2f

where ZI a  is the 1 - a standard normal percentile point. The

corresponding bound on R is then R = (6 2). This result can

alternatively be obtained by considering 6 asymptotically to be normally

distributed with mean 6 and variance estimated by the usual propagation of

errors method. Details are omitted for the sake of brevity. It seems more

reasonable to base inference on a normal approximation to 6 than on the

normal approximation to R as suggested by Lloyd (1980) since 6 is

unbounded.

Church and Harris (1970) point out that in certain cases it is possible

to assume that the parameters of the stress distribution are effectively

known. This is equivalent to taking m + f. It can readily be verified that

tim 821 gives the solution presented by Church and Harris.

grip



4.2 The Bayesian Approach

The Bayesian approach also leads to bounds on the relilhility. Given the

data, and assuming that the usual vague priors are appropriate, viz

p(uxU IS2,82) 1/0 2 a 2 (4.8)
y x y x y

then the joint posterior of xap ya 2,2 can be obtained. Using the joint

posterior, we can in principle proceed to find the marginal posterior of

x Y (4 .9 )

,/ 2 + 62

x y

and thus of R 4 *(6 ). To do this requires a triple integration. A method of

doing this in closed from eludes us, but in principle we may do this

numerically. We would like to indicate a simpler solution, and we first note

~2 02
that liven a y that the posterior of y is such that

x2 2
2 + a2

E x
,t 2 n (4.10)2 2 a+ a

a2 +0 y x y
x y

while the posterior of the variances are such that

a2 _ n- S2 2 2 I 2 A2
x -(n-) /Xn1)/ independent of o 2 (m - 1) /XM 4.11)

We see now that if n - m, the distributional variance of 8 is simply

1/n, and to find the unconditional distribution of 6, we need only

2 2
integrate (4.7) with respect to the distribution of a + ,where the

x y

distribution of the varLances 02 and 02 is given in (4.11) with a - n.
x y

At this point we will approximate the distribution of

•-11- i



2 2 an bnax +a 2 + 2 (4.12)

1 Xn- 1  2Xn-1

in2an2 2
(the ixn are independent), where a - (n -)8 x bn  (n - y by

letting

2 2 a
a + a 2 , (4.13)

x y 2Xb

so that by equating moments, we let

a -(e 1 + 2)c
n n

(4.14)
-1

b -(e + 4),n

where

en - (n - 5)-ldn2 + (1 - dn)2

d n  an/(an + bn) (4.15)

Cn = (n - 3) 1 (an + bn ) •

If we set

2 2
w- a +a ( 4.16)x y

then w has the approximate distribution

b/2 1)
f(wlxlx) - a w exp(-a/2w) (4.17)

2b/ 2 r (b

Combining (4.10) with (4.17) and integrating out w, we find that the

unconditional posterior of 6 is such that

- - -( + 1)
p(OIx, ) - J expf- Y1 6 x -2y] exp(-a/2w)dw (4.18)0 2 V-

or, after setting u -
1 / 2  (Idv/dul - 2u - 3)

-12-



a

p(81x,X) - K J U,1exp[- . (n[5 - (x - y)uJ2 + au2ljdu (4.19)
0 

2

Inegrating both sides of (4.19) will respect to 6 yields (a proof is given

in Appendix 1I)

X - /n ab/2/11w 21b-1 )/2r (b/2) (4.20)

To find a lower (1 - a) Sayesian bound for 6, say 5 we need to

solve, for 6311 the equation

1 - a = J p(8Ix,X)d8 (4.21)
831

which after an interchange of the order of integration, may be written as

- b- exple - (- (;_-)u]2d6 du (4.22)

22 r( )

so that we have

b/2 * 2

1-a - a ub-exp{ -*[n((x - y)u - 6 )]du , (4.23)-b-2 exf2 312--r) 0
22)

and we see that it ts necessary to solve (4.23) numerically for 6 31. Once

found we have a lower ayessian bound for R, viz

R -3 1 ('30 ) • (4.24)

Using (4.18)-(4.20), it can be shown that for large n,

K(6,z) 8, Var(81x A (7+ (4.25)
N 2f

-13-



and we note the similarity to the sampling theory results of (4.6). The

question of the asymptotic normality of 8, given x, X, remains open.

4.3 An Example based on Data of Kececioglu and Lamarre

Kececioglu and Lamarre (1978) give data pertaining to a mechanical

component (their Example 3) that yields

x 170,000 psi, Sx = 5,000 psi,
n = m - 32

a 144,500 psi, Sy W 8,900 psi,

For a 90% confidence lower bound, we have on the basis of the above data,

Rit= .9822, R = .9818, R 3 .9926

These were of course calculated as indicated in Section 4.1 and 4.2. It is

interesting to note that Kececioglu and Lamarre obtain the bound of .980 for

this set of data, for 1 - a - .90.

4.4 Simulation Study of Rit

The first part of our simulation study compares the coverage properties

of the Rut's. We used 2,500 iterations with n - m - 10, 15 and 20, with

R - .99, and calcualted the Rut for I - a - .90. We then counted the

number of times that R exceeded the calculated Rit, with the proportions

out of 2:500 tabulated in Table 2. This procedure was carried out for 2 /a2

y x

set equal to I and 3. We note that the non-Bayesian methods have coverage

very close to the nominal confidence level of .90, even for very small sample

sizes. We remark that we have examined these bounds for many cases and have

observed similar behavior, that is, the bounds RIt and R21 obtained are

strikingly similar, so that, as expected, the corresponding estimated

confidence levels are quite close. This implies that R21, derived as an

-14-



approximation to R11 is a quite good approximation, and due to the ease of

computation of R UP its use is thus recommended.

Table 2. Estimated Confidence levels for 1 - a - .9 (n - m)

with R -. 99, based on 2,500 iterations.

an / 2A n R R R
y x It 21 31

10 .908 .897 .956
1 15 .903 .894 .940

20 .912 .899 .939

10 .899 .888 .940
3 15 .899 .889 .928

20 .894 .889 .921

The coverage of the Bayesian method is farther from the nominal than the

confidence methods bat this improves with larger sample size corresponding to

the results mentioned at the end of Section 4.

The second part of our simulation study examines R Itand R 21for

unequal sample sizes and is presented in Table 3. Again we see that the

coverage is quite close to the nominal confidence level of .90 and that the

simple R 21method performs satisfactorily. Since for equal sample sizes

just f needs to be estimated while in the unequal case both f and N are

estimated we had expected our methods to perform not as well in the unequal

case as the equal case. Comparing Tables 1 and 3 we see that this is

incorrect and that in fact there is no deterioration for unequal sample sizes.

-15-



Table 3. Estimated Confidence levels for 1 - a =.9

(n m i), R - .99, based on 2,500 iterations

a2/a2  (n,m) 10,15 10,20 15,10 15,20 20,10 20,15Y x

R .900 .900 .900 .901 o901 .904

21

R i .907 .911 .892 .901 .885 .892

R .898 .901 .882 .891 .875 .884
21

5. DISCUSSION

The above computations of lower confidence bounds can easily be

extended to the case where strength and stress are sums of independent

normal variates, each of which can be sampled separately. In addition if X

and Y are lognormally distributed with X,Y > 0, and since P(Y < X) -

P(log Y < log X), all the results of this paper can be applied after taking

the log transformation of the observations.

In many situations X and Y are not observed directly but one or both

of them are computed as functions of random variables which can be observed

(see Haugen (1980) for example). Frequently these functions are

multiplicative in nature (Avakov (1983)) and the use of the lognormal is

reasonable. If these multiplicative factors can be assumed to be lognormally

distributed, then with the availability of sampling data confidence bounds can

be calculated in addition to the point estimates of Avakov.

Although the normal distribution is most commonly assumed for both

strenth and stress there are often theoretical or empirical justifications for

1:



the use of other distributions. Distributions such as the lognormal,

exponential, Gama, Weiball, extreme value, and Maxwellian have been suggested

(Haugen (1980), Dhillon (1980)). Note that the strength and stress

distributions may come from a different family. Although there has been some

discussion in the literature on point estimation in the non-normal case (see

for example Beg (1980) and the references cited there) very few results are

available on interval estimation. Basu (1981) gives some results in the Gamma

case and we have shown above how the lognormal situation can be handled.

Unfortunately, inference will be highly sensitive to parametric assumptions

and where only small sample sizes are available it will be very difficult to

decide which parametric form is appropriate. The nonparametric approach is

not very helpful here due to its extremely conservative nature (Basu

(1981)). There seems to be a need for some semi-nonparametric approach which

would not apply to all distributions but just to some set of "reasonable"

ones.

-17-



APPENDIX Al

As mentioned in the Introduction section, we state in this Appendix, the

formula for R2 , the uniformly minimum variance unbiased estimator (UMVUE)

of R - P(X < Y), as derived by Downton (1973), where X - N(xO) 2

x

Y -l N(ya 2), with X and Y independent. We are assuming that samples

X 1 . . . , X n  of n independent observations on X and, independently,

Yl""" 'Ym, m independent observations on Y, are available. Using the

notation of our paper, Downton shows that ;2  is given as follows: Define

A -12-/ (AI.1)
d fe S (n - 1)n " / 2 + S (m - 1)m - 1/ 2

x y

and for 1vl 4 1, let

0 if #(v) C -1, for all Ivi -C 1
h(v) - - (el.2)

m in [f(v ,1) 2 ( - /( - u2 ) 4 2 du, if #(v) -1

for some v c (-1,1)

where

OW () - 1 I- (AI.2a)
S(m 1) + S (m 1) n

Then,

I if A; 1

n-4R ' L-L h(v,(,- v ) 2 dv if JI1 -C I ,AI.3,1

-2 n) -2 m d- if2ICI (X3

0 if A IC I

(We note that on page 557 of Downton's aforementioned paper, the last two

lines have an error and should have -" k 0 and " - I" interchanged).

] -18-



APPENDIX All

As advertised in Section 3, we wish to derive in this Appendix, the

result given in (4.20). we have from (4.19) that

1 _Jp(81x,)dd - (AII.1)J --
- K ;u u,exp[- - {n[8 - (x- yu12  au2 1dudw

.w0

where a > 0, and b > 4. On interchanging the order of integration, we have

1- K U expf- au2 }( J elp - (5 - y)uJ2d5}du (AII.2)
o -

The inner integral of (AII.2) is that of an unnormalized normal density, mean

(x - y)u, variance I/n, so that the inner integral has value iS7n.

Hence

Sb-2du (AII.3)S- Kj u u ' exp- 2a u~d

r 02

If we let au2/2 =w in the integral, we easily find

-2  )b'1/2 b 1 I
1 2K e2 .ewd (AII.4)

so that

K 2(b-)/2 I; r (b

1 a a/ 2  (AII.4a)

or

b/2 -(b-)/2 (
K n a lir 2 r~b

as stated.
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